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Abstract 

This article deals with the dynamic properties of individual wheel electric powertrains 

for fully electric vehicles, characterised by an in-board location of the motor and 

transmission, connected to the wheel through half-shafts. Such a layout is applicable to 
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vehicles characterised by larger power and torque requirements where the adoption of 

in-wheel electric powertrains is not feasible due to packaging constraints. However, the 

dynamic performance of in-board electric powertrains, especially if adopted for anti-

lock braking or traction control, can be affected by the torsional dynamics of the half-

shafts. This article presents the dynamic analysis of in-board electric powertrains in 

both the time and frequency domains. A feedback control system, incorporating state 

estimation through an extended Kalman filter, is implemented in order to compensate 

the effect of half-shaft dynamics. The effectiveness of the new controller is 

demonstrated through the analysis of the performance improvement of a traction control 

system. 
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1. Introduction 

The traditional layout of electric vehicle powertrains consists of a central motor, a 

single-speed or multiple-speed transmission, a differential and half-shafts [1-4]. 

However, the future of electro-mobility is likely to be based on the adoption of 

individually controlled powertrains for each wheel [5]. From the viewpoint of vehicle 

dynamics, this solution provides significant advantages, due to the possibility of 
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implementing direct yaw moment control for the enhancement of vehicle response in 

steady-state and transient conditions [6-8], and for the actuation of anti-lock brake 

system (ABS) and traction control (TC) functions. This is achievable through the 

precise control of the electric powertrain torque at the wheel. However, current 

regenerative braking systems for electric powertrains usually leave the modulation of 

the braking torques to the friction brakes, and reduce the regenerative action during 

ABS cycling [9-11], whilst traction control systems based on the actuation of internal 

combustion engines are characterised by a relatively low bandwidth. The low reaction 

time and high bandwidth of electric motor drives potentially allow the development of 

ABS controllers based on direct slip control [12-17] instead of the conventional hybrid 

controllers based on the combination of wheel acceleration control and wheel slip 

control [18].  

Individual in-wheel electric powertrains provide an additional benefit from the 

viewpoint of the design of the overall vehicle chassis, by permitting an increase of the 

available volume in the area between the wheels. However, current motor technology is 

limited in terms of power and torque density, which makes in-wheel powertrains, with 

their motor drive unit incorporated into the vehicle unsprung mass, a viable solution 

only for small and medium size cars, with relatively low performance. Despite recent 

studies [19-20] which suggest a past overestimation of the importance of this factor, in-

wheel electric powertrains are associated with an undesired increase of vehicle 
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unsprung mass, with the subsequent ride comfort and vehicle dynamics implications 

(for rough road conditions). Moreover, the adoption of an in-wheel powertrain on the 

wheels of a steering axle increases the turning radius of the vehicle, due to the related 

packaging issues.  

As a consequence, a possible solution for the implementation of individual electric 

powertrains, without being subject to the limitations of the in-wheel layout, is the 

implementation of in-board electric powertrains. These are characterised by a motor 

drive and a transmission connected to the vehicle chassis through a powertrain 

mounting system (possibly including bushings with non-linear elastic and damping 

properties), and by a half-shaft with constant velocity joints for driving the wheel. 

However, the main disadvantage of the in-board electric powertrain arises from the 

torsional dynamics of the half-shaft and the subsequent first torsional mode of the 

powertrain. The torsional dynamics of the electric drivetrain is due to the fact that the 

half-shaft can be considered as the combination of a torsion spring and damper (with 

very low damping ratio) in parallel, connecting the equivalent mass moment of inertia 

of the drivetrain to the inertia of the wheel. Moreover, the torsional dynamics of the 

system are significantly affected by the slip ratio dynamics of the tyres, due to the 

combination of tyre steady-state non-linear characteristics and relaxation length. In a 

first approximation, tyres can be represented as non-linear dampers within the system. 

Also the dynamics of the electric powertrain mounting system, especially if the 
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drivetrain includes bushings, is relevant to vehicle drivability, because of the forces 

transmitted to the vehicle chassis by the powertrain mounting system. All these 

phenomena could interfere with vehicle drivability, by affecting jerk dynamics, as is 

well known for internal combustion engine driven vehicles [21], usually characterised 

by a first natural frequency of the powertrain between 4 and 7 Hz. The torsional mode 

of the powertrain could also reduce the effectiveness of ABS and TC actuation. 

However, the literature about electric vehicle control has not investigated this aspect 

yet. 

This article provides a comprehensive analysis of the dynamics of in-board electric 

powertrains, in both the frequency and time domains. A potential limitation in the 

actuation of effective ABS and TC systems is demonstrated. A feedback controller, 

based on an extended Kalman filter [22] for the estimation of the half-shaft torque, is 

implemented for the compensation of half-shaft torsional dynamics during ABS and TC 

intervention, which is a novel control approach for this important application. A similar 

algorithm has been implemented in [23] for the compensation of the effect of the 

transmission plays on electric vehicle drivability. 

  

2. The Simulation Model 

This section describes the basic principles of the implemented non-linear model of the 

longitudinal dynamics of a case study front-wheel-drive vehicle with individually 
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controlled powertrains. A non-linear powertrain model is developed (and subsequently 

used as a simulator), from which a linearised vehicle model is derived for controller 

design purposes. The model presented in this section includes a significant number of 

simplifications, and has been selected as the simplest non-linear model capable of 

reproducing the dynamics of interest for the specific application [21]. 

Figure 1 is the schematic of an individual wheel powertrain, characterised by a three-

stage single-speed transmission with a layshaft layout. The equivalent mechanical 

model implemented in this article consists of three degrees of freedom: the vehicle, the 

wheel and the powertrain. The half-shaft is modelled as a torsion spring and damper 

with two mass moments of inertia at its ends. The damping coefficient of the half-shaft 

is low due to the very small internal damping of the material (steel). The connection 

between the wheel and the equivalent inertia of the vehicle is represented by the tyre. 

The angular speeds of the wheel and the equivalent inertia of the vehicle differ because 

of the slip ratio.  
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Figure 1 – Schematic of the individual in-board electric powertrain with a zoomed view 

of the three-stage single-speed transmission 

 

The electric motor reaction time and slew rate are included in the simulation model. The 

specific motor drive unit of this vehicle application is of a switched reluctance topology, 

characterised by a particularly low value of mass moment of inertia. A small time 

constant τM takes into account the effect of the electric dynamics of the motor (due to its 

equivalent circuit parameters): 

,M M M M refτ T T T   (2.1) 

Equation (2.2) models the overall powertrain dynamics from the motor shaft to the 

transmission output shaft. A look-up-table based model is adopted for the estimation of 

the windage losses Twindage, which are functions of the rotor angular velocity: 
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where half-shaft torque THS is given by: 

 1 2 3 1 2 3 FWHS HS g g g M FW HS g g g MT β i i i θ θ k i i i θ θ
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 (2.3) 

Transmission efficiency is modelled through a look-up-table-based model, as a function 

of the input torque, speed and operating temperature. Starting from THS, equation (2.4) 

calculates the net torque TFW transmitted by the half-shaft to the wheel:  

2 2

FW HS
HS FW

j

T J
T θ

η
   (2.4) 

Equation (2.5) is the rotational equilibrium of the driven wheel:  

, , ,FW d FW r F z FW W FW FWT T f F R J θ    (2.5) 

Tyre rolling resistance coefficient fr is modelled as a parabolic function of the tangential 

speed of the wheel. Tyre longitudinal force Td,FW/RW is modelled using the Pacejka 

magic formula [24], including a relaxation length model for the evaluation of the 

transient effects, according to equation (2.6):  

, , ,

tyre

d FW d FW FW Pacejka

FW W

L
T T T

θ R
   (2.6) 

Ltyre is a function of wheel speed, tyre vertical load and slip ratio. 
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Vehicle longitudinal dynamics are modelled through an equivalent moment of inertia, 

which is subject to equivalent torques due to the aerodynamic drag and the driven and 

undriven (the rear ones for the specific case study vehicle of this article) wheels. 

Equation (2.7) describes the dynamics of the equivalent inertia of the vehicle:  

 3 2 2

, , ,

1
2 2 2

2
d FW r R z RW W d W V RW W VT f F R ρC SR θ J mR θ     (2.7) 

Given the focus of the activity, the wheel vertical load transfers due to the longitudinal 

acceleration and deceleration levels have been computed considering neither the effect 

of suspension stiffness and damping, nor tyre vertical dynamics. For example, the 

vertical load on each front wheel is equal to: 
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(2.8) 

A similar equation is adopted for the computation of the vertical load on the rear axle. 

The most relevant vehicle data are included in Table B.1 of Appendix B. 

Linearization permits the analysis of the frequency response of the system and control 

system design. The model described by equations (2.1)-(2.8) has been subject to 

linearization around an operating condition, defined by a value of vehicle velocity and 

slip ratio. In the linear model, the tyre is considered as an equivalent torsion damper 

between the wheel and vehicle inertia, where the equivalent damping coefficient is 
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obtained through the linearization of the Pacejka magic formula around the selected 

operating point. The main non-linearities of the system are due to the tyre force 

characteristics. In particular, the absolute value of tyre longitudinal slip stiffness is 

positive and progressively decreasing from the condition of zero slip until the peak 

value of longitudinal force, at which it assumes a null value. When the longitudinal slip 

stiffness of the tyre is null, the individual powertrain dynamics are completely 

decoupled from the dynamics of the equivalent inertia of the vehicle. This offers the 

theoretical justification of the simplification carried out by most authors (for example, 

[12]) in the derivation of the dynamic equation of the slip ratio within the 

implementation of model-based ABS. Wheel dynamics are much more pronounced and 

at higher frequency values than vehicle longitudinal dynamics for conditions of slip 

ratios around the value generating the peak longitudinal tyre force. Beyond the peak 

longitudinal force, tyre longitudinal slip stiffness is negative. The linearised model has 

been implemented in a state-space formulation: 

X AX BU

Y CX DU

  


 

 (2.9) 

The detailed mathematical formulation of the elements of the X and U vectors and the A 

and B matrices defined in equation (2.9) is included in Appendix A, with some marginal 

additional simplifications (e.g. the windage losses are neglected). Additionally, it is 

possible to predict that most in-board implementations of electric powertrains will be 
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usually characterised by a lower length of the half-shafts (in comparison with internal 

combustion engine driven powertrains), due to the width of the system formed by the 

two electric motor units per each axle.  

Assuming some particular vehicle parameters (Appendix B), the frequency response of 

the model has been analysed for a number of different linearization points, given the 

absence of any literature about the frequency response of such a powertrain layout. 

Figure 2 contains the Bode plots of the adimensionalized half-shaft torque response to 

an input motor torque, for different values of slip ratio (linearization point), and two 

values of half-shaft length (i.e. half-shaft torsion stiffness), at a vehicle velocity of 50 

kph, in conditions of high friction coefficient (μ = 1) between the tyre and the road 

surface. ig
*
 is the overall single-speed transmission ratio (ig

*
 = ig1ig2ig3). At low values of 

slip ratio (graphs at null slip ratio in the figure), the frequency response is characterised 

by two peaks, at the natural frequencies of the system. The first one is visible in the 

diagrams, and is located between 80 and 90 rad/s (about 13 and 14 Hz), whilst the 

second peak is not visible, as it is located beyond the frequency limits of the plot. When 

the value of slip ratio at the linearization point is increased to 0.05, the low frequency 

peak in the half-shaft torque response is subject to an amplitude reduction. Moreover, 

the frequency of the second resonance peak gets lower, and the two peaks become 

closer. This is the range of slip ratios usually relevant for vehicle drivability. Finally, for 

values of slip ratio close to the one corresponding to the peak longitudinal tyre force, 
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the system experiences a significant resonance peak between 100 and 200 rad/s (about 

16 and 32 Hz). The frequency range of ABS modulation in common systems based on 

the hydraulic actuation of the friction brakes is between 4 and 7 Hz. According to [25], 

the adoption of in-wheel motors can increase the ABS modulation frequency up to 9-10 

Hz. This is the range of interest of this simulation model. Beyond these limits, there 

could be modal interactions with the longitudinal motion of the wheel relative to the 

chassis, due to suspension compliance, usually in the region of 40-100 Hz [26].  

 

  
(a) (b) 

Figure 2 – Bode plot (magnitude and phase) of the adimensionalized half-shaft torque 

for an input torque request, at different values of tyre longitudinal slip ratio (continuous 

line) 0.0, (dashed line) 0.05, (o) 0.1, (□) 0.138 (peak), (∆) 0.15. Vehicle speed is 50 kph. 
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Two half-shaft lengths are shown: (a) lHS = 506 mm, (b) lHS = 360 mm 

 

Figure 3 plots the sensitivity of the frequency response of the same electric powertrain 

to different values of the tyre-road friction coefficient, for a relatively low slip ratio (σ = 

0.05, Figure 3(a)), relevant to vehicle drivability, and a slip ratio close to the one 

corresponding to the peak value of tyre longitudinal force (σ = σPEAK - 0.01, Figure 

3(b)). The frequency response of the system is strongly dependent on μ, with the only 

exception being represented by the case of system linearization at exactly σPEAK, where 

all the Bode plots (for whatever μ) are coincident. In fact, in that condition wheel 

dynamics are decoupled from vehicle dynamics, and so the tyre longitudinal slip 

stiffness is equal to zero. In the analysis of this preliminary research activity, the 

variation of the shape of the tyre force characteristic as a function of μ has been 

neglected (all the characteristics have been scaled down according to the assigned 

friction coefficient) and the existence of the peak of tyre longitudinal force has been 

considered also in conditions of very low friction. Future analysis will have to 

investigate the frequency response of the system in case of low friction surface with 

snow, which gives rise to a monotonically increasing tyre force characteristic as a 

function of the slip ratio.  

In conclusion, the case study individual wheel powertrain is characterised by a higher 

value of the first natural frequency than the powertrain of an internal combustion engine 
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driven vehicle, which results in an improvement of vehicle drivability. However, the 

open-loop dynamic response of the powertrain, due to the torsional dynamics of the 

half-shafts, is not satisfactory for ABS and TC based on direct slip control. For 

example, [12] mentions a bandwidth of 72 rad/s (about 11.5 Hz) for the electro-

mechanical friction brake callipers adopted in that specific vehicle application. 

  
(a) (b) 

Figure 3 – Bode plot (magnitude and phase) of the adimensionalized half-shaft torque 

for an input torque request, at different values of tyre-road friction coefficient μ and 

with a longitudinal slip ratio σ given by: (a) σ = 0.05, (b) σ = σPEAK - 0.01. Vehicle speed 

is 50 kph. lHS = 506 mm 

 

3. Control System Design in the Frequency Domain 
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Figure 4 is the linearized block diagram of a TC based on slip ratio feedback control 

without any compensation of half-shaft torque dynamics, similar to the system 

presented in [27]. The estimation of the slip ratio implies the availability of precise 

information of vehicle longitudinal velocity, which can be easily derived, for the case of 

a two-wheel-drive vehicle, from the wheel speed sensors of the undriven wheels, which 

would be adopted in any case for the purpose of anti-lock braking control. This method 

for the estimation of vehicle speed is reasonably reliable also in case of cornering 

conditions. The main non-linearities of the control system are represented by the switch 

for the activation and deactivation conditions based on two different slip ratio 

thresholds, and by the fact that during TC activation the algorithm selects the lower 

between the driver torque demand and the output torque from the traction control 

system.  

In the frequency domain, for a vehicle with a traction control system based on direct slip 

control implemented through a Proportional Integral Derivative (PID) controller, tyre 

slip ratio  σ s  is given by: 

 
       

   
, ,

,1

ref PID TC M ref PLANT

PID TC PLANT

σ s K s T s G s
σ s

K s G s

  


 (3.1) 

The slip ratio is due to the combination of the reference torque contribution  ,M refT s  

imposed by the driver and the torque correction calculated by the traction controller. For 

a first approximation design of the tracking performance of the traction controller, it is 
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possible to consider the closed-loop transfer function of the control system, defined by 

the loop gain transfer function KPID,TC(s)GPLANT(s): 

   
   

   
,

, ,

,1

PID TC PLANT

CL TC conventional

ref PID TC PLANT

K s G sσ
G s s

σ K s G s
 


 (3.2) 

In equation (3.1) the term  ,M refT s  can be ignored, as it can be considered a 

disturbance during a manoeuvre with TC intervention. For a second approximation 

design of the controller, the analysis of the robustness of the control system against the 

variation of driver torque demand during TC interventions should be carried out (not 

attempted in this paper).  

 
Figure 4 – Block diagram of a conventional TC based on direct slip control  

 

ABS and TC based on direct slip control both need the precise actuation of the wheel 

braking and traction torques. These are characterised by significant dynamics (already 

outlined in section 2) if the reference motor torque for achieving a target wheel torque is 
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purely calculated by the ABS or TC as the desired wheel torque multiplied by the 

transmission gear ratio (<1 according to the conventions adopted in the article).  

The idea of this research is the implementation of an inner control loop for the feedback 

compensation of the torque oscillations at the wheels (Figure 5). The feedforward 

component of the reference torque at the half-shaft is computed as the reference electric 

motor torque 
*

,M refT , depending on driver input and the traction control, divided by ig
*
.  

 
Figure 5 – Block diagram of the TC based on direct slip control as the outer control loop 

and the feedback controller for the compensation of half-shaft torque dynamics as the 

inner control loop, including the schematic detailing the input and output signals of the 

extended Kalman filter for half-shaft torque estimation 
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A PID controller has been implemented for the feedback control of half-shaft torque as 

the inner control loop, according to the linearized block diagram of the system of Figure 

6. The gains have been designed for the achievement of about 7 dB of gain margin and 

60° of phase margin, at a vehicle velocity of 50 kph.  

As half-shaft torque cannot be directly measured on the plant, the system requires the 

implementation of an extended Kalman filter (Figure 5), for the estimation of the half-

shaft torque level. The extended Kalman filter is based on the non-linear electric 

powertrain model presented in section 2, with the exclusion of tyre relaxation length 

and the equations of the longitudinal vehicle dynamics. Appendix C presents the 

structure and the details of the formulation of the extended Kalman filter adopted in this 

contribution. The measured values of the angular velocities of the motor and the wheel 

and the measurement of the motor torque have been provided through sensor simulation 

and were pre-conditioned with properly tuned low-pass filters. The selection of the 

noise level for the measurements has been carried out consistently with the experimental 

values reported in [12]. This Kalman filter can also provide a reliable estimation of tyre 

longitudinal force, being characterised by a non-linear tyre model. An alternative 

implementation of a similar Kalman filter is presented in [23], where the filter is 

simplified from the viewpoint of the estimation of tyre force, but includes, within its 

non-linear model, the simulation of transmission plays, which can provoke significant 
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driveline oscillations. The best option for the detailed implementation of the Kalman 

filter will be experimentally verified by the authors during the vehicle testing activity 

which is going to be implemented in future.  

A comprehensive set of simulations has been carried out in order to check the 

robustness of the extended Kalman filter estimation against the variation of tyre-road 

friction coefficient, and against the variation of tyre parameters. In particular, for the 

specific case study, the filter estimation is not significantly affected even by an incorrect 

estimation of tyre friction coefficient, when the slip ratio is not close to the value 

corresponding to the peak longitudinal force. Therefore, within the implementation, the 

extended Kalman filter is fed with a fairly crudely estimated value of the actual tyre 

friction utilisation, based on the methodology presented in [27].   

The new feedback controller is useful during normal driving conditions for improving 

vehicle drivability, and during TC or ABS actuation for improving wheel dynamics. If 

we ignore the dynamics induced by the presence of the Kalman filter on the feedback 

loop, the loop gain transfer function for the system including the new control loop is:  

 
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(3.3) 

At the moment, within this research focused on the analysis of the in-board powertrain 

dynamics, the traction control system does not include a robust adjustment of σref as a 

function of the estimated tyre characteristics. As the focus of this article is on the effect 
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of the half-shaft on the dynamics of the individual wheel powertrain, the traction 

controllers in Figures 4 and 6 have been implemented as basic proportional controllers. 

The design of the gains for the TC systems has been based on the analysis of the gain 

margin and system stability on the Bode diagrams of the loop gain transfer functions. 

Typical desired values of the gain margin are between 3 and 10 dB.  

 
Figure 6 – Block diagram of the linearized TC (used for control system design) based 

on direct slip control as the outer loop and the feedback controller for the compensation 

of half-shaft torque dynamics as the inner loop 

 

Figures 7 and 8 compare the performance of the traction control systems of Figures 4 

and 6, from the viewpoint of the Bode plots of their loop gain (a) and closed-loop (b) 

transfer functions. The results have been obtained through the linearization of the model 
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in an operating condition close to the peak point of the longitudinal force characteristic 

of the tyre (precisely at a slip ratio with an offset of 0.01 to the left of the peak slip 

ratio), at a vehicle velocity of 50 kph. The adoption of the half-shaft torque control inner 

loop provides a significant enhancement of system stability. This allows the selection of 

higher values of the proportional gain of the TC, resulting in a quicker dynamic 

response of the controller, for the same values of gain margin, which are compared in 

Table 1 for different tunings of the proportional gain of the TC. Table 1 also shows a 

significant increase of the gain margin as a function of vehicle velocity, which implies 

the requirement for a gain scheduling of the controller. Due to the high non-linearity of 

the system, the fine tuning of the controller requires simulations in the time domain, 

which are presented in section 4. Figures 7(b), 8(b) and 9 compare the closed-loop 

performance of the control systems of Figures 4 and 6 in the frequency domain. In 

particular, with the system including the feedback controller on half-shaft torque, it is 

possible to achieve an acceptable tracking capability (-3.5 dB of closed-loop response) 

up to a frequency of about 47 Hz, well beyond the expected frequency range for TC and 

ABS. Additional benefits should be achievable by adopting more advanced controllers 

for the TC function, such as compensators and linear quadratic regulators, which will be 

the object of future research. 
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(a) (b) 

Figure 7 – Bode plots of the (a) loop gain transfer function and the (b) closed-loop 

transfer function of the vehicle including traction control and excluding the half-shaft 

torque control. The frequency response plots are shown for different values of the 

proportional gain of the traction control: (continuous) 10 Nm, (dashed) 50 Nm, (o) 100 

Nm, () 300 Nm, (▲) 700 Nm 
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(a) (b) 

Figure 8 – Bode plots of the (a) loop gain transfer function and the (b) closed-loop 

transfer function of the vehicle including traction control and the half-shaft torque 

control. The frequency response plots are shown for different values of the proportional 

gain of the traction controller: : (continuous) 10 Nm, (dashed) 50 Nm, (o) 100 Nm, () 

300 Nm, (▲) 700 Nm 

 

 P Gain 
[Nm] 

10 50 100 300 700 

Without half-shaft 
torque control 

20 kph - 6.34 -20.3 -26.3 -35.9 -43.2 
50 kph 7.82 -2.16 -12.2 -21.7 -29.1 
90 kph 15.2 1.26 -4.76 -13.3 -21.6 

With half-shaft torque 
control 

20 kph 36.6 22.7 16.6 7.1 -0.27 
50 kph 44.6 30.6 24.6 15.1 7.7 
90 kph 49.8 35.8 29.8 2.2 12.9 

 
Table 1 –  Gain margin values (in dB) for different tunings of the 



 24 

proportional gain (P Gain) of the traction control system 

 

 
 

Figure 9 – Bode magnitude plot of the closed-loop transfer function of the system with 

traction control, excluding inner loop (marked with □) and including inner loop (marked 

with o), at two different values of vehicle speed: 40 kph (dashed line), 80 kph 

(continuous line). The proportional gain of the traction control is equal to 17 Nm in the 

system without the half-shaft torque control loop and it is 700 Nm in the system with 

inner loop 

 

Figure 10 is the root locus plot for the overall closed-loop system, excluding (Figure 

10(a)) and including (Figure 10(b)) the half-shaft torque control system. The adoption 

of the novel half-shaft torque control system cancels the poles near the imaginary axis 

and moves the part of the root locus which progresses towards the right-hand plane 
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(RHP) zeros (not pictured) further to the left. This significantly contributes to system 

stability, allowing the adoption of higher values of the proportional gain of the traction 

control system.  

  
(a) (b) 

Figure 10 – Root locus analysis excluding and including half-shaft torque control at 50 

kph  

 

4. Results in the Time Domain 

The half-shaft torque inner control loop presented in section 3 is a useful method for 

modifying the loop gain frequency response such that TC/ABS slip (or anti-jerk) control 

design is much simpler and provides higher performance. 
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Figure 11 demonstrates the functionality of the novel controller through simulation in 

the time domain. The electric motor torque (and hence the reference wheel torque) is 

ramped up to a desired steady-state level, and then a sinusoidal oscillation at a 

frequency of 9 Hz is superimposed. In Figure 11(a), the vehicle equipped with the 

control system can follow the reference, whilst the vehicle without the feedback control 

system on half-shaft torque suffers from a mean level offset, a phase lag, and a 

significant amplitude error in the oscillations. 

 
 

(a) (b) 

Figure 11 – Half-shaft reference torque (thin continuous line), actual half-shaft torque 

(thick continuous line) and Kalman filter estimation of half-shaft torque (dashed line) 

with half-shaft torque control (a) and with no control (b). The electric motor drive 

reference torque (whilst in the figure half-shaft torques are plotted) is a step of 70 Nm 

plus a sinusoidal oscillation with an amplitude of 10 Nm and a frequency of 9 Hz. 

Vehicle initial velocity is 50 kph 
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Simulations of tip-in tests (Figure 12) with the non-linear model show the typical 

oscillations of the vehicle acceleration profile induced by the torsional dynamics of the 

electric powertrains. The vehicle equipped with the feedback half-shaft torque controller 

is characterised by an appreciably smoother acceleration profile, with attenuated 

oscillations in comparison with the vehicle without the novel control system, and so the 

controller can be considered as an indirect anti-jerk controller.  

 
 

Figure 12 – Vehicle longitudinal acceleration profile during a tip-in manoeuvre with 

half-shaft torque control (continuous line) and without half-shaft torque control (dashed 

line). Final torque demand of 75 Nm per electric motor starting from zero. Initial 

vehicle speed of 20 kph 
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Finally, Figure 13 is the comparison of the performance of the passive vehicle, the 

vehicle equipped with the TC of Figure 4 (according to two different tunings) and the 

vehicle equipped with the TC and the half-shaft torque control system of Figure 6, 

during a tip-in test from an initial speed of 50 kph. The wheel torque level during the 

first part of the tip-in manoeuvre is beyond the friction limit of the tyres, which implies 

significant wheel spinning for both the passive vehicle and the vehicle with TC only 

(proportional control). The TC without half-shaft torque control requires a significantly 

low value of the proportional gain of the controller for keeping system stability, as 

discussed in section 3. The stand-alone TC based tuned according to the system 

frequency response characteristics was unable to achieve the desired performance level 

with a proportional gain only. Therefore, a PID control system has also been 

implemented replacing the TC gain controller (still without the inner half-shaft torque 

control loop) in order to reduce the slip ratio especially during the first part of the wheel 

spinning phase.  

In frequency domain terms, the PID controller can be utilised as a band-stop 

compensator to reduce the loop gain around the first resonant peak in order to improve 

the gain margin. In any case, even this TC configuration achieves a more irregular slip 

control dynamics in comparison with the system including the half-shaft torque inner 

control loop. The vehicle equipped with the novel controller and a basic proportional 
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TC is characterised by the absence of any significant wheel spinning (maximum slip 

ratio of about 0.16) and a higher velocity profile than the other three vehicles.  

 

 

Figure 13 – Wheel (continuous line) and vehicle velocities (dashed line) during a tip-in 

manoeuvre. Vehicle without control system (▲); vehicle with traction control based on 

a proportional gain (*); vehicle with traction control based on a PID controller (); 

vehicle with traction control based on a proportional gain and the novel half-shaft 

torque control (o) 

 

The main performance metrics relating to the manoeuvre of Figure 13 are reported in 

Table 2. In particular, the novel controller proposed in this contribution allows the 

achievement of an average value of slip ratio very close to the reference, with a 
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reduction of the peak values of the longitudinal slip ratio by a percentage between 85% 

and 116% in comparison with the vehicles equipped with traction control systems 

without the half-shaft torque feedback loop.  

 

No control 

Proportional 

gain traction 

control 

PID traction 

control 

Proportional 

gain traction 

control with 

half-Shaft 

torque 

control 

Average 

acceleration 
1.36 m/s

2
 1.39 m/s

2
 1.51 m/s

2
 1.58 m/s

2
 

Average slip 

ratio 
0.262 (+113%) 0.239 (+94%) 0.152 (+24%) 0.123 

Peak slip ratio 0.403 (+129%) 0.38 (+116%) 0.325 (+85%) 0.176 

 

Table 2 – Performance metrics of the different traction control solutions presented in the 

paper, during the same manoeuvre as in Figure 13. The percentage variations are 

referred to the proportional traction control system including half-shaft torque control 

(configuration in the last column on the left in the table) 

 

5. Conclusion 

The article has demonstrated the potential effects induced by the torsional dynamics of 

the half-shafts on the response of individual wheel in-board powertrains. In particular, 

the first natural frequency of the system, due to the torsional stiffness of the half-shaft, 

the mass moments of inertia of the powertrain components and the tyre characteristics at 
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the operating point, is responsible for a significant deterioration of the system response 

in terms of wheel torque. The in-board powertrain dynamics have been compensated 

through a feedback controller, based on the half-shaft torque estimation using an 

extended Kalman filter. The performance of a case study traction control system is 

significantly enhanced by the adoption of the designed control system, notably 

achieving a tracking bandwidth up to 47 Hz at -3.5 dB.  

Future work will consider incorporating this methodology into a general four-wheel-

drive electric vehicle dynamics controller as part of the European 7
th

 Framework E-

VECTOORC research activity. 
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Appendix A – Matrices of the State-Space Formulation of the Linearised Vehicle 

Model 

Each element of the matrices of the first equation of (2.9) is here defined. 

State vector 

, , , , , ,T

M FW V M FW M dX θ θ θ θ θ T T     (A.1) 

State matrix 

1,1 1,2 1,4 1,5 1,6

2,1 2,2 2,4 2,5 2,7

3,3 3,7

6.6

7,2 7,3 7,7

0 0

0 0

0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0
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 (A.2) 

where the non-null terms are: 
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Appendix B – List of the Main Vehicle Parameters 

Symbol Value 
Vehicle parameters  

M 2500 kg 

L  2.660 m 

b  1.350 m 

CGh  0.65 m 

dC  0.39  

S  2.76 m2 

Wheel parameters  

WR  370 mm 

FW RWJ J  0.9 kg m2 

Half-shaft 
parameters 

 

Material Steel 

HSd  30 mm 

HSl  506 mm 

Gearbox parameters  

gi*  1/10 

Motor parameters  
TM,max 200 Nm 

PM,max 80 kW 

MJ  0.016 kg m2 

  
Table B.1 –  Main vehicle parameters 

 

 

 

 

Appendix C – Formulation of the extended Kalman filter for half-shaft torque 

estimation 

The process is governed by the following non-linear stochastic difference equation f: 
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    (              ) (C.1) 

where   is the process noise vector.   is the non-linear measurement equation (the 

vector of the measured variables is Z) and   is the measurement noise vector: 

    (     )  (C.2) 

The extended Kalman filter has been implemented according to the general algorithm 

detailed in the following steps 1)-6): 

1) Provide an initial estimate for      and     , where   is the error covariance 

matrix. 

2) Project the state ahead: 

 ̂ 
( )
  ( ̂          ) (C.3) 

where   ̂ 
( )

 is the a-priori estimate of the state at step  ,  ̂    is the a-posteriori 

estimate of the state at step    ,      is the input vector at step     and 0 is 

the process error estimate at step    . 

3) Project the error covariance ahead: 

  
( )           

  
 
 
         

  
 
 
 (C.4) 

where     is the Jacobian matrix of the partial derivatives of   with respect 

to  ,     is the Jacobian matrix of   with respect to   and   is the process 

noise covariance.  

4) Compute the Kalman gain: 



 40 

     
   

 (    
   

         
  
 
 
)
  

  (C.5) 

where   is the Jacobian matrix of   with respect to  ,     is the Jacobian 

matrix of   with respect to   and   is the measurement noise covariance. 

5) Update the estimate with measurement    

 ̂   ̂ 
 
   (    ( ̂ 

 
  )) (C.6) 

6) Update the error covariance: 

   (      )  
  (C.7) 

For the particular system of this contribution, the state vector at step   is: 

   { ̇    ̇              }
 
 (C.8) 

The non-linear system of difference equations     (              ) is the 

following: 
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The measurement vector is  ̃  { ̃̇    ̃̇    ̃  }
 

    its elements at step   are: 

 ̃̇    ̇       (C.14) 

 ̃̇    ̇       (C.15) 

 ̃           (C.16) 

    is the Jacobian matrix of partial derivatives of   with respect to  : 
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   (  

    
  

) 

The Jacobian matrices       and     are identity matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D – List of Notations 

A: state matrix (for the state-space model formulation) 

aij: element on the i-th row and j-th column of the state matrix 

   : Jacobian matrix of the partial derivatives of   with respect to   

   
  : element on the i-th row and j-th column of the matrix     

b: rear semi-wheelbase 
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B: input matrix (for the state-space model formulation) 

C: output matrix (for the state-space model formulation) 

Cd: aerodynamic drag coefficient 

Cl: aerodynamic lift coefficient 

Cm: aerodynamic pitch moment coefficient 

D: feedthrough matrix (for the state-space model formulation) 

dHS: half-shaft diameter 

 : Kalman Filter non linear difference equation of system state 

fr: tyre rolling resistance coefficient  

f0: part of the tyre rolling resistance coefficient independent from wheel tangential 

velocity 

f1: term of the tyre rolling resistance coefficient to be multiplied by wheel tangential 

velocity 

f2: term of the tyre rolling resistance coefficient to be multiplied by wheel tangential 

velocity squared  

Fz,W: vertical force between the wheel and the road 

g: gravity 

GCL,TC,conventional: closed-loop transfer function  
ref

σ
s

σ
of the vehicle with traction control 

system based on direct slip control, without the feedback control of half-shaft torque 
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GLG: loop gain transfer function of the system 

GPLANT: transfer function of the plant (the vehicle)  

GPLANT,HS: transfer function of the plant (the vehicle), providing half-shaft torque as 

output  

GPLANT,σ: transfer function of the plant (the vehicle), providing slip ratio as output  

 : Jacobian matrix of the function    with respect to   

 : Kalman Filter non-linear measurement equation 

hCG: centre of gravity height 

ig
*
: overall gear ratio of the single-speed transmission 

ig1: gear ratio of the first stage of the single-speed transmission 

ig2: gear ratio of the second stage of the single-speed transmission 

ig3: gear ratio of the third stage of the single-speed transmission 

JHS: mass moment of inertia of the half-shaft 

JM: mass moment of inertia of the electric motor 

*

MJ : mass moment of inertia of the electric powertrain at the motor 

*

VJ : equivalent mass moment of inertia of the vehicle 

JW: mass moment of inertia of a wheel 

*

WJ : equivalent mass moment of inertia of a wheel 

J1: mass moment of inertia of the transmission input shaft (Figure 1) 

J2: mass moment of inertia of transmission shaft 2 (Figure 1) 
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J3: mass moment of inertia of transmission shaft 3 (Figure 1) 

J4: mass moment of inertia of the transmission output shaft (Figure 1) 

k: discretisation step parameter 

K: Kalman gain 

kHS: torsional stiffness of the half-shaft 

KHS,CL: closed-loop transfer function of the half-shaft torque control system 

KPID,TC: transfer function of the traction control system (PID controller) 

L: vehicle wheelbase 

lHS: half-shaft length 

Ltyre: tyre relaxation length 

m: vehicle mass 

 : error covariance matrix 

PM,max: maximum motor power 

 : process noise covariance matrix 

R: measurement noise covariance 

RW: tyre radius 

s: Laplace variable 

S: frontal area of the vehicle (for aerodynamic force and moment computation) 

Tdriver: driver torque demand (for the electric motor drive) 
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Td,W: delayed (due to tyre relaxation length effect) torque between tyre and road (with 

time derivative 
,d FWT ) 

THS: half-shaft torque 

TM: electric motor torque (with time derivative 
MT ) 

TM,max: maximum electric motor torque 

TM,ref: reference electric motor torque, according to driver input 

*

,M refT : reference electric motor torque from the traction control (Figure 5) 

**

,M refT : reference electric motor torque from the half-shaft torque control (Figure 5) 

TW: net torque transmitted by the half-shaft to the driven wheel  

Twindage: electric motor torque windage losses 

TW,Pacejka: tyre torque according to the Pacejka magic formula model 

U: input vector (for the state-space model formulation) 

uW: longitudinal offset (due to the rolling resistance coefficient) between tyre normal 

force and the centre of the contact patch 

 : measurement noise vector 

   : Jacobian matrix of the function    with respect to    

 : process noise vector 

   : Jacobian matrix of   with respect to   

X: state vector (for the state-space model formulation) 
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Y: output vector (for the state-space model formulation) 

 : measurement vector 

βHS: torsional damping coefficient of the half-shaft 

    : Kalman Filter time step 

η
*
: overall efficiency of the single-speed transmission including the constant velocity 

joint 

ηj1: efficiency of the inner constant velocity joint 

ηj2: efficiency of the outer constant velocity joint 

η1: efficiency of the first stage of the single-speed transmission 

η2: efficiency of the second stage of the single-speed transmission 

η3: efficiency of the third stage of the single-speed transmission 

, ,M M Mθ θ θ : angular displacement, velocity and acceleration of the electric motor shaft 

,V Vθ θ : angular velocity and acceleration of the equivalent inertia of the vehicle 

, ,W W Wθ θ θ : angular displacement, velocity and acceleration of a driven wheel 

ρ:  air density 

σ: tyre slip ratio 

σPEAK: tyre slip ratio at which the peak longitudinal force is achieved 

σref: reference slip ratio 

τM: electrical time constant of the electric motor drive 
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μ: tyre-road friction coefficient 

 

In the frequency domain, the parameters have the same notation as in the time domain, 

with a horizontal line at the top.  

The subscript ‘0’ refers to the initial condition of a state variable. 

The subscripts ‘F’ and ‘R’ refer to front and rear components of the vehicle. 

The symbol ‘ ’ refers to the estimated variables. 

The symbol ‘   ’ refers to the Laplace transform of a variable in the time domain. 

The symbol ‘  ’ refers to a measured state. 


