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Abstract

The human speech apparatus is a rich source of information and offers many cues in
the speech signal due to its biomechanical constraints and physiological interdependen-
cies. Coarticulation, a direct consequence of these speech production factors, is one of
the main problems affecting the performance of speech systems. Incorporation of pro-
duction knowledge could potentially benefit speech recognisers and synthesisers. Hand
coded rules and scores derived from the phonological knowledge used by production ori-
ented models of speech are simple and incomplete representations of the complex speech
production process. Statistical models built from measurements of speech articulation
fail to identify the cause of constraints. There is a need for building explanatory yet
descriptive models of articulation for understanding and modelling the effects of coar-
ticulation.

This thesis aims at providing compact descriptive models of realistic speech articulation
by identifying and capturing the essential characteristics of human articulators using
measurements from electro-magnetic articulography. The constraints on articulators
during speech production are identified in the form of critical, dependent and redun-
dant roles using entirely statistical and data-driven methods. The critical role captures
the maximally constrained target driven behaviour of an articulator. The dependent
role models the partial constraints due to physiological interdependencies. The redun-
dant role reflects the unconstrained behaviour of an articulator which is maximally
prone to coarticulation. Statistical target models are also obtained as the by-product
of the identified roles.

The algorithm for identification of articulatory roles (and estimation of respective model
distributions) for each phone is presented and the results are critically evaluated. The
identified data-driven constraints obtained are compared with the well known and com-
monly used constraints derived from the IPA (International Phonetic Alphabet). The
identified critical roles were not only in agreement with the place and manner descrip-
tions of each phone but also provided a phoneme to phone transformation by capturing
language and speaker specific behaviour of articulators. The models trained from the
identified constraints fitted better to the phone distributions (40% improvement) .
The evaluation of the proposed search procedure with respect to an exhaustive search
for identification of roles demonstrated that the proposed approach performs equally
well for much less computational load. Articulation models built in the planning stage
using sparse yet efficient articulatory representations using standard trajectory gener-
ation techniques showed some potential in modelling articulatory behaviour. Plenty of
scope exists for further developing models of articulation from the proposed framework.

Key words: Critical, dependent and redundant articulators, articulatory constraints,
coarticulation, speech production, articulatory modelling
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Chapter 1

Introduction

This thesis focuses on identification of constraints on human speech articulators during
the production of speech.

1.1 Context

Speech is an essential form of communication between humans. Initiation of speech
takes place in the mind where lexico-grammatical structure of speech takes shape along
with the motor plan for commands to be executed by the speech organs. A mes-
sage conceptualised in the brain is encoded grammatically and phonologically which is
then converted in to a phonetic plan for the articulators. At the production level, air
expelled from the lungs passes through the larynx where phonation occurs. The artic-
ulation takes place in the mouth, where speech organs shape the vocal tract to produce
different sets of sounds. The air is then expelled either through the nasal or the oral
cavity. Different levels of processing for producting speech are explained in (Levelt,
1989). Figure 1.1 illustrates an outline of flow of information during speech production
along with the vital speech organs. Some components of the speech production system
that can move are called active articulators (Ladefoged, 2005), e.g., lips and tongue.
Some articulators, for e.g., jaw, are heavy and resist being set in motion whereas other
articulators such as tongue tip move rapidly from one target to the next. Rigid parts
of vocal tract are called passive articulators (Ladefoged, 2005), e.g., alveolar ridge,
palate. Speech articulators are constrained anatomically and have limited degrees of
freedom. The movements of articulators are correlated due to presence of physiological
links amongst them.

Speech sounds are distinguished based on the place and the manner of articulation
(Ladefoged, 2005). The place of articulation refers to the regions in the vocal tract
that are associated with an articulatory gesture, for example, a ‘palatal’ sound is made
at the hard palate. The manner of articulation refers to the way in which the speech
sound is produced, for e.g., for a 'nasal’ , the air flow is only through the nose. Active
articulators move towards target positions to shape the vocal tract for the production
of a desired speech sound. For example, for producing a bilabial stop [p], the upper

1
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Figure 1.1: Illustration of flow of information from initiation of thoughts to articulatory
movements for producing speech. Vital speech organs which shape the vocal tract for
production of various speech sounds are also illustrated. Illustration of human speech
production system is taken from Rubin and Vatikiotis-Bateson (1998).

and lower lips come together and the velum is raised to achieve a complete closure of
the vocal tract required for generating the stop.

Realisation of the intended speech is affected by various factors at both higher and lower
levels of processing (Levelt, 1989). Various social, pragmatic, syntactic, semantic and
prosodic factors affect the generation of speech at the higher levels of speech production
process. At lower levels, context sensitivity affects the plan for articulatory commands.
Smooth and overlapping movements of articulators result in coarticulation whereas an
inherent delay between the muscular command and the movements of articulators to
achieve intended articulation leads to effects such as reduction. Though the effects oc-
curring at the lower levels may only cause subtle changes to the perception, the acoustic
realisation of the speech sounds may be affected to a greater extent. The performance
of the speech recognition and synthesis systems is compromised due to the mismatch
between the realised speech and the corresponding acoustic model. Both recognition
and synthesis systems ignore the knowledge of speech production for modelling coar-
ticulation. Context sensitive models such as triphone models are used for modelling
coarticulation (Schwartz et al., 1985; Young et al., 2002). The parameters of available
contexts are collected from the data and shared with other triphone models (parameter
tying) to address the problem of data sparsity. Pseudoarticulatory information in the
form of discrete or binary features (Chomsky and Halle, 1968) is used in parameter
tying.

It is important to study and understand the process of speech production in relation to
planning, articulation, physiological characteristics and context sensitivity for advances
in speech technologies.

1.2 Motivation

Coarticulation is one of the main problems affecting the performance of speech recog-
nition and synthesis systems. Due to coarticulation, the realisation of a speech sound
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is not identical in all environments but varies depending on the context in which it
occurs. For example, the position of lips for [s] will be rounded due to the influence
of following rounded vowel [u] in [spun] and spread in [spin] due to the neighbouring
sound [i]. During the production of a speech sound, some articulators are constrained
to achieve target positions whereas the rest are unconstrained and are free to assume
any uncontradicting positions. The unconstrained articulators are most susceptible to
the coarticulation effects caused by neighbouring constrained articulators. In the above
example, the lips are constrained to protrude and spread for vowels [u] and [i] respec-
tively. The lips are unconstrained during the production of [s] and therefore assume
rounded or spread position depending on the context. Some context sensitive effects
can be planned in advance before the actual articulation takes place. In such cases, the
motor commands for articulators are specified in such a way that the articulators can
anticipate the positions required for the following sounds in the execution phase. On the
other hand, competing demands are imposed on the articulators during the execution
of motor commands in articulation stage in production of fluent speech. This causes
variations in target positions due to the overlap of articulators which are characterised
with varying degrees of inertia.

Though research and development of powerful training and decoding algorithms have
increased the quality of state-of-the-art speech recognition systems, their performance
is limited to certain tasks and environments. The performance of speech recognisers
on spontaneous speech deteriorates due to coarticulation. The acoustic realisation of a
speech sound varies in different contexts due to coarticulation and therefore it becomes
difficult to match the acoustic observations with the appropriate speech sound. Context
sensitive models such as triphone and quinphone models have been developed to model
the coarticulatory effects (Schwartz et al., 1985; Young et al., 2002). Such models
require collection of statistics and framework for sharing the parameters to avoid data
sparsity problems. Modelling the span of coarticulatory effects is controlled by the
length of the context sensitive models used.

The text to speech (TTS) systems commonly employ unit selection to synthesise speech
from the text. Large amounts of databases of same speaker are essential to maintain
good voice quality for speech synthesis. The search space for synthesis is restricted by
the possible sounds and contexts present in the database. It is important to consider
the effects of coarticulation to generate natural sounding speech. The discontinuity
at the boundaries when different speech units are joined together makes synthesised
speech sound unnatural. The spectral distance between features at either side of the
join, known as the joint cost, is minimised when performing concatinative synthesis to
reduce the discontinuity.

1.2.1 Problem statement

The human speech production is a rich source of information and offers many cues in
the form of physiological constraints and biomechanical links. Acoustic modelling in the
state-of-the-art speech recognition and synthesis systems uses no information of speech
production process for modelling coarticulation. Models of coarticulation are built at
the surface acoustic level while the underlying articulatory source is ignored. There are
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potential benefits to be gained by incorporation of speech production knowledge in the
architecture of recognition and synthesis systems. Each speech sound can be associated
with a set of synchronised articulatory movements. The presence of constraints on
some articulators during speech production reduces the variability in the articulatory
space. The articulators have inertia and therefore their movements are smooth and
slow. It is possible to generate smoother trajectories in the articulatory space which
could potentially yield smoother spectral transitions in the acoustic space. Presence
of physiological constraints and links makes it possible to generate compact and well
defined models in the articulatory space.

Incorporation of speech knowledge into the structure of speech recognisers and synthe-
sisers has attracted the interest of many researchers. Most of the existing production
oriented models of speech recognition and synthesis rely on the phonological descrip-
tions of the place and manner of each phone (for e.g. binary features by Chomsky and
Halle (1968)) where measured articulatory data is unavailable. Coarticulation is mod-
elled by specifying constraints on articulators using hand-coded rules and scores (for
e.g. Richardson et al. (2000)). Such rules and codes are simple heuristic representa-
tions which do not take into account the variations due to language, speaker, style etc..
Availability of measured articulatory data in the form of X-ray recordings (Westbury
et al., 1994) etc. made it possible to employ statistical modelling techniques in the
articulatory domain to capture the knowledge of speech production. Though statisti-
cal models offer efficient algorithms for training and decoding, they lack explanatory
power.

There is a need for building models of realistic speech articulation to identify and cap-
ture the essential characteristics of human articulators, such as target-driven behaviour,
articulatory interdependencies and biomechanical constraints for efficiently modelling
the effects of coarticulation. This thesis aims at providing a model of articulation that
captures the essence of speech production by

e taking into account the biomechanical links between the articulators

e identification of the constraints on the articulators and thereby the invariance in
the articulatory domain

e identification of partially controlled and totally redundant degrees of freedom of
articulators which are prone to coarticulatory effects to a greater extent

e providing parsimonious representations by capturing the constraints on articula-
tors

e providing a mapping from the phonological domain to the real-time phonetic do-
main by capturing the language, speaker, accent and style specific characteristics
of each phone from the measured articulatory data

e employing entirely statistical and data-driven techniques.

The degrees of freedom of an articulator during production of each speech sound are
identified using the knowledge of critical, dependent and redundant roles obtained from
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the proposed approach. The data-driven constraints obtained from the proposed algo-
rithm can be used to model the coarticulation caused by the critical articulators on the
neighbouring dependent and redundant articulators. The proposed method provides
parsimonious, statistical representations that can be trained from the data and can be
incorporated into the architecture of speech synthesis and recognition systems.

1.3 Overview of the thesis

The remainder of this thesis is organised as follows

Chapter 2 of this thesis presents the background information. The chapter is organised
into two sections. The first part of the chapter presents the literature review covering
previous work on different coarticulation modelling approaches in various speech recog-
nition and synthesis systems. The second part of this chapter provides an introduction
to the dataset used along with the preprocessing details. Assumptions underlying the
model are presented and evaluated using statistical methods. Background information
on the statistical measures used in the proposed approach is also presented.

Chapter 3 presents the methodology of the proposed algorithm. Different stages in
the algorithm are explained in detail along with the implementation details. Evaluation
measures used for analysing the algorithm’s performance are also introduced.

The results obtained from the proposed identification algorithm are presented in Chap-
ter 4. Lists of critical, dependent and redundant roles obtained from 1D and 2D
versions of the algorithm are presented for each speaker in the database. The ob-
tained results are analysed and compared with the constraints from the phonological
knowledge. The performance of the models estimated using the proposed algorithm is
analysed using the evaluation measures introduced in Chapter 3.

Chapter 5 presents evaluation of the role identification algorithm. The proposed
method is evaluated against an exhaustive search based approach for the identification
of roles. The performance of the algorithms are evaluated by comparing the results
from the proposed algorithm against the exhaustive search results.

Chapter 6 presents the models of articulation generated from the findings from the
proposed role identification algorithm. The first half of this chapter focuses on deriva-
tion of different articulatory representations using orthogonal linear transforms, and
evaluation of the usefulness of such representations in articulatory modelling. The sec-
ond half of this chapter presents a statistical framework for modelling coarticulation in
the planning stage of speech production using constraints from the proposed algorithm.
Hypotheses for modelling different aspects of coarticulation are evaluated by trajectory
synthesis. Synthetic trajectories are compared with the measured trajectories for eval-
uating the performance of models generated from different hypotheses.

Chapter T of this thesis presents the summary, the conclusions, the contribution and
the publications resulting from this work, and the future work.
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Chapter 2

Background

This chapter provides relevant background information on different theories and models
of speech articulation and introduces the proposed approach along with the preliminary
evaluation of the data. This chapter is divided into two parts. The first half provides
background literature on various approaches to modelling coarticulation in production
oriented models of speech recognition and synthesis. Different aspects of coarticulation
are introduced and existing theories for modelling coarticulation are explained. Various
knowledge driven, data driven and hybrid approaches for incorporation of speech pro-
duction information in speech recognition and synthesis systems are presented. Existing
knowledge driven constraints on speech articulators are reviewed and the proposed sta-
tistical approach for identification of constraints from the measured articulatory data
is explained. The second half introduces the dataset used for this study and various
preprocessing stages. The assumptions made for the study also are introduced and
evaluated using statistical methods.

2.1 Liferature review

2.1.1 Introduction

The human speech production system is a valuable source of information for advances in
speech science and technologies. Research has also shown links between speech percep-
tion and activation of relevant articulatory gestures (Fadiga et al., 2002; Wilson et al.,
2004; Meister et al., 2007). One of the main problems faced by speech researchers in
accurately modelling speech dynamics is coarticulation. The articulatory variability
due to coarticulation makes it difficult to match the resulting acoustic realisations with
the linguistic units for recognition. Coarticulation affects the naturalness of synthesised
speech. It is widely accepted that production oriented representations of speech can
potentially benefit the performance of speech synthesis and recognition systems (Rose
et al., 1996; Deng et al., 1997; McDermott and Nakamura, 2006; King et al., 2007).
However, in practice, finding a suitable representation for incorporation of production
knowledge still remains an open problem. Speech production knowledge was incorpo-
rated into the structure of synthesisers and recognisers using many knowledge driven,
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purely data driven and hybrid approaches. Many acoustic, articulatory and pseudo-
articulatory approaches have been developed to model the effects of coarticulation.
Movements of articulators during speech production have been recorded in many ways,
e.g., using electro-magnetic articulography (EMA) (Wrench, 2001; Richmond, 2009),
X-ray (Westbury et al., 1994; Soquet et al., 1999) and tagged MRI (Parthasarathy
et al., 2007).

Before looking at these models in more detail, the two main aspects of coarticulation
are introduced first.

Aspects of coarticulation

There are two main aspects of coarticulation: (a) spatial and (b) temporal.

Spatial coarticulation : The degree to which the neighbouring context influences
the target positions of speech articulators during the production of a phone is a mea-~
sure of spatial coarticulatory effect. The target position of an articulator for a phone
overshoots or undershoots due to coarticulation caused by the neighbours. Different
factors such as articulatory inertia, competing demands on articulators, speaking rate
and stress cause spatial coarticulatory effects. One of the most important theories ex-
plaining spatial coarticulatory effects is “the principle of economy of speech production
and adaptive variability” proposed by Lindblom (1990). According to this theory, an
articulator, when unconstrained to achieve a target position for a phone, tends to de-
fault to a low cost form of behaviour. Target undershoot occurs at shorter durations
due to the lack of sufficient time to reach the ideal target position. The speaker can
also adapt the behaviour at the rate of higher bio-mechanical cost. Locus equations
were used to quantify the formant target undershoots of vowels in consonant-vowel-
consonant (CVC) utterances as a function of duration by Lindblom (1963). His locus
equation approach has been used to quantify the spatial coarticulation due to context
by many since then. Apart from duration, the speaking style and stress also contribute
to target undershoot (Moon and Lindblom, 1994). Ohman (1966, 1967) investigated
the coarticulatory effects in vowel-consonant-vowel (VCV) utterances. In his view, the
vocalic gesture involved in production of VCVs was assumed to be continuous. The
consonantal gesture was superimposed on the continuous vocalic gesture. It was found
that the articulators which were not actively involved in producing the consonantal ges-
ture (i.e., unconstrained) were influenced most by the vocalic context. For example, for
velars in VCV contexts, the tongue dorsum degree of constriction remained invariant
whereas the place of constriction was modified due to the adjacent vocalic context. In
his numerical model (Ohman, 1967), idealised consonant target shapes were modified
using an estimate of coarticulation due to the vocalic context.

Temporal coarticulation : The extent in time to which the target position of an
articulator required for a phone can influence the neighbouring unconstrained phonetic
segments constitutes the temporal aspect of coarticulation. Depending on the direc-
tion of influence, the temporal coarticulation can be (i) anticipatory, where target
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position required for a phone is anticipated by the neighbouring unconstrained phones,
and (ii) carry forward, where the target position of a phone continues to affect the
following unconstrained phones. The immediate neighbours are most susceptible to
the anticipatory coarticulation effects. Moll and Daniloff (1971) found that the an-
ticipatory coarticulation could also start a few segments before the influencing phone.
The carry-forward coarticulation has mostly been attributed to the inertia associated
with the articulators. Many theories (Henke, 1965; Moll and Daniloff, 1971; Saltz-
man_and Munhall, 1989) were proposed to explain and model the anticipatory and the
carry forward coarticulatory effects. For example, temporal coarticulatory effects on
the adjacent segments have been quantified using electro-palatographic data and for-
mant information by Recasens et al. (1997); Recasens and Pallarés (1999). Here, the
anticipatory and carry forward effects caused by the consonant (C) on the neighbouring
vowels (V) in VCV contexts were investigated. A rule based scale defined the degree
to which an articulator resists coarticulation and was known as degree of articulatory
constraint (DAC).

The following sections present various knowledge driven, data driven and hybrid ap-
proaches used for modelling different aspects of coarticulation and for incorporating the
knowledge of speech production into recognition and synthesis systems. In the knowl-
edge driven approach to modelling coarticulation, the constraints offered by human
speech production system are derived from phonological knowledge. In the data driven
approach, purely statistical models of coarticulation are built from acoustic and mea-
sured articulatory data. Phonological knowledge is combined with measured acoustic
data in the hybrid approach for modelling coarticulation.

2.1.2 Knowledge driven models

In the knowledge driven models, the constraints of speech production are derived from
phonological knowledge. Hand coded rules and scales are used to identify constrained
and unconstrained components of speech production system for each phone. Different
knowledge driven approaches can be classified into two categories: (i) feature based
models, (ii) gesture based models.

Feature based models

In one of the theories of phonology, a distinctive set of binary features encode the
place and manner of articulation for every phone (Chomsky and Halle, 1968; Fant,
1969). The presence of a feature is denoted by ‘+’, and the absence of a feature
is denoted by ‘-’ as shown in Fig.2.1. Any insignificant feature is left unspecified.
In feature based approach to modelling coarticulation, discrete set of binary features
were specified for each phone in the uttertance (Henke, 1965; Moll and Daniloff, 1971;
Daniloff and Hammarberg, 1973). Anticipatory coarticulation was modelled as the
spread of features to the neighbouring unspecified phones in left to right direction at
the phonological level (Henke, 1965; Moll and Daniloff, 1971; Daniloff and Hammarberg,
1973). The feature spreading is blocked when the next specified feature is encountered.
Henke (1965) implemented this feature spreading in the form of his look ahead model
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Figure 2.1: Binary features proposed by Chomsky and Halle (1968) to the left, and
illustration of feature spread to the right.

of coarticulation. The feature values were spread and then mapped to spatio temporal
targets. The carry forward coarticulation was attributed to inertia of the articulators.

The extent to which an articulator’s position is influenced by neighbouring phones was
quantified using discrete feature values by Bladon and Al-Bamerni (1976). Coarticu-
lation resistance (CR) was estimated from the formant space by measuring the conso-
nant’s resistance to the neighbouring vowels in VCV (vowel-consonant-vowel) contexts.
The higher the CR value, the stronger the resistance to the coarticulation. Keating’s
window model (Keating, 1988) uses a range of values characterised by rectangular
windows for each phone segment. Articulatory features in her model are still binary
allowing for application of various phonological and phonetic fill in rules. Some speech
recognition systems have been inspired by the feature based concept and used binary
feature information for incorporating speech production knowledge (Kirchhoff, 1999;
Metze and Waibel, 2002; Frankel et al., 2004; Eide, 2001; Koreman et al., 1998). .

The feature based approach has many disadvantages. Feature based approach is poorly
suited to represent the continuous and asynchronous articulatory movements. The fea-
tures are non-overlapping, abstract and static representations and the feature bound-
aries are asynchronous. The feature specification is done at the phonological level and
therefore the variations due to language, speaker and style are not considered. The ex-
tent to which the neighbouring segments are affected is unspecified. Discrete features
such as coarticulation resistance are graded representations and are context specific.
It is also difficult to interpret the binary features as instructions for the articulators
(Dressler et al., 1992).

Gesture based models

An alternative theory for modelling coarticulation is the gestural theory (Liberman,
1970; MacNeilage, 1970; Browman and Goldstein, 1986; Saltzman and Munhall, 1989).
A phonetic gesture is defined as the movement of an articulator towards a phone specific
goal. Articulatory gestures are associated with an intrinsic temporal structure that al-
lows for the continuous and asynchronous movements. Each gesture is controlled by an
activation wave which is associated with a gradual implementation phase followed by a
relaxation phase. The overlap from coproduction of gestures results in coarticulation as
shown in Figure 2.2. If an articulator is shared by two or more competing gestures, the
resulting target position is subject to spatial coarticulation due to intergestural blend-
ing. The activation waves are shaped and prioritised using gesture scores obtained
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Figure 2.2: Schematic representation of activation waves taken from Fowler and Saltz-

man (1993) for three overlapping phonetic gestures, with anticipatory and carry-forward
coarticulatory fields indicated.

from the phonetic knowledge. Dominance functions proposed by Lofqvist (1990) were
one of the gesture based approaches for modelling coarticulation. The dominance of a
segment over the vocal tract across time was defined using dominance functions. The
dominance functions are analogous to the gesture activation waves depicted in Figure
2.2. The dominance functions of adjacent gestures overlap in time resulting in coar-
ticulation. Cohen and Massaro (1993) developed exponential dominant functions for
synthesising visual speech. Articulators are controlled by different exponential func-
tions with variations in magnitude, time and offset for different phones.

Physiological models of speech production have been constructed by modelling muscle
behaviour using differential equations from the classic mechanics (Coker, 1976; Ostry
et al., 1996; Dang and Honda, 2004). Some speech recognition systems were inspired
by the gesture models of coarticulation (Deng and Sun, 1994; Erler and Freeman, 1996;
Richardson et al., 2000). Gestural patterns were estimated using dynamic programming
and state model approaches from the speech synthesised using task dynamic model of
speech articulator coordination (TADA) by Ghosh et al. (2009).

The gestures are more closely related to the speech production process than the dis-
tinctive binary features. However, in gesture based theory, the extent of anticipatory
coarticulation is constant due to the fixed temporal structure of the gestures. Both
feature and gesture based models rely on knowledge driven constraints for defining fea-
tures and for prioritising gestures respectively. The following section presents purely
data driven approaches to modelling coarticulation.
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2.1.3 Data driven models

Statistical and data driven approaches have taken over the knowledge based approaches
for modelling coarticulation in current ASR and synthesis systems. Context sensitive
effects were modelled using acoustic data (Schwartz et al., 1985; Young et al., 2002)
or measured articulatory data (Blackburn and Young, 2000) or a combination of both
(Wrench, 2000, 2001). The context dependency due to coarticulation is modelled using
context sensitive acoustic models such as triphones and quinphones (Schwartz et al.,
1985; Young et al., 2002). An alternative solution was proposed by Sun (1997) where
the context independent models were subject to linear interpolation techniques to de-
rive smooth trajectories for ASR. Other techniques for generating smoother trajecto-
ries from the probabilistic descriptions of the acoustic data include dynamical models
(Richards and Bridle, 1999) for ASR and trajectory HMMs (Tokuda et al., 2007) for
synthesis.

Measured articulatory data has been used to model the source of coarticulation in vari-
ous synthesis and recognition systems. Blackburn and Young (2000) used curvature and
position estimates from the X-ray data to estimate context sensitive effects on the tar-
get positions. Triphone HMM models trained from EMA data were used to synthesise
minimum-acceleration articulatory trajectories (Okadome and Honda, 2001). Parame-
ters of dominance functions were estimated from the audio-visual data by Kriioul et al.
(2006). The vocal tract spectrum was synthesised from the EMA data using target
variance as a measure of susceptibility to coarticulation (Kaburagi and Honda, 2001;
Kaburagi and Kim, 2007). Invariant articulatory features were determined statistically
for each phone by performing eigenvalue decomposition on the ratio of within class
variance to the total variance. The mode with smallest eigenvalue represented the
constrained movements of articulatory coordinates for each phone.

Guenther (1995) proposed a neural network model, the parameters of which could be
trained from measured speech data for modelling speech production. Speech was syn- .
thesised using articulatory HMMs trained on normalised palate positions by Hiroya
and Mochida (2005). The EMA data was used for recognition using HMMs (Zlokarnik,
1993; Wrench, 2001, 2000; Uraga and Hain, 2006). Frankel used linear dynamical mod-
els to generate articulatory trajectories from measured articulatory data for recognition
(Frankel, 2003; Frankel et al., 2000). Articulatory measurements from EMA were com-
bined with acoustic data in an HMM/BN framework for recognition (Markov et al.,
2006).

Multiple-level dynamical models

In the multiple-level architecture, articulatory or pseudo-articulatory models are defined
in a hidden intermediate layer, the surface layer is acoustic. The mapping between the
hidden and the surface layers could be forward or backward. Observations generated
from the articulatory layer could be mapped to the surface acoustic layer or the artic-
ulation could be recovered from the surface acoustics (inversion mapping). In either
case, the difference is fed back to train the models. Bakis (1991) used an HMM based
approach with a hidden abstract articulatory layer generated from a lookup table. A
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Figure 2.3: Multi-level linear segmental HMM with a hidden articulatory layer and a
visible acoustic layer with linear mapping between them (Russell and Jackson, 2005).
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hidden dynamical model was proposed by Richards and Bridle (1999) where the se-
quence of targets generated in the hidden layer was mapped into the acoustic space
non-linearly using a multilayer perceptron. It was observed that the hidden target
space closely resembled the formant representation of the utterance. This concept was
developed by others. Deng and Ma (2000) used a first order linear state space equation
to model the formant trajectories in the hidden layer. The phones were divided into
different categories and a multilayer perceptron was used for each category to map the
trajectories to the surface acoustic space. This approach was further extended by using
a mixture dynamical model (Ma and Deng, 2004) and a linear mapping for each phone
to make the models adaptable to different speakers and speaking rates.

Segmental trajectory HMMs (Holmes and Russell, 1995, 1996, 1997; Russell and Holmes,
1997) were developed and embedded into a multi-layer system to overcome the beads-
on-string limitation (Ostendorf, 1999) of conventional HMMs. Each state of a segmental
HMM generates a sequence of observations instead of single observation. Figure 2.3
shows multilevel linear SHMMs where the states in the articulatory layer generate lin-
ear trajectories. Jackson et al. (2002) used a nonlinear mapping to map formants into
acoustic domain. Fixed linear trajectory SHMMs with measured articulatory based
(Russell and Jackson, 2002) and formant based (Russell and Jackson, 2005) interme-
diate layers were proposed. The trajectories associated with the hidden states of the
model are linear and are mapped into the surface acoustic layer using a set of lin-
ear mappings. Different trajectory shapes (Singampalli, 2006) and pruning methods
to improve computational efficiency for recognition (Shiga and Jackson, 2008) were
developed.
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An alternative approach to mapping between the acoustic and articulatory spaces is the
inversion mapping, where the articulatory information is retrieved from the acoustic
data. Inversion mapping poses a one to many problem since a single acoustic effect
can be generated from multiple articulatory configurations. The problems in acoustic
to articulatory inversion are discussed in (Atal et al., 1978; Bailly et al., 1992). A
comprehensive review of several inversion mapping techniques is provided in (Schroeter
and Sondhi, 1994). More recent models use machine learning methods on measured
articulatory data, such as codebooks (Hogden et al., 1996; Okadome et al., 2000), self
organising HMMs (Roweis, 1999), mixture density networks (Richmond, 2006, 2007a).
An attempt to determine non-uniqueness of acoustic to articulatory inversion from
peaks of conditional distribution of the articulatory space was proposed by Ananthakr-
ishnan et al. (2009).

~ Statistical models are powerful and use available data to generate probabilistic repre-

sentations of the phones, but fail to identify the constraints offered by human speech
production system. State-of-the-art synthesis and recognition systems use context sensi-
tive models to capture the coarticulatory effects. Such models require sufficient training
data and clustering techniques for sharing parameters. Any knowledge of articulatory
constraints have to be input explicitly in the form of phonological knowledge. The
following section presents all such models, called the hybrid models, which are partly
knowledge based and partly data driven.

2.1.4 Hybrid models

The knowledge based and the data driven approaches have been combined together
to generate hybrid recognition and synthesis systems. Such hybrid systems aim at
improving the performance of recognisers and synthesisers by making the best use of
both approaches.

Feature based models

Distinctive binary features were used in ASR systems for improving performance and
robustness to noise. Several

Eide (2001) used “feature-present” and “feature-absent” information to discriminatively
score the acoustic input for HMM based recognition. A reduction in the word error rate
(34%) was reported by Eide (2001) under noisy conditions (car engine noise). Metze
and Waibel (2002) also used a HMM based recogniser for detecting articulatory features
on noisy and spontaneous speech and reported a small improvement (2%) over the
baseline system. Koreman et al. (1998) reported that acoustic-phonetic representations
obtained by mapping acoustic information onto binary features using neural networks
gave improvements (39%) in consonant recognition when used with a HMM recogniser
over the baseline (no phonetic feature information is used).

Kirchhoff (1999) classified acoustic data into feature based groups using independent
classifiers as shown in Figure 2.4 and tested the recognition potential of combining
feature information with acoustic features in noisy and clean conditions. When a hybrid -
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HMM/ANN model was used for small vocabulary recognition using articulatory feature
information under noisy conditions (10db SNR), the improvement obtained over was
8%. However, when tested on a large vocabulary conversational speech, the baseline
models were slightly better (1.4%). Dependencies were introduced between otherwise
independent features for feature recognition using DBNs (Chang et al., 2001; Frankel
et al., 2004). Here, the features were derived from the phone labels. The DBN approach
for articulatory feature recognition was extended by Frankel et al. (2007) by eliminating
the dependency on phone derived labels by using an embedded training scheme to learn
asynchronous feature changes from the data.

The performance of models trained on acoustic and measured articulatory data in
predicting phonetic features was analysed by Toth and Black (2005). It was found that
using articulatory positional data improves the prediction of phonetic features over
using acoustic features. Articulatory features were also used to derive factored state
representations of phone models (Livescu et al., 2003).

The speech recognition systems which use articulatory features were found to be robust
to noise and showed potential on small vocabulary/digit recognition tasks. The feature
based recognition systems could perform well in noisy environments since there are
small number of features to detect than the phone classes. Phonemes are defined using
a compact feature values which encode place and manner of articulation (Chomsky
and Halle, 1968) and different phonemes could have same features in common. The
training data could be efficiently used in the feature based approaches. However, when
conversational speech or spontaneous speech is considered (for e.g., Kirchhoff (1999)),
the feature based representations did not give improvements over acoustic only models.
The feature based representations are coarse and there is a need for a finer grain repre-
sentation of articulatory information for modelling coarticulation effeets. The following
section presents speech production models inspired by gestures, which are more closely
related to the articulatory domain than the features.

Gesture based models

Gestural information was also combined with the statistical modelling techniques for
synthesis and recognition.

Gestural scores were derived for critical articulators involved in production of each
phone from articulatory data using temporal decomposition techniques (Jung et al.,
1996; Collins et al., 1999) for synthesis; the specification of critical articulators for
phones was from phonological knowledge. Similarly, articulatory priorities for phones
were derived from phonological knowledge in Coker’s model of speech synthesis (Coker,
1976). Quantised articulatory configurations representing the shape of vocal tract for
each phone were used for speech synthesis (Larar et al., 1988).

Dang and others (Dang et al., 2004, 2005) proposed a statistical model for modelling
coarticulation in VCV utterances using measured articulatory data. Dang’s model was
based on Ohman’s model of VCV coarticulation, where the vocalic gesture is treated
as continuous on which a consonantal gesture is superimposed. The temporal effects of
coarticulation due to the position of a crucial articulatory point were quantified using
standard deviation. Scales such as coarticulation resistance (Bladon and Al-Bamerni,
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Figure 2.4: Acoustic modelling using phonological binary feature information (Kirch-
hoff, 1999). An intermediate articulatory feature based representation is derived from
acoustic features for improving performance of speech recognisers.

1976) and degree of articulatory constraint (Recasens et al., 1997) were used in his
model and have been estimated from the data. However, crucial articulatory points in
his models were defined from phonological knowledge.

For speech recognition tasks, quantised articulatory configurations were represented by
the internal states of HMMSs by Erler and Freeman (1996). Transition from one state to
another represents the articulation of speech. A set of static constraints allow only pho-
netically relevant configurations and dynamic constraints ensure that the movements
are physically plausible. Such models were extended to include diphone models and
were called hidden-articulator Markov models (HAMMSs) by Richardson et al. (2000).
Model by Deng and Sun (1994) allowed for rule based overlap of quantised gestures
for generation of state transition graphs. Figure 2.5 shows the state transition graph
representing quantised articulatory configurations for [t] in ‘ten’. Anticipatory coartic-
ulation caused by the right context [eh] on the tongue body is shown as R(9) where
R indicates right context and 9 indicates the quantised location. The gesture based
models showed some potential in isolated word speech recognition tasks.

The representations in the form of quantised gestures are heuristic in nature and need
rule based constraints to model speech articulation. They donot consider articulatory
interdependencies due to biomechanical links. There is a need for more accurate, ex-
plicit models of speech articulation, than symbolic knowledge driven representations
for modelling coarticulation.

Different aspects of coarticulation and different knowledge and data driven, and hy-
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Lips o
[£] in [t]-[eh]—[n] Tongue blade |

Tongue body 0

Nasality 1

Larynx 1
Lips 0 Lips o Lips 0
Tongue blade | Tongue blade 1| Tongue blade |
Tongue body 0 Tongue body R(9) Tongue body R(9)
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Larynx 2 Larynx ;3 Larynx 1

Figure 2.5: HMM state transitions representing various quantised articulatory config-
urations of lips, tongue blade, tongue body, wvelum and larynz as in Deng and Sun
(1994). Different state transitions are shown for [t] in [tehn] (ten), R indicates that the
specified articulatory configuration is the resultant of the anticipatory effects caused by
neighbouring [eh].

brid models used for modelling coarticulation and for incorporating speech production
knowledge have been presented so far. The following section looks at the relationship
between the articulatory constraints and coarticulation and different ways in which the
articulatory priorities have been defined.

2.1.5 Articulatory constraints vs coarticulation

In this section, the relationship between different aspects of coarticulation and artic-
ulatory constraints are explained. Different ways in which the articulatory priorities
have been set in the literature are explained. The proposed approach of modelling
constraints by articulatory roles using statistical and data driven ways is introduced.

How do constraints explain different aspects of coarticulation?

The articulators move continuously from one configuration to the next during produc-
tion of phones. For each phone, some articulators are constrained to achieve target
positions while some others are free to assume any uncontradicting position. The
constrained articulators cause temporal coarticulatory effects on the neighbouring un-
constrained segments. The position of the constrained articulator is subject to spatial
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coarticulation due to the neighbouring phones, leading to target undershoots and over-
shoots. When modelling coarticulation in the speech planning stage, it is important to
establish the degrees of freedom of articulators for each phone. In the articulation stage,
the smoothness constraints play an important role in generating smooth and continuous
articulatory trajectories. The different ways in which the articulatory constraints are
derived from the knowledge of place and manner of articulation are explained below.

Knowledge driven constraints

The binary features used in feature based theory are derived from the place and man-
ner information. Unimportant features for a phone are left unspecified. When feature
spread is implemented, the spreading feature is propagated to neighbouring under-
specified features (Moll and Daniloff, 1971; Daniloff and Hammarberg, 1973; Keating,
1988). In gesture based theory, gesture scores are used to prioritise articulatory ges-
tures (Browman and Goldstein, 1986; Cohen and Massaro, 1993). Scales such as degree
of articulatory constraint (DAC) (Recasens et al., 1997; Recasens and Pallarés, 1999)
are used to describe the extent to which the tongue dorsum position is constrained
for phones; the higher the position, the larger the resistance to coarticulation. Mer-
melstein (1973) used a graded approach to rank how critical an articulatory gesture
was to a given phone. The concept of crucial points were introduced by Dang and his
colleagues (Dang et al., 2004, 2005) from phonetic knowledge. The crucial points were
defined to be resistant to coarticulatory effects and cause a maximum coarticulatory in-
fluence on its neighbours. The critical articulators were found to have smaller variance
when compared with non-critical articulators (Papcun et al., 1992; Frankel and King,
2001). Active, passive and neutral attractors were used to shape the articulator move-
ments when it is fully constrained, partially constrained and unconstrained respectively
(Saltzman and Munhall, 1989).

Knowledge driven features rely on the phonological information and are heuristic in
nature. Though binary features provide a compact and complete description of place
and manner information of phones, they are difficult to convert to commands for ar-
ticulators. Quantised articulatory configurations and rules are crude representations of
the speech production process.

Other than knowledge driven approaches, crucial points were also identified in a data
driven way by Ananthakrishnan and Engwall (2008). Critical articulators that. already
reached target position were identified as the locations in the articulatory trajectory
that are associated with minimum change in velocity or maximum change in the angle.
This approach considers only the mean positions of the articulators.

Proposed approach: statistical identification of data driven constraints

A statistical approach for identification of articulatory constraints is proposed in this
thesis. The constraints are established in the form of articulatory roles. The bio-
mechanical relationships between the articulators are incorporated in the form of cor-
relations. The correlated movements of articulator in space are also considered. During
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speech production, an articulator can play (i) a critical role or (ii) & dependent role or
(iii)a redundant role.

Critical: If an articulatory gesture or movement plays an important role in the pro-
duction of a phone, it is considered to be critical for that phone. A phone can have
more than one critical articulator, for e.g. upper and lower lips for [b]. Previously, the
critical articulators were only associated with smaller variances (Papcun et al., 1992;
Frankel and King, 2001). In the proposed approach, the critical articulators are also
characterised by a shifted mean position when compared with their grand positions. To
incorporate the information of direction of the movement of articulator from its grand
position, the changes in the covariance are also considered along with the variance.

Dependent: A dependent articulator shares a bio-mechanical correlation with a crit-
ical articulator. The position of a dependent articulator is partially controlled by the
eritical articulator(s) due to the presence of correlation(s) between them, while the re-
maining degrees of freedom are prone to coarticulatory effects. This is closely related
to the passive gesture proposed by Saltzman and Munhall (1989).

Redundant: A redundant articulator is free to move and its position does not affect
the phone’s production in a critical way. A redundant articulator is maximally prone
to coarticulation due to the neighbouring critical articulators in time.

The proposed algorithm makes use of the bio-mechanical correlations and spatial cor-
relations to identify the critical, dependent and redundant roles for each phone using
statistical approaches. The model is entirely data-driven and generates parsimonious
representations of the target configurations of articulators for every phone. The pro-
posed approach provides scope for building and improving data-~driven coarticulation
models and has the potential to improve the performance of speech synthesis and recog-
nition systems. The following section presents the introduction to the data, approaches
and preliminary analysis.

2.2 Preliminaries

2.2.1 Data

The Electro-Magnetic Articulograph (EMA) data from MOCHA-TIMIT database (Wrench,
2001) was used for this work. The data has 14 channels representing the horizontal (x)
and vertical (y) movements of 7 articulatory points with the upper incisor and bridge
of the nose as reference points. The articulatory points were located on upper lip UL,
lower lip LL, lower incisor LI, tongue tip TT, tongue blade TB, tongue dorsum TD and
velum v as shown in Fig. 2.6. The EMA data from one male (msak) and one female
(fsew) speaker were used. The 7 points chosen on the articulators were found to rep-
resent the articulatory configurations with reasonable accuracy (Badin and Serrurier,
2006; Qin et al., 2008). The recordings were made when the users uttered 460 TIMIT
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sentences in English. The acoustic data was also recorded simultaneously. Recordings
were also obtained from a Laryngograph. The EMA data was sampled at a rate of
500Hz while the acoustic and the laryngograph data were sampled at a rate of 16kHz.

UL L %m y
T
LL\ 1.T
X ‘
Y
.J

Figure 2.6: Midsaggital section of the human speech production system highlighting the
articulatory coordinates used for the EMA recordings: upper lip UL, lower lip LL, lower
incisor LI, tongue lip TT, tongue blade TB, tongue dorsum TD and velum v. The
outline was taken from (Saltzman and Munhall, 1989).

The phone set comprised of a total of 24 consonants, 13 vowels and 7 diphthongs.
The phone labels for silence, [sil] and breath, [breath], were included at the beginning
and the end of each sentence, The IPA notation is used for all speech sounds. The
consonants group consisted of bilabial stops [p], [b] and [m], alveolar stops [t], [d] and
[n], velar stops [k], [g] and [g], labio dentals [f] and [v], inter-dental fricatives [0] and
[08], sibilants [s] and [z], post-alveolar sibilants [[] and (3], affricates [tf] and [d],lateral
[1], approximant [1], palatal sound [j], labio-velar sound [w] and glottal sound [h].

The vowel group consisted of front vowels [e], [€], [1], [iz], [i], mid vowels [9], [2+], [a] and
back vowels [a], [0], [0], [v], [u]. The diphthongs present in the data were [a1], [e1], [e9],
(18], [01], [ov] and [av].

2.2.2 Preprocessing

A few annotation-errors were detected in the existing transcripts. The phonetic tran-
scriptions of 8 sentences (numbered 173, 317, 332, 340, 352, 354, 357 and 369) for each
speaker were found to be erratic. New labels were generated for each of the above sen-
tences based on the phonetic transcriptions of the words and aligned to acoustic input
manually, The EMA recordings were found to be corrupt for one sentence (268) and
therefore was excluded from the experiments. There were some cases of failed forced
alignment and mismatches between the dictionary transcripts and utterances. It was
found that the alveolar stop consonants /t/, /d/ and /n/, suffered high levels of elision
and deletion. The label file entries for these phones were corrected manually. Full
details of the changes can be found online (Jackson et al., 2004).
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Consonants Male Female Vowels Male Female

[p] 379 379 (0] 229 229
[b] 312 312 €] 301 301
[m] 434 446 ] 957 960
[t] 852 861 [iz] 309 308
[d] 522 516 H 167 167
[n] 835 816 [o] 1391 1397
(k] 552 549 o] 91 90

gl 197 197 (4] 190 190
] 151 155 [a] 108 107
[f] 267 267 0] 233 233
v] 298 298 o] 205 205
/6] 75 75 [u] 57 57

[8] 327 330 [u] 263 263
ls] 708 712

[z] 497 496  Diphthongs

1y 149 149

3] 17 17 [a1] 255 256
(4] 99 99 [e1] 254 253
[&] 144 144 [ea] 33 33

] 674 672 [10] 28 28

[ 629 630 [o1] 46 46

[w] 249 248 [ou] 201 201
] 196 197 [au] 87 86

(h] 154 154

Table 2.1: Sample size for consonants and vowels obtained from midpoint locations,
and for diphthongs from samples taken at 1/3rd and 2/3rd (not shown) points of the
duration for male and female speakers.

Inconsistency in the EMA recordings of female speaker (fsew0) were reported by Rich-
mond (Richmond, 2001, 2009). Several factors such as reattaching coils, movement of
head within the helmet during the recording session were found to cause shift in the
mean velum position across sentences. The female speaker data was z-score normalised
using the underlying mean pattern to minimise such effects by Richmond (2001). In
the present study, though similar effects were observed in the female speaker data, no
such normalisation was used for either speakers.

The EMA data was smoothed and converted to time frames of 10ms duration each.
Mel-Frequency Cepstral Coefficient (MFCC) features were extracted from the acoustic
data. The dimensionality of the MFCC features was 14 which included the zeroth co-
efficient. The log-energy of the Laryngograph data was appended to the EMA features
for recognition experiments.

For every consonant and vowel, it was assumed that the articulators reach their target
positions at the midpoint of its duration. Therefore, a sample at the midpoint of the
phone duration was selected for each consonant and vowel. For each diphthong, two
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samples were taken, at 1/3rd and 2/3rd locations respectively. It was assumed that the
target for the first vowel of a diphthong occurs at 1/3rd of the total duration and for the
second vowel occurs at 2/3rds of the duration. Table 2.1 shows the number of samples
per each phone in the data for male and female speakers. Of all phones, the phone
[3] had the least number of samples for both male (17) and female (17) speakers. The
neutral vowel [o] had the highest number of samples for both male (1391) and female
(1397) speakers. The positions of articulators during the pause before and after each
sentence could include phonetically irrelevant configurations. Therefore, the [sil] and
[breath] frames occurring at the beginning and the end of each sentence were excluded
from the analysis. The set of consonants, monophthongs and initial and final vowels of
diphthongs is denoted by ®. The total number of phones in @ is ¢ = 51.

The proposed critical articulator algorithm was implemented for two cases: (i) In the
1D case, the x and y movements of every articulatory coordinate were treated indepen-
dently. Therefore, the number of articulatory coordinates a = 14 (ii) In the 2D case,
where the correlation between x and y movements was considered. Therefore, a = T.
Grand mean M; and variance X; were computed from the data sampled from all phones
for each articulatory coordinate ¢ € {1..a}. In the 1D case, the grand distribution for
each articulatory coordinate ¢ was assumed to be univariate Gaussian in nature, i.e.,
N(M;,X;). The grand distributions in the 2D case were considered to be bivariate
Gaussian, N (M, X;).

Phone-specific means and variances were estimated from the data for each phone ¢ € @.
In the 1D case, phone specific distribution for each articulator ¢ was univariate Gaussian,
N (p,f, Ef’). The bivariate distribution in the 2D case is denoted by A (,uf A Ef).

2.2.3 Evaluation of Gaussian assumption

Graphical and statistical methods were used to check for validity of Gaussian assump-
tion of grand and phone-specific distributions. The fit of the distributions to the Gaus-
sian assumption was graphically checked by plotting histograms along with the Gaus-
sian curves. The histograms provide information about the mean of the data, spread
of the data, skewness and kurtosis along with the modes in the data. Single sample
Kolmogorov-Smirnov (KS) test with Lilliefor’s correction (Massey, 1951) was used for
checking the goodness of fit of the Gaussian distributions to the data. The histogram
plots were also used for checking the validity of the Gaussian assumption.

Kolmogorov-Smirnov goodness-of-fit test

The one-sample KS test is a statistical significance test used to find out how well a
theoretical distribution describes a given set of data (Massey, 1951). The algorithm for
the test is given in Appendix B.3.2. This test uses the maximum absolute difference
between the actual cumulative distribution F(z) of the data and the hypothesised
distribution Fy(z) as a measure of goodness-of-fit.

A benchmark statement about the population represented by a given set of the data
against which the outcomes of the test are measured is known as the null hypothesis.
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The null hypothesis of this test assumes that the actual distribution of the data matches
the hypothesised distribution, for e.g., the grand data matches grand univariate Gaus-
sian distribution. The research hypothesis is the statement about what can be inferred
from the data when the null hypothesis does not hold true. In this case, the research
hypothesis agsumes that the actual and hypothesised distributions are different.

The level of significance is the amount of risk associated with rejecting the null hypoth-
esis due to error when it actually holds true for the given set of data. For example, if
the level of significance is chosen to be 5%, it is assumed that if the test is performed

20 times, the null hypothesis is rejected once on average due to error when it actually
holds true.

The evaluation measure computed from the samples used to test the null hypothesis
is known as the test statistic. In this test, the difference between the actual and
hypothesised distributions is used as the test statistic. If the obtained difference exceeds
a threshold, it is concluded that the fit of the hypothesised distribution to the data is
poor. In other words, the null hypothesis is rejected. This threshold value is also
know as the critical value and it varies with the degrees of freedom and the level of
significance chosen for the test. The critical values of the K-S test are given in Table
A21 in (Sheskin, 2000). '

The grand distributions of all articulators failed the KS test. The sample size of the
grand data was very large (13609 samples for the male and 15800 samples for the
female speaker). So the histograms were plotted for verification of Gaussian assumption.
Figure 2.7 shows the histograms for grand and phone specific distributions of UL, for
[b] and [g] with their normal probability curves overlaid on the top. The width of
histogram bins was calculated according to (Izenman, 1991) as

W = 2(IQR)N/3 (2.1)

where IQR is the InterQuartile Range and N is the number of the samples in the
data. The histogram plots showed that the grand distributions of all tongue and velum
coordinates were in agreement with the Gaussian assumption. The grand distributions
of UL, and LL, appeared to be bimodal whereas the grand distributions of LL; and LI,
were skewed to the right. The grand distribution of LI, was skewed to the left.

The phone specific distributions were also subject to the KS significance test. The
distribution of UL, was found to be Gaussian for most phones for both speakers (78%
for male and 67% for female). The KS test results showed that relatively a few phone
distributions were Gaussian for TT, for male speaker (37% of phones) and v,, for female
speaker (18% of phones). When the data from consonants was analysed, the distribution
of more than 70% articulatory coordinates were Gaussian for post-alveolar sibilants
and affricates. The distributions of all articulatory coordinates failed the test for [n]
for male speaker. For vowels, the distributions of all articulatory coordinates failed the
test for [o] for female speaker, whereas only the distribution of TB, was Gaussian for
male speaker. More than 70% of articulatory coordinates were Gaussian for 4 vowels
for male speaker (2 for female). The distributions of more than 70% of articulatory
coordinates were Gaussian for some diphthongs (7 for male and § for female).

Though some deviations from Gaussian assumption were found, the articulatory data
in this thesis was modelled using univariate and bivariate Gaussian representations.
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Figure 2.7: Histograms and bell curves illustrating the grand (red, left), and phone
specific data distributions of UL, for phones [b] (yellow, centre) and [g] (blue, right).

Log transformations or Box-Cox transformations (Box and Cox, 1964) could be used
to make the data normal. Alternatively, more complete models based on multimodal
Gaussian distributions could be used to generate better fitting representations to the
data and the proposed algorithm could be extended accordingly. However, such work
is beyond the scope of this thesis.

2.2.4 TIllustration of grand and phone distributions

Figure 2.8 shows the midsaggital display for phones [g] and [s] generated from the EMA
data of male speaker. The covariance ellipses in red are centred at the grand means of
articulators and depict their grand covariances in x and y. Similarly, the phone specific
distributions shown by the green covariance ellipses were centred at the phone means
and depict the phone covariances. The palate was formed as an outline of the maximum
displacement of the tongue in the vertical direction. The different points that make
up the lip were positioned manually and the point of contact of the lips was roughly
approximated using the readings of upper and lower lips of bilabial phones [b, m, p|.
The outline of the upper and lower incisors were manually generated and the position
of the pellets on them were roughly approximated.

It can be seen for the phone [g] that the tongue dorsum distribution is characterised
by a shifted mean position and a different covariance direction when compared with its
grand configuration and can be termed as critical for that sound. The tongue blade
and tip distributions are affected by the tongue dorsum position due to the correlations
between them and hence can be termed as dependent articulators for that phone. There
is no significant difference in the distributions of the UL and LI and thus can be treated
as redundant for phone [g|. Similarly for phone [s], the distribution of TT differs from
its grand state configuration. The affect of the position of TT can be seen on the
distributions of TB and TD more so in the y direction. The distribution of jaw LI and
velum Vv are also different from their grand configurations.
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x position {mm)

Figure 2.8: Midsaggital illustration of articulators for phones [g] and [s] depicting grand
(red) and phone-specific (green) covariance ellipses (+2 standard deviations) centred at
the respective means.

The distribution of the articulatory coordinate critical in the production of a phone
differs significantly from its grand distribution. This difference between the distribu-
tions could be due to the difference in either in their means or covariances or both. The
articulatory movement that is not critical in production of speech sound is prone to
the context based variations and hence its covariance would be larger than or equal to
that of its grand covariance. The critical articulators affect the positions of articulators
with which there are

2.2.5 Statistical distance measures

The distance between the distribution of the critical articulator for a phone and its
grand distribution can be quantified using several distance measures for 1D and 2D
cases. For the univariate case, two independent samples student’s t-test (Sheskin, 2000)
can be used to check for the difference between the means of two univariate Gaussian
distributions. It is assumed that the groups are independent of each other and the
samples in each group can be described using a univariate Gaussian distribution with
sample mean and sample variance as the parameters. The test also assumes that the
amount of variability in each of the two groups is equal, however unequal consequences
can be compensated. The test statistic used for this test is known as the t-value. The
t-value is the difference between the observed difference and the hypothesised difference
between the means of the two groups with respect to the standard error. Levene’s F
statistic (Field, 2005) can also be used to test for the equality of variances.

Hotelling’s T? test (Anderson, 1984; Field, 2005; Morrison, 1990), an extension of the
simple univariate t-test, can be used for finding the difference between the bivariate
means of two groups. It is assumed that the two groups are independent of each
other and the samples in each group follow a bivariate Gaussian distribution. It is also
assumed that the covariances of the two groups are equal and this assumption is verified
as a part of the implementation of the test. Box’s M test for covariance (Anderson,
1984; Morrison, 1990) can be used to check for the validity of this assumption.

The statistical significance tests mentioned above the statistical significance of the dif-
ferences between either the means or the variances (assuming that the other is equal
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)of any two Gaussian distributions. There is a need for a distance metric which mea-
sures the difference between the grand and the phone specific distributions rather than
just means or just (co-)variances. Kullback-Leibler (KL) divergence (Kullback, 1968) is
one of the most commonly used statistical distance measure and measures the distance
between the distributions using their log-likelihood ratio. We use the Kullback Leibler
divergence as the statistical distance measure.

Kullback Leibler Divergence

Given any two distributions Fj(z) and Fy(z), the Kullback information between their
densities fi(z) and fo(z) is given as

Hi(=z)
fa(z)

The Kullback information, is a special case of f divergence (Liese and Vajda, 2006),
and is non-negative and asymmetric, i.e., I(1 : 2) # I(2 : 1) if fi(z) # fo(z). It is
also related to the mutual information and other statistical distance measures such as
Mahalanobis distance. The mutual information between two random variables x and y°
can be expressed using Kullback information as,

I(X;Y) = Drrf ()|l f (=), f(¥)) (23)

where f(z) and f(y) denote the mariginal distributions and f(z,y) denotes the joint
distribution.

Drs(Ul2) =11:2) = [ i@)og 22 (2.2)

We need a symmetrical distance measure for determining the distance between the
grand distributions and the phone specific distributions. The Kullback Leibler diver-
gence or J divergence is a symmetric version of the Kullback information and is given
as

J(1,2) = I(1:2)+I(2:1) (2.4)
_ (@) fi(2)
= [ f@oe S+ a@og (25)

The KL divergence between two multivariate normal distributions, N(g1,%1) and
N(pg, o), is given as

7(1,2) = 5tr(B1 ~ )55 = B7Y) + 3r(B7 + 27 by — ) (r — o) (26)

The divergence equals zero if the distributions match exactly. The larger the divergence,
the greater the difference between the two distributions. The KL divergence is equal
to the Mahalanobis distance when X1 = Yo = X

The KL divergence was used as the distance measure throughout this study to com-
pute the difference between multivariate unimodal Gaussian distributions. Numerical
methods such as Monte Carlo simulations can be used to extend the KL divergence
to compute the difference between multi-modal Gaussian distributions (Hershey and
Olsen, 2007; Chen et al., 2008).
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2.3 Conclusion

The literature review section could be summarised as follows:

Coarticulation is one of the main problems in speech research. Coarticulation occurs
naturally in fluent speech due to efficient planning and execution of articulatory move-
ments. It is commonly agreed that incorporation of production knowledge could benefit
coarticulation modelling in speech recognition and synthesis systems. Two important
theories of modelling coarticulation are feature based and gesture based. The feature
based theories use abstract phonological representations such as discrete binary fea-
tures and coarticulation is modelled as a spread of such features. The gesture based
theories model coarticulation as coproduction of gestures. Both features and gesture
scores have to be derived heuristically from the phonological knowledge and they are
incomplete and coarse representations of the speech production process.

Articulatory knowledge in the form of pseudoarticulatory representations (such as fea-
tures and gestures) when incorporated in the structure of speech recognisers showed
some potential in small vocabulary recognition tasks in noisy conditions. However,
more fine grained representations are needed to capture the essence of speech produc-
tion system and thereby, to model coarticulation in spontaneous and conversational
speech. Purely statistical models built from the measured articulatory data fail to
explain the constraints and characteristics of speech production system.

There is a need for building models of realistic speech articulation to identify and cap-
ture the essential characteristics of human articulators, such as target-driven behaviour,
atticulatory interdependencies and biomechanical constraints for efficiently modelling
the effects of coarticulation. We propose a statistical yet explanatory approach for ex-
tracting and modelling the essence of speech articulation. Articulatory roles are iden-
tified as critical (i.e., target-driven and constrained), dependent (partially constrained
due to the interarticulatory dependencies and partially prone to coarticulation) and
redundant (completely unconstrained and hence maximally prone to coarticulation)
using the EMA data from the MOCHA-TIMIT database (Wrench, 2001).

In the second half of this chapter, measured articulatory data from the MOCHA-TIMIT
database was introduced along with the preprocessing information. Derivation of statis-
tics from the data was explained along with the evaluation of Gaussian assumption.
The distance measure used for identification of articulatory roles, Kullback Leibler (KL)
divergence, was introduced.

The following section presents the proposed algorithm for identification of articulatory
roles.
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Chapter 3

Articulatory constraint
identification algorithm

3.1 Overview

The algorithm for the identification of data-driven constraints from the EMA data is
presented in this section. The EMA fleshpoint coordinates are used as a low dimen-
sional representation of the articulators. Although they are continuously deformable, a
few well-selected points can faithfully represent the full shape of the articulators with
reasonable accuracy (Badin and Serrurier, 2006; Qin et al., 2008). The articulatory
constraint identification algorithm (ACIDA) identifies critical, dependent and redun-
dant roles played by articulatory coordinates for each phone. For the 1D case, the EMA
data is treated as 14 separate ‘articulators’; for the 2D case, x and y coordinates are
combined to 7 ‘articulators’.

The KL divergence is used to quantify the distance between the grand and the phone
specific distributions of each articulatory coordinate. The articulatory coordinate that
is associated with the maximum divergence, if greater than a threshold value, is iden-
tified as critical. The algorithm uses the knowledge of correlations amongst the artic-
ulatory coordinates to identify the articulatory coordinates dependent on the critical
coordinate(s). It is assumed that the grand distributions and correlations estimated
from a phonetically balanced database reflect the gross biomechanical properties of
human speech production. The articulators that are not correlated with the critical
articulators are identified as redundant. The model distributions of articulatory coor-
dinates were also estimated for critical, dependent and redundant coordinates.

The grand univariate and bivariate correlations amongst the articulatory coordinates
were computed for 1D and 2D cases. The correlations are analysed in Section 3.2.
The methodology of the algorithm is presented in Section 3.3. The working of the
algorithm is presented in Section 3.3.3. Implementation issues and evaluation measures
are discussed in Section 3.4.
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0.00 BN 0.00
0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Table 3.1: The 1D grand correlation matriz R* generated from the male speaker data
depicting statistically significant correlations (a = 0.05), also |ri;| > 0.1, fori,j € 1..a.

vy

3.2 Inter-articulatory correlations

Univariate correlations

Grand univariate correlations were computed from 1D articulatory data, R = {ry;} Vi,j €
{1..a} where a is the number of articulatory coordinates (14 in the 1D case and 7 in
the 2D case). The statistical significance of the univariate correlations was tested using
Pearson’s test at level of significance, a = 0.05. The procedure for Pearson’s test is
given in B.3.3. Statistically insignificant and very weak (|r;;| < 0.1) correlations were
set to zero. Table 3.1 depicts the grand 1D correlation matrix R* with the remain-
ing correlations for the male speaker. Recall from Chapter 2 that M; and ¥;; denote
the grand mean and variance of the 1D positional distribution of any articulator i,
i € {l..a}. The covariance between any two articulators i and j was estimated from
R s 5y = 5} 2r 5},

Table 3.1 shows statistically significant and strong correlations between tongue tip,
blade and dorsum in the x direction for the male speaker. There was little correlation
between the x and y movements of TT, TB and TD which indicates the independent
movements of the tongue in horizontal and vertical directions. The correlation between
TT, and TD, was small (0.11), which shows that the vertical movement of the tongue
dorsum has a very small effect on the movement of the tongue tip. The magnitude
of the correlations between TT, and TBy, TB, and TD, were less than those in the x
direction. The lower lip and incisor movements are strongly correlated in the x and y
directions. The correlations between the upper lip and the lower lip were stronger than
those between the upper lip and the jaw (L1). Some correlations existed between the
jaw and the tongue tip in the y direction. Strong correlation existed between velum x
and y movements. The velum almost had no correlation with other articulators. The
articulatory system behaved like three largely independent components: the lip and the
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0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.2: The 1D grand correlation matriz R* generated from the female speaker data
depicting statistically significant correlations (a = 0.05), also |ri;| > 0.1, fori,j € l..a.

jaw group, tongue and velum.

Statistically significant correlations generated from the female speaker data in a similar
way are shown in Table 3.2. The correlation patterns in female speaker data were found
to be slightly different from those found in male data. The correlations between x and
y movements of UL, LL and LI were relatively weaker and UL, and LL, were negatively
correlated. The x movement of the jaw was correlated with the x movements of the
TT, TB and TD which were absent in the male speaker data. These slight variations
in the correlations could be due to the difference in the style of speaking between the
speakers. Different points on the tongue were strongly correlated with each other in the
x direction in a similar fashion to that of the male speaker, also velum had very small or
no correlations with the rest of the articulators. No correlation was present between TT,
and TD, which indicates the independent movements of tongue tip. For both speakers,
about 37% of the total correlations were found to be statistically insignificant or very
weak.

Bivariate correlations

The bivariate correlations between articulators were computed using canonical corre-
lation analysis (Johnson and Wichern, 1998) from the 2D articulatory data for male
and female speakers. This analysis employs singular value decomposition to find the
direction in which every pair of articulators are maximally correlated. The eigenvec-
tors indicate the directions of the correlations and the strength of correlations is given
by eigenvalues. The maximum number of canonical correlations that can be computed
between a pair of articulators is equal to the dimensionality of the data, here 2. The sta-
tistical significance of canonical correlations was tested at level of significance a = 0.05.
Statistically insignificant and very weak canonical correlation values (|p| < 0.15) were
set to zero. Let p;; = diag(pi"j,p?j) be the pair of statistically significant canonical
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Figure 3.1: Directions of first (red) and second (blue) canonical correlations between
TT-TB (left) and TB-TD (right) for male speaker data generated from corresponding
eigenvectors and correlation values. The articulatory pairs are highlighted in yellow.

correlations between any two articulators i and j. The direction in which articula-
tory coordinates i and j are correlated is denoted by the eigenvectors U} and V} for
canonical correlation pj;; eigenvectors, U? and V?, denote the direction of canonical
correlation pfj

Figure 3.1 shows the canonical correlations between two different pairs of articulators
for male speaker data: TT-TB and TB-TD. The covariance ellipse of each articulatory
coordinate indicates its grand covariance. The canonical correlation value is a fraction
of the grand covariance when a pair of articulatory coordinates are maximally corre-
lated in the directions shown by the eigenvectors. The eigenvector directions for TT-TB
and TB-TD indicate the strong forward/backward movements tangential to the tongue
surface and the raising and lowering of the tongue. The canonical correlations for the
forward /backward movements of the tongue (pl, ., = 0.93, pk; -, = 0.93) were stronger
than the correlations for raising and lowering of the tongue (p?,.r‘m = 0.53, p.%.ﬂ_.m =
0.75). Some articulatory pairs (33%) had two significant and strong canonical corre-
lations, no canonical correlation was found for 14% of the total articulatory pairs and
the other pairs (52%) had one significant correlation value each. Canonical correlation
analysis was also done on the female speaker data. No canonical correlations were found
between two articulatory pairs: v-UL and TB-LL. Approximately 38% of all articulatory
pairs had two significant canonical correlations, other 52% of the articulatory pairs had
one significant canonical correlation value.

Bivariate correlations were estimated from statistically significant canonical correlations
and corresponding eigenvectors for both male and female speakers. Tables 3.3 and 3.4
depict the bivariate correlations for the male and the female speakers respectively. For
both speakers, the bivariate correlations were similar to the univariate correlations in
absolute value.
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Table 3.3: The 2D grand correlation matriz R* generated from the male speaker data
depicting statistically significant correlations (a = 0.05), also |r;i;| > 0.1, fori,j € l..a.
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Table 3.4: The 2D grand correlation matriz R* generated from the female speaker data
depicting statistically significant correlations (a = 0.05), also |ry;| > 0.1, for i,j € 1..a.
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3.3 Articulatory constraint identification algorithm

3.3.1 OQOutline

The algorithm for identifying the critical articulators for each phone using 2D data
(a = T) is presented in this section. This algorithm was also implemented for the 1D
case by assuming independence between x and y movements of articulatory coordi-
nates and treating each articulatory coordinate as a separate channel (a = 14). As a
precursor to running the algorithm, the grand and the phone statistics are gathered
along with the correlations amongst the articulatory coordinates. The statistics of the
grand distribution, N'(M;, X;), are estimated for each articulator i from samples of all
phones. The statistics of phone specific distribution, N/ (pf’, Ef'), are estimated from the
samples specific to each phone ¢. Figure 3.2 depicts the 2D grand and phone specific
distributions of TT for phones [s] and [b] from male speaker data.

The algorithm identifies a list of critical articulators for each phone iteratively until
a stopping criteria is met. The iterative nature of this algorithm helps identify all
the critical dimensions essential for producing each phone in the phone set. The KL
divergence computation is one of the crucial stages in the process of identification of
articulatory roles. Recall from Chapter 2 that KL divergence is a measure of distance
between two distributions. It can be seen from Fig.3.2(a) that the phone [s] distribution
for TT has a smaller variance when compared with the grand distribution. There is
also a difference between the grand and phone specific means of TT for [s]. Hence,
the covariance ellipse of TT is tightly constrained in both x and y directions. Here,
the KL divergence between the grand and phone specific distributions for TT (with
magnitude of 22) was found to be the maximum of all divergences computed from
other articulatory coordinates. For [s| , the proposed algorithm identified TT as the
first critical coordinate.
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Figure 3.2: Covariance ellipses for phones [s] (left) and [b] (right) depicting the grand
(solid) and phone (dashed) distributions of TT in z and y directions. The samples of
grand distribution are plotted in red and of phone distribution are plotted in yellow.

Figure 3.2(b) shows that no such differences between the means and variances of the
grand and the phone-specific distributions of TT exist for phone [b]. This is further
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backed up by the fact that the KL divergence between the grand and the phone [b]
distributions of TT was found to be very small (0.4). The large covariance ellipse of
phone [b] distribution indicates that the tongue tip position is not constrained to be in
any particular location and is free to move. Instead, the algorithm identified the upper
lip coordinate which had the highest divergence as critical for [b].

The algorithm not only identifies the roles played by the articulators but also simul-
taneously estimates their target distributions, also known as model distributions. For
each phone, ¢, the model distribution is defined for every articulator i as A/ (mf’, Sf )-
The model distribution is initialised to the grand distribution before running the algo-
rithm. As the algorithm runs, the model distribution is updated for each articulator i
depending on the its role in the production of phone ¢.

C-step
Model Compute Celie. artic.
initialisation KL div. identification

Set model pdf
for eéritical

D-step

Collate
critical
statistics

Set model pdf
for dependent

Figure 3.3: Flow chart depicting different stages in the algorithm for identifying eritical
articulatory coordinates and updating model distributions for a phone ¢.

Figure 3.3 shows the stages and flow of the algorithm for identification of articulatory
roles. The algorithm operates in the following four stages

1. Model initialisation: In this stage, the model means and variances of all articula-
tory coordinates for each phone are set to the grand means and variances.
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2. Divergence calculation: The symmetrical KL divergence between the model dis-
tributions and the phone-specific- distributions of all articulatory coordinates for
each phone, known as identification divergence, is calculated.

3. Critical identification step (C-step): Here, the articulatory dimension associated
with the maximum divergence is identified as critical. The model distribution of
the critical coordinate is updated by setting it to the phone specific distribution.

4. Dependent update step (D-step): The dependent coordinates are identified using
grand articulatory correlations and their distributions are updated conditioned
on the critical dimensions. This reflects the statistical properties of muscle and
tissue linkages in speech production.

As shown in Fig.3.3, steps 2 to 4 are repeated until the identification divergence is
greater than a threshold value known as the critical threshold. For each phone, the
algorithm identifies a set of critical articulatory coordinates and estimates the model
distributions of articulators according to the role played by them for that phone. The
algorithm is explained in detail in the following section.

3.3.2 Algorithm

The 2D version of the algorithm is presented in this section which can be simplified for
the 1D implementation by treating x and y movements of the articulatory coordinates
as separate and independent channels. Figure 3.4 shows the pseudocode for the 2D
implementation of the critical articulator identification algorithm.

Model definition

Let the phone set be denoted by ®, where ® = {[o],[b},...[3]}. Let the number of phones
in @ be . Recall from the previous section that the number of articulatory coordinates
for the 2D case be denoted by a (a=T for the 2D and 14 for the 1D cases). The grand
distribution for any articulatory coordinate ¢ € {1..a} is denoted by I" and defined using
the 2D mean M; and covariance X; where

Ma i)
M= i ] '
[0 om)
By = [%@) aﬁ(ﬁ)] (32)

Here the grand mean of the articulator i in the x direction is denoted by M,(z) and
in the y direction by My(i). The grand variances in the x and y directions are given
by 042(%) and oy, (7) respectively. Note that o,,(7) and o,,(i) denote the variances but
not standard deviations and 044(i) = 02(é) and 0y,(i) = 02(i). The grand covariance
between x and y movements of ¢ is denoted by oy(¢) (or 0yz(4)). Number of grand
samples is denoted by N. The set of global statistics along with the sample size is
denoted by I' = { M, X, N}. The dimensionality of grand mean is M is ax K where K =
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1 for 1D and 2 for 2D case. The dimensionality of grand variance is 3 is a x K X K. The
grand correlation matrix with statistically significant and strong correlations derived
from the canonical correlation analysis (section 3.2) is denoted by R*.

Similarly, the phone specific distribution, denoted by A?, estimated from the data of
every phone ¢ € {®} for an articulator i is defined using the 2D phone mean p,s
and covariance matrix Ef. The sample size of each phone ¢ is denoted by v®. The
set of phone specific statistics is denoted by A = {u?, ¥¢,0%}. The phone-specific
correlation matrix representing the correlations amongst the articulatory coordinates
estimated from the data from each phone is denoted by R?.

The algorithm iterates through & levels where k& denotes the length of critical articulator
list, 0 < k < a. At level k, the 2D model distribution for phone ¢ € {®} for an
articulator i is denoted by A%*, The model mean and the covariance are denoted by
m®* and 8%* respectively. The following sections explain the stages of the algorithm
shown in Fig. 3.3 in more detail.

Model initialisation

In the model initialisation stage shown in Fig. 3.4, the counter for levels, k, was
‘initialised to zero. The model mean mf"“ was set equal to the grand mean M; and
the model covariance Sf’ * to the grand covariance 3; for each articulator i € {1..a}.
The critical articulator list C%* and the dependent articulator list D®* were also
initialised to null. The number of samples used to estimate the model distribution of
each articulator ¢ at this stage nf‘k was also set to the grand sample size N.

Divergence calculation

The distance between model and phone pdfs of every articulator 7 at any level k was
measured using KL divergence, called identification divergence, J; #% The function
computeldiv in Figure 3.4 computes the KI. divergence between the model and phone-
specific distributions. The effect of the sample sizes of grand and phone distributions on
the estimation of the phone and grand means was incorporated before computation of
the identification divergence. The standard error of sample mean provides an estimate
of error in the estimating the population mean from the samples. The standard error

of mean is given as
o

SE = ﬁ (3.3)
where ¢ is the standard deviation of a distribution with n samples. Larger sample
sizes provide a more accurate estimate of the mean and result in a smaller standard
error value. The effect of different sample sizes on the estimation of grand and phone
means was incorporated by adding the square of the standard error, known as variance
of mean, to the respective covariances as shown in computeldiv in Fig.3.4,

S1= 5P+ (SPH /%) 8= 5P+ (52/4) (3.4
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Derive statistics
Global statistics T' = {M, 3, N}, means (e x K), variances (a x K x K) and sample size (a x 1)
Grand correlation ¥
Phone statistics A® = {3#, 2%, 1}, means (a x K), variances (2 x K x K) and sample size (a x 1)
Phone correlation B?
Model statistics A%* = {m®*, §8% n®*} means (a x K), variances (o x K x K) and sample size (a x 1)
Threshold © = {6c, fp}
Model initialisation
level k=0
m?‘k = M;, Sf"k =3, n?'k = N, for all articulators i € {1..a}
Critical articulator list: C%* = {}
Dependent articulator list: D#* = {}
Model convergence: isConverged =FALSE
WHILE({(k < a) AND (lisConverged))
Compute identification divergence
J$* = computeldiv(A$*, A?), for all articulators ¢ € {1..a}
Find articulator with maximum divergence: j = argmax{J$¥.., J&:*}
C-step
IF(JP* > 0c)
Increment level: £+ k+1
Replicate model: A%* = Adk-1
Add critical articulator: C#% « {C#*-11 {}
Set distribution: m?’k - ,u,g’, S_f’k = E?
n?'k - v?
D-step
[ Atk D#*] —updateDep(T, B*, A%, B%, ©, J#5—1, Dtk—1 Cék)
ELSE
isConverged =TRUE
Store final eritical articulator list: €% = C#*
Store final dependent articulator list: D% = D#*
Obtain final redundant articulator list by elimination: R = {1.a} — {C?} — {D?}
Store model statistics: 7? = Pk, §¢ = gk
Store no: of critical articulators: K¢ = k.
END IF
END WHILE

function computeldiv(A?*, A?)

Incorporate standard error: Sy = §P* 4 (S /nf¥), 5, = B¢ 1 (22 /19)

J =3 (tr(S, ~ Sa)(87" — 871) + tr(ST + S5 )(m* - pd)(m* — ufy)
RETURN J

function updateDep(T, R*,A?, R?,©, J&F—1 DHE-1 C#k)
Initialise dependent list at current level by eliminating any critical articulators if pregent:
Dbk = (Dok-1) - (C9)
Get critical grand statistics from ' and B*: Myc) = {Mi}ieoer; Borer = (Bt jecss
Get critical phone statistics from A® and R?: F‘?c} = {1t }icooi; E(c} (o} = {25 eoen
FOR i € {1..a} — {C**}
(P > 6p)
Update dependent list: D#* « {D#*} U {i}
Get dependent covarlance : oy = {Zij}iecen
Update mean: m$** i M; + Bye1 By (e (Mo — Micy)
Update variance: S?'k — B+ By E?é}{c} (E{C}{C’} - E{c}{c})ﬂ{é}{c}ﬂi{c}
Update sample size: nf'k “
END IF
END FOR
RETURN A%* and D%

Figure 3.4: Algorithm for articulatory constraint identification for phone ¢, including
functions for computing KL divergence and updating model distributions using critical
articulator information and inter-articulatory correlations. For 1D (K=1) or 2D (K=2)
versions, use scalar or vector means, M, p® and m%* and scalar or matriz (co-)
variances 3, X% and SH*,
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C-step

In the critical identification step or the C-step of the algorithm, the articulator j
with maximum identification divergence Jf:,j is identified and the corresponding model
distribution is updated. If the identification divergence is greater than the critical
threshold value f¢, the algorithm progresses to the next level, otherwise terminates.
The model information from the previous level A?*~! and the critical articulator list
C%*-1 are propagated to the current level k. The articulator j is identified as critical
and added to the list of critical articulators identified up to the level k.

C** {1} u {j} (3.5)

The model distribution for the critical articulatory coordinate j is updated by setting
it to the phone specific distribution. The sample size of the model distribution for j is
also updated to the phone sample size v?.

m?‘k I pﬁ-' (3.6)
=) S >\ (3.7)
n}‘-&“" — v® (3.8)

(3.9)

D-step

In the dependent update step or the D-step, the distributions of the articulatory
coordinates other than the critical articulatory coordinates are updated using the func-
tion updateDep shown in Figure 3.4. The distribution of the dependent articulator is
updated conditioned on the critical articulator information and the inter-articulatory
correlations. A dependent threshold value, 0p, is introduced in the D-step to prevent
the models of dependent articulators from getting over-updated when critical thresh-
old, fc on identification divergence is set to a very small value (less than 0.1). Only
the articulators with divergence greater than fp are updated. The distribution of the
redundant articulator remains unchanged, i.e., equivalent to the grand distribution.

Let the list of critical coordinates upto and including level k& = 2 be {C**} = {41, j2}.
If 71 and j2 are correlated, then there is a good chance that j» will be in the dependent
list at level k — 1, i.e.,, D®*=1, The dependent coordinate list at level k is initialised
by propagating all previous dependent list after excluding any new critical dimensions
if present, to the current level, i.e.,

D%k = {D¥*-1} _ {C¥*) (8.10)
The D-step is carried out in two stages by

e collating critical statistics

e updating model distribution for dependent articulatory coordinates
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Dependent articulator Critical articulator

N(M;, X)) N(M;,, X))

Figure 3.5: Illustration of the estimation of the statistics of dependent articulatory
coordinate i from the knowledge of critical articulatory coordinate j1. Grand covariance
(solid red) and model covariance (dashed blue, grey background) ellipses representing
grand distributions N(M,X) and model distributions N (m®*, S%*) are shown along
with the samples x (black dots).

The statistics of critical articulators identified up to and including level k are collated to
estimate their combined effect on the positions of the rest of the articulatory dimensions.
If 71 and jp were identified as critical dimensions up to and including level k = 2, the
grand statistics for 2D case are collated in function updateDep as

[ Ma (i)
My = | i) (3.11)
L My(52)
3 Uzzgjl) azy(jlg U:zglsj—?; Uzij1$j2;
= oyz(j1) oyy(J1 oyz(J1,72) Ooyylia, J2
PN = | onling) omlnit) ol owlz) | &
L "'yz(jm.fl) Uyy(j?ajl) Uyz(j2) O'yy(j2)

The grand covariance matrices X; and X;, form the principal diagonal elements of
the matrix X cy(c) and the rest of the covariances are estimated from the grand
correlation matrix R*. Note that 0,,(j1) denotes the variance but not the standard
deviation and 0,-(j1) = 02(j1). The term 044(j1,j2) in matrix X {c}{c) represents the
covariance between x dimension of j; and y dimension of jo. The phone statistics of
critical articulators are also collated in a similar way to form phone mean matrix ;.a‘{bc}
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; . &
and covariance matrix X oMoy

If i represents a non-critical coordinate and the identification divergence Jf * s 0p,
then the covariance between ¢ and {C}, known as the dependent covariance X;(¢y, is
estimated from grand correlation matrix R* as

Ei{c}___[dzz(isjl) aﬂ-‘y(iajl) Uz:c(?::j’l!) Umy(imjz) (3.13)

oya(iy j1) oyy(i,51) oya(i,j2) oyy(d, ja)

Figure 3.5 illustrates a simple case of updating the model distribution of a dependent
articulator i based on the distribution of just one critical articulator j;. FEach sample
Ty, N € {1.n**} in the model distribution of critical dimension ji, N (mjl‘k, S?‘_”l) is
mapped to the dependent space using grand correlations. The resultant position in the

dependent space after mapping N (7, S) is given as

my = Mi+ 212y e (@ — Mc)) (3.14)
S = ;-3 2{}{,}{0}2{0}1; (3.15)

The above estimate is obtained by applying the theory of the multivariate conditional
distributions presented in (Anderson, 1984). The complete derivation of Eq. 3.14 and
Eq. 3.15 is given in appendix B.2 (Eq. B.20 and Eq. B.21 resp.).

The mean of the dependent coordinate distribution is then estimated as the mathe-
matical expectation of the resultant sample distributions. The variance is estimated
by averaging the squared distance of its possible values from the mean and adding the
sample variance S,

mi, = &(my) (3.16)
Sﬁ,é é?(-ﬁ;,? - mﬁ,s)('mn = mz’i)’ + 85 (3.17)

Il

Solving Eq. 3.16 and Eq. 3.17 using Eq. 3.14 and Eq. 3.15 results in the expressions
presented in the updaeteDep function in the Fig. 3.4,

mf; — Mi+Ey0) gy o) (Bley — Moy (3.18)

5t < it BuaZiga Elena ~ Bero)Sg e (319)

The dependent list is updated by adding i to the existing list

D% — {D**} U {4} | (3.20)
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Critical, dependent and redundant lists

The algorithm iterates through computation of KL divergence step, C-step and D-
step, as long as maximum identification divergence at any level k, maz{J%*} > 6¢.
The execution stops at level k for phone ¢ when maz{J?*} < O¢. The final list of

critical articulatory coordinates for every phone ¢ is given by Cﬁ’é, the number of critical
coordinates identified is given by k%. The final list of dependent articulatory coordinates

is given by D?. Thelist of redundant articulators is estimated by eliminating the critical
and dependent coordinates from the set of all articulatory coordinates

R? = {14} - (€%} - (D"} (3.21)

The model distribution of each phone ¢ € {®} after identification of critical, dependent
and redundant lists is given as N (72?, .‘3'¢).

The following section provides a graphical illustration of the working of the algorithm.

3.3.3 'Working of the algorithm

Figure 3.6 illustrates operation of 1D and 2D versions of the algorithm of male speaker
data for [g]. Grand, phone and model distributions are represented by dotted red,
dashed green and solid blue covariance ellipses respectively. The major and minor axes
of each ellipse depict +2¢ about the mean in x and y directions respectively. The axes
are aligned in the direction of eigenvectors of their covariances.

The model distributions after initialisation, C-step and D-step are illustrated in Figure
3.6. In the model initialisation stage, the model distributions are set to the grand
distributions for both 1D and 2D cases. Figure 3.6(b) represents the distributions after
the C-step. In the 1D case, TD, was identified as the first critical coordinate in the C-
step. The identification divergence of TD,, (J = 15) was greater than that given by other
articulatory coordinates and hence was identified as critical. The model distribution of
TD, was set to the phone distribution in the C-step. In the 2D case, TD was identified
as critical (J = 18). The model distributions of both x and y coordinates of TD were
set to phone-specific distributions in the C-step.

Figure 3.6(c) shows the distributions after the D-step. The model distributions of the
rest of the articulatory coordinates were updated conditioned on the distribution of
TDy in the 1D case. The distributions of ULy, LLy, TTy, TBg, TBy, TDg, V, and Vy
were updated in D-step. The critical articulator TDy influenced TBy to a greater extent
when compared with other coordinates, the correlation between TD, and TB, was 0.75.
The position of TT, was not affected due to the absence of correlation between TT, and
TDy. The distributions of other articulators were not significantly affected since the
correlations with TD, were weak. In the 2D case, only L1 was identified as redundant,
The distributions of the remaining articulators were updated in the D-step. Similar
to the findings in the 1D case, the distribution of TB was most effected by the critical
articulator TD.
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Figure 3.6: Mid-saggital display of convergence of 1D (left) and 2D (right) phone models
of [g] using grand (dotted red), phone (dashed green) and model (solid blue) distributions
as critical articulator was identified up to and including level k = From top to
bottom, the figure illustrates the distributions after model initialisation, C-step and D-
step respectively.




44 Chapter 3. Articulatory constraint identification algorithm

3.4 Effect of critical threshold

The critical threshold f¢ used in the C-step of the algorithm is related to the number of
critical dimensions identified by the algorithm for each phone . Decreasing the value of
the critical threshold would result in an increase in the number of critical articulatory
coordinates identified by the algorithm. The effect of varying critical threshold values
on the performance of the algorithm was evaluated using two KL divergence based
metrics known as the convergence scale, Y., and evaluation scale, T.,q. The
convergence scale quantifies the goodness of fit of 1D and 2D model distributions to
the respective 1D and 2D phone distributions and hence measures the model conver-
gence. The evaluation scale is an indication of how well the 1D and 2D models fit the
actual phone specific distributions. The following section defines the convergence and
evaluation scales.
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Figure 3.7: Two dimensional model distributions (left) arranged to form a 14D mean
vector ® and 14D covariance matriz $% and 2D phone distributions (right) with 14D

mean vector {1 and 14D covariance matriz 293 used for computation of the convergence
scale Y eony-

3.4.1 Convergence and evaluation scales

Convergence of 1D and 2D model distributions to the respective phone distributions
was calculated using a KL divergence based metric known as convergence scale,
Y cony- Though convergence scale was estimated for both 1D and 2D cases, the method
for estimation of only the 2D convergence scale is presented here. The 2D model means
and covariances of all a articulators were collated to form a 14D mean vector and
14D covariance matrix respectively as shown in Fig. 3.7. For the 2D case, model
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covariances of each phone ¢ for all a articulators, Q?, Vi € {1..a}, form the principal
diagonal elements of the 14D maodel covariance matrix.

For the 1D case, the x and y movements of each articulator are treated independently
and therefore §éy(i) and §§z(7) were set to zero. The 1D and 2D phone means and
covariances were also arranged in a similar fashion as shown in Fig. 3.7 to form 14D
mean vector and covariance matrix respectively. If M(m?®, S’é) represents the 14D

model distribution and A/(jz?, ﬁé) represents the phone distribution shown in Fig.
3.7, the convergence scale was calculated as the 14D KL divergence according to the
following equation

1 . . . -1 s 1 1 I . 1 4 a - .
Tfm=-2-tr(s‘*‘—z¢)(z" d® )+§tr(s"‘ +3% ) (an? - p?) (1n® — 1) (3.22)

The goodness of fit of the model distributions under 1D and 2D assumptions to the
actual phone distribution with full 14D covariance matrix was measured using the
evaluation scale, Y.yuq. The arrangement of model and phone statistics for the com-
putation of the evaluation scale for the 2D case is shown in Figure 3.8. Here the
phone covariance matrix is 14D and full with the inclusion of off-diagonal covariances
between articulators.
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Figure 3.8: Two dimensional model distributions (left) arranged to form a 14D mean
vector th® and 14D covariance matriz 5% and 2D phone distributions (right) with 14D

mean vector 1 and 14D covariance matriz $° used for computation of the evaluation
scale Yepal.

The evaluation divergence between the model distribution A/(ri2?, §%) and the phone
distribution with full covariance matrix N (f?, ﬁé) is calculated as the 14D KL diver-
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gence averaged across all phones according to the equation
1 P RTINSt e | 1 1 skl i " i
T = 5tr(8° =30 -8 )4 5tr(8° +5° ) (1i? — #)(ma® - Y (3.23)

The following sections describe the effect of varying critical thresholds on the model
convergence and evaluation scales.

3.4.2 Trade off between model convergence and 6¢

The convergence scale measures how well the 1D and 2D model distributions of each
phone match respective 1D and 2D phone distributions at different levels of critical
threshold values. The convergence scale was averaged across all phones for both 1D and
2D cases. The initial convergence scale was computed at level k = 0 between model and
phone distributions before application of the algorithm. The initial convergence scale
averaged across all phones for 1D case was found to be 20 for the male speaker and 21 for
the female speaker. Figure 3.9 shows the plots depicting the average convergence scale
and the average number of critical articulatory coordinates at various threshold values
for 1D and 2D models for both male and female speakers. The x axis shows the average
number of critical dimensions per phone and the y axis shows the convergence scale
averaged across all phones for different values of critical thresholds, 0.1 < 8¢ < 5. For
1D case, after running the algorithm at 8c = 5, the model convergence improved by 50%
for both speakers when compared with the initial convergence. The average number
of critical dimensions per phone at this level was 0.5 for both speakers. Incorporating
information of critical dimensions and updating the model distributions of dependent
articulators resulted in the improvement of the model convergence. Decreasing the
critical threshold to 1 increased the average number of critical dimensions per phone to
2.5 for both speakers and the improvement obtained over the convergence at ¢ = 5 was
72%. Decreasing the threshold beyond this point (8¢ = 1) significantly increased the
number of critical dimensions but only small improvement in convergence was obtained.
At 0c = 0.1, a further 25% of improvement in model convergence was obtained but the
number of critical dimensions per phone rose to 7.

Similar observations were made for the 2D case for both speakers. As the threshold
was lowered from 5 to 1, the model convergence increased by 78% and the number
of critical dimensions per phone doubled in number. Decreasing the critical threshold
on identification divergence beyond 1 resulted in significant increase in the average
number of critical dimensions per phone but only small improvements in convergence
were obtained. This analysis showed that a minimum of 2 critical dimensions per phone
are required to estimate model distributions with reasonable accuracy for both 1D and
2D cases. Increasing the dimensionality of critical articulator space beyond a certain
point, i.e., at fc = 1 for both 1D and 2D cases, does not improve the convergence of
the models but increases the parameter space of the models.

3.4.3 Evaluation scale vs ¢

The goodness of fit of the 1D and the 2D model assumptions to the actual phone distri-
butions measured using evaluation scale, ’I‘fwt. The evaluation scale was computed
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Figure 3.9: Convergence of 1D (left) and 2D (right) models: the convergence scale Y Sony
between 14D model and phone pdfs averaged across all phones for 6c = {0.1,0.2,...,5}
for both male (blue) and female (red) speakers.

at a range of thresholds, 0.1 < 8¢ < 5 for every phone ¢ € {®}. Figure 3.10 shows the
plots depicting the average evaluation scale values and the average number of critical
articulatory coordinates at various threshold values for 1D and 2D models for male and
female speakers. The divergence lies between infinity and zero (for perfectly matching
distributions). The goodness of fit of the models was evaluated as a function of critical
threshold é¢, which is applied to the 1D and 2D identification divergence.
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Figure 3.10: Evaluation of 1D (left) and 2D (right) models: the evaluation scale T‘: e
between 14D model and phone pdfs averaged across all phones for 6c = {0.1,0.2, ..., 5}
for male (blue) and female (red) speakers.

The x-axis of the graph represents the average number of critical dimensions per phone
obtained by averaging the number of dimensions across all the phones. Each point on
the plot corresponds to a particular critical threshold value within the range 0.1 < ¢ <
5. Considering the 1D models first, the initial value of evaluation scale between the
1D models with diagonal covariances and the phone models with full phone covariances
before applying the algorithm (at level k = 0) was found to be 99 for the male and 79
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for the female speaker. The initial evaluation scale of the female speaker was smaller
than that of the male speaker and the difference in the values between the speakers was
persistent at all values of critical thresholds. It was found that as the threshold was
lowered, the goodness of fit improved at the expense of increased critical dimensions.
For example an improvement of 36% was achieved when the threshold was lowered
from 5 to 1 for the male speaker data whereas the average critical dimensions per
phone increased from 0.5 to 2.5. This trend was also observed in the female speaker
data. Further lowering the threshold to 0.1 improved the goodness of fit by 17% on
average between male and female speaker data but the number of critical dimensions
per phone on average rose to 7 (half of the total available).

The fit of the 2D models to the phone models with full phone covariances is also shown
in Fig. 3.10. With the inclusion of the correlations between the x and y dimensions, the
initial divergence between the 2D models with 2D diagonal covariances and the phone
models with full phone covariances was improved by 10% for the male speaker and 2%
for the female speaker data when compared with the 1D initial evaluation scale values.
In the 2D case, the fit of the models improved significantly as the average number of
critical dimensions per phone increased from 1 to 5 for the male speaker and from 2
to & for the female speaker when 6 was lowered from 5 to 1. Within this range, the
improvement in the fit achieved was 34% for the male and 44% for the female speaker
data. The fit improved by a mere 4% when the critical threshold was lowered from 1
to 0.1 but the average number critical dimensions per phone increased to 12 (x and
y coordinates of 6 articulators) for both male and female speakers. As expected with
the additional flexibility to describe correlations between x and y movements of each
articulator, the fit of the 2D models to the phone pdfs with full covariances was better
than the fit of the 1D models at all levels of threshold.

3.5 Conclusion

The methodology for articulatory constraint identification algorithm (ACIDA) was pre-
sented. The proposed algorithm identifies critical, dependent and redundant roles
played by articulators for each phone. The algorithm also updates the model dis-
tributions of all articulators from the knowledge of identified constraints. Grand inter-
articulatory correlations between the articulators used for identifying dependent artic-
ulatory roles were computed and the correlation patterns were identified. The articula-
tory coordinates could be separated into the lip and jaw group, the tongue group and
the velum based on the strength of the correlations. The four stages in the algorithm,
model initialisation, computation of identification divergence, C-step and D-step were
explained. The working of the algorithm was illustrated using the grand, phone-specific
and model distributions of a phone ([g]). The effect of critical threshold on the per-
formance of the algorithm was also evaluated using convergence and evaluation scales.
It was found that the convergence and the fit of the models improved as the critical
threshold was lowered due to increased model complexity. After a certain threshold
(fc = 1) no improvement in the goodness of fit and convergence of the models to the
phone distributions was achieved though the model complexity increased. In the fol-
lowing chapter (Chapter 4), lists of critical coordinates identified for each phone are




3.5. Conclusion

49

presented and analysed using phonological information.




60

Chapter 3. Articulatory constraint identification algorithm




Chapter 4

Identified critical coordinates and
their phonetic analysis

4.1 Overview

Speech articulators are constrained to achieve target positions during the production
of speech sounds. Identification of degrees of freedom of articulators during speech
production plays an important role in modelling coarticulation effects. Unconstrained
articulators are most susceptible to the coarticulation caused by the neighbouring con-
strained articulators (Mermelstein, 1973; Recasens and Pallarés, 1999). Speech articu-
lators are correlated with one another due to the presence of physiological connections
between them. Constrained articulators also influence the positions of other uncon-
strained articulators partially due to the presence of such inter-articulatory correlations.
Different approaches were used for specification of constraints on articulators for each
phone in the form of binary features (Henke, 1965; Moll and Daniloff, 1971; Daniloff
and Hammarberg, 1973), gesture scores (Browman and Goldstein, 1986; Saltzman and
Munhall, 1989) and quantised configurations (Deng and Sun, 1994; Erler and Freeman,
1996; Richardson et al., 2000). Constraints in the form of binary features (Chom-
sky and Halle, 1968) are phonological and static in nature and are difficult to convert
to commands for articulators. Hand coded gesture scores and quantised articulatory
configurations are heuristic and incomplete descriptions. The proposed articulatory
constraint algorithm (ACIDA) identifies constraints on the articulators in the form
of critical, dependent and redundant roles for each phone from the EMA data. The
movements of critical articulators towards targets are critical for production of speech
sounds. The dependent articulators are partially constrained due to their relationship
with the critical articulators and the remaining degrees of freedom are prone to context
sensitive effects. The redundant articulators are unconstrained and are free to assume
any uncontradicting position. '

In this chapter, critical coordinates identified using the proposed ACIDA approach are
presented. It is assumed in throughout this study that the available articulatory coordi-
nates are treated as low dimensional representations of articulators. It has been shown
that a few well-selected points can faithfully represent the full shape of the articula-
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tors with reasonable accuracy (Badin and Serrurier, 2006; Qin et al., 2008). Expected
critical coordinates are derived from the IPA chart. The identified critical coordinates
are compared with the expected critical coordinates to analyse the performance of the
models. Differences between results from the proposed approach and the knowledge
driven approach are analysed. Model distributions estimated from the expected critical
coordinates are also compared with the model distributions from the proposed approach
for analysing the fit of the models to the actual phone distributions.

The rest of this chapter is organised as follows: Section 4.2 presents the motivation
behind choosing the IPA chart for this analysis. Section 4.3 presents the derivation
of expected critical coordinates for each phone in the database. Identified critical
coordinates are presented in Section 4.4. Phonetic analysis of results is presented in
Section 4.5. Conclusions from this analysis are presented in Section 4.6.

4.2 Why IPA?

The articulatory features such as discrete binary features (Chomsky and Halle, 1968)
derived from phonological knowledge represent the place and manner of articulation of
speech sounds. The IPA chart (International Phonetic Association, 2003) can be viewed
as a short-cut representation depicting the intersection of different binary features. The
IPA is a widely accepted representation and takes language specific phonetic variations
into consideration. The IPA provides a good basis for comparison because it is an inter-
nationally agreed summary of the knowledge built up over many generations. Its main
purpose involves the transcription of human speech by phoneticians, and is therefore
tailored (i) to encapsulate meaningful distinctions in the context of language, (ii) for
utterances produced by humans and (iii) observed by phoneticians. Increasingly, there
is a need for phonetic descriptions for use in speech technologies that need (i) to model
the characteristics of typical phones within a language (ii) to include the implicit effects
found in human phoneme-to-phone realisation, such as coarticulation and (iii) to incor-
porate knowledge from other types of observations, such as X-ray and articulography
data. The proposed ACIDA algorithm identifies the constraints on articulators from
EMA data using statistical techniques. The identified critical coordinates are compared
with the expected critical coordinates to analyse the performance of the model.

The following section (4.3) presents the list of expected critical dimensions derived from
the IPA chart for the analysis of results.

4.3 Derivation of expected critical coordinates

A list of expected critical articulatory coordinates for all speech sounds was generated
from the IPA chart for both 1D and 2D representations. The expected critical coordi-
nates for consonants were obtained from the knowledge of the active articulator involved
in the production of the consonant sounds. For vowels and diphthongs, the IPA vowel
chart was used to estimate the critical coordinates. The expected critical coordinates
are derived using the available articulatory coordinates. Recall from Chapter 2 that
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the EMA data used in this work comprised measurements from x and y movements
of upper lip UL, lower lip LL, lower incisor LI, tongue tip TT, tongue blade TB, tongue
dorsum TD and velum V.

4.3.1 Consonants

The expected critical coordinate list derived from IPA for the 1D case, where the x and
y dimensions of each articulator were treated as separate and independent coordinates,
is shown in Table 4.1. For all bilabial sounds, [p], [b] and [m], UL, and LL, coordinates
essential for lip closure were made critical. For labio-dental sounds, [f] and [v], LL,
and LL, were chosen as critical. For inter-dental fricatives, [6] and [8], sibilants, [s], [z],
lateral [I] and approximant [1], the active articulator is the tongue tip. Hence, tongue
tip x and y dimensions were marked as critical. For alveolar stops, [t], [d], [n], the y
movement of TT was chosen as critical. Tongue tip 2 and y dimensions were also chosen
as critical for post-alveolar sibilants [f], 3], and affricates [{f], [&]. For palatal sound [j],
the tongue blade x and y dimensions were made critical. For velar stops, [k], [g] and
[n], the y movement of TD was made critical. For labio-velar sound, [w], UL., LL; and
TD, were chosen as critical. No critical articulators were derived for glottal sound [h]
from the available articulatory dimensions. For all nasal sounds, [m], [n] and [y], in
addition to the aforementioned critical coordinates, v, was also marked as critical.

The critical coordinates for the 2D case are shown in Table 4.1. In the 2D case, the
x and y movements of each articulator are considered together for incorporating the
spatial correlations. Therefore, for [p], [b] and [m], the UL and LL were made critical.
For [f] and [v], the LL was made critical. For [t], [d], [n], [8], [8], [s], [2], [/}, [3], [4], [&],
[l] and [1], the expected critical coordinate was TT. For palatal sound [j], tongue blade
was critical. For [w], the UL,LL and TD were chosen as critical. For [k], [g] and [g], the
expected critical coordinate was [TD]. Velum was also chosen as critical for [m], [n] and

[l

4.3.2 Vowels

Unlike consonants, it is difficult to describe vowels in terms of articulatory positions
and vocal tract configurations. The vocal tract is unconstricted during the production
of vowels making it difficult to describe the positions of articulators. Moreover, the
vowels tend to overlap and merge into each other. Also, the effects of pronunciation,
language and accent are greater on the realisation of vowels (Rosner and Pickering,
1994; Dirven and Verspoor, 2004).

The vowels present in the database are highlighted in the IPA vowel chart shown in
Figure 4.1. The configurations of vowels shown on the vowel chart are part articulatory
and part acoustic (as well as auditory) (Rosner and Pickering, 1994; Ladefoged, 2005),
therefore it is difficult to describe articulatory positions for the vowels. In the articula-
tory domain, the tongue height is expected to play a key role in producing open, mid
or close vowels. The extent of backness of the tongue is important for producing front,
central or back vowels. The horizontal movement of lips is crucial for lip rounding. The
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Figure 4.1: Illustration of IPA vowel chart (International Phonetic Association, 20083),
the vowels in the database are highlighted. Where ever vowels appear tn pairs, the vowels
to the left are unrounded and vowels to the right are rounded.

articulatory flesh point marked as critical was assumed to reflect the backness of the
tongue. Therefore, for all front vowels [, &, 1, i1, i], TT was marked as critical. For
mid vowels [o, 2, A], tongue blade was marked as critical and for back vowels [a, b, o,
u, ul, tongue dorsum was made critical. In the 1D case, tongue height was represented
using the ¢ coordinate of the flesh points on the tongue. The z movements of lower
and upper lips were chosen as critical for rounded vowels. Table 4.2 shows the list of
1D and 2D expected critical articulators for vowels.

4.3.3 Diphthongs

Each diphthong was treated as a combination of two vowels and critical coordinates
were specified for the initial and final vowels of each diphthong. Tables C.7 and C.10
show the list of critical coordinates derived for diphthongs. The first entry for each
diphthong specifies the crucial coordinate for the initial vowel and the second entry
for the final vowel. Similar to the approach taken for specifying critical coordinates
for vowels, for all front vowels, TT was made critical, for all mid vowels TB was made
critical and for back vowels, TD was made critical. In the 1D case, the y movement was
made critical since tongue height is discriminatory between open and close vowels. For
all rounded vowels, the z movements of upper and lower lips were made critical.

4.4 Identified critical coordinates

In this section, identified critical articulatory coordinates & for every phone ¢ € {®}
are presented for the 1D and the 2D versions of the algorithm for both male and female
speakers. Identification of critical articulatory coordinates is determined by the critical
threshold value, f¢. Recall from Chapter 3 that an articulator is classified as critical
only if the KL divergence between its grand and the model distributions (identification
divergence) exceeds the critical threshold value 6. It was found from the convergence
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and evaluation scale analyses that lowering the critical threshold value increases the
number of critical dimensions per phone. It is important to determine the threshold
value at which the algorithm operates for a fair comparison of the identified and the
expected results.

4.4.1 - Selection of critical threshold 0

The critical threshold for obtaining the results for this analysis was determined using
the information of expected critical dimensions for vowels and consonants. The value
of 8¢ was adjusted such that the average number of identified critical dimensions were
equal to the average number expected critical dimensions. Only the expected critical
coordinates from vowels and consonants were considered for determining the threshold.
For the 1D case, the critical threshold was set to 1.7 for both speakers. For the 2D case,
the critical threshold was set to 2.3 for the male speaker and 2.0 for the female speaker.
At this threshold level, the 1D version of the algorithm identified critical dimensions
for 86% of phones for the male speaker and 88% for the female speaker. In the 2D case,
the algorithm identified critical coordinates for 86% of phones for the male speaker and
88% for the female speaker.

Both 1D and 2D results for the male speaker for consonants are presented in Table 4.1,
for vowels in Table 4.2 and for diphthongs in Table 4.3. The female speaker results are
in Tables C.5, C.6 and C.7 for the 1D case and Tables C.8, C.9 and C.10 for the 2D
case. Tables C.1 and C.2 show the dependent list D? and redundant list ?i¢ for male
and female speakers for the 1D case. The 2D case dependent and redundant lists are
shown in Tables C.3 and C.4 for the male and the female speaker respectively.

4.5 Phonetic analysis of results

In this section, phonetic analysis of identified critical coordinates is presented. The
analysis was done (i) using evaluation scale Teyq, and (i) by comparison of expected
critical coordinates and identified critical coordinates. Recall from Chapter 3 that eval-
uation scale is a measure of the goodness of fit of the model distributions with 1D
variances or 2D covariance matrices to the respective actual phone specific distribu-
tions with full phone covariance (Figure 3.8). For analysis using evaluation scale, the
1D and 2D model distributions were updated in three ways, (a) using the expected
critical coordinate information from IPA, (b)by applying D-step on models updated
using the expected critical coordinate information and (c) using the identified critical
coordinates. In the IPA based representations, only critical coordinates are derived
for phones from the IPA chart. So the rest of the articulators other than critical were
classified as non-critical articulators. So the dependent update step (D-step) was used
to introduce the dependencies amongst the articulators using grand correlations and
the performance of the resultant models was evaluated. Ewvaluation scale was averaged
across all phones in all cases. Expected and identified critical coordinates were then
compared to find if the identified critical coordinates are in agreement with the place
and manner information of phones and to analyse any differences between identified
and expected critical coordinates.
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1D results 2D results !

Phones | Expected Identified Expected | Identified

[p] ULy LLy ULy LLy UL LL UL LL

(b] ULy LLy ULy Ly UL LL UL LL

[m|] | ULy LL, Vo | ULy LLy Vg ULLLV |ULLLV

[t] TTy TTy T T

[d] T, T TT TT

[n] |[TTy V2 Ty Vs TT V TT V

(k] TDy TDy TD TD

g] TDy TDy TD TD

[n] TDy Vg TDy Vg TD V TD V

[f] LLy LLg LLy ULy LL LL

(v] LLy LLy LLy ULy LL LL

] TPy TTs TT= TTy LLy TT TT LL

o] TTy TTx TTy TTy TT T

8] TTy TT T3y Ty TTy TT TT LI

(2] TTy TTs Lly TTe TTy PP TT LI

1 TPy TTe TTy T8y 11, TDy ™ TT LI TD

3] Ty Ty Ll TTy TDy TTs Liy | TT LI TT TD LL

[l | Ty TT2 LIy TTy TBs TBy i & TT LI

[l | TPy TP TTy TBy TT; LI TT TT TB LI

1] Ly T, - TT -

(] TTy TTe TBg T TT

[w] ULg LLg TDy | ULy UL LL TD | UL TT

1l TBy TBz TBy TB TB

(b] |- 5 : TT

Table 4.1: Ezpected and identified 1D and 2D critical coordinates for consonants for
the male speaker.
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4.5.1 Comparison with IPA using evaluation scale

Model distributions updated using expected critical coordinate information from the
IPA were used for computation of the evaluation scale. For each phone, the model
distributions of all articulatory coordinates were initialised to the grand distributions.
Then, only the distributions of critical coordinates derived from IPA were updated by
setting their model distribution to the respective phone specific distributions (as in C-
step). The evaluation scale was computed between the model and yje phone pdfs (with
full phone covariance) and averaged across all phones as illustrated in section 3.4.1.
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g | s IPA(f) BTy
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Figure 4.2: Average evaluation scale computed using 14D phone pdfs and model pdfs
for 1D (left) and 2D (right) cases for the male (m) and the female (f) speaker. Models
are trained (a) using the expected critical coordinate information only (IPA), (b) by
combining expected knowledge with the D-step (IPA+D) and (c) using the proposed
algorithm (Alg.) at various values of critical threshold 6 = {0.1,0.2,...,5}.

Figure 4.2 shows the average evaluation scale computed using IPA-based distributions
for male and female speakers. The x axis for both 1D and 2D versions represents the
average number of critical dimensions per phone. In the 2D version, z and y dimensions
of each flesh point were considered together, for example, TT in the 2D case represents
both TT, and TT,. Therefore, to achieve same scale on x axis of both plots in Figure
4.2, the average number of 2D critical dimensions was multiplied by 2.

From Figure 4.2, it can be seen that setting the model distributions of critical artic-
ulatory coordinates specified by IPA gave little benefit. The goodness of fit of the
model distributions to the full phone distributions improved by including dependen-
cies between the articulatory coordinates. For the 1D case, an improvement of 24%
was obtained for both male and female speakers. For the 2D case, the improvement
achieved was 35% for both speakers. Evaluation scale computed from the model dis-
tributions obtained from the 1D and 2D versions of the algorithm averaged across all
phones is also shown in Figure 4.2. At the same number of average critical dimensions
per phone, 1D algorithm improved the goodness of fit of the models by 37% over the
distributions updated using IPA information alone. For the 2D case, an improvement
of 44% was obtained. At the same level of complexity, the models estimated from the
algorithm were found to be a better fit to the actual phone distributions. The following
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1D results 2D results
Phones Expected Identified Expected | Identified

(2] (near open) TTy LLy TT LL

[e] (open mid) T Ll b LL

[1] (close) TTy - T -

[iz] (close) TTy TDy LLy TTg | TT TB TT
[i] (close) TEy TDy TT TB

[e] (mid) TBy - TB -

[¢] (rhotacized) TBy LLy TB -

[a] (mid) TBy - TB -

[a] (open) TDy LLIy TBy TBy | TD LL TB
[o] (open rounded) TDy ULy LLy | TBy TD UL LL | TB

[0] (mid rounded) TDy ULy LLz | LLy TB; TTy | TD UL LL | TB LL
[v] (near close rounded) | TD, ULy LL, | - TD UL LL | -

[u] (close rounded) TDy ULy LLg | TDy TD UL LL | TD

Table 4.2: Exzpected and identified 1D and 2D critical coordinates for front, mid and
back vowels for the male speaker.

section presents an analysis of findings of the critical articulator identification of the
algorithm. The expected and identified critical articulatory coordinates are compared
for identification of the differences that resulted in the improvement in goodness of fit.

4.5.2 Comparison of identified and expected critical coordinates
Consonants

This comparison aims to find how similar the identified critical coordinates are to the
expected critical coordinates for consonants. Since consonants have well defined active
articulators and places of articulation, we expect to find the identified results to be
in agreement with the expected results for most cases. In case of any differences, the
information provided by the algorithm is expected to supplement the IPA results. The
data-driven nature of the algorithm could also help in identification of speaker specific
patterns.

Table 4.1 shows the expected and identified critical coordinates for the male speaker for
both 1D and 2D cases (the female speaker results are in C.5 and C.8). In the 1D case,
the algorithm identified critical coordinates for 92% of consonants for the male speaker
and 96% of consonants for the female speaker. In the 2D case, the algorithm identi-
fied critical coordinates for 96% of consonants for both speakers. Thus, the proposed
algorithm was able to capture the constraints on articulators during the production of
most of the consonants. The identified critical coordinates were in general agreement
with the expected critical coordinates though there were some notable differences.




4.5. Phonetic analysis of results a9

1D results 2D results

Phones Expected ] Identified Expected | Identified
fai] [a] (front close) TTy LLy TDy TT LL TD
[1] (front close) TTy LLy TT 1L
fet] [e] (front close) TTy LLy TT LL
[1] (front close) Ty LL; TT, TDy | TT LL TT
feo)] [€] (front mid) Ty LL, A LL
[6] (centre mid) TBy LLy TB LI
ho) [1] (front close) TTy LLy TTz T LL TT
[o] (centre mid) TBy LLy TB LL
o] [o] (back mid rounded) | TDy ULg LLg | TTy LLy TTy | TD UL LL | LL TT
2] [ (front close) o LL, TDy ULy | TT LL
fo] [o] (back mid rounded) | TDy UL, LLg | - TD UL LL | -
u] (back close roun TDy ULy LLg | ULy L TD UL LL | -
back cl ded » Ly LLy
fav] [a] (front close) TTy Ly Thy "TTy | IT LL TB
u] (back close rounded) | TD, UL, LL; | TB, TB, TD UL LL | TB
back cl ded " By

Table 4.3: Ezpected and identified 1D and 2D critical coordinates for diphthongs for the
male speaker.

When the expected and the identified critical coordinates were compared, identical lists
were found for 46% (1D) and 58% (2D) of consonants for the male speaker. For the
female speaker, similar lists (i.e., same coordinates but in different order) were found
for 25% (1D) of consonants of which 21% were identical. In the 2D case for the female
speaker 50% of the consonants had similar lists of which 42% were identical. No critical
coordinates were identified for [I] for both male and female speakers in both 1D and
2D cases. For glottal sound [h], no expected critical coordinates were specified from
the available articulatory dimensions. The tongue tip was identified as critical for [h]
for both speakers (except for the male speaker in the 1D case). Here the tongue tip
lowered to allow the air flow for generating [h]. No critical coordinates were identified
for [h] for the male speaker in the 1D case.

The velum x movement was identified as critical for all nasals [m, n, g] for the male
speaker in both 1D and 2D cases. For the female speaker, the identification divergence
J? (computed between grand and model distributions) for v (v for 1D), was higher
than values given by other articulatory coordinates but fell below the chosen threshold
level. Hence, the velum was not chosen as critical for any nasals for the female speaker
in both 1D and 2D cases. Also, some inconsistencies in the velum measurements of the
female speaker data (Richmond, 2001, 2009) could possibly affect the distributions of
the velum coordinates.
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For all sibilants [s, z, [, 3] and affricates [{f,&], the tongue tip TT and the jaw LI were
identified as critical. For the 1D case, only the y coordinates of TT and LI were identified.
The movement of TT is considered to be the primary articulation for these consonants.
Since strong correlations exists between TT, and LIy, identifying one of the coordinates
as critical would update the distribution of the other in the D-step of the algorithm.
Yet, in spite of the presence of this interdependency, the movement of LI was identified
as the second most important critical articulation for these sounds. Here, the algorithm
identified the articulatory coordinates responsible for the two important mechanisms
required for a sibilant (Shadle, 1985), (i) forming a narrow channel which creates a
fast moving jet of air, and (ii) locating the obstacle in the way of air flow created by
positioning of the jaw.

More 1D critical coordinates (twice the average) were identified for phone [3] for both
male and female speakers. Phone [3] had the least number of samples of all phones.
The affect of small sample sizes on the estimation of the distribution statistics was
compensated in the algorithm by adding the variance of mean to the distribution vari-
ance in the function computeldiv (Figure 3.4). Yet, phone [3] had more 1D and 2D
critical dimensions for both speakers. The next highest number of critical dimensions
were identified for post-alveolar sounds [f, {f,d5] . Other points on the tongue were also
identified other than the expected tongue tip. This shows that the shape of the tongue
plays an important role in production of these sounds.

A few insertions and substitutions were made of correlated articulators. Some of the
expected critical coordinates had strong correlations with identified critical coordinates.
For example, for [1], TB, was identified as critical for the male speaker which has strong
correlations with the expected TT,. Similarly for [w]|, the y movements of UL and
LL were identified which are highly correlated with the expected x coordinates. Some
differences between the expected and identified critical dimensions were inconsistent
across the speakers. For [6], the tongue blade also lowered to achieve the expected
tip position and hence was chosen as critical for the female speaker. There was no
significant change in the position of TB for the male speaker which was not identified
as critical for [6].

To summarize the findings, the identified critical coordinates were in general agreement
with the active articulators of consonants. The 2D results gave a more clearer picture
than the 1D results because of the inclusion of correlations between x and y movements
of articulators. The lower incisor was identified as secondary articulation for sibilants.
Few substitutions were made of correlated articulators, for e.g., TT, by TB, for [1].
Some insertions were made by the proposed algorithm which supplemented the results.
Some speaker specific differences were found which could be due to the speaking style
variations. The algorithm also identified the details which are not explicit form the
place of articulation descriptions from the IPA chart.

Vowels

It is difficult to determine the shape of the oral cavity for vowel sounds. There are no
clear boundaries between the vowels and lack of constriction makes it difficult to esti-
mate which part of the tongue plays a critical role in the production of vowels (Rosner
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and Pickering, 1994; Dirven and Verspoor, 2004). Targets for vowels are part articu-
latory and part acoustic (as well as auditory) (Rosner and Pickering, 1994; Ladefoged,
2005). In the articulatory space, the vowels are characterised using tongue height (from
open to close), degree of backness (front to back) and lip rounding (rounded /unrounded)
(Ladefoged, 1975). We expect the y dimension of the tongue to be identified as critical
for high to low vowels, the flesh point coordinate on tongue would reflect the backness
of the tongue, (TT for front, TB for mid and TD for back vowels respectively) and the
lips to be identified as critical for rounded vowels.

Table 4.2 shows the expected and the identified 1D and 2D critical coordinates respec-
tively for the male speaker (refer to Tables C.6 and C.9 for the female speaker results).
At the same level of critical threshold, the algorithm identified critical coordinates for
77% of vowels for the female speaker in both 1D and 2D cases. For the male speaker,
69% of vowels in the 1D case and 62% in the 2D representations had critical coordinates.

For both speakers, no critical coordinates were identified for close-mid vowels which
included the neutral vowel [3], front vowel [1] and back vowel [u]. At the chosen critical
threshold, none of the central vowels had 2D critical coordinates for the male speaker.

Tongue blade

L} T L T

2l ol _

[uu]

y position {mm)

_1 1 1 i 1

%0 32 34 36 38 40
x position {(mm)

Figure 4.3: Articulatory vowel quadrilateral for TB obtained by joining the model means

of vowels closest to the primary cardinals in the database for the male speaker. The

standard errors of model means are depicted using covariance ellipses for vowels for
which TB is critical (thick red) and not critical (thin black).
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For open vowels, [, €, a, the jaw opening gesture was defined as critical using LL,
(1D) and LL (2D) for the male speaker. The lower lip was identified as critical only
for front vowels of all open vowels for the female speaker. Of all rounded vowels, the
lower lip LLy (1D) and LL (2D) was identified as critical only for [o]. The movements
of upper lip and lower lip in the x direction were small and the rounding was perhaps
not evident from the midsaggital data.

Amongst the three flesh points on the tongue, mostly TB followed by TD was chosen
as the critical coordinate involved in shaping the vocal tract for production of vowel
sounds. For both speakers, tongue tip was not identified as critical for any vowels in
the 2D case. In the 1D case, TT, (which is highly correlated with TB, and TD,) was
identified as critical for front close vowels, [i] for the female and [i:] for the male speaker.
The y coordinate of TT was identified as critical only for [o] for the male speaker and
[e] for the female speaker. The position of tongue (TT, TB and TD) for these two sounds
was found to be lower than the neutral configuration. In the 1D case, the covariance
between the x and y movements is ignored. The 1D identification divergence amongst
the three points was found to be higher for TT in y direction when compared with TB
and TD. In the 2D case, the TB was identified as critical.

For close front and back vowels, mostly TB, and TD, (1D) and TB (2D) were identified
as critical. For open back vowels, TB, and TB, (1D) and TB (2D) were chosen as critical.
The back vowel [u] had no critical coordinates for both speakers in 1D and 2D cases.

The vowels were also analysed using the IPA vowel chart (Figure 4.1). The vowel
chart is partly acoustic and partly articulatory in nature. There is a relationship be-
tween certain articulatory characteristics of the vowels and their acoustic features, the
vowel height is inversely proportional to the frequency of the first formant (F1) and the
backness is proportional to the difference between first two formants (F2-F1) (Lade-
foged, 1975). The IPA vowel classification posits cardinal vowels that are based on two
‘primary’ positions (the theoretical extreme positions that can be achieved by the artic-
ulatory apparatus). Cardinal vowel (1), [i], is produced when the tongue is as high and
forward as possible and the lips are spread. Cardinal vowel (5), [p], is produced with
tongue as low and back as possible. The rest of the cardinal vowels, [e, €, a, u, o, 9],
are placed with equal acoustic distance between the primary cardinals. The secondary
cardinal vowels have opposite amount of lip rounding to that of primary cardinals.
Other vowels can be specified relative to these cardinals and the IPA representation
provides a number of such vowels which can be used for more accurate representations.
The analysis of vowel quadrilaterals in the articulatory space aims at finding the re-
lationship between the pseudo-articulatory vowel characteristics depicted in the vowel
chart and the measurements from the flesh point data. Dang et al. (2009) also used
articulatory data (X-ray) for analysing the structure of vowels.

Vowel quadrilaterals similar to the IPA vowel chart shown in Figure 4.1 were generated
using the grand and phone means for front, mid and back vowels for both speakers.
Vowel quadrilateral derived from measured articulatory data of TB (the most commonly
identified critical coordinate) for the male speaker is shown in Figure 4.3 (vowel quadri-
laterals of all points on the tongue for both speakers are shown in Figure C.1). Vowels
are represented in MOCHA-TIMIT notation and corresponding IPA symbols can be
found in Table A.2. The standard error of the mean was also plotted. The closest vow-
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els to the primary cardinals (highlighted in Figure 4.1) were joined to obtain the vowel
quadrilaterals. The shape of the vowel quadrilateral changed for each tongue coordinate
and was different from the IPA vowel quadrilateral depicted in Figure 4.1. The vowels
shown in Figure 4.3 are represented in purely articulatory domain and correspond to
the real articulation data.

The shapes of the quadrilaterals for the male speaker were a closer resemblance to
the IPA vowel quadrilateral than those from the female speaker. The position of the
y dimension of tongue was found to be discriminatory between the vowels and was
in agreement with the open/mid/close descriptions of the vowels. The x dimension
looks less discriminatory since only the tongue blade coordinate (the most commonly
identified critical coordinate for the vowels) is depicted for all front, mid and back
vowels. The position of the tongue for front close vowels, [1, iz, i], was high and forward
a8 indicated in the vowel chart. The position of the tongue for mid vowels was central
in terms of height and backness. The x position of the tongue for back vowels [u]
([uu] in Mocha-Timit) and [e] ([o] in Mocha-Timit) was similar whereas the y position
indicated the close and open nature of the vowels respectively for the male speaker.
The magnitude of backness was greatest for vowel [o] when compared with all other
vowels for both speakers.

To summarise, the analysis of identified critical coordinates for the vowels showed that
the tongue blade and dorsum play an important role in shaping the tongue for genera-
tion of vowels. The algorithm identified no critical coordinates for the neutral vowel [o).
The lower lip was identified as critical for open vowels and one rounded vowel. The lip
rounding was not clearly evident from the measurements of x movements of lips. The
analysis of articulatory vowel quadrilaterals showed that the y dimension of the tongue
measurement is in agreement with the tongue height feature of the vowels.

Diphthongs

Diphthongs are the sounds that have changing vowel quality during the course of the
syllable (Ladefoged, 2005). Hence each diphthong was treated as a sequence of initial
and final vowels. It is assumed that the target is reached at the midpoint location
of initial and final vowels. Therefore, the data sampled at one third and two third
positions of the total diphthong duration was used for estimating distributions of initial
and final vowels respectively. The initial vowel the diphthong is thought of as the most
prominent than the final vowel Ladefoged (1975). The higher the prominence, the
greater its influence on the quality of the realised diphthong. From this analysis, we
expect to find the affect of the prominent part on the less prominent part of a diphthong,
the relationship between the prominence and the identified critical coordinates and the
differences between the identified critical coordinates of a vowel in its diphthong and
its pure realisations.

The number of types of diphthongs present in the data set was 7. The initial and final
vowels were both front vowels for [a1] and [e1]. The initial vowel was a front vowel and
final vowel was a mid vowel for [ea] and [16]. For the other three diphthongs [01], [ou] and
[av], the transitions were from back rounded to front, back rounded to back rounded
and front to back rounded respectively. Expected and identified critical coordinates for
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diphthongs are shown in Table 4.3 for the male speaker. For the female speaker, the
1D and 2D results are presented in Tables C.7 and C.10 respectively. The analysis of
identified critical dimensions for diphthongs was done by comparison of the transition
from initial to final vowels of a diphthong and with their pure vowel (monophthong)
realisations.
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Figure 4.4: Outlines of distant neighbour diphthong (left) and monophthong (pure vowel)
(right) realisations for [a1] (MOCHA symbol is [ai]) obtained from the male speaker data.
In the distant neighbour group, the initial and final vowels are characterised by larger
contrast in the vowel quality. The grand (solid black), initial vowel (dashdot, red) and
final vowel (dashed green) configurations are plotted.

To analyse the nature of diphthongs, comparisons of articulatory configurations of
initial and final vowels occurring as pure vowels and as diphthongs were made using
midsaggital representations and covariance ellipses. Wherever an initial or a final vowel
of a diphthong could not be found in the existing pure vowel set, it was compared with
its closest neighbour in the vowel space, for example, [a] in [a1] with with [s]. Figure 4.4
shows the diphthong and monophthong realisations for [a1] for the male speaker. It can
be seen from Figure 4.4 that the magnitude of the transition from initial to final vowels
was smaller than that when both monophthongs occur in a sequence (certainly some
of the vowel reduction can be attributed to effort minimisation). The distributions
of both initial and final vowels were tightly constrained and were different from their
monphthong realisations. Also the articulatory configurations of initial and final vowels
greatly influenced each other. As a result, the critical dimensions identified for initial
and final vowels of a diphthong were different from the critical coordinates obtained
from their monophthong realisations. These findings were also true for other diphthongs
in the dataset.

Based on the contrast between the expected articulatory positions of initial and final
vowels, the diphthongs were grouped in to two categories: (a) distant neighbour group
consisting of [a1], [o1], [av], 18] and (b) close neighbour group consisting of [e1], [ou],
[ea]. The diphthongs in the close neighbour group have a smaller contrast in vowel
quality than the sounds in distant neighbour group (Ladefoged, 2005). On similar
lines, contrast between the articulatory configurations of initial and final vowels was
found to be very small for [eo] and [ou].
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Figure 4.5: Qutlines of close neighbour diphthong (left) and corresponding monophthong
(right) realisations for [ea] (MOCHA symbol is [eir]) obtained from the male speaker
data. The grand (solid black), initial vowel (dashdot, red) and final vowel (dashed,
green) configurations are plotted. The contrast in the vowel quality is small for initial
and final vowels in the close neighbour group.

For diphthongs in the distant neighbour group, crucial articulatory positions of the
most prominent component influenced the configuration of the less prominent compo-
nent. The analysis of the identified critical coordinates for the initial and final vowels
of diphthongs showed that the initial vowel is most prominent part of a diphthong.
Carry forward effect was caused by the prominent initial vowel on the final vowel for
other diphthongs ([a1], [01], [18]). For a very few diphthongs, the final vowel was promi-
nent. For [au], the prominent component was the final vowel and it caused anticipatory
effect on the configuration of the initial vowel. In all cases, the critical coordinates
of the strongest vowel component of the diphthong were either similar to or strongly
correlated with the critical coordinates identified from its pure vowel realisation. The
critical coordinates of the weakest vowel component of a diphthong were different from
those obtained in its pure realisation due to influence of the strongest component.
For example, for [01], identified critical coordinates for the prominent initial vowel of
the diphthong were almost similar to the critical dimensions of monophthong [5]. The
tongue dorsum was identified as critical for the less prominent final vowel [1] (which is
a front vowel in its pure realisation) due to the affect of the initial vowel. Similarly,
for 1], the identified critical coordinates for [1] were similar to its closest monophthong
realisation [i:]. But for the final neutral vowel [a], the position of the jaw continued to
be critical due to the carry forward effect caused by the initial vowel. Similarly, the
jaw was also identified as critical for the final vowel [1] in [a1]. For [au], the articulatory
configuration of the initial vowel was affected by the final vowel due to the anticipatory
effect. Therefore, the tongue blade and dorsum were identified as critical for the initial
vowel [a].

Though the contrast between initial and final articulatory configurations was smaller
for the diphthongs in the close neighbour group, the findings were similar to those
in the distant neighbour group. The neutral vowel [s] in [ea]| had critical coordinates
due to the carry forward effect induced by the initial vowel [e]. Figure 4.5 shows the
midsaggital plot for diphthong and corresponding monophthongs for [ea]. The identified
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critical dimensions for the final vowel [1] in [er] were similar to the critical dimensions
of monophthong [i:] and resulted in the identification of similar critical dimensions
for its initial vowel as well. The phone [ou] had the smallest contrast of all and no
critical dimensions were identified for the final vowels in most cases. Only the lips
were identified as critical for the final vowel [u] for the male speaker. The articulatory
configurations of the initial and the final vowels for this diphthong did not match the
configuration of any pure vowel.

To conclude, the articulatory configurations of the pure vowels and corresponding com-
ponents of diphthongs were compared. The available diphthongs were categorized into
close and distant neighbour groups based on the strength of vowel-quality contrast. It
was found that the prominent vowel component of a diphthong shared similar critical
coordinates with its corresponding pure vowel. The critical coordinates of the weaker
components were influenced by the prominent components and hence differed from
those obtained from similar pure vowels. The first vowel of the diphthong was found
to be the stronger component for most diphthongs (60%).

4.6 Conclusion

In this chapter, identified critical coordinates for consonants, vowels and diphthongs
were presented and analysed. The IPA standard was used to derive expected critical
coordinates for 1D and 2D versions. Identified critical coordinates were analysed using
the evaluation scale measure and by comparing them with the expected critical coor-
dinates for both speakers. Evaluation scale analysis showed that, at the same level of
complexity, the models updated using the proposed algorithm outperformed the IPA-
based models. Introducing the dependent update step of the algorithm improved the
performance of the IPA-based models. Comparison of expected and identified critical
coordinates was done for consonants, vowels and diphthongs. The identified critical
coordinates compared well with the expected critical coordinates for consonants. Some
speaker specific patterns were also identified. The analysis of consonants was most
straight-forward when compared with vowels and diphthongs. The identified critical
coordinates were mostly in agreement with the active articulators involved in shaping
the vocal tract for production of consonants. The tongue blade and the dorsum were
identified as the articulatory coordinates playing critical role in shaping the tongue
for production of vowels. No critical coordinates were identified for centralised vowels.
The initial and final vowels of each diphthong were compared with their monophthong
realisations. The analysis showed that the critical coordinates of the prominent vowel
component of a diphthong influence the articulatory configuration of the less prominent
component. The critical coordinates of the prominent component of a diphthong were
similar to those identified from its pure vowel realisation.

The following chapter (Chapter 5) presents the evaluation of the search procedure
employed by the proposed critical articulator identification algorithm.




Chapter 5

Analysis of the algorithm

The algorithm for identification of articulatory roles was evaluated using an exhaustive
search procedure. Critical coordinates identified using the proposed algorithm were
compared with the findings of the exhaustive search to determine (i) if the identified
constraints vary based on search procedure, (ii) if the order of critical articulators makes
any significant difference to the model convergence, and (iii) the best fitting models.
The exhaustive search procedure was implemented for both 1D and 2D versions. The
fit of the models estimated using the proposed algorithm and the exhaustive search to
the actual phone distributions was also analysed.

The rest of this chapter is organised as follows: The procedure for identification of
critical articulators using exhaustive search is presented in Section 5.1. Comparison of
results from both approaches is presented in Section 5.2. The findings of the analysis
are summarised in Section 5.3.

5.1 Evaluation by exhaustive search

The proposed articulatory constraint identification algorithm (ACIDA) follows a depth
first search (DFS) approach for identification of critical articulatory coordinates. At any
level k, the identification procedure is conditioned on the critical articulators identified
upto and including level k — 1. Therefore, the proposed algorithm can also be referred
as the DFS procedure. On the contrary, the exhaustive search (ES) procedure searches
all possible paths at each level to identify the best contender. The search space at
the current level is not constrained by what has been identified as critical upto and
including previous levels.

Figure 5.1 illustrates the difference between the functioning of the DFS and the ES
methods. Only three nodes denoted by {ai, a2, as} are considered in this particular
example. The number of nodes (i.e., articulatory coordinates) considered for the im-
plementation of the DFS (proposed algorithm) and the ES procedures on EMA data
could be less than or equal to the dimensionality of the coordinate space, a (14 for
1D and 7 for 2D). Both DFS and ES algorithms could progress upto level & where
k £ a. Considering Figure 5.1, the number of valid paths for initial transition from
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k =0 to k =1 in both DFS and ES cases is 3, nodes {a;, az, as}. Assume that both
search procedures identify node {a} as critical at level k = 1. In the DFS case, the
identification of next critical coordinate at level k = 2 is conditioned on the best node
at k = 1, i.e., the possible combinations upto and including level k = 2 could be { (a2,
ai), (ag, ag)}. Here, the combination (ag, a;) is chosen as critical.

In the ES case, all possible paths from k = 1 to k = 2, i.e., {(a1, a2), (a1, a3), (az, a1),
(ag, ag), (as, a;1), (as, az)}, are searched to determine the best combination (a;, ag).
Similarly, all possible combinations of nodes are searched to determine the best critical
combination at level k = 3.

Depth first search Exhaustive search

® ©

level k 0 2 0 1 2
Valid path: = 2 Tt 7 wswesd Best path (k=2)
Best path {k=1) = Best path (k=3)

Figure 5.1: Search trees for the proposed and the ES procedures depicting the path
followed by both procedures in identifying articulatory roles for level k = 0,1,2, 3.

Recall from Chapter 3 that a coordinate j is selected as critical if its identification
divergence J; is the maximum divergence at the level and is greater than the critical
threshold value 8¢. In the ES search, in addition to the critical threshold constraint, the
best combination is identified using the minimax criterion (Coppin, 2004). According
to minimax, the combination of articulatory coordinates which minimises the maximum
identification divergence is chosen as critical. Figure 5.2 shows various stages in the ES
method for identification of the critical articulatory coordinates,

e Model initialisation: This stage is similar to the model initialisation stage in
the DFS method. The model means and variances of all articulatory coordinates
are set to the respective grand means and variances.

e C step: In this stage, every combination of articulatory coordinates at each level
is made critical. The model distributions are updated by setting them to the
phone-specific distributions.

e D-step: The grand and the phone specific statistics of the rest of the articulators
are collated. The dependent articulators are identified using inter-articulatory
correlations and their distributions are updated.
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e Minimax: The minimum of maximum identification divergence from each ar-
ticulatory combination is identified and passed onto the next stage where it is
compared with the critical threshold value.

Model
initialisation

= C step D step Minimax

Figure 5.2: Illustration of the flow of data for the ES approach for identification of
critical articulatory roles.

This process is repeated at each level until all possible combinations are searched ex-
haustively to find the best set of critical articulatory coordinates.

5.1.1 Algorithm

The pseudocode of the ES procedure for identifying critical articulators is presented in
Fig. 5.3. The notation used for the ES algorithm is similar to that presented in Figure
3.4. The grand information is denoted by I' = { M, X, N}, phone-specific statistics for
each phone ¢ are denoted by A¢ = {u?, £, 1%}, the model statistics at each level k
are denoted by A?* = {m®* §¢Fk pok},

The number of combinations at each level k is denoted by Py. At level k = 0, the model
distributions are initialised to the grand statistics and the accumulators for storing
critical and dependent articulators are initialised. Initial identification divergence value
Jf"’o is calculated for each articulator ¢ € {1..a}. Identification divergence is the 1D or
2D KL divergence between the model and the phone specific distributions. All paths
leading to and including level k — 1 are evaluated to identify the best set of critical
coordinates at level k. Adding articulator j € {1..a} existing critical articulators from
previous level Cf,”k_l results in new critical articulator combination C®* where w
indexes that particular combination. The model information from each combination
p € {1..Px_,} at level k — 1 is propagated to the level k

& k=1
Ak = A2 (5.1)

In the C-step, the model distributions represented by w are updated as

mii — u (5.2)
st w¢ (5.3)

The dependent articulators, Df:"‘, are identified and their model distributions are up-
dated using grand and phone-specific distributions and correlations in function upDat-
eDep. The identification divergence, Jf‘f at level k for each articulator i € {1..a} for
combination w is calculated using function computeldiv.

Of all combinations, w € {1..P;}, the critical articulator set, Cf;;k, yielding minimum of
maximum identification divergence is selected. The minimax identification divergence,
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T 18 compared with the critical threshold value 8¢. The best critical coordinates are
stored and the algorithm progresses to the next level only if the divergence is greater
than 0.

The number of articulatory combinations and permutations searched by the ES algo-
rithm increases at a factorial rate as the algorithm progresses from one level to the next.
For example at level k = 6, the number of articulatory combinations considered for the
search were over 2 million. The following section presents a comparison of the proposed
and the ES procedures using evaluation scale and identified critical coordinates.

5.2 Comparison of the proposed and the ES methods

The performance of the DFS and the ES procedures for identifying critical articulators
was analysed by comparison of

e evaluation scales
e identified critical articulators

e computational effort

Evaluation scale, Teyai, is the 14D KL divergence between the 1D or 2D model distribu-
tions with scalar or matrix (co-) variances and the actual phone distributions with full
14D covariances (refer to Figure 3.8). The evaluation scale averaged across all phones
was used to analyse the goodness of fit of the models from the DFS and the ES methods
to the actual phone distributions. The two search procedures were also compared on
the basis of economy of computational effort.

The proposed algorithm identifies critical coordinates conditioned on the information
from the previous level, whereas the ES algorithm identifies articulatory roles indepen-
dently of any previous critical articulator information.The list of critical articulatory
coordinates identified using the DFS and the ES procedures were compared for conso-
nants, vowels and diphthongs identify the effect of the search procedure on the iden-
tification of articulatory roles. The search procedures were compared at two values of
critical threshold: (a) IPA level of complexity, where the average number of critical
dimensions per phone equals to that of average number of expected dimensions per
phone derived from IPA chart (b) 2xXIPA level of complexity, where the complexity
of the models is twice that at IPA level. The ES search was implemented upto and
including level k = 6 in both 1D and 2D cases.

5.2.1 Evaluation divergence

To calculate the evaluation scale, the model and phone-specific statistics were collated to
form 14D mean and covariance vectors as explained in Chapter 3 (see Figure 3.8). The
model distributions updated using the ES procedure and the proposed DFS procedure
were computed at a range of critical threshold values (0.1 < ¢ < 5) up to and including
level k = 6.
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Derive statistics
Global statistics ' = {M, X, N}, means (a x K), variances (a x K x K) and sample size (a x 1)
Grand correlation R*
Phone statistics A? = {u?, 3¢, %}, means (a X K), variances (a x K x K) and sample size (a x 1)
Phone correlation R?
Model information at level k: A%* Vp € {1..P;}
Model initialisation
level k=0
No: combinations at level k, P, =1
FOR p € {1..F}
mg'k—M S;' —-L‘,,n =N,V¥ie{l.a}
Critical articulator list: C$= ={}
Dependent articulator list: Dk = {}
Compute identification dwergence J:: = mmputaIdlv(A
END FOR
Model convergence: isConverged=FALSE
Exhaustive search
WHILE (% < a) AND (4sConverged)
Go to next level: k=k+1
Initialise counter: w =0
Initialise maximum divergence value to a constant: J%,, = MAX
FOR p={1..Px_1}
C.step
FOR j = {1..a} - {CP*-'}
Increment counter w=w+1
Replicate model AZ* = AZA—1
Add j to critical arhiculato: list: CF — {CHF1} U {5}
Update model: m ,u,"5 S‘”‘ I E
. qs' i I/"'l
D-stap
Ag* =updateDep(T, B*, A%, R?,0, J$*~1, DSkl Cak)
s ‘l" = computeIdw{AS'; ,A¢), Vi € {1 al
Minirnax criterion
IF(maXig(1..a} (JF) < )
Update maximum divergence: J&,. = ma,x.geg__n}(.}f:f )
Store the index of the best combination: wp = w
END IF
END FOR.
END FOR
Critical threshold check
IF (Jfax > 0c)
Store the best combination at level k: C#F «— Ck
Store the best model statistics at level k: h®* i mgk, §6F 5ok
isConverged =TRUE
END IF
Store number of combinations at the current level: Py, = w
END WHILE

A"‘"), Vi€ {1..a}

P}

Figure 5.3: Pseudocode for ezhaustive search procedure for identifying eritical articula-

tors. For 1D or 2D versions, use scalar or vector means, M, u® and m®* and scalar

or matriz (co-) variances B, B¢ and S
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Figure 5.4: Average evaluation scale computed from the DFS (solid) and the ES (dashed)
methods for the male (blue, thick) and the female (red, thin) speakers. The IPA level
of complezity and the 2x IPA level of complexity (filled) are indicated.

Figure 5.4 shows the evaluation scale computed between model and phone pdfs as
0.1 € 6c < 5, averaged across all phones for the DFS and the ES procedures for
identifying critical articulators for 1D and 2D versions respectively. At all levels of
critical threshold, the DFS and the ES procedures gave similar results. At the IPA level
of complexity, the critical threshold was found to be 1.5 for both speakers in the 1D
case for the ES procedure whereas setting f¢ to 1.7 yielded the IPA level of complexity
for the DFS procedure. Here, the minimax identification divergence given by the ES
procedure averaged across all phones was 8% smaller than that given by the proposed
method when averaged across both speakers. However, this reduction in the divergence
due to the application of minimax criterion did not improve the goodness of fit of the
ES models over the DFS models. For the male speaker, the fit of the models updated
using the DFS method was 9% better than that using the ES procedure. Similarly
for the female speaker, the evaluation scale given by the DFS method was 2% better
than that given by the ES method (though 8% reduction of maximum identification
divergence was given by the ES method). In the 2D case to achieve the IPA level of
complexity , the critical threshold, 8¢ was set to 2.2 for the male and 1.9 for the female
speaker for the ES procedure whereas for the DFS procedure 8¢ was 2.3 for the male
and 2.0 for the female speaker. For the male speaker, the average evaluation scales for
both search procedures were similar where as for the female speaker, the DFS method
performed better than the ES method by 2%.

For the ES method, setting 6 to 0.5 for the male speaker and 0.6 for the female
speaker yielded twice the number of average critical dimensions per phone (2xIPA
level of complexity) in the 1D case. Here the percentage reduction in the maximum
identification divergence obtained using the ES method over the DFS was 21% in the 1D
case when averaged across both speakers. For the male speaker, the DFS method gave
2% improvement over the ES method whereas for the female speaker, the ES method
was better than the DFS by 3%. Critical threshold was set to 0.7 for both speakers in
the 2D case for the ES method. Similar values of evaluation scale were given by both
2D DFS and ES methods for both speakers at the 2xIPA level of complexity. Reducing
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the threshold beyond the 2xIPA level of complexity increased the average number of
critical dimensions per phone with a relatively small change in the evaluation scale
(10% to 12% reduction).

5.2.2 Identified articulatory roles

The identified articulatory coordinates were compared at IPA and 2xIPA levels of
complexity for both male and female speakers for both 1D and 2D cases. This analysis
is presented for consonants, vowels and diphthongs. The male speaker results for both
1D and 2D cases at 2xIPA level of complexity are shown in Tables 5.1 and 5.2. Results
for all speakers for 1D and 2D cases in more detail (i.e., with maximum identification
divergence and evaluation scale values) are presented in Tables from C.15 to C.22.

The following terminology is used for the rest of this section: when the ES method
identifies at least one additional critical dimension than the DFS method for a phone,
the additional dimension is ‘inserted’ by the ES method. On the contrary, when the
DFS method identifies at least one additional critical dimension than the ES method,
the ES method ‘deleted’ the corresponding dimension. If the ES method identifies a
critical coordinate correlated with that identified by the DFS method, it is referred as
‘substitution’.

Consonants

At the IPA level of complexity, for the male speaker, similar sets of critical coordinates
were obtained using both DFS and ES methods for 62.5% (1D) and 83% (2D) of conso-
nants. Of consonants with similar critical coordinates, identical results were obtained
for 80% (1D) and 65% (2D) of phones. For the female speaker at IPA threshold, similar
sets of critical coordinates were identified by both search procedures for 79% (1D) and
92% (2D) of consonants, of which 58% (1D) and 64% (2D) were identical. The results
from the 2D case at the IPA level of complexity were easier to interpret than those
from the 1D case. There were relatively few differences between the results of ES and
DFS methods for both speakers. When similar critical coordinates were identified by
both search procedures, the order of the critical dimensions made negligible difference
to the evaluation scale value.

In the 1D case, some speaker specific differences were found between the results of
the DFS and the ES methods. However, a majority of cases included substitutions by
strongly correlated critical dimensions. Such substitutions were found for 33% (1D)
and 4% (2D) of consonants for the male speaker and 17% (1D) and 8% (2D) for the
female speaker. For example, for [v], in the 1D case for the male speaker, the proposed
algorithm identified UL, as critical where as the ES identified UL, dimension as critical.
Substitutions by strongly correlated articulatory coordinates made negligible difference
to the evaluation scale and thereby to the goodness of fit of the models. For phone
[3], which has the smallest sample size of all phones, only one critical coordinate was
identified in common by both DFS and ES methods for the male speaker. Here the
total number of critical coordinates for the DFS method were 5 and for the ES method
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[n]
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Ty TTy LLy LIy Vy
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TTx TDy TTy

LLy TTx TTy TDy
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TBy TTx TTy UlLx

LLy TBy

Toy TTy ULx TBx ULy
ULx Vy TTy TDy TDx

Ty Vy TDy LLy
TTx TBy Vx

Table 5.1: 1D ecritical modes identified using the proposed depth-first search algorithm
(DFS) and ezhaustive search (ES) at 2xIPA critical threshold for the male speaker.
Identical (blue background), similar (yellow background) results are shown along with
substituted (bold, magenta), deleted (bold, blue) and inserted (bold, green) critical coor-

dinates.
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Identified critical coordinates (2D)

Phone
T
T
T
™
[g] ™ V TB LI V
[n] T VLI UL V LL TD
(fl] | uw 7T [
(vl LL UL LI | LL LT UL
(el TT LL LI UL TB LL UL TT
[d] TT TD LL T T8
[s] 5 7 ¥ G P U BT I G
[z] TT LI LL lLI T
[ TTLI TO LL UL TT LI TB
(2] | NS BN 11'r LL VLI T
1l ST L ™ Vv OLL LT ¥ TT LL. T
(%] [T TRALY VvV OLL LI TT V LL
48] e LI TB TT
[4] 1
[w] UL TT LL
[j1 |T™ 1T w
[h] . 5 ot
[2] LL TB
[e] L 18
[x £ 5
[i:]1 (T8 TT LL
[i] ™ TT
[a]
[2] LL TBLI TT
Al LL TB
[a] LL 1B
[p] ™ LL LL TB
5] TB LL UL TT LI LI LL TB TD
[ov] LL UL UL LL
[u] ™ uL uL T
[ax] LL TD TT TB LL
fax] |LL T AN e 0] S
[ex] LL TT T o0 EL 1D
[ex] LL TT TD T L TT
{eal |{LL 71D UL LY LL UL LI TB
[ea] |LI UL TT TD LI UL T™ TT
(3] |LL TT T8 W 5 A o |
[xa] WL TB UL V vV TB UL LL
[>x] [&L T I ID ™ ™ L
[>I] |LL T UL TT LL UL TT T
[ou] ™ LL L IT
el ju o B0 o Glart AT
[av] |[LL T8 TD UL W EL TT ,
I [av] |TB TT V ¥ T “TE [
I

Table 5.2: 2D critical modes identified using the proposed depth-first search algorithm
(DFS) and exhaustive search (ES) at 2xIPA critical threshold for the male speaker.
Identical (blue background), similar (yellow background) results are shown along with
substituted (bold, magenta), deleted (bold, blue) and inserted (bold, green) critical coor-

dinates.
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were 3. The fit of the DFS models was greater than that of the ES models. However,
for the female speaker, similar sets of critical coordinates were identified for [3]. The ES
method identified one critical dimension for [I] where as none were identified for the DFS
method for the male speaker. For the female speaker, both search procedures identified
no critical dimensions for [I]. Velum was identified as critical for nasal sound [n] for
the female speaker when the ES method was used, but was not identified as critical for
any nasal consonant when the DFS method was used. One critical dimension each was
inserted by the ES method for [I] for the male speaker, and [n] and [{f] for the female
speaker.

At 2xIPA threshold level, the number of substitutions were much higher, 21 critical
dimensions from 15 consonants (male) and 12 critical dimensions from 8 consonants
(female) were substituted by correlated dimensions in the 1D case. Substitutions by
correlated critical dimensions made negligible difference to the evaluation scales and
hence to the goodness of fit of ES and DFS models. One extra critical dimension was
identified for 4 consonants for the male speaker (3 consonants for the female) by the ES
method when compared with the DFS method and here the evaluation scale computed
from the ES models was smaller than that from the DFS models.

The pattern of results at the 2xIPA level of complexity for the 2D case were similar to
those at the TPA level of complexity. Similar sets of critical coordinates were identified
for most of the consonants (67% for the male and 87.5% for the female). Substitutions
by correlated articulations were made by the ES method for 8 consonants for the male
and 2 consonants for the female speaker. In all these cases, there were negligible
differences between the evaluation scales generated by ES and DFS methods.

Vowels

For vowels at IPA threshold, ES and DFS methods identified similar critical dimensions
for 53% (1D) and 77% (2D) for the male speaker. Substitutions by correlated critical
dimensions were made by the ES method for 46% (1D) and 15% (2D) of vowels. Both
ES and DFS methods gave similar evaluation scale values when similar and correlated
sets of critical coordinates were identified. For [a] in the 1D case, the ES method
identified LI, and TD, as critical which are correlated with LL, and TB, respectively.
Here, the DFS models were a better fit (33% improvement) to the phone models than
the ES models. In the 2D case, the DFS method identified no critical dimensions for
[e] at TPA threshold, whereas TT was chosen as critical by the ES method. Here, the
improvement achieved by the ES models over the DFS models was 36.5%.

For the female speaker at IPA threshold, similar sets of critical coordinates were iden-
tified for both speakers for 61.5% (1D) and 69% (2D) of vowels. Substitutions by
correlated critical dimensions were made by the ES method for a few phones (31% for
1D, 15% for 2D). The difference between evaluation scales generated by the ES and
the DFS methods were negligible when similar and correlated critical coordinates were
identified by both search procedures. The ES method identified one extra critical di-
mension when compared with the DFS method for [s] in the 1D case. In the 2D case,
one extra dimension was identified by the DFS method over the ES method for [i, i].
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At the 2xIPA level of complexity for the male speaker, similar sets of critical coordinates
were identified for most of the vowels (69% for 1D and 77% for 2D). For the female
speaker, similar sets of critical coordinates were found for 38% (1D) and 61.5% (2D) of
phones. In the 1D case for the female speaker, the ES method identified more critical
coordinates than the DFS method for 5 vowels [gg, 1, i, 0, v]. For all these vowels, the
ES method gave a small improvement (8% on average) over the DFS method.

Diphthongs

Fach diphthong was treated as a combination of initial and final vowesls; critical coor-
dinates were derived independently for initial and final vowels of a diphthong. At IPA
threshold, for the male speaker, both ES and DFS methods identified similar sets of
critical coordinates for initial and final vowels of [a1] and [e1] in the 1D case. Similar
critical coordinates were identified for initial vowel of 18] and final vowels of [o1] and
[ov]. Here both ES and DFS methods generated identical evaluation scale values. The
ES method substituted LI, for LL, for both initial and final vowels of [es], LL, for LL,
for final vowel of [10] and initial vowel of [o1]. The ES method also substituted tongue
blade for dorsum and tip for the initial and final vowels of [au]. For all these phones,
the DFS models performed better than the ES models. In the 2D case, for the male
speaker, ES and DFS methods gave identical results for initial vowels of [e1, €9, 10, av,
ou], final vowel of [arand both initial and final vowels of [o1]. For the remaining phones,
the ES method made substitutions by correlated dimensions for [a1, e1, av], insertions
for [es, 10] and deletions for [ou]. Differences in evaluation scales were negligible when
substitutions were made. The ES models performed well when insertions were made
and worse in case of deletions.

At the IPA level of complexity, for the female speaker, no critical dimensions were iden-
tified for both initial and final vowels of [ou] by the ES and the DFS methods. Similar
critical coordinates were identified for final vowels of [as, 19, 1, av] and initial vowel of
[e1]. Substitutions by correlated critical dimensions were made by the ES method for
the rest of the phones in this set. The DFS method identified one additional critical
dimensions for [at, o1 (initial vowels) and [e1] (final vowel). In the 2D case, for the
female speaker, both ES and DFS methods identified no critical dimensions for [ou].
Similar sets of critical coordinates were identified for final vowels of [a1, €9, 19, av] and
initial vowel of [o1]. Substitutions by correlated critical dimensions were made by the
ES method for the remaining phones. The ES method inserted one additional critical
dimension LL for final vowel of [o1] and deleted one critical dimension each from initial
vowels of [ai, 10].

At the 2xIPA level, in the 1D case, similar sets of critical coordinates were identified
for fewer phones (4 for the male and 5 for the female speaker) than at the IPA level of
complexity. For the remaining phones, substitutions by correlated critical dimensions
were made by the ES method when compared with the DFS critical coordinate lists.
The ES method identified more critical dimensions than DFS method for 3 phones
for the male speaker and 5 phones for the female speaker respectively. The goodness
of fit of the ES models was better than the DFS models for the above phones (10%
improvement for the female speaker and 5% for the male speaker). For the final vowel
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in [01], the DF'S method gave best performance (12%) with 5 critical dimensions over
the ES method with 6 critical dimensions.

The pattern of 2D results at the 2xIPA level of complexity was similar to that at 1D
case. Both search procedures identified similar sets of critical coordinates for most of
the phones (8 for the male and 10 for the female speaker). The ES search method
identified critical coordinates that were correlated with the DF'S critical coordinates for
2 phones for the male speaker and 5 phones for the female speakers. The number of
critical coordinates identified by the DFS method were more than that identified using
the ES method for 3 phones for the male speaker and 4 phones for the female speaker.
For these phones, the fit of the DFS models was better than that of the ES models.

5.2.3 Computational load

The ES procedure was found to be computationally very expensive when compared
with the proposed algorithm. It took 277.8 hours (1D) and 1.6 hours (2D) to run
exhaustive search for one speaker upto level 6 when implemented in Matlab v7.5.0 on
a machine with a 3.3GHz processor with 32GB RAM. The DFS search took less than
1s in both cases. Hence, any slight benefit from the ES procedure was out weighed by
the computational load. Thus the DF'S is an efficient and effective algorithm.

5.2.4 Summary

When DFS and ES results were compared at the IPA level of complexity, similar lists
of critical coordinates were identified for the majority of consonants, vowels and diph-
thongs for both speakers. The analysis showed that both search procedures identified
similar critical dimensions for more consonants, which have well defined places of artic-
ulation, than vowels and diphthongs. A few differences between the critical coordinates
of DFS and ES methods were found due to substitutions by correlated critical dimen=
sions, insertions and deletions. Substitution by correlated critical dimensions made
negligible difference to the evaluation scale. The pattern of results at the 2xIPA level
of complexity for 2D case was similar to that at the IPA level. In the 1D case, at
2xIPA, the number of substitutions, insertions and deletions were greater than the
similarities, all the more for consonants and diphthongs. The number of similarities
between ES and DFS results for the female speaker were slightly higher than those
for the male speaker. Also more similar critical coordinates were identified in the 2D
case when compared with the 1D case at both levels of critical threshold. The order of
the critical dimensions made no difference to the evaluation scale and therefore to the
goodness of the fit of the models to the full phone distributions. Insertions by the ES
method reduced the evaluation scale and deletions increased the evaluation scale. A
few cases of insertions and deletions were found mostly when complexity was increased
at the 2xIPA level of complexity than the IPA level.
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5.3 Conclusion

In this chapter, the proposed algorithm for identification of critical dimensions was
evaluated using an exhaustive search procedure, The minimax criterion was used to
select the best set of critical articulators in the ES method at each level. The algorithm
for the ES method was presented. The performance of the proposed and the ES pro-
cedures was evaluated using evaluation scale measure and by comparison of identified
critical coordinates at two levels of thresholds. The performances of the proposed and
the ES methods were very similar with small differences in performance (under 5%
on average) when compared using evaluation scale. Comparison of critical dimensions
identified by the search procedures showed that similar results were generated by both
search procedures for a significant number of the phones, 75% (IPA) and 70% (2xIPA)
in the 2D case, 61% (IPA) and 42% (2xIPA) in the 1D case when averaged across
consonants, vowels and diphthongs. The order of the critical dimensions made no dif-
ference to the fit of the models. The ES procedure was found to be computationally
very expensive. The proposed algorithm performed as well as the ES method and has
the added advantage of faster execution times.

The following chapter presents the application of the articulatory role information and
model distributions obtained from the proposed ACIDA algorithm in articulatory mod-
elling.
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Chapter 6

Analysis of articulatory
representations

Finding suitable feature (not discrete features described in Chapter 2, but feature vec-
tors derived by transforming the measured articulatory data) representations of the
data is an important task in most speech related applications. Most of the approaches
aim at providing compact representations of the available data while maximising the
information content. In this study, linear orthogonal transforms are used for generat-
ing various articulatory feature representations. Orthogonal transforms are desirable
since they tend to extract underlying non-overlapping components in the data. In this
chapter, different feature spaces are derived from the measured articulatory data and
analysed in terms of

e optimisation criterion

e power of interpretation

informational efficiency

e compactness

recognition performance

The optimisation criterion plays an important role in choosing suitable transforms for
generating articulatory feature spaces, for e.g., transformation such as principle com-
ponents analysis (PCA) rotates the data in the direction of maximum variability. The
power of interpretation determines how interpretable are the feature representations
generated from the measured EMA data, for e.g., could the modes resulting from the
transform be related to the underlying independent components or the muscle groups
controlling the speech articulators? The proposed ACIDA algorithm is used on different
feature spaces to determine the critical modes for each phone and their corresponding
movements are determined using the mode shapes. The model distributions for each
phone are trained simultaneously using the algorithm in each feature space. The in-
formation contained by the modes in each articulatory feature space is then analysed
using corresponding model distributions to determine the most efficient representation.
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Most linear orthogonal transforms concentrate most of the information in the first
few modes. The last few modes represent a small fraction of information and are noisy.
Compact representations are derived by discarding the noisy modes which contain little
information. The proposed algorithm identifies the constraints in the data and models
the articulatory distributions in a compact way. The compactness of each feature
representation when used with the proposed algorithm is also analysed along with the
information contained in each mode. The performance of the proposed articulatory
feature representations on a simple speech recognition task is also analysed.

Organisation of this chapter is as follows: Section 6.1 introduces the linear orthogonal
transforms used in this study and derivation of various articulatory feature representa-
tions using the transforms. The interpretation power of various feature representations
used in this study is analysed in Section 6.2. Identification of critical gestures from
different feature spaces is presented in Section 6.3. The informational efficiency of each
feature representation is analysed in Section 6.4. The compactness of each feature
representation is analysed in Section 6.5 and recognition performance in Section 6.6.

6.1 Articulatory feature representations

Linear orthogonal transformations have been successfully used to derive compact yet
informationally rich representations of the data. The work presented in this chapter
uses two such representations for generating articulatory features namely, (i) Principal
Components Analysis (PCA) and (ii) Linear Discriminant Analysis (LDA).

PCA (Jackson, 1991) is one of the commonly used transformations for feature reduc-
tion. PCA removes correlations between variables in the date and transforms it in the
direction of maximum variability. The first few modes of PCA account for most of the
variance found in the data. PCA is also used as a compression technique since compact
representation could be achieved by eliminating the last few noisy modes. PCA has also
been used on measured articulatory data for feature extraction (Wrench, 2000, 2001;
Uraga and Hain, 2006). LDA is one of the most commonly used techniques in pattern
recognition (McLachlan, 2004). LDA optimises separability between the classes in the
data and is used for feature extraction and dimensionality reduction. Articulatory fea-
ture vectors were derived from measured EMA data using linear discriminant analysis
by Wrench (2001).

Various factor analysis and PCA based approaches were also used for extracting under-
lying independent components of the articulatory system by Maeda (1990) and Badin
et al. (2002). In the present approach, the knowledge of independence between the
components is derived from grand inter-articulatory correlations. Independent compo-
nents analysis (ICA) (Hyvérinen and Oja, 2000.), which is an extension of PCA, uses
higher order statistics to find the underlying statistically independent sources from the
data. However, in the present work, only the absence of correlations is used to establish
independence between the articulatory coordinates, and linear orthogonal transforms
are employed to obtain uncorrelated and informationally efficient representations. The
proposed work could be extended in the future using techniques such as linear compo-
nents analysis (Kirirani et al., 1977; Maeda, 1990; Badin et al., 2002) and independent
components analysis (Hyvérinen and Oja, 2000.).
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In the present study, the articulatory coordinates were divided into independent groups
using the knowledge of correlations such that the intra-group correlations are max-
imised and the inter-group correlations are reduced to zero. Different kinds of PCA
and LDA based feature spaces were derived from different combinations of articula-
tory groups.The following section, Section 6.1.1 presents the approach for generating
different feature representations from raw articulatory data.

6.1.1 Generation of articulatory feature sets

Samples taken from midpoint positions for vowels and consonants, from third and two-
third locations for diphthongs were centred and used for estimating the transformations.
The articulatory feature vector resulting from the application of a single PCA transfor-
mation on all articulatory coordinates is denoted by PC1. This is the most commonly
used method for deriving PCA based feature vectors (Wrench, 2000).

Articulatory coordinates were pooled into independent groups based on the strength of
grand correlations between them as shown in Table 6.1. Along with PC1, four other
types of PCA based feature sets denoted by PC3, PC4, PC5 and PC7 were derived from
the articulatory groups. For PC3, the articulatory coordinates were pooled into three
independent groups, the lip and jaw group UL--LL+-LI, the tongue group TT+TB+TD
and the velum v. Each of these thres groups were transformed individually using
PCA and the resulting modes were combined and sequentially indexed. The PC3
representation has 14 modes of which modes 1 to 6 are estimated from UL-LL4LI
group, 7 to 12 are from TT+TB+TD group and 13 to 14 are from v group. For PC4,
the upper lip was separated from the lower lip and jaw group, while the tongue and
velum groups remained similar to those in PC3. The x and y coordinates of tongue
coordinates were separated into x only and y only groups in PC5. The PCT7 feature
space was obtained by considering correlations between x and y coordinates of each
flesh point while the rest of the correlations were ignored. All PCA based feature
spaces were 14 dimensional. PCA based transformation matrices were obtained by
performing eigenvalue decomposition on the correlation matrix of each independent
articulatory group.

Linear discriminant analysis based feature sets were derived in a similar way from
the raw articulatory coordinate space. The number of phone classes considered for
performing LDA was 51. The data sampled at midpoints of 24 consonants and 13
vowels, at 1/3rd location of 7 diphthongs and 2/3rd location of 7 diphthongs was
centred and whitened. Articulatory coordinates were pooled in to 5 groups as shown
in Table 6.1 and LDA based feature vectors denoted by LD1, LD3, LD4, LD5 and
LDT7 are extracted from the measured articulatory data. LDA based transformation
matrices were obtained by performing eigenvalue decomposition on the ratio of within
class variance to the between class variance of each articulatory group.
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Feature sets Articulatory groups
(mode indices)
PC1/LD1 ~ All: UL+LLHLI+TT+TB+TD+V
(1 to 14)
PC3/LD3 | Lip&Jaw: UL+LL+LI Tongue: TT+TB-TD v
(1 to 6) (7 to 12) (13 to 14)
PC4/LD4 UL LLA4LI Tongue: TT+TB+TD v
(1to2) (3 to 6) (7 to 12) (13 to 14)
PC5/LD5 UL LL+LI [Ty: TTz+TBg+TDg| Ty: TTy+TBy+TDy v
(1to2) | (3t086) (7 to 9) (10 to 12) (13 to 14)
PC7/LD7 UL LL LI i TB TD v
(1 to 2) |(3 to 4)(5 to 6) (7 to 8) (9 to 10)| (11 to 12) |(13 to 14)

Table 6.1: Articulatory groups and corresponding PCA and LDA based feature sets.
Each group was transformed using o separate PCA (LDA) and the resulting modes
were indexed sequentially. The number of modes in every feature set is 14.

6.2 Interpretation power of different PCA and LDA based
transformations

The mode shapes of the transformations indicate the directions in which the data is
rotated according to the optimisation criterion. The directions of maximum variability
are indicated by the mode shapes of PCA based transformations and the directions
of separability between phone classes are indicated by the mode shapes of LDA based
transformations. To analyse the power of interpretation of PCA and LDA based trans-
formations, mode shapes were estimated by projecting the respective eigenvectors onto
the raw articulatory coordinate space. Sections 6.2.1 and 6.2.2 present the analysis of
PCA and LDA mode shapes respectively.

6.2.1 PCA based transformations

The eigenvectors from each representation were projected on to the raw articulatory
coordinate space to determine the shapes of different PCA modes. The proportion of
total variance represented by each mode was also analysed simultaneously. The shapes
of all PCA based feature modes for both speakers are shown in Figures C.27 to C.36.

Figure 6.1 shows the shapes of the first three modes of PC1 for the male speaker. The
first PC1 mode showed the tongue moving forward/backward tangentially to its surface,
and the opening/closing movement of the lips for both speakers. The second PC1 mode
depicted the upward/downward movement of the tongue along with the jaw. The third
mode of PC1 showed tongue tip moving independently of the blade and the dorsum,
while the fourth mode showed some kind of tongue bunching. The fifth mode for the
male and the sixth mode for the female speaker depicted the raising/lowering movement
of the velum. The mode shapes beyond this appeared to be noisy and were difficult
to interpret for both speakers. The proportion of grand variance (in %) represented
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by each PC1 mode was calculated for both male and female speaker and is shown in
Fig. 6.3. It was found that the first five modes explain 70% of the total grand variance
(averaged across both speakers) whereas the first 11 modes of PC1 account for 95% of
the total variance. Modes 8 to 14 accounted for less than 5% of total variance each.
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Figure 6.1: Shapes of the first three modes of PC1, i.e., PCly (left), PCly (middle)
and PCls (right) for the male speaker.

The PC3 transformation was derived from the three main independent groups the
articulatory coordinates fell into depending on the pattern of the correlation amongst
them. The articulatory coordinates were pooled into UL4-LL+LI, TT4+TB+TD and v
groups. Mode shapes were calculated for all the three articulatory groups of PC3.
First six modes were extracted from the lip and the jaw group. The first mode in this
group depicted the open/close movement of lips and jaw and accounted for 13% of total
variance when averaged across both speakers as shown in Fig. 6.3. The second and third
modes accounted for 6% and 4% of total variance respectively when averaged across
both speakers. The second mode depicted correlated upward/downward movements,
and the third mode depicted the forward /backward movements of the lips and the jaw.
The other three modes were noisy and represented a small fraction of the total variance
(2% for the male and 3% for the female). Six modes numbered 7 to 12 respectively were
extracted from the tongue group. Modes 7, 8 and 9 showed in Figure 6.2 represented
20%, 18% and 13% of total variance respectively when averaged across both speakers.
The forward/backward movement of the tongue tip, blade and dorsum was represented
by mode 7. Mode 8 showed the upward/downward movement of the tongue, and mode-
9 showed the independent movement of TT with respect to TB and TD. The other 3
modes (10, 11, 12) accounted for less than 5% of total variance each and their shapes
were noisy. The last two modes, numbered mode-13 and mode-14 were extracted from
PCA on x and y movements of the velum. The two modes depicted opening/closing
movement of velum (5% of grand variance) and forward/backward movement of velum
(2% of grand variance).
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-Figure 6.2: Shapes of the three mode from tongue group, TT+TB+TD of PCS, i.e., PCSr
(left), PC3g (middle) and PCS8y (right) for the male speaker.
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Lack of strong correlations between the upper lip and the jaw for the female speaker was
taken into consideration while grouping articulators for PC4 transformation. The upper
lip was separated from lower lip and the jaw group to form two of the four articulatory
groups for PC4 as shown in Table 6.1. The first articulatory group consisted of x
* and y movements of UL, whereas the lower lip and jaw were grouped together to form
the second articulatory group. The tongue and the velum groups from PC3 were
retained for PC4. The proportion of grand variances represented by PC4 modes are
shown in Fig. 6.3. The first two mode shapes of PC4 extracted from UL showed
the upward/downward (5% of total variance) and forward/backward movement (3% of
total variance) of upper lip for both speakers. The next four modes, numbered 3 to
6, were extracted from LL-+LI group. Mode 3 represented 13% of total variance and
showed correlated upward /downward movement of LL and LL. The other modes in this
group (4, 5 and 6) each accounted for less than 5% of total variance and their shapes
were difficult to interpret. The mode shapes and variances of the tongue group and
the velum group were similar to those in PC3. The shape of mode 8 depicted the
upward/downward movement of tongue.
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Figure 6.4: Shapes of the PC5 modes: PC57 from TTy+TB,+TD, (left) group, PCbyo
from TTy+TBy+TD, group (middle) and PC5y3 from the v group (right) for the male
speaker.

The correlations between the = and y¥ movements of different flesh points on the tongue
were absent or rather weak for both male and female speakers. Therefore, the x and y
movements of TT, TB and TD were treated independently in PC5. The tongue group
(in PC3 and PC4) was disintegrated into x-only group consisting of TT;+TB; +TD;,
and y-only group made up of TT,+TB, +TD,. The other three groups, UL, LL+LI
and v were retained from the PC4 transform. The mode shapes and the proportional
variance representations of the retained modes was identical to those in PC4. Three
modes, numbered mode 7, 8 and 9 were extracted from the x-only group of tongue. The
mode-7 shown in Fig.6.4 represented the forward/backward movement of the tongue
and accounted for 20% of the total variance (Fig.6.3). The other two modes (8 and
9) in the x-only group were noisy. Three modes (10, 11 and 12) were derived from the
tongue y-only group. The modes 10 and 11 represented 16% and 13% of total variance
when averaged across both speakers  and represented upward/downward movement of
the tongue and independent movement of TT respectively. Mode PC5yg is shown in
Figure 6.4.

For PC7, each articulatory flesh point coordinate was assumed to be independent of
the other coordinate and therefore, 7 articulatory groups were derived. Two modes
were extracted from each articulatory group leading to a total of 14 modes. Two mode
shapes were found in common across all articulatory groups, one indicating the for-
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ward/backward movement and the other depicting the upward/downward movement.
The proportion on grand variance represented by each PC7 mode is shown in Fig. 6.3.
Of all groups, maximum variance was represented by the tongue coordinates for both
speakers.

6.2.2 LDA based transformations

The mode shapes of all LDA based features were also generated using eigenvectors
from the respective transformations. For LD1, all articulatory coordinates were pooled
together to calculate a 14 dimensional feature space. It was difficult to identify dis-
tinctive gestural patterns for the modes of LD1 unlike PC1. The first three modes of
LD1 are shown in Figure 6.5. For both speakers, the mode 1 direction identified the
raising/lowering of tongue dorsum with velum moving forward/backward as the most
discriminatory gesture between the phone classes. For the male speaker, the direction
of the mode 2 depicted the forward/backward movement of tongue which was also one
of the commonly identified gestures in various PCAs. For the female speaker, the mode
2 depicted the upward/downward movement of upper and lower lips and the jaw. The
third mode showed the independent movement of tongue tip with respect to blade and
dorsum for the male speaker. For the female speaker, the upward/downward movement
of TD while the TT moved forward/backward was identified as the shape of the third
mode. The movement of lower lip was opposite to that of the jaw for the first two
modes for the male speaker. The fourth mode of LD1 depicted the upward/downward
movement of upper lip and tongue tip for both speakers. Raising of tongue blade ges-
ture was identified as the shape of mode 5 for both male and female speakers. The
up/down movement of the TT was identified as the shape of the sixth mode for both
speakers. Beyond this level, the mode shapes were difficult to interpret.
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Figure 6.5: Shapes of the first three modes of LD1, i.e., LD1; (left), LD1y (middle)
and LD1s (right) for the male speaker.

For LD3, the first 6 modes were extracted from the lips and the jaw group. For the
male speaker, the first four mode shapes depicted open/close movement of mouth, lips
moving up/down together, jaw and lower lip moving up/down and jaw and upper lip
moving up/down respectively. For the female speaker, the first two modes depicted lips
and jaw moving forward and backward in opposite directions and open/close gesture
of mouth respectively. The shapes of rest of the modes from the UL+4LL+LI group were
difficult to interpret. Modes 7 to 12 were extracted from the TT+TB+TD group. For
both speakers, each mode represented a unique tongue shape. For the male speaker,
modes 7 to 10 depicted TT moving up/down when TD moves forward/backward, TT
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moving forward/backward irrespective of blade and dorsum, TT+TB+TD moving for-
ward /backward, TB up/down movement respectively. For the female speaker, modes 7
and 8 depicted TT moving up/down with TD (and TB for mode-7) moving in opposite
directions. Shapes of other modes in this group were difficult to interpret. The last two
modes (13 and 14) were extracted from the velum group which depicted velum moving
up/down and forward/backward respectively.
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Figure 6.6: Shapes of the first three modes of LD3, i.e., LD3; (left), LD3s (middle)
and LD3q (right) for the male speaker.

The upper lip was separated from lower lip and incisor to form two groups UL and
LL+LI for LD4 like in PC4, the tongue and velum groups were retained from LD3. The
first two modes were extracted from UL group which depicted the upper lip moving
forward/backward and up/down respectively for both speakers. Modes 3 to 6 were
extracted from LL-4LI group. For the male speaker, only the shapes of modes 3 and
6 could be interpreted. The mode-3 showed lower lip moving up/down while the jaw
moved forward/backward and the mode-6 showed both lip and jaw moving up/down
together. For the female speaker, modes 3 and 4 depicted the jaw moving up/down in
a direction opposite to that of lower lip and lower lip moving up/down while the jaw
moved forward/backward respectively. The shapes of modes from TT+TB+TD and v
groups were identical to those from LD3 transformation.
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Figure 6.7: Shapes of the LD5 modes: LD5; from TTy+TBg+TD: (left) group, LD51g
from TTy+TBy+TDy group (middle) and LD53 from the v group (right) for the male
speaker.

For LDS5, the upper lip, the lower lip and the jaw, and the velum groups were retained
from LD4, where as TT+TB-+TD group was spilt into the x-only (TTz+TBz+TD.) and
the y-only (TTy+TBy+TDy) groups. Two modes from UL and four modes from LL4LI
groups formed the first six modes of LD5. The shapes of these modes were identi-
cal to those in LD4. Three modes each were extracted from tongue x-only (7 to 9)
and y-only (10 to 12) groups. For the male speaker, mode-7 represented tongue tip
and blade moving forward/backward together, whereas mode-8 represented tongue tip
and dorsum moving forward/backward together while blade moved in opposite direc-
tion. For the female speaker, mode-7 represented tongue blade and dorsum moving
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forward /backward together whereas the shape of mode-8 was similar to that for the
male speaker. The modes 10 to 12 from y-only group for the male speaker represented
correlated movement of tongue tip and blade opposite to that of tongue dorsum, tongue
blade and dorsum moving up/down in opposite directions and in similar directions re-
spectively. For the female speaker, modes 10, 11 and 12 represented tongue blade and
dorsum moving up/down in a direction opposite to that of tongue tip, tongue dorsum
moving up/down independently of tongue tip and blade and correlated up/down move-
ments of tongue tip and dorsum respectively. Modes 13 and 14 extracted from velum
group were identical to those from L.D3 and LD4 transforms.

Two modes were extracted from each of the 7 groups for LD7. For both speakers, the
first mode indicated forward/backward movement and the second mode indicated the
upward /downward movement of the articulator in each group. Before the comparison of
feature sets, analysis of different critical modes identified using the proposed algorithm
in PCA and LDA feature spaces was carried out. The following section, Section 6.3
presents the evaluation of critical modes in different PCA and LDA feature spaces.

6.3 Applying the ACIDA

Critical modes were identified using the proposed algorithm for different PCs and LDs
and the corresponding model distributions were estimated for each phone using the
algorithm. The eritical threshold for all PCs and LDs was set to the IPA level of
complexity, where the average number of critical modes per phone were equivalent to
that derived from the IPA chart for articulatory coordinates. The critical threshold at
the IPA level of complexity was equal to 1.5 for all other PCA features except for PC1
for the male and PC4 for the female (¢ = 1.4), PC1 for the female (6c = 1.3). The
critical threshold was set to 1.6 for LD1, LD5 and LD7 for the male speaker to obtain
same number of critical dimensions at the IPA level of complexity for the male speaker.
The critical threshold was set to 1.8 for LD3 and 1.7 for LD4. For the female speaker,
the critical threshold at the IPA level of complexity was set to 1.5 for LD1 and LD3,
and 1.4 for LD4 and LD5.

Table 6.2 shows the top three most commonly identified modes various PCA and LDA
based feature spaces. For most of the PCA features, the shapes of the top 3 modes
for both speakers were similar. The mode shapes of PC7 were easy to interpret of
all PCA based transformations. The top three critical modes for PC7 indicated the
upward /downward movement of lower lip, tongue tip and tongue dorsum for the male
speaker. In the raw articulatory space, LL,, TT, and TD, were identified as critical
for most of the phones. The results were also similar for the male speaker, except
that the tongue blade was identified as critical instead of the tongue dorsum. For PC5
and PC4, all 3 modes were from the tongue group for the female speaker whereas one
lip&jaw mode made it to the top three list for the male speaker. For PC3, two of
the top three modes indicated the open/close movement of the mouth and tongue tip
moving independently of tongue blade and dorsum in the y direction for both speakers.
The other mode represented the tongue x movements for the female and tongue y
movements for the male speaker. The findings for PC3, PC4, PC5 and PCT7 were in
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agreement with the expected articulatory coordinates from the raw articulatory space.
The mode shapes of PC1 were difficult to interpret for both speakers. Modes 2 and
3 which depict different y movements of tongue were the most commonly identified
critical modes for both speakers. For the male spesker, mode 4 which represents the
open/close movement of the lips was identified as the 3rd most commonly identified
critical mode where as mode 1 which represents tongue x movement was identified for
the female speaker.

Features Modes Features Modes
(m) (f) (m) (f)
PC1 2,3, 4 32,1 LD1 1,2, 8 1,2, 3
PC3 1,89 ] 9,1,7 LD3 1, 7,8 7,8,1
PC4 3,9,8 9,7, 8 LD4 3, 7,8 7,83
PC5 3, 11,7 | 10,11, 7 LD5 3,11,10111, 12, 8
PC7 3,7,9 193,11 LD7 4,8,10 | 4,8, 10

Table 6.2: The top three most frequently identified modes for different PCA and LDA
based representations for male (m) and female (f) speakers at the IPA level of complea-
ity. Refer to Table 6.1 for articulatory groups and corresponding mode indices for each
representation.

For LD7, the most commonly identified critical modes were similar for both speakers.
From LD5 onwards, though the top 3 modes came from similar articulatory groups,
the mode shapes for the male speaker were different from those of the female speaker.
For example, the mode 7 of LD4 for the male speaker depicted the tongue tip and
tongue dorsum moving horizontally in opposite directions, whereas the same mode for
the female speaker indicated the tongue tip moving independently of blade and dorsum
in y direction. However, the tongue shape of mode 10 of LDS5 for the male speaker was
similar to that of mode 11 of LD5 for the female speaker. It was difficult to correlate
the mode shapes of the male speaker with those of the female speaker for LD1.

6.3.1 Critical modes

A brief summary of the critical mode shapes identified for consonants, vowels and
diphthongs is presented in this section. Lists of critical modes are given in Tables C.23
to C.25.

The modes from the velum group were identified as critical for nasalised stop conso-
nants. For all bilabial stops [p, bi'm], eritical modes were identified from the articulatory
groups formed from upper lip, lower lip and jaw. For alveolar stops [t, d, n], critical
modes were identified from the TT+TB-+TD group for PC3, PC4 and L.D3, LD4 features.
For PC5 and LDS5, the identified critical modes were from tongue y-only group. For
PC7 (male only) and LD7, the identified critical mode shapes indicated up/down move-
ment of tongue tip. For the female speaker, the mode indicating up/down movement of
the jaw which is highly correlated with that of the tongue tip was identified as critical.
For velar sounds [k, g, p), critical modes were also identified from the tongue group.
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The identified critical modes indicated the movement of tongue dorsum (i) along with
tongue tip and blade, (ii) along with the tongue blade, but independent of the dorsum.
For interdental sounds [f, v], the identified critical modes belonged to the lips and jaw
groups and the mode shapes indicated the forward/backward movement of the lips. For
interdentals, [0, 8], the critical mode shapes indicated the forward/backward movement
of tongue tip , along with the raising of the jaw. For alveolar sibilants [s, z], post-
alveolar sibilants [[, 3] and alveolo-palatal sibilants [tf, d5], the mode shapes of identified
critical modes were in agreement with the two mechanisms required for uttering sibi-
lants, (i) forming a narrow channel using tongue and (ii) creation of obstacle using jaw
position. Identified critical modes were from tongue group for [1] (forward/backward
movement of tongue), [j] and [w] (upward/downward movement of tongue). For [w],
critical modes were also identified from lip and jaw groups for rounding gesture.

For all vowels, the critical coordinates came from the lip and jaw groups and the
tongue group. No critical modes were identified for neutral vowel [o] for all PCs and
LDs. Relatively few critical modes were identified for other near-central vowels [1, A,
u]. The modes from the lip and jaw groups were mostly identified as critical for front
open vowels [e, €], from tongue group for front close vowels [i, i], close back vowel [u]
and from both lip and tongue groups for the rest of the vowels. None of the critical
coordinates were identified from the velum group for any vowel sounds.

For diphthongs, the majority of the critical coordinates were from the tongue group,
followed by the jaw and lip groups. Critical modes were also identified from the v
group for [o1] for both initial and final vowels. When compared with other diphthongs,
relatively few critical coordinates (rather none for some PCs) were identified for [ou].
Critical coordinates were also identified for centralised vowels unlike in monophthongs
due to the influence of initial vowel and final vowels on each other.

Phones Raw PC7 PC4 PC1 ILD1
b ULy, LLy 1.3 1,3 4,3 2

t TTy 7 - 2 1

k TDy 11 9 3,5 4,3

0 TTg, TTy, LLy 8,3,7 7,3 1,3,2 1,6,3
v LLy, ULy 34,1 3,41 7,5 7,2

Table 6.3: Critical coordinates identified using ACIDA algorithm in raw, PC7, PCY4,
PC1, and LD1 feature spaces at the IPA level of complezity for the male speaker. Refer
to Table 6.1 for articulatory groups and corresponding mode indices for each represen-
tation.

Table 6.3 depicts critical modes identified for PC7, PC4, PC1 and LD1 in comparison
with the raw articulatory space for the male speaker. The critical modes from the PC7
and LDT groups were easy to interpret and correlate to the critical articulatory coordi-
nates in the raw articulatory space. For example, for [k], the critical mode PC71; was
derived from the T'D group and depicted the y movement of tongue dorsum. Similarly
modes PC4; and PC4g which depict the open/close movements of upper lip, lower lip
and jaw were identified as critical which are in agreement of the critical coordinates
from the raw articulatory space.
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The models lost power of interpretation as more strong inter-articulatory correlations
were taken into account for generating transformations using PCA and LDA. For PC1
and LD1, the dependent update step had no effect on the identification of critical modes
due to the absence of correlations amongst the modes. Modes 2, 3 and 4 for PC1 were
identified as critical for most phones for the male speaker. For the female speaker,
modes 3, 2, and 1 from PC1 representation were identified as critical for 27%, 23% and
22% of total phones respectively. Phones with different expected coordinates shared
some common critical modes. For example, for a bilabial stop [b] for PC1, mode 3
which depicts open/close movements of lips was identified as one of the critical modes.
This mode was also identified as critical for a velar stop [k], since the mode also depicts
the correlated up/down movement of the tongue dorsum and blade independent of the
tongue tip. In cases where more than one critical mode was present for a phone, the
critical modes either shared a common gesture or depicted two essential but different
gestures. For example, for phone [6], PC1 modes 1, 2 and 3 were identified as critical.
Here modes 1 and 3 commonly share tongue tip moving up/down gesture and where
as mode 2 depicts the tongue tip moving forward /backward which is also essential for
producing this interdental phone. For LD1, the first three modes were identified as
critical for most number of phones for both male and female speakers. The D1 critical
modes painted a similar picture to that of PC1 critical modes. For both PC1 and LD1,
it was difficult to relate the shapes of critical modes of some phones to their respective
expected critical gestures. For example, it was difficult to interpret LD17 (Table 6.3)
which was identified as the first critical mode for [v].

Model distributions, N (7, %) were obtained for each phone ¢ in all PCA and LDA
based feature representations. The informational efficiency of each feature represen-

tation was analysed using the respective model distributions in the following section,
Section 6.4.

6.4 Informational efficiency

In this section, different articulatory representations were compared to identify the
best feature set which yields the most informationally rich model distributions. To
analyse the information content of the model distributions in each feature space, the
evaluation scale measure (Section 3.4.1) was used. Evaluation scale value, T.,q, was
computed as the 14D KL divergence between the model distributions and the phone-
specific distributions for each representation. Smaller values of evaluation scale indicate
that the model distributions (computed from the knowledge of articulatory roles and
correlations) closely match the actual phone specific distributions. From this analysis,
we intend to find

e whether transforming the data using PCA and LDA gives any advantage over the
raw articulatory representation,

e what kind of optimisation criterion, the direction of maximum variability or the
direction of maximum separability, gives informationally efficient models, and
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e how do the models obtained from the articulatory groups (independent compo-
nents) fare with the traditional LD1 and PC1 representations.

6.4.1 Evaluation scale

The identification divergence was subject to a range of critical thresholds, 0.1 < f¢ < 5,
for each feature representation and the evaluation scale values were estimated from the
resulting model distributions. The evaluation scale value at each threshold was averaged
across all phones.

Figure 6.8 shows the average evaluation scale plotted across average number of critical
modes per phone for a range of critical thresholds for the male speaker. The pattern
of results for the female speaker was also similar to that of the male speaker (refer to
Figure C.2). The average evaluation scale values were plotted for all PCA based (solid)
and LDA based (dashed) representations along with the raw EMA representation (solid
black). Recall from Chapter 3 that evaluation scale is a measure of the distance between
the model and actual phone distributions and therefore smaller values are desirable.

The evaluation scale values at different critical threshold values show the pattern of
the fit of the models. The performance of all LDA and PCA based models was better
than the models from the raw articulatory features at all values of critical threshold.
Also LDA based models performed better than PCA based models when features from
similar articulatory groups were compared. For example, the performance of LD1
was better than PC1 and so on. Therefore, transforming the raw articulatory data
in the direction which ensures maximum separation between groups i.e., LDA, gives
the best performance over the transformation in the direction of maximum variance,
i.e., PCA. The results also showed that representations generated by ignoring weak
correlations, i.e., LD3 and PC3, give slightly worse performance over LD1 and PC1
models respectively. The goodness of fit of the models deteriorates as more correlations
are ignored, i.e., PC3>PC4>PC5>PC7 (similarly LD3>LD4>LD5>LD7). The PCT7
and LD7 models gave the worst performance of all PCA and LDA representations which
was close to the performance of models from the raw articulatory space.

The evaluation scale values at the IPA level of complexity are shown in Figure 6.9 for
both speakers. Here, the fit of the models to the full phone distributions was improved
by 73% (78%/68%-m/f) using LD1 over raw articulatory coordinate space. The next
best performance was given by PC1 where improvement obtained over raw articulatory
space was 61% when averaged across both speakers. The next best performance was
given by the LD3 models (followed by the PC3 models) which are estimated from three
articulatory groups UL+LL+LI, TT+TB-+TD and v formed by ignoring weak correlations
amongst articulators. The fit of the models worsened as more correlations between
articulators were ignored in forming articulatory groups. The worst performance of all
PCA and LDA based groups was given by PC7 (followed by LD7) at the IPA level of
complexity. Only 7-8% improvement on average was given by PC7 and LD7 transforms
over the raw feature space.

It can be concluded from this analysis that transforming the data in the direction
of better separability between phone classes generates more informationally efficient
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Figure 6.8: Ewvaluation scale Y.,q averaged across all phones on the y axis and the
average number of critical dimensions per phone on the = azis. Evaluation scale was
computed from PC1, PC3, PC4, PC5, PC7 and LD1, LD3, LD4, LD5, LD7 features
at various critical thresholds, 0.1 < 8¢ < 5 for the male speaker.

models than in the direction of maximum variability. Models from LDA and PCA
based features are more efficient than those from the raw articulatory space. However,
ignoring the correlations amongst the articulatory coordinates and performing PCA or
LDA on the resulting independent articulatory groups gives only a small improvement
(7-8%) over the raw articulatory models.

6.5 Compactness of the models

The PC1 and LD1 representations had highest power of model compactness due to the
absence of correlations between the modes and also lowest transparency of interpre-
tation. The interpretation power was higher for representations generated from inde-
pendent articulatory groups (by eliminating correlations amongst articulators). For all
such representations, the intra-group correlations amongst the modes were absent but
the intergroup correlations amongst the modes were present. For example, no correla-
tions were present amongst modes 1 to 6 from the UL+LL+LI group of PC3, but modes
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Figure 6.9: Average evaluation scale computed from PCA and LDA based features in
comparison with the raw articulatory space (experiment index 14) at the IPA level of
complezity for the male (left) and the female (right) speakers.

1 to 6 were correlated with modes 7 to 12 from the TT+TB+TD group of PC3. Of all
PCA and LDA based representations, PC7 and LD7 features were easy to interpret
and were least compact. The compactness of PC1 > PC3 > PC4 > PC5 > PC7,
similarly, LD1 > LD3 > LD4 > LD5 > LDT.

Assume that in the conventional approach to estimating model distributions, neither
the knowledge of articulatory roles nor the interdependencies are considered, and model
distributions are simply set equal to the phone specific distributions. If a (14) represents
the number of modes, the number of parameters (means and variances) needed for
modelling ¢ phones in the conventional approach is 2ae.

When the proposed algorithm (ACIDA) is used for estimating the model distributions
in each feature space, if k? represents the number of critical dimensions per each phone
¢ , then number of parameters required are

ala—1)

2a + (6.1)

= (bt —
b (w y w)
which includes grand means and variances (2a) along with grand inter-articulatory
correlations (a(a — 1)/2), phone means and correlations (2k?) and phone correlations

(k¢ (k® —1)/2).

At the IPA level of complexity, for PC1 and LD1, the reduction in number of parameters
required for estimating model distributions was 82% over conventional approach due to
the absence of correlations between the modes. For PC1 and LD1, Eq.6.1 reduces to

2a+ ¢ (2&“’ - W) (6.2)

For other PCA and LDA based representations, though correlations between modes
within each articulatory group were absent, the inter-articulatory group correlations
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were present. The reductions in number of parameters over conventional models were:
78% for PC3/LD3 and PC4/LD4, 77% for PC5/LD5 and 76% for PC7/LD7 and raw
articulatory features.
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Figure 6.10: Evaluation scale computed from model distributions obtained from ACIDA
at the IPA level of complexity averaged across all phones for male (blue) and female
(red) speakers plotted for PC1 and LD1 as the feature dimensionality is varied from 1
to 14.

6.5.1 Dimensionality reduction

The information contained in the modes of the most compact representations of all,
PC1 and LD1, are analysed. This findings of this analysis could help in making the
models more compact by identifying the last few noisy modes for dimensionality reduc-
tion. Figure 6.10 shows the information conveyed by the PC1 and LD1 modes as the
dimensionality of representation is varied from 1 to 14. Evaluation scale computed from
models trained using ACIDA algorithm at the IPA level of complexity was averaged
across all phones. The dimensions were increased from 1 to 14. At dimensionality level
14, the information of all modes was available whereas at level 1, only the informa-
tion from the 1st mode, i.e., PC1; (or LD1;) was made available. The critical modes
were selected by ACIDA algorithm from the information available at each dimension-
ality level. The knowledge of critical modes was used to train the model distributions
of each phone. The evaluation scale plot shows that the first 4 modes of PC1 and
LD1 contain most of the information. Figure 6.3 shows that the first 4 modes of PC1
account for almost 65% of total variance for both male and female speakers. The in-
formation contained by the models improved by 56% for PC1 (45 % for LDA) as the
dimensionality was increased from 1 to 4 for the male speaker. The improvement for
the female speaker was 54% for PC1 and 34% for LD1. The improvement obtained
when the dimensionality was increased from 4 to 10 was very small, 8% for both speak-
ers for PC1 and 5% for the male (4% for the female) for LD1. No improvement was
achieved when dimensions were increased from 10 to 14 for both speakers in PC1 and
LD1 representations.
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This analysis showed that the first four modes of PC1 which represent a significant
portion of total variability had most information. Similarly, the first four modes of
LD1 convey most of the information which maximises the separability between phone
classes.

6.6 Recognition performance

Preliminary phone classification (the phone boundaries are known) experiments were
performed on acoustic and articulatory data using the SEG Vit speech recogniser (Singam-
palli, 2006). Linear trajectory segmental HMMs (LTSHMMs) were used for each
speaker along with a bigram language model to test the phone classification perfor-
mance of male and female speakers. The best classification accuracy reported on the
acoustic data (MFCCs+6 + 68) was 72% (averaged across male and female speakers)
given by LTSHMMs. The classification accuracy of monophone HMM models on MFCC
data with first and second ordered features was 65%. The classification performance of
articulatory models trained on PC1 feature set with first and second order features was
comparable to acoustic models for LTSHMMs and slightly worse for HMMs (63%).

Our experiments Wrench (2001)
(Recognition accuracy %) | (Recognition accuracy %)
Experiments | Male Female Male Female
LD1 62 62 63
PC1 60 62 55
LD3 62 61
PC3 60 61
TD4 62 60
PC4 60 60
LDb& 61 60
PCh 60 60
LDT 59 60
PC7 59 60
EMA 58 60
MFCC 52 47 63 65
MFCCpc 54 47
MFCCrp 56 50

Table 6.4: Recognition accuracy values averaged across all 5 jack-knife results for dif-
ferent LDA, PCA, articulatory and acoustic features using monophone models for both
speakers in comparison with values reported by Wrench (2001) using triphone Gaussian
mizture models.

Phone recognition experiments (unknown phone boundaries) were performed on various
PCA and LDA feature sets and raw articulatory coordinate features using HTK v3.4.1
(Young et al., 2002). The recognition performance of articulatory representations was
also compared with that obtained from the acoustic data. The first 14 MFCC coeffi-
cients were extracted from the acoustic data and were transformed using PCA and LDA
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methods. Phone recognition results were obtained from MFCC, MFCC transformed
using PCA (MFCCp¢) and LDA (MFCCpp). All articulatory and acoustic feature
spaces were augmented with delta and acceleration features and monophone models
were used for all acoustic and articulatory features. All available data was divided in
to 5 training and test groups and 5 sets of recognition results were obtained in each
feature space. A bigram language model was estimated from each training set and
was used in recognition experiments. For all articulatory spaces, the log energy of the
laryngograph was also included in the feature set, whereas for acoustic data, the zeroth
MFCC coefficient was included. The dimensionality of all feature sets including energy
coefficients along with first and second order time derivatives was equal to 45.

Table 6.4 shows the recognition accuracy averaged across all jackknife results from each
feature set for both male and female speakers. The best recognition accuracy (62%) was
given by LD1, LD3 and LD4 features for the male speaker, and LD1, PC1 features for
the female speaker. The recognition performance of monophone models in PC1 feature
space (62%) was better than the results obtained from triphone models (55%) reported
by Wrench and others (Wrench, 2000, 2001) on female speaker data. The performance
of monophone LD1 models (62%) was also comparable to the best performance reported
by Wrench (Wrench, 2001) (63%) using triphone models on the female speaker data.
The improvements in performance could be due to better transcnptmns generated by
carrecting some of the labelling errors (Chapter 2).

The statistical significance of difference between the recognition accuracy values was
tested using student’s t-test and f-test at level of significance @ = 0.05. The results from
male and female speakers from similar feature sets were combined for testing statistical
significance. The recognition performance of EMA features (58%/59% -m/f) was only
comparable to the performance of PC7 and LD7 models and no significant differences
was found between raw (EMA) , PC7 and LDT7 results as expected. Statistically sig-
nificant difference was found between the recognition accuracy of LD1 when compared
with all other PCA representations except PC1. No significant difference was found
between the performance of PC1 and other features except PC7 and LD7. The overall
performance of articulatory feature sets was better than the acoustic features.

The poorest recognition performance of all feature sets was given by MFCC features
(51%/47% - m/f). This was worse than the recognition accuracy using triphone Gaus-
sian mixture models reported by Wrench (2000) (57% - f) and Wrench (2001) (63.5%/
65% -m/f). Performing PCA on MFCC data improved the recognition performance of
acoustic features only for the male speaker, whereas LDA improved performance for
both speakers. The recognition accuracy from MFCCp¢ features (54%/47% - m/f)
was slightly worse than that from MFCCpp features (57%/50% - m/f). However, the
improvements achieved using LDA and PCA on MFCCs were not statistically signif-
icant. The differences between all acoustic and articulatory results were statistically
significant.

6.7 Conclusions

Articulatory feature representations were derived by applying two linear orthogonal
transforms, PCA and LDA, on the measured articulatory data. Apart from the con-
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ventional PCA and LDA feature representations, other PCA and LDA based feature
vectors were derived from independent articulatory groups. The independence between
the groups was established by ignoring correlations and each group was transformed
independently using PCA or LDA. Different feature representations were compared
based on power of interpretation, informational efficiency, compactness and recognition
performance. More conventional representations such as PC1 and LD1 were found to
be most compact but difficult to interpret. The power of interpretation increased as a
greater number of articulatory coordinates were pooled into independent groups (i.e.,
from PC3 to PC7 and LD3 to LDT7). The analysis demonstrated that the LDA and
PCA based representations outperformed the raw articulatory representation and LDA
gave slight improvement over PCA in all aspects. However, PCA and LDA gave little
benefit on articulatory groups obtained by discarding all correlations other than those
between x and y movements of each articulator (i.e., PC7 and LD7). The phone recog-
nition performance of articulatory feature vectors was better than the acoustic feature
vectors when a simple monophone model frame work was used along with a bigram
language mode.

The following chapter, Chapter 7, analyses different approaches to modelling coarticu-
lation using articulatory roles and model distributions from various feature representa-
tions discussed here, in a trajectory synthesis framework.




Chapter 7

Modelling coarticulation and
trajectory generation

7.1 Introduction

Speech production is a complex process where the information is processed at different
mutually interacting levels, starting from the speaker’s intention to communicate to
fluent articulation for generation of speech (Levelt, 1989; Garrett, 1980). At the higher
levels, the speech production is influenced by various social, pragmatic, semantic, syn-
tactic, prosodic and phonetic factors. The model of speech articulation presented here
is concerned only with the lower levels of speech production where the intended utter-
ance in the form of a sequence of phones is converted to articulation, the affects of the
higher processing units on the speech are not considered. A simple production oriented
model comprising of planning and execution stages shown in Figure 7.1 is considered
for modelling speech articulation.

In the model planning stage, articulatory targets are specified for each phone in the
utterance. Trajectories representing smooth, blended and continuous movements are
generated from the articulatory targets in the execution stage. In the hierarchical model
of speech production, the representation between the planning and execution phases
where targets are specified belongs to the empirical level. Synthesis of speech (physical
level) is beyond the scope of this work., Each level in the speech production process is
governed by different set of constraints (Butterworth, 1980). In the planning stage, it
is important to know the constraints on articulators as well as their degrees of freedom.
Typically, the model planning stage is conditioned on the static constraints derived
from phonological knowledge.

Target specification plays an important role in modelling coarticulation in the execution
stage, The target representations resulting from the planning stage have been mod-
elled as spatial targets (Henke, 1965; MacNeilage, 1970), tract variables (Saltzman and
Munhall, 1989), vocal tract shape and area functions (Lindblom, 1990), muscle length
targets (Cohen et al., 1988), windows (Keating, 1988) and convex regions (Guenther,
1994). The window based target representations allow a range of articulatory move-
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Articulation
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Figure 7.1: Illustration of overview of human speech production process (top) and
production-oriented speech synthesis (bottom). The midsaggital outline is taken from
Rubin and Vatikiotis-Bateson (1998).

ments for each phone to facilitate the variation in the articulatory positions due to
coarticulation (Perkell, 1980).

In the model execution phase, the articulatory movements are synthesised from the
target representations derived from the planning stage. Smoothness constraints are es-
sential to generate slow and blended movements of articulators. Commonly used tech-
niques to generate trajectories are linear interpolation (Blackburn and Young, 2000),
neural networks (Richmond, 2006), MLPG algorithm (Tokuda et al., 2000), trajectory
HMMs (Tokuda et al., 2007) ete..

Coarticulation occurs naturally in fluent speech and is one of the main sources of vari-
ability is speech. Though coarticulation affects both planning and execution stages of
speech production, coarticulation theories have focused largely on either planning or the
execution stages. Temporal coarticulation spanning longer durations, for e.g., anticipa-
tory velum lowering in nasal contexts, has been better explained by models built in the
planning stage. Coarticulation due to overlap of smooth and continuous articulatory
movements, variation due to compensatory articulation and minimisation of effort have
been attributed to the execution stage. In the execution stage, economy of effort refers
to the minimised expenditure of physical and bio-mechanical energy. As explained by
Lindblom (1990), articulators naturally tend to minimise effort when speaking. There
is a trade off between the amount of articulation (ranging from hypo to hyper) and
the need to communicate robustly. Adjustments to minimise the biomechanical effort
lead to spatial coarticulation effects such as target overshoot/undershoot. Transitions
from one target to another are more rapid for some articulators than others due to
varying degrees of inertia. Heavy articulators such as the jaw have greater inertia and
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resist being set in motion, whereas articulators such as the tongue tip can move rapidly.
Minimisation of bio-mechanical effort due to inertia, stiffness and damping character-
istics of an articulator leads to gesture reduction and assimilation of some phones in
fluent speech. In the proposed approach, the concept of economy of effort is applied in
the planning stage. Sparse and efficient representations are derived for modelling the
redundant degrees of freedom from the knowledge of constraints.

There is scope for improving the performance of articulatory synthesis when coartic-
ulation is modelled in both planning and execution stages of speech production. In
the planning stage, better representations of the constraints could potentially lead to
better models of coarticulation. Most of the existing representations of constraints
categorize the degrees of freedom in to constrained/unconstrained categories and do

" not consider the partial constraints on articulators due to biomechanical links, Artic-
ulatory constraints in the form of critical, dependent and redundant articulatory roles
derived statistically from the measured articulatory data using articulatory constraint
identification algorithm (ACIDA) capture the essence of speech production mechanism.
Recall from Chapter 2 that a critical articulator is constrained to achieve a target po-
sition to produce a speech sound and causes coarticulatory effects on the neighbouring
articulators. Note that the target position of a critical articulator could be subject to
undershoot/overshoot due to inertia and damping characteristics of articulators or due
to lack of sufficient time to reach the idealised target position. A dependent articula-
tor is partially controlled by critical articulator(s) due to the presence of bio-mechanical
correlation(s) between them. The remaining degrees of freedom of a dependent artic-
ulator are free to move. A redundant articulator is completely unconstrained and is
prone to coarticulatory effects to a higher degree. Also the evaluation scale analysis
(Figure 4.2) in Chapter 4 demonstrated that the models trained from critical, depen-
dent and redundant knowledge (ACIDA) are a better fit to actual phone distributions
than those from constrained/unconstrained (IPA) representations. Also inclusion of
interarticulatory correlations in the form of D-step improved the performance of IPA
models. This section is aimed at analysing the potential of identified roles in modelling
coarticulation in the planning stage using a statistical framework.

On the other hand, variation in the execution phase can be better modelled using statis-
tical targets when compared with spatial targets and rectangular windows (Blackburn
and Young, 2000). Powerful statistical models such as trajectory HMMs, neural net-
works etc. which make efficient use of existing data can be used to generate trajectories
from such target distributions. In the proposed approach, the target representations
derived from the planning stage are modelled as point targets {means) and could be ex-
tended to statistical window based representations by incorporating the target variance
along with the mean.

The main aim of this work is to provide a statistical framework for modelling coar-
ticulation using role information in the planning stage of speech production and to
evaluate its potential in trajectory synthesis. In this chapter, two aspects of coarticu-
lation are modelled using role information in the model planning stage. The approach
is introduced as follows:

e Temporal coarticulation: Recall from Chapter 2 that the temporal coarticulation
refers to the extent in time to which the target position of an articulator required
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for a phone can influence the neighbouring unconstrained phonetic segments.
Temporal coarticulation effects could be anticipated or carried forward in time.
In the proposed approach, the critical articulator is considered to be the source
of temporal coarticulation on the neighbouring non-critical, i.e., dependent and
redundant articulators. The extent to which the neighbouring articulator gets
affected is modelled differently for dependent and redundant articulators. The
position of a dependent articulator is partially determined by its correlation with
the critical articulator(s). The remaining degrees of freedom of a dependent
articulator are prone to anticipatory and carry forward coarticulatory effects. A
redundant articulator is completely unconstrained and can be completely subject
to the temporal coarticulatory effects due to the neighbouring critical articulators.
As a result, the redundant articulator can completely anticipate or carry forward
a target position of the neighbouring critical articulator.

Modelling redundant degrees of freedom using minimum effort principle: During
speech articulation, the articulators assume a low cost behaviour to economise the
bio-mechanical effort. Consider an example where an articulator becomes briefly
unconstrained before reaching the next target from the previous target position.
During the unconstrained phase, the articulator can either relax completely or
assume a position which satisfies requirements of the target sequence but using
limited resources; the former refers to relaxation and the later constitutes the
economy of effort behaviour of the articulator. In either case, the position of the
articulator during the unconstrained phase does not contradict the production of
the speech sound. The concepts of relaxation and economy of effort were applied
to model the redundant degrees of freedom in the planning stage of speech. The
relaxation principle was implemented by imposing no constraints (from neigh-
bouring phones) on redundant degrees of freedom of dependent and redundant
articulators. A dependent articulator’s position is only controlled by the biome-
chanical constraints (i.e., its dependency on current critical articulator) and a
redundant articulator is modelled as grand distribution. The economy of effort
principle was implemented by deriving the current target position in the planning
stage by predicting smooth transitions from the previous target to the next. For
a dependent articulator, the economical position during the transition would be
intermediate between the fully constrained (effect of neighbouring phone + de-
pendency on current critical articulator) and the partially constrained position
(dependency only). For a redundant articulator, the economical position would
be intermediate between completely relaxed (grand) and completely constrained
(due to neighbouring phone) positions.

This work is not aimed at providing a complete explanation for each aspect of coarticu-
lation but to identify the single strongest theory of the existing explanations. Therefore,
the theories were tested individually in the proposed framework whereas in reality dif-
ferent aspects of coarticulation occur together.

The theories of speech articulation presented above were implemented in the planning
stage using articulatory role information and were evaluated by generating synthetic
trajectories in the execution phase. The span of coarticulation was limited to immediate
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neighbours. Triphone contexts where the articulator plays a critical role for at least
one of the phones in the sequence were considered. Other than triphones, redundancy
modelling constraints were also applied to quadphones only when the articulator is
critical at the either ends of the quadphone sequence. Target distributions with mean
and variance as parameters were generated for each articulator.

Two simple trajectory generation methods were used to evaluate the theories imple-
mented in the planning stage. Trajectories were generated using linear interpolation
and Blackburn and Young's model of coarticulation. Linear interpolation is a simple
and one of the most commonly used methods for generating smooth articulatory move-
ments and uses only the target mean positions for synthesis. In the Blackburn and
Young’s model (Blackburn and Young, 2000), the target undershoots and overshoots
are modelled using articulatory curvature information. In their model, new position dis-
tributions are generated using both target mean and variance. However, for synthesis,
successive position means are linearly interpolated and the position variance is ignored.
Though both techniques used for synthesis have the drawback of treating the targets as
points rather than distributions, they serve as the means of testing the coarticulation
and redundancy modelling theories in the planning stage of articulation. The frame-
work generated by modelling the articulatory behaviour in the planning stage provides
a foundation for building more complete models such as trajectory HMMs which use
both target mean and variance for synthesis.

Methodology for building coarticulation models and trajectory generation is presented
in Section 7.2. Implementation details are presented in section 7.4. Results obtained af-
ter trajectory synthesis in various feature spaces are presented and discussed in Section
7.5.

7.2 Method

The notation and terminology used in this section is identical to that used for describing
the proposed algorithm in Chapter 3. Recall that the grand distribution for an artic-
ulator i, N'(M;, ¥;), was estimated using data from all phones and represents that the
articulator is unconstrained and hence associated with a larger covariance matrix. The
phone-specific distribution of ¢ for a phone ¢, N (,u,f’, Ef) was estimated from the phone
specific data. The model distribution, A (ﬁzf,gf ) was estimated using articulatory
constraint identification algorithm.

7.2.1 Target specification

Targets distributions were specified for every phone based on 5 hypotheses

1. Conventional: In the conventional approach, no explicit constraint information is
used in modelling articulation. It is assumed that the statistics of each articula-
tor capture the target information and variations due to coarticulation implicitly.
Therefore, the phone-specific distributions were used for specification of articu-
latory targets for each phone. No role information was used here to derive any
models of coarticulation.
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2. Relazation/Baseline: The model distributions derived from the articulatory role
identification algorithm reflect the critical (fully constrained), dependent (corre-
lations incorporated through D-step) and redundant (grand configuration) roles.
Here, the knowledge of articulatory constraints are implicitly incorporated but no
explicit models of coarticulation are derived. Therefore, the redundant degrees
of freedom of non-critical articulators are not subject to context sensitive effects.
This hypothesis is also referred as baseline since it serves as a means for validat-
ing the model distributions derived from the algorithm in comparison with other
theories.

The following three hypotheses for modelling coarticulation use the knowledge of
constraints in the form of critical, dependent and redundant roles to explicitly
model different aspects of coarticulation.

3. Redundancy modelling: This approach uses model distributions and the knowl-
edge of critical, dependent and redundant roles explicitly in deriving target dis-
tributions which are compact and informationally efficient from the economy of
effort concept. This approach is referred as redundancy modelling since the redun-
dant degrees of freedom are modelled explicitly under the assumption of efficient
target planning.

4. Anticipatory: Temporal coarticulation on the current phone caused by the fol-
lowing critical phone was modelled using articulatory roles in the planning stage.
Target representations were generated by applying the anticipation principle on
model distributions.

5. Carry forward: Temporal coarticulation on the current phone due to the pre-
ceding phone was modelled using the knowledge of articulatory roles. Target
distributions were derived by applying the carry forward concept on the model
distributions .

Consider a triphone sequence {1, ¢2, #s} at times {t1,%2,13}. In the conventional case,
no role information is used and the target representations for phones qbl, P2 and b3 are
defined usmg their respective phone-specific distributions N (,u.%l, ¥ 1) N (,u.",E |
and N (,ut ; )3‘*3) Since only mean values are used by the execution stage for trajectory
synthesis, the targets are represented using phone specific means, ,u,1 ’ ,u., and ,u‘ )
For the rest of this section, the targets are described using the means rather than the
distributions.

The model distributions estimated in the process of identification of roles capture the
constraints of speech production system implicitly. Recall from Chapter 3 that the
model distribution of a critical articulator is equivalent to its phone-specific distribution;
the model distribution for a dependent articulator is estimated from D-step conditioned
on the positions of the critical articulator(s); the model distribution of a redundant
articulator remains equal to the grand distribution. The baseline hypothesis also called
relazation uses model distributions as targets. Therefore, for an articulator ¢ the target
for ¢ is defined as "“ Jfor ¢o as m‘f’ , and for ¢3 as mg”ﬁ.
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Modelling temporal coarticulation

Let an articulator i be critical (C) for phones ¢; and ¢g at times ¢; and 3, and redundant
(R) for phone ¢ at time ¢3 as shown in Figure 7.2. This triphone sequence is denoted
as CRC (critical-redundant-critical) in terms of articulatory roles. The articulator 1 is
redundant for phone ¢ and hence is prone to coarticulation due to the neighbouring
critical phone. In the anticipatory case, the target position required for phone ¢3 at t3
can be anticipated as early as i3 due to the redundant nature of 4 for ¢s. Therefore, the
target position for ¢2 becomes md’s and this represents the anticipation of the target
position for ¢g as early as ¢o. Slmllarly, in the carry forwaerd case, the target position
of ¢ is carried forward onto ¢g, and the target position for ¢ is specified as ﬁ%?l.

The target position of a dependent articulator is controlled partially by the critical
articulators with which it is correlated. The remaining degrees of freedom are redun-
dant and prone to coarticulation. Let the articulator ¢ be critical (C) for phones ¢;
and ¢3 at times ¢; and t3, and dependent (D) for phone ¢, at time {3 as shown in
Figure 7.3. The target distributions of i for ¢y, ¢2 and 3 are initialised to baseline
configuration as before. The model distribution A/ ( i, S7?) of dependent articulator 4
is estimated from the D-step conditioned on the positions of eritical articulators for ¢s
and the correlations between them. Under anticipatory coarticulation hypothesis, the
remaining degrees of freedom of a dependent articulator are prone to coartlculatlon due
to neighbouring critical phone ¢3. The mean of i for ¢3 is modelled as ( 7 953)/ 2,
which represents a tug of war between its dependent behaviour and the coa.rtlculatlon
due to the neighbours. In carry forward case, the coarticulation due to preceding phone
¢ is modelled in a similar way resulting in the mean (m + m"sa) /2.

left context current Tright context

C Dor R C
D DorR C
R DorR C
C DorR D
C DorR R

Table 7.1: Role based triphone contexts (C is critical, D is dependent, R is redundant)
considered for modelling redundancy, anticipatory and carry forward coarticulation ef-
fects in the planning stage.

Table 7.1 shows different triphone contexts considered for redundancy modelling, antic-
ipatory and carry forward coarticulation on dependent and redundant phones. Tables
7.3 and 7.2 show target distributions derived from different hypothesis for these triphone
contexts for dependent and redundant articulators respectively.

£}

Modelling redundancy

Coarticulation due to minimisation of effort in the planning stage was modelled using
linear interpolation. Under redundancy modelling hypothesis, the articulator ¢ tends
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to minimise effort when moving from target for ¢, to ¢3 via ¢o. This minimal effort
movement is modelled by linearly interpolating between the target positions for ¢; and
¢3. For triphone contexts, the interpolated mean at time tp for phone ¢ is given as

(mgs —mg") (t2 - t2)
i3 —11

b2 "f’l +

mf? = (7.1)

Under redundancy modelling, the target distribution of a redundant articulator is spec-
ified as N (mf’ ¥, S'f' %), where the target mean position is set to the interpolated mean.
For a dependent articulator, the mean position is a trade-off between the model mean
and the interpolated mean, i.e., (mf” +ﬁ1f2)/ 2. Redundancy modelling hypothesis was
applied to all triphone contexts in Table 7.1. The following quadphone contexts were
also considered

e CDDC
e CDRC
e CRDC
e CRRC
where phones ¢; and ¢4 are critical at times ¢; and t4 and phones ¢ and ¢3 are non-

critical (D/R) at times {2 and t3 respectively. Here, the interpolated mean at time Z3
for phone ¢ is calculated as

(nte— ) (2~

92 _ a1 -5
and at time £z for ¢s is calculated as
Add du)
(m' — it ) (ts —t1)
AT ) CN R L — (7.3)

ta—11

Table 7.4 shows the resultant target distributions after applying redundancy modelling
to C * * C context. As before, the target mean of a dependent articulator is the average
between the model and the interpolated mean and that of redundant articulator is set
to the interpolated mean.

7.3 Trajectory generation

The techniques used for synthesis are

e simple linear interpolation

¢ Blackburn and Young’s model of coarticulation (Blackburn and Young, 2000)
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L2} ta ta

Figure 7.2: Target specification for articulator i in critical-redundant-critical (CRC)
context for phones ¢, ¢2, ¢3 at midpoint locations tq, to and t3 generated using con-
ventional (cyan, thin), baseline (red, dashed), redundancy modelling (green,dot dashed),
anticipation (blue,dotted) and carry forward (magenta, solid) approaches.
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Figure 7.3: Target specification for articulator i in critical-dependent-critical (CDC)
context for phones ¢1, ¢2, ¢3 at midpoint locations t,, t2 and t3. Baseline (red, dashed)
and redundancy modelling (green,dot dashed) approaches for dependent target specifica-
tion are illustrated along with the interpolated mean m}h.
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Table 7.2: Target specification for redundant articulator ¢ in different triphone contexts
where _at least one of the neighbouring roles is critical.

Method Phone ¢; at t; Phone ¢ at 2 Phone ¢3 at 3
Conventional ufl ue? p
Baseline Mgt e me?
Anticipation hft e g
Carry-forward (O *r?r.fl 7 fa
Modelling redundancy 7 f" mf’*’ it fa

Table 7.3: Target specification for dependent articulator i in different triphone contexts
where at least one of the neighbouring roles is critical.

ol Method Phone ¢, at ¢4 Phone ¢ at 5 Phone ¢3 at {3
" Conventional ,ufl pfz ,u,?"’
Baseline Mt m?? he?
Anticipation Ot (? +mf®) /2 g
Carry-forward ot (Mt + mf?)/2 o
Modelling redundancy ndt (m$? +m??)/2 79

Simple linear interpolation (LINT) is one of the simple and most commonly used tech-
niques to synthesise smooth and blended movements of articulators. Successive mean
positions of all phones in an utterance are linearly interpolated to generate trajectories
from target distributions. The targets are treated as points (target means) for imple-
menting linear interpolation. The target variance is ignored which is a short coming of
this approach.

Blackburn and Young's coarticulation model uses articulatory positions and curvatures
for modelling context sensitive effects caused by the immediate neighbours on the cur-
rent phone. Articulatory curvature for the current phone is calculated as the difference
between the accelerations from the previous and the following phones. Position and
curvature means and variances were estimated for each phone from the target means.
The methodology for this coarticulation model is given in (Blackburn and Young, 2000).
New position distributions were derived for each phone in the utterance conditioned on
the position and curvature statistics. Though Blackburn and Young’s coarticulation
model generates new position distributions by modelling context sensitive effects in the
execution phase, the trajectories are generated only from the new position means. The
position variance information is also ignored in trajectory synthesis. The two techniques
used for trajectory generation presented above utilise the target mean information for
synthesis. Nevertheless, target representations in the form of statistical distributions
can be input to models which use both target mean and variance such as, MLPG al-
gorithm (Tokuda et al., 2000), trajectory HMMs (Tokuda et al., 2007) for trajectory
synthesis. The following section, Section 7.4, presents the implementation details of
the planning and execution phases.
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Table 7.4: Target specification for articulator i under redundancy modelling hypothesis

for a sequence of 4 phones where the role played by the articulator is critical for first
and last phones.

Phone ¢; at t; Phone ¢ at t Phone ¢3 at t3 Phone ¢4 at t4

C D D C
ngt (mf? +mf?)/2  (mf? +mf?)/2 08
C D R C
2~ 351 (,m&ﬁz 4. ,mfz) /2 m,iés ??’1254
C R D C
7 my? (mf* +mf)/2
C R R C
m?l miﬁz miﬁs -~ ?4

7.4 Implementation

The articulatory role information was extracted using

e IPA chart: critical, noneritical (redundant) roles
e ACIDA: critical, dependent and redundant roles

— the IPA level of complexity, where the average number of critical dimensions
per phone equals to that calculated from IPA chart

— the 2xIPA level of complexity, where the average number of critical dimen-
sions per phone equals twice the number of IPA critical dimensions

IPA model distributions were derived from the kriowledge of critical dimensions from
the TPA chart. The IPA model distributions were subject to the dependent update
step (D-step) to obtain IPA+D model statistics. The ACIDA model distributions were
estimated using the proposed algorithm at the IPA and the 2xIPA levels of complexity.
The target distributions were derived from the knowledge of the articulatory roles
and the corresponding model distributions. Trajectories were estimated from target
distributions in raw (measured), PCA (PC1, PC3 , PC4, PC5 and PCT7) and LDA
(LD1, LD3, LD4, LD5 and LD7) based articulatory spaces using linear interpolation
and Blackburn and Young’s model. All synthetic trajectories were filtered using a zero
phase order 10 lowpass filter at 20Hz sampling frequency. The trajectories in PCA
and LDA spaces were mapped back to the articulatory space for comparison with the
measured trajectories. Synthetic trajectories were generated for 459 utterances of a
total of 460 sentences. The measurements from one sentence (268) were corrupt and
were excluded from evaluation. Results of trajectory generation experiments for both
male and female speakers are presented in the following sections.
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7.5 Results

Three kinds of evaluation measured were used to analyse the goodness of fit of the
synthetic trajectories generated using various methods to the measured trajectory

e Correlation
e Root Mean Squared Error (RMSE)
e Normalised RMSE (RMSE values normalised by grand standard deviations)

Correlation and RMSE values estimated from positions provide a way of comparing
the performance of the synthetic trajectories in an objective and quantitative way.
Correlation between measured and synthetic trajectories were computed and averaged
across all sentences and articulators to obtain mean correlation value. Normalised
RMSE values were obtained by normalising RMSE of each articulator by its grand
standard deviation. Mean RMSE and normalised RMSE values were calculated by
averaging across all sentences and articulators. The values of correlation, RMSE and
normalised RMSE values painted a similar picture. Therefore, the rest of the analysis is
presented using correlation as evaluation metric. Results from RMSE and normalised
RMSE at the IPA level of complexity are presented in Tables C.47 (male), C.48 (female),
C.49 (male), C.50 (female). Results from RMSE and normalised RMSE at the 2xIPA
level of complexity are presented in Tables C.51 (male), C.52 (female), C.53 (male),
C.54 (female).

7.5.1 Choice of constraints

The performance of the models obtained from critical coordinates derived from the
IPA chart and the ACIDA algorithm were compared for all hypotheses. Tables 7.5
and 7.6 show the mean correlation computed for male and female speakers using linear
interpolation (LINT) and Blackburn and Young’s (BY) model respectively. The signif-
icance of the difference between correlation values was computed using t-test at level
of significance e = 0.05. The models derived from ACIDA at IPA level of complexity
outperformed the models derived from the IPA chart for both male and female speak-
ers. For example, under the baseline hypothesis, the correlation between the measured
trajectories and the synthetic trajectories derived from the IPA chart for male speaker
using linear interpolation was 0.29, where as the correlation obtained from ACIDA
models at the IPA level of complexity was 0.61. The difference between the mean cor-
relations was found to be significant from the t-test results. The results from Blackburn
and Young’s model shown in Table 7.6 also painted a similar picture. Constraints in
the form of critical, dependent and redundant roles given by the ACIDA algorithm cap-
ture the constraints and the degrees of freedom of articulators during the production
of phones more efficiently than typical critical/non-critical constraints derived from the
IPA chart.

The IPA+D models were obtained by updating the IPA model distributions using
dependency update step (D-step) from ACIDA algorithm (see Section 3.3.2). Using




7.5. Results 113

the D-step improved the performance of the models trained using the IPA information.
For example, for the female speaker, the baseline correlation improved from 0.28 to 0.56
for the LINT method. The correlation, RMSE and normalised RMSE values from the
ACIDA models were better than the IPA+D models by a small margin (5%) for the male
speaker. For example, the normalised RMSE for baseline hypothesis for male speaker
was found to be 0.84 for the IPA+D models and 0.80 for the ACIDA models. For the
female speaker, the correlations obtained from the IPA+D models were slightly better
(2%- 3%) than the ACIDA models for both LINT and BY methods. However, in all
cases, the difference between IPA+D and ACIDA models was found to be statistically
insignificant. Therefore, the performance of IPA+D models was comparable to that of
the ACIDA models at the same level of complexity.

To summarise, the results showed that target distributions derived using articula-
tory constraints in the form of critical, dependent and redundant roles yield better
results than those estimated from constraints derived from IPA chart which show only
critical/non-critical discrimination. Also incorporating the D-step improved perfor-
mance of the IPA models significantly.

male female
IPA IPA4+D ACIDA;ps | IPA IPA+D ACIDA;pa
Baseline 0.29 0.57 0.61 0.28 0.56 0.55
Modelling redundancy | 0.31 0.59 0.62 0.30 0.57 0.56
Anticipatory 0.30 0.59 0.62 0.30 0.57 0.55
Carry forward 0.26 0.56 0.59 0.25 0.54 0.52

Table 7.5: Mean correlation between measured trajectories and synthetic trajectories
generated in raw articulatory space from IPA, IPA+D, and ACIDA;p, model distribu-
tions for baseline, redundancy modelling, anticipatory, carry forward hypotheses using
linear interpolation. Correlations are averaged across all sentences and articulators.

male female
IPA ITPA+D ACIDApa | IPA IPA+D ACIDA;ps
Baseline 0.32 0.63 0.67 0.32 0.61 0.59
Modelling redundancy | 0.32 0.62 0.66 0.30 0.59 0.58
Anticipatory 0.30 0.62 0.65 0.31 0.60 . 087
Carry forward 0.28 0.61 0.64 0.27 0.58 0.56

Table 7.6: Mean correlation between measured trajectories and synthetic trajectories
generated in raw articulatory space from IPA, IPA+D, and ACIDA;,, model distribu-
tions for baseline, redundancy modelling, anticipatory, carry forward hypotheses using
Blackburn and Young’s model. Correlations are averaged across all sentences and ar-
ticulators.
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7.5.2 Evaluation of hypotheses

Different theories of articulatory behaviour implemented in the planning stage of speech
production were evaluated using correlation, RMSE and normalised RMSE values com-
puted between measured and synthetic trajectories. Comparisons were also made across
different levels of complexity (IPA and 2xIPA) and different trajectory generation tech-
niques. Statistical significance of the difference between the evaluation measures given
by various hypotheses and methods was computed using student’s t-test at level of sig-
nificance (a = 0.05). Correlations averaged across all sentences and articulators at the
IPA and the 2xIPA level of complexities for both male and female speakers are shown
in Figures 7.4 and 7.5 respectively. The patterns of correlation, RMSE and normalised
RMSE values were similar for both speakers. Hence, the rest of the section is presented
using mean correlation values.

IPA level of complexity

The performance of baseline, redundancy modelling, anticipatory and carry forward
theories for the linear interpolation method at IPA level of complexity are compared
first. The highest mean correlation between the measured trajectories and synthetic
trajectories was given by redundancy modelling, 0.65 in LD4 feature space for the male
speaker and 0.60 in LD1, LD4 and LD5 feature spaces for the female speaker. The
lowest correlation value was given by carry forward hypotheses, 0.53 in PC4 and PC5
feature spaces for the male speaker and 0.51 in PC1 space for the female speaker.
Across all feature spaces, the redundancy modelling hypothesis gave the best values
of correlation, RMSE and NRMSE whereas the worst performance was given by the
carry forward hypothesis. The trajectories generated using baseline and anticipatory
hypotheses yielded similar results. Statistical significance test showed no significant
difference between the performance of baseline, redundancy modelling, anticipatory
and carry forward hypotheses in most of the feature spaces since the results differed
from one another by a slight margin. Only one significant difference was found in LD1
feature space for both speakers between redundancy modelling (0.64/0.60-m/f) and
carry forward (0.53/0.53-m/f) models. Though the performance of LDA based models
was better than PCA based models, the improvement was statistically insignificant.

Using Blackburn and Young’s model for trajectory generation improved the fit of
the synthetic trajectories to the measured trajectory by 9 to 10%. The best perfor-
mance was given by the baseline models, followed by the redundancy modelling. The
performance of both anticipatory and carry forward models was worse than others.
Spreading the target positions in forward and backward directions affects the estima-
tion of curvature values used for updating the position distributions of the articulators.
Any loss in curvature information due to target spreading could contribute to the poorer
performance of temporal coarticulation models over the baseline models. Similar to the
results from LINT method, no statistically significant difference in performance was
found between the models from different hypotheses for most of the feature spaces.
For the male speaker, the baseline performance was better than anticipatory and carry
forward performances and the improvement was statistically significant only in the LD1
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feature space. For the female speaker, only the improvement given by the baseline over
the carry forward models was statistically significant also in the LD1 feature space.

At the TPA level of complexity, the difference between the performances of the LINT
and the BY models under each hypothesis was evaluated for statistical significance.
The results showed that improvements given by the BY models over the LINT models
were not statistically significant in any feature space for any hypothesis. This could
be due to the bias form the correlation values obtained from redundant articulators
for which the curvature estimate is zero. The BY method reduces to a simple linear
interpolation when there are no curvature estimates.

The average number of critical dimensions/modes per phone was 1.8 at the IPA level of
complexity and the resulting distributions were very sparse. Any improvements given
by redundancy modelling hypothesis and LDA based representations were found to
be statistically insignificant. The best representation at the IPA level of complexity
was also found to be lossy (8%/11%-m/f) when compared with the performance of
the conventional models. The conventional models use phone-specific distributions for
generating target representations for each articulator and are not parsimonious when
compared with the models trained at the IPA level of complexity. In the next stage
of analysis, the complexity of the models was increased and the performance of the
resulting trajectories was evaluated in comparison with the conventional approach.

2xIPA level of complexity

To capture more detail, the critical threshold was lowered to 2xIPA level of complexity
where the average number of critical dimensions per phone were doubled. Increasing the
complexity of the models improved the performance by 7 to 10% over the performance
at the IPA level. The improvements were found to be statistically significant for most
PC and LD based representations for both LINT and BY methods.

For both male and female speakers, the best performance was given by redundancy mod-
elling followed by anticipation and baseline methods for linear interpolation. For BY
model, baseline models gave the best performance, followed by redundancy modelling
and anticipatory models. The carry forward approach gave the worst performance for
both LINT and BY models. No statistically significant differences was found between
the performances of baseline, redundancy modelling, anticipatory and carry forward
approaches, since the differences were of small magnitude.

The performance of trajectories estimated using the proposed hypotheses was com-
pared with that of conventional model at 2xIPA level of complexity. For the linear
interpolation, comparable performances were achieved by redundancy modelling, antic-
ipation and baseline approaches when compared with the conventional approach, any
differences found were minor and statistically insignificant for both speakers. For the
BY model, the performance of only the baseline approach was comparable to that of
the conventional models for the male speaker. For the female speaker, the conven-
tional model performed better than the rest of the models and the improvement was
also statistically significant. Loss of articulatory curvature information in completely
redundant contexts is the main reason for the poor performance of the proposed role
based models when compared with the conventional models.
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Figure 7.4: Mean correlations (averaged across all sentences and articulators) between
measured trajectory and synthetic trajectories generated using various hypothesis for
male speaker for linear interpolation and Blackburn and Young (BY) model. Results
fo:‘nmale (blue) and female (red) speakers are shown at the IPA level.
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7.6 Discussion

Different coarticulation hypotheses were evaluated by generating trajectories from the
target representations derived from the respective coarticulation models. The results
obtained from trajectory generation experiments showed that the constraints in the
form of critical, dependent and redundant roles are better representations than the
critical/non-critical constraints derived from IPA chart. Also increasing complexity to
2xIPA level significantly improved the performance of the models. The results were
inconclusive when different hypotheses and feature spaces were compared to find the
best approach and feature representation respectively. Though redundancy modelling
(for LINT) and baseline (for BY) representations gave the best values of correlation,
RMSE and normalised RMSE, their performance was not significantly different from
that given by other hypotheses.

There were instances where the proposed coarticulation models better modelled the
articulatory behaviour than the conventional approach. Figures 7.6 and 7.7 show two
such examples where the proposed models performed better than conventional models
when velocity correlations were compared. Figure 7.6 shows the measured trajectory
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Figure 7.5: Mean correlations (averaged across all sentences and articulators) between
measured trajectory and synthetic trajectories generated using various hypothesis for
male speaker for linear interpolation and Blackburn and Young (BY) model. Results
fo:‘mmale (blue) and female (red) speakers are shown at the 2x IPA level.
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and the synthetic trajectory generated under the redundancy modelling criterion in
raw articulatory feature space using LINT for TT, for male speaker. It can be observed
that the trajectory generated using redundancy modelling shows some potential in
matching the path of TT, movements than the conventional trajectory. Correlation
value computed in the velocity space between actual and synthetic trajectories for TT,
for this sentence showed that the redundancy modelling (0.76) better captures the
articulatory behaviour than the conventional model (0.49). Here, the improvement
in the positional correlation given by the redundancy modelling over the conventional
model was 19%.

Nasalisation of vowels due to context sensitivity was better captured by the anticipatory
hypothesis when compared with the conventional approach for some utterances. Figure
7.7 shows one such example where nasalisation of vowels [9] in “an” and [i] in “immediate”
was better captured by anticipatory models than conventional models. Correlation in
the velocity space was improved by 60% when the anticipatory models were used over
the conventional models, whereas similar position correlation values were given by both
anticipatory and conventional models.
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"015. The museum hires musicians every evening."
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Figure 7.6: Measured ( black) and synthetic trajectories generated from conventional
(thin blue) and redundancy modelling (thick green) hypotheses for the male speaker at
the 2x IPA level of complerxity in the raw articulatory space.

"091. The misprint provoked an immediate disclaimer.”
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Figure 7.7: Measured (black) and synthetic trajectories (solid) generated from conven-

tional (thin blue) and anticipatory (thick cyan) hypotheses for the male speaker at the
2x IPA level of complexity in the raw articulatory space.

Carry forward coarticulation models gave poor performance across all feature spaces
and methods. The degradation in performance caused by carry forward models when
compared with redundancy modelling (LINT) and baseline (BY) methods was statis-
tically significant in LD1 feature space for both speakers and at both levels of critical
threshold. Carry forward coarticulation is a low level phenomenon resulting from the
inertia of articulators and is more relevant to the execution stage than planning stage.
Therefore, models built in the planning stage have performed poorly. The performance
of models could be improved by modelling carry forward coarticulation in the execution
phase than in planning phase.

The trajectory generation techniques used for this analysis ignore the target variance
which is a valuable source of information. There is a need for using a trajectory genera-
tion technique which utilises both target mean and variance information for synthesising
the articulatory movements from target distributions to be able to fully evaluate the
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potential of the coarticulation approaches. Precise spatial targets do not exist for all
articulators and speech sounds. Different factors such as coarticulation, phone dura-
tion, articulatory inertia contribute to the variation in the target position. A more
realistic model would require target specifications in the form of statistical windows
rather than spatial points. The present approach also ignores the duration of phones
when modelling coarticulation and limits the span to immediate neighbours. The mod-
els could be further improved by incorporating durational modelling and wider spans
of coarticulation in the structure.

The experiments in this work were performed on articulatory data alone. The best
RMSE value obtained from the experiments was 1.55mm for BY model in LD7 space
for baseline hypothesis for male speaker (1.68 for LINT in LD1 for redundancy mod-
elling). The best RMSE value reported when acoustic information was combined with
articulatory information for trajectory generation was 1.40mm for female speaker (Rich-
mond, 2007b). There are some known problems with flesh point calibration (Frankel,
2003; Richmond, 2007a) in MOCHA-TIMIT recordings. Some of the transcription
errors have been corrected and corrupt measurements were ignored (Chapter 2) to im-
prove the performance of the models and to obtain good lists of critical, dependent
and redundant articulators. According to Richmond (2009), the average RMSE value
dropped from 1.54mm to 0.99mm when recordings from a better EMA resource were
used. Improvements could be made with further recordings of speech articulation, e.g.,
new capture techniques, larger corpora, multiple subjects and various speaking styles.

When comparisons were made across different feature spaces, positional correlations
from LDA models were higher than PCA based models. However, no significant differ-
ence was found between LDA, PCA and raw feature spaces. But the models in some
feature spaces were found to be more compact representations than the others. The
following section presents analysis on compactness of models.

7.6.1 Compactness of the models

In the conventional approach to estimating model distributions, neither the knowledge
of articulatory roles nor the interdependencies are considered, and model distributions
are simply set equal to the phone specific distributions. Recall from Section 6.5 that if a
(14) represents the number of modes, the number of parameters (means and variances)
needed for modelling ¢ phones in the conventional approach is 2ap.

When the proposed algorithm (ACIDA) is used for estimating the model distributions
in each feature space, the number of parameters required for estimating models is given
according to Eq.6.1 in Section 6.5 as

o k(R —
2a+ga(2k¢+k—(k2——l))

The reductions in number of parameters over conventional models reported at the IPA
level of complexity in Section 6.5 were: 82% for PC1/LD1, 78% for PC3/LD3 and
PC4/LD4, 77% for PC5/LD5 and 76% for PC7/LD7 and raw articulatory features.
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At the 2xIPA level of complexity, the reduction percentage slightly lowered due to
increase in model complexity when compared with that at the IPA level. Neverthe-
less, the models were still parsimonious when compared with conventional approach.
The raw articulatory representation required 49% less parameters than conventional
approach. The performance of PCA and LDA representations was as follows: 56%
for PC1/LD1, 51% for PC3/LD3, 51% for PC4/LD4, 50% for PC5/LD5 and 50% for
PC7/LDT7 and raw articulatory features.

7.7 Conclusion

A statistical framework for modelling coarticulation in the planning stage was presented.
Different aspects of coarticulation were modelled using the ACIDA model distributions
in various feature representations and the performance of the resulting models was
tested by generating trajectories. The span of coarticulation was limited to the imme-
diate neighbours. Constraints in the planning stage derived from the IPA chart were
compared with those from the proposed role identification algorithm. Synthetic tra-
jectories were generated in raw, different PCA and LDA based representations at two
levels of complexity, IPA and 2xIPA. Simple linear interpolation and Blackburn and
Young's model were used for synthesis. Positional correlation and RMSE were used for
evaluating the goodness of fit of the synthetic trajectories to the measured trajectories.
The results showed that the constraints in the form of eritical, dependent and redundant
articulators are better representations than those derived from phonological knowledge
which make only critical/noncritical distinction. The redundancy modelling hypothesis
for trajectory generation by the linear interpolation and the baseline hypothesis for
trajectory generation by the Blackburn and Young’s model gave the best performance.
LDA based models performed better than PCA based models. However, any small
improvements found were statistically insignificant. Carry forward coarticulation, a
phenomenon commonly attributed to the inertia of the articulators, when modelled in
the planning stage, gave poor performance. Increasing the complexity of the models to
2xIPA complexity gave significant improvement. The redundancy modelling and the
anticipatory approaches were found to be better models of articulatory behaviour than
the conventional models in certain contexts. The models estimated using the ACIDA
were found to be compact when compared with conventional models.

The statistical framework in the planning stage of articulation presented in this chapter
provides a basis for building more complex and accurate models of speech articulation.
Proposed framework can be improved by incorporating longer spans of coarticulation
and durational modelling. Simple trajectory generation techniques were used for testing
the proposed framework. Limitations posed by trajectory generation techniques used
in this work could be addressed by using more complete models which treat targets as
statistical windows rather than points.




Chapter 8

Conclusion

In this chapter, the work presented in the course of this thesis is summarised. Implica-
tions of the approach are discussed. Contributions made to the field of speech research
are presented along with the directions for future work.

8.1 Summary

Coarticulation, a direct consequence of the nature of speech production, affects the
performance of recognition and synthesis systems. The state-of-the-art systems model
coarticulatory effects on the surface and ignore the articulatory domain which is the
source of coarticulation. There is a potential for improving coarticulation models from
direct descriptions of the speech articulation. Previous approaches to modelling coar-
ticulation in planning and execution phases along the same lines were presented and
analysed. Models of coarticulation relied on phonological knowledge for incorporating
the knowledge of articulation where measured data was unavailable. Representations
such as distinctive binary features derived from phonological knowledge are limited in
many ways and are poor representations of speech articulation. Gesture priorities in
the form of critical/noncritical roles fail to identify and explain the constraints due
to biomechanical links of articulators. On the other hand, statistical models trained
on measured articulatory data, though powerful, are merely descriptive and ignore the
cause of constraints. This thesis focuses on deriving betier representations of con-

straints on articulators and thereby, building descriptive as well as explanatory models
of speech articulation.

The articulatory constraint identification algorithm (ACIDA) which identifies and cap-
tures the constraints on articulators during speech production in a statistical way from
measured articulatory data was presented. Articulatory data used in this work com-
prised of measurements of upper lip, lower lip, lower incisor, tongue tip, blade, dorsum
and velum for 460 sentences from 2 speakers (MOCHA-TIMIT (Wrench, 2001)). The
algorithm identifies critical, dependent and redundant roles which explain the fully con-
strained, partially constrained and totally redundant degrees of freedom of articulators
and also estimates the respective distributions. Identification divergence which is the

121




122 Chapter 8. Conclusion

statistical difference (KL divergence) between the grand distributions and the phone-
specific distributions was used for identification of critical roles. Inter-articulatory cor-
relations were used to identify and update the distributions of dependent articulators
(D-step) which are partially constrained due to their relationships with the critical ar-
ticulators, The distributions of redundant articulators were set to grand distributions
which characterise their unconstrained nature. The 1D and 2D versions of the ACIDA
algorithm were implemented and the results were analysed. Convergence scale com-
puted between model and phone-specific distributions for 1D and 2D cases showed that
the convergence of the models to the phone specific models improves as more number
of critical dimensions were identified by lowering the critical threshold (from 5 to 0.1
in steps of 0.1). Evaluation scale was computed between model distributions (1D and
2D) and actual phone distributions (full phone covariance) across a similar range of
thresholds. Evaluation scale values showed that 2D models which capture the correla-
tions between x and y movements of articulators outperformed the 1D models which
assume independence between x and y movements.

Lists of expected critical coordinates derived from the IPA chart were compared with the
critical coordinates identified using the proposed algorithm for consonants, vowels and
diphthongs. The analysis showed that the identified critical coordinates compared well
to the expected critical coordinates for consonants. Some additional critical coordinates
were identified for fricatives. No critical coordinates were identified for neutral vowel [
and for also other central and reduced vowels. Some substitutions occurred due to ex-
istence of strong correlations amongst articulators. Some inter-speaker differences were
also found. Evaluation scales computed from model distributions from expected critical
dimensions fitted poorly to the actual phone distributions when compared with those
from the 1D and the 2D ACIDA model distributions. The performance of the models
from the expected critical coordinates improved significantly when inter-articulatory
dependencies were incorporated using D-step. The proposed algorithm was evaluated
against an exhaustive search, where all critical articulator combinations were tested
according to minimax criterion. The evaluation scale values showed that the proposed
algorithm performed as well as exhaustive search models. However, exhaustive search
approach was found to be very expensive computationally when compared with the
ACIDA algorithm.

A statistical framework for building models of articulation from measured data using
role information was derived in two stages. In the first stage, different articulatory fea-
ture spaces were generated aimed at obtaining compact and informationally rich repre-
sentations which can be related to the independently moving articulatory components.
Linear orthogonal transforms were employed to obtain compact and informationally
efficient articulatory feature sets and the knowledge of inter-articulatory correlations
was used for establishing independence between the articulatory coordinates. Differ-
ent PCA and LDA based representations were derived by grouping strongly correlated
articulators together thereby eliminating weak correlations amongst articulators. The
ACIDA algorithm was used to identify the constraints on the articulatory gestures
indicated by the PCA and LDA mode shapes. Critical modes from more compact
models such as PC1/LD1 were difficult to interpret whereas those from less compact
models such as PC7/LD7 were closely related to the identified critical coordinates in
the raw articulatory space. Evaluation scale and recognition performance were used to
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analyse the efficiency of the representations. LDA based models which emphasise the
separability between phone classes performed better than PCA based models. Linear
orthogonal transforms such as PC7/LD7 derived by eliminating important correlations
amongst articulators gave no improvement over raw articulatory representation. The
performance of PC3/LD3 models derived by ignoring weak and insignificant correla-
tions amongst articulators was comparable to that of PC1/LD1 where all correlations
are retained.

Different aspects of coarticulation were modelled using the knowledge of articulatory
roles and the model distributions in different feature spaces. In the planning phase, the
target distributions were estimated for each phone in the sequence using the model dis-
tributions under conventional, baseline, redundancy modelling, anticipatory and carry
forward hypotheses. The span of coarticulation was limited to the immediate neigh-
bours. Articulatory constraints were derived from the phonological knowledge (IPA
chart) and the ACIDA algorithm. In the execution phase, articulatory trajectories
were generated from the target representations using linear interpolation and Black-
burn and Young’s model of coarticulation (Blackburn and Young, 2000). Correlation,
root mean squared error (RMSE) and normalised RMSE were used to evaluate the syn-
thetic trajectories in comparison with the measured trajectories. The results showed
that the trajectories estimated from the constraints derived from the ACIDA algo-
rithm outperformed those derived from the IPA chart. Including the interarticulatory
dependencies (D-step) in the estimation of model distributions the performance of the
IPA models. Increasing the complexity of the ACIDA models from the IPA level to
the 2xIPA level improved the performance significantly. Modelling redundancy using
the concept of effort minimising behaviour of articulators gave the best performance
for the linear interpolation method. The baseline approach gave the best performance
for the Blackburn and Young's model. The LDA based models performed better than
the PCA models. However, the improvements in all cases were of small magnitude and
were found to be statistically insignificant. Carry forward coarticulation, a phenomenon
occurring in the execution phase due to inertia of articulators, when modelled in the
planning stage, degraded the performance of the models. The model of phone distribu-
tions obtained using the proposed algorithm, through recognition of articulatory roles,
is shown to be more compact and more informative than a conventional statistical de-
scription. There is a scope for building better models of articulation by improving the
framework in the planning stage and by addressing limitations in the execution phase.

To summarise,

e the proposed algorithm identifies and captures the constraints on the articulators
in the form of critical, dependent and redundant roles in an entirely statistical
and data-driven way.

e Identified constraints compare well with the expected constraints derived from the
phonological knowledge. Identified constraints also captured speaker dependent
behaviours, physiological links and provide a transformation from phonological to
phonetic domain. The fit of the models to the measured distributions was better
than that of the models derived from the IPA based constraints.
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e Results from the proposed algorithm not only compared well to those from the
exhaustive search but also had faster computation speeds.

o Linear orthogonal transforms such as PCA and LDA provide compact and infor-
mationally rich representations when compared with the raw articulatory feature
set at the expense of loss of interpretation power.

e Articulatory constraints in the form of critical, dependent and redundant roles
generated better models of coarticulation than those in the form of critical/noncritical
priorities from the IPA chart.

e The proposed coarticulation models not only generated compact representations
but showed some potential by capturing the behaviour of articulators closely
than the conventional models in some cases. However, more complete models are
essential to fully evaluate the efficiency of the proposed statistical framework in
modelling coarticulatory effects.

8.2 Contribution

The main focus of this work was to build statistical models of speech articulation
which reflect the nature of speech production and have the potential to model the
coarticulatory effects. The primary contribution from this thesis is the articulatory
constraint identification algorithm (ACIDA). The desirable features of the proposed
algorithm and contributions from the undertaken work are discussed in detail below.

8.2.1 Nature of the constraints

In phonology theory, the place and manner of articulation for each phone are encoded in
the form of discrete binary features (Chomsky and Halle, 1968) and the IPA chart can
be viewed as a short cut representation depicting intersection of different features. It is
difficult to transform phonological binary features to multi-valued commands for artic-
ulators, some attempts have resulted in knowledge-driven quantised articulatory config-
urations (Larar et al., 1988; Deng and Sun, 1994; Erler and Freeman, 1996; Richardson
et al.,, 2000). The quantised representations fail to incorporate the variation in the
target of articulator due to factors such as coarticulation, speaking rate, style and lan-
guage. The proposed algorithm identifies the constraints on the articulators during
production of each speech sound in the form of critical, dependent and redundant roles.
It captures the essence of speech production by differentiating between tightly con-
strained articulators (ecritical), consequent movements of linked parts of the anatomy
(i.e., dependent), and redundant parts that are most susceptible to the biomechanical
effects of coarticulation from targets of neighbouring phonemes. The target models
estimated using role information are specified as statistical windows which allow for all
possible variations due to coarticulation.
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8.2.2 Mapping from phonemes to phones

When mapping from phonological to phonetic domain, various factors such as lan-
guage, speaker, style, rate, coarticulation result in different realisations of a speech
sound. Such variations are dencted using diacritics in the ‘narrow’ transcriptions of
speech. The proposed algorithm provides a mapping from phonological to phonetic
domain by capturing the characteristics of typical phones within a language from the
measured articulatory data. The critical articulators identified from the algorithm not
only compared well to the expected constraints derived from IPA but also provided
speaker-specific constraints due to variations in speaking styles.

8.2.3 Articulatory dependencies

Constraints derived from phonological knowledge mostly fall into critical/noncritical
categories. For example, in feature based approach (Henke, 1965), only critical fea-
tures are specified for each phone whereas the noncritical features remain unspecified.
Articulators are linked biomechanically and their interdependencies need to be consid-
ered when specifying constraints. Incorporation of such inter-articulatory relationships
reduces the degrees of freedom of articulators. In the coproduction theory, the linkages
between articulators were incorporated in the structure of gestures in the form of pas-
sive gestures which undergo changes due to their relationship with the active gestures
(Saltzman and Munhall, 1989). However, the gestures are heuristically scored into ac-
tive, passive and inactive categories from the knowledge of phonology. The. proposed
algorithm makes use of grand inter-articulatory correlations to identify the dependent
articulators and updates their distributions conditioned on the distributions of critical
articulators with which they share strong and significant correlations. The D-step in the
proposed algorithm performs the identification and estimation of relevant distributions
using statistical methods. Experiments showed that the distributions updated using the
knowledge of critical, dependent and redundant roles fitted well to the measured data
than the model distributions derived from IPA knowledge. Incorporating articulatory
correlations using D-step improved the fit of the IPA based models significantly.

8.2.4 Informational efficiency

The algorithm also provides compact and informationally efficient representations when
compared with the conventional approach. With complexity equivalent to the IPA
descriptions, the reductions in the models’ parameters were 80% and 77% for 1D and
2D cases respectively, when averaged across the two subjects. The models became less
compact as the number of critical dimensions increased, e.g., reductions in parameters
of 61% and 28% were achieved at the lower threshold for 1D and 2D (with average
3.6 and 5.6 critical dimensions/phone). Comparisons with exhaustive search procedure
demonstrated that the proposed aigorithm performed equally well but for much less
computational load.

Analysis of different feature spaces demonstrated that representations more informa-
tionally efficient and compact than raw articulatory models could be derived by applying
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proposed algorithm on feature spaces derived using PCA and LDA. Tt was also possible
to identify the movements of articulators for each phone using critical PCA and LDA
mode shapes. The analysis showed that the most compact representations are difficult
to interpret and hence there is trade-off between compactness and power of interpre-
tation. The results demonstrated that there is no loss in performance when small and
insignificant correlations are excluded when estimating the PCA and LDA transforma-
tion matrices. However, PCA and LDA offer no benefit over raw articulatory space
when important correlations between articulators are ignored when estimating trans-
formation matrices. The LDA representation which maximises separability between
phone classes gave slightly better performance over the PCA.

8.2.5 Coarticulation modelling

When modelling coarticulation, it is important to know the degrees of freedom of ar-
ticulators. An unconstrained articulator is more prone to effects such as anticipation
of following phone targets and carry forward coarticulation from previous phones. The
articulatory movements default to cost minimising behaviour which leads to spatial
coarticulatory effects such as target undershoot and overshoot. The knowledge of
constraints in the form of articulatory roles could potentially benefit coarticulation
modelling. A ecritical articulator is less prone to coarticulation effects due to its con-
strained nature but causes the maximum coarticulation effects on the neighbouring
unconstrained articulators. A dependent articulator is partially constrained due to its
correlation with one or more critical articulators but its remaining degrees of freedom
are redundant and hence are prone to-coarticulation. A redundant articulator is com-
pletely unconstrained and is more susceptible to coarticulation due to neighbouring
critical articulators. The targets of dependent and redundant articulators also vary
due to the effort minimisation behaviour adapted by the articulator when moving from
one critical target to the next. Trajectory generation experiments were performed to
test the above theories of coarticulation using constraints in the form of identified ar-
ticulatory roles in comparison with the constraints from the IPA chart. The results
showed that the trajectories generated from the model distributions from ACIDA al-
gorithm were a better fit to the measured trajectories than the ones derived from IPA
models. Yet again, inclusion of D-step in estimation of model distributions improved
the performance of the IPA models. The results also showed that the proposed coar-
ticulation models have the potential to capture the behaviour of articulators during
speech production. For example, anticipatory lowering of velum was better modelled
by the proposed anticipatory models than the conventional model in some cases, mod-
elling redundancy based on economy of effort principle also showed some potential in
modelling the x movements of articulators. The results also showed that it is not suit-
able to model carry forward coarticulation in the planning stage of speech production.
The statistical framework for modelling coarticulation proposed in this thesis provides
a basis for building more complete and accurate models of speech articulation.
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8.2.6 Publications

The work presented in this thesis has appeared in several articles published at various
stages of during the period of study of this thesis: Singampalli and Jackson (2008,
2007a,b,c, 2008); Jackson and Singampalli (2008a,b, 2009); Singampalli and Jackson
(2009).

8.3 Potential applications

The proposed articulatory constraint identification algorithm has potential applications
in the fields of speech science and technology. The algorithm can be used for linguistic
studies of various languages, dialects and speakers, for instance in determining pho-
netic inventories. The identified articulatory conmstraints could supplement existing
theories of coarticulation such as feature spreading (Henke, 1965; Moll and Daniloff,
1971; Daniloff and Hammarberg, 1973) and overlap of articulatory gestures (Browman
and Goldstein, 1986; Saltzman and Munhall, 1989) with objective and statistical evi-
dence. Phenomenon such as dipping of tongue during bilabial VCV sequences (known
as the trough effect (Lindblom and Sussman, 2002)) could be modelled using the relax-
ation hypothesis according to which an articulator when redundant relaxes momentarily
before reaching the next target position.

The proposed algorithm has the potential to improve the performance of speech recog-
nition and synthesis systems. In engineering, many ASR systems have attempted to
incorporate articulatory constraints (King et al., 2007), inspired by distinctive features
(Kirchhoff, 1999; Metze and Waibel, 2002; Frankel et al., 2004; Eide, 2001; Koreman
et al., 1998), in the form of quantized gestural configurations (Deng and Sun, 1994; Erler
and Freeman, 1996; Richardson et al., 2000), or within a hidden (pseudo-)articulatory
layer via forward (Russell and Jackson, 2002; Richards and Bridle, 1999) or inverse
mapping (Richmond, 2006; Frankel et al., 2000). The physiological constraints offered
by human speech production have been incorporated into speech synthesis via articu-
latory codebooks, regression and neural-network approaches for forward mapping from
articulatory to acoustic domains, as in Schroeter and Sondhi (1994). Knowledge of iden-
tified constraints could be used in such production oriented models of speech synthesis
and recognition , the proposed algorithm could be used to priorvitise speech gestures
rather than phonetic rules.

Coarticulation in visual speech has been modelled using various rule based techniques
(Beskow, 1995), theories of motor planning and speech production (Cohen and Mas-
saro, 1993), and machine learning algorithms (Xue et al., 2006). In articulatory control
models, the constraints have been incorporated using phonetic knowledge. The pro-
posed algorithm could be applied to visual data to extract the constraints for generating
smooth and convincing articulation.
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8.4 Future work

8.4.1 Improvements to the data

Inconsistencies in the EM A recordings of the female speaker were reported by Richmond
(2001, 2009). Several factors such as reattachment of coils, movement of head within
the helmet etc. were found to cause a shift in the mean velum position across the
sentences. The data was z score normalised using the underlying mean pattern to
minimise such effects by Richmond (2001). Though similar effects were observed, no
such normalisation was used for either speakers. Performing such preprocessing on the
data would generate much clearer results.

This study assumes that the grand, phone specific and model distributions are Gaus-
sian and unimodal in nature. When the validity of the assumption was tested using
Kolmogorov Smirnov goodness of fit test, it was found that only a few distributions
satisfy the condition of Gaussianity and unimodality. Transforming the data by apply-
ing logarithms or using Box Cox transformation (Box and Cox, 1964) can make the
data normal and would improve the results.

Along with the above mentioned improvements, the future work would also focus on
validation of the algorithm on more reliable measurements of articulation from various
languages and from different speakers.

8.4.2 Improvements to the model

The 1D and 2D versions of the algorithm were presented in this thesis. The proposed
algorithm could be extended easily to model data with dimensionality > 3 . However,
the algorithm is based on the assumption that the grand, phone and model distribu-
tions are multivariate Gaussian in nature. One of the directions for future research
is to extend the algorithm to suit multi-modal distributions. Opportunities exist for
extension of the KL divergence metric which is used for estimating identification, con-
vergence and evaluation scales to suit multi-modal distributions (Hershey and Olsen,
2007).

Unlike consonants, vowels do not have well defined places of articulation. The derivation
of expected critical coordinates from IPA and the comparison with identified critical
coordinates were not straightforward processes for vowels unlike consonant sounds.
The targets for vowels are part acoustic and part articulatory. Time varying formant
patterns form the acoustic cues for vowel sounds, whereas rapid formant transitions,
noise bursts, aspirations etc. are the characteristics of consonant sounds. One of the
interesting directions for future work would be the identification of acoustic constraints
using the proposed algorithm and to analyse the findings with the expected formant
characteristics of speech sounds. Comparison of acoustic and articulatory analysis of
initial and final vowels of diphthongs using ACIDA algorithm would also be carried
out.
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8.4.3 Modelling coarticulation
Planning phase

The span of coarticulation in the proposed approach was limited to the immediate
neighbours for modelling temporal coarticulation effects such as anticipation. The
onset of anticipation could occur at few segments earlier than the immediate neighbour
(Moll and Daniloff, 1971). The effort minimisation hypothesis was also limited to
immediate neighbours where the articulator is critical for at least one phone in the
triphone sequences considered. Some quadphone sequences were also considered where
the articulator is critical for phones at the either ends of the sequence. Longer spans
of coarticulation and a variety of contexts would be considered in future for modelling
different aspects of coarticulation.

The duration of the phones was not considered when implementing different coarticu-
lation hypotheses. In some cases, redundant articulators tend to relax completely when
there is sufficient duration to turn off the underlying muscle activation before reaching
for the next target. In other cases where there is not enough time to do so, the mini-
mum effort behaviour for an articulator would be to assume the position intermediate
between the previous and the next targets. It would be interesting to investigate the
relationship between phone duration and the observed coarticulatory effects.

Execution phase

One of the main shortcomings of the methods used for generating trajectories from
target distributions was the exclusion of target variance information. The targets were
treated as points rather than statistical ‘distributions. The trajectory generation was
carried out to evaluate the potential of the proposed statistical framework for mod-
elling coarticulation in the planning stage. Therefore, simple methods such as linear
interpolation and Blackburn and Young’s model were chosen. It would only be possi-
ble to evaluate the full potential of proposed coarticulation models only by employing
trajectory generation techniques which treat targets as statistical windows. Therefore,
future work would focus on using models such as, MLPG algorithm (Tokuda et al.,
2000), trajectory HMMs (Tokuda et al., 2007) for generation of trajectories from the
target distributions.

Identifying independent components

Principal components analysis and linear discriminant analysis were used generate com-
pact and informationally rich feature representations whereas the knowledge of corre-
lations was used to identify the independently moving articulatory components. Tech-
niques such as independent components analysis (ICA) (Hyvérinen and Oja, 2000.)
which optimise the statistical independence between the underlying components could
be used on articulatory data to identify the independent articulatory groups. Linear
components analysis (Kirirani et al., 1977; Maeda, 1990; Badin et al., 2002) was also
used for identifying the underlying independent components of the speech production
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system. Future work also focuses on investigation of the ICA and LCA techniques as
feature extraction techniques for the articulatory data.

8.4.4 Synthesis and recognition

Opportunities exist to explore knowledge of articulatory roles in the synthesis of speech,
whether explicitly, e.g., for visual/articulatory speech synthesis, or implicitly, e.g., in a
join cost or smoothing function for concatenative synthesis. Future work also focuses
on ways of exploiting new knowledge of articulatory constraints as conditional depen-
dencies in probabilistic speech models for ASR. The knowledge of constraints would
be applied to generate smoother and continuous trajectories in the hidden articulatory
layers of models such as segmental HMMs (Russell and Jackson, 2005).
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Mocha symbol IPA symbol

P p
b : b
m m
t t
d d
n n
k k
g g
ng Y
f f
%
th 0
dh 0
8 8
z Z
sh I
zh 3
ch f
jh 5
1
T I
W
y J
h h

Table A.1: Mocha symbols and corresponding IPA symbols for consonants in database.
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Mocha symbol IPA symbol

a ®
e e
i I
ii ir
iy i
@) 9
(@l@] o
uh A
aa a
o D
00 )
u U
uu u

Table A.2: Mocha symbols and corresponding IPA symbols for front, mid and back
vowels in database

Mocha symbol IPA symbol

al a1
ei el
eir €9
i@ o
oi o1
ou ouU
ow auv

Table A.3: Mocha symbols and corresponding IPA symbols for diphthongs in database
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Appendix B

Algorithms

B.1 Generation of covariance ellipses

The procedure used for generation of the covariance ellipse is presented in this section.
The covariance ellipse represents the variation within the data in terms of £2¢ from the
mean. The major axis of the ellipse points in the direction of the maximum variance and
the minor axis points in the direction of the minimum variance in the data. The angle of
orientation and the length of major and minor axes are derived from the eigenvectors
and eigenvalues of the covariance matrix generated from the horizontal and vertical
movements of the articulators. Let A = [z1;, 1], ¢ = {1,2,..,m1}, where ny is the
number of samples, represent the traces of movement of an articulator in horizontal =
and vertical y directions.

e Let pg, and py, be the means of 21, and y, respectively.

Calculate the covariance between %y, and y1,, Ryy = Cov(z,, ¥1;)-

Compute the eigenvalues, s1, so and eigenvectors, vy, va of the covariance, Ray.

cos(6)
sin(6)

Define a unit circle, [ Z: ] = [ ], where § = 0: 2.

e Stretch the circle in the 2 direction by s; and in the y direction by s9, i.e.,

[c; ] _ [ 81 cos(6) ]

4 s98in(6)

(4
o Rotate the ellipse in the direction given by the eigenvectors, [ c% ] = [ ax508(f) ] [v1 val.

cy s98in(8)
; : X 7 _ [ b

e Center the stretched, rotated ellipse at the mean, (pg,, i1y, ), [ v ] = [ i ]
Y1

e Plot X and Y.
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B.2 Conditional distribution

Let X be p dimensional and distributed according to N(u, ¥), where ¥ is nonsingular.
Let X be partitioned into g and p — g component subvectors

x(@
X=(x®) :

)
(v
3 ( e )

where p(!) is g dimensional and p(!) is p — ¢ dimensional. Let the covariance be

T g ]
5
{ o1 X

and their mean be

where the dimensionality of 211 isgxq, Xn is(p—¢) x(p—¢), X12is ¢ x (p—q)
and X1 is (p—q) X q.

The subvectors X() and X(? can be linearly, nonsingularly transformed to two inde-
pendent subvectors

YD = x® 4 BxX® (B.1)
Y® = x@ (B.2)

Since the vectors Y() and Y(? are assumed to be independent, the covariance between
them is set to zero to solve for B,

YV — YD) Y@ — gY@y = 0 (B.3)
= Xp+BE»y = 0 (B.4)

Therefore, B = —21225"21.

v
v=(3)

The vector Y has a normal distribution with mean

Hence,

I —XEp3
(1 = )x )

Y@ )
f(33) - «(5 2% )x
I =35t @
= (0 12 22 ) ( #‘(2) )’ (B.?)
(1)_5 -1,,(2) v®
- () -(R), e
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and covariance

(YD vy — vy (YD —vO) (Y@ — @)
TN} = [ E(YD —y@) (YD _yOY £(y® _y@)y® _y@y |1 (B9
_ [Bu—0p23Sy 0
. [ : gl (B.10)
The distributions of the subvectors Y1) and Y@ are given as
foW) = #EO;u® - 2pulu® 5y - pnsing), (B.11)
6P = AP, By) (B.12)

The joint density is given as
F,y®) = fy") 1) (B.13)

The density of X() and X® can be obtained from f(y(®),y®) as

g(x®, x®) = ¢ [y@) (x®, x®@), 3@ (xO), xcz))} J(x®, x@) (B.14)

where y (x(), x(?) denotes that y(*) is a function of both x®) and x(2 given by
eq.B.1. Also J(x) is the Jacobian of the transformation given as

YD /82D oy /5

1 2y
J(x®D, x®)) = mod ay® /82D oy /()

(B.15)

After substituting value of Y and Y from eq.B.5 in eq.B.15. the value of the
Jacobian is found to be 1. Therefore eq.B.14 becomes

9=, x®) = fly® (D, x@), y ) (xD, x)] (B.16)

The conditional density of X(*) given X is
a(xM, x(2)
9(x®@)
= fy¥) (B.18)

g(xV[x?) (B.17)

2
g(xWx®) = (x{I); p® 4 5,32 (%) — u )), B — 2122521221) . (B.19)

The mean i and covariance ¥ of the conditional distribution are

m o= 0+ BB e® - u®) (B.20)

5 = 211—21222-21221 (B.21)

Note that the mean rn is estimated using samples in x(? where as the covariance S is
independent of x(?,
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B.3 Significance tests

Various statistical significance tests were used to analyse the articulatory data through-
out this report. This section provides a small introduction to the procedure used in
testing for statistical significance.

B.3.1 A brief introduction to significance tests

There basic steps in the procedure used for hypothesis testing using the available data
for determining the statistical significance of the given a some data are:

¢ stating the null hypothesis,
e assuming the research hypothesis,
e choosing the level of significance and therefore the critical value,

e computing the test statistic from the data and determining new level of sig-
nificance by comparing it with the critical value,

e accepting or rejecting null hypothesis.

(to be completed...)

B.3.2 Kolmogorov-Smirnov goodness-of-fit test

Let F(zp), zp € Xp, be the distribution of the position population from which the
samples are derived. Let Fp(zp) be the hypothesized distribution, here a univariate
Gaussian. Therefore

z
V2
where erf(.) is the Gauss error function, and z = ff‘-gﬂ’- is the z score which is the

)
difference between each sample and the mean divided by the standard deviation. A
positive z score represents that the sample is greater than the mean and viceversa.

Fo(wp) = 5(1+erf( =), (B.22)

e The null hypothesis assumes that there is no difference between the observed
distribution of the samples and the hypothesised distribution i.e., Hp : F(zp) =
F[}(:B p).

e The research hypothesis states that the two distributions are significantly differ-
ent, i.e., Hy : F(zp) # Fo(zp).

e Select the level of significance, @, which is the amount of risk associated with
rejecting the null hypothesis when it actually is true and is expressed in terms of
a percentage. For example, a significance value of 0.05 implies that there is a 5%
chance of rejecting the null hypothesis when it is actually true.
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e The hypothesised cumulative distribution of the samples is calculated as given by
the eq.B.22.

o The observed cumulative step function of the sample F(zp) is calculated, where
F(z) = k/n, where k is the number of samples less than or equal to z, given n
number of samples.

e The maximum absolute difference between the two distributions, d = max|Fy(zp)—
F(zp)| is computed.

e The observed difference d = dy,) is compared with the critical value dg and null
hypothesis is accepted or rejected accordingly. The value of d..; depends on the
number of samples in the group n and the level of confidence a. If dva < derit, the
null hypothesis is accepted and it is considered that the observed difference d.,
is only due to chance. Therefore, the probability of rejecting the null hypothesis
by chance is higher than the level of significance .. Otherwise, if dya > derie, the
null hypothesis is rejected and the probability of rejecting the null hypothesis by
chance is less than the level of significance a.

B.3.3 Pearson’s test of correlation

Let R be the correlation between the samples of two groups A and B. Let the samples
in group A be denoted as 24 and in B be zp.

e Null hypothesis assumes that there is no correlation between the variables, i.e.,
Hy:R=0

e Research hypothesis states that there is a correlation between the variables, i.e.,
Hi:R+#0

e Set the level of significance a that determines the probability of getting a value
of R other than zero when the null hypothesis is true. For example, if @ = 0.05,
there is one in twenty chance of rejecting the null hypothesis by chance when it
actually holds true.

e (Calculate the correlation coefficient given n number of samples

Tl 2. 2ATB — S — —. (B.23)
V(D ag — Zeally (742 — Czal

e For sample sizes larger than 100, significance of the R is obtained by computing
the t statistic which determines the probability of getting a non zero value of R
by chance from a population whose correlation R is zero

b Byn—2

== (B.24)




140 Appendix B. Algorithms

e The obtained t value, t = £, is compared with the critical value £ to determine
the significance of the correlation. The critical value depends on the level of
significance @ and the number of samples n. If ¢ < f.y, the null hypothesis is
accepted and the probability of rejecting the null hypothesis by chance is higher
than the level of significance a. Alternatively, if ¢ > te, the null hypothesis is
rejected and the probability of rejecting the null hypothesis by chance is lower
than the level of significance c.

B.3.4 Independent samples t-test

Let Ay = [z1(?)], ¢ = {1,2,..,m1} be the samples in group-1 where 7; is the number of
samples in the group. Let Az = [z2(3)], 7 = {1,2,..,n2} be the data in group-2 where
ng is the number of samples in the group. Let the population mean of the group-1 be
f1 and that of group-2 be jis.

e The null hypothesis assumes that the means of the populations represented by
the groups are equal, i.e., Hp : i1 = [io.

e The research hypothesis states that there is a significant difference between the
means, i.e., H : fi1 # fig.

e Let a be the level of significance. The level of significance determines the proba-
bility of rejecting the null hypothesis by chance when it actually holds true.

e Let 1, po be the sample means and s?, s3 be the sample variances of the two
groups respectively.

o The t-test assumes that the variances of the two sample groups are equal. To test
for the same, Levene’s statistic is computed, the procedure for which is given in
sectionB.3.4.

e The t-statistic is computed as the difference between the observed and the hy-
pothesised differences between the means with respect to the standard error of
the difference

(p1 — p2) — (i — fi2)
" estimate of standard error (B0}

e Under null hypothesis, the difference between the population means is zero.
Therefore,

p1 — 2
§= B.2
estimate of standard error (B.26)

e The standard deviation of the sample mean is an estimate of the amount by which
the sample mean differs from the population mean and is known as the standard
error. The standard errors of the sampling distributions are given as

81

g

52
SEp = —. B.27

SE; =
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e The variance of each sampling distribution is the square of the corresponding
standard error given in eq.B.27. The variance of the sampling distribution.of
differences is found using the variance sum law as

32 5.2 w
SE:TPI—EI'PE = o o if ny = ng (B.28)
SER = (uDepon bl ifm #ng (B.29)
(B.30)

e The standard error of the sampling distribution of the differences is obtained by
taking the square root of the variance

32 2 .
BB sy = /EJI +““‘:_§ if n; =ng (B.31)

SE2 SEZ .
SEpooled — EE 4 "fn_ga if ny 7é kD) (B32)

e Substitute the estimate of the standard error given by eq.B.31 in eq.B.26 to obtain -
the test statistic. If the sample sizes are equal,

p1 — pho

[{} - é} (B.33)

t =

e If the sample sizes are unequal, the pooled variance estimate is used in the com-
putation of the test statistic

e . . ’”’12 (B.34)
~1)s2-+(ng—1
Vet [+ 4]

e The obtained value of t, ¢ = i), is compared with the critical value . to
determine the significance of the difference between the means. The critical value
depends on the significance level o and the number of degrees of freedom, here,
ny +ng — 2. If £, < e, the null hypothesis is accepted and it is assumed that
the observed difference between the means ¢ is by chance. The probability of
rejecting the null hypothesis here would be larger than the level of significance.
Alternatively, if tya1 > tert, the null hypothesis is rejected and the probability of
rejecting the null hypothesis by chance is smaller than the level of significance.

Homogeneity of variances

One of the important assumptions of the independent samples t-test is the homogeneity
of variances (Field, 2005), i.e., the variances are equal. Let the number of groups be
equal to M. The Levene’s F statistic is used to determine the significance of the equality
of variances of the two groups. Let the grand mean obtained by considering 71 + ng

samples be
_ 2iZm(d) + 35 ()
n1 + ng )

7 (B.35)
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The null hypothesis assumes that there is no significant difference between the
variances of the populations represented by the two groups, i.e., Hp : 5 = 82.

The research hypothesis states that there is a significant difference between the
variances, i.e., Hy : §% # &2.

Let « be the level of significance. For example, if & = 0.05, there is one in twenty
chance of rejecting the null hypothesis by chance when it actually holds true.

The weighted sum of squared difference between the mean of each group and the
grand mean, i.e., the variance between groups is calculated. This value is called
the model or hypothesised sum of squares denoted by

SSx = na(pz — )2 +ma(pm — p)* (B-36)

The variance within the groups, i.e.,weighted sum of squared differences of each
group considering the group mean is calculated. This value is called the residual
sum of squares and is denoted by

T ST B (B.37)
i=1 i=1
= (ng—1)s2 + (nmy —1)s. (B.38)

The total sum of squares is the sum of the hypothesised sum of squares and
the residual sum of squares, SSt = SSy + SSg. This value represents the total
variance in the samples and is computed by calculating the difference between
the grand mean y and all the samples in group-1 and group-2 and summing the
squared difference

SSy = ZI: (@1(8) — p)® + i (@2() — ). (B.39)
i=1 i=1

The hypothesised mean square value and the residual mean square value are
computed using the sum of square values

SSy
(M —-1)’
SSr
(n1—1)+(nz — 1)

MSy = (B.40)

MSg (B.41)

The F' ratio is obtained by dividing the hypothesised mean squares by the residual
mean squares
__ M8y

F_MSR'

(B.42)
The obtained value of F = F,; ratio is compared with the critical value Fey to
obtain the significance of difference between the variances. If Fy, < Fc, the null
hypothesis is accepted and the observed difference in variances between the groups
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is by chance. The probability of rejecting the null hypothesis by chance would
then be higher than the level of significance. If F, > Fey, the null hypothesis
is rejected and there exists a difference in variances between the groups which is
not by chance. The probability of rejecting the null hypothesis by chance would
then be lower than the level of significance.

Dealing with unbalanced data

If the number of samples in the two groups of data, n; and ns are unequal, this imbal-
ance effects the calculation of residual sum of squares (eq.B.37) and in turn effects the
F ratio (eq.B.42) if the variance of the group with large number of samples is higher.
The residual sum of squares value would be more biased towards the group which has
higher number of samples and the F ratio would be conservative as a consequence.
There are two approaches to reduce the impact of large sample size associated with
large variance(Field, 2005):

1. Brown-Forsythe F ratio

2. Welch F ratio

In the Brown-Forsythe’s approach (Field, 2005), the effect of the unbalanced data sets
is reduced by considering the variances weighted by the sample sizes as a proportion of

the total sample size in the computation of the residual sum of squares. Eq.B.37 can
be rewritten as

s = (1- 525 ) S a9 -+ (1= 2) S0 - . @

The residual mean square value is recomputed using the Brown-Forsythe's residual sum
of squares, SSBF, as

MSBF = "R (B.44)

The F ratio calculated using the new estimate of residual mean square value is known
as Brown-Forsythe F ratio

MS
P H

The Welch’s approach (Field, 2005) is based on using the weighted means and variances
in calculating the F' ratio. The weights associated with each group are the reciprocals
of the squared standard errors, i.e., the variances. Therefore, more emphasis is given
to the sample mean that is closer to the population mean. The weights for the two
groups are given as

W =—5; Wy=-—s5. (B.46)
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The Welch grand mean is computed as

2
W i1 itk (B.A7)
D Wi

The model sum of squares given by eq.B.36 is modified to incorporate the weights and
the adjusted grand mean

7

2
SSH = wi(ui — p"). (B.48)
i=1
The modified hypothesised mean square value is computed using the Welch’s sum of
squares value
S5y
M-1

MSY = (B.49)

where M is the number of groups.

The residual sum of squares is modified and expressed solely interms of the weights and
is denoted by A

? (1_—21521.”&}
A=3 ‘=1M2 j‘;l . (B.50)

The Welch's F ratio is then given by

w_ sy
- 1 2AEM—-2! 2

The Welch’s F ratio is more robust to the imbalances in the sample sizes of the groups.

(B.51)
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Supporting plots and tables

C.1 Identification of articulatory constraints

Table C.1: 1D dependent and redundant articulatory coordi-
nates identified using ACIDA algorithm at IPA level of com-

plezity for male speaker.

Phones Dependent coordinates Redundant coordinates
[p] ULg LLg LIy LIy TTq TTy TBy TDy Vy | TBy TDy Vi
[b] ULy LLg LI; TTy, TBy TDy Vy LL; TTy TBy TDy Vx
[m] ULy LLg LIy LIy TTy; TTy TB; TBy | -
TDg TDy Vy
[t] ULy LLg LLy Llz LI, TBy TBy TDy ULg TTx TDy Vg Vy
d] ULy LLg LLy LIy LI, TBy TBy TDg TDy | ULy TTy Vi Vy
[n] ULy LLg LLy LI LIy TTg TBy TBy TDg | ULy TDy
Vy
(k] ULy TTy TBy TBy TDy Va Vy ULg LLg LLy LIz LIy TTg
[g] ULy LLz TTy TBg TBy TDy Vg Vy ULy LLy Li; Liy TT,
(o] ULy LLy TTy TTy TBy TBy TDg Vy | ULg LLy LIz LI,
[f] ULy LLg Lz LIy TTy TTy TB; TBy | Vg Vy
TOL Thy
v ULy LLg LI LIy TTy TBy TDy Vy TTy THe TDs Vg
0] ULy LLg LIy LIy TBy TBy TDg TDy Vg | ULy Vy
0] ULg ULy LLg LLy LI LI, TBg TB, TDy | Vy
O, Vi
[s] ULy LLg LLy Liy TBy TBy TDy TDy | ULg
Vi ¥y
2] ULy LLg LLy LIz TBy TBy TDgy TDy | ULy Vy
Vg
1l ULg ULy LLg LLy LIz TTz TBy TDg | -
Va Yy
3] ULg ULy LLg LIy TB, TBy TDy Vg Vy | -

145
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Table C.1 continued from previous page

[19]
[18]

[o1]

ULy ULy LLg LIy TTy TBy TDy Vg Vy
UL ULy LLg LIy TTy TB,

ULy ULy LLy Li; Li, TBy TBy TDy
TDy

Phones Dependent coordinates Redundant coordinates
(1] ULz ULy LLg LLy LI TTy TDz TDy | Vg
Vy
[&] ULz ULy LLy LLy LI; TB; TDy TDy | -
Vz Vy
] - ULy ULy LLy LLy LI, LI, TT, TTy TBy
TBy TDz TDy Vg Vy
(1] ULy LLg LLy TTz TTy TD; TDy ULg LI, LIy TBy Vg Vy
[w] ULy LLg LLy TT; TTy TB; TBy TD, | LIy Liy Vg
TDy Vy
(3] ULy LIz LI, TTy TDy Vy ULy LLg LLy TT; TBg TDy Vg
[b] - ULg ULy LLg LLy LIy LIy TTy TTy TB,
TBy TDg TDy Vg Vy
E3)] ULy LLg Llg LIy TTy TBy ULy TT; TBy TDg TDy Vg Vy
(€] ULy ULy LLy LI Lly TTy TBg TTz TBy TDz TDy Va Vy
[1] - ULg ULy LLg LLy Ll L1y TT; TTy TBy
TBy TDy TDy Vi Vg
[iz] ULy ULy LLy LIy TTy TBg TBy TDg | Li; Vg
Vg
(i] ULy LLz TTy TBz TBy TDz Vy ULg LLy LIy LIy TTy Vg
[o] - ULz ULy LLg LLy LI, LI, TTy TTy TBs
TBy TD, TDy Vg Vy
EZ ULy ULy LLy LI, LI, TT, TB, TTy TBy Thy TDy Vi Vg
[a] - ULy ULy LLy ELy LIy Lly TTy TTy TBy
TBy TDy TDy Vg Vy
[a] ULz ULy LLg LIz LIy TTy TTy TDy | Vg
TDy Vy
(0] ULy LI; LI, TTy TDy ULg LLg LLy TTy TBy TDz Vg Vy
[2] ULz ULy LLgy Ll Ly TT,; TBy TDy | Vg Vy
TDy
[v] . ULz ULy LLg LLy LI LIy TTy TTy TBy
TBy TDy TDy Y Vi
[u] ULy LLy TTy TBy Vy Vy UL, LLy LI; LI, TT,; TB, TD,
[a1] ULz ULy LLy LIz LIy TTy TB; TBy | TTy
TDg Vg Vy
[a1] ULz ULy LLg Liz LI TTy TBy TTz TBy TDx TDy Ve Vg
[e7) ULy ULy LLg LI; LIy TTy TBy TTyz TBy TDy TDy Vg Vy
le1] ULy ULy LLg LIy TTy TBy TBy TDy | Llp Vg
Vy
2] ULz ULy LLg Lig LIy TTy TTy TBg TBy TDy TDy Vg Vy
€9 ULg ULy LLg Ll; LI, TTy TTz TBg TBy TDy TDy Vg Vg

Ll 'TBy TDy
Ll Ty Thy TDy Thy Vi Vi
Va ¥

Continued on next page...
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Table C.1 continued from previous page

Phones Dependent coordinates Redundant coordinates
[o1] ULy LLg Lly Ll; TT; TTy TBy TBy | Ve
TV
[ou] - ULy ULy LLg LLy LI LI, TTy TTy TBy
TBy TDy TDy Vg Vy
[ou] UL LlLy Ly Liy TTy TTy TBy TDz | TBy Va
TDy Vy
[av] ULy ULy LLy LIy LIy TBy TBy TDg Vg | TTy
Vy
[av] ULg ULy LLg LLy LIy LIy TTy TTy TDg | Ve
Ty Vy
Table C.2: 1D dependent and redundant articulatory coordi-
nates identified using ACIDA algorithm at IPA level of com-
plezity for female speaker.
Phones Dependent coordinates Redundant coordinates
[p] ULy LLg LLy LI, TTy TBy Ll TTy TB: TD: TDy Vu Vy
[b] ULy LLg LIy LIy TTy TB, TDy Vg Ty THy Thy Vy
(m] ULy LLg Lig Lly TTy TBy TDy TDy Vg | TTy TBx Vy
[t] ULy LLy LLy Liy TTg TBz TBy TDy | ULy TDy Vy
Vg
[d] ULy LLg LLy LIz LIy TTgy TBy TDz Vg | ULy TBx TDy Vy
[n] ULg ULy LLy LI; LIy TTy TBy TDy Vg | LLg TBg TDy
Vy
(k] LLg LIz TBy Vg ULy ULy LLy LIy TTy TTy TB; TDg
Vy
2] LI; TBy Vg Vg ULz ULy LLy LLy LIy TTy TTy TBg
TDg
[n] LLg LI; TBy Vg Vy ULz ULy LLy LIy TTy TTy TBy TDx
[f] ULz ULy Llg LIy TTy TD; TDy Vi PP T8 TRy Vy
[v] ULy LIz Liy TTy TDy Ve ULy TTz TBz TBy TDg Vy
[6] ULy LLy Lig LIy TBy TDg TDy Vg Vy | ULy LLg
[0] ULy LLy LIy TBg TBy TDg Vg Vy ULy LLg LIz TDy
[s] ULy LLy LLy Liy TTy TBy TDy Vg ULg TDy Vy
[z] ULy LLy LLy LI, TBy TBy TDg Vg Vy | ULg TDy
[ ULy ULy LLg LLy Llz TBy TBy TD; | TDy
Ve ¥y
[3] ULy ULy Liy TTy TBe TOy Va Vi LLy
] ULy ULy LLg LLy LIy TBy TBy TD; | TDy
Va Vy
[ds] ULg ULy LLg LLy Ll; TB; TBy TD; | TD,

Va Vy

ULy ULy LLy LLy L, LI; TT; TTy TBy
TBy TDs TDy Vg Vy

Continued on next page...
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Table C.2 continued from previous page
Phones Dependent coordinates Redundant coordinates
(1] UL, LIy TTy TBz TD, ULy LLg LLy LI; TBy TDy Vg Vy
(w ULy LI LI, TTy TBy TDy Vg Vy Llix Tz Thy
il ULy Lly TTy TBy TDy Vi ULg LLg LLy LIz TTy; TDg Vy
(h] ULy LLg LLy Liz LIy TTy TBy Vg Vy | ULz TBy TDz TDy
(=] ULy ULy LLy LIy LIy TTy TBy Vg Vy | TTz TBg TDs
€] ULz ULy LLg LIy TTy TDy Lis TTy TBs TBy TDg Vi Vy
[1] - ULg ULy LLg LLy Ll LIy TT, TTy TBg
TBy TDz TDy Vg Vy
iz] ULy Lly TTy TBs: TDy Va ULy LLg LLy LIz TTg TDg Vy
[i ULy LLg LLy LIy TTy TBy TBy TDg | ULy LIz Vy
Ve
0] - ULz ULy LLg LLy Ll Lly TTy TTy TBg
TBy TDz TDy Vg Vy
[o] Ulg 1y LI Ti; T8y THy Ve Vi ULy TTz TBz TDg
[a] Lly TTy TByz TDy Vg ULg ULy LLg LLy LIz TTy TDg Vy
[a] ULy ULy LLg Lip LIy TTy TTy TB; | LLy Vy
TDy Vg
(o] ULy ULy LI LIy TTy TTy TB; TDy Vg | LLg LLy Vy
[0] UL, ULy LIy LIy TTy TTy TBy Vp Vy | Lls
[u] - ULg ULy LLy LLy LI LIy TTy TTy TBy
TBy TDgz TDy Vg Vy
[u] ULy LIy TB; TDy Vg ULg LLg LLy LIz TT; TTy TD; V,
[a1] UL ULy LLg LIy Ly TTy TBy TDg Vg | TBg
Vy
(e} ULz ULy LLg Ll; LIy TTy TDy Vg TTgz TBg TBy TDy Vy
[e1] ULy ULy LLg Ly TTy TB; TDy Vg LIz TTz TDz Vy
[e1] ULy ULy LLg LIy TTy TTy TBy TDg | Ll Vy
Vz
[ea] ULy LLg LLy TTy TBy TBy TDs Vi Liy TTy TDy Vy
[ea)] ULg ULy LLg LLy TTy TDy Vi Llg TTz T Thy Vi
[19] ULy ULy Lly TTy TBy TDy Vi LLg LIz TTy TDy Vy
[19] ULg LLy LI, TTy TBy TD, LLy LIy TTy TBy TDy Vy Vy
[01] ULz LLg LIz LIy TB; TBy TDg Vy Vy | ULy
[o1] LLy LLy LIy TBy Vg Vy ULg ULy Ll TTg; TTy TBg TDy
[ou] - ULg ULy LLg LLy LI, LIy TT,; TTy TBy
TBy TDz TDy Vg Vy
[ov] . ULg ULy LLg LLy LI LIy TTy; TTy TBy
TBy TDg TDy Vz Vy
[aw] ULg ULy LLg LLy LIg LIy TTg TBy TDg | TBg
Ve Vy
[av] ULy Lip Ly TTy TB, TDy Vg ULy LLg Ll TTy TDy Vg
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Table C.3: 2D dependent and redundant articulatory coordi-
nates identified using ACIDA algorithm at IPA level of com-

plezity for male speaker.

Phones

Dependent coordinates | Redundant coordinates

[p]
[b]
[m]
[t]
[d]
[n]
(k]
(gl
0]
[£]
[v]
(6]
[0]
[s]
(2]
(/]
(3]
[tf]

LITT TB TD V

LI TT TB TD V

LI TT TB TD

UL LL LI TB TD
UL LL LI TB TD
UL LL LI TB TD
UL LL TTTB V
UL LL TT TB V
UL LL TT TB
ULLITT TB TD V
ULLITT TB TD V
ULLITB TD V

UL LL LI TB TD
UL LL TB TD

UL LL TB TD
ULLLTBV

UL TB V

UL LL TB TD
ULLLTDV

UL LL LI TB TD
LL LI TB TD V
ULLLLITT TD V
UL LL LI TB TD

LI
LI
LI

<

v

ULLLLITT TBTD V
v

ULLITT TB TD V
ULLITT TB TD V

ULLLLITD V
ULLLLITTTD V

ULLITTTD V
UL LL LI TT TD
ULLITT TD V

ULLLTTTBV

UL LL LI TT TB TD V

UL LL LI TT TB TD V
ULLLLITTTBTD V
ULLLLITT TBTD V

v

UL LL LI TT TB TD V
LI

ULLITTTB V
ULLITT TB TD V
ULLITTTB TD V
ULLITB TD V

Continued on next page...
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Table C.3 continued from previous page

Phones | Dependent coordinates | Redundant coordinates
[ed] | ULLITT TBTD V
[ee] | uLLL TT TB TD V
[18] UL LI TB TD V
[10) UL LI TT TB TD V
[o1] UL LI TB TD V
[o1] UL LI TT TB V
[ou] UL LL LI TT TB TD V
[ov] |LLLITTTBTD V
[av] | ULLITT TDV
[av] | ULLLLITT TD V

Table C.4: 2D dependent and redundant articulatory coordi-
nates identified using ACIDA algorithm at IPA level of com-
plezity for female speaker.

Phones | Dependent coordinates | Redundant coordinates
[p] LL LI TT TB TD v
[b] LI TT TB TD V -
[m] LI TT TB TD V -
t] UL LL LI TB TD V -
(d] UL LL LI TB TD V -
[n] UL LL LI TB TD V -
(k] UL LL LI TT TB V -
lg] UL LL LI TT TB V -
) UL LL LI TT TB V -
[f] UL LI TT TD V TB
[v] UL LI TT TD V B
6] ULTDV -
[3] UL LL LI TB TD V -
8] UL LL TB TD V -
2] UL LL TB TD V -
1 UL LL TB TD V -
(3] UL LL TD V -
[t7] LL TB TD V -
(k] UL LL TB TD V -
1] - UL LL LI TT TB TD V
[1] UL LL LI TB TD v
[w] LI TT TB V -
(3] UL LL LI TD V -
(h] UL LL LI TB TD V -
[ee] UL LI TT TB V -
[e] UL LI TT TD TB V
[1] - UL LL LI TT TB TD V
[iz] UL LL LI TT V -

Continued on next page...
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Table C.4 continued from previous page

Phones

Dependent coordinates

Redundant coordinates

[i]
[0]
[e]
[]
[a]
[0]
[o]

UL LL LI TT V
UL LI TT TD V
ULLITT TD V
ULLITT TD V
ULLITT TD V
ULLITTTB V

UL LLLITT TB V

ULLLLITT TBTD V

LL
LL
LL

ULLLLITTTB TD V

ULLLLITB TD V
ULLITT TD V
ULLITT TD V
ULLITT TD V
UL LL TT TB V
ULLITTTD V
LLLITDV

LL LI TT TB TD
UL LI TT TB

UL LL LI TT TB

ULLLLITBV
ULLI TT TD V

TB

LL

v
ULLLLITT TB TD V
ULLLLITT TB TD V

LL
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Consonants Expected (IPA) Identified (male) Identified (female)
[p] ULy LLy Uy Lby, ULy
[b] ULy LLy ULy LLy ULy LLy
[m] ULy LLy Vg ULy LLy Vg LLy ULy
[t] PPy Ty TTy TTy Lly
[d] i T 5 o TTy TTy
[n] TPy TTs Vi TPy Ve TTy
(k] TDy TDy TDy
gl TDy TDy Thy
[n] TDy Vg Thy Vis TDy
If] LLy LLg LLy ULy LLy LLg
[v] LLy LLy LLy ULy LLy LLg
(6] TTy TTs TPy TPy Iy TTy TTy TBy
8] TTy TTy TT; TTy Ty L,
5 Ty TTy L1, TTy TT: Liy TTy TB,
Y Iy Y y TTy
2] WLy T Ll TT, T Li; TT TTy
l) TTy TTp TTy TBy LIy TDy TTy LIy TTz
3] TTy TTs Ll TTy TDy TTy LLy TTy Ly TBy TDy L,
[tf] TTy TTy Ll; TTy TBz TBy TPy Lly TTy
(] T T TTy TBy; TTe Liy Ll TTy T
[ TTy TTx - -
[] TTy TTe TB. TTy
[w] ULg LLg, TD UL UL, TDy LL
y Y g Ay iy
3] TBy TBg TBy TBy
[b] = B TTy

Table C.5: Espected (from IPA) and identified 1D critical coordinates for consonants

for male and female speakers.
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Vowels Expected (IPA) Identified (male) Identified (female)
{ee] (near-open) T LLy LLy TDy
[e](open-mid) TTy LLy LLy
[1](close) 2 5 o - -
[iz] (close) TTy TDy LLy TTy TBy
[i] (close) Ty TDy TDy TTe
fol(mid) T8, . -
[#] (rhotacized) TBy LLy TPy Ly
[a](mid) TBy - TBy
[a] (open) TDy LLy TBy TBy TBy TDg
[b] (open rounded) TDy ULy Ly TBy TBy TDy
[o] (mid rounded) TDy ULg LLg LLy TBy TTy TD; LLy TDy TBy
[u] (near-close rounded) TDy ULy LLg - -
[u] (close rounded) TDy ULy LLg TDy TBy

Table C.6: Expected (from IPA) and identified 1D critical coordinates for front, mid
and back vowels for male and female speakers.

Diphthongs Expected (IPA) Identified (male) Identified (female)

fad [a] (front open) TTy LLy TDy TTy LLy TDy
= 1] (front close) TTy LLy LLy
e [e] (front close) TLy; LLy LLy TBy
© [1] (front close) TTy LLy TTy TDy TDy LLy TBg
lé4] [e] (front mid) Ty LLy LIy ULy

[0] (center mid) TBy LLy TBy LIy
o] [1] (front close) Ly LLy TTg TBy LLy

® " [o] (center mid) TBy Ly ULy

for [0] (back mid rounded) TDy UL; LLg TTy LLy TTy PTy Ty TTy LLy
o [1] (front close) TTy LLy TDy ULg TDy
[ou] [o] (back mid rounded) TDy ULy LLg - -
" [u] (back close rounded) TDy UL, LL, ULy LLy -
- [a](front open) TPy LLy TDy TTy T'Ty TDy

[u] (back close rounded) TD, ULy LLg TBy TBg TBg

Table C.7: Expected (from IPA) and identified 1D critical coordinates for diphthongs
for male and female speakers.
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Consonants Ixpected (IPA) Identified (male) Identified (female)
lp] UL LL UL UL

[b] UL LL UL LL UL LL
[m] UL LL V UL LL V LL UL

[t] T TT TT

[d] TT R TT

[n] TT V TT V TT

(k] TD TD TD

gl TD TD TD

9] TD V TD VV TD

[f] LL LL LL

[v] LL LL LL

[6] TT TT LL TT TB LL LI
[8] T TT PP

[s] T TT LI LI TT

2] T TT LI LI TT

i i TT LI TD LI TP

[3] i II TT TD LL TT LI TB
[t TT TT LI LI TT UL
(%] s TT TB LI LI TT

m T - :

[4] TT i i

[w] UL LL TD UL TT UL TD LL
[i] TB TB TB TT
[h] - T T

Table C.8: Eapected (from IPA) and identified 2D eritical coordinates for consonants
for male and female speakers.
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Vowels

Expected (IPA) Identified (male) Identified (female)

[e] ( near-open)
le] (open-mid)
[1] (close)

[iz] (close)

[i] (close)

[o] (mid)
[2¢] (rhotacized)
[a] (mid)

[a) (open)

[o] (open rounded)

[0] (mid rounded)

[u] (near close rounded)
[u] (close rounded)

TT LL LL TD
FT LL LL

T - &

T TB TT TB TD
7T TB TB TD
TB - -

TB = TB LL
TB & B
D LL TB B

TD UL LL TB TB

TD UL LL TB LL TD LL
TD UL LL - “

TD UL LL ™D TD

Table C.9: Exzpected (from IPA) and identified 2D critical coordinates for front, mid
and back vowels for male and female speakers.

Diphthongs Expected (IPA) Identified (male) Identified (female)
fad] [a] (front open) TT LL TD TT
[1} (front close) ik 3 LL LL
[ [e] (front close) TT LL LL TB
B [1} (front close) TT LL TT TB LL
feo] [e] (front mid) iy LL LI TD
? [o] (centre mid) TB LI TB
fie] [1] (front close) TT 9 5 TB TT UL
® " [o] (centre mid) TB LL UL
o] [o] (back mid rounded) TD UL LL LL TT TD V LL
" [1] (front close) i3 i LL TD TD V
] [o] (back mid rounded) TD UL LL - -
! [v] (back close rounded) TD UL LL UL -
] [a] (front open) TT LL TB TT TD
[u] (back close rounded) TD UL LL "TB TB

Table C.10: Ezpected (from IPA) and identified 2D eritical coordinates for diphthongs
for male and female speakers.
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Torgue ip Tongue i

b b

y position {mm)

44 48 52 ] 48 50 52 54

8 48
% position {mm) x position {mm)

Figure C.1: Articulatory vowel quadrilaterals for TT (top), TB (centre) and BOTTOM
(right) obtained by joining the model means of vowels closest to the primary cardinals
in the database for male (left) and female (right) speakers. The standard errors of
model means are depicted using covariance ellipses for vowels for which the articulatory
coordinate is critical (thick red) and not critical (thin black).
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Diphthongs Monophthongs
10
0
5-10
$
ia
23
e —From
: ""—‘T? J
ki 0 20 20 80
X position (mm)

y position (mm)

20
X position (mm)

Table C.11: Comparison of diphthong and monophthong realisations for male speaker.

Diphthongs from top to bottom :[a1], [e1], [ea], fi3].
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Diphthongs

Y position (mm)

Monophthongs

Table C.12: Male speaker comparison plots. Diphthongs from top to bottom: [o1], Jou],

[av].
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Diphthongs Monophthongs

20 0 20 60

20
X position (mm)

AT

il [i]
Aliaiig

0

20 40
X position (mm)

Table C.13: Female speaker comparison plots. Diphthongs from top to bottom :[a1], [e1],
fea), fo-
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Diphthongs Monophthongs

=]

¥ position (mm)

y position (mm)

x position (mm)

Table C.14: Female speaker comparison plots. Diphthongs from top to bottom: o),
fou), [av].
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C.3 Comparison with exhaustive search
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39 8.8 8.8

32 8.6 8.6

LLy ULy Vx 48 8.6 8.3

[t] TTy 49 49 8.7 8.7
[d] TTy 46 46 8.9 8.9
[n] TTy Vx 44 44 8.8 8.8
[k] TDy 33 33 b Il
[g] TDy 35 35 1.2 1.2
[n] Toy Vx 39 38 a.7 8.7
[fl LLy ULy 48 49 1.6 1.3
[vl LLy ULy ULx LLy 46 46 1.6 0.9
[8] TTx TIy LLy TIx Llx TTy 44 45 8.9 0.8
(@] TIx Ty I 2 2 12 12
[s] LIy TTx TTy TIx TTy LIy 30 38 8.9 8.9
[z] Ly TTix TTy LIy TBx TTy 29 29 1.2 1.2
[fJ1 TTy TBx LIy Tpy LIy TTy TTx TBy 25 26 1.5 0.7
[3] Lly TIy Tby TTx Lly LIy TBx TBy 245 432 0.7 1.4
[f] LIy TTy TBx TBy LIy TTx TIy TBy 24 27 8.8 0.6
[§] TTy TBy TTx LIy LIy TTx TTy TBy 25 25 8.9 0.9
[1] LI 45 43 1.6 1.4
[4] TBx 49 49 0.9 8.9
[j1 Ty TDy 44 4 8.7 0.7
[h) P ;65 13 13
[=] LLy LI 47 48 1.2 0.8
[e] LLy 46 46 8.5 8.5
[1] 47 47 8.8 8.8
[i:] TDy LLy TTx LLy TBx TBy 25 28 8.9 8.6
[i]  Toy TBy 54 54 1.5 1.5
[2] 48 48 8.3 8.3
[2] LLy 8o -] 1.2 12
[a] 43 43 8.9 8.9
[al LLy TBy TBx LIy TDy 34 45 0.6 1.2
[o] TBy Ty 40 4% ‘13 132
[2] LLy TBx TTy LLy TTx TBy 41 48 8.7 8.6
[o] 56 56 1.5 1.5
[u] Toy 43 43 1.4 1.4
[azx] LLy TDy 39 39 1.2 1.2
fax] LLy 53 53 6.8 6.8
[ez] LLy 58 58 1.8 1.8
[ex] LLy TTx TDy 27 27 8.3 8.3
[ea] LLy LIy 86 99 1.5 1.5
[ea] LLy LIy 1886 183 1.5 1.8
(o] Ly Tx I 12 42 12 1.2
[18] LLy LLx 288 228 8.9 8.9
[>r] TTx LLy TTy TIx Lix TTy 78 78 1.2 1.1
[>x] LLy TDy ULx ULx LLy TDy 118 112 0.8 0.8
[ov] LIx 52 58 1.5 14
[oo] ULy Lly I i 46 6.8 6.8
[an] LLy TDy TTy LLy TBy 59 78 1.5 1.4
[an] TBy TBx TTy TDx 42 49 1.4 0.8

Table C.15: 1D critical modes identified using proposed depth-first search algorithm
(DFS) and exhaustive search (ES) along with evaluation scale Tf val @nd mazimum iden-
tification divergence Joa. values at IPA critical threshold for male speaker. Identical
(blue background), similar (yellow background) results are shown along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.




164 Appendix C. Supporting plots and tables

Identified critical coordinates
DFS ES

ULy LL

i SRR S ey

DFS
1.3 3
1.9 e
1.3 3
8.5 5
1.3 3
1.5 5
8.3 3
0.3 3
1:3 1
[f] LLy LLx LLx LLy 34 a5 8.7 7
[v] LLy LLx LLx LLy 35 35 2.9 9
[8] TTy TIx TBy TIx 1T 38 36 1.3 1
el 1% Ty B 12 13
[s] LIy TTy TBx LIy TTy TDx 19 20 1.4 2
[z] LIy TTy Tix LIy TTx Tiy 24 24 1.0 ]
[rl TTy Lly TTx LIy TTy TBx 39 39 1.4 4
[3] TTy LIy TBy TDx Lix TBy LIy TDx TTy Lix 116 116 8.8 8
(4] TTy LIy TTx LLx LIy TTy TBx 30 27 1.6 1
[g] LIy TTy Tix LIy Tix TT 27 27 1.2 2
[4] TTx 34 34 8.7 r ]
[w] ULy TDy LLy ULy LL 27 27 1.3 3
[j] TBy 35 35 1.0 ]
[h] TTy LIy 41 44 1.0 7
[2] Ly Toy [ TR TN e T 2 8.7 o7
(€] LLy LI 42 43 1.1 0.8
[1] 32 32 8.7 0.7
[4:] TBy 30 30 1.5 1.5
[i] TDy TTx TBx TD 25 24 1.3 1.1
[a] _ 30 3 0.2 8.2
[2] TTy LLx LIy TB 36 36 1.5 1.1
[A] TBy 40 40 1.1 1.1
[e] TBy TDx 33 33 9.9 0.9
[o] TBy TDx TBx TBy 30 30 0.8 0.7
[2] TDx LLy TDy TBy LLy TBy TDx TDy 16 16 8.2 8.2
[v] LL 43 39 1.6 8.8
[ul TBy _ 32 - AR U R -
[ax] TTy LLy TDy 51 55 1.4 0.9
{ex] LLy TBy 37 37 1.2 1.2
[ex] Toy LLy TBx 20 37 8.5 1.4
[ea] LIy ULy LLy TBy 79 68 1.3 1.1
[ea] TBy LIy LLy TBy 77 76 p £ | 8.8
[za] TBy LLy 101 99 1.6 1.4
[13] ULy _ 129 129 1.6 1.8
[>z] TTx Ty Ty LLy 54 65 6.9 1.4
[>1] Toy 60 60 1.5 1.5
[oo] 42 42 1.4 1.4
[oo] 37 37 e.7 0.7
[ao] TTy Toy 52 53 T4 o 12
[s0]  TBx ST A e LT Rades 47 C T 3% SR 7

Table C.16: 1D eritical modes identified using proposed depth-first search algorithm
(DFS) and ezhaustive search (ES) along with evaluation scale wa and mazimum iden-
tification divergence Jéex values at IPA critical threshold for female speaker. Identical

(blue background), similar (yellow background) results are shoun along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.
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LL UL

LL 28 28
L v 35 35
26 26
24 24
v 23 23
25 25
29 29
v 33 33
42 39

43884 d4d5dddddFF3dddddd=EE
=

15 a9 03 Jb) N M 0sn BRSO R DB e B

DD DA WDNDOH TDONEDNG~NDWWD ~ o

B i a  ven 8 B 8 (I Bt G b et T B e T

CoORNLDLDOONDNADUDDOWWR NUO

[v] P ‘0 <
[8] LL TT 48 40
[al I 5 26
[s] LI LI Iv 25 25
[z] TTU L e
LEl LI T TTLI TB 16 15
[3] T T LL LL TTLI T 173 173
4] LI LI TT TB 31 16
[&] T8 LI LI TT T8 15 15
[l T 38 28
(4] F 44 44
[w] L UL 31 31
() T
[h] 32 32
[=2] LL LI 41 48 2.2 1.8
[e] LL LI 41 42 1.6 0.9
[x] I 0 s 18 18
[i:] 18 ¥ T TB 21 21 1.6 1.6
ol D o
[3] 34 34 8.3 8.3
[2] ™ 74 47 2.2 1.7
[A] 37 37 1.8 1.8
[a] L T 26 26 8.7 8.7
o T T
[3] W LL LL TB 34 34 1.3 1.3
[o] 49 49 1.9 1.9
™ . : -
[ar] LL TD T8 LL 26 22 1.2 8.5
[ax] LL 46 46 1.7 1.7
[ex] LL TT T8 LI 28 31 1.9 1.2
(] LL I ¢ 74 2.8 2.0
[ea] LI UL LI 163 152 2.1 1.4
[s] L TT D 16 16 16 1.8
[Ta] LL LL T 186 131 2.0 1.8
[21] . Th 68 68 1.8 1.8
[>z] LL T 75 75 1.7 | 5 4
[ow] 46 46 1.9 1.9
[ov] UL LL uL 40 45 8.9 2.1
(s0] LL TB I 2 3¢ 1 1@
[ap] B T 35 42 17 1.2

Table C.17: 2D ecritical modes identified using proposed depth-first search algorithm
(DFS) and ezhaustive search (ES) along with evaluation scale vad and mazimum iden-
tification divergence J%az values at IPA critical threshold for male speaker. Identical
(blue background), similar (yellow background) results are shoun along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.
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Identified critical coordinates
ES

w

UL LL

REdSREEddFFddddddFEE

ok ek ek D) b bk e Gk el bk ek ek P bl e ek G D bk bl ek ek et et I
DUONOINENORNOWONHNAWR NGO AEN®
et bt bk D bt bt bt bl bt bk bl e bt el b bl D D bk bl ek el e
DUONNNHOEEAWUNSSLAWO =G LN ok

LS 16 16
(2] a1 Ll 19 19
(] Al o 3n 3
(3] L T8 T 94 94
(1) T u UL LTI 7T 21 21
(] ™ T
4] 7T 27 27
fw] UL TD LL U LL T 25 24
(5] 718 77 D 2% 32
(hl 717 PN CESE TR 30 30
(2] L T ™ W - PISIEET ” S ¥
le] LL LI 40 48 1.2 1.9
(z] it e et ot = = TTINER N L2 1R
[i:] T T T 17 20 1.4 1.3
(i] T ™ ™ % = 13 1.8
(] . s 29 e3 e.3
>] TB LL LL_TB 27 2 . 1 1.6
(A] T8 25 U g 1
e] TB %, % 13 13
(o] TB 2% 28 0.9 0.9
(6] ™ L LL_TD » W 18 18
(o] I 1 a1 1.8 1.8
[u] T0 T8 25 25 1.9 1.6
[ax] W L 7 LL TB 29 31 0.6 1.0
(ar] L I, : 32 16 1.0
[ex] LL TB LL TD 23 24 1.4 1.0
[ex] TB LL LL TD 18 18 1.3 0.8
[ea] LI TD LL TB 60 59 1.7 1.2
[ea] TB . c1 s1 18 1.8
[12] ™ 1T W ™ LL 43 75 0.9 1.8
(re] UL I 17 117 17 1.7
[>x] ™ Vv L IL ™ v 51 SOURE . 1
[21) T VvV LL ¥ TD 45 41 1.9 1.2
[00] PIAE O T T
{00] % % 19 i
{as) TT TD LI TB 30 33 1.8 1.4
(ao] T8 I ;33 1.6 1.6

Table C.18: 2D critical modes identified using proposed depth-first search algorithm
(DFS) and exhaustive search (ES) along with evaluation scale T‘: val @Nd mazimum iden-
tification divergence Joa, values at IPA critical threshold for female speaker. Identical
(blue background), similar (yellow background) results are shown along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.
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Pl Uy Lly Vx ULy Vx Lly 36 37

8.2 8.2
[b] ULy LLy ULy WVx LLy 32 31 8.6 B.2
[m] ULy LLy WVx LLy ULy Wx 49 49 0.6 8.3
XY Ty T TTy TBx 32 30 8.6 0.5
[d] TTy TTx TTy TBx 29 28 0.3 0.2
[n] Ty Vx TBx Ty TBx Vx 28 28 8.1 8.1
[k] TDy TBy TTy TDy 32 32 0.5 8.5
[g] Tby TBY Vy TTy TDy Vy 33 33 8.5 8.5
[n] TDy Vx LIx TBy TDy Vx 38 35 8.5 0.3
[f] Lly ULy LIy LIx TBy LLy ULy 46 43 0.6 0.4
[v] LLy ULy LIy LiLx WVx ULx ULy LLy LIy 41 41 8.5 6.5
[8] TTx TIy LLy LIy TBx TBy LLy TTy 43 42 8.5 0.4
[d] TTx TTy T8y LLy TBy TTy TBx 27 24 8.6 0.4
[s] LIy Tix TTy LLy ULy ULy LLy LIy TTx TTy 25 25 0.5 8.5
[2] LIy TTx TTy LLy LLy LIy TTy TTx 25 25 0.4 0.4
[N TTy TBx LIy TDy LLy ULy LIy TTy TDx TBy 22 27 0.4 0.4
[3) LIy TTy TDy TTx LLy Vy Tox TDy TTy LLy LIy Vy 229 267 8.6 0.6
4] LIy TTy TBx TBy Vx LLy LLy TTy TBx Vx LIy TDy 19 20 0.3 8.2
[&] Ty TBy TTx LIy WVx TDy TTy TBx W¥x TBy LLy LIy 21 19 1.4 8.4
[\] TRy TTy LIx TBx LIx TTx TDy TTy 27 28 8.3 8.1
[4] TBx TTy TTy TBx 45 45 0.4 0.4
[w] ULy TTy LLy TTx TDy ULy LLy TTx TTy TDy 33 34 8.2 8.2
[jl TBy TTy TTy TBy TDx 41 36 0.6 8.5
(hl LLy TTx LIy TBx 43 50 8.6 0.4
[28] LLy TBy TBx LLy TDy 32 42 0.6 0.4
[g] LLy LLy 46 46 8.5 8.5
[x] TBYy TTx TBx TBy 29 33 8.3 0.3
[i:] Toy LLy TIx TTy Trx TTy LLy TDy 20 21 0.4 8.2
[1] Ty TTx LLy TTy LLx TTx TTy TD 26 28 0.3 8.2
fo] e R I B ¥
[2] LLy LIy TTy TBx TDy LIy TDy TTy TBx LLy 33 38 0.4 8.3
[l Lly P 0 ® 65 6.
[a] LLy TBy TBx ULy LLy TBy TTx 34 34 8.6 8.3
[o] TBy TDx LLy LLy TBy TDx 29 28 9.2 8.2
[2] LLy TBx TTy ULy ULx TBx ULy LLy ULx TTy 39 38 6.4 8.3
[o] LLy ULx ULx LLy 46 46 0.4 0.4
[u] TDy ULy LLy ULy LLy TDy 37 37 0.4 0.4
[az] LLy Toy TBx TTy LLy TBx TBy 27 30 0.4 0.4
[az] LLy TTx TTy Vy Tox TTy LLy Vx 30 34 8.5 8.5
[ex] LLy TDy TTx LLy TBy TBx 33 36 8.4 8.3
[ex] LLy TIx TDy 27 27 8.3 8.3
[ea] LLy TBYy 76 76 0.4 8.4
[ea] LLy TBy ULx LLy TBy 164 159 8.5 8.2
[za] LLy Tix TBy TTy Ulx LLy TBy TTx TTy ULx 118 118 8.2 0.2
[1a] LLy ULx TDy ULx LLy TBy 187 183 0.4 8.3
[>x] 7TTx LLy TTy UlLx TDy ULy LLy TDy TTy ULx TBx ULy 61 54 0.3 0.1
[>z] LLy TDy ULx TTx TTy LLy ULx WVy TTy TDy TDx 66 74 8.6 8.3
[oo] LLy ULy Ux Lly T 45 41 0.6 8.5
[oo] ULy LLy TTx 36 36 0.4 8.4
[ab] LLy TDy TTy TBx Wy Tox TTy Vy TDy LLy 36 42 8.3 8.2
[ao] TBy TBx TTy Vx LIy TTx TBy Vx 36 41 0.4 0.4

Table C.19: 1D critical modes identified using proposed depth-first search algorithm
(DFS) and exhaustive search (ES) along with evaluation scale ijt and mazimum iden-
tification divergence J%ax values at 2x IPA critical threshold for male speaker. Identical
(blue background), similar (yellow background) results are shown along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.
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Identified tical coordinate

DFS 5 DFS ES
[p] ULy LiLy 39 8.5 0.5
[b] ULy LLy Vx Vx LLy LLx 37 0.6 0.3
[m] LLy ULy Vx Ulx ULy Vx 33 33 0.4 0.4
[t] Tiy LIy 25 25 0.5 0.5
[dl Tiy Lly 32 32 0.5 0.5
[n] TTy W¥x 31 31 0.5 0.5
(k] Toy 25 25 8.3 0.3
lg] TDy 25 25 8.3 0.3
[n] Ty Vx 22 22 0.5 0.4
(f] Ly Llx LLx TBy LLy 34 31 8.7 8.5
[vl] LLy LLx ULy ULy Lix LLy 34 34 8.5 8.3
[8] TTy TTx TBy LIy LLy TBy LLy TTy TBx 30 32 8.5 8.4
[@] Tix TTy TBy LLy LIy LLy TBy TTx TTy 20 20 8.2 0.2
[s] Lly TTy TBx TBy LLy LIy LLy TBy TTy TTx 14 15 8.5 8.5
[z] Lly TTy TTx LLy TBy LLy TBy LIy TBx TTy 19 18 8.5 8.5
[J1 Tiy Lly Tix LiLx TBy ULy ULy Lix LIy Tix TBy TTy 28 29 8.5 0.5
{3 TTy LIy TBy TDx LLx TDy Tox LLx TTy LIy TBy LLy 138 11 1.3 0.8
(] TTy LIy TTx Llx LLy Wx Lkx Vx LLy LIy TIx TTy 23 23 8.6 0.6
[§] LIy TTy TTx LLx LLy Vx LIy ULy ULx TBx Wx TTy 22 27 8.6 8.5
{l] Toy TDx TBx TDy 20 19 8.3 8.2
[4] TTx TTx Toy 34 31 0.7 0.3
[w] ULy TDy LLy TDx TTy LLy ULy TDy TTy TTx 25 24 0.2 0.2
(j] TBy Tox TTy ULx LLy LLx LIy TTx TBy 24 25 8.5 8.5
[h] TTy ULy ULy TTy 39 39 0.4 0.4
(=] LLy ToDy TDx LL TBy TDx Vx 28 25 0.7 0.3
(c] Ly Toy I ;o3 o3
[z] TBy 32 29 0.7 0.3
[1:] TBy LLy TDx TTy TBy TTx TDy LLy 16 17 0.4 0.4
[i] Toy TTx TBy TTx T8 LI 21 19 6.6 0.3
[a] 30 30 0.2 0.2
[#] Tiy LLx LLy TDy Vx Lix TDy LLy Vx TTy 26 27 0.2 0.2
[A] TBy LLy TDx LLy TTx TBy 26 33 0.4 0.4
[e] TBy TDx ULy TTy ULy TTy TBx TBy 28 27 8.5 8.5
[o] TBy TDx TDy LLy TBx TBy TDy 27 25 0.7 0.4
[>] 7Tbx LLy TDy TBy LLy TBy TDx TDy 16 16 0.2 0.2
[o] LLy TDx LLy TDx Vx 29 27 8.5 8.3
[u] TBy LLy LLy TBy 29 29 0.4 0.4
[ax] TTy LLy TDy TBx LLi Tfi TBx ia 29 29 8.4 0.4
[az] LLy 49 40 8.5 8.5
fex] LLy TBy TOx TTy LLy TBx TDy 22 26 0.4 0.5
[ex] TDy LLy TBx LLy TBx TBy TDy 20 18 8.5 0.2
[e?a] LIy ULy TDy TDx TBy TBx LIy ULy TTx TBy 56 60 8.5 0.4
[ea] TBy LIy ULy ULy TBy LIy 75 74 6.3 6.3
[za] TBy LLy TBx ULy TTy TBy TTy TBx LLy ULy 50 50 8.3 0.3
[za] ULy LIy TDy Uy LIy TTx TDy 107 87 0.6 0.4
[>z] Tix TDy TTy LLy Vy LLy TTy TBx TDy Vy 47 48 8.4 0.3
[>z] TDy LLy LLy LIx TDy 55 58 0.7 8.5
[ow] TTy Llx Lix TTy TBy 38 35 0.6 0.4
[oo] LLy LLy Tby ULy 35 31 0.7 0.4
[am] TTy TDy TBx LLy LLy TTy TBx TDy 31 30 8.4 8.4
[so] TBx TTy TDy Ulx LLy WVx ULx ULy TBx TDy Vx 27 29 0.3 0.4

Table C.20: 1D critical modes identified using proposed depth-first search algorithm
(DFS) and ezhaustive search (ES) along with evaluation scale T‘:’vd and mazimum
identification divergence Jaz values at 2xIPA critical threshold for female speaker.
Identical (blue background), similar (yellow background) results are shown along with
substituted (pink), deleted(blue) and inserted (green) eritical coordinates.
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LL UL 8.6 0.6
[b] UL LL 28 28 8.5 4.5
[m] UL L V TT 23 23 8.2 8.2
[l 5 26 26 0.6 0.6
[dl 7T 24 24 6.3 8.3
[n] TT V 23 23 8.3 8.3
[k] T TB T8 23 23 8.6 0.6
[gl T Vv T8 TOLI V 27 26 0.6 0.4
[l TD VLI UL V LL TD 31 33 8.3 8.6
[f1 JEWw Ty [N p e N 36 36 6.6 0.6
vl SEUGLE LL LI uL 35 35 8.7 0.7
6] TT LLLI W TB LL U TT 38 34 0.6 0.4
[4]  Tr. T Lk T T8 18 19 0.7 8.7
(sl 'FHEIAE LI L 77 22 22 8.6 0.6
[z] WLE L 1 il o 20 20 8.5 8.5
5y ITE 1 L UL TT LI TB 14 14 8.5 0.4
[3] VLT ey s 4 g ) 161 161 0.7 8.7
]’ ITLI T8 ¥ LL LI Vv TT LL 71D 14 14 8.6 0.4
[8] TT T8 LI V LL ™ LI TT V LL 13 14 8.6 8.5
[L]. T ¥rLx LI TB TT 20 20 8.3 e.3
Li] ¥ D ¢ 4 0.7 6.7
[w] UL TT LL LL TT UL 28 28 8.4 0.4
[j] T8 TT uw 26 25 8.7 0.7
thi' FERE 31 3 0.4 0.4
[2] LL TB 26 26 0.5 8.5
el L 1B 26 26 0.5 0.5
] % 24 24 8.6 8.6
(121 38 I UL 18 17 8.6 8.5
[i] 38 % 22 22 0.6 0.6
[a] 34 34 0.2 8.3
(»] LWL LI TT 23 23 0.4 0.4
[A] LL TB T LL 24 25 0.4 0.4
(6] W T8 P 6 26 607 6.7
[p] B LL L T8 23 23 0.6 0.7
[>] TB LL WL TT LI LI LL TB TD 32 30 8.3 0.6
[o] L UL uL LL 39 39 8.5 0.6
[ul T UL uL. ™ 38 38 07 a3
[ax] LL TO TT TB LL 21 22 8.5 8.5
far] L I 26 6 06 6.6
f#x] W 1% W TT LL 1D 27 27 0.6 0.6
fex}  LL TT YD T8 LL TT 20 22 8.6 0.5
[es] LL TD UL LI LL UL LI TB 70 66 0.4 0.3
[ea] LI UL TT TO LI UL 1™ TT 174 174 8.4 9.4
[xta] LE TT 1B WL TT LL TD 86 77 0.7 0.6
[za] LL TB UL V V TB UL LL 131 131 0.6 0.6
[px] LW T WL M T T LL UL 52 52 6.5 85
[>xr] L T UL 71T LL UL TT ™ 52 52 8.6 0.6
fon] "IROLL L TY 32 32 8.7 0.7
foo] UL LL TT I e e 0.4 6.4
[av] LL TB TD UL T LL 1T 31 31 8.6 0.6
[so] TB TT V vV 10 TT 27 27 6.5 8.5

Table C.21: 2D critical modes identified using proposed depth-first search algorithm
(DFS) and exzhaustive search (ES) along with evaluation scale T‘:M and mazimum iden-
tification divergence Jhes values at 2x IPA critical threshold for male speaker. Identical
(blue background), similar (yellow background) results are shown along with substituted
(pink), deleted(blue) and inserted (green) critical coordinates.
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Phone DFS DFS ES
[p] UL LL 0.4 8.4
[b] UL LL Vv . 0.3 8.3
[m] LL UL Vv vV LL UL 30 30 8.6 e.6
[t] T LI LI IT 15 : b 8.3 8.3
[d] T LI 21 21 0.4 0.4
[n] TT ¥ 20 20 8.3 9.3
[k] T 22 22 8.3 8.3
[g] TD 3 23 8.4 0.4
[nl] T V 17 17 8.7 e.7
[f]) LL UL TB UL LL TB 23 23 8.4 0.4
(vi LL U TR S ATe i i sk 12 e T
[8] TT T8 LLLI U L 7T T8 U LI 23 23 8.5 8.5
(@] 17 T8 LL [l 5 A L ST T U] 18 8.7 0.7
[s] LI 7T 7B LL T8 T7 LL LI 9 9 8.5 8.5
[z] LI TT T8 LL i T8 T¢ LL 12 12 0.5 0.5
[J1 LI 7T UL T8 1D T ™ LWL T7 18 18 0.5 0.5
[3] TTLI T W VY T LI ™ T TT UL Vv 67 67 8.6 0.6
[q] LI 77T UL v LL vV LL TT LI 16 18 0.7 0.7
[&] LI TT LL ¥V TD UL LT T7T 13 19 0.8 0.8
[4] ¥ 27 27 8.7 0.7
[w] UL T LL TT UL LL TT T 22 22 0.3 0.3
[il T8 TT LL T LL T8 22 22 8.7 9.7
[h] TT UL LL TB 28 33 0.8 0.6
[=] LL TD LI V¥ LL 7T TD 22 23 8.3 0.6
[g] LL TD 1L Th 26 25 0.6 0.5
fx] 71T AT NS e Al 2] T
f1:] T T LL TT {1 S i Y ;S 2 3 12 12 0.3 0.3
[i] T8 T TT T T8 T 14 14 0.6 0.6
(2] R N e Sy i 29 20 i3 1503
[2] TE LL TT V T LL TO ¥ 22 20 0.4 8.3
[A] T8 LL LL T8 22 22 8.3 0.3
[a] T8 TT UL TB LL TD 23 21 0.7 8.6
(o] TB TD LL LI TD LL 22 23 0.6 0.3
[2] T0 LL TT T TT LL 15 15 0.4 0.4
[u] T LL 21 21 8.5 8.5
[az] T LL T iL T 717 29 29 8.6 8.6
[az] LL TD 26 26 8.6 8.6
[ex] TB LL TD LL TD 15 18 0.4 6.8
[ea] LI T UL vV TB LI Vv UL T 1B 47 47 8.8 8.8
[ea] TB LI UL Vv TD LL TB V 64 76 8.3 8.7
[12] T8 TT UL LL W LL T8 1T 46 46 8.6 8.6
[za] UL TB LI UL LI TB 68 68 8.5 8.5
[21] T V LL TT LI vV LL TT LI TD 40 40 8.6 8.6
[21] T V LLLI T VLI LL 41 41 8.7 0.7
[o0] T LL L 7T 28 28 8.6 8.6
[oo] LL TD TT uL TD 23 26 8.3 0.7
[ao] TT T LL V ¥ L T T 24 25 8.6 0.6
[ao] TB UL V TD LL V UL TD 21 25 0.1 8.7

Table C.22: 2D eritical modes identified using proposed depth-first search algorithm
(DFS) and ezhaustive search (ES) along with evaluation scale T::va,l and mazimum
identification divergence Jiez values at 2xIPA critical threshold for female speaker.
Identical (blue background), similar (yellow background) results are shown along with
substituted (pink), deleted(blue) and inserted (green) eritical coordinates.
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Table C.27: PC1 mode shapes depcting the articulatory coordinate movements for male
speaker.
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Table C.28: PC1 mode shapes depcting the articulatory coordinate movements for fe-

male speaker.
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Table C.29: PCY mode shapes depcting the articulatory coordinate movements for male

speaker.
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Table C.30: PC3 mode shapes depcting the articulatory coordinate movements for fe-
male speaker. '
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Table C.31: PCj mode shapes depcting the articulatory coordinate movements for male

speaker.
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Table C.32: PC4 mode shapes depcting the articulatory coordinate movements for fe-

male speaker.
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Table C.33: PC5 mode shapes depcting the articulatory coordinate movements for male

speaker.




C.4. Articulatory modelling 189
5 L 5 oL 6} L
]’ E | £
& w T “"‘E_ ! w ™ ”‘E | m T
§, T S -8t a1 B 15} “LL LS
g w4 Pes, Bl uw oo PCs, E ; LT PCS,
= E ! Bt
| {
-4 -3
0 0 20 40 60 e 0 20 s 2% 0 2 40
Horizonlal disp. in mm Horizonial disp. in mm Holimnl:f(ﬁsp In mm
i UL g & U 5w
i P E
= E T~ m ™ w T
g T *E -8} Tz 81l B!
g a g S, g A Py E [ e o PCS,
= = ! =
| |
0 20 40 o % 0 20 40 5 39 0 . 20 a0
Horizonlal disp. in mm Horizonlal disp. in mm Horizontal disp. in mm
8l i
E u E i it E | UL
H ™  vE | ™ vE D
5 —T18 3 1 o8 7 ra &8
3 1 i H 15t < £ -5 ar
:E @ g PG5, g LI VAT FCS, g I TR PG5,
£ = | =
%5 %5
0 20 an 80 20 4 80 0 20 40
Horizontal disp. in mm Horizontal disp, in mm Horizontal digp. In mm
g § e 8w e 5w
; £ . N
< Im im ‘\f.& %a D '\:'.a i %8 Jo
-1 IrT B 16 I” B 18} o
g P 4 PC5,, 'E I TR T PCS,, g DAL 4 PCB,,
= = | =
-3 a5t :
%5 ] 20 ) o o 20 ] T % ] 2 49
Hodtzontal disp. In mm Horzonial disp. In mm Horizmmrdsp. tn mm
&
: 4L g UL
£ w T M w o W
1 T B -15: e
g b PC5,, g S R PCs,,
= = ;
i W 85

ﬁ 20 a0
Herizontal disp. in mm

0 20 40
Horizontal disp. In mm

Table C.34: PC5 mode shapes depcting the articulatory coordinate movements for fe-

male speaker.
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Table C.35: PC7 mode shapes depcting the articulatory coordinate movements for male

speaker.
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Table C.36: PC7 mode shapes depcting the articulatory coordinate movements for fe-

male speaker.
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Table C.37: LD1 mode shapes depcting the articulatory coordinate movements for male

speaker,
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Table C.38: LD1 mode shapes depcting the articulatory coordinate movements for fe-
male speaker.
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Table C.39: LD3 mode shapes depcting the articulatory coordinate movements for male

speaker.
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Table C.40: LD3 mode shapes depcling the articulatory coordinate movements for fe-

male speaker,
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Table C.41: LD/ mode shapes depcting the articulatory coordinate movements for male
speaker,
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Table C.42: LD/ mode shapes depcting the articulatory coordinate movements for fe-
male speaker.
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Table C.43: LD5 mode shapes depcting the articulatory coordinate movements for male

speaker.
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Table C.44: LD5 mode shapes depcting the articulatory coordinate movements for fe-
male speaker.
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Table C.45: LD7 mode shapes depeting the articulatory coordinate movements for male
speaker.
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Table C.46: LD7 mode shapes depcting the articulatory coordinate movements for fe-
male speaker.
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Figure C.2: Evaluation scale Y., averaged across all phones on the y azis and the
average number of critical dimensions per phone on the z azis. Evaluation scale was
computed from PC1, PC3, PCY, PC5, PC7 and LD1, LD3, LDj, LD5, LD7 features
at various critical thresholds, 0.1 < 8c < 5 for the female speaker.
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Features LINT BY

. BS EM ANT CF |BS EM ANT CF

“IPA 222 219 2.20 2.26 | 2.12 2.18 2.20 2.22
IPA4+D | 204 2.01 2.01 2.05|1.87 192 1.91 1.92
Raw 1.94 1.92 1.92 1.98 | 1.76 1.83 1.84 1.86
PC1 1.95 1.87 191 2001|178 1.84 1.91 1.95
PC3 197 188 191 199|181 185 1.80 1.92
PC4 198 190 192 200|182 1.8 1.80 1.93
PChH 1.97 190 1.93 2.00/(1.82 1.85 1.89 1.93
PCY 194 191 191 198176 1.83 1.84 1.87
LD1 193 185 190 1.98{1.79 1.83 1.91 1.92
LD3 1.90 1.83 1.85 193|172 1.79 1.82 1.84
LD4 1.80 181 184 191|169 1.76 1.80 1.81
LD5 1.93 1.87 189 196|1.76 183 1.86 1.89
LDY 188 1.8 185 192|169 1.76 1.78 1.79

Table C.47: Mean RMSE in mm (averaged across all sentences and articulators) be-
tween measured trajectory and synthetic trajectories generated using baseline (BS), ef-
fort minimisation (EM), anticipatory (ANT), carry forward (CF) hypotheses for male
speaker for simple linear interpolation (LINT) and Blackburn and Young (BY) models
at IPA level of complezity.

Features LINT BY
BS EM ANT CF |BS EM ANT CF
"1IPA 0.28 0.30 030 025)]032 030 031 0.27
IPA4+D | 0.56 0.57 0.57 054|061 0.59 0.60 0.58
Raw 0.5 056 0.55 0.52)]0.59 0.58 0.57 0.56
PC1 0.56 0.58 0.55 0.51 1060 059 0556 0.54
PC3 0.55 0.57 0.55 0.52|0.59 0.58 0.56 0.55
PC4 0.56 0.58 0.56 0.52|0.60 0.59 0.58 0.56
PCs 0.56 0.58 0.56 052060 059 058 0.56
PCT 0.56 0.57 0.56 053|060 059 0.58 0.57
LD1 0.57 0.60 0.57 0.53}061 0.60 0.57 0.54
LD3 0.56 0.57 0.56 0.52]0.60 058 0.56 0.55
LD4 0.58 0.60 059 0.54)063 0.61 0.60 0.58
LD5 0.59 0.60 0.58 0.55)]063 062 0.60 0.58
LD7Y 0.56 0.57 056 0.54)0.61 0.60 0.59 0.58

Table C.48: Mean RMSE in mm (averaged across all sentences and articulators) be-
tween measured trajectory and synthetic trajectories generated using baseline (BS), ef-
Jort minimisation (EM), anticipatory (ANT), carry forward (CF) hypotheses for female
speaker for simple linear interpolation (LINT) and Blackburn and Young (BY) models
at IPA level of complexity.
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Features LINT BY
BS EM ANT CF |BS EM ANT CF
IPA 0.91 090 091 092088 090 091 0.91

IPA+D |0.84 083 083 0.84|0.78 0.79 0.79 0.80
Raw 0.80 0.79 0.79 0.81]0.73 0.76 0.76 0.77
PC1 0.81 0.78 0.80 0.83(0.76 0.78 0.80 0.81
PC3 081 0.79 0.80 0.82]0.76 0.77 0.79 0.79
PC4 0.82 0.80 0.81 0.83]0.77 0.78 0.80 0.8
PC5 0.82 0.79 081 0.83(0.76 0.78 0.79 0.80
PC7 0.81 0.79 0.80 0.82(0.74 0.77 0.77 0.78
LD1 0.80 0.77 0.79 0.81(0.75 0.76 0.79 0.79
LD3 0.79 0.77 0.78 0.80]0.73 0.75 0.77 0.77
LD4 079 0.76 0.77 0.79(0.72 0.74 076 0.76
LD 0.80 0.78 0.79 0.81]|0.74 0.76 0.78 0.78
LDT 0.78 0,77 0.78 0.80]0.71 0.74 0.75 0.75

Table C.49: Mean normalised RMSE (averaged across all sentences and articulators)
between measured trajectory and synthetic trajectories generated using baseline (BS),
effort minimisation (EM), anticipatory (ANT), carry forward (CF) hypotheses for male
speaker for linear interpolation (LINT) and Blackburn and Young (BY) models at IPA
level of compleity.

Features LINT BY
BS EM ANT CF |BS EM ANT CF

IPA 0.92 0.92 0.91 0.94[090 091 092 0093
IPA+D [ 0.86 0.85 0.85 0.86|0.81 0.82 0.82 0.83
Raw 0.82 0.82 0.82 084|077 079 080 0.80
PC1 0.82 0.80 0.81 0.85|0.78 0.80 0.82 0.83
PC3 0.82 0.81 0.81 0.84|0.78 0.79 081 0.82
PC4 0.82 0.80 0.81 0.84|0.78 0.79 0.80 0.81
PC5 082 0.80 0.81 0.84|0.78 0.79 0.80 0.81
PC7 0.82 0.81 0.81 0.84|0.77 0.79 0.80 0.81
LD1 0.83 0.80 0.82 0.85|0.79 0.80 0.82 0.83
LD3 082 0.81 0.81 0.84|078 0.80 081 0.82
LD4 082 0.80 0.81 0.84|0.77 0.79 0.80 0.81
LD5 082 081 082 0.84|077 0.80 0.81 0.82
LD7 0.82 0.82 0.82 0.84|0.78 0.80 0.80 0.81

Table C.50: Mean normalised RMSE (averaged across all sentences and articulators)
between measured trajectory and synthetic trajectories generated using baseline (BS),
effort minimisation (EM), anticipatory (ANT), carry forward (CF) hypotheses for fe-
male speaker for linear interpolation (LINT) and Blackburn and Young (BY) models
at IPA level of complexity.
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TFeatures LINT BY
BS EM ANT CF CONV |BS EM ANT CF CONV
"Raw 1.80 179 179 1.85 1.73 1.57 1.67 1.69 1.69 1.47
PC1 1.83 173 177 1.87 1.73 1.64 167 1.7 1.79 149
PC3 1.80 1.73 1.75 1.81 1.73 1.59 165 1.70 1.69 1.49
PC4 181 173 175 182 1.73 1.59 1.66 1.70 1.70 1.49
PC5 1.81 176 176 183 1.73 1.60 1.67 1.70 1.71 1.49
PC7 179 179 1.77 182 1.73 1.57 1.67 1.67 1.67 1.47
LD1 1.79 1.68 174 1.82 1.73 1.59 162 1.72 1.72 1.50
LD3 1.80 1.70 1.73 1.80 1.73 1.568 1.63 1.69 1.69 1.47
LD4 1.80 171 173 1.81 1.73 1.58 1.63 1.68 1.69 1.47
LD5 1.81 1.73 174 182 1.73 1.58 1.656 1.68 1.70 1.48
LD7 1.78 1.75 174 180 1.73 1.56 1.63 1.64 1.64 147

Table C.51: Mean RMSE in mm (averaged across all sentences and articulators) be-
tween measured trajectory and synthetic trajectories generated using baseline (BS),
effort minimisation (EM), anticipatory (ANT), carry forward (CF), conventional
(CONV) hypotheses for male speaker for linear interpolation (LINT) and Blackburn
and Young (BY) models at 2x IPA level of complexity.

Features "LINT BY
BS EM ANT CF CONV |BS EM ANT CF CONV

Raw 1.97 1.97 197 2.05 1.88 1.79 187 1.89 191 1.68
PC1 1.98 191 194 205 1.88 1.84 1.87 194 197 170
PC3 1.97 1.92 193 202 1.88 1.82 188 191 193 1.70
PC4 1.96 192 192 201 1.88 1.81 186 1.89 191 L1.70
PCs 1.97 192 192 202 1.88 1.81 1.87 1.90 1.92 1.70
PCT 1.96 197 194 202 1.88 1.78 1.88 1.87 1.80 1.68
LD1 1.97 190 194 205 1.88 1.83 1.87 1.93 1.97 1.71
LD3 198 192 1.94 201 1.88 1.83 1.88 191 1.92 1.70
LD4 1.98 1.93 194 2.02 1.88 1.82 1.88 1.91 1.92 1.69
LD5 199 196 196 2.06 1.88 1.84 191 194 1.97 1.70
LDY 1.97 197 194 203 1.88 1.80 1.88 1.87 1.91 1.69

Table C.52: Mean RMSE in mm (averaged across all sentences and articulators) be-
tween measured trajectory and synthetic trajectories genmerated using baseline (BS),
effort minimisation (EM), anticipatory (ANT), carry forward (CF), conventional
(CONYV) hypotheses for female speaker for linear interpolation (LINT) and Blackburn
and Young (BY) models at 2x IPA level of complexity.
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Features LINT BY
BS EM ANT CF CONV|BS EM __ANT CF CONV

Raw 0.7 0.76 0.75 0.77 0.72 0.67 0.70 0.71 0.71 0.62
PC1 0.77 0.73 0.75 0.78 0.72 0.70 0.71 0.74 0.75 0.63
PC3 0.7 0.73 0.74 0.75 0.72 0.67 0.70 0.71 0.71 0.63
PC4 0.75 0.73 0.74 0.76 0.72 068 070 0.71 0.71 0.63
PCh 0.76 0.74 0.74 0.76 0.72 0.68 0.70 0.72 0.72 0.63
PC7 0.75 0.74 0.74 0.76 0.72 0.67 0.70 0.7t 0.71 0.63
LD1 0.75 0.71 0.73 0.75 0.72 068 0.69 0.73 0.72 0.64
LD3 0.76 072 0.73 0.75 0.72 0.68 0.69 0.71 0.71 0.63
LD4 0.75 0.72 0.73 0.76 0.72 0.67 069 0.71 0.71 0.63
LD5 0.7 0.73 0.73 0.76 0.72 0.67 0.70 0.71 0.72 0.63
LD7 0.7 0.73 0.73 0.75 0.72 0.66 0.69 0.70 0.69 0.63

Table C.53: Mean normalised RMSE (averaged across all sentences and articula-
tors) between measured trajectory and synthetic trajectories generaled using baseline
(BS), effort minimisation (EM), anticipatory (ANT), carry forward (CF), conventional
(CONYV) hypotheses for male speaker for linear interpolation (LINT) and Blackburn and
Young (BY) models at 2xIPA level of complezity.

Features LINT BY
BS EM ANT CF CONV|BS EM ANT CF CONV

Raw 0.78 0.78 0.Y8 0.80 0.75 0.72 0.74 0.714 0.75 0.67
PC1 0.79 0.76 0.77 0.81 0.75 0.74 0.75 0.77 0.78 0.68
PC3 0.79 0.77 0.77 0.80 0.75 0.73 0.75 0.76 0.77 0.68
PC4 0.78 0.77 0.77 0.80 0.75 0.73 0.74 0.75 0.76 0.68
PC5 0.78 0.76 0.77 0.80 0.75 072 0.74 0.75 0.76 0.68
PC7 0.78 0.78 0.77 0.80 0.7 0.72 075 0.75 0.75 0.67
LD1 0.78 0.75 0.77 0.80 0.7 0.73 0.74 0.76 0.77 0.68
LD3 0.78 0.76 0.77 0.79 0.75 0.73 0.74 0.76 0.76 0.68
LD4 0.78 0.76 0.77 0.79 0.75 073 074 0.75 0.76 0.68
LD5 0.79 0.77 0.78 0.80 0.75 0.73 0.76 0.76 0.77 0.68
LD7 0.78 0.78 0.77 0.80 0.756 072 0.75 0.75 0.76 0.68

Table C.54: Mean normalised RMSE (averaged across all sentences and articula-
tors) between measured trajectory and synthetic trajectories generated using baseline
(BS), effort minimisation (EM), anticipatory (ANT), carry forward (CF), conventional
(CONYV) hypotheses for female speaker for linear interpolation (LINT) and Blackburn
and Young (BY) models at 2x IPA level of complexity.
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