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Abstract  
A crowd of pedestrians is a complex system that exhibits a rich variety of self-
organized collective behaviors, such as lane formation, stop-and-go waves, or 
crowd turbulence. Understanding the mechanisms of crowd dynamics requires 
establishing a link between the local behavior of pedestrians during interac-
tions, and the global dynamics of the crowd at high density. For this, the elabo-
ration of a model is necessary.  
In this contribution, we will make a distinction between two kinds of modelling 
methods: outcome models that are often based on analogies with Newtonian 
mechanics, and process models based on concepts of cognitive science. While 
outcome models describe directly the movements of a pedestrian by means of 
repulsive forces or probabilities to move from one place to another, process 
models generate the movement from the bottom-up by describing the underly-
ing cognitive process used by the pedestrian during navigation.  
Here, we will describe and compare two representatives of outcome and process 
models, namely the social force model on the one hand, and the heuristic model 
on the other hand. In particular, we will describe the strength and the limitations 
of each approach, and discuss possible future improvements for process models.  

Keywords: Outcome models – Process models – Pedestrian behaviour – Crowd 
dynamics – Complex systems – Social forces – Simple heuristics 

1 Introduction  

Human crowds display a rich variety of collective behaviors that support an efficient 
motion under everyday conditions (1). For example, when two flows of people are 
moving in opposite directions in a crowded street, pedestrians spontaneously share the 
available space by forming lanes of uniform walking directions (2–4). This apparent 
“highway of pedestrians” is a decentralized collective organization that enhances the 
traffic efficiency by reducing the need for avoidance maneuvers among individuals. 
As another example, when two opposite flows meet at a narrow bottleneck, each flow 
temporarily “captures” the doorway during a short time period, resulting in alternating 
bursts of pedestrians passing first in one direction and then in the other. Again, this 
spontaneous group coordination allows for efficient usage of congested areas (5). 
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The combination of local interactions among pedestrians, however, does not al-
ways generate efficient traffic solutions at the group level. For example, it has been 
shown recently that above a critical density level the collective coordination may 
suddenly break down, giving way to a dangerous phenomenon called crowd turbu-
lence, in which the flow of pedestrians becomes chaotic (6). This particular regime is 
often observed during crowd disasters and is characterized by random and unintended 
displacements of people in all possible directions. The emergence of stop-and-go 
waves is another example of collective traffic perturbation that emerges spontaneous-
ly out of local interactions among pedestrians (6). 

The key element for understanding the wide variety of collective behaviours ob-
served in crowds lies in the different natures of local interactions among individuals 
(7). A local interaction is any kind of social influence that motivates an individual to 
change or adapt his or her behaviour based on social cues originating from neighbour-
ing individuals. In pedestrian crowds, one may distinguish at least five different types 
of interactions:  

- Collision avoidance is the basic and most common interaction among pedes-
trians. It describes the strategic adaptation of walking speed and direction to 
avoid an upcoming collision with another person. Collision avoidance is at the 
origin of the lane formation phenomenon in bidirectional flows, and also gives 
rise to stop-and-go waves in unidirectional flows at intermediate density.  

- Physical interaction takes place when people are in physical contact with one 
another, at high density levels. Unlike collision avoidance that is based on in-
tentional navigation strategies driven by visual information, physical interac-
tion results in unintentional movements based on pushing and physical pres-
sures exerted among densely packed people. Physical interaction is typically 
involved in the emergence of crowd turbulence.  

- Social interaction drives the behaviour of social groups of pedestrians, such 
as friends going together to the same place. In social interaction, group mem-
bers not only try to avoid collisions with one another, but also try to stay to-
gether, and often to converse with other group members. Social interactions 
are at the origin of the walking patterns observed in small groups of pedestri-
ans and may reduce overall traffic efficiency (8). 

- Imitation is another kind of interaction that takes place when people modify 
their walking destination to move in the same direction as other surrounding 
individuals. Imitation is assumed to have a major role during escape panics 
and to give rise to herding behaviour and unbalanced exit usage (9). 

- Finally, we may also mention indirect interaction, wherein people adapt their 
walking behaviour not directly based on their neighbours’ behaviour, but on 
the traces left in the environment by other pedestrians who are not present any 
more. This is the case, for example, when people walk over the trails left by 
others over green places or snowy areas (10).  

 
Understanding the link between local interactions and emerging collective patterns 

is among today’s most interesting challenges in the study of crowd behavior. For this, 
it is necessary to find a proper description of how pedestrians adapt their walking 
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behaviour during each kind of interaction, and to explore the resulting collective pat-
terns through computer simulations.  
Nevertheless, finding a realistic description of pedestrians’ behaviour is surprisingly 
challenging. Collision avoidance, for example, is a seemingly very complex cognitive 
task that requires collecting information about the location, the movements and the 
expected behaviours of other people, processing this information in real time, and 
planning a new trajectory every time the environment changes. Despite its apparent 
cognitive complexity, people easily perform this task in everyday life, even without 
being fully focused on the problem. We wish to distinguish two possible approaches 
to describe the pedestrian behaviour: 

1. Elaborate an outcome model that directly describes the movements of the pedestri-
an based on complete information available in the environment. The social force 
model, for example, is an illustration of such an approach, in which the movements 
of people are described by means of repulsive and attractive forces.  

2. Elaborate a process model that describes the underlying cognitive process that give 
rise to the movement. Process models typically aim at reproducing how the pedes-
trian processes a large amount of visual information to adapt his or her movement 
in real time. The heuristic model that we discuss below is an example of such an 
approach.   

In this article, we will first describe an outcome model and discuss its strengths and 
limitations. Then, we will define more precisely the distinction between outcome 
models and process models. Finally, we will describe a process model of pedestrian 
behaviour, compare both approaches, and discuss its possible future improvements. 
Throughout the paper, we will focus mainly on two kinds of interaction, because these 
are responsible for the major part of collective crowd behaviours: collision avoidance 
and physical interaction. 

2 Modelling 

The process of modeling consists of finding a good description of the behavior of a 
pedestrian in his social and physical environment. A great deal of current research is 
devoted to the modeling of crowd behavior. In particular, a relevant model should be 
able to predict the emergence of observed crowd behavior during computer simula-
tions. The necessity of elaborating a good and reliable model is twofold:  

• First, the model constitutes an essential research tool to understand the precise 
mechanisms underlying the emergence of collective patterns. For instance, a model 
can be used to grasp why a particular pattern emerges, under which conditions, and 
which behavioral variables affect its features.  

• Second, the model is also an important planning tool from an applied perspective. 
It can be used by urban planners to anticipate the behavior of crowds in a given en-
vironment, and help them manage events with large groups of people, the planning 
of evacuation strategies, or the assessment of urban layouts. 



 4 

   
Many current models of pedestrian behavior are outcome models based on analogies 
with physical systems. The main idea of this family of models is to suppose that the 
movements of a pedestrian in the crowd could be described by means of mathematical 
tools and theoretical concepts previously elaborated to describe the movements of a 
particle in a gas. Force-based models inspired from Newtonian mechanics are proba-
bly the most dominant in the scientific literature, and the most commonly used for the 
development of commercial modeling software. 

In the following section, we will first focus specifically on force-based models, de-
scribe their basic underlying principles and discuss the strengths and limitations of 
this approach. 

2.1 Force-based modeling framework 

 
The so-called social force model was probably the first individual pedestrian-based 

model that was capable of predicting the emergence of collective, self-organized 
crowd patterns out of local interactions among individuals (11, 12). Since its first 
publication in 1995, there has been important development of this model and new 
models based on similar concepts (13, 14). Therefore, the original social force model 
can be seen today as a general framework commonly used in the community of crowd 
modelers.  
The basic ingredients of the social force framework describe the motion of a pedestri-
an i at place 

xi (t)  by means of a vector 

Fi , reflecting his or her movement in a par-

ticular direction. Accordingly, the velocity 
vi (t) = d

xi dt  of pedestrian i is given by 

the acceleration equation dvi (t) dt =

Fi (t)+


ε (t) , where 


ε (t)  is a fluctuation term 

that takes into account random variations of behavior. The acceleration force 

Fi  is the 

core element of this modeling approach. It is defined as the sum of several terms de-
noting different attractive and repulsive effects, such as moving toward a destination 
point, avoiding static obstacles and other pedestrians, or staying close to other group 
members. In its simplest specification, the acceleration force includes three compo-
nents:  

• A driving force, D


i , which lets the pedestrian i  move in his or her desired direc-

tion e

i  at the desired speed vi

o . The driving force is set such that the pedestrian 

adjusts the current velocity v

i  to the desired one vi

o e

i , within a certain relaxation 

time τ i . This implies D


i = (vi
oe

i − v

i ) τ i . In recent experimental research, it 

has been shown that this equation indeed correctly reproduces the motion of a sin-
gle pedestrian walking in a corridor, having the relaxation time τ i = 0.54  seconds 
(15). 
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• A set of repulsive forces R

ij

j≠i
∑ , which makes pedestrian i  avoid other pedestri-

ans j  by moving away from them. In its simplest form, the term R

ij  is defined as 

a gradient of a repulsion potential, resulting in R

ij = Aie

−dij Bi d

ij , where d


ij  is 

the normalized vector pointing from j  to i , and dij  is the distance between the 

pedestrians; Ai  and Bi  are model parameters reflecting the strength and the range 
of the interaction, respectively. Nevertheless, many other specifications have been 
suggested (e.g. 9, 14, 15). Because it reflects how one individual reacts during in-
teractions with other people, this component is the key element determining how 
the pedestrian behaves in the crowd. 

• A set of repulsive forces W


ik

k
∑ , which makes pedestrian i  to keep a certain 

distance from walls and physical obstacles k of the environment. The influence of 
an obstacle k  is defined as a function of the distance dik  to the closest point of 

that obstacle: W


ik = Ake
−dik Bk d


ik  , where d


ik  is the normalized vector pointing 

from k  to pedestrian i , Ak  and Bk are model parameters.  
While the very first specifications of the social force model had only qualitative con-
nections to empirical observations, many recent studies made use of tracking algo-
rithms to reconstruct trajectories of interacting pedestrians from video recordings 
taken in streets, train stations, or highly crowded areas, and to elaborate and calibrate 
increasingly precise specifications of the model (14–17).  Today, the most recent 
specifications are able to generate realistic crowd behavior, and to reproduce – at least 
qualitatively – every known crowd behavior, including lane formation, oscillation at 
bottlenecks (11), social groups’ behavior (8), stop-and-go waves (18), and crowd 
turbulence (19).   

2.2 Strength and limitations of physics-based approaches 

One of the greatest advantages of force-based models is their versatility, which 
probably explains the large variety of existing specifications in the literature. In fact, 
the social force framework is very easy to adapt by adding new parameters, changing 
their values, modifying the shape of the equation the forces involved, or adding new 
attractive or repulsive components. For example, many different specifications of the 
model only differ in the formulation of the equation of the main repulsive force R


ij . 

Therefore, it is not difficult to extend the model to new kinds of interactions by add-
ing a new term to the final equation. Thus, social interactions can be implemented by 
adding attraction forces among group members (8), indirect interactions with the ac-
tive walker model (10), or imitation by means of a herding force in situations of pan-
ics (9). Another important strength of the social force framework is that it benefits 
from all the existing tools of statistical physics, which favors its development in the 
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literature. For example, the transformation of the individual-based model into a mac-
roscopic description based on partial differential equations is facilitated.  
 
Nevertheless, the force-based approach exhibits some theoretical limitations. First, 
although force-based models can reproduce any empirical observation, it is important 
to notice that this often requires a modification, an adjustment, or a recalibration of 
the model. In fact, force-based models have excellent fitting capabilities, in the sense 
that a model can reproduce almost any observation after adjusting the equation of 
motion accordingly. However, they offer relatively low predictive power: a model 
that has been previously calibrated on a given dataset often fails to quantitatively 
predict another set of observations. One example is the experimental specification of 
the model presented in ref. (15). This force-based model was specifically designed to 
reproduce individual avoidance trajectories as observed under experimental condi-
tions (we call it dataset A). However, it failed to quantitatively reproduce the complex 
dynamics of lane formation observed in ref. (3) (dataset B). Nevertheless, a recali-
brated model finally allowed to reproduce correctly the dataset B, but did not work 
any longer for dataset A. Therefore, this particular specification was not able to re-
produce the features of dataset A and dataset B at the same time. Likewise, the recent 
simulation of crowd turbulence required the use of very strong inter-individual repul-
sive forces that would probably not be adapted for the simulation of pedestrian 
movements at low density (19). Thus, even through this specification is an extremely 
valuable tool for the planning of mass events where crowd turbulence often occurs, it 
implies using different specifications of the model depending on the expected crowd 
density level. 

 
Another issue with force-based models is that quantitative agreement with empiri-

cal data often requires rather sophisticated movement equations. In particular, it 
seems from the past decade that crowd models have tended to become increasingly 
more complex in an attempt to reproduce the growing amount of new empirical ob-
servations. The specification presented in ref. (15), for instance, is a good illustration 
of how sophisticated the model equations have to be to precisely reproduce individual 
avoidance trajectories. In fact, it is not a trivial problem to find a proper balance be-
tween attractive and repulsive effects that would correctly reproduce the speed and 
direction changes during an avoidance manoeuver. In ref. (15), this was achieved at 
the cost of using sophisticated equations of motion, which is also the case for many 
other force-based specifications. Although the high complexity of a model does not 
undermine its simulation capabilities, it might reduce the model’s usefulness for deci-
phering the dynamics of the system.  

2.3 Outcome models and process models 

One possible reason explaining the above limitations is that force-based models 
aim at describing directly the observed movements of pedestrians, rather than the 
internal cognitive processes leading to the observed movement. In other words, force-
based models are excellent at reproducing observations under specific conditions, but 
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do not capture the intrinsic cognitive mechanisms operating at the level of the indi-
vidual. It is very unlikely that pedestrians would be really under the influence of at-
tractive and repulsive forces. Instead, it seems more plausible that they rely on simple 
and unconscious rules and navigation strategies, which let them act as if they were 
subject to external forces.  

This is the distinction between so-called “outcome models” describing directly the 
observed behaviour, and “process models” describing the cognitive processes that 
give rise to the observed behaviour (20, 21). To illustrate the difference between out-
come models and process models, consider the following example: Imagine the prob-
lem of modelling the movements of a baseball outfielder trying to catch a ball in the 
air. One can imagine two distinct modelling approaches. The first consists in measur-
ing the expected landing point of the ball according to its current trajectory and other 
environmental variables, and to use an attraction force to describe the player’s motion 
toward that point. Even through this modelling approach would require sophisticated 
equations and the use of many parameters, it would probably reproduce the move-
ments of the player in a realistic manner. The second method is to elaborate a process 
model that relies on the so-called gaze heuristic - a simple rule-of-thumb that is used 
by people and animals to catch a moving target (20, 22). The gaze heuristic consists 
of three steps: Fix your gaze on the ball, start running, and adjust your running speed 
and direction so that the angle of gaze remains constant. A simple model implement-
ing these three rules would also reproduce the movements of the player, but it can 
ignore all causal variables necessary to compute the landing point of the ball, such as 
the velocity, angle, air resistance, or speed and direction of wind among others. Inter-
estingly, both methods would probably predict a similar trajectory. Nevertheless, the 
process model generates the motion from the bottom-up, and is easier to formulate 
than the outcome model.   
The above example can be easily put in parallel with the modelling of pedestrian 
movements. Existing force-based models are outcome models. Yet, a consistent 
framework for the development of a process model is still lacking. In the following, 
we describe a first attempt to elaborate such a framework based on ref. (23), and dis-
cuss its strength and limitations.  

2.4 A process model of pedestrian behaviour 

The elaboration of a process model requires addressing and answering two key ques-
tions:  

(1) What kind of information does the pedestrian use?  
(2) How is this information processed? 

 
To answer the first question, there is no doubt that a pedestrian relies on visual cues as 
primary source of information to decide where to walk (24, 25). Similar vision-based 
approaches to describe people’s movement in complex buildings have been undertak-
en in the past (26–29). While interactions among individuals are the most important 
for the study of crowd dynamics, these studies only concern interactions between the 
individual and the physical environment. Recently, there have been several attempts 
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to elaborate models of pedestrians’ behaviour in crowds based on visual cues (30), 
among which is the heuristic model that we will present in the next section. 

Formalization of visual cues. 

What would be the simplest way to describe the visual cues that a pedestrian uses to 
navigate in a dynamic environment? Some simplifications have to be made here, as it 
would be impossible to describe the entire complexity of the human visual system. 
Therefore, we assume that the relevant information is the distance before collision 
with surrounding people, objects and obstacles. Therefore, we describe the input in-
formation of a pedestrian i by a function f (α)  describing the distance that the pedes-

trian can walk toward the direction α  at his or her comfortable walking speed Si
0  

before a collision occurs. Because the function f (α)  describes the visual infor-

mation of the pedestrian, it is only defined for values of α  in the interval −φ,φ[ ]  
delimiting the vision range of the individual. Here, the value α =0 corresponds to the 
looking direction represented by a unit vector 

€ 

Hi  and the vision field of the pedestri-
an is φ  degrees to the left and to the right of the direction 

€ 

Hi . If no collision is found 
toward the direction α , then the value of f (α)  is set to a default maximum value
dmax , which represents the horizon distance of the pedestrian as sketched in Figure 
1. Even though the computation of the collision distances with other people requires 
complex geometrical calculations, it remains a reasonable assumption as collision 
anticipation is a core capacity of the human brain (24, 31). It is important to note here 
that this formulation requires some other simplifying assumptions, such as the fact 
that pedestrians have a circular body of radius ri  (although it is possible to adapt the 
model to elliptical body shapes as we will mention later in this article, in the ‘Possible 
improvements’ section).  

Two simple heuristics and body contacts.  

The second question that needs to be answered concerns the processing of this visual 
information. Having described the surrounding visual information, we need now to 
define a set of rules describing how the pedestrian exploit visual cues to navigate 
toward a destination point Oi . For this, we assume that the pedestrian relies on two 
simple cognitive procedures, called heuristics (20). The first one delineates how the 
pedestrian adapts their direction of motion according to the occupancy of the visual 
field, and the second describes how the pedestrian adapts their walking speed as a 
function of the available walking space.  
 

Minimizing detours.  
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The first movement heuristic concerns the relative angle αdes  of the chosen walk-
ing direction. Empirical evidence suggests that pedestrians seek an unobstructed 
walking direction, but dislike deviating too much from the direct path to their destina-
tion (32, 33). A trade-off therefore has to be found between avoiding obstacles and 
minimizing detours from the most direct route. Accordingly, our first heuristic is de-
fined as follows: 

“The chosen walking direction αdes  is the one that minimizes walking towards the 
destination point.” 

In this way, the pedestrian chooses the unobstructed direction that deviates least 

from the destination point. Formally, the chosen direction αdes (t)  is computed 

through the minimization of the distance to destination d(α) : 

d(α) = dmax
2 + f (α)2 − 2dmax f (α)cos(α0 −α) . 

Here, α0  is the direction of the destination point. 
 

Keeping a safe distance.  

The second heuristic determines the desired walking speed vdes (t) . Since a reac-
tion time 

€ 

τ  is required for the pedestrian to stop in the case of an unexpected obsta-
cle, pedestrians should compensate for this delay by keeping a safe distance ahead 
(34). Therefore, we formulate the second heuristic as follows:  

“The pedestrian reduces the walking speed to keep the time to collision with the 
nearest obstacle above τ  seconds.” 

Formally, the desired speed is given by: 

€ 

vdes(t) =min(vi
0,dh /τ) , 

where dh is the distance between pedestrian i and the first obstacle in the desired 

direction αdes  at time t.  

Finally, the vector v

des  of the desired velocity points in direction αdes , and has 

the norm || v

des ||= vdes . The change in the actual velocity v


i  at time t under normal 

walking conditions is given by the acceleration equation dv

i / dt = (v


des − v

i ) / τ , 

where τ =0.5s as determined in previous experimental measurements (15), and the 

location x

i (t)  of pedestrian i at time t is the first derivative of the velocity 

dx

i / dt = v


i . The looking direction 

€ 

Hi  is constantly adjusted toward the desired 

direction αdes . 
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Pushing behavior. 
The above model has very good simulation performance at low density. For in-

stance, it quantitatively reproduces the features of individual avoidance trajectories 
(23), as well as the emergence of unstable dynamics during lane formation (3). How-
ever, simulation results at higher densities are not satisfying. The reason for this is 
that the nature of interactions involved is different. In fact, when the density is high 
enough, physical contacts may occur as well, causing unintentional movements that 
are not determined by the above heuristics. Therefore, it is necessary to distinguish 
between intentional avoidance behaviors based on strategic navigation heuristics, and 
unintentional movements resulting from pushing forces caused by body contacts. 
Hence, it is necessary to extend the above description by considering a physical con-
tact force that applies only when people are in physical contact: 

  

€ 

 
f ij = kg(ri + rj − dij )

 n ij , 
where the sub-function g(x) is zero if the pedestrians i and j do not touch each oth-

er, and otherwise equals the argument x. Here, 
nij  is the normalized vector pointing 

from pedestrian j to i, and dij  is the distance between the pedestrians’ centers of 

mass(9).  
The final model allows for simulations of crowd movements at any density level, and 
is capable of quantitatively reproducing a large range of phenomena, such as the fun-
damental diagram, stop-and-go waves, some features of crowd turbulence, and evacu-
ation times (23). In contrast to force-based approaches, the repulsive interaction term 
fij  used in the cognitive model is not an analogy, but reflects the physical pressure 

among bodies that actually takes place in crowded environment. It is interesting to 
note that most existing models in the literature do not make a clear distinction be-
tween physical interactions and collision avoidance interactions, trying to describe 
both of them with the same tool. But these two kinds of interaction arise from funda-
mentally different processes: the physical pressure on the one hand, and the naviga-
tion strategy on the other hand.  

2.5 Benefits and drawbacks of the heuristic model 

Beside the fact that the heuristic model is based on plausible hypotheses and offers 
a new perspective on existing literature, it is interesting to note that it actually solves a 
long-standing open issue about how to combine multiple simultaneous interactions 
(35). For example, in a situation where an individual A is facing three other individu-
als B, C, and D, force-based models typically assume that A sums up the repulsive 
effects that B, C and D would have separately in the absence of the others. However, 
this approach raises several theoretical issues. First, it is not obvious that simultane-
ous influences are additive. One can also integrate them in different ways such as 
averaging over them, or combining them nonlinearly. Second, it is unclear how to 
determine the influential neighbors and how to weight their influence. For example, it 
has been suggested that only the k closest individuals should be taken into account, or 
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only those located in a certain interaction radius R (35–37). But the values of k and R 
remain unclear and seem to vary with increasing density level. Another subsequent 
problem is that the repulsive effect in force-based models is necessarily proportional 
to the number of interacting partners. Consider the example in which a person is 
avoiding a group of standing pedestrians. Because repulsive forces typically cumu-
late, the shape of the avoidance trajectory will change according to the number of 
people in the standing group, which often generates inconsistent simulations. In con-
trast, in the heuristic model, interactions cannot be reduced to the superimposition of 
pair interactions because individuals react to a visual pattern in an integrative way. 
Therefore, rather than balancing multiple repulsion effects originating from other 
individuals, the simulated pedestrian detects an efficient free way to the destination 
and follows it, which generates realistic behaviour from the bottom-up. Therefore, it 
is not necessary to define explicit rules for combining simultaneous interactions or 
setting a fixed number of interacting partners in advance. These problems vanish nat-
urally when using an integrated visual input, such as the pedestrian’s visual field. 
 
Nevertheless, the cognitive model exhibits technical limitations due to the difficulty 
of its implementation. In fact, the calculation of the function f (α)  describing the 
visual pattern of the pedestrian is a complex algorithm that requires heavy computa-
tional power and is prone to programming errors. The program typically needs to 
identify the first collision point between one moving object (the focus pedestrian) and 
many others (the other individuals), and to repeat this step for all directions α  of the 
vision field, for all pedestrians i, and at every time step t. Therefore, simulations of 
the cognitive model are systematically longer than simulations of a force-based mod-
el, and may reach unreasonable computation time for simulations of large crowds 
(e.g. higher than 1000 individuals). Even through this technical limitation does not 
directly challenge the validity of the model, it can hinder or slow down its future de-
velopment, and dissuade the use of the model in commercial software. In the next 
section, we will suggest the search-and-stop rule as a future improvement that is like-
ly to reduce the needed computational power. Advances in programming techniques 
and particularly in ray-casting algorithms may also help in resolving this issue. 
 
Another issue with the cognitive model is that it is more difficult to extend than force-
based models. With the social force approach, modeling a new component of pedes-
trians’ behavior, such as the side preference, the herding behavior during panics, or 
the movements of pedestrians in social groups, always consists of adding a new force 
component and calibrating this force with empirical data (8–10, 15). This systematic 
methodology facilitates the development of the model. Updating the cognitive model, 
however, always requires some deep questioning about the cognitive processes in-
volved in the situation being studied. For example, the cognitive model fails to cor-
rectly reproduce the situation where two pedestrians are facing each other at a narrow 
bottleneck, such as a door. In this situation, the visual field of each individual indi-
cates that there is no empty space where it is possible to move, and therefore both 
pedestrians stop moving and wait endlessly for an opportunity to move ahead. Of 
course, this situation would never happen in real life because people have learnt that 
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one has to step back and let the other one go first. But implementing this improve-
ment in the model is more complicated, as simulated pedestrians need to identify the 
problem first, and solve it afterward.  

2.6 Possible improvements  

As we mentioned earlier in this article, the cognitive approach described above 
should be considered as an initial basic framework rather than a final model. We have 
deliberately kept the model in its simplest form so far, to highlight the most basic 
heuristics needed to reproduce the fundamental features of crowd dynamics. But this 
first attempt certainly requires many improvements. In this section, we describe some 
possible improvements that could be considered in the future. 

 
The first modification that could be undertaken is the implementation of elliptical 

body shape. Although the circular body shape seems to be a reasonable simplification 
in the first place (as demonstrated by the accurate predictions of the model), it may be 
relevant to use an elliptical body shape instead in the future (38). In fact, at high den-
sities, elliptical bodies may reduce the collision frequency and therefore affect the 
density threshold at which stop-and-go waves and crowd turbulence form. The im-
plementation of elliptical body shape would also constitute a first step for modeling 
movements of pedestrians’ shoulders, which is known to facilitate avoidance maneu-
vers in crowded areas (39). This improvement is expected to be important even at low 
density because it may help unblocking some face-to-face situations, such as the one 
described in the previous section. However, this update remains challenging, as it will 
require even more sophisticated algorithms for the detection of collisions. 
 
Another important improvement would be the elaboration of a search-and-stopping 
rule (20, 40). The current version of the model presumes that pedestrians select the 
best walking direction among all directions within their field of view  (i.e. the direc-
tion that minimizes the distance to the destination point). However, it might be more 
realistic to assume that the pedestrian instead searches a good walking direction in his 
visual pattern and stops searching when a good enough solution is found, without 
exploring the complete vision field. This would require the implementation of a 
search rule (what is the starting point of the searching? What is the exploration se-
quence?), and a stopping rule (what is a good enough solution? When to stop search-
ing?). Ideally, this rule would predict the kinds of eye movements that pedestrians 
engage in, based on theoretical principles and empirical data (41). For example, one 
may assume that the individual starts searching in front of him (around α = 0 ), ex-
plores the visual pattern toward the sides, and stops when a satisficing walking direc-
tion is found. In addition, biased exploration patterns toward the right-hand side could 
possibly reproduce the features of the side preference (15). The search-and-stop rule 
could also drastically reduce the computational power, as the complete field of vision 
would not need to be computed in advance, and might produce approximate decisions 
in a way that is closer to the pedestrian’s actual decision process. 
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Finally, it could also be interesting to include noise and fluctuations in the 
simulated behavior of the pedestrian. In particular, most existing modeling approach-
es rely on an “extrinsic” source of fluctuations, in the sense where random fluctua-
tions of the movement are added after the deterministic behavior has been calculated. 
In force-based models, for instance, the equation of movement typically includes a 
random component that causes the pedestrian to deviate randomly from a pre-
calculated position (e.g. the term 


ε (t)  in the original equation of the social force 

model). 
When using a heuristic-based approach, however, it becomes possible to inject an 
intrinsic source of stochasticity. In such a way, the noise is not added after the move-
ment is computed, but directly included in the cognitive process that generates the 
movement. For example, one may add random errors when the pedestrian estimates 
the expected collision points with other pedestrians, with less precise estimations on 
the sides than in the center of the visual field. The precision of the estimates in the 
model could even be based on data on the relative area that the visual cortex devotes 
to processing stimuli at a particular distance from the center of the visual field (42). 
When the pedestrian makes eye movements (fixations) to particular parts of the visual 
field, the precision of their estimates of the location and behavior of stimuli near that 
part of the visual field would increase the most. 

 

3 Conclusion 

In this article, we have described and compared two modelling frameworks for 
simulating crowd dynamics. While an outcome model can make use of attractive and 
repulsive forces to describe a pedestrian’s movements, a process model based on con-
cepts of cognitive science describes the internal processes underlying the movement. 
We underlined the fact that different kinds of interaction, namely collision avoidance 
and physical interactions, should be described with different tools that account for the 
specific nature of each type of interaction: simple heuristics to describe the pedestri-
an’s navigation strategy, and a repulsive force to account for body contacts in dense 
crowds.  

When comparing the cognitive approach to the classical social force framework, it 
seems that each method complements the other, and has its own benefits and draw-
backs. Each approach has similar performance in simulations, but the cognitive ap-
proach offers the greater potential for connecting pedestrian decision processes with 
individual and aggregate pedestrian behaviour. Nevertheless, we believe that out-
come- and process-based models, by existing in parallel, will facilitate the develop-
ment of comprehensive theories of crowd dynamics that could not arise from either 
approach alone.  
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5 Figure 

 
Fig. 1. A) Illustration of a pedestrian p1 facing three other individuals and a wall, trying to 
reach the destination point Oi. B) Graphical representation of the function f reflecting the dis-
tance to collision with any obstacle when moving into different directions. The wall covers the 
left-hand side of the vision field. Pedestrian p4 is not visible because it is hidden by p2. Pedes-
trian p3 is moving away, so a collision would occur only if p1 moves toward the right-hand side.  

 


