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ABSTRACT 

Alzheimer’s disease (AD) is the most frequent form of 

dementia in western countries. An early detection would 

be beneficial, but currently diagnostic accuracy is 

relatively poor. In this study, differences in information 

content between cortical areas in 12 AD patients and 11 

control subjects were assessed with Kullback-Leibler 

(KL) entropy. KL entropy measures the degree of 

similarity between two probability distributions. EEGs 

were recorded from 19 scalp electrodes and KL entropy 

values of the EEGs in both groups were estimated for the 

local, distant and interhemispheric electrodes. KL entropy 

values were lower in AD patients than in age-matched 

control subjects, with significant effects for diagnosis and 

brain region (p < 0.05, two-way ANOVA). No significant 

interaction for diagnosis X region was found (p = 0.7671). 

Additionally a one-way ANOVA showed that KL entropy 

values were significantly lower in AD patients (p < 0.05) 

for the distant electrodes on the right hemisphere. These 

results suggest that KL entropy highlights information 

content changes in the EEG due to AD. However, further 

studies are needed to address the possible usefulness of 

KL entropy in the characterisation and early detection of 

AD. 
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1. Introduction 
 

Alzheimer’s disease (AD) is a primary degenerative 

dementia of unknown aetiology. It is the main cause of 

dementia in western countries [1]. AD is characterised by 

impairments in cognition and memory during several 

years before the death of the patient. The rise in life 

expectancy will likely increase its prevalence, since 

ageing is the greatest known risk factor. Patients with a 

diagnosis of AD may wander, be unable to engage in 

conversation, appear to be non-responsive, become 

helpless, and need complete care and attention [2]. From a 

structural point of view, the accumulation of amyloid 

plaques between nerve cells in the brain and the 

appearance of neurofibrillary tangles inside nerve cells are 

considered hallmarks of AD [3]. 

 An early diagnosis would help to reduce brain 

damage and support the adoption of more efficient drug 

taking strategies. Nowadays, clinical diagnosis of AD 

involves several kinds of evaluations, such as medical 

history studies, laboratory tests, physical and neurological 

evaluation and mental status tests, among others. 

However, the diagnostic accuracy in AD is relatively poor 

and is only definite by necropsy. Hence, new tools are 

needed to help in this complex task. 

 The electroencephalogram (EEG), the recording of 

the brain electrical activity with electrodes, has been 

extensively used in dementia research. Preliminary studies 

suggest that the EEG in AD patients shows a slowing (i.e. 

the power spectrum shifts to lower frequencies), although 

this change usually does not appear in the early stages of 

the disease [4]. Furthermore, a decrease of coherence 

among cortical areas in AD patients’ EEGs has also been 

reported [2]. 

 Conventional EEG analysis relies on visual 

inspection or on linear methods. However, non-linearity is 

introduced in the brain at the cellular level [5]. Thus, EEG 

fluctuations are not best described with linear techniques 

and it might be possible to characterise the brain electrical 

activity more appropriately with advanced signal 

processing techniques. 

 One possible solution lies in computing the entropy 

of the EEG. Entropy is a concept addressing randomness 

and predictability, with greater entropy often associated 

with more randomness and less system order. Shannon 

defined the information concept of entropy as the 

expected value (i.e. the average amount) of the 

information of a probability distribution [6]. Since this 

groundbreaking work, Shannon’s definition of entropy 

has been applied, modified and proven valid in a variety 

of fields. In particular, different metrics derived from 

information theory have been used in time series analysis, 

for instance, to quantify the difference between 



probability distributions [7]. One of this metrics is the 

Kullback-Leibler (KL) entropy [8], [9]. KL entropy 

measures the degree of similarity between two probability 

distributions and can be interpreted as a method 

quantifying differences in information content. 

 In this pilot study, differences in information content 

between cortical areas in both AD and control subjects 

have been investigated by estimating the KL entropy 

between EEG electrodes. We wanted to test the 

hypothesis that the information content between cortical 

areas in AD patients would be significantly different than 

in control subjects. 

 

 

2. Material and methods 
 

2.1 Subjects 

 

Twenty-three subjects were selected to take part in this 

pilot study. Twelve patients (6 men and 6 women; age = 

72.8 ± 8.0 years, mean ± standard deviation, SD) were 

recruited from the Alzheimer’s Patients’ Relatives 

Association of Valladolid, Spain (AFAVA). All of them 

fulfilled the criteria of probable AD. The mean Mini-

Mental State Examination (MMSE), a quick and simple 

way to evaluate cognitive function [10], score for the 

patients was 13.3 ± 5.6 (Mean ± SD). 

 The control group was formed by 11 age-matched 

control subjects without past or present neurological 

disorders (7 men and 4 women; age = 72.8 ± 6.1 years, 

mean ± SD). The MMSE score was 30 for all controls. 

 The research protocol was approved by the local 

ethics committee. All control subjects and all caregivers 

of the patients gave their informed consent for 

participation in this study. 

 

2.2 EEG signals 

 

EEGs were recorded over 5 minutes from the 19 scalp 

loci of the international 10-20 system (electrodes F3, F4, 

F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, 

Fz, Cz and Pz) using a Profile Study Room 2.3.411 EEG 

equipment (Oxford Instruments) at the University 

Hospital of Valladolid (Spain). The sampling frequency 

was 256 Hz and a 12-bit A-to-D conversion was used to 

digitise the data. Recordings were made with eyes-closed 

condition to minimise artefacts. Furthermore, all EEGs 

were visually inspected by a specialist physician to select 

5 second artefact-free epochs (1280 points). Additionally, 

all recordings were digitally filtered with a band-pass 

filter with cut-off frequencies at 0.5 Hz and at 40 Hz in 

order to remove residual electromyographic activity. 

 

2.3 Kullback-Leibler entropy 

 

Let us consider a discrete random variable with outcomes 

xk (k = 1,…,n) with probabilities pk. Shannon’s entropy is 

defined as [6]: 
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We can assume that k represents a frequency index and pk 

is the normalised value of the power spectral density [7], 

[11]. 

 If we have two different probability distributions pk 

and qk, we can define the KL entropy as follows [8], [9]: 
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 KL entropy is positive and only vanishes when pk and 

qk are equal. It measures how similar are both probability 

distributions [7]. 

 In this study, pk and qk represent EEG samples from 

different electrodes but the same epoch. We estimated the 

KL entropy values between electrodes for seven different 

brain regions: 

- Local anterior on the left hemisphere (electrodes 

located over frontal and antero-temporal regions 

for pairs of anterior brain region: Fp1–F7, Fp1–

F3, Fp1–C3, F7–C3, F3–C3). 

- Local anterior on the right hemisphere (Fp2–F8, 

Fp2–F4, Fp2–C4, F8–C4, F4–C4).  

- Local posterior on the left hemisphere (between 

electrodes located on the temporal, parietal, and 

occipital regions: O1–P3, O1–T5, O1–C3, P3–

C3, T5–C3). 

- Local posterior on the right hemisphere (O2–P4, 

O2–T6, O2–C4, P4–C4, T6–C4). 

- Distant electrodes on the left hemisphere (O1–

Fp1, O1–F7, O1–F3, P3–Fp1, P3–F7, P3–F3, 

T5–Fp1, T5–F7, T5–F3). 

- Distant electrodes on the right hemisphere (O2–

Fp2, O2–F8, O2–F4, P4–Fp2, P4–F8, P4–F4, 

T6–Fp2, T6–F8, T6–F4).  

- Interhemispheric electrodes. 

 These definitions of local anterior, local posterior, 

distant and interhemispheric pairs of electrodes have been 

used before in studies estimating local and distant 

coherences [12] and cross mutual information [13] of the 

EEG in AD patients. 

 

2.4 Statistical analysis 

 

The Kolmogorov-Smirnov test was used to check the 

normality of the distributions of the KL entropy values for 

both groups. 

 Group differences were analysed with a two way 

ANOVA, one for diagnosis (patients vs. controls) and one 

for brain region (7 different regions). Furthermore, a one 

way ANOVA was used to analyse differences between 

KL entropy values from AD patients and controls for the 

different electrode combinations. 

 

 



3. Results 
 

For both groups (patients with a diagnosis of AD and 

control subjects) KL entropy values followed a normal 

distribution. 

 In general, the EEG of AD patients was characterised 

by lower KL entropy values than the EEG of control 

subjects (see Figure 1). A two-way ANOVA yielded 

significant effects for diagnosis (p < 0.05) and region (p < 

0.05). On the other hand, no significant interaction for 

diagnosis X region was found (p = 0.7671). 

 Table 1 summarises the average values for the 7 

regions previously defined. As it can be noticed, the 

differences are more evident between distant electrodes. 

This indicates that the differences in information content 

between distant regions were reduced in AD patients. 

 Differences between KL entropy values from AD 

patients and control subjects for the different electrode 

combinations were evaluated with a one-way ANOVA. 

KL entropy values were only significantly lower in AD 

patients (p < 0.05) for the combination of distant 

electrodes located on the right hemisphere (O2–Fp2, O2–

F8, O2–F4, P4–Fp2, P4–F8, P4–F4, T6–Fp2, T6–F8, T6–

F4). Table 2 summarises the p-values for these one way 

ANOVA tests. However, these differences were no longer 

significant when the Bonferroni correction was used.  

 

 

4. Discussion 
 

The EEG records the brain electrical activity and can be 

useful in AD diagnosis. Nevertheless, conventional EEG 

analysis relies on visual inspection or relatively simple 

signal processing techniques. It might be argued that, due 

to the complex nature of the electrical brain activity, 

advanced signal processing techniques could provide 

information unavailable with conventional techniques and 

that this could help in AD diagnosis. Thus, in this pilot 

study we wanted to evaluate if KL entropy analysis of 

EEG recordings could provide relevant information for 

the characterisation of AD. Specifically, we wanted to test 

the hypothesis that information content – quantified with 

KL entropy – between cortical regions in AD patients 

would be significantly different than in control subjects. 

 KL entropy values were lower in AD patients than in 

control subjects for the seven brain regions defined in this 

study. Furthermore, the reduced KL entropy values in AD 

patients were more apparent for the distant electrodes than 

for local combination of electrodes, although differences 

in local information content were also found. The 

significant reduction in KL entropy values between pairs 

of distant electrodes might be reflecting the functional 

impairment in the long cortico-cortical fibre pathways in 

AD subjects reported by Locatelli et al. [12]. In addition, 

KL entropy values were lower for closer electrodes (local 

anterior and local posterior) than for distant or 

interhemispheric electrode pairs. As KL entropy measures 

the degree of similarity between two probability 

distributions, it is logical to assume that the distant or 

interhemispheric electrodes pairs would be less similar 

than those in local anterior or local posterior pairs: the 

smaller the KL entropy values, the more similar the 

distribution of the two variables. 

 Significant differences in information transmission in 

AD patients EEGs for the distant and interhemispheric 

electrode pairs in AD patients have been reported using 

cross mutual information [13]. Although KL entropy is 

quite different to mutual information, which provides 

measures of information flow, the similar changes 

observed with both techniques suggest that the changes in 

power spectrum observed with KL entropy may also 

relate to changes in connectivity. 

 It has been suggested that one of the characteristics of 

AD is neocortical disconnection. Cognitive decline comes 
Figure 1. Average KL entropy values for control subjects and 

AD patients. 

Table 1. Mean and SD of KL entropy values for each brain 

region. 

Region AD patients Control subjects 

Local anterior left 0.6860 ± 0.1708 0.6917 ± 0.0913 

Local anterior right 0.6671 ± 0.1560 0.7394 ± 0.1229 

Local posterior left 0.5880 ± 0.1357 0.6540 ± 0.0890 

Local posterior right 0.6374 ± 0.1550 0.6815 ± 0.1382 

Distant left 1.0022 ± 0.1499 1.1136 ± 0.1925 

Distant right 0.9994 ± 0.1630 1.1374 ± 0.1498 

Interhemispheric 0.9159 ± 0.1518 0.9606 ± 0.0716 

 

Table 2. p-values for the one-way ANOVA tests for each 

brain region. 

Region p-value 

Local anterior left 0.9220 

Local anterior right 0.2332 

Local posterior left 0.1869 

Local posterior right 0.4801 

Distant left 0.1345 

Distant right 0.0473 

Interhemispheric 0.3838 

 



as a result of structural and functional disruption of long 

cortico-cortical tracts [14]. Moreover, amyloid plaques 

and neurofibrillary tangles inside nerve cells, two 

hallmarks of AD, also involve the origins and 

terminations of long cortico-cortical fibres [15]-[17]. 

However, KL entropy is a statistical metric quantifying 

information similarity between two time series. Thus, KL 

entropy might not only be reflecting changes in axonal 

connection or cortico-cortical communication in the brain 

due to AD. The differences between cortical regions in 

AD could be due to different factors, like neuronal death, 

a general effect of neurotransmitter deficiency and loss of 

connectivity of local neural networks [2]. 

 Although our results indicate that KL entropy could 

be useful to help in AD diagnosis, some limitations must 

be considered. Firstly, the sample size was small. To 

prove its usefulness as an AD diagnostic tool, this 

approach should be extended on a much larger patient 

population. Moreover, the detected changes in the EEG 

information content between regions might not be specific 

to AD. Further work must be carried out to examine KL 

entropy of background EEG activity in other types of 

dementia to help in the differential diagnosis of AD. 

 

 

5. Conclusion 
 

This pilot study shows that KL entropy might be a useful 

tool to characterise differences in information content in 

brain electrical activity in AD patients. Results show that 

KL entropy values are lower in AD patients than in age-

matched control subjects, although not all differences 

were statistically significant, and are in agreement with 

the functional impairment in the long cortico-cortical fibre 

pathways in AD. However, KL entropy measures the 

degree of similarity between two distributions and might 

not only be reflecting a possible disruption of cortico-

cortical communication in AD. Further studies with larger 

sample sizes and in other types of dementia are needed to 

address the possible usefulness of this methodology in the 

early detection of AD. 
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