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Abstract

Quantum dot structures of InAs(Sb)/InGaAs/InP designed as easy to fabricate, 

low cost mid-IR emitting lasers, have been spectroscopically characterised using 

temperature and power dependent photoluminescence. These structures have 

been simulated using a truncated pyramid structure in the Nextnano software 

package. The results show that the observed experimental data is the result of a 

bimodal dot distribution in both samples. In the In As case, the bimodal 

behaviour is the result of varying width dots (35nm and 38.5nm). In the InAsSb 

case the dot groups were calculated to contain ~10% and zero antimony, 

indicating difficulties during the growth process. Additionally the InAs dots were 

found to have a dominant radiative recombination process, while the InAsSb 

dots were found to be affected by a defect related recombination process. It is 

suggested this is a result of increased defects formed by the larger lattice 

mismatch.

InAs/lnAsSb superlattice structures have potential as mercury cadmium 

telluride (MCT) alternative mid-IR photo-detectors, and are predicted to not 

suffer from Ga-related defect recombination as other superlattice structures. 

High pressure techniques and modelling were used to probe the defect level in 

these structures. High pressure, low temperature photoluminescence 

experiments were performed using the sapphire ball cell to move the conduction 

band minima up in energy until overlap with the predicted defect level state was 

achieved. This resulted in a decrease in the measured integrated intensity of the 

sample due to carriers recombining via the defect states. Additionally power 

dependent measurements at high and low pressure were performed and an 

observed shift from radiative to defect dominated recombination was observed. 

This provides the first experimental evidence of a defect level positioned above 

the conduction band edge. This means that SRH recombination in the forbidden 

band gap w ill not be a contributing factor to the dark currents in InAs/lnAsSb 

superlattice photo-detectors showing their promise for low dark current mid-IR 

detectors.
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Chapter 1 - Introduction



1.1 The Mid-IR

The mid-IR region is loosely defined to be the wavelength region between 2pm 

and 8pm. This broad wavelength region has many important applications to 

fields such as medicine, the military, communications and gas sensing [1]. In the 

future through semiconductor development, these fields could have easy to use 

wavelength tailored devices, rather than using the closest matching device that 

currently exists.

In the medical industry lasers have many uses ranging from the treatment of skin 

cancer using photodynamic therapy [2] (note this treatment is usually not 

performed with a mid-IR laser), to the correction of vision using laser eye 

surgery. Using a laser to replace a traditional scalpel produces finer cuts; this 

results in less scarring and faster recovery times [3].

Uses in the m ilitary are varied and include; range finding, decoys for confusing a 

heat-seeking missile, using mid-IR laser chaff of greater intensity than the 

engines heat output. Another example is making thermal images useless w ith an 

intense mid-IR source.

Mid-IR devices are ideally suited to free space communications as there is an 

atmospheric window in this wavelength range as shown in figure 1. Free space 

communications using mid-IR laser require only a transmitter and detector, this 

allows cost saving to made in infrastructure such as not having to purchase, lay, 

and maintain optical cabling (at the time of this thesis priced at £3.96 per metre

[5]). Power transfer from space to earth is also in development [6] currently at 

wavelengths of 1.55pm. This would allow targeted power transfer to earth at 

skin and eye safe wavelengths using IR lasers.

10



100
Scat t sr i ng L m s «

Ab#orpÜon losies 
ocrur DctDwfhc 
Scattering low "line.

\0 ÎÔ  ̂ W  10̂
I Wavelength - Micrometers >
I I I I
I Far  I R I E xt r eme R  I MM I M icrowave

0.1

UV Vk

too

K>

20

MR M IR

Figure 1: the percentage of light transmitted through the atmosphere at various wavelengths. 
The bottom plot expands the mid-IR region of interest t this work. Adapted from 4.

High sensitivity gas sensing is also a large application for mid-IR lasers. Many 

pollutant gases have strong absorption features in the mid-IR, such as: NH3 (2.1 

pm], HF (2.5 pm], CH4 (2.35 pm and 3.3 pm], HCHO (3.5 pm], HCl (3.5 pm], N2O 

(3.9 pm and 4.5 pm], SO2 (4 pm], CO2 (4.25 pm] and CO (2.3 pm and 4.6 pm] [7]. 

The ability to accurately track the quantity of these gases in the atmosphere has 

direct applications to monitoring the progress of global warming.

Though these are just a few examples of the potential uses, it can clearly be seen 

that mid-IR devices are an important part of modern society. This means that 

developing mid-IR devices that operate at a variety of wavelengths and room 

temperature is increasingly important. Creating these long wavelength room 

temperature devices is scientifically challenging, and this work w ill use

11



spectroscopic techniques and simulations to investigate the underlying physics 

behind the studied devices for future development.

1.2 Quantum Dots

Quantum dot devices gained much interest after they were predicted to be 

temperature independent [8]. This was later found to be more complicated due 

to the dominance of Auger recombination at higher temperatures [9]. Quantum 

dots are still of great interest however. They typically have a lower threshold 

current density and reduced temperature sensitivity than the equivalent 

quantum well laser. This is because their small volume can therefore be used to 

create dense arrays of low power devices.

While quantum dot devices in the visible region are readily available most IR 

research has been to create quantum dot devices that emit at 1.3pm and 1.55pm. 

These wavelengths are of interest to the telecoms industry as there are loss 

minima for silica based optical fibres at these wavelengths [10]. Quantum dot 

devices emitting at 1.3 pm manufactured from InGaAs/GaAs and InAs/InGaAs 

have been demonstrated, showing improved characteristics compared to QWs 

developed [11,12,13] 1.55pm devices manufactured from InAs/InP [9] are also 

the subject of investigation.

To extend the wavelength of quantum dot systems into the desired mid-IR 

wavelength range narrow bandgap materials such as In(As)Sb on GaSb 

substrates have been extensively investigated [14]. Fundamentally the bandgap 

range of a quantum dot material lies between the bulk bandgap of the barrier 

material used, and the bulk bandgap of the dot material. This makes the longest 

possible wavelength of InAs 2.97pm (0.417eV] [15] and InAsSb less than 5.27pm 

(0.235eV][15] due to its large bowing parameter. These values are unattainable 

in practice due to the large wavefuntion confinement in quantum dots. There has 

been some success in growing self assembled SK mid-IR dot materials using 

"standard" MOVPE techniques, a 2pm room temperature laser has been 

developed from InAsSb/InP [16]. Wavelengths of 2.46pm at 6K have been 

reached using InAs/InGaAsP/InP [17] quantum dots. To extend the wavelength

12



lim it even further, non-standard growth techniques are being investigated and 

are reviewed in a later chapter.

1.3 Photo-detectors

While there are many detectors available for purchase that cover the infrared 

region with varying sensitivities. Mercury Cadmium Telluride (Hgi-xCdxTe) (also 

known as MCT] detectors are currently the commercially available standard for 

mid-IR photo-detectors. They were first engineered as a direct band gap material 

for the long wavelength infrared region in 1957 [18], and have been under 

development since then.

Despite the dominance of Hgi-xCdxTe photo-detectors in the mid-IR detection 

market, there are alternatives in the form of antimonide based type-ll 

superlattices. These superlattice structures are predicted to have similar optical 

properties as the Hgi-xCdxTe mid-IR detectors, while having much improved 

electrical properties. The fist superlattice structures able to directly compete 

w ith Hgi-xCdxTe detectors were InAs/lnGaAs type-ll superlattices. Not only did 

these structures have the predicted electrical improvements, these superlattice 

structures are also less toxic to the environment than mercury and cadmium 

containing structures.

Though a viable alternative, InAs/lnGaAs superlattice structures were found to 

have very large dark currents caused by SRH recombination in the forbidden 

bandgap therefore lim iting their suitability as photo-detectors. The current 

generation of type 11 superlattice studied in this work is a InAs/lnAsSb 

superlattice. This type of superlattice is predicted to have the defect state 

positioned above the conduction band edge, thus having no significant dark 

current contribution from Shockley-Read-Hall (SRH] in the forbidden band gap 

under ambient conditions.

13



1.4 Thesis Summary

Chapter 2 focuses on the fundamental physics built upon later in this work. 

These fundamentals include some of the analysis techniques used in later 

sections, and the theory behind the main spectroscopic techniques used.

Chapter 3 outlines the considerations that must be made when working in the 

mid-IR regime in terms of optical apparatus. The operation of the sapphire ball 

cell is also described with attention given to operating this piece of apparatus in 

the mid-IR. Finally, the experimental apparatus is presented on which the data 

was gathered.

Chapter 4 outlines the dependence of dot morphology on strain, and shows how 

the morphology is directly related to the dot emission wavelength. Simulated 

and experimental results are used to characterise InAs and InAsSb quantum dot 

structures emitting at -2pm , and a theory for the underlying physics behind the 

observed measurements is presented and justified.

Chapter 5 describes why the new generation of superlattice structures could 

prove superior to Hgi-xCdxTe photo-detectors. Using high pressure and low 

temperature measurements the first experimental evidence of a defect state 

above the conduction band edge in InAs/lnAsSb superlattice structures is 

discovered.

Chapter 6 summarizes the main findings of this work and suggests possible 

future research in the field.
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2.1 Introduction

This chapter outlines some elements of key semiconductor theory that is the 

foundation for work done in later chapters. This begins w ith the density of states 

for bulk materials, and is limited in dimensionality until the density of states for 

a OD structure such as the ideal quantum dot is shown. The occupation of these 

available states is then discussed using the Fermi-Dirac distribution.

Other important topics which are used throughout this work such as the 

different type of band alignments formed by a simple hetero-junction are shown, 

along with the principle behind the alloying of semiconductor materials to 

engineer desired optical properties.

The physics behind the principal spectroscopy types of PL and absorption is also 

covered in detail, and how they are physically fitted to experimental data. 

Finally, physics of photo-detector operation, focusing specifically on the sources 

of dark current are discussed. This becomes of relevance when the benefits of 

antimony vs. gallium type 11 superlattice photo-detectors are discussed in 

chapter 5.

2.2 Semiconductor Theory

2.2.1 The Density of states

The density of states (DOS) of a material describes the number of states available 

to be occupied by electrons per unit energy per unit volume. Classically, all 

values of energy are allowed resulting in any number of states to be occupied. 

However, when dealing with quantum mechanical particles such as fermions the 

Heisenberg uncertainty principle and the Pauli exclusion principle must be 

obeyed restricting the available energy levels. Furthermore, the Schrodinger 

equation must be satisfied subject to the boundary conditions imposed on the 

system, such as limits on the dimensionality. Degeneracy of the solutions must 

also be accounted for, i.e. for one energy level, more than one set of k-space 

values may give the same energy.

18



Each of these restrictions on the dimensions result in the density of states being 

proportional to the number of degrees of freedom in the system as can be seen in 

figure 1. The resulting density of states from lim iting these degrees of freedom 

caused by restricting the dimensionality are shown in figure 1 along with their 

energy dependence. At this point is should be noted that real quantum dot 

systems have a finite size, this means that DOS for a real dot system is not a 

perfect delta function. Instead the DOS for a real dot has a broadening of the 

delta function dependent on its volume. Further to this there are usually many 

dots in a system with a distribution of sizes, further broadening the density of 

states.

Degrees o f freedom Densiîv o f siales

Puos

= const. 

-------------- K

E

&

Pl)()S

-*-£•

Figure 1; The density of states for 3D, 2D, ID and OD. Also shown in the proportionality 
of the energy dependence in each case. Adapted from [1].
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2.2.2 Occupation of energy levels

While the density of states describes the states available for occupation, the 

probability of occupying these states is described by the Fermi-Dirac 

distribution. The Fermi-Dirac distribution is used as electrons and holes are 

fermions and therefore obey Fermi-Dirac statistics rather than the Bose-Einstein 

statistics. The Fermi-Dirac distribution gives the probability that a state energy E 

w ill be occupied in an ideal electron gas at thermal equilibrium and is given by 

the function:

1 (1)
/(£■) exp[(E — F f/kgT ] + 1

Where E is the state energy, Ef is the Fermi energy, ke is the Boltzman constant 

and T is the temperature. At OK this function produces a sharp step, and as the 

temperature is increased this step begins to broaden as shown in figure 2.

T T T

T=OK
100%

f(E) 60%

increasing 
temperature

E/E,
Figure 2: The Fermi-Dirac distribution. As temperature is increased the electrons are found in

higher energy levels. Adapted from [2].
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As the number of available states has been defined by the density of states, and 

the occupation of states has been described by the Fermi-Dirac function. These 

two functions can be combined to determine the occupation of a system as a 

function of temperature. The occupancy of the three dimensional density of 

states by a free electron gas obeying the Fermi-Dirac distribution is shown in 

figure 3. The shaded region shows the electron occupancy at OK, as the 

temperature is increased there is a temperature related broadening of 

magnitude keT, resulting in electrons being thermally excited from region 1 to 

region 2. While bulk materials are not studied in this work, the figure illustrates 

that there is a thermal contribution to the band occupation present for all 

practical dimensionally restricted systems.

D(e)

-—k̂ T—»-

Energy, e  —

Figure 3: TheSD density of states occupation of a Fermi-Dirac electron 
gas. The shaded region represents the occupation at OK. Adapted from

[3].

2.2.3 Band alignment types

As this work considers quantum dots as well as superlattice structures 

consisting of many quantum wells, it is prudent to briefly classify the type of 

band alignments that can be achieved when creating a hetero-junction and the 

parameters used to describe them. Figure 4 shows the three types of hetero

junction formed by combining two different bandgap materials A and B. The
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Energy gap of material A or B is labelled E§a or Egg respectively. The terms AEc 

and AEv represent the conduction and valence band offsets respectively.

Type 1

A B A B A

T

A£c

t

JL— — — —
At; I 

_L

Type HA 

(staggered)

AC

gB

gA

-r-

Type IIB 
( misaligned) 
I AC I > E,,\

t
».
i

Afci 

“ - r _ L  _ _
AE,ĝ.A

Figure 4: The different type of heterojunction band alignments. Adapted from [4].

Type 1 alignment creates the situation where the lowest energy transition is 

spatially direct between the valence and conduction band of one material (A). 

The second material (b] then creates a potential barrier to confine the carriers. 

This is the case of a classic type 1 quantum well.

Type 11 staggered alignment creates the situation where the lowest energy 

transition is spatially indirect and requires some spatial overlap of the wave 

function to allow excitation and relaxation of electrons to occur. The lowest 

energy transition becomes from the valence band of material B to the conduction 

band of material A. In this case the potential barrier to confine the carriers is 

supplied by the opposite material i.e. confinement in the valence band 1 supplied 

by material A and conduction band confinement by material B.

22



Type II misaligned [also known as type III) occurs when the valence band of 

material B is higher in energy then the bottom of the conduction band in material 

A. This hetero-juction behaves like a negative or zero-gap semiconductor or 

semimetal.

2.2.4 Semiconductor Alloys

Semiconductor alloying is the process of taking two [or more) semiconductors 

and combining them to create an alloy with properties such as the bandgap, that 

has values between both. An example of this used in this work is the ternary 

alloy InAsi-xSbx. This is an alloy of the binary materials InAs and InSb, when the 

ternary alloy is formed arsenic atoms are replaced with antimony atoms 

resulting in a change in the electronic and optical properties of the material. In 

the case of bandgap, increasing the antimony content of the ternary alloy 

decreases the bandgap, this change between the two materials is not linear 

however and can be described a bowing parameter. The common ternary 111-V 

are shown in figure 5 and are joined by curves descriving their bowing 

parameters.

AlP
ZnTe'

AlAs.
GaP2 0.62 

0.69 
0.78 I  
0.89 —

AlSb

InP CdTe
GaAs

#1
I

1.24 g
GaSb

InAs" InSb.
0

HgTe

6.45.4 5.6 5.8 6.26.0
Lattice constant (A)

Figure 5: The bandgap and bowing parameter formed for 
many of the tertiary alloys. Adpated from [5]

During this work the main semiconductor parameters used are effective masses 

me* mhh*, mih*, bandgap Eg and lattice constant. The ternary material InAsi-xSbx 

studied in this work has been well documented by 1. Vurgaftman et al. [6]. The 

bandgap is determined by the bowing parameter as shown in figure 5. The
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effective mass (me*, mhh*) is approximately proportional to the bandgap and is 

therefore determined by the same parameter, while the lattice constant is a 

linear extrapolation between the two binaries.

2.2.5 Bandgap Temperature Dependence

As a 111-V semiconductor is heated, the bandgap is reduced. This is due to 

thermal dilation of the lattice with temperature, and has been empirically 

expressed in the following equation, known as the Varshni Equation [7]:

E / r )  =  E / o ) - ^

Where Eg(0) is the bandgap of the material at OK, and a and p are constants of 

the material. While the Varshni equation is normally found to be a good fit for 

bulk materials and hetero-structures, later on in this work it  w ill be shown that it 

is not always suitable for more complex structure such as superlattices.

2.3 Recombination Processes

Once a semiconductor has absorbed a photon, then there are three major 

recombination processes available for excited carriers. The proportion of the 

total photo-generated carriers which recombine via each mechanism is different 

for each semiconductor and can depend on parameters like temperature and 

pressure. Each of the major recombination methods w ill be outlined in this 

section and also how one experimentally identifies which process is dominant in 

the material being measured.

2.3.1 Radiative Recombination

An electron in the conduction band recombines w ith the hole, returning the 

semiconductor to its ground state by emitting a photon, as shown in figure 6. 

When performing PL experiments on a semiconductor, this is the measured 

output.
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CB

VB
Figure 6: An electron recombines with a hole to emit a photon with 

energy proportional to the bandgap.

2.2.2 Defect related Recombination

Defect related recombination now differs from radiative recombination, as there 

is a defect related state located in the forbidden band gap by which the electon 

hole pair recombine. In a two stage recombination process the electron now 

recombines firstly from the conduction band to the defect state. Then secondly 

from the defect state to the valence band, returning the system to its ground 

state as shown in figure 7. While this recombination process may emit a photon 

when performing these transitions, this photon w ill have energy proportional to 

the energy gap between the conduction band and defect state or the defect state 

and valence band. However, the majority of these transitions are non-radiative 

releasing the energy via phonons therefore heating the lattice.

I

I

CB

Defect Level

-------- O ----------  V B
Figure 7: An electron recombines with a hole via a defect state within the

bandgap.
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2.3.3 Auger Recombination

C Band C Band C Band

HH Band HH Band HH Band

SO Band LH Band

CCCH Process CHHS Process CHHL Process

Figure 8: Three Auger recombination processes. Adapted from [8].

Some examples of Auger recombination processes are shown in figure S.The 

CCCH [two conduction band electrons “CC" interacting to move to the conduction 

band and HH band “CH") process involves two electrons “colliding" via 

coulombic interaction of one of the electrons moves to the valence band and the 

other higher into the conduction band. This electron then thermalizes back down 

to the bottom of the conduction band releasing the excess energy to the lattice as 

heat. A similar process can occur in the heavy hole band where one hole is 

promoted to the conduction band and the other is promoted to spin off band 

[CHHS] or the light hole band [CHHL].

As Auger relies on the collision of carriers it can be seen that the CCCH process 

w ill occur when there is a high electron density, and the CHHS and CHHL process 

w ill occur when there is a high hole density.

2.3.4 Identifying Recombination Processes

The total input pump power into a sample is the sum of all the carrier related 

processes. The defect related recombination, the radiative recombination and 

Auger recombination. An expression for the total pump power is given by [9]:

P oc A n  +  Bn^ + Cn^ (3)
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Where A, B, and C are recombination coefficients of the , defect, radiative and 

Auger processes respectively. P is the total pump power, and n is the density of 

carriers, assuming that the electron and hole densities are equal. When 

performing a measurement only the radiative recombination component is 

measured. Therefore the measured light output is given by:

L oc Bn^ (4]

Assuming that the coefficient has no dependence on carrier density i.e. B^tEfn) it 

follows that:

n oc [ 5 ]

If one recombination process dominates over all others in the sample, [3] may be 

written as:

P ccn^ (6)

Where z = 1, 2, 3 depending on the number of carriers involved in the 

recombination process. Substituting in equation 5 to equation 6:

P ocL^/2  [7 )

Taking the log of both sides gives:
z

log P oc-log L (8)

Rearranging:

2 [9]
LogL oc -  logP

z

Equation 9 now gives an expression combining the measureable variables of 

pump power and light intensity. Plotting logL vs LogP and taking the gradient
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gives a method of identifying the dominant recombination process in the sample. 

As discussed above, radiative recombination has two particles involved (z = 2} 

therefore the identifying gradient would be 1. Defect related recombination is a 

single particle process [z = 1] therefore the identifying gradient is 2. Auger 

related recombination is a three-particle process (z = 3] and therefore the 

identifying gradient would be 2/3. A combination of these processes can give a 

non-integer value of z.

2.4 Photoluminescence

Photoluminescence (PL) is the absorption of an incident photon of energy 

greater then the material bandgap to create an electron-hole pair, and 

subsequent radiative recombination of this pair to emit a photon of energy 

proportional to the energy of the bandgap. This basic principle w ill now be 

expanded upon to build a more complete picture of the process.

Einstein was the first to document the relationship between absorption and 

spontaneous emission, and as such the coefficients for the rates are named after 

him, the Einstein coefficients. Anm the rate of spontaneous emission of radiation 

due to transition from level n to m, and Bnm the rate of absorption due to 

transition from a non degenerate level n to m. When = B^^ie the absorption 

from non degenerate level n to m, is the the same as the absorption from m to n, 

these coefficients are related by equation 10 [4]:

8nhv^n^
A n m =  ^  K m  UO]

Where h is Plancks constant, v is the photon frequency, c is the velocity of light in 

a vacuum, and Ur is the refractive index of the semiconductor material which is 

assumed to be non-dispersive. When in thermal equilibrium the rate of
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absorption and emission between the conduction and valence bands must be 

equal. This relation between absorption and emission is known as the 

Roosbroek-Shockley relation [4]:

Pvc(v)p(p) = PvcW (11)

Where Pvc, is the absorption rate between the valence and conduction band, Rvc is 

the emission rate between the valence and conduction band, and p is the photon 

energy density. The absorption rate Pvc is related to absorption coefficient by 

P-i;c =  a c /r ir  where a is the absorption coefficient of the semiconductor. 

Combining these equations and using the Planck distribution at a temperatureT 

to represent p, the photon energy density, a relationship between emission 

probability and the absorption coefficient can be obtained [4]:

a(v)8nv^n r  
" c2[exp (E /KT)  -  1]

When the sample is optically excited using a laser, the system is driven away

from this thermal equilibrium state unbalancing the emission and absorption

rates. During a PL experiment the emission of excess photons while the sample

returns to thermal equilibrium is what one generally detects. The non

equilibrium states are described using quasi-Fermi levels. The stronger the

excitation on the sample, the further the quasi-Fermi level is shifted from the

actual Fermi level.

Under CW excitation a quasi-thermal equilibrium state is quickly reached in the 

sample, fixing the quasi-Fermi levels. To calculate the emission from a 

semiconductor in this quasi-thermal-equilibrium situation one can start from the 

emission rate in thermal equilibrium, defined as [4] :
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^ c r = ^ c r A ( l - A )  [13]

Where Acv is the Einstein emission coefficient, and fc and fv are the electronic 

occupancies in the conduction and valence bands respectively i.e. the quasi- 

Fermi levels. When under low excitation this function can be approximated to a 

Boltzman distribution [4]:

f c O r f^ K e x p [ - ^ / l^ ^ j ]  (14)

The jo int density of states for the conduction band and valence band in a type 1 

three dimensional bandgap semiconductor is given by [3]:

Dj oc (£• -  E g f /2 (15)

Substituting these values into the emission rate (equation 13), then the following 

equation for PL line shape is obtained [4]:

fpiCE) oc (E -  Eg)V2exp (16)

This is the case when E > Eg, and zero otherwise when the incident photons 

have inadequate energy promote an electron across the forbidden bandgap. 

Differentiating this w ith respect to energy, the position at which the at which the 

lineshape is peaked can be found [10]:

Errax =  E g + ^  [1?)

This means that the measured peak energy extrapolated from any PL spectra is 

offset by k^T /2  from the true peak energy.

This line shape expression is incomplete when looking at practical PL work as it 

does not allow for any energy values below the band gap. This is not the case in 

practical PL experiments. These transitions at energies less than Eg are called the
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Urbach tail. This tail is created by imperfections in the semiconductor forming 

localised states w ithin the bandgap from which carriers may recombine. The 

Urbach tail is given the form [11]:

a
a(E ) =  A exp

knT (E -  E„) (18)

Where A is a fitting parameter, and a describes the slope of the tail. We now have 

two expressions for a practical PL line shape. There is a point at which they cross 

over, which can be shown to beE^o = EgT/2<r. Thus the final PL line shape is 

given by:

If E < Er Ip iiE ) =  A
knT
2a

exp
a

kuT (E -  Eco) fc fv (19)

If E > E,CO IpdE ) =  A(E -  E a f l2 f jp (20)

2.5 Absorption

Absorption spectroscopy is intrinsically related to the PL theory described 

above. While in the case of PL we are interested in the re-emitted photons 

generated from e-h recombination, for absorption we are interested in the 

amount of transmitted light which is dependent on the light being absorbed by 

the semiconductor to generate e-h pairs. The transmission is defined by the 

Beer-Lambert law [12] :

7 (W )
Ic

—  oc(̂ Pico'̂ ci (21)

Where I  is the measured light intensity, k  is the initial light intensity, a is the 

absorption coefficient, and d  is the depth of the semiconductor that the light is
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penetrating. The absorption coefficient is then related to the bandgap in a direct 

bandgap semiconductor by [13]:

(22]a(hù)) oc ^

This means by plotting vs E the points of changing gradient are features of 

the sample such as energy levels. Though absorption spectroscopy shows the 

same information as PL spectroscopy it has one large advantage; after the 

incident photons are absorbed there is no further dependence on carriers, 

meaning that the band edge is probed rather than the occupied energy levels. 

Absorption spectroscopy is a technique that can be used to probe band structure 

relatively free of carrier related features.

2.6 Photo-detector Operation

The basic principle of a semiconductor photo-detector is that an incident photon 

of energy greater than the bandgap of the material is absorbed, exciting and 

electron from the valence band of the material to the conduction band. Under 

even a small electric field this excited electron w ill d rift creating a current. This 

basic principle of operation then leads to four key parameters of a photo

detector [14]: (1) the quantum efficiency, this determined how efficiently 

incident photons are converted to electron-hole pairs. (2) the responsivity, this 

determines the size of the generated current created by the optical power 

incident on the detector. (3) the detectivity, this determined how sensitive a 

detector is to a given wavelength. (4) the response time, this determines how 

quickly a detector can react to changes in the incident photons intensity.
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2.6.1 Photodiodes

neutral region

space
charge
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Figure 6: A diagram of a p-n junction showing the formation of a depletion region.
Adapted from [15].

While there are other methods of photo-detection, the PIN photodiode is the 

method of interest for this work. When a p type semiconductor and an n type 

semiconductor are brought together, the excess electrons and holes would like to 

diffuse and fill the crystal uniformly, this would however disrupt the electrical 

neutrality of the crystal. Instead an electric field is formed creating a space 

charge free region called the depletion region, this is shown in figure 6. This 

depletion region creates the electric field required for free electrons to drift and 

create a current in the photodetector.

A p-n junction is often used with a reverse bias voltage, this reverse bias creates 

a strong electric field across the depletion region which increases the drift 

velocity of the carriers, it also increases the width of the depletion region making 

a larger area in which carriers can be generated for detection. A PIN diode has an 

intrinsic region between the p and n doped regions. Under reverse bias the 

electric field spans the intrinsic layer, increasing the volume in which the photon 

absorption can occur.
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2.7 Photo-detector Dark Current Contributions

All good photo-detectors regardless of operational range or designed purpose 

must have a high sensitivity and low noise i.e. the SNR is large. The noise value of 

a photo-detector can be attributed to three main processes; diffusion current, 

generation-recombination current, and tunnelling current. This section w ill 

outline these methods of recombination.

2.7.1 Diffusion Current

In the non-depleted region of the semiconductor thermal carriers are generated. 

These carriers then diffuse towards the depleted region. The current caused by 

this diffusion is given by [14]:
-E. 'A .r  C23)

Where Eg is the bandgap of the semiconductor, ke is the Boltzman constant and T 

is the temperature. This equation shows that the diffusion current is high for low 

bandgap materials such as InSb. To minimize the diffusion current most photo

detectors w ith a narrow bandgap are liquid nitrogen cooled (~77K) for 

operation.

2.7.2 Generation-Recombination Current

The generation-recombination current is caused by defect level states found 

within the bandgap of the material. Carriers "trapped" w ithin these defect states 

can be promoted to the conduction band via optical or thermal excitation with 

energies less than Eg. The generation-recombination current is given by [14]:

C24)

Where W is the volume of the depletion width of the semiconductor, Eg is the 

semiconductor bandgap, ke is the Boltzman constant and T is the temperature. 

While similar to the diffusion current equation above, the generation 

recombination current depends on the volume of the depletion region unlike the 

diffusion current.
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2.7.3 Tunnelling Current

When working with a high electric field for example a photo-detector under 

reverse bias, and geometrically narrow barriers, electrons can quantum 

mechanically tunnel from the valence band to the conduction band. The 

tunnelling current is given by [14]:

Itun OC EVexp

Where E is the electric field, V is the applied reverse bias voltage, m is the 

effective mass of the electron. Eg is the semiconductor bandgap and 0 represents 

the work function and is a material constant dependent on the barrier height.

2.8 Summary

In this chapter the relevant physics which is built upon is subsequent chapters is 

outlined. The density of states for different dimensionalities of material is 

covered along with the occupation of these states using the Fermi-Dirac function.

The different types of hetero-structures that can be formed by a binary material 

are briefly covered, followed by a discussion on how the material parameters are 

changed by forming a tertiary alloy e.g. the bowing parameter of the bandgap.

The theory behind the main spectroscopic techniques used in this work (PL and 

absorption) are covered, which follows onto the important parameters in 

designing a photo-detector, the basic principles of photo-detection operation and 

the sources of dark current.
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Chapter 3 - Experimental Techniques
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3.1 Introduction

In this research two main spectroscopic techniques were used, 

photoluminescence and absorption. The theory behind each technique is 

discussed in the previous chapter. All of these spectroscopies were performed 

with a common experimental setup that w ill be detailed in this chapter.

All of the semiconductors investigated in this thesis are designed with target 

emission wavelengths in the mid-IR, therefore care must be taken when selecting 

appropriate apparatus. Many of the optical components suitable for work in the 

visible region, such as glass lenses are not suitable for work in the mid-IR as they 

have poor transmission outside of the visible spectrum. The change to infrared 

suitable apparatus is done to firstly minimise the amount of light lost to 

absorption in each piece of apparatus to ensure that sufficient light emitted 

actually reaches the detector. Secondly, so that there are no absorption peaks 

caused by the apparatus that may be mistaken for features of the semiconductor 

being examined. Thirdly, to ensure that the apparatus in question, such as the 

detector being used, is responsive in the wavelength region of interest.

3.2 Czerney-Turner Grating Monochromator

The key piece of apparatus used in all of the experiments is the monochromator. 

Its function is to take a broad spectrum of input light and output a narrow 

bandwidth of light. The type of monochromator used for these experiments is a 

Czerny-Turner type grating monochromator the operation of which is shown in 

figure 1 and detailed below.

A broadband light source is focused onto the first slit Si. This light is then 

collected by the collimating m irror and directed onto a rotatable grating. The 

broadband light is then separated into a continuum of dispersed beams that are 

directed onto the focussing mirror. The focusing m irror then focuses the 

dispersed light on the second slit Sz. The wavelength band of the light directed at 

slit 2 is selected by the angle at which the rotating grating is positioned. Czerny-
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Turner gratings are controlled by a computer program which allows the 

monochromated light to be scanned through producing a spectrum of light 

intensity vs wavelength. The resolution of the monochromator is controlled by 

the slit width, with narrower slit widths producing a finer resolution. Wide slits 

provide a stronger signal at the expense of resolution.

Light Box/Source Spectrometer
Broadband
Source

Collimating
Mirror

Focussing
Optics

Rotatable
Grating

To
Experiment/ -4- 

Detector
Focussing
Mirror

Figure 1: The schematic operation of a Czerny-Turner monochromator adapted from [1].

3.2.1 Triax 320 details

The specific type of monochromator used for the experiments in this thesis is the 

Triax 320 spectrometer produced by Jobin Yvon, a division of Horiba. The Triax 

320 is a modified Czerny-Turner design monochromator. The primary difference 

in design is that the rotatable grating is replaced by a rotatable turret that allows 

computer controlled selection of one of three possible gratings. The grating in 

use determines the operating range of the monochromator, and this three 

grating turret allows a much wider wavelength range of operation than a one 

grating system, from the visible region to 30pm depending on the selected 

grating. The details of the available gratings in the Triax 320 and their 

operational range is shown in table 1. Though the Triax 320 has this wide 

wavelength range of operation, it does like all grating monochromators require a 

long pass filter to remove any higher order wavelength light, as shown by the 

grating equation [2]:
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dsinO =  nX (1)

Where d is the grating spacing, 6 is the angle at which the light is being 

measured, and n is an integer representing the order of the light. The filter must 

be selected so that light of order n >1 in the range of interest is removed. The 

commercially available filters for the mid-IR region have a wavelength range 

much shorter than the operational range of the Triax. Details of the gratings used 

in these experiments can be found in section 3.3.3. It should also be noted that 

the reflection gratings are used in first order.

The other design difference from a standard Czerney-Turner monochromator is 

the inclusion of additional entrance and exit ports, shown in figure 2. These 

additional ports allow for the monochromator to be used in different 

configurations by using a computer controlled m irror to select the ports to use. It 

should also be noted at this point that there is no difference in operation when 

using the Triax 320 in reverse, i.e. using the entrance port as an exit port and vice 

versa. This fact coupled with the additional ports allows for virtually 

simultaneous spectra of PL and PR to be taken without disturbing any optics and 

only changing an internal m irror position [4].

Entrance portsToroidal mirror

On-Axis
Turret

Exit Ports

Large focusing 
mirror Asymmetric design

Figure 2: Triax 320 additional port design adapted from [3]

40



The bulb being used for the absorption experiments labelled as the broadband 

source in figure 3 ,is a commercially available Osram low voltage halogen lamp. 

The lamp is a tungsten filament surrounded by krypton gas, all encased in quartz 

glass. The bulbs listed output is lOOW at 12V. Though there is no output 

spectrum available from the manufacturer, it is assumed that the bulb follows a 

typical blackbody spectrum w ith transmission features similar to the quartz 

window cryostat discussed later.

Grating Operating Grooves Dispersion
Blaze {pm } Range (pm } per mm (nm/mml

1.5 1-3 600 5.28
5 3-10 150 2.12

15 10-30 60 52.8

Table 1: Triax 320 grating details [3]

3.3 Considerations for working in the Mid-IR .

It was briefly mentioned earlier that special consideration should be taken when 

selecting apparatus to use in the mid-IR optical regime. This section details each 

apparatus used in the optical setup. In the case where no specialist mid-IR 

apparatus could be sourced then it w ill be shown that any mid-IR absorption 

caused can be accounted for when normalising the measured spectra.

3.3.1 Normalisation of the spectra

It is important to define normalisation of the spectra at this point and how it is 

practically performed. Normalisation is the process of trying to remove any 

features of the apparatus that have affected the measured output spectra, this is 

called the system response. When measuring any sample such as an LED the 

measured spectrum is;
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m(A) = 5(A) R(X) (2)

Where m(A) is the measured spectrum, s(À) is the sample spectrum and R(A) is 

the system response. To remove this system response term, the sample being 

measured is replaced with a broadband light source of known output spectrum.

In all of the experiments performed in this thesis the normalisation was

performed with a Bentham light bulb with known output spectrum. The 

spectrum measured using the Bentham bulb in place of the sample is then;

m 'W  =  R(X) B(iX) (3)

Where m'(A) is the measured spectrum and B(A) is the Bentham lamp spectrum. 

As the Bentham Spectra is known then both sides of the equation can be divided 

by the Bentham Spectrum to gain the system response term;

Substituting (4) into (2) then gives;

s W rn ’W  (53

Rearranging this to find the "true" sample spectrum gives;

In the following sections the normalisation process is discussed and the extent to 

which is removes the absorption caused by each piece of apparatus from the 

measured spectra.

3.3.2 Atmospheric Absorption

The largest source of uncertainty when measuring spectra in the mid-IR regime 

is atmospheric absorption. Figure 3 shows the absorption coefficient of several
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gases that absorb in the mid-IR region. While these absorption coefficients were 

measured in a 100% concentration sealed environment at 1 atmosphere[5] the 

features are still present at lower gas concentrations. Figure 3 shows a very 

broad range of wavelengths from 2 pm to 16pm. The experiments for this thesis 

are in a more specific wavelength region of 2pm to 4pm. The composition of the 

atmosphere at sea level where these experiments were performed is: 78.09% 

nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide and trace 

amounts of other gases [6]. This means in the 2pm to 4pm region the absorption 

features that w ill typically interfere with measured results are water and carbon 

dioxide.

S 40

n i iUM

ammonia 
carbon dioxide 
carbon monoxide 
methane 
water

iâ]
8 10

wavelength /  gm
12 14 16

Figure 3: The absorption windows of atmospheric gases, adapted from [5].

While noi'malisation of the spectra should result on the removal of these features 

the practical application of normalisation finds this is not always the case due to 

their spectral abruptness. Both the spectra for water vapour and carbon dioxide 

gas are well studied and the absorption strength in the 2.4pm -3pm region is 

shown in figures 4 and 5 respectively. It should be noted that there are no 

features for either water or carbon dioxide in the 3pm - 4.15pm region. These 

figures show that there is a complex set of tightly spaced individual absorption 

peaks. This means the normalisation process w ill have difficulty in totally 

removing these features unless the sample spectrums resolution is of a similar 

scale.
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Figure 4: Detail of the water absorption features found between 2 pm - 4pm, adapted from [7].
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Figure 5: Detail of the carbon dioxide absorption features found between 2 pm - 4pm, adapted

from [8].
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An additional problem when trying to normalise out these gas features is the 

concentration that the light is passing through. Though the distances between 

each piece of apparatus w ill not change, things like the concentration of water 

vapour in the air w ill change as the laboratory's humidity changes. While these 

issues are controlled up to a point by climate control like air conditioning, they 

are never completely removed.

3.3.3 Triax transmission

The operation of the Triax 320 was discussed in an earlier section, where is was 

stated that the Triax 320 had three selectable gratings on its rotatable turret. For 

the experiments in this thesis only gratings one (visible to 3 pm] and two (3 pm to 

10 pm] were used, and while the operational range of each is given in table 1, the 

grating efficiency is not constant over the entire range.
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Figure 6: The theoretical efficiency curve of the Triax 320’s grating 1 and 2. Adapted from
[9].

Figure 6 shows the theoretical efficiency of grating one as provided by the 

manufacturer Horiba. The three curves represent the different available gratings
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that cover the same wavelength range, and the dash-dot curve is the one used for 

these experiments. The listed peak efficiency is 80% at 1.5pm. Above and below 

this value the efficiency drops off. Though the maximum wavelength shown is 

only 2pm with an efficiency of 65%, the grating has been used in practice for 

measurements up to 3pm while still producing accurate spectra when compared 

with a Bomem FTIR working optimally in this range.

Figure 6 also shows the theoretical efficiency of grating two as provided by the 

manufacturer Horiba. The listed peak efficiency is 75% at 5pm, below which this 

drops off sharply and above which it drops off slowly. Again, although the 

spectrum only shows values down to 3.6pm where the efficiency is 30%, it has 

been successfully used down to 3 pm, providing continuous wavelength coverage 

between gratings one and two.

From these spectra it can be seen that in the 2pm to 4pm region the Triax 320 is 

not very efficient regardless of the grating being used and by extrapolation of the 

curves a maximum of 20% of the input light reaches the output port. This low 

amount of output intensity compared to the input intensity w ill mean all spectra 

taken in this range w ill have lower SNR than expected.

3.3.4 Long Pass Filters
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Figure 7: ISOOnm Filter [FEL1300) supplied by Thorlabs
[ 10 ].
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As stated earlier in the chapter, when using a grating type monochromator 

higher orders of short wavelength light w ill also leave the output port. To 

remove these higher orders of light a long pass filter is used. While the use of a 

long pass filter removes these unwanted orders of light they do introduce an 

additional non-constant transmission factor when used over a long wavelength 

range. For this work there are three regions that long pass filters are required to 

cover; these regions are the same as the target wavelengths of the 

semiconductors measured. The quantum dots are target wavelength -2pm  at 

300K. The type II superlattice structure is target wavelength -4pm  at 300K, 

though as w ill be discussed later, the type II superlattice investigations were 

performed at high pressure resulting in a wider wavelength coverage of 2 pm to 

4pm for a single filter to be used. The high-pressure studies also required a 

suitable near-IR pressure calibration sample with known change in emission 

wavelength with pressure; the gauge chosen emitted around 1.5 pm and so a 

filter between 1pm and 2pm was chosen.

The filter chosen for the quantum dots study was a Thorlabs (FEL1300) 1300nm 

long pass filter. The transmission spectra of which is shown in figure 7. This 

model was selected as it has a transmission of between 70% and 85% when 

being used between 1350nm and 2200nm. Above 2200nm the transmission 

drops to 50% and below. The transmission in the rejection region is 0.01% [10]. 

Figure 7 does show that although the transmission value is high it is not 

constant. This means that normalisation of every spectra w ill be required to 

remove these features, and again accurate intensity values for comparison.

As the type II superlattice studies had a longer wavelength and also required a 

broader range due to the pressure studies being performed, more consideration 

in the selection of filter was required. The two options available that would cover 

the required region are of 1.7pm Germanium (Ge) long pass filter, and a 1.6pm 

Gallium Antimonide (GaSb) long pass filter. The transmission of each of these 

filters when measured by liquid nitrogen cooled InSb detector is shown in figure 

8. Also shown in figure 8 is a custom-made 2.3pm long pass filter (IR), this is to 

illustrate that although it has a high transmission (greater than 80%) it also has a
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large amount of oscillation in the amount of transmission even over this small 

wavelength range.

Filter Response Measured with InSb Detector

m 40

GaSb 
GE Filter 
IR Filter

3 4 5 6

Wavelength (microns)
Figure 8: Transmission of a Ge, GaSb and commercial IR filters from Thorlabs measured using a

liquid nitrogen cooled InSb detector.

The Ge filter was used for the final experiment as it has the higher transmission 

across the required wavelength, and the transmission spectrum is slowly varying 

with wavelength. However, when comparing the extreme of 2pm the 

transmission has dropped to 80% compared to the peak value of 100% at 2.8pm. 

While still an excellent transmission value this experiment had slightly unusual 

requirements as w ill be discussed in a later chapter, and with higher pressure 

(shorter wavelength) the measured signal was expected to decrease. This 

expected decrease could be mistaken for the decrease in filter transmission. 

Although the transmission is lower for the GaSb it was still considered for use as 

the variation between maximum and minimum transition was a 10% drop, while 

for the Ge filter is is found to be 20%.
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The high-pressure gauge filter selected was a llOOnm filter from Thorlabs 

(FELIOOO) the transmission of which is shown in figure 9. This filter has 80% or 

greater transmission up until 2pm. The transmission in the rejection region is 

0.01% [12]. Although not constant with wavelength any features should be 

removed during normalisation.
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Figure 9; 1100 filter supplied by Thorlabs [12].

3.3.5 Lens Composition

There are two choices for focusing optics in the experimental setup; lenses and 

parabolic mirrors. In this work lenses were chosen for their simplicity of use. 

When using lenses fine tuning individual sections of the optical arrangement is 

done with ease, as each lens can be independently focused when light passing 

between the lenses is collimated. The negative aspect of using only lenses 

requires the apparatus to be arranged in a linear setup, as the light beams 

direction cannot be changed at right angles without the use of a mirror, in the 

same way that can be achieved with mirrors. When using parabolic mirrors, 

optical adjustments are much more difficult as each piece of the focusing optics 

also changes the light beams path by 90°. So although the light is collimated 

between mirrors, moving a m irror to achieve a good focus required movement of 

the preceding mirrors. The advantage of using mirrors is that they require far 

less space than lenses.
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While the issue of space may seem like a luxury, this also reduces the distance 

travelled by the light beam. This reduction in the beam path w ill maintain more 

light intensity between the source and final destination due to beam divergence. 

Additionally there is some light absorbed and reflected by the lenses, however 

their ease of use heavily outweighs these issues.

3.3.5.1 Glass

While glass is the most commonly available and cheapest material to 

manufacture lenses from, not all types of glass are suitable for use in the mid-IR. 

Figure 10 shows the compositions of glass used for optical components. A 

standard optical lens is usually made of crown glass, BK7 and B270. These have 

excellent [90%) transmission in the visible region but a very sharp drop in 

transmission at 1.6pm, by 2.3pm the transmission is negligible. This makes them 

unsuitable for the mid-lR measurements.
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Figure 10: Typical optical glass transmissions, adapted from [13].

Quartz and IR Quartz are more suitable alternatives for work in the mid-lR with 

good transmission values above 80% up to 3.5pm. While this makes them 

suitable for use in the quantum dot section of this thesis they are less useful at 

longer wavelengths.
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33.5.2 Calcium Fluoride

A far more suitable lens material for use in the mid-lR is Calcium fluoride. The 

transmission spectrum of which is shown in figure 11. The transmission is above 

90% between 0.2pm to 7pm, making it ideal for use in the visible and mid-lR 

region. There are however two large disadvantages of using calcium fluoride 

lenses instead of glass. The first is that calcium fluoride lenses are significantly 

more expensive than glass. At the time of writing this thesis to purchase the 

equivalent lens from Edmund Optics would cost eight times more for calcium 

fluoride compared to glass.

The second disadvantage of calcium fluoride is that they are hygroscopic, 

meaning that they are sensitive to any moisture in the air. Exposure to moisture 

w ill cause them to become cloudy and unusable for optical measurements.

Calcium Fluoride

. 1  60
I .
^  20 

0

. . . . .

/
/
/ 1
/ 5

/
f

0.2 0.4 0.6 0.8 1.0 2.0
Wavelengih (pm)

4.0 6.0 10

Figure 11: CaF2 Transmission adapted from [14].

3.3.6 Cryostat transmission

One component in the experimental setup not designed for mid-lR use, that 

cannot be substituted for a more suitable piece is the cryostat window. The 

cryostat used for this experiment has 360° optical access, and a large internal 

cavity as shown in figure 12. This is used in this work for mounting the sapphire 

ball cell inside the cryostat. Something that would not be achievable with a 

standard liquid nitrogen bath cryostat. The window is made from quartz, and has
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been measured several times due the importance of having accurate knowledge 

of its transmission spectrum.

Figure 13 shows the manufacturer supplied transmission spectrum of the quartz 

window. It can be seen from the spectrum that there is a sharp drop in the 

transmission at 2.75pm and it decreases substantially at 3.4pm.These features 

are smoothly varying with wavelength and are removed during the 

normalisation process. It is worth noting however that this single piece of 

apparatus limits the ability to measure samples of emission wavelength greater 

than 4.75pm where this window no longer allows significant transmission.
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Figure 13: The cryostat window transmission, manufacturer data supplied by [15].
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3.3.7 Detectors

During this experiment there are two types of InSb detector used. The option of 

an MCT detector was available but not implemented because its maximum 

response lies at -18pm  and the longest measurement wavelength in this 

experiment is 4pm, At 4pm the MCT is working at 10% of its maximum response. 

In contrast both InSb detectors have a 90% peak response at this wavelength. 

The reason two InSb detectors are used is primarily to allow the simultaneous 

measurement of PL and PR without disturbing the optical setup. Secondly they 

are slightly different in design as outlined below making them more suited to the 

measurement task assigned. They w ill be referred to as red and blue to 

differentiate between them, due to the colour of their casing.
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Figure 14; The response curve of the blue InSb detector [16].

The blue "Cincinnati" is a liquid nitrogen cooled InSb detector w ith a bottom 

window design, meaning you have must use a parabolic m irror to direct the light 

beam into it. While not convenient to use because of this bottom window design, 

it  does have a large -Icm ^ active element. This detector is used for the PL 

measurements taken in this thesis as this large active element allows for
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collection of the most light. The detectors response is shown in figure 14. The 

maximum cut-off point for the detector is 5.56pm, well in range of the 

requirements of this work. It has a broad range of wavelengths where the 

response is above 90% of maximum, and has also been used down as far at 

1.2pm where the response falls to 20% of maximum.

The disadvantage of using this detector is the sharp features it displays in the 

spectra, these are particularly prominent above the 4pm region. However, as the 

maximum measured wavelength is expected to be 4pm then they should not 

present a problem with any measured spectra.
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Figure 15: Response curve of the red InSb detector, adapted from [17].

The red InSb detector is liquid nitrogen cooled and has a side window design 

making it much easier to fine adjust as there no parabolic m irror needed, and 

being able to see directly where the light beam is hitting the active element. It 

also has a DC coupled preamplifier that outputs the measured signal as DC rather 

than AC allowing the simultaneous measurement of the AR and R signal during
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PR experiments. The one disadvantage is the much smaller active element of the 

detector compared to the blue, being -O.Scm^ leading to less light collection.

The response curve for the red InSb is shown in figure 15. It has the same 

operational range as the blue InSb including the same cut off at 5.56pm and 

efficiency peak range. The spectrum does not have the same sharp peaks though, 

again making it more suitable for PR measurements

3.3.8 Sapphire Ball

While a full explanation of the operation of the sapphire ball cell is to follow, it is 

important to mention the transmission of sapphire in the mid-lR. Figure 16 

shows the transmission spectrum of synthetic sapphire which is used to create 

the balls in the cell. The transmission is above 80% between 0.4pm and 4pm. The 

response between 2pm and 4pm is varying. This should not pose a problem to 

remove via normalisation as the curve is smoothly varying with wavelength.
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Figure 16: Transmission of synthetic sapphire, adapted from [18].
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3.4 Temperature Control

The temperature control for all of the experiments was provided by a closed 

cycle helium cryostat working in competition against a proportional-integral- 

derivative (PID) controlled heating element. The lowest possible temperature to 

which the cryostat system can cool is 9K. The lowest temperature used for any 

measurement was lOK, going lower than this temperature w ill not activate the 

heating element. This means there is the possibility of a temperature gradient 

inside the cryostat. All of the PID settings for maximum stability had been 

previously experimentally determined.

L-bracket Schematic

Temp
Sensor

Sample

Temp
Sensor

Figure 17: A schematic of the temperature sensors position 
relative to the sample, on the L-bracket holder.

The heating element is positioned directly below the L bracket to which the 

sample was mounted. There are two temperature sensors, one mounted on the L 

bracket above the sample, and one mounted on the L bracket below the sample, 

this is shown in figure 17. The position of these sensors allows one to determine 

when the cryostat chamber is at the same temperature with no gradient in 

temperature across the sample. This became especially important when using 

the sapphire ball cell, as it has a much larger thermal mass than a semiconductor 

sample. This twin temperature sensor approach allows one to see when the cell 

is at the same temperature as the chamber.
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3.5 Photoluminescence

To actually perform PL the apparatus is configured as shown in figure 18. The 

Triax 320 is used in "reverse" mode for this experiment, with the input port 

being used as an output and vice versa.

D etec to r
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M o u n t
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Figure 18: The experimental setup when performing PL measurements.

The sample is mounted on a copper "L" bracket inside the 360° cryostat. The 

sample is attached to the copper bracket via silver dag that allows for good 

thermal and electrical contact. The sample temperature is monitored via a 

temperature probe attached to the copper "L" bracket behind the sample 

mounting position. The cryostat chamber is evacuated, and then cooled to the 

required temperature. Cooling is achieved via the cryostat pump working against 

a heating element beneath the copper "L" bracket. To eliminate any possible 

condensation the chamber is evacuated to a vacuum of Ix lO ’  ̂mbar.

A chopped laser is used to excite the e-h pairs in the semiconductor. In this 

experiment there were two lasers available. The first is a BWTech diode laser, of 

wavelength 808nm and power 0-450mW [19]. This laser power may be current 

tuned and modulated. The laser beam is directed at the sample by way of an 

optical fibre, however the beam dispersion is quite large. This makes the laser 

ideal for power dependent measurements where a small beam spot size is not 

required, but where power control is important.
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The second laser used is a ND:YV04 laser [20], of wavelength 1064nm and power 

lOOmW. This laser is constant power, and has a very low beam divergence. This 

laser does not have an electrical chopping facility and requires the use of a 

mechanical chopper. This makes it  ideal for experiments where beam accuracy is 

required such as the sapphire ball experiment or for very small wafer pieces 

where the 808nm laser would overlap the sample. It should be noted that both of 

these lasers pass through the cryostat window and sapphire ball cell w ith 90% 

transmission.

Once the sample has been excited by the laser, the e-h pairs recombine and any 

photons radiated are collected by the first CaFz lens. The output light beam is 

collected by the first CaFz lens is now collimated and directed on the second CaFz 

lens which focuses the beam onto the spectrometer's input port. The beam is 

monochromated by the spectrometer and directed out of the output port. This 

monochromated beam is then collected by another CaFz lens and focused onto 

the detector element. The detector signal is received by a lock-in amplifier so 

only light of the same frequency as the laser chopping frequency is recorded by 

the computer, this increases the signal to noise ratio of the measured spectrum.

The spectrometer is computer controlled and w ill scan through the desired 

wavelength range in steps of the desired wavelength. In this way a spectrum is 

then collected and outputted for later use. This process flow is shown in figure 

19.
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Figure 19: The process flow when performing PL experiments.

3.5.1 Pressure Dependent Photoluminescence

With addition of a sapphire ball cell to the experimental PL setup outlined above 

then it becomes possible to study a semiconductor w ith varying temperature, 

power and pressure. This gives further information about the sample band 

structure and is discussed in chapter 5 to determine the position of a defect level 

above the conduction band edge in a type 11 superlattice system.

3.5.1.1 The Sapphire Ball cell

The sapphire ball cell is a compact high-pressure system designed as an 

alternative to the diamond anvil cell [21]. The sapphire ball cell's main advantage 

over the diamond anvil cell is its ease of use; unlike the diamond anvil cell it  does 

not require the sapphires to be perfectly parallel to function properly [22]. 

Additionally the cost of replacement sapphires is much cheaper than the cost of 

replacement diamonds. The largest disadvantage of the sapphire ball cell is that 

the pressure range achievable is much less than that of the diamond anvil cell 

~30kbar compared to ~100kbar due to the larger sampl space in the sapphire 

ball cell. However, this pressure range is more than adequate for the studies 

described here.
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Figure 20: A diagram of the sapphire ball cell, and how the samples are usually mounted.

The cell design is shown in figure 20. The sample is mounted inside a rolled steel 

gasket between the two sapphires. Pressure is then created by tightening four 

threaded bolts spaced equidistant around the circumference of the cell. It can be 

seen immediately that some form of pressure medium is required to transfer 

pressure to the sample without requiring the sapphires to physically touch it. For 

this a solution of 1:1 methanol/ethanol is used [23]. This pressure medium also 

keeps the pressure applied to the sample hydrostatic.

To measure the pressure an additional light-emitting sample is included in the 

cell as shown in figure 20. Normally a ruby chip is used as its peak emission is 

very narrow and its pressure coefficient is well studied [24]. This allows the 

pressure inside the cell to be determined via first measuring the peak emission 

wavelength of the ruby chip ~684nm at room temperature.

3.5.1.2 IR pressure gauge

Ideally when performing an optical experiment such as PL, as much as possible 

of the optical apparatus should remain undisturbed between measurements. 

This ensures that the optical collection stays as constant as possible, allowing for 

comparison between results. It can be seen from the Triax 320 specifications that 

to measure a 4pm sample requires the use of grating 2, and a Ge long pass filter, 

neither of which w ill allow the measurement of a ruby chip since it emits at 

694nm. To allow measurement of the ruby chip the grating and filter would both

61



have to be changed during the measurement taken and then apparatus replaced 

again to measure the mid-IR semiconductor sample. This situation is less than 

perfect and therefore a previously measured near-IR sample was chosen instead. 

The sample chosen was a piece of Ino.73Gao.27Aso.89Po.11 quantum well sample 

with room temperature peak emission wavelength of 1.67pm, and a lOK peak 

emission of 1.44pm. The pressure coefficient had been previously measured to 

be 8meV/kbar for pressures up to 25kbar [25]. Using this sample as a pressure 

gauge w ill now allow grating number 2 of the Triax 320 to be used, but still 

requires a change of long pass filter. This however was the smallest optical 

change.

3.5.1.3 Unique Sample Mounting Technique

As stated earlier, the pressure gauge is normally mounted side by side w ith the 

semiconductor to be measured. However, in the Type 11 superlattice 

measurements reported in chapter 5 the emission from the semiconductor is 

thought to decrease with pressure. This leads to difficulty in the situation where 

changing the optical focus from sample onto the pressure gauge, adjusting and 

measuring the pressure, then adjusting the optical focus back. When trying to 

change the focus back onto the semiconductor being measured there is the 

possibility that the signal has decreased, of that the focus is not consistent w ith 

the last measurement. This process is also unavoidable, as the sapphire ball cell 

needs to be physically removed from the copper “L" bracket to have the pressure 

adjusted.
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Figure 21; [Left) How the samples in a sapphire ball cell are normally loaded. (Right) The unique 
mounting method used for this experiment. This method allows for measurement of a decaying 

intensity signal w ith certainty, regardless of signal strength.

To counter this situation a unique "stacked" mounting technique was developed 

shown in figure 21. The sample and pressure gauge were both thinned, and a 

piece of the pressure gauge the approximate size and shape of the rolled steel 

gasket hole was cleaved. The sample was then mounted on top of the pressure 

gauge. The aim of this method is that is that the sample would create a positional 

drop in measured intensity of the pressure gauge. So when scanning across the 

gasket space there would be a "dark spot" in the gauge intensity where the 

sample is positioned on its surface. This would allow the sample to be found 

accurately and consistently every time, regardless of its output intensity.

The results of scanning across the gasket spacing is shown in figure 22. From this 

data, a central drop in intensity is observed, which leads to the conclusion that 

the excitation laser spot size within the sapphire ball cell is larger than the 

sample size, completely engulfing it. This allows for the sample to be found easily 

and consistently by focusing the optics on the pressure gauge. This can be done
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because once the smallest amount of pressure is applied to the cell, the sample 

w ill be held in place by the pressure medium and no longer move, thus stopping 

it falling to one side of the gasket. The idea that the laser spot engulfs the entire 

sample does have a drawback however. This now means that an unknown 

amount of power from the laser is falling onto the sample, leaving it impossible 

to give absolute values in power dependent spectra. However, power dependent 

values presented are useful in determining trends, as the laser spot size and 

sample size are constant. It should also be noted that while the change in prism 

position is in mm, this is not the same quantity of movement inside the cell. As 

the light passes through the sapphire ball it is focused. This means that one mm 

of prism movement creates a smaller but proportional movement of the laser 

beam inside the cell.
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Figure 2 2 : Ino.73Gao.27Aso.89Po.11 output intensity as a function of laser spot position inside the

sapphire ball cell.

3.5.1.4 High Pressure Experimental Setup

The adapted experimental setup to include the sapphire ball cell is shown in 

figure 23. The differences from the normal PL setup are as follows; only one CaFz 

lens is used between the cryostat and the spectrometer. This is because the
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sapphire ball acts as a lens, therefore any light being emitted from the cell should 

already be collimated. The single CaFz lens is then used to focus this collimated 

light onto the spectrometer port.
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Figure 23: The experimental setup when performing high pressure PL experiments w ith the
sapphire ball cell.

A small Imm^ prism is used to direct the light into the cell at normal incidence. 

This is again because the sapphire ball acts as a lens, so introducing the laser 

beam into the cell at an angle which is not perpendicular to the sample w ill focus 

the laser spot away from the sample. This is illustrated in figure 24 and 

exaggerated to show the beam being able to miss the sample if the angle of 

incidence is high enough. This figure also shows that due to the mechanical 

nature of forcing the sapphire balls together to create pressure, the laser spot 

size inside the cell w ill have also have a small dependence on pressure. The 

sapphires are forced closer together making the distance between the ball and 

the sample decrease, at the maximum pressure achieved of ~21kbar the gasket 

has thinned by -290pm. As the sapphire ball's focal distance is constant, the 

focus and therefore size of the spot w ill change. The calculated focal length from 

the edge of the sapphire ball is given by [26]:

,  (2 -  N)R

Where N is the refractive index of the material i.e. 1.6753 for sapphire and R is 

the radius of the sphere in this case 6mm. Resulting in F = 1.44mm. However, 

this should make no significant impact on the results as the gasket thickness is 

450pm, and the spot size is known to be larger than the sample from the
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mounting technique. Since the sample size and therefore laser spot is many times 

larger than the gasket thickness this focal change is insignificant. Finally the 

largest source of error and difference from zero pressure PL measurements is 

the fact the sapphire ball cell must be removed from the optical setup to adjust 

the pressure.
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Figure 24: The importance of introducing the excitation laser perpendicular to the sample when
focusing using a sphere.

The process to take pressure dependent measurements is shown in figure 25, it 

can be seen that there is significantly more time required to produce these 

measurements due to the temperature cycling of the cryostat and the need to 

measure the pressure gauge for every sample measurement taken. If the 

pressure is not being adjusted and temperature or power measurements are 

being performed then the process is that same as that of a normal PL experiment 

shown in figure 18. It should be noted that although the pressure can be 

measured at room temperature with the gauge used, it must be repeated at low 

temperature. This is because the pressure is held in the cell by threaded bolts 

which w ill expand and contract when heated and cooled. This usually results in 

some loss of pressure at lOK compared to room temperature.
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Figure 25: The process flow when performing pressure dependent PL measurements using the
sapphire ball cell.

3.6 Absorption Spectroscopy

Black Body 
Light Source Spectrometer

Sample on 
M ount

360 Cryostat

Cap2 Lens Detector

Figure 26: The experimental setup when performing absorption measuremnts. 

Absorption spectroscopy shares much of the same experimental setup as PL, this 

is shown in figure 26. The sample is mounted on a copper "L" plate using silver 

dag, however in absorption spectroscopy a small hole is milled in the “L” bracket 

to allow light to pass through. For this mounting technique the sample must be of 

sufficient size to straddle the hole so that the silver dag can be applied above and 

below the hole, and no silver dag is left on the sample area covering the hole 

where it would interfere with the transmitted light. A broadband or black body
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light source is then directed through the monochromator port using an internal 

focusing mirror. The spectrometer then outputs a monochromated light beam 

that is collimated by the first CaFz lens and focused onto the sample using the 

second CaFz lens, this is called the probe beam. The point of focus of this probe 

beam must be at the point where the hole is milled in the copper “L" bracket. 

This light is then transmitted through the sample, and collected by a third CaFz 

lens which collects the transmitted light and focuses it onto the detector element. 

It is worth noting the ease of using lenses for this technique when compared to 

parabolic mirrors, as each lens can be adjusted individually. The computer 

controlled spectrometer scans through the selected wavelength range in the 

desired step size producing a spectrum of the transmitted light. The process flow 

is shown in figure 27. The monochromated beam is also mechanically chopped in 

practice, this allows for the use of a lock-in amplifier to increase the signal to 

noise ratio of the measured signal in the same way as that of PL.

Sample Mounted 
to "L" bracket h  Chamber 

Evacuation
Chamber
Cooling

Spectrometer Scans Spectrum
Change Temp Through Desired Wavelength R a n g e ^ ** r Output

Figure 27: The process flow when performing absorption measurements.

3.7 Summary

All of the experimental techniques and apparatus in this work have had special 

consideration to their suitability for work in the mid-IR. All of the individual 

pieces of apparatus used have been selected for their good transmission in the
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wavelength range of Interest. Where no mid-IR alternative could be found, as is 

the case with the cryostat window, the impact upon the experimental results has 

been considered. All of the apparatus that has been considered during this 

chapter have wavelength dependent features, however, all of these features 

should be removed during the normalisation process.
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Chapter 4 - Quantum Dots

72



4.1 Introduction

Mid-IR lasers operating in the 2pm to 5pm wavelength region have many uses in 

fields including the military, biomedical, industry and trace gas sensing [1]. 

There is great difficulty covering this full wavelength range with simple 

structures such as direct bandgap quantum well structures. This is because they 

rely on interband energy transitions and therefore the bandgap largely 

determines the emission wavelength of the device. Figure 1 shows the bandgap 

of the main semiconductor materials, with the smallest bandgap being an alloy of 

InAs and InSb. While a wavelength of 6.2pm at room temperature is predicted for 

bulk InSb, making a useable hetero-junction structure requires confinement 

from a barrier material, and substrate on which to grow the structure, ideally 

one that can be easily integrated with existing electronic circuitry. A material 

suitable as a substrate would be GaSb, however this introduces a large strain in 

any potential device due to the large lattice mismatch, lim iting both maximum 

emission wavelength and device performance due to strain related defects.

AlP
ZnTe"

AlAs.
GaP

AlSb

InP CdTe
GaAsQ .

1.24 g
GaSb

InAs" InSb,

HgTe &

5.4 5.6 5.8 6.26.0 6.4
Lattice constant (A)

Figure 1: The lattice constant and bandgap of several 
common semiconductor materials. Adpated from [2]

As an alternative approach to the problem inter-subband quantum cascade 

lasers (QCLs) use only electrons (rather than electrons and holes) and emit at a 

wavelength inversely proportional to the spacing between conduction band 

energy levels. As this spacing is much smaller then the bandgap of the material 

very long wavelengths are achievable. However, to engineer smaller wavelengths 

the conduction band energy level spacing must be increased, making devices in 

the 2p to 5pm region relatively difficult to achieve.
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There is success in reaching the 2pm to 5pm wavelength range for both QW and 

QCL materials; however, success in reaching the desired wavelength often comes 

at the cost of another desirable parameter such as room temperature operation. 

Currently the longest emitting type-I quantum well device that could be found in 

the literature operating at room temperature is a GaSb based laser w ith an 

emission wavelength of 3.73pm [3]. However, as longer wavelengths are reached 

non-radiative recombination processes like Auger increase significantly. Type-II 

QW materials are predicted to have a lower Auger co-efficient than the direct gap 

devices. Once these type-II structures were grown this was found experimentally 

to be the case, C. L. Felix et al. [4] shows an example of such a Type-11 QW where 

4.2pm -  4.5pm emission is gained at 310K. QCL structures have achieved success 

in approaching this range N. Bandyopadhyay et al. [5] documents the room 

temperature operation of a QCL laser w ith an emission wavelength of 3 pm, while 

wavelengths as low as 2.6pm have been reached with operating temperatures of 

175K [6].

From the above it can be seen that by using a combination of type-II QW devices 

to cover the shorter wavelength region, and QCL devices to cover the larger 

wavelength range, complete coverage of the 2pm to 5pm wavelength region has 

already been achieved. Why then, is research being conducted to bring quantum 

dot devices into this wavelength region? This is because quantum dots offer 

potential advantages over the existing technology.

Quantum dot devices typically have a lower threshold current density and 

reduced temperature sensitivity than a QW or QCL due to their delta function 

like density of states. Once the dot growth parameters for a given material 

system have been achieved, then SK self assembled dot growth is both fast, and 

straight forward compared to the complex layered structure of the W quantum 

well and QCL structures. Dots are also more resilient to damage, since quantum 

dots are more immune to defect propagation than QW or bulk active regions.
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These advantages have been realised in the telecoms industry where most IR 

quantum dot research has been conducted to develop lasers that emit at 1.3pm 

and 1.55pm. These wavelengths are of interest to the telecoms industry as there 

are loss minima for silica based optical fibres at these wavelengths [7]. Quantum 

dot devices emitting at 1.3 pm manufactured from InGaAs/GaAs and InAs/lnGaAs 

have been demonstrated, showing improved characteristics compared to QWs 

[8, 9,10], 1.55pm devices manufactured from InAs/InP [11] are also the subject 

of investigation.

4.2 Quantum Dot Growth

Though it is possible to grow quantum dots using lithography techniques, the 

density of quantum dots is defined by the pattern and the space between dots is 

large, as are the dots themselves [12]. The ability to grow island like structures 

from a 2D wetting layer was proposed by Stranski and Krastanov [13], and is 

now the standard for growing dense arrays of quantum dots. A monolayer Of the 

quantum dot material is deposited, and 3D quantum dots are formed as further 

monolayers are deposited via strain relaxation. The resulting islands are known 

as self-assembled SK quantum dots.

To illustrate the principle of why 3D islands form, a simple model of energy 

balance can be considered [14]. The energy of a coherently strained film on a 

substrate, is compared to the surface energy of a strain free island consisting of 

the same number of atoms as the film. This comparison shows that there is a 

point at which it becomes energetically favourable to form 3D islands instead of 

a film. If the islands are approximated as simple cubes w ith side length X, instead 

of releasing the strain energy the cubes have greater surface energy due to the 

increased surface area of the cube compared w ith the film. At some critical 

length Xc it becomes energetically favourable to form a 3D structure that has 

lower surface energy than the in-plane strain energy. So when X >  Xc [14]:
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Where y  is the surface energy and £ is the in-plane strain. This means that when 

£ ^  0 there is always a value of X above which islands w ill be formed. Although 

this model is simplistic it  does illustrate some key points about quantum dot 

formation: (1) the size of the dot is related to the surface energy and hence shape 

of the dot. (2) The size is dependent on the in-plane strain created by the lattice 

mismatch of the dot and matrix material. This means introducing large atoms to 

a dot alloy w ill reduce the overall dot size.

To understand SK dot growth more fully, the problem w ill be analysed from a 

different perspective. The addition of a single atom to an in-plane strained 

material a is considered. The change in energy when the atom is added 

adiabatically and without change in volume is given by the chemical potential

[15]:

p ( n )  -  Poo oc [(p  ̂ -  (p“ ( n ) ]  +  [6d ( n )  -I- W ]  [ 2 )

Where n is an integer representing the monolayer number, poo is the chemical 

potential of the bulk material, (p  ̂ is the binding energy of material a onto 

material a, (p^{n) represents different binding energies depending on the 

monolayer number, for n= l this represents the binding energy of material a onto 

material p, and for n> l represents the binding energy of material a onto the 

underlying layers of material a. ê îs the dislocation energy caused by lattice 

mismatch, and is elastic strain energy per atom. Since quantum dot growth 

methods are epitaxial, the strain should be released elastically w ith no 

dislocations. This means the dislocation energy = 0.

SK island formation occurs when (p^ <  (pp i.e. the binding energy of material a 

to p, is greater then the binding energy of a to itself. This results in ju(n) 

increasing as a function of n, resulting in layer by layer growth. At some critical 

value of n, p(n) becomes a decreasing function and 3D islands are formed.
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Although SK growth is the method of interest for this work, a similar analysis of 

equation 2 where the elastic strain energy is set to zero results in Frank-van 

der Merwe growth, where growth proceeds layer by layer w ith no island 

formation. \ f  (Pa >  (Ppthen Volmer Weber growth is seen, where 3D islands are 

formed immediately w ith no wetting layer. The above techniques are graphically 

represented in figure 2, where a positive value to the chemical potential results 

in layer by layer growth, and a negative potential results in islands being formed 

as it is more energetically favourable. Figure 2 also shows that from this analysis 

of SK growth the wetting layer is self formed and w ill have a thickness of 3 

monolayers, a significant width of the quantum dots themselves.

0
1
O

1 2 3 4 5 6 7 8 9  10
Thickness (ML)

Figure 2: The change in chemical potential with 
monolayer thickness. Circles represent SK growth, 

triangles Volmer Weber, and squares Frank-van der 
Merwe. Adapted from [15].

4.3 Quantum Dot Bandgap Engineering

The above discussion on dot formation shows that strain is the largest 

determining factor in 3d island formation of SK quantum dots. In practice the dot 

emission wavelength is determined by dot morphology which is a function of the 

strain and alloy composition. For a fixed alloy composition dot width [as the 

height of real dots does not vary greatly] is the primary determining factor in the 

emission wavelength. We shall now look at practical dot examples, and show
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how their properties relate back to strain, and the work being performed later in 

the chapter.

4.3.1 Quantum Dot Shape

The shape of the dot affects the emission wavelength by confinement of the dot 

wavefunction. While the overall effect on emission wavelength is small for 

similarly sized dots, the shape is determined by the plane upon which the dots 

are grown. This is illustrated by Lee et al. [16] who show a series of lno.25Gao.75As 

quantum dots grown on a substrate of GaAs. While not the material used in this 

work, figure 3 demonstrates that that the while the dot shape is based upon the 

growth plane, all of the dots show a similar truncated pyramidal structure and 

are of the same order of magnitude. The primary determining factor in the dot

precursor

(lOi) QD

(11 I B

»

Figure 3: SOOnm AFM images of quantum dots 
grown under the same conditions on the (a) (711)B 

plane, (b)(511)B plane, and (c) (211)B plane. 
Adapted from [16].
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emission wavelength w ill be their width, and w ith them all sharing a similar 

width one would expect these dots to emit at very similar wavelengths. This 

means that when performing simulations later in this work that a square based 

truncated pyramid is acceptable as a simplified quantum dot modelling shape, 

and should give accurate simulations.

The dot shape is also affected by alloy composition. This is illustrated in figure 4, 

where two different InGaAs alloys are grown on GaAs, all growth conditions 

except alloy composition are kept the same. In this example the indium lattice 

mismatch generates strain proportional to the alloy fraction between the dots 

and matrix. Referring back to equation (1) it can be seen that a reduction in 

strain results in larger dots. Figure 4 [b] shows the same large well formed dots 

as figure 3, however with a larger indium fraction the dots are formed faster 

resulting in non-well formed hemispherical dots being formed as seen in figure 4 

(a). It should also be noted that the density of the dots has also changed. The 

same quantity of material appears in each image, but the larger well-formed dots 

are less densely packed. This strain effect must be taken into account during the 

quantum dot modelling performed later. Although simulations w ill allow a 

truncated pyramid design to be used for any strain value, this is unphysical. In 

reality a very large strain between the dot substrate and dot alloy w ill cause the 

shape the dots to form quickly and not be of high aspect ratio i.e. they w ill form 

“blobs" rather than pyramids of defined height and width. This means that 

comparison between dot simulations of high and low strain are less meaningful 

as they cannot be grown in practise.
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Figure 4: AFM images of the change in dot shape with composition, (a) Ino.5Gao.5As, (b)
lno.35Gao.65As. ad ap te d  from [16].

The growth temperature is also known to afect dot shape, Figure 5 shows 

lno.2 5 Gao.75As on GaAs, grown at increasing temperatures, and finally annealed. 

Figure 3 shows the same alloy composition as a function of growth plane w ith  

well formed 3D structures. Use of a non-optimised growth temperature w ill 

cause the formation quantum dashes or small structures are formed instead. 

Therefore in this work, during both simulation and experimental ideal growth 

temperatures are assumed so that it  can be assumed high aspect ratio dots are 

formed.
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Figure 5: AFM images of Ino.25Ga.75As quantum dots 
grown at (a) 580°C, (b) 630°C, [c] 680°C, [d) the 
580°C sample after annealing for Smins at 680°C. 

Adapted form [16].

To further understand the effect growth parameters have on dot shape we look 

at a study by H. Saito et al. [17]. The firs t factor investigated in this study is the 

effect of growth temperature on InAs quantum dots in a matrix of GaAs. It is 

found by measuring the base diameter and height of the dots, that an increased 

growth temperature w ill result in larger volume quantum dots, as shown in 

figure 6 . The “step” in this plot is thought to be caused by a transition from a low 

to high aspect ratio dot. The second part of this study investigates the 

spontaneous transition from high to low aspect dots by examining the RHEED

16

14 □ 550"C

‘  530"C

o 510®C
12

Î1O

1 :
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Figure 6 : The mean diameter and growth 
heights of InAs/GaAs quantum dots 

grown at 510°, 530° and 550°. Adapted 
from [17].
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patterns during growth.

The studies finding show that there is a critical dot volume at which it is 

energetically favourable to transition to a high aspect ratio shape as shown in 

figure 7. Given this new information, it can now be seen why in figure 5, as the 

temperature increases so does the dot volume, and at a critical volume the dots 

form the high aspect ration pyramidal structure.

a-0.33

V

Figure 7: The energy dependence 
on volume for two facet angles (a) 

in radians. Adapted from [17].

4.3.2 Capping

It is normal practice to add a capping layer to a quantum dot semiconductor, this 

capping layer protects the quantum dot layer so that there is no damage from 

contact w ith the dot surface. Capping also allows for semiconductors w ith 

multiple quantum dot layers. This capping process itself changes the shape and 

therefore emission spectrum of the quantum dots. ]. M. Garcia et al., [20] 

measured the size and emission spectrum of self assembled InAs quantum dots 

when capped w ith  varying thicknesses of GaAs. It was found that increasing the 

capping layer thickness decreased the measured dimensions of the quantum 

dots and changed the emission spectra, as displayed in figure 7. Figure 7 shows 

(A], the substrate emission etched clean of quantum dots, (B) the dot sample 

capped w ith  50Â of GaAs, (C) the dots sample capped w ith 65Â of GaAs and (D), 

the 65Â capped sample emission after annealing. This again illustrates how 

annealing can alter the emission spectrum even for a capped sample, though to a 

lesser degree than an uncapped sample.
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Figure 9: (A), the substrate emission etched 
clean of quantum dots, (B) the dot sample 

capped w ith 50Â of GaAs, (C) the dots sample 
capped w ith 65Â of GaAs and (D], the 65Â 
capped sample emission after annealing.

Adapted from [20].

This change in dot emission implies a change in the dot shape by the addition of 

the capping layer. This leads to large problems when trying to measure the exact 

shape of quantum dots, for example the AFM images displayed in figures 1,2 and 

3 were taken w ith  an uncapped sample. The addition of a capping layer to these 

samples w ill influence any information on shape previously acquired. 

Furthermore the dot shape can no longer be measured fu lly as it is beneath the 

capping layer.

4.3.3 Barrier Imposed Strain

All of the above quantum dot studies are changing the growth parameters to 

affect the quantum dot emission peak, fundamentally each relies on strain. As the 

dot morphology relies so heavily on strain this can be used to engineer the dot 

bandgap. In a study by Z. Yin et al. [21], InAs quantum dots are grown in a matrix 

of InGaAs. Three samples were experimented upon w ith varying matrix alloys. 

The alloy of matrix [a) was lno.5 3 Gao.4 7As lattice matched to the substrate, (b) was 

smoothly varied between lno.53Gao.47As and lno.72Gao.2sAs, [c] was lno.72Gao.2sAs 

lattice matched to InAs. This leads to the situation where the InAs dots in [a)
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should be under the most strain, (b] zero strain, and (c) zero strain. Under 

identical conditions same samples were also grown w ithout the capping layer, 

enabling the use of AFM to measure the mean dot height and w idth, the results 

are as follows; [a] 9nm x 47.5nm, (b) 8.9nm x 54nm, and (c) 8.9 x 52nm. The high 

lattice mismatch between InGaAs and InAs in sample (a] has resulted in small 

dots to be formed. The low mismatch between InGaAs and InAs has caused larger 

but sim ilar sized dots to be formed in samples (b) and (c].

The PL emission spectra measured at 12K are shown in figure 8, w ith  the large 

dot sizes having a red shifted emission peak. It should be noted that the small 

change in emission wavelength and reduced PL intensity are attributed to a 

reduced carrier confinement due to the change in barrier shape [21]. While the 

previous dot engineering examples are secondary effects of strain, this study 

directly shows that strain can be used to engineer the bandgap of quantum dots, 

furthermore the dots consist of InAs as is the case in this work.

Cx4
c-
1
I

1500 1800 2100 2400 2700
Wavelength (nm)

Figure 8: The emission spectra of InAs 
quantum dots when in a matrix (A] InP 

lattice matched, (B) graded to lattice 
match InP and InAs, (C) lattice matched 

to InAs. Adapted from [20].

4.3.4 Summary of Growth Issues

To summarize the above sections, strain strongly influences the dot growth 

behaviour outlined above, and therefore their emission wavelengths. This leads 

to interdependency between many of the dot growth parameters. The 

interdependency between parameters is one of the largest lim iting factors
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affecting new dot material systems, as there is an element of trial and error when 

growing real material systems from theoretical models.

4.4 Current Research

To extend the wavelength of quantum dot systems into the desired 2|im to 5qm 

wavelength range narrow bandgap materials such as In(As)Sb on GaSb 

substrates have been extensively investigated [22]. Fundamentally the bandgap 

range of a quantum dot material lies between the bulk bandgap of the barrier 

material used, and the bulk bandgap of the dot material. This makes the longest 

possible wavelength of InAs 2.97pm (0.417eV) [23] and InAsSb less than 5.27pm 

(0.235eV][23] due to its large bowing parameter.

There has been some success in growing mid-IR dot materials using “standard" 

MOVPE techniques, a 2 pm room temperature laser has been developed from 

InAsSb/InP [24]. Wavelengths of 2.46pm at 6K have been reached using 

InAs/lnGaAsP/lnP [25] quantum dots. To extend the wavelength lim it even 

further, non-standard growth techniques are being investigated. When the large 

dots required for mid-lR wavelengths are grown they are not usually densely 

packed. To combat this alternate interruption growth (AIG] was used by T. 

Xiaohong et al. [26] to grow InAsSb/lnP dots which emit at >2.8pm at room 

temperature which have lOx the density of standard growth SK dots. This 

growth technique involves cycling the flow of composition gas exposure, rather 

then exposing the substrate to all composite gasses simultaneously for a given 

time. A graded growth technique has been studied by W. Lei et al. [27], this 

involves changing the MOVPE growth conditions for each layer, this is shown to 

allow a larger antimony fraction into the InAsSb dot structure. While the results 

presented in this work are not the longest recorded dot emission wavelengths, 

they do show a promising method of potentially increasing the emission 

wavelength when used in conjunction with other work.
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As can be seen from the work above, none of the current dot structures are 

reaching the maximum wavelength of the materials due to confinement within 

the dot Work performed by 0. Gustafsson et al. [28] have used this large 

confinement to produce weakly emitting quantum dots at wavelengths beyond 

8pm at 77K. This is done by using a type III material, where there is overlap 

between the conduction and valence band. Due to the large confinement found in

CB

CB,^  0.5
VB
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0.0
InAs CB

InAs VB

-0.5
0.0 0.2 0.4 0.6 1.00.8

Composition x in ln.,_j^Ga^Sb

Figure 9: Type II transition found in the type III 
material. Adapted from [28]

the quantum dots, the energy transition is type II and very small as shown in 

figure 9. This type of quantum dot bandgap engineering is still in its infancy, with 

the PL signals measured being incredibly weak. However, it does show promise 

in creating very long wavelength quantum dots.

The dots systems studied in this work are investigated because they are direct 

bandgap, and are grown by MOVPE on InP substrates. This makes them cheap to 

grow because of the large size and low cost of the substrate, while being easily 

integrated into existing technology. Studying these dot structures also offers 

insight into future dot growth from understanding the underlying physics behind 

light emission. For example, the literature w ill often demonstrate working PL at 

a given temperature, but lacking discussion of the peak emission characteristics 

e.g. the number of transitions contained within the peak, or the dominant carrier 

recombination process within the sample. Understanding these underlying 

mechanisms can help make better devices. If non-radiative Auger recombination 

is found to dominate in a structure, engineering to supress this can lead to more 

efficient devices.
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4.5 InAs Quantum Dot Samples

4.5.1 Introduction

The sample studied in this section consists of InAs quantum dots in a matrix of 

Ino.5 3Gao.47As grown on an InP substrate. The dot structures are self assembled 

SK dots, grown using MOVPE. This structure was designed to be a mid-IR 

emitting sample with a target wavelength of ~2pm at room temperature that 

was relatively easy to grow compared to non quantum dot structures of the same 

wavelength. To achieve wavelengths of 2pm using quantum wells requires 

complex layer structures, and currently not attainable for intra-band QCLs, while 

this structure is simply strain InAs dots grown using the SK growth method. 

While this structure is not designed to have wavelengths longer than the samples 

ihentioned in the previous section, it is used to gain an understanding of the 

underlying physics of a straightforward and commercially cheap growth 

technique.

The sample was grown by collaborative partners at Nanyang Technological 

University (NTU) in Singapore. A similar material composition from the same 

grower has been studied previously [29], and found to have a good PL emission 

at lOK with peak wavelength of 626.3meV (1979nm]. The material being studied 

in this thesis has the addition of n-type doping to the substrate and p-type 

doping to the Ino.5 3Gao.47As capping layer, this has been done to form a p-n 

junction diode for carrier injection.

4.5.2 Initial Photoluminescence Measurements

Photoluminescence measurements were performed using the apparatus outlined 

in chapter 3 and optically excited using a 450mW laser. The output spectrum at 

10K is shown in figure 10, where is can be seen that there are two distinct peaks 

at energies of ~662meV, and ~788meV. Each of the peaks is fitted using a single 

Gaussian oscillator. This is considered a normal fit for SK grown quantum dots as 

they have a Gaussian size distribution. The equation used for the fit is:
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Where Iback is the Gaussian's background offset from zero, A is the Gaussian 

amplitude, E is the energy, Ec is the peak centre, and AE is the Gaussian width. 

The peak positioned at 788meV matches the band gap of Ino.53Gao.47As [30] the 

matrix the dots are embedded in. The peak at 662meV is therefore attributed to 

emission from the InAs quantum dots.
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Figure 1Ü: An example ot the output spectrum from the InAs/lnGaAs quantum dot sample,
fitted using two Gaussian curves.

It can be seen from figure 10 that the InAs dot energy peak is not well 

represented by a single Gaussian peak, with discrepancies occurring at both the 

higher energy side and low energy side of the peak. This fitting discrepancy is 

displayed more obviously in figure 11, which shows a larger view of the InAs 

peak on a log scale. The red dashed line displays the fitted single Gaussian peak 

from figure 10. When viewed on a log scale a Gaussian centred around a point, 

has curves of equal gradient either side of the peak value. The "shoulder" 

indicated on the plot means that a single Gaussian does not sufficiently describe 

the curve and a second oscillator is required to achieve a reasonable fit.



Figure 11 also shows a two Gaussian fit, and the cumulative fit from these 

oscillators. The low energy shoulder feature is described by the blue curve, and 

the high energy peak is described by the green curve. This gives a closer fit to the 

experimental data. To compare the different fits statistically the coefficient of 

determination or adjusted value of the fit is used. The adjusted value gives 

a quantative value as to how well the curve fits the experimental data. The single 

Gaussian fit gives an adjusted R̂  = 0.94224, while the two Gaussian fit gives an 

adjusted R̂  = 0.96483. This means the visual fitting agrees with the statistical 

and the two Gaussian fit is used throughout the rest of this work. From the fitted 

curves the peak energies are found to be 646.4 ± 0.7meV and 662.0 ± 0.9meV, 

compared to the single Gaussian peak of 656.7 ± O.SmeV.
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Figure 11: A larger view of the InAs dot peak from figure 10 on a loglO vertical axis. The low 
energy "shoulder" indicated on the plot shows that a second peak is required for fitting.

4.5.3 InAs Quantum Dot Modelling

To understand the physics behind the two oscillator fitting above, modelling of 

the quantum dot band structure was performed using Nextnano quantum device 

simulation software [31] (see appendix E for more information). To model the
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structure a grid is defined in the growth direction, the barrier material then 

occupies all space where the quantum dot material is not found. The dot 

structure simulated is a common square base truncated pyramid design, the 

height and base width are definable parameters of the program with the side 

facet angle being fixed to correspond to the [O il]  plane, this structure is grown 

on a O.Snm wetting layer of the same material as the pyramid. This does mean 

that for narrower pyramids the top facet becomes a decreasing sized square, 

until at a critical width the structure is no longer truncated and has a point like 

top, this is shown in more detail later.

After the grid and dot structure has been defined, a strain minimization 

calculation occurs, and the band structure and energy states are modelled using 

the effective mass model. Though the simulation can output any number of 

wavefunctions the first five eigenvalue are sufficient for this work.

4.5.3.1 InAs Quantum Dot Volume
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Figure 12: The calculated ground state transition for varying dot widths.
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From the studies outlined above it was shown that dot morphology is the key 

factor in emission wavelength of quantum dot structures. As the dot shape is 

fixed in this simulation to a truncated pyramid, this eliminates all of the growth 

condition factors making the simulation for ideally formed dots. As the height of 

the dots is known not to vary greatly (between 5nm and lOnm in this 

simulation), this leaves dot width as the controlling factor in dot emission. The 

first stage of modelling the experimental data is to approximate the dot volume 

based upon the experimentally measured emission wavelength, a maximum and 

minimum dot height of 5nm and lOnm were chosen based upon previous studies 

[16, 17, 20]. The ground state energy transition for each dot width is shown in 

figure 12.

The data displayed in figure 12 shows firstly, that while the Nextnano software 

can calculate an energy state for all of the widths, some of the simulated data is 

unphysical as the dots have no confinement i.e. their ground state energy 

transition is above the bandgap of the InGaAs barrier. The ground state 

transition energy also tends to a value of 0.6eV with increasing width, the InAs 

bandgap minima is 0.417eV. This implies that even very large dot widths w ill 

have a maximum confinement of ~0.14eV i.e. the difference between the barrier 

and 0.6eV, note this is limited by the vertical confinement of the dot.

There is a constant gap of ~30meV between the 5nm and lOnm dot height 

energies at the same volume. This is to be expected as the energy levels of the 

system are dependent on the boundary conditions of the system. In this system 

the smallest boundary condition is the height and by increasing the dot height 

the system is given more freedom.

The two oscillators found in the experimental measurements can now be 

attributed to some underlying physics based upon the simulated model. 

Assuming that the lower energy peak is the ground state of the system, the 

higher energy peak can either be attributed to a higher energy level w ith in the 

system or a second group of dots in the system. The system was simulated using
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a dot height of lOnm and width of 38.5nm to give a conduction band to valence 

band energy transition of 647meV, these values are chosen to give a the 

simulation when performed at lOK and the experimental data when performed 

at lOK consistency. To ascertain if  the higher energy oscillator fitted in the 

experimental data is a higher energy transition or a secondary set of dots, the 

first five conduction band and valence band transition energies for this dot size 

are shown in Table 1, it  can be seen that there is no energy transition that is close 

to this value. To obtain an energy of 662meV by altering the dot size requires a 

height of lOnm and width of 35nm to gain a ground state transition of 661meV. 

Therefore based upon the higher energy transitions from the simulation it can be 

concluded that this sample has a bimodal dot distribution with average dot sizes 

of ~10nm X 38.5nm and lOnm x 35nm, a width change of 3.5nm between dot 

groups. It should also be noted that there is an energy degeneracy between the 

some of the HH states. It can be seen in figure 13 where the simulated 

probability densities are shown, that these states do share the same energy 

values, but not the same spatial orientation.

Conduction 
Band 1

Conduction 
Band 2

Conduction 
Band 3

Conduction 
Band 4

Conduction 
Band 5

HHi 0.647 0.678 0.682 0.711 0.730
HHz 0.647 0.678 0.682 0.711 0.730
HHs 0.649 0.680 0.684 0.713 0.732
HH4 0.649 0.680 0.684 0.713 0.732
HHs 0.652 0.683 0 . 6 8 6 0.715 0.734

Table 1: The first 5 conduction band to HH transition for a simulated dot size of lOnm x 38.5nm.
All values shown are in eV.
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Figure 13: The first five simulated conduction band 
(left) and heavy hole (right) band wave functions for 

lOnm X 38.5nm InAs quantum dots.
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4.53.2 InAs Quantum Dot Band Alignment
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Figure 14: The simulated band alignment for lOnm x 38.5nm truncated pyramidal InAs 
quantum dots, where position indicates the growth direction.

Using the assumption of ideally formed, truncated pyramidal dots that have a 

corresponding wavelength to the experimental data, the size of the simulated 

quantum dots have now been established. From these values the simulated band 

alignment in the direction of growth is shown in figure 14 for the larger lOnm x 

38.5nm dots, for the smaller lOnm x 35nm the profile is not shown as it is nearly 

identical. The small energy difference between the two dots is caused by the 

change in width as discussed earlier. A type I direct bandgap is observed with a 

large amount of confinement in both the conduction and valence bands.

4.5.4 InAs Temperature Dependent PL

The temperature dependence the InAs quantum dots were measured using 

photoluminescence apparatus as outlined in chapter 3, and the results of the 

experiment are shown on a logio scale in figure 15. The figure shows that there 

are again two distinct peaks which were earlier attributed to the InAs dot 

emission and the InGaAs barrier emission. As the temperature is increased these
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peaks begin to overlap, until the PL intensity has decreased to the point where 

the SNR is too low to detect any measureable signal. This point is reached at 

~100K. The overlap of peak emission from the InAs dots and barrier means that 

at higher temperature the fitting is less reliable and this is reflected in the error 

bars. This overlap is primarily caused by the InGaAs barrier peak emission 

becoming less intense and broader with temperature, to the point that one 

Gaussian curve no longer fits the measured data. This thermal broadening of the 

InGaAs peak broadening effect has been documented previously [30].

R1153 Temperature Dependence
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Figure 15: The temperature dependent spectra of the InAs dots, shown on a log vertical axis.

The shoulder feature that resulted in two Gaussian oscillators being fitted to the 

InAs dot peak earlier is even more apparent w ith temperature in figure 15. When 

this temperature dependent data was fitted using two oscillators the higher 

energy oscillator was found to decline in intensity, until it was no longer 

required to obtain a suitable fit, this decrease in intensity is shown in figure 16. 

The large error bars shown in the low temperature energy range show that 

although the oscillators have similar intensities there is ambiguity in the fit, their 

intensity relative to each other could be changed and still give an appropriate fit.
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Figure 16: The fitted integrated intensity of the high and low energy InAs oscillators.

While these fits are appropriate normally the lower energy states of a 

semiconductor are filled first. This fit does show that the higher energy oscillator 

declines more rapidly with intensity than the low energy oscillator, w ith the low 

energy oscillator beginning to decline at a higher temperature. This can be 

explained by thermal redistribution of carriers between the two dot groups.

If there is a bimodal distribution of dots, then the shallower dots w ill have a 

larger band to band energy transition than the deeper dots. At low temperature 

the carriers are locked in place, as the temperature increases the carriers gain 

thermal energy and at a critical energy are no longer confined and can 

redistribute. This is shown schematically in figure 17. This redistribution w ill 

appear as a decline in intensity of the higher energy transition as the carriers 

redistribute to the lower energy dot states, with no change or an increase in the 

intensity of the lower energy dots as they receive more carriers. This process can 

be seen occurring in figure 16.
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Figure 17: The thermal redistribution of carrier from shallow dots
to deep.

Now that justification of a single Gaussian has been presented for the higher 

temperature measurements, the peak energy dependence of the sample is 

plotted in figure 18. The figure shows the measured peak energy temperature
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Figure 18: Simulated and measured temperature dependence of the fitted oscillators.
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dependence for both high and low energy oscillators, and the simulated 

temperature dependence of each. The simulated data is modelled upon a Varshni 

temperature dependence, as the dots contain only InAs the simulated data 

follows the bulk value closely with only a small variation due to the strain 

contained in the dots. The high and low energy experimental data are also fitted 

using the Varshni equation in figure 18. The adjusted values for the 

experimental data are = 0.904 for the low energy curve and R̂  = 0.979 for the 

high energy curve. These R̂  values indicate that the curves are a good fit to the 

experimental data. Table 3 shows the Varshni parameters for Bulk InAs, the 

simulated data, and the experimental data. The table shows that there is a close 

agreement between the bulk InAs values for the Varshni parameters and the 

simulated data, as would be expected. However, there is a large difference 

between experimental values and the simulated. This indicates that though there 

is a reasonable fit as indicated by the adjusted R̂  values, the Varshni equation is 

not a good model to explain the experimental temperature dependence.

One possible explanation for the non-Varshni behaviour could be the thermal 

redistribution of carriers between the dot groups. The measured emission is 

always a combination of band and carrier behaviour, at low temperature the 

experimental data fits the modelled Varshni data well. As the temperature 

increases the fit becomes increasingly poor, but as the temperature increases 

more carriers are redistributed. This is something that the simulation would not 

be able to account for as it only models a single quantum dot rather than a 

bimodal pair as observed here.

a (meV/K) P(K)

Bulk InAs 0.276 93

High Energy Simulation 0.289±0.001 97.1±0.3

High Energy Experiment 0.123±0.071 51±58

Low Energy Simulation 0.286±0.001 95.4±0.4

Low Energy Experiment 0.200±0.21 81.7±19

Table 3: Simulated and experimentally fitted Varshni parameters
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4.5.5 Power Dependent PL

The power dependent PL spectrum of the sample was measured to identify the 

dominant recombination process within the sample. This is important in the 

development of semiconductors as it gives and indication to device performance. 

Ideally all of the power input to the sample would recombine radiatively, making 

for an very efficient device. If it is found at this early stage of development that a 

defect or Auger related recombination process was dominant, modifications to 

the design can be made to try an minimize the carriers lost to these non-radiative 

processes. Furthermore, if  the dominant recombination process is found to 

change as a function of temperature, this would indicate a decrease in efficiency 

with temperature.
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Figure 19: The measured power dependence of the InAs/lnGaAs quantum dots sample.

Figure 19 shows the observed change in emission intensity with decreasing 

pump power, and shows that the peak attributed earlier to the InGaAs barrier 

emission begins to overlap with the InAs dot emission at low power. This is the 

same effect as seen earlier in the high temperature. The similarities between 

these effects indicate that the overlap of these peaks is always present but not
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observable due to the very large SNR w^hen at low temperature or high pump 

power, and becomes apparent once there is a sufficiently poor SNR.
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Figure 20: The integrated intensity of the InAs peak as a function of power.

Figure 20 shows the integrated intensity of the peaks as a function of power. The 

gradient of this curve is 1.07 ± 0.04 and 1.06 ± 0.05 for the InAs and InGaAs 

peaks respectively. These values indicate a dominant radiative recombination in 

both peaks at lOK. When measured again at 60K the power dependent gradient 

for the InAs dot peak is found to be 1.15 ± 0.07 showing again a dominant 

radiative recombination process. The measured gradient values of the curves are 

w ithin error tolerances of each other implying that there is no significant change 

in the dominant recombination process of the InAs quantum dots over this 

temperature range.

4.5.6 Conclusions

A short review of how quantum dot morphology affects the emission wavelength 

has been carried out, and strain to found to be the underlying cause of dot
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morphology. From the review realistic estimates for the size and shape of InAs 

quantum dots have been established for simulation using the Nextnano software 

package.

Using a truncated pyramid design w ith a height of 5/lOnm InAs quantum dots 

have been simulated, and dot width shown to be the principle factor in 

determining the simulations output wavelength.

■ ' ■ \

Experimental data determined that two Gaussian oscillators gave the best fit to 

the experimental data, from this experimental data and the simulation 

determined that these two oscillators were the result of bi-modal quantum dots 

with sizes of lOnm x 35nm and lOnm x 38.5nm as these gave a match to the 

experimentally observed oscillator peak energies.

The temperature dependence of the experimental data was found to vary from 

the simulated data based upon the Varshni equation. While the Varshni equation 

did fit the data with a high adjusted value the material constants were found 

to be very different from both the literature values and simulated value. This 

could be the result of thermal redistribution of carriers between bi-modal dots 

evidence for which was presented for in section 4.2.4.

Finally, the dominant recombination process in the sample was identified using 

power dependent PL. The dominant process was found to be strongly radiative 

at temperatures ranging from lOK to 60K. This indicates that the sample would 

have good device efficiency when pumped electrically.
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4.6 Quantum Dot Sample R1433

4.6.1 Introduction

Sample R1433 is a quantum dot semiconductor grown by collaborators at NTU in 

Singapore. The sample has InAsSb quantum dots in a matrix of Ino.4 7Gao.53As, 

grown on an InP substrate. This material was designed as a mid-IR emitter w ith 

a target wavelength of -2  pm, and follows on from the previous InAs quantum 

dot sample by trying to increase the emission wavelength through the addition of 

antimony to the dot alloy composition. If previous dot dimensions can. be 

maintained the addition of antimony should extend the emission wavelength 

further into the mid-IR due to the smaller material band gap.

There is one large drawback to the growth of SK self assembled InAsSb quantum 

dots, and this is exact knowledge of the antimony fraction w ithin them. As there 

is no real control over the dot formation during the SK growth then the number 

of antimony atoms incorporated into each dot is unknown. On top of this the 

antimony is introduced to the MOVPE growth chamber in the form of TMSb gas, 

so only the flow rate of the gas, or the exposure time can be altered to change the 

antimony content. The two methods of antimony exposure are discussed below.

4.6.1.1 Antimonidation

Antimonidation is the process of opening the TMSb valve for a set time after the 

AsHs valve has been closed allowing for the Sb-As atoms to exchange. The results 

of such a growth method are shown in figure 21. The figure shows that w ith an 

increasing exposure time the peak emission wavelength is shifted to lower 

wavelength. It also shows that the main change in wavelength happens quickly 

w ith the largest difference being between 1 and 5 seconds.
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Figure 21: The change in measured spectrum as a result 
of increasing antimonidation times. Adapted from [32],

4.6.1.2 Alternating Supply Growth

Alternating supply growth is the process of having the TMSb valve and the AsHs 

valve open at the same time and instead changing the TbSb flow rate as a means 

of adjusting the antimony content. The results of this growth method are shown 

in figure 22. This figure again shows that increasing the flow rate the peak 

emission is shifted to lower wavelength.
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Figure 22: The change in measured spectrum as a result of 
increased flow rate during alternating supply growth. 

Adapted from [32].
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Both of these growth methods display a blue shift when presented in this 

reference [32]. While this may first seem surprising as InSb has a lower band gap 

than InAs, as discussed earlier the morphology plays a large role in determining 

the output wavelength. In this case the antimony containing dots are much 

smaller, resulting in the blue shifted wavelength.

As was stated earlier, the amount of antimony in a given sample cannot be 

known exactly, and in principle the addition of antimony should increase the 

emission wavelength of the dot sample. However, for identical growth conditions 

the dot size is shown to decrease with the addition of antimony. This means that 

the growth conditions for the following InAsSb dots discussed in this chapter 

were not grown under identical conditions, and instead grown to make them as 

large as possible.

4.6.2 InAsSb Initial Photoluminescence
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Figure 23: The InAsSb experimental data for piece C fitted w ith one, and two Gaussian
oscillators.

Photoluminescence measurements were performed using the apparatus outlined 

in chapter 3, with the same 450mW laser used in the InAs quantum dot study. 

There were four separate pieces of sample R1433 provided and are labelled A-D,
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each of them was measured using the same experimental techniques but 

displayed different properties. Figure 23 shows a typical PL spectrum obtained 

for samples C and D when measured at lOK. A Gaussian oscillator is used to fit 

the data with the equation:

Where Iback is the Gaussian's background offset from zero, A is the Gaussian 

amplitude, E is the energy, Ec is the peak centre, and AE is the Gaussian width. It 

can be seen that a single Gaussian oscillator again does not adequately describe 

the curve. Instead, the “shoulder" feature indicates a second oscillator is 

required, and two Gaussian oscillators are used to improve the fit. There is 

possibly a third oscillator that could be centred at the low energy end of the 

curve to further improve the fit. However, when the reduced values are 

examined to determine how well the curves fit the experimental data it is seen 

that a single oscillator gives a reduced = 0.97539, and the two oscillator fit 

gives a reduced R̂  = 0.99909. A third oscillator was not used as the two oscillator 

fit is sufficient to accurately describe the data, furthermore there is no physical 

justification behind the addition of a third oscillator.
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Figure 24: The InAsSb experimental data for piece B fitted w ith one, and two Gaussian

oscillators.
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A typical spectrum from the second group of samples A and B is shown in figure 

24. In the figure fitting for a single Gaussian and two Gaussian oscillators are 

shown. As indicated on the plot there is no apparent low energy shoulder feature 

visible to indicate a second peak is required and the high energy side of the 

single Gaussian fits well. There is however a difference in fit between the 

experimental data and low energy side of the Gaussian curve. This poor low 

energy side fitting led to the fitting of two Gaussian oscillators which visually fits 

the data more accurately but w ith far more ambiguity in the peak positions.

To determine the best f it to proceed with the reduced values are again 

examined. The single Gaussian oscillator gives a reduced R̂  = 0.99219, and the 

two Gaussian fit gives a reduced R̂  = 0.99893. While two oscillator fitting does 

have the higher fitting accurately, the single oscillator fit was chosen for all 

future fitting. This is because there is a lot of ambiguity in the two oscillator fit as 

shown by the error when measured at lOK which would only resulting in an 

increase of the third significant figure of the reduced R̂  value.

The chosen fitting parameters give values for the peak energies as follows: 

samples C and D; 684.7 ± O.lmeV and 660.1 ± 0.7meV, and for sample A and B;

665.3 ± O.lmeV. From these initial peak positions it seems that the low energy 

oscillator from piece C and D, may correspond to the single fitted peak of 

samples A and B.

4.6.3 InAsSb Dot Modelling

To try and understand the physics behind the fitted oscillators from the previous 

section the InAsSb dots w ill now be modelled using Nextnano quantum device 

simulation software [31]. The simulation paramters are identical to that of the 

InAs simulation w ith the exception of InAsSb quantum dots being used.

While modelling the InAs quantum dots the only parameter required to change 

was the dot width until the output emission wavelength matched the 

experimental emission wavelength. With the inclusion of antimony this problem
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becomes more complex as the antimony content w ill also adjust the emission 

wavelength. To estimate these values we shall consider the width first. When 

antimony atoms are added to the InAs structure the larger lattice constant 

increases the strain on the system causing the SK dots to nucleate more quickly, 

this means that the InAsSb dots cannot be larger then the previously measured 

InAs quantum dots imposing an upper width lim it of 35nm. From equation (1) 

we can see that the point at which dots are formed is proportional to the surface 

energy divided by strain squared. Assuming that the surface energy is constant 

as the modelled dots are all truncated pyramids and the strain increase is 

directly proportional to the lattice constant mismatch, then the volume becomes 

proportional to the change in lattice constant squared. The lattice constant for 

InAs is 0.60583nm[23] and for InSb is 0.64794nm [23]. This gives a percentage 

change of 13.3%, from the above assumptions we can then assume a width 

change of ~13%.

4.6.3.1 InAsSb Antimony Content
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Figure 25: The required dot width to maintain an output energy of 682meV at lOK w ith

increasing antimony content.
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As the energy of the dominant peak is known to be 684.7meV for a fixed height of 

lOnm, the width and antimony content were varied so that the energy was 

constant at this value. The simulated results are shown in figure 25. At zero 

antimony content ie pure InAs dots, the width that gives an energy which 

corresponds to the experimental data is 30nm, reducing this by the calculated 

factor of ~13% a target width value of 26nm is gained. For a width of 26nm the 

antimonide content that gives the correct energy is then ~10%. These figures 

were then used and final values of lOnm x 25.5nm and 10% are used for future 

calulations which result in a conduction to valence band transistion energy of 

681meV. For the selected value to be correct some assumptions must be made; 

the antimony fraction is constant in all of the dots. The dots always form a 

truncated pyramid the same shape as the pure InAs dots from earlier.

4.6.3.2 InAsSb Modelled Band Alignment

Using the approximated 10% antimony content the modelled band alignment 

including conduction band and valence band energy levels is shown in figure 26. 

The figure shows very little  change from the InAs alignment shown earlier. The 

largest changes can be seen at the top of the pyramid (position =10nm) as the 

angle of the pyramid facets is fixed to the (O il]  plane, smaller width pyramids 

generate have smaller facets at the top, these smaller facets increase the strain 

on the top facet resulting in the band bending behaviour seen in figure 26 where 

at the pyramids top the LH band is found above the HH band, this is a known 

effect of tensile strain. This tensile strain can be seen in figure 27, where strain 

profile of 38.5nm InAs quantum dots and 26.5nm InAso.gSbo.i quantum dots are 

viewed side by side. The increased strain can clearly be seen at the smaller top 

facet of InAso.gSbo.i truncated pyramid.
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Figure 26: The simulated band alignment of InAso.gSbo.i this differs from the pure InAs case 
by the addition of band bending at the lOnm position. This band bending is caused by 

increased tensile strain at the pyramid apex as shown in figure 27.

Figure 27: The simulated strain profile of InAs and InAso.gSbo.i with red 
indicating increased strain.. This shows an increase in strain at the pyramid 

apex as a result of smaller base widths being used.
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4.6.3.3 InAsSb Effect of Width
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Figure 28: The InAsSb energy dependence on width calculated w ith a 10% antimonide

content.

With the simulation model in place, we can now model the effect of dot width for 

a fixed antimonide concentration; this is shown in figure 28. As for the InAs 

quantum dots, increasing the highest of the dot lowers the energy due to a 

lowered wavefunction confinement. The model has already predicted the 

dimensions of the higher energy peak to be lOnm x 25.5nm , the lower energy 

peak would need to be ~10nm x 30nm to have the measured energy. The model 

again predicts a bimodal dot distribution as seen in the InAs case. The energy 

separation between the 5nm and lOnm height dots is now ~20meV, this 

reduction from the pure InAs case can be attributed to the reduction in top facet 

when the dot height is lOnm as shown in figure 27. Both of the data sets seem to 

trend towards 0.6eV as was the case with pure InAs dots, this is not unexpected 

as there is a small antimony fraction to the alloy.
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4.6.4 Temperature Dependent PL Results

PL measurements were taken with increasing temperature, and each of the plots 

was fitted in the same way as outlined above. The resulting data of peak energy 

position with temperature for each of the four sample pieces along with the 

simulated data is shown in figure 29. As the temperature was increased past 40K 

for samples C and D the lower energy peak was no longer visible, and made no 

contribution to the integrated intensity.
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Figure 29: The fitted peak energy dependence on temperature for each of the four sample

pieces A-D.

The primary peak for pieces C and D are fitted using the Varshni equation [33]. 

The reduced values for the fits are = 0.86754 for piece C, and R̂  = 0.90395 

for piece D. These values indicate the Varshni fit is a reasonably accurate fit to 

the data. The material dependent parameters a and |3, used to achieve this fit are 

given in table 4. While the values presented give a reasonable reduced R̂  value 

and visual fit to the data, they are far from both the accepted literature or 

simulated values. Therefore like for the previous InAs quantum dots the Varshni 

fitting is inappropriate for use on the InAsSb quantum dots.
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a (meV/K)

Bulk InAs 0.276 93

Bulk InSb 0.32 170

InAso.gSbo.i Simulation 0.289±0.001 97.1±0.3

Piece C 0.145±0.001 217±0.4

Piece D 0.110+0.1 174±19

Table 4: Simulated and experimentally fitted Varshni Paramters

There are two key points shown in figure 29 that must be addressed: (1) the 

sample pieces seem to be separated into two distinct groups. Pieces A and B 

display a temperature dependent blue shift, while pieces C and D display a 

temperature dependent red shift. The reason for this difference w ill be discussed 

in detail in a future section. (2} Within each blue or red shifting group, the 

samples emission wavelengths at lOK are within 5meV, yet are not identical as 

would be expected.
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Figure 30: The measured absorption spectra at three temperatures. Two changes in gradient 

indicating features are seen at 690meV and 770meV.
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As there are two pieces that red shift and two pieces that blue shift with 

temperature, absorption measurements were performed to try and establish the 

“normal" band edge behaviour independently of carrier occupation within the 

energy bands. Figure 30 shows the temperature dependent absorption spectra 

for sample piece B. In the figure a feature that red shifts with temperature can be 

seen at 690meV which is in agreement with the higher energy dot peak. It is also 

in agreement with the simulation as they both show a temperature dependent 

red shift. There is another feature at 770meV which corresponds to the 

lno.5 3Gao.47As barrier layer. There is no feature seen in the spectrum at 660meV 

to correspond to the lower energy dot peak. This could be due to interference in 

the spectrum due to water absorption between 640meV to 670meV that cannot 

be normalised out of the spectrum as the amount of water vapour present in the 

air changes with humidity.

4.6.2.1 Difference in Peak Emission Wavelength
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Figure 31: The fitted peak FWHM dependence on temperature for each of the four sample
pieces A-D.
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The difference in peak emission wavelength of ~5meV within the two groups can 

be explained by the samples originating from different points on the wafer. 

During semiconductor growth the wafer is constantly being rotated around its 

centre, this results in thicker mid-section when compared to the edge width. For 

this reason the very edge pieces of wafer are often discarded. This difference in 

growth thickness is often seen as slight variations in the emission spectrum 

wavelength. This argument can be justified by considering the measured peaks 

FWHM and integrated intensity with temperature. Sample pieces taken from the 

wafer edge often have wider less intense peaks. The FWHM and integrated 

intensity for all four pieces of sample R1433 are shown in figures 31 and 32 

respectively. The figures show that the FWHM of both pieces C and D have a 

small linear dependence with temperature, the integrated intensity of piece D is 

shown to be less than of piece C. This is consistent w ith the pieces being from 

different positions of the same wafer, w ith piece D being closer to the edge. As it 

is not documented where these sample pieces originated from on the wafer this
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Figure 32: The measured spectra integrated intensity dependence on temperature for each
of the four sample pieces A-D.
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is speculation, but is a reasonable explanation for the shift. Furthermore during 

semiconductor growth the wafer is heated, this can cause a bowing of the wafer 

if  the heat distribution is not constant, any bowing of the wafer would cause a 

non-uniform strain in the substrate. An important effect when considering SK 

quantum dot growth as the formation of 3D islands is dependent on strain.

4.6.2.2 Bi-Modal Dot Distribution

The idea of a bimodal dot distribution has been introduced by the simulation in a 

previous section. However, as was seen in for the InAs dot structure the carriers 

in the higher energy dots w ill usually redistribute to the lower energy dots with 

increasing temperature. This would not explain the disappearance of the lower 

energy peak with increasing temperature in samples C and D, and also the 

apparent blue shift for samples A and B.

Peak Appears  
Blue Shifted

Increasing
Temperature

»
Energy

Energy

Figure 33: The apparent blue shift caused by a change in peak dominance.

The temperature dependence shown in figure 29, implies that the temperature 

dependent blue shift in samples A and B is reducing with temperature, and if 

extrapolated could conceivably begin to follow the red shifting behaviour of 

samples C and D. This can be explained using bimodal dots as a change in 

dominance from one dot group to the other. For this change in dominance to 

manifest as a blue shift, the experimental data would consist of two oscillators, a 

high energy and a low. As the temperature increased the low energy oscillator 

would reduce in intensity and the high energy oscillator increase. The overall 

effect would appear to be a blue shift in the resultant contribution of both
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oscillators. As shown in figure 33. For this to occur carriers would need to 

transition from a lower energy dot to a higher energy.

There are two possible theories as to how this movement in carriers from a low 

energy dot to high energy dot occurs; (1) there is a strong band filling effect in 

the low energy dots. As the energy band is filled the carriers are at higher energy, 

at a critical point the ground state of the high energy dots may be a lower energy 

than the filled states of the low energy dots. Thermal redistribution would then 

move carriers from the low to high energy dots. (2) The low energy dots contain 

little to no antimony. It can be seen from the previous InAs dots that a dot energy 

of 662meV was obtained for an InAs dot size of lOnm x 35nm. To obtain the 

same energy using InAso.gSbo.i requires a dot size of lOnm x 30nm. The dominant 

peak was simulated to have lOnm x 25.5nm dots. If the low energy dots do 

contain antimony then a change in strain is required to make the dots 

substantially larger while having the same alloy fraction. However, if  the dots 

have no antimony then no change in strain is required to form the InAs dots. 

Furthermore, from the previous work it can be seen that the InAs have less 

confinement, allowing thermal redistribution of carriers from the low energy 

dots to the high energy dots.
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4.6.2.2.1 Band Filling Effect
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Figure 34: The measured change in peak energy w ith increasing power, the laser spot size
was Imm^.

The band filling theory can be tested directly using power dependent 

measurements. The peak emission energy of sample B and D were measured at 

different pump powers. A band filling effect was found as can be seen in figure 

34, this is shown by the peak energy value increasing as a function of increasing 

power. Note, although piece D has been fitted with two oscillators throughout 

this chapter, the SNR decreased so rapidly that a two oscillator fitting could not 

be accurately used., instead a one oscillator was used. The data was fitted using a 

linear fit as the power range is small. For larger power ranges it is expected that 

a non-linear dependence is found as the band curvature dictates the energy level 

spacing, and for higher energies the spacing between levels is smaller. The filling 

effect in piece B is calculated to be 0.43 ± 0.05 meV/mW, and for piece D is 

calculated to be 0.99 ±0.19 meV/mW for a Imm^ spot size. If the high energy 

oscillator had no band filling effect then piece D the combination of both 

oscillators would have the same filling gradient as piece B. Since the gradient is 

approximately twice the value found for piece B it can be deduced that both the
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high and low energy oscillators display a band filling effect and this effect is 

approximately equal in both.

Due to these findings the transition of carriers from the low energy to high 

energy dots due to the band filling argument outlined above is not correct for 

this sample. Instead it is likely that the lower energy dot group contains no 

antimony.

4.6.2.2.2 Power Dependent Measurements

The power dependence of the sample was also measured to determine if  the dots 

would make efficient devices i.e. is the dominant recombination process 

radiative as was the case for pure InAs dots. This power dependence was also 

performed at two different temperatures lOK and 50K. This was done to 

determine if  a change in dominant recombination process was occurring with 

temperature, and thus would there be a limitation on the device efficiency with 

temperature of a device made from these dots. Also as the sample contains 

bimodal dots any difference in the recombination process between the dot 

groups w ill become apparent.

The integrated intensity of the emission was determined at increasing powers 

and the results are shown in figure 35 for piece D and 36 for piece B. Referring 

back to the power analysis performed during the theory chapter of this thesis the 

gradient of these lines reveals information about the dominant recombination 

process in a semiconductor. In the case of piece D a gradient of 2.00 ± 0.11 is 

measured at lOK and 2.00 ± 0.05 at 5OK, this indicates that the dominant process 

being observed here is defect-related recombination and remains that way at all 

measured temperatures. This change to a defect dominated recombination 

process is not unexpected as the addition of antimony to an InAs dot structure 

would increase the number of defects because of the larger lattice mismatch if  

the atoms.

In sample B (figure 36), there is a change in gradient, at lOK the gradient is 1.13 

± 0.04 meaning a dominant radiative recombination process, while at 50K the
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gradient has changed to 2.00 ± 0.11, a dominant defect related recombination 

process. This indicates a change from a dominant radiative recombination 

process to a dominant defect related recombination process w ith increasing 

temperature. This provides evidence that the observed blue shift is the result of 

a change in oscillator dominance from the low energy dots (the radiative 

dominated type) to the high energy dots (the defect dominated type).

Furthermore, the change from a radiative to defect related process implies that 

the lower energy bimodal dot group contains very little  antimony. The pure InAs 

dots investigated earlier show the same peak emission wavelength and 

recombination process as the low energy dot group.
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Figure 35: The measured power dependence of R1433 piece D, showing a dominant defect 
related recombination process at lOK and 50K.
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4.6.5 Conclusions

As a follow on piece of work from the previous InAs quantum dots, Antimony 

was added to the quantum dot layer. It has been described though how using the 

SK dot growth technique it is impossible to accurately know the antimony 

quantity added during growth, instead only an antimony exposure time is 

known. Using the dot morphology review an estimate for the reduction in dot 

size due to the increased lattice mismatch of antimony was estimated to be 13%. 

Based on this assumption truncated pyramidal dots of InAsSb were simulated 

using an antimony fraction of 10%, as this best fitted both the calculated 

reduction in dot size and experimentally fitted emission wavelength.

The experimental data showed two distinct groups of samples, one that 

undergoes a temperature dependent red shift, and another which undergoes a 

temperature dependent blue shift. After fitting the data the blue-shifting group 

was found to be accurately modelled by a single Gaussian oscillator, while the 

red shifting dot group required two oscillators. From this fitting it was also 

noticed that the single blue shifting oscillator was identical to the low energy 

oscillator of the red shifting group.

From this information it was theorised that there were bi-modal quantum dots in 

the sample. This bimodal behaviour explains the two oscillators found in the red 

shifting group, and through a change in dominance with temperature could also 

explain the temperature dependent blue shifting behaviour.

Power dependent studies confirmed this change in dominance by showing that 

he blue shifting group moved from a dominant radiative recombination process 

to a dominant defect related process with temperature. This also indicated from 

the earlier work on InAs dots that some of the dots contained no antimony. 

Therefore showed a dominant radiative recombination as previously observed in 

the InAs dots. The Antimony containing group were dominated by defect related 

recombination due to the increased lattice mis-match.
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4.7 Overall Conclusions

During this chapter two similar groups of quantum dots have been investigated. 

These pure InAs and InAsSb dots both emitted at a similar wavelength ~657meV 

and 665meV, but achieved this wavelength by different means. The Pure InAs 

dots had a larger width than the InAsSb dots allowing a longer wavelength, while 

the antimony containing dots had a smaller bandgap. This indicates that if  the 

InAsSb dots could be grown to a larger width a longer wavelength peak could be 

achieved.

Through modelling of the dot structure using the Nextnano software package it 

has also been shown that under these growth conditions the 

lnAs[Sb]/InGaAs/InP dots tend to form a bimodal dot distribution. This 

illustrates the point made during the justification of this work, that 

understanding the physics behind the emission can help future work. While each 

of the experimentally measured peaks appear at first glance to consist of a single 

oscillator, the modelling and fitting performed in this work proves this 

assumption to be false.

Furthermore, the study of the InAsSb dots temperature dependent blue shift, 

reveals that a likely explanation for the behaviour is bimodal dots. One group of 

which contains no antimony at all, while the other has -10%  antimony 

composition. This indicates a problem during growth, w ith the lack of antimony 

inclusion in one group this indicates a non-uniformity of antimony across the 

wafer, but no metallic clustering of antimony. This is important for future growth 

and extending the dot emission wavelength through higher antimony fractions.
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Chapter 5 - High Pressure, Low 

Temperature investigations of an 

InAs/lnAsSb Type II Superlattice
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5.1 Introduction

Infrared photo-detection has many applications in the military, medicine, and for 

gas sensing [1]. In this chapter the key parameters that need to be considered 

when designing a new semiconductor material w ith photo-detection in mind w ill 

be discussed, and how well the existing technology fits these parameters. The 

suitability of new material systems w ill then be discussed, including the current 

development of InAs/lnAsSb type 11 superlattice structures that are investigated 

in this chapter.

The experiments performed in this chapter have two main aims. Firstly to 

experimentally locate and identify the position of a defect state above the 

conduction band edge. This is achieved by the application of hydrostatic 

pressure to the semiconductor using a sapphire ball cell. This w ill push the 

conduction band ground state of the system to higher energy. If the defect state 

is present then it is predicted to cause a decrease in the measured PL intensity as 

carriers recombine via defects instead of recombining radiatively.

The second aim is to demonstrate the use of the sapphire ball cell to provide the 

ability to make high pressure measurements at low temperatures. While this can 

be achieved with other systems such as the diamond anvil cell (DAC) or 

hydraulic gas. pressure systems, neither of these can compare with the 

operational simplicity of the sapphire ball cell.

5.1.1 Useful Parameters in Photo-detector Design

When designing new material systems with the aim of photo-detection there are 

key parameters which should be considered [2]. The primary concern is the 

semiconductor band gap and the ability to tune this band gap. Detection w ill 

occur when an incident photon of energy greater than the band gap (Eg) excites 

an electron from the valence band to the conduction band. This means the 

semiconductor band gap determines the photo-detector's operational range, and 

the materials sensitivity to alloy composition and temperature w ill change this 

band gap.
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The importance of the material band gap and the requirement to be able to 

absorb incident photons leads to the second parameter; This is having a direct 

band gap with high absorption coefficient. While a direct band gap is not a strict 

requirement for a good photo-detector, a direct band gap semiconductor w ill 

give a sharp optical absorption onset compared to an indirect band gap 

semiconductor [3]. Indirect band gap semiconductors such as silicon have a 

smoother optical absorption onset [3]. A high absorption coefficient is required 

to absorb most of the incident photons while remaining as thin as possible. 

Increasing the thickness of the active region w ill increase the fraction of photons 

absorbed, but this also increases the growth complexity and cost [2] and can lead 

to fabrication difficulties.

The thermal expansivity of the semiconductor material is an important factor 

when designing liquid nitrogen cooled detectors. The temperature dilation of the 

lattice w ill alter the band gap approximately linearly at high temperature, but at 

low temperature it is non-linear and behaves according to the Varshni equation

[4] thus changing the detection range. A large thermal expansivity w ill mean 

that small variations in temperature lead to large variations in the detector 

response range.

The choice of photo-detector active region is limited by the availability of lattice 

matching both alloy materials and growth substrate. As the semiconductor, 

photo-detector w ill be used with traditional silicon based electronic circuitry a 

choice of growth substrate that w ill allow this easily integration is preferential, 

materials such as silicon, gallium arsenide, or indium phosphide are ideal. Lattice 

mis-match between the active region material or substrate leads to strain that 

w ill change the band structure of the semiconductor [5], as well as generating 

possible dislocations that could propagate through the device. However, strain is 

not always detrimental, in some devices for example strain has been shown to 

lower the threshold current and increase the efficiency through suppression of 

non-radiative Auger recombination processes in semiconductor lasers and to 

increase hole mobility in transistors [6].
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Hgi-

xCdxTe
InSb

InAs/Gai-

xlUxSb

Superlattice

InAs/lnAsi-

xSbx

Superlattice

Peak 

Detectivity (D*) 

(cmHzV2w-i)

IQio IQ ii TEC TEC

Bandgap Wavelength Range 

CumJ
0.7-25 2 - 4 3- 25 4- 12

Absorption coefficient 

(cm-i)
1Q2-1G3 1Q4 2500 TEC

Operating Temperature 77K 77K lOK lOK

Table 1: The important parameters for photo-detector design, and the known values for each of
the photo-detectors in this work.

5.1.2 Mercury Cadmium Teliuride (MCI)

While there are many detectors available for purchase that cover the infrared 

region with varying sensitivities, Mercury Cadmium Teliuride (Hgi-xCdxTe) (also 

known as MCT) detectors are currently the commercially available standard for 

mid-lR photo-detectors. They were first engineered as a direct band gap material 

for the long wavelength infrared region in 1957 [2], and have been under 

development since then.
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The reason that they have become the standard is because they cover so many of 

the previously outlined parameters so well. One of the largest benefits is the very 

large wavelength coverage achievable. Through alloy composition the bandgap 

can be engineered to vary between 0.7pm and 25pm. This wide range of 

detection is not available in a single detector however, it is sectioned into ranges 

covered by individual detectors. The commercially available options from 

Infrared Associates Inc. is shown in figure 1 where D* is the specific detectivity of
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MCT-12.5

FTIR-16

MCT-5-TE
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R-24

9
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Wavelength (pm)
Figure 1: The response curves of commercially available MCT detectors available 

from Infrared Associates Inc. [7]. This shows the large wavelength coverage of MCT
detectors.

the detector, defined by [8]:

D* =
NEP

(1)

Where A is the area of the active region, and NEP is the noise equivalent power 

i.e. the signal power that gives a SNR of one to one [8].
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Figure 2: The room temperature absorption 
coefficients for Hgi-xCdxTe. The numbers indicated the 

alloys X fraction. Adapted from ref [9].

Hgi-xCdxTe semiconductors also have the ideal direct band gap structure. This 

has been studied previously by M. W. Scott [9] and shows a sharp optical 

absorption onset and high absorption coefficient through a wide range of alloy 

compositions. The data from these experiments taken at room temperature is 

shown in figure 2. This effect can be seen in commercially available detectors in 

in figure 1, as the range of detection becomes longer the response of the detector 

is reduced. This is a direct effect of the higher x fraction in the Hgi-xCdxTe alloy 

reducing the absorption coefficient.

o f ( l o ' K ' )

10050 200

\>CdTe
-2

X - 0.303

-6

Figure 3: The thermal expansivity coefficient a vs 
Temperature for Hgi-xCdxTe. Adapted from [10]. At 77K 

the alloy independent region is shown.

As Stated earlier the thermal expansivity is important as this w ill effect the lattice 

dilation and therefore band gap. The thermal expansivity of Hgi-xCdxTe has been
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well studied and does not vary greatly with temperature; this is shown in figure 

3. Also shown in figure 3 is the expansivity of silicon for camparison. It has also 

been documented that above temperatures of 30K the alloy thermal expansivity 

is independent of alloy composition w ithin 5% [10], which is the case at liquid 

nitrogen cooled temperatures under which MCT detectors are usually operated.

When considering the availability of lattice matched substrates for II-VI 

materials there are materials of similar lattice constant with higher bandgaps

AlP
ZnTe"

AI As
GaP2

AlSb

InP CdTe
GaAs

GaSb

InAs' InSb,
0

HgTe

6.45.4 5.6 5.8 6.26.0
Lattice constant (A)

Figure4: The lattice constant and bandgap of several 
common semiconductor materials also included are the 11-Vl 

materials. Adpated from [2]

readily available, unlike for the 111-V materials. The lattice constants of several 

common semiconductor materials is shown in figure 4 including the 11-Vl 

materials HgTe, CdTe, and ZnTe. There is a 0.023Â difference in lattice constants 

of HgTe (6.468Â)[11] and CdTe [6.491Â)[12] measured at 300K, resulting in a 

negligible amount of strain being produced between the materials from lattice 

mismatch. The substrate usually chosen for growth is then an alloy of Cdi-xZnxTe, 

this is because adding 4% ZnTe to CdTe results in an alloy lattice matched to Hgi- 

xCdxTe [2], again resulting in a negligible amount of strain between the substrate 

and active region.
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5.1.2.1 Indium Antimonide (InSb)

Indium Antimonide detectors are used throughout this work, for the 

spectroscopic studies. InSb detectors are not considered as Hgi-xCdxTe 

replacements, as they have a much narrower wavelength range of operation. 

They are used in this work however as they have a much higher detectivity in the 

2p-4pm wavelength region of interest. Figure 5 shows the D* values for all of the 

commercially available detectors from Hamamatsu [13], from it can be seen that 

there are detectors with a higher D* value than InSb, but InSb has the most stable 

response over the 2-4pm range.

IDE4.L Ll.irrO F PHOTOVOLTAIC DETECTORC 
300 K (HALF CPACEi

PHOTOCOIIDUCTr/E DETECTOR: 
300 K(H.ALFGPACEiI

e
b

(77 K),
1300 Kj

QOLAY CELL (77 ICl
10» IT9ÔK)

10* 1 4 6 8 e 10 11 12 13 14 15 16 1 18

W A VELENG TH (pm)

Figure 5: The detectivity of various photo-detectors w ith increasing wavelength. Adapted from
[13].

5.1.3 Superlattice alternatives

Despite the dominance of Hgi-xCdxTe photo-detectors in the mid-lR detection 

market, there are alternatives in the form of antimonide based type-11 

superlattices. These superlattice structures are predicted to have similar optical 

properties as the Hgi-xCdxTe mid-lR detectors, while having much improved 

electrical properties. The first structure to be considered is the InAs/lnGaAs
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type-II superlattice, this is the first generation of superlattice structure able to 

compete with Hgi-xCdxTe detectors. This also provides the theoretical 

foundations upon which the currently developing InAs/lnSb type-Il superlattice 

structure experimented on in this thesis is based. Secondary to the predicted 

electrical improvements, these superlattice materials are also less harmful to the 

environment than mercury and cadmium.

5 .2 .3 .1  InAs/Gai-xIrixSb

The InAs/Gai-xInxSb superlattice structure was proposed by D. L. Smith et al. in 

1987 [14] as an improvement over existing InAs/GaAs superlattice structures. In 

an InAs/GaSb superlattice the bottom of the InAs conduction band is below the 

top of the GaSb valence band. In this situation the electrons and holes become 

localised to layers, w ith the electrons occupying the InAs layer and holes the 

GaSb layer. With sufficiently thin layers the electron and hole wavefunctions are 

weakly confined resulting in an electron/ hole mini-band being formed. This 

leads to the optical energy gap being created from the separation between the 

mini-bands [15]. This results in an unusual band alignment where the resulting 

optical band gap can be smaller than the band gap of either of the constituent 

materials. Furthermore, the optical transition energy is now also controlled by 

the layer thickness, and is also affected by the conduction and valence band 

offset, and the electron and holes effective mass. InAs/Gai-xlnxSb superlattices 

share this localised carrier structure but the addition of indium reduces the 

defect related recombination in the forbidden bandgap region, this w ill be 

discussed further in a later section.
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Figure 6: The InAs/Gai-xIUxSb 
band structure formed including 
the electron and hole miniband. 

Adapted from [16].

In this structure the electrons and holes are now confined to different layers, 

making the bandgap spatially indirect. For optical transitions with a good 

oscillator strength the E l and HHl wavefunction need sufficient overlap [15]. To 

get the maximum overlap the layers are required to be thin, however to reach 

the mid-lR wavelengths thicker layers are needed. This results in the InAs/GaSb 

structure having poor optical properties for photo-detection. The addition of 

indium to the GaSb structure allows for the use of thinner layers while still 

reaching longer wavelengths. As a result the InAs/Gai-xlUxSb superlattice has 

greatly increased optical properties compared to the InAs/GaSb superlattice. The 

band alignment is shown in figure 6.

Now that the formation of the electron and hole mini-band has been explained, 

the InAs/Gai-xlnxSb superlattice w ill now be compared to the key parameters in

7 r t i in  G& Sb

10

10 155 20 25
IrV^ Wdh in monol̂ ers

Figure 7; The change in cut o ff wavelength of the 
InAs/Gai-xInxSb superlattice .while varying only 
the of InAs monolayer thickness. Adapted from 

[17].
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the same way the Hgi-xCdxTe alloy has been. In the case of a superlattice 

structure however this is not as simple as the direct band gap case, due to the 

interdependency of variables. The band gap in the InAs/Gai-xlnxSb superlattice 

can be varied by adjusting the InAs, or Gai-xInxSb layer thickness, as well as 

changing the x alloying fraction of indium content. However, changing the indium 

fraction w ill also change the absorption [15] coefficient of the superlattice. This 

allows for a response range of between 3pm and 25pm [16], w ith multiple alloy 

or layer combinations to reach these values. An example of the ability to change 

the optical band gap by changing only the InAs layer thickness is shown in figure 

7. Figure 7 shows a superlattice of 7 monolayer thick lno.2 5Gao.75Sb and varying 

monolayer thickness InAs. There is a non-linear increase in the measured energy 

required to excite one electron from the valence band to the conduction band as 

the number of monolayers is increased.

It was discussed earlier that a direct band gap is required for a sharp absorption 

onset. The superlattice structures being discussed have a type-ll band alignment, 

however, because of the de-localisation of electrons and holes, and in the case of 

thin layers the electron and hole wavefunctions are larger than the separation 

between layers. These effects lead to electron and hole mini-bands being formed. 

These mini-bands allow for the absorption onset to be sharp. The absorption 

coefficient for InAs/GaSb was already discussed to be poor due to the balance 

between thin layers to allow wavefunction overlap and thicker layers for longer 

detection wavelengths. The solution to this problem while increasing the 

detection wavelength and maintaining thins layers was the addition of indium. 

The effect that this has on the optical properties is shown in figure 8. This figure 

shows two effects; firstly the absorption coefficient increases across a range of 

wavelengths, rather than at one peak value, and secondly that the peak in the 

absorption coefficient is increased by almost a factor of four w ith the addition of 

25% indium.
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Figure 8: The increase in absorption coefficient by 
increasing the indium fraction in the InAs/Gai-xInxSb 

superlattice. Adapted from [15].

The thermal expansivity of the material is primarily a concern because the 

associated lattice dilation affects the detectivity wavelength of the 

semiconductor. The electron and hole mini-band wavelength are controlled by 

the layer thickness and alloy composition, as each layer in the superlattice has a 

different thermal expansivity, and in the case of the GalnSb layer this w ill also 

depend on the alloy composition, this becomes a very complex problem to 

examine. Instead we shall look at the case of an extreme wavelength change 

which has already been measured, the difference between 5K and 300K [18] 

shown in figure 9. The theoretical curve in the figure has been calculated for OK, 

and the curves for 5K and 300K have been measured using a 37Â InAs, 19Â 

Gao.65 lno.35Sb superlattice [18]. There is a shift in the absorption onset value to 

lower energy with increasing temperature of approximately 200meV which is a 

20% change over the full temperature range. Most 111-V semiconductors have a 

Varshni like shift w ith temperature [4], this function is approximately linear at 

higher temperature with a lower rate of change at lower temperatures. Without 

access to the data between 5K and 300K it shall be assumed the change is linear 

across the entire 5K to 300K range, this is much worse than the real behaviour at 

low temperature. This gives a calculated bandgap change of 0.6meV/K. This 

means for the cryogenic temperatures of liquid nitrogen (77K) the change in 

bandgap per Kelvin is less than and is considered negligible when compared 

with the semiconductor bandgap.

137



2500

6  2000

1500 300K
Theory

5Kz  1000

0.14 0.16 0.180.120.100.08
PHOTON ENERGY (eV)

Figure 9: The change in band gap and absorption coefficient 
w ith temperature for a 37Â InAs, 19Â Gao.65Ino.35Sb 

superlattice. Adapted form ref [18].

Finally we consider the lattice constant of the superlattice, and the potential for 

growth substrates. Figure 4 shows the lattice constant for the 111-V materials, and 

it  can be seen from this why low InSb fractions are used for superlattice growth. 

The large mismatch between InSb and GaSb w ill cause strain at the InAs /  GalnSb 

interface because of the increasing lattice mismatch. It can also be seen that the 

choice of growth substrate is limited because of this large lattice constant. GaSb 

is usually chosen because of its close lattice match to both of the superlattice 

materials, however groups have attempted growth on lower cost GaAs and 

silicon [15], both of these substrates lead to a large amount of defects 

propagating through the structure due to the large lattice mismatch.

From the points made so far, it is noted that the InAs/Gai-xlnxSb superlattice is at 

best equal to the currently available Hgi-xCdxTe photo-detectors. However, the 

ability to engineer the InAs/Gai-xlnxSb superlattice to optimise the required 

properties makes it potentially superior. The higher effective mass of conduction 

band electrons in the superlattice (me=0.03mo) compared to Hgi-xCdxTe 

(me=0.01mo) leads to a lower tunnelling length. Tunnelling is a component of the 

dark current and is a lim iting factor in the performance of very long wavelength 

infrared [VLWIR) Hgi-xCdxTe detectors [19]. As the tunnelling is reduced in 

superlattice structures, the tunnelling contribution to the dark current is 

negligible. This means a lower overall dark current [19, 20].
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The Auger recombination component can also be reduced through engineering 

the HH and LH bands to have a larger separation. This reduction in Auger 

recombination leads to longer carrier lifetimes for superlattice structures [21, 

22]. The reduction in Auger recombination has been used to theoretically 

calculate the high temperature operation of a superlattice detector; this work 

found that superlattices have the potential to maintain the same D* performance 

as the equivalent Hgi-xCdxTe detector while being at a temperature 15K higher 

[23].

5 .2 .3 .2  InAs/lnAsi-xSbx

Though it has been shown that there is a small contribution to the dark current 

from tunnelling effects, InAs/Gai-xlnxSb superlattice structures still have very 

large [-lO '^A/cm ^ at 77K) dark currents in practice. This comes from 

generation-recombination current, when a impurity or defect level state is found 

in the forbidden energy gap this defect state can trap carriers, and allow them to 

recombine via a two stage non-radiative process [24] details of which can be 

found in chapter 2. This is referred to as Shockley-Read-Hall (SRH) 

recombination and is usually only found under very low injection. This is the 

case for photo-detectors however, and . is found to be the dominant 

recombination process in InAs/Gai-xlnxSb superlattice structures causing the 

large dark current values [15, 25].

These large dark currents have been shown to be a function of the minority 

carrier lifetime [26] w ith longer carrier lifetimes reducing the dark current 

values. Minority carrier lifetimes have been reported to be between 50-80ns [27, 

28] for the InAs/Gai-xlnxSb superlattice structures compared to Ips [25] for Hgi- 

xCdxTe. Another superlattice alternative to Hgi-xCdxTe has been suggested in the 

form of InAs/lnAsi-xSbx superlattices [29]. By comparison of the m inority carrier 

lifetimes in bulk InAs (325ns) [30] and InAso.sSbo.z (250ns) [27] w ith GaAs 

(100ns) [30], it  is thought the SRH recombination centre is caused by the 

addition of Ga. If this is the case, these InAs/ InAsi-xSbx superlattices are 

predicted to have a longer minority carrier lifetime and therefore reduced dark
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current. The minority carrier lifetime in these superlattices has recently been 

measured to be 412ns [31] and places InAs/InAsi-xSbx an order of magnitude 

better than InAs/Gai-xlnxSb, yet still an order of magnitude worse than Hgi- 

xCdxTe.

Against the other parameters outlined to make a good photo-detector, the 

InAs/InAsi-xSbx superlattice is also well suited though studied in far less detail 

than previous materials. The band gap is engineered in the same way as the 

InAs/Gai-xlnxSb superlattice using a combination of layer thickness and alloy 

composition to determine the wavelength. The wavelength range of these 

superlattice structures is still being extended, with the documented range being 

5pm to 10pm in 2009 [32] and the current generation of samples having a range 

of 4pm to 12.1pm in 2013 [33].

The optical absorption is found to be comparable to Hgi-xCdxTe detectors [34] 

though much work is still to be done as the temperature affects the photo

response significantly. An example of the temperature dependent spectral 

response is shown in figure 10 when under two different applied bias voltage. 

Increasing the bias voltage increases the SNR of the signal and allows for higher 

temperature measurements at higher bias. This figure shows that although these 

devices are promising alternatives to available photo-detectors they are still in 

development.
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Figure 10: The temperature dependent spectral 
response for two InAs/Gai-xIOxSb superlattice 

structures. Adapted from [34].
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With InSb having the largest lattice parameter available of the conventional 111-V 

materials the choice of growth substrate is limited. Referring again to figure 4, as 

was the case for InAs/Gai-xlnxSb superlattices the only viable substrate currently 

is GaSb. Using another material introduces a large amount of lattice mis-match 

and introduces strain and dislocations into the sample increasing SRH 

recombination and hence the dark current.

5.2 Experimental Aim

The aim of this work was to experimentally confirm whether the defect level 

within the InAsi-xSbx superlattice is located above the conduction band edge 

[35], and attempt to measure its relative position.

The experiment w ill be performed by applying high pressures to the superlattice 

using a sapphire ball cell at low (lOK) temperature. The applied pressure w ill 

increase the energy of the conduction band and primary energy transition until 

this energy state begins to overlap with the defect state. It should be noted that 

there w ill be a small change in the valence band position, but nearly all of the 

change due to pressure w ill occur in the conduction band due to its higher 

deformation potential. At the point where the energy transition and defect state 

begin to overlap carriers should recombine via the defect state, resulting in a 

decline in the observed PL from the sample.

Identifying the position of this level above the conduction band edge w ill show 

that SRH recombination within the forbidden energy gap w ill not be a dominant 

factor in producing dark current, as it the case for InAs/Gai-xlnxSb, thus 

increasing the suitability of InAs/ InAsi-xSbx as a photo-detector material.

Intrinsic surface states w ithin the semiconductor materials used are thought to 

be the cause of the SRH recombination centres. These surface states have been 

calculated and measured for bulk materials [35]. Figure 11 shows for each 

material; the position of the valence band edge (hatched], the position of the
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conduction band edge [dashed), the Li and Xiband minima edges, the position of 

the surface state Es and its measured energetic width, the position of the fermi 

level Ef, and also fermi level position of gold contacts Eo in each case the zero 

energy is defined as the valence band edge. The data shows that the surface 

states lie w ithin the forbidden band gap for GaSb, GaAs, and GaP, whereas the 

surface states for InAs and InSb are found w ithin the conduction band. These 

calculations give strong evidence that the larger SRH recombination found in Ga 

containing superlattices is caused by a Ga related defect, and that the InAsi-xSbx 

superlattice should not suffer from the same problem. It should also be noted 

that the defect level state is calculated to be a broad energetic feature.
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Figure 11: The calculated surface 

state positions for bulk 111-V 
materials, adapted from reference 

[35].

When not working with bulk materials these surface states can help understand 

what is occurring at the interface states. Interface states arise from the point 

defects caused by lattice mismatch between the two materials. With increasing 

lattice mismatch in the material the density of interface states is increased, figure 

12 shows this effect by the reduction of PL intensity w ith increasing Sb content 

w ithin bulk GaSb/lnAsi-xSbx. Within InSb the interface states lie at the 

conduction band edge, so increasing the number of defects therefore the number 

of interface states w ill allow for a greater chance of non-radiative recombination 

at an interface state, rather than radiative band to band recombination.
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Figure 12: reduced PL with increasing Sb content. Adapted from
[36].

While these calculations and measurements have been performed for bulk 

semiconductor materials, because of the complex de-localisation of the electrons 

and holes in this type of type-11 superlattice forming an electron mini-band, 

calculation of the defect level and energy band overlap is difficult, simulations 

are performed later which show the change due to pressure with no observable 

defect state. This effect should be observable however by performing high 

pressure measurements. The effect of pressure on a semiconductor band 

structure has been discussed earlier in chapter 2, and using the sapphire ball 

technique outlined in chapter 3 high hydrostatic pressure can be applied at low 

temperature. It has been documented previously that pressure can be used to 

find electron traps by moving the band edge minimum relative to the defect [37]; 

and a similar method shall be employed here.

The band curvature in a semiconductor is quantified through the effective mass 

of the electron or hole. The heavy-hole mass (0.43mo InAs, 0.41mo lnSb)[38, 39] 

for these materials is also much larger than the conduction band elections mass 

(0.014mo InAs, 0.023mo InSb }[38, 39] this gives band deformation values for the 

conduction band which are larger than that of the valence band. The deformation 

potential values for InAs are 1.00 eV/cm^ [40] for the valence band and -5.08
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eV/cm^ [40] for the conduction band (these are relative terms and the negative 

sign represents an increase in energy), while the values for InSb are 0.36 eV/cm^ 

[40] for the valence band and -6.17 eV/cm^ [40] for the conduction band. This 

means when hydrostatic pressure is applied 84% of the energy change occurs in 

the conduction band for InAs, and 94% of the energy change due to pressure 

occurs in the conduction band of InSb. Due to the localisation of electrons in the 

InAs layer the pressure is predicted to shift w ith approximately the same rate as 

bulk InAs ie 12.5meV/kbar [41]. This means the electron mini-band in the 

superlattice should move to higher energy at the same rate w ith increasing 

pressure.

Since the defect level is above the conduction band edge and the electron m ini

band moves to higher energy with pressure the states w ill increasingly overlap. 

By measuring at constant pump power, the measured PL intensity should 

decrease w ith increasing pressure as recombination increases w ith the electron 

trap reducing the radiative efficiency. This overlap with defect states is also 

expected to have a smooth onset based upon the data in figure 11, where broad 

edged surface states are evident. The thermal distribution of carriers w ill also 

facilitate a smooth onset. Also while the electrons are confined to the InAs layer 

of the superlattice, InSb features may be seen as the electron mini-band also 

overlaps with them. However as both InAs and InSb are predicted to have the 

defect state immediately above the conduction band edge they may not be 

distinguishable from one another.

5.2.1 Sample Modelling

The sample used for the experiments (selection details of which can be found 

below) was modelled using Nextnano Mat. Software [42]. This was done to firstly 

see the band alignment when at zero pressure, and secondly to model the 

behaviour of this band alignment when subjected to pressure.

Figure 13 shows a section of the simulated superlattice band diagram for a 

8.1nm InAs, 2.4nm InAso.sssSbo.uz superlattice which has 40 layers under Okbar
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pressure, and a temperature of lOK. The eigenvalue for the conduction band 

band and heavy hole wavefunctions are shown and represent the ground state 

transition for the semiconductor. It should be noted that although there is 

overlap between the heavy and light hole states, the calculated light hole 

wavefunction and corresponding eigenvalue are found at a lower energy than 

the heavy hole eigenvalue. This means they are not the lowest energy transition 

in the semiconductor. The calculated conduction band to heavy hole energy 

transition is calculated to be 322meV which is comparable to the measured peak 

energy of the sample discussed later (314meV].
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Figure 13: The simulated band alignment of sample B1761, calculated using the Nextnano
software.

With an accurate starting position at Okbar, the simulation was then modified to 

account for the effect of increasing pressure on the material bandgap. This was 

achieved by altering the fundamental material parameters for each of the binary 

materials involved in the semiconductor, in this case InAs and InSb. Two 

independent simulations were performed, in the first the binary materials 

bandgap was changed according to the following pressure equations [43, 44]:
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InAs En = E  J O ) +  12.Se~^ P(ieV)

InSb Eq =  EJO)  + 13.7e-^P -  3.6e-5p2 ÇeV)

Secondly the material bandgap and effective mass of the electron was changed 

with pressure, according to the following relation [45, 46]:

dm* m* dE,g
dP Eg dP

Where m* is the effective mass. Eg is the bandgap of the material and P is the 

Pressure. The calculated energy gap resulting from these pressure simulations is 

shown in figure 14. The figure shows that the superlattice has a bandgap change 

of 12.93±0.04meV/kbar. This is unsurprising as most 111-V materials have a 

change of 10-12meV/kbar, and the sample alloy is predominantly InAs, therefore 

should follow the pressure coefficient of this material closely.

It can also be seen that the effective mass of the electron makes little difference
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Figure 14: The simulated pressure coefficient of sample B1761.
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to the calculated transition energy of the superlattice. Even at the highest 

pressure of 21kbar the difference is less than ImeV. This effect can be explained 

when the superlattice layer widths are considered. In this sample the InAs with 

is 8.1nm and the InAsSb width is 2.4nm, as the effective mass is an 

approximation of the curvature of the band, it w ill have less effect on the wider 

InAs layers. As the electrons in this superlattice are confined to the InAs layers 

then the reduced effect on the bandgap from the electron effective mass can be 

expected.

Finally, from these pressure simulations the expected change in band alignment 

and energy gap has been plotted and can be seen in figure 15. This shows that 

the expected shift in conduction band energy level is ~271meV when 

transitioning from 0 to 21kbar. It is expected that the conduction band energy 

level w ill begin to cross the predicted defect level leading to a decline in the 

measured intensity. This simulation does not include any change in the valence 

band due to pressure. This is because of very small deformation potential of the 

valence band resulting in a change of ~6% in its energy.
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Figure 15: The simulated band alignment at Okbar and 21 kbar.
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5.2.1 Experimental Sample Selection and Details

The InAs/InAsi-xSbx superlattice samples were provided by collaborators from 

Arizona State University, who are developing and testing new superlattice 

structures for use as photo-detectors. The samples provided have a peak 

emission wavelength of between 4pm and 12.1pm [33], achieving these 

wavelengths with layer thicknesses and alloy compositions as shown in table 2. 

The peak emission wavelengths were measured at 12K.

Sample # InAs thickness (nm) InAs 1 xSbx thickness (nm) X y Àp(pm)
1 (B1761) 8.1 2.4 0.142 4.0
2 (B 1789) 4.7 1.4 0.459 5.5
3 (B1774) 9.3 2.7 0.362 7.4
4 (B 1769) 8.3 2.6 0.336 7.5
5 (B1772) 8.5 2.5 0.378 7.8
6 (B 1776) 18.8 5.5 0.309 9.5
7 (B 1775) 15.4 4.5 0.351 9.8
8 (B 1778) 18.9 5.5 0.363 12.1

Table 2: The InAs/InAsSb superlattice structures grown at ASU. Adapted from [33]

To select a sample for the high pressure measurements in the sapphire ball, 

considerations for the equipment being used were needed. The equipment 

details were outlined in chapter 3. One of the limitations on sample selection was 

the cryostat quartz window transmission spectrum. The sharp cut off in 

transmission at 4.5pm meant that only sample 1 [B1761) was suitable for 

measurement in the system. Consideration was given to sample 2 (B1789), as 

this could be shifted into a measureable wavelength by applying ~4kbar of 

pressure assuming a pressure coefficient of 12.5meV/kbar. However, as the 

exact position of the defect state was not known, then it potentially could have 

been missed if  starting at a non-zero pressure therefore sample B1761 was 

chosen for measurement and B1789 left for possible future work.

As the superlattice band gap is shifted to shorter wavelength by using pressure 

the maximum and minimum measurable wavelengths were calculated. The
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maximum wavelength is given by the peak emission wavelength already 

measured i.e. 4pm. The maximum energy is obtained by taking the sapphire ball 

cells maximum pressure and multiplying it by the assumed pressure coefficient 

of 12.5 meV/kbar, assuming a linear relationship. Using the following relation 

the maximum wavelength can be calculated calculated:

he
À =

It should be noted that although sapphire ball cells have been documented to 

reach pressures of ~72kbar [47] the pressure reached on the sapphire ball cell at 

Surrey University works reliably to SOkbar owing to the larger gasket size. This 

results in a wavelength range of 4pm to 1.8pm for sample B1761 with increasing 

pressure up to SOkbar.

5.2.1.1 Pressure Limitation of the Sapphire Ball Cell

Gasket Thickness Remaining 
as a Function of Increasing Pressure
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Figure 16: The remaining gasket thickness w ith increasing pressure.
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While it  was stated that the sapphire ball cell has reliably reached pressures of 

up to SOkbar previously, during this experiment the maximum pressure obtained 

was ~21kbar. The absolute maximum pressure attainable by the sapphire ball is 

determined by the pressure at which the sapphire lenses w ill crack relieving the 

internal pressure, in practice this pressure is never reached due to other 

mechanical limitations w ithin the cell. The maximum pressure in any given 

experiment is determined by the point at which the rolled steel gasket is 

deformed sufficiently so that the samples mounted inside the cell would be 

crushed between the two sapphire lenses.

Figure 16 shows the remaining gasket thickness as a function of pressure, gasket 

one was used for three experimental runs, while gasket two was used for a single 

experiential run. As mentioned in chapter 3 the samples in this experiment were 

stacked making them -160pm thick, and the total gasket space was 450pm, this 

leaves 290pm of height available deformation due to pressure before the 

samples are crushed by the sapphires. The space remaining in the gasket is 

observed to decline with pressure tending towards a lim iting maximum pressure 

of ~21kbar for both gaskets.
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5.2.1.2 Apparatus Transmission
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Figure 17: Calculated transmission of apparatus, based upon the transmission spectrum of 
the Triax grating, blue InSb detector, quartz cryostat window, two CaFz lenses and Sapphire

discussed in chapter 3.

A comparison between integrated PL intensity as a function of pressure is 

required to determine if the measured intensity is in fact decreasing with 

pressure due to defects. The transmission window was determined using the 

transmission factor of each component of the apparatus used for the experiment. 

In this case the transmission considered was Triax grating number 2, the "blue" 

InSb detector, the quartz cryostat window, two calcium fluoride lenses and the 

sapphire ball. Details of these pieces of equipment are discussed in chapter 3. 

The results of the calculation are shown in figure 17. This calculation ignores the 

effect of reflection from the surfaces being passed through and atmospheric 

absorption, but clearly shows that with increasing the pressure the system 

response itself w ill cause a large drop in intensity. This decrease is chiefly due to 

the Triax 320s grating having a poor response in the 2pm-4pm region. However, 

these features including the atmospheric absorption should be normalised out of 

the final spectra as discussed in chapter 3.
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5.3 Results

5.3.1 Atmospheric Pressure PL

B 1761 PL S p ec trum
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Figure 18: The lOK PL Spectrum of the InAs/lnAso,858Sbo.i42 supeiiattice, fitted with a bi-
Gaussian curve.

The first measurement performed on the sample were lOK PL measurements 

performed on a large piece of the sample before placing it inside the sapphire 

ball cell. Though 12K PL measurements had been previously been performed by 

colleagues at ASU [33], their measurements were performed using a different 

experimental setup, including an MCT photo-detector. With this sample having 

the shortest emission wavelength this was at the edge of the MCTs operational 

range and therefore produced a noisy spectrum [33] as can be seen in figure 18. 

The InSb photo-detector used for the measurements in this thesis has a peak 

responsivity from 4pm to 5pm. This measured a spectrum with little noise using 

a lOOmW 808nm pump laser at lOK as is shown in figure 18 as compared with 

the ASU spectrum also shown. The shift in emission peak energy is thought to be 

the result of sample heating due to the high laser power used during the ASU 

measurements.
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The emission peak is fitted with a Originlabs built in bi-gaussian function. This 

fits each side of the peak position Xcwith a half Gaussian distribution. Physically 

this represents the Urbach tail for the energies below the band gap and radiative 

transitions for the energies above the band gap this is further discussed in 

chapter 2. The equation for fitting function is given by [48] :

'E -  E,'
L = Lo + Aexp (E <  E,)

L =  Lq +  Aexp
M W

(E >  EJ

Where Lo is the background noise level, A is the Gaussian amplitude, Ec is the 

peak position and AEi and AE2 are the Gaussian widths. The peak position is 

measured to be 3.95pm (314meV) at lOK which is comparable to the previous 

measurements at ASU of 4pm [33]. This data also tells us about the maximum 

signal that can be expected from the sample. Once cleaved so that is of an 

appropriate size to fit inside the sapphire ball cell, a less intense PL emission can 

be expected owing to the limited area available for excitation.

5.3.2 Temperature Dependent PL

As previous generations of InAs/InAso.85 8Sbo.i42 superlattice have a poor 

maximum operating temperature, and a large temperature dependent response 

[34] the temperature dependence of this new generation sample was measured. 

The large piece of sample was excited outside of the sapphire ball cell w ith a 

lOOmW, 808nm pump laser and the temperature increased in increments of 

lOK, w ith a starting temperature of lOK, the experimental results are shown in 

figure 19 where the maximum temperature a PL signal was detected was 120K.
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The temperature dependent measurements firstly show that there is a decrease 

in the PL intensity with increasing temperature. The effect happens quickly with 

temperature and is likely an effect of increased tunnelling losses compared to the 

Ga containing superlattice structures [49]. The InAsi-xSbx superlattice structures 

have decreased conduction and valence band offsets compared to Ga 

superlattices as can be seen from the simulation earlier, and the increasing 

temperature increases the carrier energy resulting increased carrier loss 

through tunnelling or thermal leakage.
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Figure 19: The measured peak energy dependence w ith increasing temperature.

The peak energy temperature dependence is seen to have a sharp blue-shift with 

temperature, and then a slow onset red-shift. This "S" curve fitting has been well 

documented in quantum well materials [50], and has also been observed in 

GaN/Alo.zGao.sN superlattices [51, 52]. This temperature dependent line shape is 

caused by localised states, caused by disorder at the interface boundary. These 

localised states can then be described as carriers localised in high energy states. 

At the semiconductor is heated these carrier gain thermal energy allowing 

occupy higher energy positions in the density of states until normal band filling 

occurs and a red-shifting behaviour is resumed. In this case the normal red-
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shifting behaviour begins again at 60K. The peak energy data is fitted using [51, 

52]:

2a
E(T) =  E(0)

% - i  k.Te

Where E(0) is the transition energy at zero Kelvin, a is the strength of the 

electron-phonon interaction, 0 is related to the average phonon energy, and a is 

the dispersion of the density of states (its width). The following parameters were 

gained from this fit; a = 0.047meV, 0 = 328.6K, and a = 4.6meV. With a being 

very small compared to the superlattice emission energy this indicates a high 

quality of the superlattice interfaces [52]. This S-curve also explains why the 

initial energy value of the simulation was 322meV, as the simulation would not 

have accounted for surface states, the limits of the simulation make it follow a 

strict Varshni behaviour to model temperature change.

It should be noted at this point that the pressure dependent measurements 

presented in this work were all performed at lOK to gain the maximum PL signal. 

This means the measurements were performed in the 'S' region, while some 

carriers were trapped in localised states. It is noted in a future section that the PL 

intensity appears to increase in intensity w ith increasing pressure. This could be 

the result of carriers being liberated from these localised states w ith increasing 

pressure, resulting in more carriers available to recombine radiatively. However, 

these localised states do not explain the sudden drop in measured intensity at 

high pressure, and therefore do not alter the conclusions drawn about the 

position of the defect state from this work.

5.3.3 Preliminary Pressure Dependent Spectra

For pressure measurements, the superlattice sample was cleaved and thinned to 

80pm and mounted inside the sapphire ball cell, along w ith the 

lno.73Gao.27Aso.89Po.11 mid-lR pressure gauge described in chapter 3. The bolts 

were tightened to the smallest possible amount that would allow the two halves 

of the cell to stay together. The sample spectra was now measured at this lowest
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possible pressure for comparison against the original large sample size 

measurement, the results of which are shown in figure 20.
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Figure 20: A comparison of the PL spectra obtained from the original large piece measured 
outside the sapphire ball cell, and the cleaved thinned piece measured at the lowest pressure

obtainable by the sapphire ball cell.

The spectra shown in figure 20, has a shifted peak emission due to the increased 

pressure within the sapphire ball cell. The Okbar peak is measured to be at 

314meV with a FWHM of lOmeV, the 1.19kbar peak is measured to be 333meV 

with a FWHM of llm eV . This implies that the peak shape has not changed with 

increasing pressure and the pressure dependent shift of the sample is 

16meV/kbar. The only large change between the spectra is the measured peak 

intensity. This has dropped three orders of magnitude. As the peak energies are 

similar, this cannot be put down to the wavelength dependent transmission of 

the apparatus, and instead is probably caused by the decreased sample size as 

well as the flat 10% reduction in transmission that comes from passing through a 

sapphire ball. Previously on the bulk sample the excitation area was the same as 

the spot size, inside the sapphire ball the area being excited by the laser is 

substantially smaller resulting in a less intense total output. Satisfied that
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mounting in the sapphire ball cell has not changed the spectrum in any other 

way than decreased intensity and a peak energy shift due to pressure, additional 

measurements were performed while increasing the pressure. These pressure 

dependent results are shown in figure 21.
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Figure 21: The as measured PL intensity w ith increasing pressure.

Though not normalised, and as such features of the apparatus and atmosphere 

w ill be visible, figure 21 clearly shows the wavelength blue-shift caused by 

increasing pressure on the superlattice. This is confirmation that the electron 

min-band is moving up in energy through the structure. There three interesting 

features of this plot that were investigated further: (1] There is a large 

wavelength range that has poor PL intensity between 2800nm and 3600nm, (2] 

There is a sharp drop off in intensity at the highest pressures, and [3) there 

appears to be variation in measured PL intensity between the lowest pressure, 

and just before the high pressure drop-off point. While the high pressure drop

off in intensity was an expected feature of finding the InAs defect level above the 

conduction band, the other two features require explanation to justify that the 

defect level has in fact been found.
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5.3.3.1 Alcohol absorption

While the calculated transmission change with wavelength was calculated in 

figure 17 it does not reflect the large region of poor PL intensity as shown in 

figure 21. This drop in PL intensity was found to be caused by the 

methanol/ ethanol pressure medium used in the sapphire ball cell. As liquid is 

not usually part of a mid-IR optical PL experiment this was overlooked. Upon 

further investigation, it was found that all of the alcohols have absorption 

features in the mid-IR due to their 0-H bonds [53, 54].
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Figure 22: The changing transmittance of ethanol w ith pressure at 4kbar and 28kbar. Adapted
from [55].

While such a feature would normally be removed by normalisation, this is not 

the case when using alcohols. The transmission spectrum of methanol and 

ethanol is changed by temperature as the liquid freezes, and also has a pressure 

dependence [54, 55]. An example of this changing transmission is shown in 

figure 27. This double dependency on the experimental parameters would now

159



require the pressure and temperature of each measurement to me matched, and 

a system response spectrum taken to match each PL measurement. This however 

is difficult w ith the sapphire ball cell, due to reaching the exact same pressure. 

This data could be approximated by an interpolation of figure 22, however, it w ill 

be shows that the region affected by alcohol absorption does not impact the final 

results, and so this interpolation was not performed. Furthermore to measure 

the system response spectrum while the sample is mounted is not possible as the 

gasket space is completely filled due to the stacked mounting method outlined in 

chapter 3.

There are other materials available to use as a pressure medium, such as helium 

or argon gas that would eliminate this problem [47]. However, they make the 

sapphire ball cell much more difficult to load and use. This goes against the 

premise of the device as a mobile easy to use high-pressure device. This alcohol 

absorption explains the large depression in the PL signal seen in figure 21, and 

stops us drawing any conclusions about the superlattices behaviour there. 

Fortunately the alcohol absorption window is spectrally localised, and the defect 

level energy is located outside of it.

5.33 .2  Optical Collection Issues

While it has been shown that there is a normalisation issue caused by the 

changing absorption features of the alcohol pressure medium, it must be justified 

that the changes in intensity are not caused by optical collection issues. This can 

be done by performing the same integrated intensity analysis for the 

Ino.73Gao.27Aso.89Po.11 pressure gauge. This sample has a known pressure 

coefficient, and does not change its light output w ith pressure substantially over 

the pressure range studied. The emission wavelength range is also not affected 

by the alcohol absorption features found further into the mid-IR, and is also free 

of any atmospheric absorption features. This means any change in intensity is 

caused by problems in the optical collection efficiency. Small problems are to be 

expected, as the sapphire ball cell must be physically removed form the 

apparatus when adjusting the pressure. While every care is taken while
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performing this process, small changes in the collection efficiency are 

unavoidable.
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Figure 23: The integrated intensity of the InGaAsF pressure gauge, showing a slight linear
dependence with pressure.

The measured integrated intensity of the InGaAsP pressure gauge is shown in 

figure 23. The figure shows considerable scatter between the data points with 

increasing pressure. There is also a weak linear dependence to the data with 

increasing pressure. This weak linear dependence is caused by the changing 

efficiency of the apparatus which was shown to have a linear decline in response 

with reducing wavelength (increasing pressure) in figure 17 and approximately 

the same loss factor as calculated of 66%. The scatter between data sets and data 

points is caused by a change in the optical collection efficiency changing. It can ba 

assumed that these changes in collection efficiency w ill also effect the other 

sample mounted n the sapphire ball cell, and w ill later be normalised out. This 

change in collection efficiency is unavoidable with the large disturbance to the 

apparatus when removing the sapphire ball cell. It should be noted that there is 

no resemblance to the shape of the data shown in figure 24 of the increasing
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intensity and then sharp decline, this shows that these changes are not features 

of the optical collection efficiency.

5.3.4 Normalised Pressure Intensities

The pressure measurements were repeated four times. Data set 1 are the original 

measurements while increasing the pressure, 2 a repeated measurement moving 

down in pressure on the same gasket, 3 a repeated measurement while moving 

up in pressure again on the same gasket, and 4 is a repeated measurement 

moving up in pressure with a completely new gasket. This repeatability was 

tested on a new gasket to confirm the pressures calculated for each 

measurement were the same on a fresh gasket. This required a complete reload 

of the samples into the sapphire ball cell, and so previous gasket measurements 

would not influence it. The sapphires and gasket were replaced to show that any 

observed features were not a function any defects in the previous sapphire balls.

The measured spectra were then normalised and the integrated intensity under 

the curves calculated. Although the normalisation process is not perfect because 

of the alcohol absorption discussed earlier, this integrated intensity values give a 

measure of the total light output of the semiconductor, these normalised results 

are plotted in figure 24.

162



0.06-,

0.04-

(/)c
B
-  0.02 
■ D

B
2

0 .0 0 -

B1761 Normalised Integrated Intensity

■ D ata S et 1
•  D ata S e t 2
A Data S e t 3
T  D ata S e t 4

Am

5 10 15

Pressure (kbar)
20

Figure 24: The normalised integrated intensity of the light output as a function of pressure.

Figure 24 shows that in all cases there appears to be an increase in the total light 

output with pressure, then a sharp decline at a critical pressure of 19.4kbar. It 

should be noted that the large amount of scatter between experiments is caused 

by the alcohol absorption not being properly removed through normalisation. 

This assumption can be justified by observing at the high and low pressure ends 

of the data where the alcohol absorption effect is least, also has the least amount 

of data scatter.

The critical pressure of 19.4kbar at which the pressure declines corresponds to a 

peak energy transition energy of O.SleV. This value is in good agreement with 

the position of the high energy tail of the calculated value found in the literature 

for InAs [35], and this decline is therefore thought to be caused by the defect 

level state. The same literature also calculates that the defect level state is wide 

rather than a sharp feature of the material. Based upon this, it is reasonable to 

say that the carriers are lost from the radiative recombination process to defect 

level state when even a small pressure is applied. This means the pressure at
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which the measured intensity declines to such a point that the SNR is very low, is 

the point at which the majority of carrier are recombining via the defect state 

rather than radiatively. This change in dominant recombination process with 

pressure can be simply checked by measuring the power dependence of the PL 

intensity at high and low pressure.

5.3.4.1 Normalising to the Pressure Gauge
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Figure 25: The measured integrated intensity of the superlattice structure, corrected for
optical collection efficiency.

Further normalisation is performed to adjust for the optical collection efficiency. 

With a known change in the optical collection efficiency shown by the pressure 

gauge, it is possible to correct the measured integrated intensity of the 

superlattice sample by using the lno.73Gao.27Aso.8 9Po.11 pressure gauge. It can be 

assumed that the integrated intensity of the pressure gauge is linear w ith 

pressure over this pressure range, by multiplying each data point by a 

normalisation factor that w ill make it linear, these normalisation factors can then 

be applied to the corresponding superlattice samples data point to remove the
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changes in optical collection. This can be done as each superlattice point always 

has a corresponding gauge point. These corrections have been applied and the 

resulting data is plotted in figure 25. This again illustrates the same information 

as that shown in figure 24, a rise in integrated intensity and then sharp decline.

5.3.5 PL Pump Power Dependencies
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Figure 26: Power dependent PL measurements taken at zero kbar and 17.89 kbar.

Power dependent PL measurements of the sample were taken to identify the 

dominant recombination process within the sample, details of the theory behind 

this can be found in chapter two. Power dependent measurements were taken at 

pressures of Okbar and 17.89 kbar. These values were selected as if  the 

competing dominance theory stated above is correct then at Okbar the dominant 

recombination process should be radiative as there is not yet any influence from 

the defect state, and at 17.89kbar strongly defect related as this is the point just 

before the observed PL intensity declines to a non-observable value and the 

sharp decline in intensity appears. Figure 26 shows that that when the sample is 

at Okbar a measured gradient of 1.09 ± 0.05 is found from the Z-analysis in 

chapter 2 shows, this indicates a dominant radiative recombination process. At a
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pressure of 17.89kbar the measured gradient is found to be 1.94 ± 0.07 

indicating a dominant defect related recombination process.

This change in dominance matches the predicted behaviour due of a gradual 

overlap with the defect state positioned above the conduction band edge. This 

provides the first experimental confirmation that this above conduction defect 

state exists, and that InAs/InAsSb superlattice structures provide a better 

alternative to Ga based superlattice photo-detectors due to the limited dark 

current produced through SRH recombination in the forbidden band gap region.

While this experiment has provided confirmation that the defect level exists and 

is located ~200meV above the conduction band edge. The width of the level is 

yet to be ascertained. As the power dependent PL results performed at pressure 

values between Okbar and 17.89kbar have interference from the alcohol 

absorption. This limits the measured output intensity, and therefore measuring 

a signal at reduced power becomes impossible due to the low SNR This lack of 

data means that the position at which the dominant recombination process 

begins to change from radiative to defect cannot be determined, and therefore 

the width of this defect related feature cannot yet be estimated.
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5.3.4.1 Superlattice Pressure Co efficient
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Figure 27: The pressure coefficient calculated from the gradient of the peak energy change 

with pressure, and simulation using Nextnano.

Though it was not the primary aim, from the data gathered from this experiment 

the pressure coefficient of the superlattice can be calculated. This is done by 

plotting the peak emission energy against the pressure at which it was measured 

with the gradient being the pressure co-effcient. This is shown in figure 27, and a 

pressure co-efficient of 9.7 ± 0.2meV/kbar is calculated (black).

There also seemed to be a discrepancy in gradient before and after the range 

over which alcohol normalisation was a problem. To test if  alcohol was affecting 

the data the gradient was fitted over each of these shorter ranges giving values of

4.4 ± 0.7meV/kbar (blue) and 8.1 ± 0.4meV/kbar (green). The higher pressure 

values are known to not be affected by the alcohol absorption and the lower 

pressure values are on the edge of the known alcohol absorption. Also the higher 

pressure data is more numerous, based on this higher reliability is expected from 

the higher pressure data points.
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The simulated data is also shown and has a significantly higher pressure co

efficient of 12.9 ± O.lmeV/kbar (red). This can be attributed to the software 

using the dependence of InAs and InSb w ith literature values of 12.5 meV/kbar 

and 12.8 meV/kbar for bulk InAs and InSb respectively [41] as a baseline figure. 

From this it is not possible for the software to produce a value that w ill differ 

w ild ly from this. Also the way in which pressure has been calculated using the 

software accounts for any change due to pressure being in the conduction band, 

w ith no change in the valence band due to pressure modelled the simulated 

value w ill slightly overestimate the pressure coefficient. Previous studies have 

shown that the pressure coefficients of InAs/Gai-xInxSb superlattices have a 

pressure dependence which is less than that of the bulk materials, and also have 

a small ~l-1.5meV/kbar valence band dependency on pressure [56]. From this 

information it can be expected that the software simulation w ill therefore over 

estimate the pressure dependence.

5.5 Conclusions and Further Work

Three key pieces of data were gathered about the superlattice were measured 

while performing these experiments: (1) the temperature dependence of the 

superlattice was measured and a low temperature blue-shift and subsequent 

higher temperature red shift was found. This is comparable to other superlattice 

structures such as GaN/Alo.zGao.sN [51, 52]. This blue shift is caused by localised 

states at the superlattice layer boundries, and the same fitting was performed for 

this sample as that found in the literature to gain a value for the superlattice 

interface quality a. With this value being very small (0.0046meV) compared to 

the superlattice emission energy (314meV) then the interfaces are thought to be 

of good quality.

(2) the pressure coefficient of the superlattice was calculated from the peak 

energy position change with pressure and was found to be smaller than both 

simulation or bulk InAs and InSb. This was found to be in line w ith the literature 

for this type of localised carrier superlattice.
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(3) evidence was presented that the high-pressure decline in measured 

integrated intensity was caused by a defect level state being moved into the band 

gap using high pressure. Power dependent measurements showed a change to 

from radiative dominant recombination to defect related recombination as the 

pressure is increased. This implies that the radiative and defect processes come 

into competition as soon as pressure is applied, and at ~19.5kbar the defect 

related recombination is important. .

Given the information obtained from this experiment there is some interesting 

further work that could be performed. Performing the experiment using a 

different pressure medium such as argon would eliminate the alcohol absorption 

features that were present in all of the spectra. This would definitively show that 

the measured increase in integrated intensity before the 19.4kbar critical point 

was a normalisation error rather than superlattice feature.

As discussed earlier, this 4pm emission wavelength sample was chosen as it  was 

best suited to the apparatus. As it is expected now that the defect level state does 

not move with pressure, this could be confirmed by repeating the experiment 

using the 5.5pm sample but beginning the experiment at a pressure of ~4kbar so 

that the peak emission would be measureable using the available apparatus. 

Though this would miss some of the low pressure data points out, it  should 

provide confirmation of the defect level being moved into the band gap w ith 

pressure and also its position, assuming it is immobile with pressure. The 

position could also be confirmed to be identical, showing it is in the InAs layer.
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Chapter 6 - Conclusions and Further 

Work
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6.1 Thesis Review and Conclusions

The central aim of this thesis was to spectroscopically characterise 

semiconductor nanomaterials for use in the mid-lR wavelength region. This 

characterisation was primary achieved using a combination of simulation via the 

Nextnano software package and through detailed fitting of the experimental 

data. The primary method of obtaining experimental data in this thesis was 

through the use of photoluminescence performed using different variations of 

temperature, power and pressure. These techniques have been used to 

successfully characterise a temperature dependent blue shift in InAsSb quantum 

dots and identify the physics behind the shift. They have also provided the first 

experimental evidence for a predicted defect level above the conduction band 

edge in an InAs/lnAsSb superlattice structure.

In the first chapter a review of why mid-lR devices are important and a selection 

of the applications to which they can be applied. More specific information is 

then given on the development and benefits of quantum dots, as well as benefits 

type 11 superlattice structures could bring to photo-detector applications.

In the second chapter the fundamental physics which is built upon is subsequent 

chapters is outlined. This ranges from the change in density of states of a system 

restricted in its dimensionality, to the theory behind z-analysis that is used to 

identify the dominant recombination process in all of the samples studied during 

this work. The most used technique in this work, the physics behind 

photoluminescence is provided in detail.

The third chapter focuses on the experimental apparatus and configurations 

used to perform the experiments in this work. Working in the mid-IR wavelength 

region requires careful attention to the optical properties of the apparatus being 

selected for work. An example of this is glass optics being replaced with calcium 

fluoride, this is a requirement of mid-lR work due to the poor transmission 

spectrum of glass in the region. All of the apparatus used during this work is 

examined and where available the transmission spectrum of the material is 

presented. The relevant atmospheric absorption features are also presented for
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the region in which this work takes place. The result of this is that no anomalous 

features of the apparatus being used have interfered with the data presented in 

this work.

The fourth chapter focuses on mid-lR quantum dots. It begins w ith a review of 

how strain is the underlying factor behind most dot morphology, and dot 

morphology in turn is the dominant factor in emission wavelength along with 

alloy composition. InAs quantum dots are simulated to correspond to the 

experimentally measured peak energy. From these simulations it  is found that a 

single group of quantum dots and their excited states cannot account for the two 

oscillator peak required to achieve a high R̂  value to the experimental data. 

Instead a bimodal dots are required, something that would have been 

overlooked if  not for the characterisation performed in this work. Analysis of the 

power dependent PL for these dots also shows a dominant radiative 

recombination process at high and low temperatures. This implies that if  

manufactured into devices these dots would have a high efficiency value.

The work in chapter four continues to examine InAsSb quantum dots. The 

inclusion of antimony into the dot alloy is designed to extend the emission 

wavelength further into the mid-lR when compared with the previous In As dots 

studied. However, due to the larger lattice mis-match the dot width is reduced 

also reduces the emission wavelength. As a result the InAsSb dots are found to 

have a similar emission wavelength to the previous InAs dots. As the antimony 

fraction in InAsSb quantum dots can never accurately be known, only the 

antimonidation time, simulations were performed to gain an estimate for both 

the dot width and antimony content. Based on the increased lattice mis-match 

the InAsSb dots were calculated to be ~13% smaller than the pure InAs dots. To 

simulate the same emission wavelength as was measured during experiment this 

required an antimony fraction of 10%. The dot samples were split into two 

groups once measured, one had an observed temperature dependent blue shift 

and was fitted using one oscillator to obtain a high R̂  value. The other red shifted 

with temperature and required a two oscillator fit. Using the simulations this two 

oscillator fit was found to be the result of bimodal dots, this bimodal dot theory
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also explained the temperature dependent blue shift through a change in 

dominance of the oscillators. Power dependent measurements confirmed this 

change in dominance as the dots moved from radiative to defect dominated 

recombination. This also indicated that one group of dots contained no antimony 

as its dominant recombination process was radiative as seen in the InAs dots. 

The antimony containing dots were dominated by defect related recombination 

which is explained trough defects being introduced because of the larger lattice 

mismatch.

The fifth chapter involved experimentally confirming the existence of a defect 

level positioned above the conduction band edge in an InAs/lnAsSb superlattice. 

The justification on why new superlattice photo-detectors would provide an 

advantage over the existing MCT detectors is presented. The dominance of dark 

currents caused by SRH recombination in the bandgap region is presented for 

gallium containing superlattices, something that InAs/lnAsSb would not be 

affected by if  the defect, level is above the conduction band edge. A sapphire ball 

cell is used to create the high pressures required, these high pressures move the 

conduction band up in energy until primary energy transition begins to over lap 

with the defect state. At this point a decline in the measure signal intensity 

should be observed as carriers recombine via the defect state. This decline in 

measured intensity was observed at ~19.4kbar. To confirm that this change was 

caused by a defect level, power dependent PL measurements were performed at 

high and low pressure. At low pressure the dominant recombination method was 

found to be radiative, and at high pressure defect related. This gives the first 

experimental evidence for this defect state being found above the conduction 

band edge.

6.2 Further Work

The InAs quantum dots were found to have a strongly radiative recombination 

process rather then the defect related process found in the InAsSb dots. As a 

result of this it would be interesting to process the wafer into simple P-l-N 

diodes and characterise the sample electrically. This would allow for a
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comparison between spectroscopic characterisation of a wafer sample and 

electrical characterisation of a device. This would then result in evidence of if  a 

well performing wafer would result in a similarly well performing device.

The InAs/lnAsSb superlattice also has interesting further work that could be 

performed: r

(1) The methanol/ethanol pressure medium of the sapphire ball used to 

maintain hydrostatic pressure cell could be replaced with argon. While this 

introduces complexity to loading the sapphire ball cell w ith samples, the 

problem of alcohol absorption in the 2.8 - 3.6pm region would be overcome 

allowing additional experiments to be performed.

(2) Additional power dependent measurements at pressures between Okbar and 

17.89kbar could be taken if  there were no alcohol absorption features. While 

currently the position of the defect state is known, its width is not. By observing 

the point at which the sample migrates from a radiative only recombination 

process to a combination of radiative and defects would allow this width to be 

quantified.

[3} The experiments performed in this work could be repeated using other 

samples shown in chapter 5 table 2 available from the growers in ASU. These 

additional samples have longer emission wavelengths, meaning that they should 

interact w ith the defect state at lower pressures. This would provide 

confirmation of the results presented in this work. This further work would also 

have the possibility of differentiating between an InAs and InSb defect state, by 

experimenting on different InAsSb alloy compositions. If  the InAs defect state is 

being studied then the position would be independent of the antimony content of 

the sample.

(4) The work on this sample could be repeated at a higher temperature, one that 

is not in the 'S' temperature dependent region. This would then show if  the
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increase in intensity w ith pressure is the result of carriers being liberated from 

the localised states with pressure.
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Appendix A: InAs Quantum Dot Structure
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Appendix B: InAs Quantum Dot Wavefunctions
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The first five calculated InAs wavefunctions shown 
from top to bottom. The x and y axis are in plane, 

while the growth direction z is out of the page. 
Conduction band functions are shown on the left, HH 

on the right.
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Appendix C: InAsSb Quantum Dot Structure
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Appendix D: InAsSb Quantum Dot Wavefunctions
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The first five calculated InAsSb wavefunctions 
shown from top to bottom. The x and y axis are in 

plane, while the growth direction z is out of the page. 
Conduction band functions are shown on the left, HH 

on the right.
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Appendix E: Nextnano

The Nextnano software package has been used throughout this work to simulate 

different nano scale structures. This appendix w ill cover the basic process and 

equations used by the software to create these simulations. Further reading can 

be found at the Nextnano website [1].

The material parameters are taken frorn an existing database, most of the values 

are taken from 1. Vurgaftan et al.'s paper [2]. The software uses the input file 

specified by the user to interpolate the values of any ternary alloys e.g. InAsSb. A 

grid, the dimensions of which the user specifies, is then populated with these 

materials.

At this point a strain minimisation calculation occurs. When materials of two 

different lattice constants are joined an elastic strain is created between them. 

This strain is known to change the conduction band and valence band edges, as 

well as the K*p Hamiltonian of Schrddinger's equation. The strain tensor 

equation used by Nextnano is given by [3] :

^ij -  2

Where is the strain where i and j = 1, 2, 3... and Uji is a vector describing the 

displacement due to lattice deformation. Following this the electrostatics w ithin 

the simulated material are solved by the use of the Poisson equation [4]:

V • [co^r W V 0  (x)] = - p ( x )

Where Eq is the vacuum permittivity, Sr is the material dielectric constant at 

position X, 0is the electrostatic potential at position x , and p is the charge density 

distribution at position x.

The final step is to solve the 8 x 8 K*p Schrddinger equation [3] to gain values for 

the wave functions and corresponding Eigen states.
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