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Abstract

In this paper, we make a detailed study of the spin-orbit dynamics of Mercury, as predicted by the
realistic model which has been recently introduced in a series of papers mainly by Efroimsky and Makarov.
We present numerical and analytical results concerning the nature of the librations of Mercury’s spin in
the 3:2 resonance. The results provide evidence that the librations are quasi-periodic in time, consisting
of a slow oscillation, with an amplitude of order of arcminutes, superimposed on the 88-day libration.
This contrasts with recent astronomical observations and hence suggests that the 3:2 resonance in which
Mercury has been trapped might have been originally described by a large-amplitude quasi-periodic
libration which, only at a later stage, with the formation of a molten core, evolved into the small-amplitude
libration which is observed nowadays.

Key words: celestial mechanics – planets and satellites: individual: Mercury – planets and satel-
lites: dynamical evolution and stability – planets and satellites: terrestrial planets.

1 Introduction

Mercury is entrapped in a 3:2 resonance: it rotates on its axis three times for every two revolutions it makes
around the Sun. It is generally accepted that this is due to the large value of the eccentricity e = 0.2506 of its
orbit. However, there is no universal consensus about the mechanism by which the entrapment has occurred.
The mathematical model originally introduced to study its spin-orbit evolution proved not to be entirely con-
vincing, because of the expression commonly used for the tidal torque. Only recently, in a series of papers
mainly by Efroimsky and Makarov (see Noyelles et al. (2014) and references therein), a different model for
the tidal torque has been proposed, which has the advantages of being more realistic, and of providing a higher
probability of capture in the 3:2 resonance with respect to the previous models. On the other hand, a drawback
of the model is that the function describing the tidal torque is not smooth and consists of a superposition of
kinks, so that both analytical and numerical computations turn out to be rather delicate: indeed, standard per-
turbation theory based on power series expansion cannot be applied and the implementation of a fast algorithm
to integrate the equations of motion numerically requires a high degree of care.

The Mercury-Sun system is usually studied as a satellite-planet system, with the satellite described as
an ellipsoidal body orbiting around its primary in a Keplerian orbit. If θ denotes the sidereal angle (that is,
the angle that the longest axis of the satellite forms with respect to the line of apsides of the orbit) the time
evolution of θ is described by the second order ordinary differential equation

Cθ̈ = T (TRI)
z +T (TIDE)

z , (1.1)
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with C being the maximal moment of inertia of the satellite, and where T (TRI)
z and T (TIDE)

z are traditionally
called the triaxiality-caused — or simply triaxial — torque and the tidal torque.

There is general agreement in the literature as to the expression for T (TRI)
z (see for instance Danby (1962)):

the triaxial torque is written as an infinite Fourier series, which is usually truncated, since only a few reso-
nances are really relevant. By contrast, the expression for T (TIDE)

z is a much more delicate issue. In the first
paper devoted to the problem, by Goldreich & Peale (1966), the MacDonald model was mainly used for the
tidal torque. This entailed a simple form for T (TIDE)

z , well suited to both analytical and numerical computa-
tions. However, the results obtained with such a model were rather disappointing: the probability of capture in
the 3:2 resonance was found to be very small (7%), and only assuming a chaotic evolution of the eccentricity
of Mercury — as demonstrated much later by Correia & Laskar (2004) — can it become much higher (55%).
Here, the probability of capture is defined as the probability of the satellite being trapped in a resonance when
crossing it; if one takes into account the strong variations which the eccentricity underwent in the past, the
probability is highly enhanced because multiple crossings become possible.

Moreover, tidal models such as MacDonald’s, based on a constant time lag (CTL), lead to the existence of
a stable pseudo-synchronous solution, which in the case of Mercury is characterised by a spin rate θ̇ ≈ 1.26n,
where n is the mean motion of Mercury; such a solution turns out to attract most of trajectories in the case
of constant eccentricity. More generally, the CTL model produces rather nonphysical results when applied to
satellite-primary systems, as the most common resonance for satellites is the synchronous one (1:1).

Recently, the physical validity of tidal models based on constant time lag was strongly questioned by
Efroimsky (2009, 2012); Efroimsky & Makarov (2013); Makarov & Efroimsky (2013). A more realistic
model has been introduced by Efroimsky (2012), based on the Darwin-Kaula expansion of the tidal torque
(see Kaula (1964)), which takes into account both the rheology and the self-gravitation of Mercury. By relying
on such a model, Makarov (2012) showed that the probability of capture in the 3:2 resonance is 100%, that is
to say when Mercury crosses the 3:2 resonance it is inevitably entrapped in it. Later on, Noyelles et al. (2014)
studied the case of non-constant eccentricity and found not only that trapping in the 3:2 resonance is the most
probable outcome of the time evolution, but also that the trapping time is much smaller than that predicted
by previous theories. We refer to Noyelles et al. (2014) for more details and for a very clear discussion of
the existing results in the literature; in the following we shall refer to the system with the tidal model used
in Noyelles et al. (2014) as the NFME model. We note that, in the NFME model, the tidal torque is not a
smooth function (it is only C1) and it appears as a superposition of kinks: this makes both the numerical and
the analytical investigations rather subtle.

In general, because of the small value of the dissipation, integrating the equations of motion requires very
long times. Thus, it may be convenient for practical purposes to make some assumptions on the initial data
of the system: usually one fixes the initial velocity and considers a large sample of initial phases (say, 1000).
Therefore, a very high probability of capture (even 100%) in a given resonance does not necessarily imply
that every trajectory ends up in that resonance, because, for that to happen, one needs the trajectory not to
have been trapped earlier by other resonances that it has crossed during its time evolution. Since the initial
condition is not known, it may be important to investigate a larger sample of initial conditions by varying θ̇

as well as θ , randomly distributed in the phase space. A fast numerical integration method was proposed by
Bartuccelli, Deane & Gentile (2015, 2017), which allows consideration of a larger number of initial data (say,
50 000). Then one can evaluate the probability of capture in a given resonance as the fraction of trajectories
which are eventually attracted into that resonance: for the NFME model it was found that the 3:2 resonance is
still the most probable final state, since it attracts about 42% of the trajectories with initial conditions (θ , θ̇)
inside the set [0,2π]× [0,5n], and even more if one takes into account only initial conditions above the 3:2
resonance (see Section 7).

In this paper, we study more closely, both numerically and analytically, the nature of the attractors for the
NFME model — something which is still missing in the literature. Indeed, as noted by Makarov, Frouard
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& Dorland (2016), the tidal torque in the NFME model “leaves little room for analytical applications” and
usually very strong simplifying assumptions on the equation are made in order to obtain analytical expressions
for approximate solutions. In fact, when one speaks of a resonance p:q, usually one simply means that the
solution θ(t) to (1.1) is such that θ̇(t) ≈ pn/q, with n being the mean motion, but it is not obvious at all
whether the solution is periodic, i.e. has frequency commensurate with n.
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Figure 1: Periodic solutions found numerically, corresponding to the resonances p:q, with q = 2 and
p = −2, . . . ,8 (p 6= 0). In each figure, the velocity θ̇(t) is plotted on the vertical axis and the libration
θ(t)− (p/q)nt on the horizontal one; the dot represents the initial condition. The letters S/U denote
whether a solution is stable/unstable (as discussed in Section 5).

Numerically, one finds a finite number of periodic attractors. The exact number depends on the truncation
of the triaxial torque T (TRI)

z . It is important to note that, if we enlarged the number of harmonics included in
T (TRI)

z with respect to the truncation used in Noyelles et al. (2014), it is true that new periodic attractors would
appear, but in fact they would attract only a few trajectories: as a consequence, the general scenario would
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remain essentially unchanged. Using the same truncation as in Noyelles et al. (2014), the periodic solutions
in Figure 1 are found numerically. Not all such solutions are stable (see Section 5 for details); the unstable
ones do not correspond to attractors. In particular, the periodic solutions which are unstable include the 3:2
resonance. This may seem a bit surprising, since the 3:2 resonance is expected to be the dominant one.

In fact, an attracting solution with θ̇(t)≈ 3n/2 is found numerically. However, if we look more carefully
at such a solution, we realise that it does not appear to be a periodic solution. More precisely, if we write
θ(t) = 3nt/2+ z(t) and plot ż(t)/n versus z(t), we obtain the curve in Figure 2 (the function z(t) describes
the librations of the spin rate). So, the attracting solution has a much more complicated structure with respect
to the periodic solution with θ̇(t) ≈ 3n/2 depicted in Figure 1. Apparently, the solution is characterised by
two frequencies: there is a fast oscillating motion superimposed on a slow oscillation. This is confirmed by a
Fourier Transform analysis: the dynamics involves two frequencies n and ω , with n≈ 73.9ω (see Section 4).
We term such a solution a quasi-periodic attractor (see Remark 6 in Section 4, though).

So, from a numerical point of view, we find that the main attractor of the system (1.1) does not really
correspond to what one usually means by a resonance, that is, a periodic solution with frequency commensu-
rate with the forcing frequency. As a matter of fact, while the mechanism by which periodic attractors appear
in a periodically perturbed system is rather clear, as follows from Melnikov’s theory (see for instance Guck-
enheimer & Holmes (1983)), the appearance of quasi-periodic solutions is much less standard and deserves
further investigation.
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Figure 2: Quasi-periodic attractor corresponding to the resonance 3:2, found numerically. The crosses
correspond to the Poincaré section, (z(kT0), ż(kT0)/n), k = 1, . . .200, and the dotted line shows the
whole solution for t = 0 to 75T0, where T0 := 2π/n.

We aim to provide an analytical description of the attractors represented in both Figures 1 and 2. Essen-
tially, we shall use perturbation theory, but with some caveats, since the tidal torque is not a smooth function
and has very rapid variations. We shall see that a few steps of perturbation theory are sufficient to provide an
analytical expression for the solutions which is in very good agreement with the numerical results. However,
before entering into the mathematical details, let us discuss briefly — and informally — what kind of solutions
may be expected.

We can rewrite (1.1) as
θ̈ =−ε G(θ , t)− ε γ F(θ̇), (1.2)
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where ε and γ are positive numbers; the explicit expression of the functions F and G will be given in Section
2. The number ε is small, so it plays the role of a perturbation parameter. Let us consider first the case
in which ε 6= 0 and γ = 0 (conservative limit). In that case, for ε small enough, one has a quasi-integrable
system and hence the KAM theorem applies (see for instance Arnold et al. (1988)): most invariant tori persist,
while the resonant ones are destroyed. Therefore, most of the solutions are quasi-periodic. This does not
mean that periodic solutions do not exist: what happens is that of each entire resonant torus only a finite
number of trajectories survive in the presence of the perturbation. When the dissipative term is also present
(γ 6= 0), the scenario changes drastically: while the periodic solutions persist, the quasi-periodic solutions
disappear almost completely. Moreover, the periodic solutions assume a pivotal role, since they become
attractors. In practice, both ε and γ are different from zero, so that the scenario may be somewhat different.
In particular, according to the exact form of the dissipative term, quasi-periodic attractors are still possible
for the full system. For instance, this is what happens when the MacDonald torque is considered (Celletti
& Chierchia (2009); Bartuccelli, Deane & Gentile (2012)): the quasi-periodic solution corresponds to the
pseudo-synchronous solution which is also found numerically. While no other quasi-periodic solutions are
observed, analytically the existence of the pseudo-synchronous solution is rather tricky to prove. Indeed, in
order to implement a KAM-like scheme, one needs to assume that the frequencies of the solution are strongly
non-resonant — in practice Diophantine (Celletti & Chierchia (2009); Bartuccelli, Deane & Gentile (2015);
Medvedev, Neishtadt & Treschev (2015)). However, the frequencies depend continuously on the parameters
and the non-resonance condition is not necessarily satisfied when the parameters are varied.

In the case of the realistic tidal model used in Noyelles et al. (2014), stable pseudo-synchronous solutions
are not possible, as demonstrated by Makarov & Efroimsky (2013). The attracting solutions are not necessarily
periodic though. Indeed, for ε small enough, periodic solutions corresponding to resonances are expected to
exist and be attractive, as follows from Melnikov’s theory, but, when increasing the value of ε , bifurcation
phenomena may occur: a periodic solution may become unstable and a new kind of solution may appear
nearby. For the corresponding Poincaré map — or a suitable iteration of it — the periodic solution gives a
fixed point; then the new solution looks like a curve, which emerges from the fixed point by Hopf bifurcation
when ε crosses a threshold value (see for instance Marsden, McCracken (1976)).

A natural question is whether one can account analytically for the attracting solutions that we have just
described. As far as the solution is periodic, one can apply Melnikov’s theory for subharmonic solutions; see
for instance Gentile, Bartuccelli & Deane (2007) and references therein. Care is in order in that case, because
the function F in (1.2) is only C1 and has rapid variations, so one cannot apply perturbation theory as usually
implemented in the case of smooth functions.

A mathematical description of the solution appearing by Hopf bifurcation is more demanding. To under-
stand how to proceed, let us make a step back and consider the conservative system with γ = 0. In that case,
as we have said, the resonant tori are destroyed. In addition, the closest tori also undergo the same fate, so
that narrow gaps appear in phase space where the resonant tori have disappeared. It is in these gaps that the
periodic orbits are located. Nevertheless, not all the motions inside the gaps are chaotic. In fact, there are
a lot of Lagrangian tori (Arnold et al. (1988); Medvedev, Neishtadt & Treschev (2015); Biasco & Chierchia
(2015)): if one considers the Poincaré map, the tori look like closed curves encircling the fixed point which
corresponds to the periodic solution. Of course, such tori are not KAM tori (that is, they are not deformations
of the tori of the unperturbed system), but they still correspond to quasi-periodic solutions.

Now, let us consider what happens when the dissipation is taken into account. If the dissipation is large
enough, then all the tori disappear and the fixed point turns out to be asymptotically stable: such a scenario
corresponds to the periodic solutions found by Melnikov’s theory. On the other hand, if the dissipation is
small, the force may prevail and push away from the fixed point (which still exists, but becomes unstable, this
being an effect of the force dominating the dissipation) and one of the curves nearby survives and is stable.
Such a curve is the closed curve which arises by Hopf bifurcation from the fixed point.
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To summarise, we find an attracting solution close to each resonance: whether such a solution is periodic or
has a more complicated structure depends on the values of the parameters. For fixed values of the parameters, it
may happen that some periodic solutions are stable (and hence are attractors) and others are unstable (and so a
quasi-periodic solution appears nearby); in the case of Mercury-Sun, for the physical values of the parameters
— see Section 2 — we find that the attracting solution corresponding to the 3:2 resonance is quasi-periodic.
Both kinds of solutions can be found by perturbation theory. The periodic solutions to the full system (1.2)
are obtained by starting from the periodic solutions of the unperturbed system (ε = 0). By contrast, the quasi-
periodic solutions are not perturbations of solutions of the unperturbed system: one has to perform first a
change of variables (a ‘normal form’, in the language of KAM theory), which allows us to write the system as
a perturbation of a new unperturbed system which is essentially a pendulum. Then the unperturbed solution
to be continued is an oscillatory solution of the pendulum.

In the forthcoming sections, we use perturbation theory to compute approximations to the periodic and
quasi-periodic solutions described above. To overcome the lack of smoothness of the vector field, we use an
iteration method based on the same idea as the Picard approximants. In principle, one should prove that the
iteration scheme converges, but we do not address this issue here. We confine ourselves to computing a few
steps of the iteration and show that the results are in very good agreement with the numerical simulations.
The problem of convergence is certainly non-trivial, particularly in the case of quasi-periodic solutions. In
fact, as pointed out previously, in KAM-like problems one usually assumes strong resonance conditions on the
frequencies, whereas, in the case of dissipative systems, the frequencies are expected to depend continuously
on the parameters. This means that, for some values of the parameters the motions can be periodic, and still
invariant tori exist. We mention that existence of quasi-periodic solutions in both conservative and dissipative
systems, without assuming a non-resonance condition on the frequencies, was proved in different contexts
(Berger & Chen (1992, 1993); Berger & Zhang (1995); Gentile & Vaia (2017)), but the results do not apply to
the class of systems we are considering.

Of course, without discussing the issue of convergence of the iteration scheme, we cannot conclude that the
solution we look for really exists. Indeed, the solution is defined as the limit — if it exists — of the successive
approximations found along the iteration. When computing the quasi-periodic solution corresponding to the
3:2 resonance, we can claim only a posteriori, after comparing with the results of the numerical investigation,
that such a solution really exists. The main advantages of the analytical approach, with respect the numerical
results, are that:

1. we obtain an explicit formula that approximates reasonably well the quasi-periodic attracting solution;

2. we provide some insight into the nature of such a solution and on the mechanism of its creation.

The rest of the paper is organised as follows. In Section 2 we define the model, and give the explicit
expressions of the functions F and G appearing in (1.1). In Section 3 we study analytically the existence
of periodic solutions and find explicit expressions for them. These match very well the solutions that are
found numerically, represented in Figure 1. In Section 4 we study the quasi-periodic attractor corresponding
to the resonance 3:2 (the most interesting one, since it corresponds to the dominant attractor), by applying
perturbation theory after a preliminary step which redefines the unperturbed system: once more we find good
agreement with the numerical results as given in Figure 2. In Section 5 we discuss the stability of the periodic
solutions and the appearance of the quasi-periodic solutions by Hopf bifurcation, by presenting numerical
results which provide further support to the analytical ones. In Section 6 we study analytically the dynamics
far from the resonances; we show that several simplifications can be made, which we justify a posteriori by
comparison with the numerical results: the approximate analytical solutions fit the numerical ones closely and
reveal a slow, almost linear decreasing of the velocity. In Section 7, inspired by the results of the previous
sections, we revisit the problem of determining the probability of capture of the existing attractors; we find
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that, assuming an originally faster rotating Mercury, the probability of capture in the 3:2 resonance is higher
than 50%. Finally, Section 8 is devoted to the conclusions and a discussion of open problems.

2 The spin-orbit model with a realistic tidal torque

The spin-orbit model describes an asymmetric ellipsoidal celestial body which moves in a Keplerian elliptic
orbit around a central body and rotates around an axis orthogonal to the orbit plane (Danby (1962); Goldreich
& Peale (1966); Murray & Dermott (1999)).

The ordinary differential equation governing the dynamics of the system is

θ̈ =−ζ G(θ , t)−ηF(θ̇), (2.1)

where θ ∈ T = R/2πZ denotes the angle between the longest axis of the body and the line of apsides, the
parameters ζ ,η ∈R+ are small and the dots denote derivatives with respect to the time t. On the right hand
side of (2.1), the term with G(θ , t), that we call the force in what follows, represents the triaxial torque acting
on the system, while the term with F(θ̇) models the dissipation due to the tidal torque. In the literature,
θ̈ (TRI) := −ζ G(θ , t) and θ̈ (TIDE) := −ηF(θ̇) sometimes are referred to, slightly improperly, as the triaxial
acceleration and the tidal acceleration, respectively. In this paper we focus on the Mercury-Sun system, even
though the ideas could be applied to any system formed by a satellite orbiting its primary — of course the
tidal model to use strongly depends on the system one is interested in, as forcefully pointed out in the recent
literature (Efroimsky & Lainey (2007); Wiliams & Efroimsky (2012); Efroimsky (2009, 2012); Makarov,
Berghea & Efroimsky (2012); Efroimsky & Makarov (2013); Makarov & Efroimsky (2013); Ferraz-Mello
(2013, 2015); Frouard et al. (2016); Makarov, Frouard & Dorland (2016)).

The function G(θ , t) has the form (Danby (1962); Goldreich & Peale (1966); Murray & Dermott (1999))

G(θ , t) = ∑
k∈K

Ak sin(2θ − knt), K = {−2,−1,0,1,2,3,4,5,6,7,8}, (2.2)

where n is the forcing frequency and the coefficients Ak, which depend on the eccentricity e, are related to the
Hansen coefficients (Murray & Dermott (1999)) G20q(e) by Ak = G20q(e), with k = q+2. For the Mercury-
Sun system, for which n = 26.0879 yr−1, the coefficients Ak for k 6= 0 are given in Table 1, with A0 = 0.

k -2 -1 1 2 3
Ak 7.673×10−5 1.865×10−4 −1.023×10−1 8.958×10−1 6.542×10−1

k 4 5 6 7 8
Ak 3.260×10−1 1.380×10−1 5.325×10−2 1.937×10−2 6.763×10−3

Table 1: Values of the coefficients Ak, with k ∈K \{0}, in the case of Mercury-Sun.

The function F(θ̇) is given by (Efroimsky & Lainey (2007); Efroimsky (2012); Makarov (2012); Makarov,
Berghea & Efroimsky (2012); Noyelles et al. (2014))

F(θ̇) := ∑
k∈Q

A2
k Ξ(Ωk), Q = {1,2,3,4,5,6,7,8,9}, (2.3)

where

Ωk := nk−2θ̇ , Ξ(ω) = sgn(ω)
I (|ω|) |ω|

(R(|ω|)+A |ω|)2 +I 2(|ω|)
, (2.4)
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with the functions I (ω) and R(ω) given by

I (ω) =−τ
−1
M −ω

1−α
τ
−α

A sin(απ/2)Γ(α +1), (2.5a)

R(ω) = ω +ω
1−α

τ
−α

A cos(απ/2)Γ(α +1), (2.5b)

where Γ is the Gamma function. The values of the constants appearing in (2.4) and (2.5) are α = 0.2, τM =
τA = 500 yr and A = 38πµR4/3GM2 = 15.51726, where µ = 7.967× 1028 km−1yr−2, R = 2.44× 103 km,
M = 3.301× 1023 kg and G = 6.646× 10−5 kg−1km3yr−2 are the unrelaxed rigidity, the radius of Mercury,
the mass of Mercury and the gravitational constant, respectively. The parameters τM and τA are the Maxwell
and Andrade times. The tidal acceleration θ̈ (TIDE) = −η F(θ̇) is plotted, on two different scales, in Figures
3 and 4 in Bartuccelli, Deane & Gentile (2017): there are five pronounced kinks where the function changes
sign, the three most significant being at θ̇/n≈ 1,3/2,2.

Finally, the parameters ζ and η in (2.1) are

ζ :=
3
2

B−A
C

n2 = 0.09545 yr−2, (2.6a)

η = 0.03096 yr−2, (2.6b)

where A < B < C are the moments of inertia with respect to the x, y and z axes of Mercury. We refer to
Noyelles et al. (2014); Bartuccelli, Deane & Gentile (2017) and the references therein for further details of
the spin-orbit model. All the values of the parameters are taken from Noyelles et al. (2014).

3 Method of successive approximations for the periodic attractors

We set ζ = ε and η = γε in (2.1), with γ = 0.3243, and write (2.1) as

θ̈ =−ε G(θ , t)− ε γ F(θ̇), (3.1)

where there is only one parameter. For ε = 0 the equation is trivially solved.
In this section we study the existence of periodic solutions to (3.1), by treating ε as a perturbation pa-

rameter. Since the tidal torque is only C1, instead of the usual perturbation theory based on power series
expansions in ε , we shall rely on a Picard-like iteration method (see for instance Coddington & Levinson
(1955)), more suited for differential equations with C1 vector fields, to find successive approximations to the
periodic solutions.

3.1 Zeroth approximation

We look for a periodic solution which continues the unperturbed one with frequency ω0 = p/q ∈Q, that is, a
solution which reduces to θ0(t) := θ̄0 +nω0t as ε → 0. Let us write (3.1) as an integral equation:

θ(t) = θ̄ +nω0t + ȳt− ε

∫ t

0
dτ

∫
τ

0
dτ
′ [G(θ(τ ′),τ ′)+ γ F(θ̇(τ ′))

]
,

where the constants θ̄ and ȳ have to be fixed by requiring the solution θ(t) to be periodic with period 2πq/n.
Let us consider as the zeroth approximation the solution θ0(t) of the equation obtained by setting ε = 0,

θ0(t) = θ̄0 +nω0t + ȳ0t, which yields ȳ0 = 0, so that

θ0(t) = θ̄0 +nω0t, (3.2)
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with θ̄0 being arbitrary. This is the unperturbed solution. To fix the value of θ̄0 we have to consider the
equation for the first approximation θ1(t), which is the solution to the integral equation

θ1(t) = θ̄1 +nω0t + ȳ1t− ε

∫ t

0
dτ

∫
τ

0
dτ
′ [G(θ0(τ

′),τ ′)+ γ F(θ̇0(τ
′))
]

= θ̄1 +nω0t + ȳ1t− ε

∫ t

0
dτ

∫
τ

0
dτ
′ [G(θ̄0 +nω0τ

′,τ ′)+ γ F(nω0)
]
.

For any periodic function f with period 2πq/n we denote its average by

〈 f 〉 :=
n

2πq

∫ 2πq/n

0
dt f (t).

By defining the functions u1(t), U1(t) and U1(t) as

u1(t) := G(θ̄0 +nω0t, t)+ γ F(nω0), U ′1(t) := u1(t), U ′
1 (t) :=U1(t),

one needs 〈u1〉= 0 for the function∫
τ

0
dτ
′ [G(θ̄0 +nω0τ

′,τ ′)+ γ F(nω0)
]
=U1(τ)−U1(0) (3.3)

to be periodic (and not to grow linearly with τ). This leads to the requirement that

γ F(nω0)+
n

2πq

∫ 2πq/n

0
dt G(θ̄0 +nω0t, t) = 0, (3.4)

which, for G as in (2.2), yields 2p/q ∈K and

Ak0 sin2θ̄0 =−γ F(nω0), k0 =
2p
q
. (3.5)

Note that (3.5) can be satisfied if and only if (i) q = 2 and p ∈ K and (ii) γ|F(nω0)/Ak0 | < 1. If these
conditions are fulfilled, the constant θ̄0 is fixed to one of the 4 values

θ̄
(1)
0 =

1
2

arcsin

(
−γ F(nω0)

Ak0

)
∈
(
−π

4
,
π

4

)
, θ̄

(2)
0 =

π

2
− θ̄

(1)
0 , θ̄

(3)
0 = θ̄

(1)−π, θ̄
(4)
0 = θ̄

(2)
0 −π, (3.6)

which, at least for small values of ε , correspond to two stable and two unstable solutions (attractors and
repellers, respectively); this is a consequence of the Poincaré-Birkhoff theorem (see for instance Arnold et al.
(1988); Contopoulos (2002)). We note at this point that bifurcation phenomena may occur when increasing
the value of ε (see Section 5 below).

Therefore the zeroth approximation is given by (3.2), with θ̄0 given by one of the four values in (3.6).

3.2 First approximation

Now we want to compute the first approximation θ1(t). Once θ̄0 has been fixed in such a way that (3.4) is
satisfied, we can compute U1 in (3.3). If we require 〈U1〉 to vanish (for the function U1(t) to be bounded and
hence periodic), we obtain, for G as in (2.2),

U1(t) =− ∑
k∈K0

Ak

(2ω0− k)n
cos(2θ̄0 +(2ω0− k)nt),

9



where K0 := K \{k0}. Then, by fixing ȳ1 =−U1(0), and choosing U1(t) so that its average 〈U1〉 vanishes,
one finds θ1(t) = Θ̄1 +nω0t− εU1(t), where Θ̄1 := θ̄1− εU1(0) and, for G as in (2.2),

U1(t) =− ∑
k∈K0

Ak

(2ω0− k)2n2 sin(2θ̄0 +(2ω0− k)nt).

Thus, we obtain

θ1(t) = Θ̄1 +nω0t + ε ∑
k∈K0

Ak

(2ω0− k)2n2 sin(2θ̄0 +(2ω0− k)nt), (3.7)

with Θ̄1 to be determined by requiring that the second order θ2(t) has period 2πq/n as well.
The second approximation θ2(t) is the solution to the equation

θ2(t) = θ̄2 +nω0t + ȳ2t− ε

∫ t

0
dτ

∫
τ

0
dτ
′ [G(θ1(τ

′),τ ′)+ γ F(θ̇1(τ
′))
]
, (3.8)

where θ1(t) is the solution (3.7) found at the first iterative step. Therefore, for the solution to be periodic, we
need

n
2πq

∫ 2πq/n

0
dτ
′
[
G(Θ̄1 +nω0τ

′+ξ1(τ
′),τ ′)+ γ F(nω0 + ξ̇1(τ

′))
]
= 0, (3.9)

where ξ1(t) :=−εU1(t). If we rewrite (3.9) as

G (Θ̄1) :=
n

2πq

∫ 2πq/n

0
dτ
′G(Θ̄1 +nω0τ

′+ξ1(τ
′),τ ′) =− n

2πq

∫ 2πq/n

0
dτ
′
γ F(nω0 + ξ̇1(τ

′)), (3.10)

we see we have to invert the function G to find Θ̄1. By expanding and using the fact that ξ1 = O(ε), we find

G(Θ̄1 +nω0τ
′+ξ1(τ

′),τ ′) = G(Θ̄1 +nω0τ
′,τ ′)+Γ(τ ′,ε), Γ(τ ′,ε) = ∂θ G(Θ̄1 +nω0τ

′,τ ′)ξ1(τ
′)+O(ε2),

so that we can write

G (Θ̄1) =
n

2πq

∫ 2πq/n

0
dτ
′G(Θ̄1 +nω0τ

′,τ ′)+O(ε) = Ak0 sin2Θ̄1 +O(ε). (3.11)

By neglecting the corrections of order ε in (3.11) and defining

J(nω0) :=
n

2πq

∫ 2πq/n

0
dτ
′
γ F(nω0 + ξ̇1(τ

′)),

we find
Ak0 sin2Θ̄1 =−J(nω0), k0 =

2p
q
, (3.12)

where again one must have q = 2 and p ∈K , so that

Θ̄
(1)
1 =

1
2

arcsin

(
−J(nω0)

Ak0

)
∈
(
−π

4
,
π

4

)
, Θ̄

(2)
1 =

π

2
− Θ̄

(1)
1 , Θ̄

(3)
1 = θ̃

(1)−π, Θ̄
(4)
1 = Θ̄

(2)
1 −π. (3.13)

The values of the integrals J(nω0) in (3.12) are given in Table 2, where they are also compared to the values
γF(nω0). It is evident that there are appreciable discrepancies between the two values for ω = 1, 3/2 and 2,
which correspond to the major kinks of the function F .
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ω0 -1 -1/2 1/2 1 3/2
γ F(nω0) −5.09302×10−5 −5.36152×10−5 −6.387×10−5 −2.639×10−5 3.429×10−5

J(nω0) −5.09277×10−5 −5.36126×10−5 −6.073×10−5 1.390×10−4 1.163×10−4

ω0 2 5/2 3 7/2 4
γ F(nω0) 5.557×10−5 5.646×10−5 5.363×10−5 5.102×10−5 4.898×10−5

J(nω0) −2.143×10−5 5.172×10−5 5.332×10−5 5.100×10−5 4.898×10−5

Table 2: Values of γ F(nω0) and J(nω0). More than four significant figures are needed only for the
retrograde resonances, in order to observe in practice the difference between the corresponding curves.

The values of the constants Θ̄1 in the interval (−π/4,π/4) are given in Table 3, where the corresponding
values θ̄0 are also given. Once more the difference between the two values θ̄0 and Θ̄1 is larger for resonances
such as ω0 = 1, ω0 = 3/2 and ω0 = 2, where the kinks of the function F are more pronounced.

ω0 -1 -1/2 1/2 1 3/2
θ̄0 3.62911×10−1 1.45808×10−1 −3.123×10−4 1.473×10−5 −2.621×10−5

Θ̄1 3.62889×10−1 1.45801×10−1 −2.969×10−4 −7.758×10−5 −8.888×10−5

ω0 2 5/2 3 7/2 4
θ̄0 −8.541×10−5 −2.046×10−4 −5.035×10−4 −1.317×10−3 −3.621×10−3

Θ̄1 3.259×10−5 −1.874×10−4 −5.006×10−4 −1.316×10−3 −3.621×10−3

Table 3: Values of the constants θ̄0 and Θ̄1. More than four significant figures are needed only for the
retrograde resonances, in order to observe in practice the difference between the corresponding curves.

Remark 1. One may wonder why in (3.10) we Taylor-expand the function G but not the function F . This is
due to the fact that G(θ , t) is a smooth function (in fact it is analytic), while F is only C1. Moreover, the first
derivative of F is very large at some resonances such as ω0 = 1 and ω0 = 3/2; an explicit computation gives
η∂

θ̇
F(n) = 24.8421 and η∂

θ̇
F(3n/2) = 13.2493. Thus, since the size of ξ1(t) is of order ε , for ε = ζ fixed as

in (2.6), the function G(Θ̄1 +nω0t +ξ1(t), t) is well approximated by G(Θ̄1 +nω0t, t), while F(nω0 + ξ̇1(τ
′))

can be appreciably different from F(nω0).

Remark 2. The reason why we neglect the corrections of order ε in (3.11) is that, then, the implicit function
equation (3.10) is easily solved. Of course, in so doing, an error is introduced. However, we argue that such
an error is of the same order of magnitude of the terms we are disregarding by stopping Picard’s iteration at
the first step. Indeed, as the difference between θ1(t) and θ0(t) is of size ε , so the difference between θ2(t)
and θ1(t) is expected to be of size ε2. Taking into account the terms O(ε) in (3.11) would lead to values of
Θ̄1 which differ from those given by (3.13) by terms of size ε2 — the same size as the corrections to be found
in the next iterative step.

In conclusion, the first approximation θ1(t) is given by (3.7), with the constants θ̄0 and Θ̄1 taken from Table
3. By defining the libration z(t) := θ1(t)− nω0t, one finds that, in the (z, θ̇)-plane, the periodic attractors
are described by the curves in Figure 3. There is an attractor for any value of ω0 = p/q, with q = 2 and
p ∈K \ {0}. Each attractor is characterised by the property that it describes an oscillation θ(t) with θ̇(t)
close to nω0, while θ(t)− nω0t moves around Θ̄1. Note that the amplitude of the libration is essentially
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5:2 3:1

7:2 4:1

Figure 3: Periodic solutions according to the first approximations (3.7) with the constants θ̄0 and Θ̄1 as
in Table 3. In each figure, the velocity θ̇(t) is plotted on the vertical axis and the libration θ(t)−(p/q)nt
on the horizontal one; the dot represents the initial condition. The arrangement of the resonances and
the range of the variables are as in Figure 1. A comparison with Figure 1 shows noticeable differences
only for the retrograde resonances (appreciable for -1:1 and slight for -1:2); for comments on this we
refer to the text.

determined by the triaxial torque, as expected for relatively cold celestial bodies with high viscosity and large
Maxwell time τM (see Makarov, Frouard & Dorland (2016)); however its centre is fixed by the tidal torque,
through (3.12).

Remark 3. The first approximation is not a first order perturbation theory solution. Indeed, if one considered
the Taylor expansion in ε of the solution and kept only the terms up to the first order, then one should replace
J(nω) with γ F(nω) in (3.10), so that Θ̄1 would become a correction of order ε of θ̄0. Thus, the solution would
be still of the form (3.7), but with a different value for Θ̄1. An explicit computation shows that the value inside
the interval (−π/4,π/4) would be appreciably smaller than Θ̄1, as given in Table 3, so that the curves would
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appear slightly shifted in the z-direction with respect to those represented in Figure 3. This effect would be
noticeable in all periodic attractors.

3.3 Comparison with the numerical results

For all the numerical computations — both in this section and in the following ones — we rely on the fast
numerical integrator introduced by Bartuccelli, Deane & Gentile (2015, 2017), to which we refer for details.
In order to compute the attractors, we follow the time evolution of a large number of initial conditions in phase
space (more than 50 000) so as to determine the asymptotic behaviour of the corresponding trajectories —
see also Bartuccelli et al. (2008). By using a large number of initial conditions we argue that even if, besides
those that have been detected, other attractors existed, they would be irrelevant, since they would attract
only a negligible fraction of trajectories. Of course, if other periodic attractors exist, they are not obtained
by continuation from the unperturbed solutions of the form (3.2). The periodic solutions which are found
numerically are represented in Figure 1. Not all of them are attractors (see Section 5 below): the periodic
solutions which are unstable may be detected by a fixed point method by considering the corresponding
Poincaré section.

A comparison with the analytical results shows that there is a very good agreement so that we conclude
that the first order approximation θ1(t) provides an accurate description of the solution.

Actually, a shift is observed in the case of the resonances ω0 = −1/2 and, particularly, ω0 = −1. The
reason behind that is very likely due to the smallness of the coefficients Ak corresponding to the retrograde
resonances (ω0 = −1/2 and ω0 = −1), which makes the dependence of Θ̄1 very sensitive to the exact value
of the integral J(nω0). For instance an error in the fourth decimal digit, which has no effect for the prograde
resonances, is able to produce an appreciable shift for the retrograde resonances.

4 The quasi-periodic attractor corresponding to the 3:2 resonance

We study now the existence of quasi-periodic solutions to (2.1) describing invariant tori. Consider the ordinary
differential equation (2.1), with the functions G(θ , t) and F(θ̇) as in (2.2) and (2.3), respectively. We look for
a solution θ(t) with θ̇(t)≈ 3n/2, which suggests setting

θ(t) :=
3
2

nt +
1
2

ξ (t). (4.1)

In terms of ξ the equation of motion becomes

ξ̈ =−2ζ ∑
k∈K

Ak sin(ξ − (k−3)nt)−2η Φ(ξ̇ ), Φ(ξ̇ ) := F
(3n+ ξ̇

2

)
,

which we rewrite as
ξ̈ =−ω

2 sinξ −2ζ ∑
k∈K0

Ak sin(ξ − (k−3)nt)−2η Φ(ξ̇ ), (4.2)

where ω :=
√

2ζ A3 = 0.3534 and K0 = K \{k0}, with k0 = 3.
If in (4.2) we set ζ = ε and η = γε , without affecting ω , (4.2) becomes

ξ̈ =−ω
2 sinξ −2ε ∑

i∈I0

Bi sin(ξ − int)−2γ εΦ(ξ̇ ), (4.3)

where we have defined Bi := Ai+3 = G20i+1 and I0 = {±1,±2,±3,±4,±5}. We would like to study (4.3) by
considering ω as a parameter independent of ε . Thus, (4.3) could be seen as a perturbation of the pendulum
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equation, ξ̈ = −ω2 sinξ , to which it reduces as ε = 0. However, since we look for a solution to (4.3) with
ξ close to 0, to simplify the analysis we proceed in a slightly different way. Starting from (4.2), we make a
linear approximation of the unperturbed system by splitting sinξ into two terms and re-writing (4.2) as

ξ̈ =−ω
2
ξ −2ε ∑

i∈I0

Bi sin(ξ − int)−2γ εΦ(ξ̇ )−2A3ε (sinξ −ξ ) , (4.4)

where again ω is to be considered fixed, while ε can be varied. Of course, eventually, we have to fix ε to
the value such that 2εA3 = ω2. Note that a similar approach has been proposed in Wisdom (2004); Gkolias
et al. (2016) to study the secondary resonances in non-dissipative spin-orbit models with ε close to a rational
number and small values of eccentricity — a situation very far from that of Mercury.

In general, quasi-periodic solutions to (4.4) will have two frequencies ωL and n, with n fixed and ωL close
to ω — see Bartuccelli et al. (2008); Gentile, Bartuccelli & Deane (2007); Wright, Bartuccelli & Gentile
(2014). We call ωL the low frequency and n the high frequency, because ωL ≈ ω and n = 73.82ω . Hence we
write the solution as ξ (t) = X(ωLt), where ωL := (ωL,n). To take into account the possible dependence of
frequency on the perturbation we write (4.4) as

ξ̈ =−ω
2
Lξ −µε ξ −2ε ∑

i∈I0

Bi sin(ξ − int)−2γ εΦ(ξ̇ )−2A3ε (sinξ −ξ ) , (4.5)

where ω2 = ω2
L +µ ε , with ωL and µ constants to be determined. As a further simplification, we approximate

sinξ ≈ ξ −ξ 3/6, so that (4.5) becomes

ξ̈ =−ω
2
Lξ −µε ξ −2ε ∑

i∈I0

Bi sin(ξ − int)−2γ εΦ(ξ̇ )+
A3ε

3
ξ

3, (4.6)

We look for approximate solutions to (4.6) using a Picard-like iteration scheme as in Section 3. The
strategy is the following. The zeroth approximation is the solution to (4.6) with ε = 0. Suppose that at step
k ≥ 0 we have found an approximation ξk(t) = Xk(ωLt), with frequency vector ωL = (ωL,n), for some ωL

close to ω . As we shall see such a solution depends on an arbitrary parameter Ck. Then we compute the
(k+1)−th approximation as the solution of

ξ̈ =−ω
2
Lξ −µε ξk(t)−2ε ∑

i∈I0

Bi sin(ξk(t)− int)−2γ εΦ(ξ̇k(t))+
A3ε

3
ξ

3
k (t),

where we consider ωL as a parameter related to µ through the relation ω2 = ω2
L +µε , with ω given. For such

a solution to be bounded and hence quasi-periodic with frequency vector ωL, we have to fix the parameters Ck,
µ and ωL, the latter two so as to also satisfy the constraint that ω2 = ω2

L +µε; the value of the low frequency
ωL will be determined by an implicit function problem. The corresponding solution will be a quasi-periodic
function ξk+1(t) = Xk+1(ωLt), with ωL slightly different from the value found at the previous step, depending
on a new arbitrary constant Ck+1 to be fixed at the next iteration step to a value close to Ck.

4.1 Zeroth approximation

The zeroth approximation ξ0(t) is the solution to the equation

ξ̈ =−ω
2
Lξ , (4.7)

obtained from (4.6) by setting ε = 0. The solution to (4.7) is ξ0(t) = ξ̄0 cosωLt + ȳ0 sinωLt, where ξ̄0 and ȳ0
are related to the initial data through the relation ξ̄0 = ξ (0) and ȳ0 = ξ̇ (0)/ω .
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For any initial datum, we can write

ξ0(t) =C0 sin(ωLt +ϕ0), (4.8)

where C0 > 0 and ϕ0 is the initial phase. By varying the initial phase ϕ0 the corresponding trajectories in the
space (ξ ,y, t) describe an invariant torus which appears as a right circular cylinder with axis along the t-axis
and radius C0.

For ε 6= 0 we expect the cylinder to persist, albeit deformed with respect to the unperturbed case. This
allows us to fix arbitrarily the phase ϕ0, which plays no role: we can put it equal to 0 for convenience. Then
the torus is parameterised in terms of the value C0 ∈R+ at which it crosses the positive ξ -axis (corresponding
to the phase ϕ0 = 0). We expect that the values of C0 and ωL, which are arbitrary for ε = 0, will be fixed
when we set ε 6= 0 and take into account the dissipation by the requirement that the perturbed solution is still
bounded.

Remark 4. Since we are making a linear approximation, all unperturbed solutions have the same frequency
ωL. Therefore all the approximate quasi-periodic solutions (4.8), by construction, will have the same fre-
quency vector (ωL,n). As we shall see, if we wish to compute the higher order approximations, we need to
take into account the change of frequency ωL with respect to the linearised unperturbed system — see Bar-
tuccelli & Gentile (2002); Bartuccelli, Deane & Gentile (2015). In this regard, we note that, even though
usually perturbation theory computations are easier in terms of action-angle variables, in our case it is more
convenient to work with Cartesian coordinates, because we are looking for a solution around the origin, where
the action-angle variables are singular — see Corsi, Gentile & M. Procesi (2011) and references therein for
similar comments.

4.2 First approximation

The first order approximation is obtained as the bounded solution to the equation

ξ̈ =−ω
2
Lξ −µε ξ0(t)−2ε ∑

i∈I0

Bi sin(ξ0(t)− int)−2γ εΦ(ξ̇0(t))+
A3ε

3
ξ

3
0 (t), (4.9)

with ξ0(t) given by (4.8). The nonhomogeneous linear equation (4.9) can be written as a first order differential
equation in R2,

ξ̇ = ωLy,

ẏ =−ωLξ − µε

ωL
ξ0(t)−

2ε

ωL
∑

i∈I0

Bi sin(ξ0(t)− int)− 2γ ε

ωL
Φ(ξ̇0(t))+

A3ε

3ωL
ξ

3
0 (t).

(4.10)

where ξ0(t) =C0 sinωLt and ξ̇0(t) =C0ωL cosωLt. More generally, the approximation at step k is defined as
the solution to

ξ̇ = ωLy,

ẏ =−ωLξ − µε

ωL
ξk−1(t)−

2ε

ωL
∑

i∈I0

Bi sin(ξk−1(t)− int)− 2γ ε

ωL
Φ(ξ̇k−1(t))+

A3ε

3ωL
ξ

3
k−1(t),

(4.11)

where ξk−1(t) is the approximation found at step k− 1. At any step ωL is to be considered a free parameter,
close to ω , to be fixed by requiring the solution to be bounded.
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The general solution to (4.11) is(
ξk(t)
yk(t)

)
=

(
cosωLt sinωLt
−sinωt cosωLt

)[(
ξ̄k
ȳk

)
− 2γ ε

ωL

∫ t

0
dτ

(
cosωLτ −sinωLτ

sinωLτ cosωLτ

)(
0

Φ(ξ̇k−1(τ))

)
−µε

ωL

∫ t

0
dτ

(
cosωLτ −sinωLτ

sinωLτ cosωLτ

)(
0

ξk−1(τ)

)
+

A3ε

3ωL

∫ t

0
dτ

(
cosωLτ −sinωLτ

sinωLτ cosωLτ

)(
0

ξ 3
k−1(τ)

)
+

2ε

ωL
∑

i∈I0

Bi

∫ t

0
dτ

(
cosωLτ −sinωLτ

sinωLτ cosωLτ

)(
0

sin(inτ−ξk−1(τ))

)]
,

where (ξ̄k, ȳk) is the initial condition. This leads to

ξk(t) = ξ̄k cosωLt + ȳk sinωLt

− 2γε

ωL

(
sinωLt

∫ t

0
dτ cosωLτ Φ(ξ̇k−1(τ))− cosωLt

∫ t

0
dτ sinωLτ Φ(ξ̇k−1(τ))

)
− µε

ωL

(
sinωLt

∫ t

0
dτ cosωLτ ξk−1(τ)− cosωLt

∫ t

0
dτ sinωLτ ξk−1(τ)

)
(4.12)

+
A3ε

3ωL

(
sinωLt

∫ t

0
dτ cosωLτ ξ

3
k−1(τ)− cosωLt

∫ t

0
dτ sinωLτ sinξ

3
k−1(τ)

)
+

2ε

ωL
∑

i∈I0

Bi

(
sinωLt

∫ t

0
dτ cosωLτ sin(inτ−ξk−1(τ))− cosωLt

∫ t

0
dτ sinωLτ sin(inτ−ξk−1(τ))

)
.

For k = 1 we write ξ̄1 cosωLt + ȳ1 sinωLt =C1 sin(ωLt +ϕ1) and set ϕ1 = 0 as done for k = 0. If we define

Mk,c(t) :=
∫ t

0
dτ cosωLτ

[
2 ∑

i∈I0

Bi sin(inτ−ξk−1(τ))−2γ Φ(ξ̇k−1(τ))−µξk−1(τ)+
A3

3
ξ

3
k−1(τ)

]
, (4.13a)

Mk,s(t) :=
∫ t

0
dτ sinωLτ

[
2 ∑

i∈I0

Bi sin(inτ−ξk−1(τ))−2γ Φ(ξ̇k−1(τ))−µξk−1(τ)+
A3

3
ξ

3
k−1(τ)

]
, (4.13b)

we can write the solution ξ1(t) as

ξ1(t) =C1 sinωLt +Ξ1(t), Ξ1(t) :=
ε

ωL

(
sinωLt M1,c(t)− cosωLt M1,s(t)

)
. (4.14)

For the functions in (4.14) to be bounded one needs

I1,c := lim
T→+∞

M1,c(T )
T

= 0, I1,s := lim
T→+∞

M1,s(T )
T

= 0. (4.15)

The two limits can be computed as

I1,c =
∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1×

×

[
2 ∑

i∈I0

Bi sin(iψ2−C0 sinψ1)−2γ Φ(C0ωL cosψ1)−µ C0 sinψ1 +
A3

3
C3

0 sin3
ψ1

]
,

I1,s =
∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1×

×

[
2 ∑

i∈I0

Bi sin(iψ2−C0 sinψ1)−2γ Φ(C0ωL cosψ1)−µ C0 sinψ1 +
A3

3
C3

0 sin3
ψ1

]
,
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since the time average of a quasi-periodic function equals the average over the torus. After expanding

sin(iψ2−C0 sinψ1) = sin iψ2 cos(C0 sinψ1)− cos iψ2 sin(C0 sinψ1)

and using ∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1Φ(C0ωL cosψ1) = 0

by parity, and ∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 sinψ1 =

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 sin3

ψ1 = 0,

and ∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sin iψ2 =

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cos iψ2 = 0,

we obtain

I1,c =−2γ

∫ 2π

0

dψ1

2π
cosψ1 Φ(C0ωL cosψ1), (4.16a)

I1,s =−µC0

∫ 2π

0

dψ1

2π
sin2

ψ1 +
A3

3
C3

0

∫ 2π

0

dψ1

2π
sin4

ψ1 =−
1
2

µC0 +
A3

8
C3

0 . (4.16b)

The two equations (4.16) are coupled, since, even though µ does not appear explicitly in (4.16a), the
frequency ωL must satisfy the relation ω2 = ω2

L + µ ε . If C0 6= 0, (4.16b) gives µ = A3C2
0/4, while C0 = 0

would not fix µ to any value. We fix C0 in such a way to make the integral

I1(C0) :=
∫ 2π

0

dψ1

2π
cosψ1 Φ(C0ωL cosψ1) (4.17)

vanish. One has

I1(0) = Φ(0)
∫ 2π

0

dψ1

2π
cosψ1 = 0,

which shows that C0 = 0 is a zero of I1(C0). To study the existence of other zeroes, we compute numerically
the integral I1(C0), by approximating ωL with ω . The result, given in Figure 4, shows that there are no other
zeroes.

This fixes the value of C0 = 0 in the zeroth order approximation (4.8). With C0 = 0, the value of µ in
(4.16b) is left undetermined and can be set equal to 0. With the two values C0 and µ being fixed, the right
hand side of (4.10) becomes determined and Ξ1(t) in (4.14) can be computed explicitly. One has

Ξ1(t) = −2γε

ωL

(
sinωLt

∫ t

0
dτ cosωLτ Φ(0)− cosωLt

∫ t

0
dτ sinωLτ Φ(0)

)
+

2ε

ωL
∑

i∈I0

Bi

(
sinωLt

∫ t

0
dτ cosωLτ sin(inτ)− cosωLt

∫ t

0
dτ sinωLτ sin(inτ)

)
,

so that, by computing the integrals explicitly, one finds

Ξ1(t) =
2ε B
ωL

sinωLt +β (nt)+ρ (cosωLt−1) , (4.18)

where

B := ∑
i∈I0

Bi
in

(in)2−ω2
L
, ρ :=

2γε

ω2
L

Φ(0), β (ψ) :=−2ε ∑
i∈I0

Bi

(in)2−ω2
L

sin(iψ) (4.19)
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Figure 4: Left: plot of I1(C0), defined in (4.17); right: plot of I2(a), with the solid line corresponding
to the 2-dimensional integral defined in (4.25a) and the circles corresponding to the one-dimensional
integral defined as the time average, in the sense of (4.22), of the function cosωt Φ(acosωt +b(nt)).

and ωL has to be fixed at the value ω . Since one has ρ = 5.242× 10−5 and 2εB/ω = −8.819× 10−3, for
ωL = ω , the last contribution in (4.18) is negligible, so that we can approximate

ξ1(t) = X1(ωLt) = α sinωLt +β (nt), α :=C1 +
2εB
ωL

, (4.20)

In (4.20) the constant C1 is still arbitrary. In order to obtain the full expression for the first approximation,
we have to study the equation for the second approximation and impose the requirement that the solution be
bounded.

Of course, if we are interested in the first order contribution, we have to set ωL =ω . However, as explained
before, if we want to compute the second order approximation we have to leave ωL as a free parameter, to be
fixed together with C1 by requiring the second order approximation to remain bounded.

4.3 Second approximation

The second approximation is obtained as the solution to the equation

ξ̈ =−ω
2
Lξ −µεξ1(t)−2ε ∑

i∈I0

Bi sin(ξ1(t)− int)−2γ εΦ(ξ̇1(t))+
A3ε

3
ξ

3
1 (t),

where the function ξ1(t) will be approximated by (4.20) in the following. Therefore ξ2(t) is given by (4.12)
for k = 2, where we write once more

ξ̄2 cosωLt + ȳ2 sinωLt =C2 sin(ωLt +ϕ2),

with ϕ2 fixed to be zero and C2 > 0 to be determined by imposing that no secular terms appear when computing
the third approximation. Therefore, we can write the second approximation as

ξ2(t) =C2 sinωLt +Ξ2(t), Ξ2(t) :=
ε

ωL

(
sinωLt M2,c(τ)− cosωLt M2,s(τ)

)
. (4.21)

where M2,c(t) and M2,s(t) are defined in (4.13) with k = 2. For the function (4.21) to be bounded one needs

I2,c := lim
T→+∞

M2,c(T )
T

= 0, I2,s := lim
T→+∞

M2,s(T )
T

= 0. (4.22)
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We can write I2,c = I2,c,1 + I2,c,2 + I2,c,3 + I2,c,4 and I2,s = I2,s,1 + I2,s,2 + I2,s,3 + I2,s,4, where

I2,c,1 = 2 ∑
i∈I0

Bi

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 sin(iψ2−α sinψ1−β (ψ2)), (4.23a)

I2,c,2 =−2γ

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 Φ(a cosψ1 +b(ψ2)), (4.23b)

I2,c,3 =−µ

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 (α sinψ1 +β (ψ2)) , (4.23c)

I2,c,4 =
A3

3

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 (α sinψ1 +β (ψ2))

3 , (4.23d)

and, analogously,

I2,s,1 = 2 ∑
i∈I0

Bi

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1 sin(iψ2−α sinψ1−β (ψ2)), (4.24a)

I2,s,2 =−2γ

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1 Φ(a cosψ1 +b(ψ2)), (4.24b)

I2,s,3 =−µ

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1 (α sinψ1 +β (ψ2)) , (4.24c)

I2,s,4 =
A3

3

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1 (α sinψ1 +β (ψ2))

3 , (4.24d)

with
a := αωL =C1ωL +2Bε, b(ψ) :=−2ε ∑

i∈I0

inBi

(in)2−ω2
L

cos(iψ),

Note that b(nt) = β̇ (nt), where the derivative is with respect to t. In particular β (ψ) is odd and hence b(ψ) is
even, so that I2,s,2 = 0. Moreover I2,c,3 = I2,c,4 = 0 and, since for α 6= 0 one has

cosψ1 sin(iψ2−α sinψ1−β (ψ2)) =
1
α

d
dψ1

cos(iψ2−α sinψ1−β (ψ2)),

also I2,c,1 = 0. As a consequence one has I2,c = I2,c,2 and I2,s = I2,s,1 + Is,2,3 + I2,s,4. The integrals I2,s,3 and
I2,s,4 can be easily computed, up to corrections, and give

I2,s,3 =−µ
α

2
, I2,s,4 ≈

A3

3
× 3α3

8
= A3

α3

8
,

where terms of order α‖β‖∞ have been neglected in the latter, since ‖β‖∞ = 1.644×10−4.
In conclusion (4.22) leads to the equations

I2(a) :=
∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
cosψ1 Φ(a cosψ1 +b(ψ2)) = 0, (4.25a)

2 ∑
i∈I0

Bi

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sinψ1 sin(iψ2−α sinψ1−β (ψ2))+

A3α3

8
− µα

2
= 0. (4.25b)

The integral I2(a) can be computed numerically, by approximating ωL = with ω . The outcome is given in
Figure 4. The results suggest the existence of three simple zeroes; besides a = 0, there are two other zeroes
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a =±3.174×10−3. Since we are taking C1 > 0 and hence a > 2εB =−0.3116×10−3, only the positive zero
has to be considered. The corresponding value of C1, computed once more at ωL = ω , is

C1 =
a−2εB

ω
=

3.174+3.116
0.3534

×10−3 = 1.780×10−2, (4.26)

which gives α = 8.981×10−3 in (4.20).

Remark 5. In principle one should consider also the zero a = 0 (which would give C1 = 8.817× 10−2).
However such a value makes µ disappear from the equations (4.25) and hence does not fix ωL. To study the
fate of such a solution, in particular to see whether it does correspond to a solution of the full equation, one
should go to higher orders, where we expect such a solution to disappear — see also Section 8. Here we
focus on the solution corresponding to a 6= 0, since the latter correctly describes the attractor relevant for the
dynamics, as shown by the comparison below with the numerics.

In (4.25b) we can approximate the integral by expanding

sin(iψ2−α sinψ1−β (ψ2)) = sin(iψ2)− cos(iψ2)(α sinψ1 +β (ψ2))

−1
2

sin(iψ2)
(
α

2 sin2
ψ1 +β

2(ψ2)+2α sinψ1 β (ψ2)
)
+

1
3!

cos(iψ2)(α sinψ1)
3 ,

where the other terms of order equal to or higher than three have been neglected. The only non-zero contribu-
tion to the integral is

J2(a) := 4αε ∑
i, j∈I0

Bi

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sin2

ψ1 sin(iψ2)
B j

( jn)2−ω2
L

sin( jψ2),

where the explicit form of β (ψ2) has been used. Only the contributions with j = ±i are non-zero, so that
eventually we obtain

µα

2
− A3α3

8
= 4αε ∑

i∈I0

Bi (Bi−B−i)

(in)2−ω2
L

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
sin2

ψ1 sin2(iψ2) = αε ∑
i∈I0

Bi (Bi−B−i)

(in)2−ω2
L

. (4.27)

An explicit computation, with ωL = ω , gives

D := ∑
i∈I0

Bi (Bi−B−i)

(in)2−ω2 = 4.988×10−4. (4.28)

Inserting (4.28) into (4.27) yields

µ =
A3

4
α

2 +2εD = 1.319×10−5 +9.522×10−5 = 1.084×10−4 (4.29)

and hence µε = 1.034×10−5. This fixes ωL to a value such that ω2−ω2
L = µε , so that ωL−ω ≈ 1.46×10−5;

hence ωL is very close to ω . For the value of C1 in (4.26) and ωL approximated by ω , we consider the solution

θ(t) =
3
2

nt +
1
2

ξ1(t),
1
2

ξ1(t) =
α

2
sinωt− ε ∑

k∈K0

Ak

(k−3)2n2−ω2 sin((k−3)nt), (4.30)

with α/2 = 4.490×10−3, and define the libration as z(t) := θ(t)− (3/2)nt. Then (z(t), ż(t)/n) is as plotted
in Figure 5.

20



-4×10
-3

-2×10
-3 0 2×10

-3
4×10

-3

z(t) = θ(t) - 3nt/2

-2×10
-4

-1×10
-4

0

1×10
-4

2×10
-4

z. (t
)/

n

Continuous

Poincare section

Figure 5: Plot of (z(t), ż(t)/n), with C1 as in (4.26) and ωL =ω . The crosses correspond to the Poincaré
section obtained for t an integer multiple of T0, with T0 = 2π/n.

4.4 Comparison with the numerical results

The approximate solution found in the previous sections has to be compared with that found by numerical
analysis, see Figure 2. Fast Fourier Transform analysis produces the spectrum of the derivative of the numeri-
cal solution in Figure 6: the figure to the left, on a larger scale, shows the presence of peaks at multiples of the
frequency n, while the figure to the right, on a smaller scale, shows that there are peaks as well at multiples of
the frequency ωL = n/73.9034 = 0.3530. Therefore, with respect to the approximate analytical solution, one
has ω −ωL = 4× 10−4 and hence ω2−ω2

L = 0.35342− 0.35302 = 2.8256× 10−4, which is larger than the
analytical value. However, apart from that, the agreement between analytical approximations and numerical
results is very good. Indeed, we expect such a difference to be negligible as far as we are interested in the
amplitude of the solution. Nevertheless the phase shift will become appreciable on longer timescales.
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Figure 6: Fourier transform of θ̇ for the numerical quasi-periodic solution of Figure 2; here T0 = 2π/n
and T1 = 73.9034T0 = 2π/ωL. There are peaks at integer multiples of 1/T0 and 1/T1, respectively.

It seems likely to us that, in order to obtain the correct value of the frequency ωL, one has to go to higher
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orders of approximation: because of the rapid variations of the function Φ, the computations depend very
sensitively on the approximation ξ̇k−1 appearing in its argument in (4.12). More precisely, when studying
the third approximation ξ3 = C3 sinωLt +Ξ3(t), we expect the following to happen: requiring the solution
to remain bounded should fix C2 to a value very close to C1, while the corrections µ to the slow frequency
should be appreciably larger than the value found at the previous step. Then the second approximation ξ2(t) in
(4.21) should provide not only the right amplitude, but the right frequency as well — see Section 8 for further
comments.

Remark 6. It is important to point out that, even though we are using the term ‘quasi-periodic’ for the attractor
that we have studied in this section, in principle the two frequencies ωL and n could be commensurate. In fact,
since we are determining ωL numerically, it is not possible to exclude the possibility that the ratio ωL/n might
be a rational number. A better definition could be ‘multi-periodic’ solution, since the solution appears as a
superposition of two oscillations, each with its own frequency. However, if we let the parameters change
slightly, we find the ratio to be irrational most of the time (see Section 5 below). Thus, we can conclude that
the attractor is very likely to be genuinely quasi-periodic. Note also that, even if the ratio were rational and
hence the solution were periodic, its period would be very large, since in any case the ratio would not be close
to any rational p/q, with q small.

5 Creation of quasi-periodic attractors

5.1 Numerical study of the stability of the periodic solutions

The stability of the periodic attractors for the system described by (2.1) can be studied by considering the
corresponding Poincaré map and computing the eigenvalues of the linearised system around its fixed points
(see for instance Marsden, McCracken (1976); Guckenheimer & Holmes (1983)).

As shown in Section 3, there are four periodic orbits for each resonance and hence four fixed points for a
suitable iteration of the Poincaré map. Among the fixed points, for ε small enough, two are stable and two are
unstable. We can confine ourselves to the fixed points corresponding to the values of the initial phase of the
first approximation Θ̄

(1)
1 and Θ̄

(2)
1 ; indeed, by symmetry, the points corresponding to the phases Θ̄

(3)
1 and Θ̄

(4)
1

have the same stability of Θ̄
(1)
1 and Θ̄

(2)
1 , respectively.

For the values of the parameters given in Section 2, we find the eigenvalues given in Table 4. Numerically,
one observes that, when the periodic attractors are both unstable, quasi-periodic attractors such as that studied
in Section 4, appear. This happens for the resonances 1:2, 3:2 and 2:1, besides the retrograde resonances
which, however, do not play a relevant role in the dynamics of the system. The stable quasi-periodic attractors
appear by a Hopf bifurcation, occurring when changing the parameters of the system (see for instance Mars-
den, McCracken (1976)).

As in Section 4, in the following we concentrate on the resonance 3:2, which is the most interesting one
in the case of Mercury, but a similar analysis could be easily extended to the other cases. However, as a
comparison with the results in Table 4 shows, only quasi-periodic attractors with θ̇/n ≈ 1/2, 3/2 and 2 are
found to exist among the prograde ones, so that we could confine ourselves to these three cases.

Writing (2.1) as

θ̈ =−ζ A3 sin(2θ −3nt)−Sζ ∑
k∈K0

Ak sin(2θ − knt)−λη F(θ̇), (5.1)

where S = λ = 1; in terms of ξ , defined according to (4.1), the equation becomes

ξ̈ =−2ζ A3 sinξ −2Sζ ∑
i∈I0

Bi sin(ξ − int)−2λη Φ(θ̇), (5.2)
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Resonance θ(0) θ̇(0)/n Eigenvalues
−1 : 1 0.36289190131044645472 −1.00004242365858443089 2.024×10−9

−1 : 2 0.14580421354300878946 −0.50006849412399051400 2.783×10−9

1:2 3.14129563170348761883 0.49980635331803679181 0.9669,1.0342
1:1 3.14151499384565687042 0.99986201340697665762 −4.461×10−4

3:2 3.14150380436395113505 1.50005973350740330252 1.055×10−4

2:1 3.26027930307144126711×10−5 2.00012557558534916792 1.786×10−3

5:2 3.14140519201664595044 2.50012075040501328073 −3.628×10−4

3:1 3.14109199137670843320 3.00009814397107114853 −2.636×10−5

7:2 3.14027640889440704126 3.50007711111008245662 −3.835×10−6

4:1 3.13797190712320535390 4.00006157245270746253 −6.337×10−7

−1 : 1 1.20792006104664609582 −0.99995757575039987029 0.9992,1.0008
−1 : 2 1.42500286020411552411 −0.49993150584317966306 0.9986,1.0014
1:2 1.57112385469851460569 0.50019364882055637631 2.342×10−6

1:1 1.57068938450889863242 1.00013792675908729505 0.9048,1.1042
3:2 1.57075984135159670901 1.49994030293249049891 0.9185,1.0889
2:1 1.57099968204819540739 1.99987444617026058657 0.9433,1.0638
5:2 1.57101812013673537458 2.49987925336853351100 0.9613,1.0395
3:1 1.57130265033260668261 2.99990185551468461907 0.9760,1.0246
7:2 1.57211353266178141100 3.49992288814339436128 0.9854,1.0147
4:1 1.57441706775605802984 3.99993842708145177608 0.9914,1.0087

Table 4: The initial conditions for the existing periodic solutions and the corresponding eigenvalues.
The eigenvalues λ1,2 for each periodic solution either form a conjugate pair, in which case |λ1,2|−1 is
given, or are both real, in which case both are given.

where the set I0 and the coefficients Bi are defined as after (4.3). We study the transitions in the dynamics
of the system described by (5.1) when we vary either the parameter λ (at fixed S = 1) or the parameter S (at
fixed λ = 1).

The bifurcation diagram with the parameter S in Figure 7 shows that the periodic solution with frequency
3n/2 is stable up to the value S≈ 0.134, where the solution loses stability and a stable quasi-periodic solution
appears. By increasing S, the amplitude of the oscillations increases as well. At S = 1 we have the quasi-
periodic solution studied in Section 4, while the periodic solution with frequency 3n/2 is unstable. The
numerical investigation by Bartuccelli, Deane & Gentile (2017) demonstrates that the solution with velocity
θ̇ close to 3n/2 is the main attractor for the values of the parameters as in Section 2: more than 42% of the
initial conditions (θ , θ̇) ∈ [0,2π]× [0,5n] are captured by such an attractor.
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Figure 7: Bifurcation diagram with parameter S (left) and λ (right). Both diagrams have been produced
by plotting a set of values of θ̇(kT0)/n−3/2, with T0 = 2π/n, for k in a suitable large set of integers.

In principle, the attractor studied in Section 4, which we call quasi-periodic, could be periodic: indeed,
if ωL/n is a rational number P/Q, then the trajectory closes after a suitable time T (large, since Q would be
large). Hence, we investigate numerically how the slow frequency ωL changes when varying a parameter of
the system. In Figure 8 we plot the non-fixed frequency ωL of the quasi-periodic solution as a function of the
parameter S. The apparent continuity of the curve suggests that, up to a zero-measure set of values of S, the
two frequencies ω and n are incommensurate, so that the motion is genuinely quasi-periodic.

On the Poincaré section obtained by sampling the system evolution at integer multiples of T0 = 2π/n, the
periodic solution appears as a finite set of points (3 for the 3:2 resonance). By contrast, the quasi-periodic
solution has support on a torus which intersects the section along a closed curve. In terms of the dynamics
on the section we have a Hopf bifurcation, with the transition from a fixed point to a closed curve Marsden,
McCracken (1976). A plot of the amplitude A of the quasi-periodic solution versus the parameter S is also
given in Figure 8: a fit obtained by looking at the leftmost points in the figure gives A = A0(S− S0)

κ , with
A0 = 7.976 · 10−5, S0 = 0.134 and κ = 0.5016; the numerical value of the exponent κ is in agreement with
the critical exponent 1/2 typical of the Hopf bifurcation (see for instance Marsden, McCracken (1976)).
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bifurcation parameter S.
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From a physical point of view, the bifurcation diagram with parameter S in Figure 7 can be interpreted as
follows. For S = 0 there is a fixed point at the origin, which is asymptotically stable because of the presence
of dissipation. When S becomes large enough (that is, if the forcing terms not included in the unperturbed
system can not be neglected any longer), the fixed point loses stability and an asymptotically stable closed
curve appears nearby by Hopf bifurcation.

A similar phenomenology is observed at S = 1, when varying the parameter λ ; see Figure 7. Actually we
need a dissipation much larger than the physical value λ = 1. Again the transition from the periodic to the
quasi-periodic solutions is described by a Hopf bifurcation for the dynamics of the corresponding Poincaré
section. The bifurcation diagram with the parameter λ in Figure 7 may also be expected on physical grounds.
If there is no dissipation, the Poincaré map corresponding to the equation (5.2) has both a fixed point near the
origin and a large measure of invariant tori encircling such a point (Arnold et al. (1988); Medvedev, Neishtadt
& Treschev (2015); Biasco & Chierchia (2015)). As soon as λ > 0, all but one of the tori are destroyed, this
one being attractive; the fixed point exists as well but it is unstable. By taking larger values of λ , at some point
the torus is destroyed, while the fixed point becomes stable and attracts all trajectories starting from initial
data nearby.

5.2 Interpretation of the results

Both the numerical and analytical results in the previous sections demonstrate that the 3:2 resonance of the
Mercury-Sun system, as described by the equation (2.1), is quasi-periodic: to leading order the stable ro-
tational state of Mercury is composed of a diurnal libration with period T0 ≈ 88 days and a slower proper
oscillation with period T1 ≈ 15 yr, whose amplitude is not only non-vanishing, but even dominant. In-
deed, the quasi-periodic solution is well approximated by (4.30): the variations of the diurnal libration are
bounded by ‖β‖∞/2 = 8.218×10−5 radians, i.e. 16.95 arcsec, while the amplitude of the proper oscillation is
α/2 = 4.490×10−3 radians, i.e. 15.44 arcmin, hence comparatively large, if one considers that the amplitude
of the libration observed for the Moon is about 15 arcsec (see Eckhard (1993); Rambaux & Williams (2011);
Makarov, Frouard & Dorland (2016)).

The combination of the two periodic motions gives an overall libration between −4.572× 10−3 and
4.551× 10−3 (see Figures 2 and 5), that is, between −15.72 and 15.65 arcmin. Such a large value con-
trasts with the observed values, which provide an amplitude of libration of about 35 arcsec (see Margot et
al. (2007)) — and with corrections still of order of arcseconds when measured over time intervals of several
years (see Peale, Yseboodt & Margot (2007); Yseboodt, Margot & Peale (2010)).

Usually the libration measured experimentally is compared with the small-amplitude diurnal libration and
the larger value of the amplitude (35 instead of 17 arcsec) is considered as an indication of a partially molten
core, as first pointed out by Margot et al. (2007). However, Noyelles et al. (2014) argued that the core formed
after capture into the 3:2 resonance. This implies that the realistic tidal torque model corresponding to a rigid
planet, that we used in this paper, correctly describes the transition of Mercury to the current state, but not
the current state itself (which corresponds to a differentiated planet with further dissipation at the core-mantle
boundary). In other words, the following scenario appears plausible: once Mercury has been captured in the
3:2 resonance, the latter appeared as a quasi-periodic orbit with large amplitude (of order of arcminutes); at a
later stage, when the molten core was formed, the nearby periodic orbit with spin rate θ̇ ≈ 3n/2 became stable
and attracted the solution, while the quasi-periodic state disappeared. Our results would also imply that in the
past the amplitude of the libration of Mercury was much larger than it is at present.

Of course it would be interesting to study the dynamical evolution of the spin rate of Mercury with a
time-dependent dissipation, along the lines of analogous investigations performed, for similar problems of
dissipative periodically-forced systems, by Bartuccelli, Deane & Gentile (2012); Wright, Bartuccelli & Gen-
tile (2014); Wright et al. (2015). The scenario that we propose is consistent with the results of the quoted
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papers, which show that the final state of the system strongly has been influenced by the initial value of the
dissipation. The fact that the formation of the core could have taken of order one billion years while the time
required for Mercury to be trapped in the 3:2 resonance is about 10-20 Myr (see Noyelles et al. (2014)), further
supports this scenario.

Another possibility is that the exact values of the parameters appearing in the model are crucial. It may
happen that, for different values of the parameters, the amplitude of the proper oscillation is significantly re-
duced. Also, the system may even be in the regime in which the Hopf bifurcation has not occurred and the
periodic orbit with θ̇ ≈ 3n/2 is stable; in that case, the large-amplitude slow oscillation is not present and the
motion is purely periodic.

6 Dynamics far from the attractors

We now look at the pre-capture dynamics, that is, the period during which the satellite is decelerating but
before it has been captured. This will enable us to estimate times to capture, and we accomplish this by
making approximations that greatly simplify the dissipation term.

Starting from (2.1), and assuming that (i) θ̇ > n and (ii) θ̇ is not close to any kink, we make the approx-
imation η F(θ̇) = a− bθ̇ . This yields a,b > 0 — see Figure 3 in Bartuccelli, Deane & Gentile (2017). For
θ̇ < n, a would be negative, but the argument below, suitably adapted, would still work. In practice, both a
and b are small. For instance, expanding F(θ̇) around θ̇ = 1.75n gives a≈ 1.1×10−5 and b≈ 1.3×10−7.

It is convenient to rescale time by τ = bt, so that θ̇ = bθ ′, where the prime denotes the derivative with
respect to τ . Using the above, we can approximate (2.1) as

θ
′′ =− a

b2 +θ
′− ζ

b2 ∑
k∈K

Ak sin
(

2θ − kn
b

τ

)
. (6.1)

6.1 The splitting argument

We now make an estimate of the rate at which θ̇ decreases with time, over long time scales, typically of the
order of 106T0, where T0 = 2π/n. We start by defining s(τ) to be the solution of s′′ = s′− a/b2 with initial
conditions s(0) = s0 and s′(0) = s1, which gives

s(τ) = s0− s1 +
a
b2 +

a
b2 τ + eτ

(
s1−

a
b2

)
= s0 + s1τ +O

(
τ

2) .
We write θ(τ) = s(τ)+ f (τ), in which s(τ) accounts for the slow decay of θ̇ apparent on a large time

scale and f (τ) represents a small amplitude, high frequency correction term, which is visible only on a smaller
time scale — see Figure 9. In other words, we split θ(τ) into fast and slow components. Substituting this
expression for θ(τ) in (6.1), and bearing in mind the ODE obeyed by s(τ), we find that

f ′′ = f ′− ζ

b2 ∑
k∈K

Ak sin(ωkτ +φ +2 f (τ)) ,

where φ = 2s0, ωk := 2s1− kn/b and where we have used the Taylor series to O
(
τ2
)

for s(τ).
We now make the following assumption: since ωk is O(1/b) and is therefore large, we neglect the term

2 f (τ) and so obtain

f ′′ = f ′− ζ

b2 ∑
k∈K

Ak sin(ωkτ +φ) , (6.2)
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Figure 9: Left: The approximation in (6.8) for θ̇(t) (dashed lines), compared with the full numerical
solution (solid lines), with initial spin rate θ(0) = 3.25n and θ̇(0) = 1.95n; right: the same, but on a
small time scale, with initial spin rate θ̇(0) = 3.25n and θ(0) = 1.7.

for an approximation to the ODE that defines f (τ). Conveniently, this ODE is linear with constant coefficients,
and so is straightforward to solve. With initial conditions f (0) = f0 and f ′(0) = f1, we find

f (τ) = f0 + f1 (eτ −1)− ζ

b2 ∑
k∈K

Ak

1+ω2
k

[
1

ωk
cos(ωkτ +φ)− sin(ωkτ +φ)

+ eτ(ωk cosφ + sinφ)− (1+ω
2
k )

cosφ

ωk

]
. (6.3)

We now consider the initial conditions, noting that we are free to choose initial values for θ(0) = θ0 = s0 + f0
and θ ′(0) = θ1 = s1+ f1. Once θ0, θ1 are specified, any values of s0, s1, f0 and f1 that satisfy these constraints
can be chosen.

Recall that in order to derive (6.2), we assumed that | f (τ)| � 1. To be consistent with this, we therefore
choose f0 = 0, from which we immediately deduce that s0 = θ0, so that φ = 2θ0.

We need to take a little more care over the choice of f1. Since ωk is O(1/b), one has |ωk| � 1. Hence, in
order to guarantee the smallness of f (τ), we need if possible to choose f1 so as to cancel out the largest terms
in the sum in (6.3), these being ωkeτ cos2θ0 and −ωk cos2θ0, both of which are O(1/b). This cancellation
can be accomplished by setting

f1 =
ζ

b2 cos2θ0 ∑
k∈K

Akωk

1+ω2
k
,

whereupon the expression for f (τ) becomes

f (τ) =− ζ

b2 ∑
k∈K

Ak

1+ω2
k

[
cos(ωkτ +2θ0)− cos2θ0

ωk
− sin(ωkτ +2θ0)+ eτ sin2θ0

]
. (6.4)

Since τ = bt with b∼ 10−7 and the timescale that we consider is t ∼ 106, eτ is O(1).
Finally we consider s1. Since θ1 is given and we have already specified f1, we immediately find that

s1 = θ1− f1 = θ1−
ζ

b2 cos2θ0 ∑
k∈K

Akωk

1+ω2
k
.
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Hence, since θ(τ) = s(τ)+ f (τ), we have

θ(τ) = θ0 +
a
b2 τ +

eτ −1
b2

[
b2

θ1−a−ζ cos2θ0 ∑
k∈K

Akωk

1+ω2
k

]

− ζ

b2 ∑
k∈K

Ak

1+ω2
k

[
cos(ωkτ +2θ0)− cos2θ0

ωk
− sin(ωkτ +2θ0)+ eτ sin2θ0

]
. (6.5)

We now approximate this expression, starting from the fact that |ωk| � 1. Additionally, we express
everything in terms of t rather than τ , where τ = bt, so that bθ1 = θ̇(0). Then (6.5) becomes

θ(t)≈ θ0+
at
b
+

(ebt −1)
b

[
θ̇(0)− a

b
−ζ cos2θ0 ∑

k∈K

Ak

Ωk

]
−ζ ∑

k∈K

Ak

Ω2
k

[
ebt sin2θ0− sin(Ωkt +2θ0)

]
, (6.6)

where Ωk = bωk, so

Ωk = ṡ0− kn = θ̇(0)− kn−ζ cos2θ0 ∑
k∈K

Ak

Ωk
. (6.7)

Note that this equation defines Ωk implicitly — this is a consequence of the way the initial conditions have
been assigned. For n sufficiently large, the approximation Ωk ≈ θ̇(0)− kn will be good. We investigate this
approximation in practice in the next subsection.

Differentiating (6.6) we find

θ̇(t)≈ a
b
+ ebt

[
θ̇(0)− a

b

]
+ζ ∑

k∈K

[
Ak

Ωk
cos(Ωkt +2θ0)− ebt cos2θ0

Ak

Ωk

]
, (6.8)

where we have neglected a term of order b in the sum.

6.2 The approximations in practice

Several assumptions have been used to derive (6.6) and (6.8), so we now investigate numerically how good
these approximations are in practice.

First of all, we compare ‘exact’ numerical solution Ωk to (6.7) with the approximation Ωk ≈ Ω
app
k :=

θ̇(0)− kn, for the two values θ̇(0) = 1.95n and 3.25n. We find

• For θ̇(0) = 1.95n, maxθ0∈T,k∈Q |Ωk−Ω
app
k | ≈ 0.073;

• For θ̇(0) = 3.25n, maxθ0∈T,k∈Q |Ωk−Ω
app
k | ≈ 0.010.

Note that minθ0∈T,k∈Q |Ωk| ≈ 6.5, so we are justified in using the approximation (6.7), since it leads to a
relative error of no more than 1.1%.

We concentrate first on (6.8) as an estimate of the dynamics leading up to capture; we can also use this to
estimate the time to capture in an orbit of a given spin rate. Despite the fact that the triaxial acceleration has
been neglected and the tidal acceleration has been replaced by a simple linear approximation, this simplifica-
tion gives surprisingly good results — see Figure 10, which shows a large timescale comparison, for times of
order 107, for two different values of the initial spin rate, θ̇(0) = 1.95n and 3.25n.

Time-to-capture estimates can be made as follows:

1. If θ̇(0) = 1.95n, then we compute that a = 1.423×10−5 and b = 1.894×10−7. Neglecting the oscilla-
tory term in the last square brackets in (6.8) and defining

R := θ̇(0)− a
b
=−24.26,
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the time taken for θ̇(t) to decay from θ̇(0) to θ̇ = 1.5n is estimated to be b−1 ln[(R−0.45n)/R], which
leads to the value 2.08×106, to be compared with the numerical value (see Figure 10) of 2.14×106.

2. If θ̇(0) = 3.25n, then a = 6.733×10−6, b = 2.056×10−8 and R =−242.70. In this case, the estimated
time to reach θ̇ = 1.5n is 8.38×106, to be compared with the numerical result, which is also 8.38×106.

For behaviour on a small timescale, of order 1, again see Figure 10, in which, on the right, we plot θ̇(t)
over a time interval of width 2. Only the order of magnitude of the approximation is correct, but this is not
surprising given that the approximation completely neglects the triaxial acceleration.

It is interesting to note that the triaxial torque appears to make very little difference during deceleration:
Figure 10 gives evidence that it only has an important role to play very close to capture — see also Ferraz-
Mello (2013, 2015).

0.0 400000.0 800000.0 1200000.0
t

1.45

1.50

1.55

1.60

1.65

1.70

1.75

θ.
/n

No triaxiality torque

Full model

Figure 10: Capture can still take place when the triaxial torque is neglected but the unapproximated
tidal torque is used. Here, θ̇(0) = 1.75n and capture takes place in a time 1.08×106 (full model) and
1.10×106 (model without triaxial torque).

7 Probability of capture revisited

Since the seminal paper by Goldreich & Peale (1966), the probability of capture of a satellite in a resonance
p:q has usually been studied as the probability P(p/q) for the satellite to be trapped in that resonance when
its rotation velocity θ̇ approaches the value pn/q. However, it may happen that the satellite never comes close
to a given resonance, because it has previously been captured in another one. Therefore, it may be useful to
redefine the probability of capture of a given resonance as the fraction of initial conditions whose trajectories
are attracted by that resonance. Of course the original rotational state of the satellite is not even approximately
known, so that one has to fix a suitable region in phase space from which the initial conditions are taken.
For the spin-orbit model defined in Section 2, all the attractors turn out to be contained inside the region
[0,2π]× [−1.5n,4.5n], so that, by assuming an initially prograde satellite (and exploiting the π-periodicity of
the equations of motion by considering θ only in the interval [0,π]), it is reasonable to confine the choice of
initial conditions to the region Q := [0,π]× [0,4.5n]. This is essentially what has been done by Bartuccelli,
Deane & Gentile (2017), where the probability of capture in the 3:2 resonance for Mercury has been estimated
to be about 42%. Indeed, even if the initial velocity θ̇ is much higher, eventually it decreases almost linearly,
up to small oscillations — as suggested by the analysis performed in Section 6 — until it enters the region Q.
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Nevertheless, there is no reason why the basins of attraction should be uniformly distributed in phase
space. In fact, Makarov (2012), providing an estimated value P(3/2) = 1, hints that all solutions starting
above the 3:2 resonance never reach the attractors contained in the region {(θ , θ̇) : θ̇ < 1.5n}: apparently
there is a barrier. Hence, it may be worthwhile to study in more detail the distribution of the basins of
attraction. Since they look like sets of points with no apparent structure, rather than a picture of the basins it
is more illuminating to divide the region Q into nine strips Q0,Q1, . . . ,Q8, each of width 0.5n in the velocity
direction, and compute the fraction of the basins of attraction which falls inside each strip. The results are
given in Table 5, where only the prograde resonances have been considered; we never observed a trajectory
with positive initial velocity being attracted by a retrograde resonance.

θ̇(0)/n ∈ (0, 0.5] (0.5, 1] (1, 1.5] (1.5, 2] (2, 2.5] (2.5, 3] (3, 3.5] (3.5, 4] (4, 4.5]
m 305 36 0 0 0 0 0 0 0

1:2 p 0.055 0.007 0 0 0 0 0 0 0
c 0.006 0.002 0 0 0 0 0 0 0

m 5251 5493 5180 0 0 0 0 0 0
1:1 p 0.945 0.993 0.914 0 0 0 0 0 0

c 0.006 0.002 0.007 0 0 0 0 0 0
m 0 0 488 5432 3177 2803 2939 2758 2882

3:2 p 0 0 0.086 0.990 0.569 0.508 0.519 0.507 0.519
c 0 0 0.007 0.003 0.013 0.013 0.013 0.013 0.013

m 0 0 0 56 2361 2065 2067 2013 2005
2:1 p 0 0 0 0.010 0.423 0.374 0.365 0.370 0.361

c 0 0 0 0.003 0.013 0.013 0.013 0.013 0.013
m 0 0 0 0 47 621 523 527 543

5:2 p 0 0 0 0 0.008 0.113 0.092 0.097 0.098
c 0 0 0 0 0.002 0.008 0.008 0.008 0.008

m 0 0 0 0 0 28 110 102 93
3:1 p 0 0 0 0 0 0.005 0.019 0.019 0.017

c 0 0 0 0 0 0.002 0.004 0.004 0.003
m 0 0 0 0 0 0 23 31 19

7:2 p 0 0 0 0 0 0 0.004 0.006 0.003
c 0 0 0 0 0 0 0.002 0.002 0.002

m 0 0 0 0 0 0 0 10 12
4:1 p 0 0 0 0 0 0 0 0.002 0.002

c 0 0 0 0 0 0 0 0.001 0.001
Totals 5556 5529 5668 5488 5585 5517 5662 5441 5554

Table 5: Estimates of the probability that a solution starting in Qi := [0,π]× (in/2,(i+ 1)n/2], i =
0, . . . ,8, ends up in resonance j:2, this being the resonance with θ̇ ≈ jn/2. For each column, we
show m, the number of initial conditions that make the transition; p, an estimate of the probability
of this happening; and c, the 95% confidence interval for this probability. The total number of initial
conditions considered for each Qi is shown at the foot of each column, and the overall total was 50 000.

Table 5 confirms the existence of a barrier associated with the 3:2 resonance: the trajectories starting
with θ̇ > 1.5n cannot reach the attractors below the 3:2 resonance and, vice versa, the trajectories starting
with θ̇ < 1.5n cannot reach the attractors above. Surprisingly, an analogous barrier exists associated with the

30



resonance 1:1. More precisely, the basins of attraction of the resonances above 3:2 are contained in the region
Qa := {(θ , θ̇) : θ̇ > 1.5n} and, similarly, the basins of attraction of the resonances below 1:1 are contained in
the region Qb := {(θ , θ̇) : θ̇ < n}. Moreover, all trajectories with initial velocity θ̇ ∈ (n,1.5n) are attracted
either by the 3:2 resonance or by the 1:1 resonance. Obviously, we cannot claim that the barriers completely
obstruct the passage of trajectories. In principle, it is possible that holes appear in the barriers; in any case,
crossings of the barriers — if they occur at all — appear to be very rare events.

Another interesting point seen in the results of Table 5 is that the basin of attraction of the 3:2 resonance
dominates the strip Q3 := {(θ , θ̇) : 1.5n < θ̇ ≤ 2n}, the area of its intersection with the strip being about 99%
of the whole strip, and becomes more or less uniformly distributed above the resonance 2:1. Indeed about 51%
of the initial conditions in each strip with θ̇ > 2.5n end up being captured in the 3:2 resonance. Therefore, if
we assume the initial velocity θ̇ to be high enough (as explained above, in practice this means it is sufficient to
fix the initial condition above the highest resonance, which is the 4:1; usually in the literature one takes a value
θ̇ ≈ 4.4n; see for instance Correia & Laskar (2004); Noyelles et al. (2014)), then the probability of capture in
the 3:2 resonance is more than 50% — a value higher than that given in Noyelles et al. (2014), and comparable
with that found by Correia & Laskar (2004) for the CTL model, in the case in which the eccentricity evolves
in time.

8 Conclusions

We have studied the attractors of the spin-orbit model with the realistic tidal torque used in Noyelles et al.
(2014). First, we have investigated numerically the dynamics of the system: besides the periodic attractors
for which the frequency is locked in a resonance with Mercury’s mean motion, quasi-periodic attractors are
also detected. Which attractors arise actually depends on the values of the parameters; in particular quasi-
periodic attractors bifurcate from periodic solutions when the latter become unstable. For the physical values
of the parameters, the main attractor of the Mercury-Sun system is a quasi-periodic attractor corresponding
to the resonance 3:2. This means that, according to the NMFE model, the librations of the spin rate are
quasi-periodic in time in the case of Mercury.

Thereafter, by using a suitable iteration scheme based on perturbation theory for non-smooth systems, we
have provided an explicit analytical expression for the attracting solutions: such expressions, despite being
obtained after a few steps of the iteration and hence being only approximate, match closely the numerical
solutions. So we deduce a posteriori that the perturbative approach provides a reliable description of the
dynamics.

However, there are a few aspects which the analysis we have performed does not account for:

1. The quasi-periodic attractor corresponding to the 3:2 resonance has two frequencies: the fast one is
the mean motion n, while the slow one depends on the parameters. We expect the latter to be slightly
different from the frequency ω obtained by taking into account just a single harmonic from the Fourier
expansion of the triaxial torque — see (4.2). The second approximation computed in Section 4 is correct
in describing such a phenomenon, but, from a quantitative point of view, does not provide the right value
— that is to say, the value found numerically (see Section 4.4).

2. When constructing the second approximation, we have to impose the condition that a certain integral
vanishes — see (4.25a) — in order to fix the amplitude C1 of the leading term. This leaves two values:
one of them corresponds to the solution which correctly describes the quasi-periodic attractor found
numerically, while the other one has been discarded (see Remark 5 in Section 4.3).

As far as the slow frequency is concerned, the first attempt would be to study the third approximation and
check how the value of the slow frequency changes. However, this is non-trivial because of the form of the
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tidal torque, which makes the analytical computations rather tricky: going beyond the second approximation
requires handling equations which involve functions expressed as integrals, over very long times, of non-
smooth functions depending quasi-periodically on time.

As to the discarded second approximation, we conjecture that it does not correspond to any real solution
to the equation because either it disappears at some higher step of the iteration or the iteration scheme does
not converge in such a case — both possibilities are likely to be difficult to check in practice.

Another issue that deserves further investigation is the presence of barriers in phase space discussed in
Section 7. Indeed, it is not obvious why the trajectories cannot cross the resonance 3:2 from above and the
resonance 1:1 from below. Even if the 3:2 resonance corresponds to a quasi-periodic solution (see Sections
4 and 5), such a solution is not a KAM torus, which may create an obstruction in phase space (in contrast to
what happens in the case of the pseudo-synchronous resonance arising in the CTL model); quite the reverse,
it is very localised. Moreover nothing similar happens for the other quasi-periodic attractors, such as the 2:1
resonance (the second dominant attractor); in addition the 1:1 resonance corresponds to a periodic solution.
All this suggests that the occurrence of the barriers is not due to quasi-periodicity. Rather, it is likely that the
phenomenon is related to the amplitude of the peaks appearing in the tidal torque: indeed the largest peaks
correspond to the 3:2 and 1:1 resonances.

Finally, in the light of the experimental data available in the literature (see for instance Margot et al. (2007);
Peale, Yseboodt & Margot (2007); Yseboodt, Margot & Peale (2010); Veasey & Dumberry (2011)), which
strongly suggests the presence of a molten core in Mercury, we argue that the 3:2 resonance was originally
described by a large-amplitude quasi-periodic orbit, and only in more recent times it has evolved into the
small-amplitude libration which is observed at present. It would be interesting to investigate the spin-orbit
dynamical evolution of Mercury, at least from a numerical point of view, with a time-dependent dissipation. It
would also be interesting to study the NFME model with different values of the parameters. Indeed, depending
upon the values of the parameters, the periodic solution corresponding to the 3:2 resonance may be stable: in
that case the proper oscillation is damped and only the 88-day libration is present.
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