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Abstract

The physical properties of InGaN-based light emitting diodes (LEDs) and laser diodes (LDs) 

are investigated in this study. A strong focus o f the thesis is to investigate the non-radiative 

recombination process which leads to the relative reduction of the efficiency with increasing 

current injection in an effect which is known as efficiency droop. The explanation of droop is 

often inconsistent and contradictory with different experiments or devices produced using 

different growth conditions. Whilst the literature suggests that Auger recombination, carrier 

leakage and a defect-related recombination are all separately the cause of droop, the physical 

cause of such loss mechanisms is often poorly explained.

Results are presented in this thesis which show that there is a poor hole injection efficiency at 

low temperatures which is particularly problematic in devices which include electron blocking 

layers. The poor injection is expected to result in the escape of electrons that is exacerbated by 

an enhancement of the internal polarization fields. The reduction of the LED efficiency with 

increasing temperature where there are no hole injection issues is shown to be due to an 

increasing defect-related recombination rate. The temperature and pressure dependence of 

efficiency droop show that neither Auger recombination nor carrier leakage are required to 

explain droop. Evidence of carrier localization is presented by the “s-shape” dependence of 

the emission peak on temperature in an effect which is stronger for green LEDs (depth of 

130meV) compared with blue LEDs (58meV). The weak pressure coefficients of the InGaN- 

based LEDs (green LED 1.20±0.06meV/bar at 5mA and blue LED 2.14±0.06meV/kbar at 

5mA) are also partially expected to be due to carrier localization. Based on these findings, 

droop is expected to be caused by an increase in the defect-related recombination rate at high 

injection due to the increasing likelihood that carriers will occupy defect sites. A defect- 

related recombination model for droop is shown to be consistent with the temperature and 

pressure dependence of efficiency droop. Such processes are also shown to influence InGaN 

LEDs on silicon substrates and InGaN-based laser diodes.

The findings of this thesis indicate that there is a strong influence of defect-related 

recombination, in addition to the internal polarization field strength, on the efficiency of 

InGaN-based emitters. Structural optimization of the device design and an in depth 

understanding of the types of defects involved are therefore required in order to achieve more 

efficient InGaN-based emitters.
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Ir Radiative current
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A Monomolecular recombination rate
B Radiative recombination coefficient
Bo Unperturbed radiative recombination

coefficient
no Carrier concentration where phase space

filling becomes important
C Auger recombination coefficient
Ny Trap concentration
Vn Carrier velocity
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Defect cross sectional area

n Carrier concentration
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Time constant of density activated defect
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Eg Bandgap energy
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T Thickness
p P Z Piezoelectric polarization
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f Frequency
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u Bloch functions
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Ao Non-carrier concentration monomolecular 

rate
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1 Introduction
There has been a rapid development in the field of nitride semiconductors since the first 

InGaN based high-brightness blue light-emitting diode (LED) became commercially-available 

in 1993 [1]. The strong interest in nitride semiconductors is due to the large energy emission 

range (0.7eV to 6.2eV) that may be achieved from the continuous alloy system as shown in 

Figure 1-1.

Blende 
6̂ Diamond 

Wurtzitei \  D iam ond*

m 2,5-

5 in-'s
.0 3,2 3,4 3.(3 4,8 5.Ü 5.2 5.4 5.6 58  6.Ü 6.2

Lattice constant / A

Figure 1-1- Diagram illustrating the band gap of different materials systems and their 
dependence on lattice constant [2]

Varying the growth temperature and processing times may achieve variations of indium 

content or quantum well widths that are required to achieve a desired emission wavelength.

The many applications that use InGaN-based emitters are the main driving force behind the 

technical advancement of nitride semieonductors. These include solid state lighting, 

televisions and laptops back lighting, displays and communication applications. Whilst the 

majority of the commercially-available nitride-based applications currently use LEDs, there is 

also considerable interest in applications which consist of nitride-based laser diodes (LDs). 

LDs which emit with emission in the violet and blue region have become commercially- 

available in applications such as high-definition, high-density, blu-ray and DVD players. 

There is expected to be a similar impact of nitride-based LDs on the optoelectronic industry as 

that o f the nitride-based LEDs over the next decade. Green LDs are currently not 

eommercially-viable but it is expected that the improvement in the efficiency of green laser
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diodes and reduced production costs is expected to lead to a large market growth which will 

reach $500m by 2016 with the green LD expected to be used in 45 million devices [3].

The main driving force in the development of nitride-semiconductors is solid state lighting. 

Solid state lighting is expected to replace conventional lighting which currently accounts for a 

fifth o f the electrical energy used worldwide [4]. The efficacy rating, a measure of the 

efficiency and the spectral response of the eye to the wavelength of the emitted light, for 

conventional lighting technology, such as incandescent and fluorescent bulbs, is unable to 

show a strong increase due to fundamental conversion limitations. Only 5% of electrical 

energy is converted into visible light in incandescent light bulbs whilst the remainder of the 

energy is wasted as heat. The fundamental limitation of fluorescent bulbs is related to the 

Stoke’s loss in converting an emitted UV light wave into one of the visible spectra. The 

highest efficiency for this type of bulb is 28% [4]. Solid state lighting is expected to become 

more efficient as there are improvements in the technology used to produce such bulbs.

The efficacy of LEDs is currently increasing at a strong rate with current commercial white 

LEDs having an efficacy rating o f (120 Im/W) [5] and outperforms linear fluorescent lamps 

(801mAV) [6]. However, despite the larger efficacy, there is not widespread use of solid state 

lighting due to the high initial cost of LED bulbs ($22) [7] in comparison with incandescent 

($3) [8] and compact fluorescent bulbs ($5.50) [9]. It has been calculated that over a ten year 

period the LED bulb will be more cost effective in comparison with an incandescent light bulb 

($39 for an LED bulb compared to $200 for an incandescent bulb). The currently highly 

favoured option for lighting is fluorescent bulbs due to their lower initial price and similar 

long term cost (energy cost over 10 years $43). Therefore reduced initial costs and an efficacy 

rating of beyond 1501m/W are required in order for solid state lighting to dominate the general 

lighting markets. Additionally, the bulbs are required to have a high colour rendering rating 

(the ability for a light source to reproduce various colours of objects). Such an efficacy rating 

is predicted to be reached for commercial bulbs with, good colour rendering in 2015 that would 

be double the value of fluorescent bulbs and be fifteen times higher than that o f incandescent 

bulbs [10]. Governments have become concerned by the environmental impact o f inefficient 

light bulbs causing many, including an EU-wide directive, to impose a phase-out in the selling 

o f incandescent light bulbs [11]. A similar phase-out of fluorescent bulbs may take place in 

the future due to the higher energy efficiency of LEDs. Recently, Ikea announced that it would
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attempt to set an environmentally friendly example by only selling LED light bulbs by 2016 

[12].

Improvements to the production in developing more efficient LEDs is expected to result in 

solid state lighting replacing conventional light sources over the next decade. The widespread 

use of solid state lighting will not only benefit users due to the cheaper running costs but there 

will also be reduced environmental impact due to lower energy consumption of LED bulbs in 

comparison with conventional light sources. The fluorescent bulbs that are currently used as 

an energy-saving alternative form of lighting have particularly strong environmental concerns 

due to the inclusion o f mercury.

Long terms predictions show that whilst there is a theoretical limit of 3201m/W for a three 

colour LED bulb efficacy, with a realistic goal is 2131m/W. The use of bulbs with such an 

efficacy rating would provide an energy saving of 93% compared with incandescent light 

sources, 70% compared with compact fluorescent bulbs and 63% compared with linear 

fluorescent bulbs. This would lead to a total saving in terms of carbon-equivalent emission of 

100 megatons a year compared with if incandescent bulbs are used [10].

A major advantage which of solid state lighting is the long lifetime (50000 hours), which is 

mainly limited by the temperature of the LED and the circuit electronics, compared with 

incandescent (2000 hours) and fluorescent light bulbs (10000 hours) [13]. LED lighting can 

also be controlled digitally by the user. This “smart lighting” is also expected to have 

applications in biology and imaging, display systems, improved lighting in transportation, 

communications and agriculture [6].
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2 Semiconductor Device Theory

2.1 Chapter Introduction

This chapter is an introduction to relevant semiconductor theory that is used to gain an 

understanding of ho’w semiconductor devices operate. The beginning of the chapter shows that 

the separation of energy bands (namely, the conduction and valence bands) leads to the 

emission of photons 'with a corresponding energy that is approximately equal to this energy 

separation. The effective mass is then described in order to represent the influence o f the ions 

and core electrons in the material on the electrons in the conduction and valence bands. It is 

shown that in order to determine the carrier concentration within the conduction and valence 

bands the density o f available states must be considered. The 2D density o f states is found to 

be energy independent and therefore may be exploited in order to achieve a high carrier 

concentration once states become available. The probability that such energy states are 

occupied is shown to be determined by multiplying the density of states with the probability 

that the energy state is occupied.

The next part of the chapter introduces measures that have been used to achieve larger carrier 

concentrations in the conduction and valence bands by a technique knovm as doping. Such a 

technique may provide an n-type material which has a larger number of electrons in the 

conduction band compared with holes in the valence band or a p-type material which has the 

opposite effect o f a larger number of holes in the valence band compared with the number of 

electrons in the conduction band. It will be then shovm that a pn homojunction is achieved if 

an n-type material is grown atop p-type material. The homojunction may be modified to 

include a layer which consists of a smaller band gap to result in improved carrier and light 

confinement. The quantum well structure is the basis of the semiconductor devices 

investigated in this study.

It will be shown that light may promote carriers to higher energy levels. In the opposite 

process the relaxation of carriers to lower energy states may result in the emission o f light in a 

process which may either be stimulated (requiring an incident photon) or spontaneous 

(involving interaction vfith a virtual photon).
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The properties which impact on the device efficiency are then described where it different 

aspects of the LED design must be considered in order to achieve the maximum light output 

power.

The final section of this chapter describes properties of laser diodes.

2.2 Effective mass and energy bands

The separation of energy bands is an important feature in semiconductor materials as the 

manipulation of this energy separation is used to obtain emitted light wave of a desired 

wavelength. In such materials, most of the electrons are bound to atoms (valence electrons) 

and it is only the loosely bound electrons which may be promoted to the conduction band 

where they are able to conduct. Energy may be supplied to promote electrons from the valence 

band (bound electrons) to the conduction band (unbound electrons). This process will result in 

a positive charge occupying a state in the valence band. The positive charge in the valence 

band is referred to as a hole and the energy gap between the conduction and valence band at 

zero momentum is known as the bandgap energy as illustrated in Figure 2-1.

Conduction band

QJ
C Band gapLU

Valence band

Wavevector k

Figure 2-1- The dependence of the energy on wavevector for the conduction and valence 
bands

Near the band edge the conduction and valence band varies quadratically with momentum, k. 

The band dispersions, Ecb and Evb, may be described by the relationship in Equation 2-1.
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E c B ( k ) = E c + ^  2 -la

E y B ( . k ) = E y - ^  2 -lb

where Ec is the conduction band edge, Ey is the valence band edge, h is Plank’s constant 

divided by 27t, k is the wavevector ( ^ ) ,  mg is the electron effective mass and is the 

valence band effective mass.

The release of light from the semiconductor material may take place when electrons in the 

conduction band recombine with holes in the valence band. The emitted photon will have an 

energy which corresponds to the difference between the electron and hole energy states.

2.3 Density of States

The available energy states per unit k per unit volume is represented by the density of states. 

The density of states in k-space in 3D for the conduction and valence bands, gso ĉB and g3D,vB, 

respectively, may be converted into the density o f states per unit energy and unit volume to 

give,

3

g3D.CB (E )  =  ^  4 W ^ c  2-2a

3

93D,vb{E) =  ^ ^  2-2b

The confinement o f carriers in one direction will result in a modification to the density of 

states. The density o f states in 2D, g2D, is determined as,

7TL*
9 2 D ,cb  = ^  2-3a

92D.VB  =  ^  2-3b

The density of states in 2D is therefore independent of energy. This means that there will be a 

high number o f available energy states once carriers are able to reach the bottom of the
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conduction band or the top of the valence band. A eomparison of the energy states in 3D and 

2D is shown in Figure 2-2.

Energy (eV)
A

------------------------------------- >

Energy (eV)

Figure 2-2- The density of states as a funetion of energy in 3D (upper graph) and in 2D (lower 
graph).

The density of states must be multiplied by the probability that that energy state will be 

occupied in order to caleulate the carrier concentration within a band. The probability of a 

particular energy state being occupied may be calculated by considering the Fermi 

distribution. This distribution uses a Fermi level as a reference energy level where the 

probability of eleetron occupation is 0.5. This therefore suggests that most electrons occupy 

energy states whieh are below the Fermi level at normal temperatures. The concentration of 

electrons and holes in the eonduetion and valence band, respectively, may be determined by 

using the quasi-Fermi levels. The quasi Fermi levels are Fermi levels for the electrons in the 

conduction band and holes in the valence band when considered separately. The probability 

that a particular energy state, E, is occupied in the conduction band, fcB, or the valence band, 

fvB, given by using the quasi-Fermi distributions, fcB(E) and fvB(E), as given below.

22



/ c b ( E )  =  r „  ~  1 2-4a
+ 1

/ra(E) =
ex p Epv-E

ksT
2-4b

+1

where Epc and Epv are the quasi Fermi levels in the conduction and valence bands, 

respectively, ks is the Boltzmann constant, and T is the temperature.

The carrier concentration in the conduction band, n, and the valence band, p, can then be 

calculated using,

n  = j ^ ^ g c B ( .E ) f c B iE )d E  2-5a

P = ! ! L 9 v B ( E ) f v B ( . E ) d E  2.7b

2.4 Doping of Semiconductor Material

Doping is a process whereby impurity atoms are added to the crystal structure to increase the 

carrier concentration of the conduction and valence bands. The impurity atoms which are 

introduced to the crystal lattice have energy levels which are slightly below the conduction 

band (donors) or slightly above the valence band (acceptors). N-type materials are produced as 

weakly bound electrons from donor atoms are excited to the conduction band whereby they 

can partake in electrical conduction (see Figure 2-3a). Similarly, p-type materials are achieved 

as electrons are excited from the valence band to atoms at the acceptor level in a process 

which results in an increase of holes in the valence band (see Figure 2-3b).

a) b)

Donor level CB ------------------------------- --— J CB

VB ™  =  I Acceptor level
VB

Figure 2-3- Schematically showing the effects of doping for a) n-type material and b) p-type 
materials
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The effect of increasing the electron concentration in the n-type material will cause the Fermi 

energy to shift towards the eonduetion band. The increase in the number of holes in the 

valenee band will cause the Fermi energy of the p-type material to be moved towards the 

valenee band. It is the inereased probability that electrons in the n-type material will oecupy 

states in the eonduetion band and holes will occupy states in the valenee band that leads to a 

higher carrier concentration that will increase conductivity.

The Fermi energy may be caleulated if it is assumed that at room temperature there is 100% 

ionization of the dopants. If sueh is the case, no=n, where no is the dopant concentration.

Assuming that nD=3xl0^^cm'^ [14], the energy difference between the conduction band and 

the Fermi level is determined as.

E c - E ,  = - k s T l n  ( ^ ) Sm eV 2-6

where where m l  = O.Zmq.

The Fermi level in the pGaN can be calculated in a similar manner as = 44meV above the top 

of the valence band where it is assumed that the aeeeptor concentration is IxlO^^cm'^ taken 

from ref. [15] with 100% acceptor ionization.

pGaN

C o n d u c tio n
b a n d

nGaN

i
'8 m e V

Intrinsic 
Fermi level

■'44meV V alence
b a n d

Figure 2-4- The band diagrams of p-GaN and n-GaN where doping changes the intrinsic 
Fermi level.
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2.5 Pn Junction

A pn junction is made if  p-type and n-type materials are grown together. The simplest 

structure of a pn junction is the homojunction which is shown at thermal equilibrium in Figure

pGaN
Electron drift

Electron
diffusion nGaN

CB

•Ef

Hole drift

Hole ^  
diffusion

VB

Figure 2-5- Homojunction under zero bias

Electrons in the homojunction will tend to diffuse from the n-type region across the junction 

into the p-type region. A similar process will result in holes from the p-type region diffusing 

across the junction into the n-type side. The electrons that have diffused across the junction 

will be attracted by holes which have diffused into the n-type side o f the junction. This will 

cause the diffused electrons to drift back towards n-type material (see Figure 2-5) and 

similarly, diffused holes will also be attracted back towards the p-type material. An 

equilibrium state is reached when the drift and diffusion processes are balanced which will 

result in a region between the n-type and p-type materials which is known as the depletion 

region, W d , as it is depleted of free carriers.

In thermal equilibrium under zero bias the Fermi levels o f the p-type and n-type material will 

align causing a built-in potential which is equal to qVo, where q is charge and Vd is the 

potential difference which is formed across the junction (built-in potential). Applying a 

voltage in the same direction as the built-in potential (reverse bias) will enhance the potential 

barrier which further restricts the movement o f carriers preventing conduction. However, if  a 

strong enough voltage is applied to compensate for the built-in field (forward bias) then there
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will be a reduction of the potential barrier and conduction may take place. The effect of 

forward and reverse bias on the pn junction is shown in Figure 2-6.

pGaN
qVo+eV

CB

nGaN

VB

pGaN

CB

nGaN

VB

Figure 2-6- Homojunction under a) reverse bias and b) forward bias

The resultant current flow of current in forward (V>0) and reverse (V<0) bias is shown 

schematically in Figure 2-7.
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current

voltage

Figure 2-7- The current dependence on voltage for a diode.

One can observe that current will begin to flow once there is a voltage applied which is strong 

enough to oppose the built-in potential. There is also an exponential increase in current with

increasing voltage once there is compensation of the built-in potential.

2.6 Quantum Well Structures

Homojunctions will generally be inefficient light emitters due to high carrier leakage and 

absorption processes. It is therefore necessary to operate such structures at low temperatures. 

Most semiconductor-based emitters, however, consist of quantum well structures whereby 

carriers are confined to an active region of desired energy gap that is surrounded by larger

band gap materials as illustrated in Figure 2-8.
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p-GaN

n-GaN

InGaN

Figure 2-8- A pn junction consisting of a p-GaN, n-GaN and an InGaN active region where 
electrons are represented by blue dots and holes are represented by red dots.

Electrons and holes will be injected into the active region of the quantum well if a forward 

bias is applied which is strong enough to overcome the built-in potential. The InGaN active 

region will have a band gap which is smaller than the band gap of the GaN barriers. Therefore 

carriers require energy which is larger than this difference in order to escape from the quantum 

well. The efficiency is therefore improved in comparison with that of the homojunction. The 

barrier region also has a refractive index (2.54) which is lower than the refractive index of the 

InGaN active region (3.0) and therefore there will be good light confinement which is 

important in laser diodes [16].

Another advantage of using a quantum well design is that the energy of the emitting photon 

can be tuned by varying the quantum well width. This is due to the quantization of carriers 

where the energy can be determined from,

8mL2 2-7

where nq is the quantum number relating to the quantum state. Therefore changes to the 

quantum well width, L, will cause the energy of the emitted photons to change. The next 

sections will discuss the different ways in which the devices may emit light.
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2.7 Spontaneous emission

The emission of light from LEDs is achieved by the recombination of electrons in the 

conduction band with holes in the valence band. This process is known as spontaneous 

emission which is illustrated in Figure 2-9.

Energy

Momentum

Figure 2-9-Diagram illustrating the spontaneous emission process of an electron in the 
conduction band recombining with a hole in the valence band.

The emission spectrum from an LED due to spontaneous emission is shown in Figure 2-10.
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Figure 2-10- Measured emission spectrum due to spontaneous emission of a blue InGaN LED 
at room temperature.

Figure 2-10 shows that there is a relatively large linewidth of the emission spectra which 

indicates that the spontaneous emission process involves carriers occupying a range of 

energies within the conduction and valence bands and that the emitted light will be 

polychromatic. The larger linewidth of InGaN devices compared with other semiconductor 

materials such as GaAs is expected to be caused by the localization of carriers at the band 

edge.

2.8 Stimulated emission

Stimulated emission occurs when electrons in the conduction band are stimulated by photons 

of a particular energy as illustrated in Figure 2-11.
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Figure 2-11- Illustration of the stimulate emission process where an incident photon stimulates 
an electron in the conduction band to recombine with a hole in the valence band 
to results in two emitted photons.

Laser diodes (LDs) have an optical cavity in order for the stimulated emission process to be 

sustained and therefore are able to reach high light output powers. The optical cavity consists 

of two mirrors which reflect emitted photons back and forth through a gain medium that 

results in lasing being achieved. Incident photons are able to induce additional stimulated 

emissions that may lead to efficient light emission which is monochromatic, coherent and 

directional as can be seen by the low linewidth of the emission spectrum as shown in Figure 2- 

12.
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Figure 2-12- Measured emission spectrum due to stimulated emission of an InGaN blue LD at 
room temperature.

Light emitted from a laser is therefore useful to achieve high irradiance at a single wavelength.

2.9 Internal Quantum Efficiency

The internal quantum efficiency of an LED is the ratio of the amount of light emitted from the 

active region compared with the amount of charge injected into the active region and is 

described using the relationship,

Vint =
^int/

I/e
2-8

where Pint is the optical output power emitted from the active region, h is Plank’s constant, v is 

the frequency of the emitted photon, I is the injected current and e is the charge of an electron.

2.10 Extraction Efficiency

The total efficiency of the LED will also be influenced by the extraction efficiency. Photons 

will either be emitted into free space or will not be emitted from the semiconductor die. Loss 

processes including absorption of photons by the substrate material or the metal contacts and 

total internal reflection at the semiconductor die-free space interface reduce the extraction 

efficiency. The light extraction efficiency is determined by 

32



_  Pint/jhv) _  2-9
V  e x tv c L C tio n  P/(hv^  P

where P is the optical output power emitted into free space.

2.11 External Quantum Efficiency

The external quantum efficiency which accounts for the internal and extraction efficiencies 

and is described by equation 2 -1 0 ,

P e
Vext “  7ïïv ~  VintVextration 2-10

where e is the charge of an electron, and I is the injected current.

The efficiency measurements of LEDs may therefore be achieved by taking a ratio o f the light 

output power compared with the injected current,

V = J  2-11

In the remainder o f this thesis the external efficiency will be referred to as the efficiency as it 

is the most useful description o f LED performance.

2.11.1 Wall Plug Efficiency

The final measure o f efficiency, which is mainly used in the solid state lighting industry, is 

wall plug efficiency, î]wp • This value is a measure o f the optical output power compared with 

electrical input power,

TIWP =  F

where V is the applied voltage.

2.11.2 Light Cone Escape

Only the light emitted at angles close to normal incidence from the active region will be able 

to be emitted from the semiconductor material. Light that is emitted at an angle which exceeds 

the critical angle, 6c, will be totally internally reflected. The critical angle is determined by,

sinO r  =  —  2-13Us
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where riair is the refractive index of air and ng is the refractive index of the semiconductor 

material.

The angle at which light is internally reflected is described as the light escape cone where 

photons that are emitted into the cone are emitted from the semiconductor die, whilst light 

emitted outside of the cone suffers from total internal reflection as shown in Figure 2-13.

Figure 2-13- Illustration showing total internal reflection will occur in a semiconductor die if 
the light is emitted at an angle greater than the critical angle, 0 -̂

The light intensity, however, will reduce as the angle of incidence is increased from the 

normal incidence in planar LEDs (see Figure 2 -14a). An alternative growth method can be 

used to obtain a hemispherical design which has isotropic light emission (Figure 2-14b). An 

enhancement to the light emission at the widest angles can be achieved in parabolic LEDs 

(Figure 2 -14c).
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Fig. 5.5. Light-emitting diodes with (a) planar, (b) hemispherical, and (c) parabolic 
surfaces, (d) Far-field patterns o f the different types o f LEDs. At an angle o f <6 = 60°, the 
lambertian emission pattern decreases to 50 % of its maximum value occurring at 0  = 0°.
The three emission patterns are normalized to unity intensity at <E> = 0°.

Figure 2-14- Schematic illustrating the far field light patterns of planar, hemispherical and 
parabolic LEDs (diagram from [17])

The light emission properties at different angles are shown in Figure 2-14d for the different 

LEDs. Despite the advantages of the isotropic emitted light being achieved in the 

hemispherical LED and a higher intensity of light being emitted at the wider angles in the 

parabolic LED, most LEDs are grown with planar surfaces due the significantly lower 

production costs.

2.11.3 Epoxy Domes

Epoxy encapsulates of high refractive index surround the planar LEDs in order to enhance the 

light extraction efficiency. This process increases the critical angle at which total internal 

reflection will occur which thereby increases the proportion of light which is emitted from the 

semiconductor chip. If Us=3 [18] and nair^l is considered, then the critical angle is calculated 

by using Equation 2-17 to be 19.5°. The refractive index of the epoxy dome is approximately 

1.5 [19] and therefore if nair is replaced by this value in Equation 2-13, a larger critical angle of 

30° is obtained.
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The epoxy material may also be altered to obtain desirable properties such as converting the 

colour of the emitted light with a phosphor. This may have particular benefits in the solid state 

lighting industry as the colour o f the embedded phosphor in the epoxy may be used to provide 

"warm" or "cold" lighting.

2.12 Semiconductor Laser Properties

2.12.1 Threshold Current

The threshold current, Th, is the current required in order for optical gain to overcome optical 

losses and consists o f radiative, T, and non-radiative, Inr, components and is described using 

the following relationship,

hh  = fr + ^nr 14

The radiative current is due to spontaneous emission and the non-radiative current consists of 

contributions from non-radiative recombination such as Shockley-Read-Hall recombination, 

carrier leakage and Auger recombination. It is therefore important to determine and reduce the 

loss processes taking place in order to reduce the non-radiative current that will lead to a 

reduction of the threshold current. This will subsequently improve the output power o f the 

laser diode at a given current.

2.12.2 Gain

The laser gain describes the factor in which the light is amplified per unit length. The lasing 

threshold is met when the optical gain and losses due to one round trip o f a photon are equal. 

The lasing condition may then be determined by equation 2-19

^threshold  ^ 0  2-15

where Œq is the waveguide loss that is due to optical absorption, L is the length of the gain 

medium, Ri and R2 are the reflectivities of the mirrors.

The output power of a laser beyond the threshold has a strong linear dependence on injection 

current as shown in Figure 2-15.
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Figure 2-15- Measured light output dependence on injection current for a laser diode showing 
that there will be a strong increase in the light output power above the threshold 
current that results from stimulated emission taking place.

2.12.3 External Differential Efficiency

The external quantum efficiency of a laser diode is a measure o f the dependence of light 

output compared with injected current above threshold. The external differential efficiency 

[2 0 ] may be expressed as

2-16

where 77/  is the proportion of the current above threshold that is delivered to the active region, 

rjf is the proportion of the injected carriers that enter the quantum well, 77  ̂ is the proportion 

of carriers that enter the quantum well that result in stimulated emission, is the mirror loss 

and tti is the internal loss.

Ideally, the quasi Fermi levels splitting pins above threshold [21] causing the spontaneous and 

non-radiative rates to remain constant. This means that all additional injected carriers above 

threshold result in an increase in the stimulated emissions rate of photons and therefore above 

threshold, 77/  is close to unity.
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2.13 Summary of Chapter

This chapter presented relevant information about semiconductor materials which is required 

to understand how such devices operate. The release o f light is achieved when electrons in the 

conduction band recombine with holes o f the valence band where the energy of these bands 

was described as having a quadratic dependence on momentum.

The density of states and the Fermi function may be considered in order to obtain the carrier 

concentration in the conduction and valence bands. Doping is a technique which has been 

found to significantly increase the carrier concentration and lead to significant improvements 

o f the device performance.

Growing a p-type and an n-type material together will cause the Fermi levels to align and thus 

causing an in-built field which must be compensated for in order for current to flow. The 

formation of the pn junction is required to obtain a diode.

It was shown that a quantum well structure may be grown in order to achieve efficient carrier 

confinement. This is due to the larger energy o f the GaN barriers resulting in a potential 

difference which the carriers must overcome in order to escape.

The spontaneous emission was found to provide an energy spectrum which has a range of 

energies due to the fact that this emission process occurs between carriers that occupy 

different energy states in the conduction and valence bands. In contrast, a sharp peak of high 

intensity is shown in the emission spectra of laser diodes. This observation is due to the 

stimulated emission taking place between electrons and holes of a certain energy difference 

that will lead to the emission being monochromatic, coherent and in the same direction as the 

incident photons that cause the transitions.

The final section of this chapter presented information regarding the efficiency of devices. It is 

shown that the epoxy encapsulate is an important property of LED design which is used to 

enhance the extraction efficiency.
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3 Background and Theory relating to Nitride 
Emitters

3.1 Chapter Introduction

This chapter is an introduction to the efficiency droop effect which is observed to occur in 

nitride-based LEDs. The impact of the different recombination mechanisms as a function of 

current will be described in order to gain insight into efficiency droop. The phase space filling 

effect will be shown to reduce the radiative recombination rate to an approximately linear 

dependence on carrier concentration at high currents. The influence o f such an effect on the 

efficiency droop will also be discussed.

The chapter will then describe the dependence of different loss mechanisms on injection 

current. It will be shown that a loss mechanism which has higher carrier concentration 

dependence than that of radiative recombination is required to explain efficiency droop. The 

remainder of this chapter describes the relative likelihood o f different processes which have 

been proposed in the literature to cause efficiency droop such as Auger recombination, carrier 

leakage and defect-related recombination.

3.2 Efficiency Dependence on Current

The external quantum efficiency that was described in Section 2.11 may be measured by 

comparing the ratio of radiative recombination to the total recombination. It may be calculated 

by considering the time constants of radiative, Tr (which is the inverse of the radiative rate) 

and non-radiative processes, Tnr (which is the inverse o f the non-radiative rate) by using the 

relationship

_ _  r a d i a t i v e  r e c o m b i n a t i o n  r a t e  _ _  ^  ^  ^
^  n o n - r a d i a t i v e  r e c o m b i n a t i o n  r a t e  \  T n r /

In an experimental measurement, the efficiency is measured by dividing the light output 

power with the input current (see equation 2 - 1 1 ) and will provide an efficiency dependence on 

current as shown in Figure 3-1.
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Figure 3-1- Measured efficiency dependence on injection current for a green LED

Figure 3-1 shows that the efficiency of the LED reaches a maximum at a relatively low 

injection current and reduces upon further current injection in a phenomenon known as 

efficiency droop. The efficiency droop effect is particularly problematic because most nitride- 

based applications require large currents where there is higher light output. The recombination 

mechanisms of InGaN-based emitters are currently under intense scientific investigation to 

understand the cause of efficiency droop.

3.3 Radiative Recombination

Radiative recombination of electrons in the conduction band with holes in the valence band 

leads to the generation of photons from semiconductor devices as described in Section 2.7. 

The rate of radiative recombination is proportional to the concentration of electrons and holes 

as shown in the relationship,

RRadiative = Bnp 3-2
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where B is the radiative recombination coefficient, n is the electron carrier concentration and p 

is the hole concentration.

The radiative recombination coefficient is a measure o f the rate of radiative emission and can 

be calculated if  the band gap energy, absorption coefficient and refraction index of a material 

are known by using the Roosbroeck-Shockley model [22].

At thermal equilibrium, it is often assumed that the electron concentration will be equal to the 

hole concentration [22], and hence Equation 3-2 may be re-written as,

^ R a d ia tiv e  =  3-3

where n is the carrier concentration assuming n=p.

3.3.1 Phase space filling

Phase space filling is a process which leads to high energy states being occupied at high 

injection levels due to the population of low energy states. The relationship in Equation 3-3 

shows that the radiative recombination is expected to have quadratic carrier density 

dependence at low carrier densities. However, previous studies show that phase space filling 

'will reduce the radiative recombination rate at high currents [23, 24]. Figure 3-2 shows an 

illustration showing a changing momentum value between the electrons and holes at high 

injection that occurs because of the different effective masses of the conduction and valence 

bands.
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Figure 3-2-The effects of phase space filling whereby at low injection currents (a) there is a 
similar momentum value at low injection currents (b) an increased momentum 
mismatch at high injection currents.

The increasing momentum mismatch between the electron and holes will lead to a reduction in 

the radiative recombination rate at high carrier concentrations, as shown in Figure 3-3 [25].
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Figure 3-3- Semi-logarithmic scale showing the dependence of radiative recombination on 
carrier concentration for 410nm device (black line) and a 530nm device (grey 
line) which takes into account both the increase in the radiative rate due to an 
increased electron and hole wavefunction overlap and the reduction in the 
radiative recombination rate due to the increasing momentum mismatch 
between the electrons and holes at high injection {taken from [26]}.

Figure 3-3 shows the dependence of the radiative recombination coefficient on carrier 

concentration will be constant at low injection levels and reduce at high injection levels. The 

dependence o f the radiative recombination rate on the carrier injection level will be influenced 

by the screening of the internal fields with increasing carriers concentration (increasing the 

radiative rate- mid currents for the 410nm device (black line in figure)) and phase space filling 

effects (which reduce the radiative rate- at high currents).

The relationship between the radiative coefficient and carrier concentration due to phase space 

filling effects may be described as [27],

« = 5%
with Bo is the radiative coefficient of a material in the absence of phase space filling effects 

and no is a constant which is caused by phase space filling.

The diagram below shows the influence of the radiative recombination coefficient reducing 

from lO'^^cm^s'^ (red line) to lO'^^cm^s'^ (blue line) on the efficiency. The green line shows 

the effect of phase space filling where there is a reduction in the current at which the 

efficiency begins to saturate but the overall trend of an increasing efficiency vAth increasing 

current density remains.
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Figure 3-4- Internai quantum effieieney dependence on current density with different radiative 
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effects with Bo=7 x 10^^cm"^s'\ no = 5 x 10^^cm'^ for a 430nm quantum well

It is shown that the influence of phase space filling will not result in efficiency droop but may 

facilitate an earlier onset of efficiency droop if a droop-causing mechanism is present.

3.4 Non-Radiative Recombination

3.4.1 Defect-related Recombination

The existence of non-radiative recombination in semiconductor devices will reduce the 

proportion of radiative recombination and limit the device efficiency. One form of non- 

radiative recombination is Shockley-Read-Hall recombination via defect sites that occurs due 

to impurity atoms, native defects and dislocations. The existence of defect sites within the 

forbidden gap is expected to capture electrons from the conduction band and holes from the
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valence band and release energy through the emission of a phonon or a photon which has a 

smaller energy than that o f the band gap.

Defect-related recombination is expected to be proportional to the defect density, trap size and 

carrier concentration providing that the defect density is small compared with the carrier 

concentration [29, 30]. The non-radiative lifetime, Xm, due to recombination at defect sites may 

be described by Equation 3-5.

T^r =  Tr~—  3-5
NrVnCTn

Where N t is the defect trap concentration, v„ is the carrier velocity and On is the cross section 

o f the defect traps.

The monomolecular rate, also known as the Shockley-Read Hall recombination rate, may 

therefore be determined from,

Rnr =  ^ =  (WrU„o-„)n 3-6
T-nr

where n is the carrier concentration.

The combined constants (N t, Vn and On) are usually replaced by the non-radiative 

recombination coefficient. A, to simplify Equation 3-6 to,

Rjir — 3-7

The efficiency equation (Equation 3-1) can therefore be re-written as the ratio o f the radiative 

recombination rate compared vHth the total recombination rate which consists o f both the 

radiative and non-radiative monomolecular recombination if all other loss mechanisms are 

neglected.

Modelling the efficiency using Equation 3-8 shows that the efficiency is expected to be 100% 

over the entire carrier density range if  monomolecular defect-related recombination is 

negligible as shown in Figure 3-5 (black line).
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Figure 3-5- Modelled efficiency dependence on carrier density for different monomolecular 
recombination rates from Os'̂  to lO^s’  ̂ (radiative reeombination rate, B=1.8 x 
lO’^^cm^s'  ̂ from Shenc/^/. [31]).

Figure 3-5 also shows that the effects of an increasing monomolecular rate will reduce the 

efficiency over the entire current range and cause an increase in the carrier concentration at 

which the effieieney begins to saturate. The modelled increase in defeet-related recombination 

rate is consistent with the experimental observations of Schubert et al. where devices of higher 

dislocation density were found to have a reduced peak effieieney [30]. In the study it is shown 

that the increased defect-related recombination rate results in a reduction of the effieieney 

droop. The authors therefore conclude that a defect-related loss mechanism is not the cause of 

efficiency droop [30]. However, as high efficiency is achieved in InGaN based devices despite 

a high number of threading dislocations, efficiency droop may be still be caused by a defect- 

related loss mechanism which will be discussed further in sections 3.4.3 and 3.7.

3.4.2 Auger Recombination

Auger recombination is a non-radiative process where the energy produced by the 

recombination of an electron with a hole promotes a third carrier to a higher energy state. This 

process has been suggested to reduce the efficiency of InGaN-based devices at high injection 

currents [31-33]. To a first approximation the Auger recombination process is expected to 

have cubic carrier concentration dependence due to the involvement of three carriers. This 

process is therefore consistent with experimental observations of a eubic carrier concentration
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dependence on the injection current in the current regime where efficiency droop occurs as 

shown in Figure 3-6.
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Figure 3-6 -Double logarithmic plot of the optic emission power as a function of current 
density indicating the difference carrier density dependences. This may be the 
result of different recombination mechanisms occurring in different current 
regimes [34].

The current density, J, will therefore have contributions from defect-related recombination, 

radiative recombination and Auger recombination if other loss processes such as carrier 

leakage are neglected as shown in the relationship.

J  =  eL(An + B r i^  + C n ^ ) 3-9

where L is the active layer thickness, e is the electron charge, n is the carrier density and A, B 

and C are the monomolecular, radiative and Auger recombination coefficients, respectively.

The efficiency is said to be described by using the “ABC” model if  defect-related 

recombination, radiative recombination and Auger recombination are the only recombination 

mechanisms. The efficiency equation using the ABC model is then.

Bn‘
An+Bn^+Cn^

3-10

Many groups have concluded that Auger recombination is the cause of efficiency droop based 

on the fact that they can fit their experimentally observed efficiency droop using this model. 

Figure 3-7 shows that this model will show efficiency droop if Auger recombination is 

included in the efficiency equation.
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Figure 3-7-Modelled efficiency dependence on carrier density when modelled using an Auger 
recombination argument using A= 5.7 x 10^s'\ B=1.8 x 10‘^^cm^s'  ̂ and C = 1.6 
X  lO'^^cm^s’  ̂ (as measured in Shen et (black line) compared with the
case where there is no Auger recombination (red line).

Despite the good agreement o f the model with experimental observations the physical reason 

for such a high Auger recombination rate in wide bandgap devices is unclear. Theoretical 

calculations and experimental data predict that the intraband Auger recombination rate reduces 

as the band gap energy increases as shown in Figure 3-8 and will not be strong enough to 

cause droop in devices which have band gap energies which are above ~2eV.
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Figure 3-8 Auger recombination coefficient, C, as a function of band gap for different 

materials determined experimentally and from theoretical calculations. The 
green dots represent direct Auger recombination, whilst the red dots represents 
possible indirect Auger recombination (from Brendel et al. [35]).

The reduction in the number of states available where the energy and momentum will be 

conserved following an Auger recombination process reduces with increasing bandgap energy. 

One would therefore expect a negligible Auger coefficient in nitride-based devices which have 

bandgap energies of 2-3.5eV. This finding indicates a direct Auger recombination process is 

unlikely to be the dominant cause of efficiency droop in nitride-based LEDs.

It was suggested by Delaney et al. that inter-band Auger recombination may be the cause of 

efficiency droop [36]. In this process. Auger recombination promotes electrons to higher 

energy states in a second conduction band as illustrated in Figure 3-9 . Figure 3-9 also shows 

that there will be a strong increase of the Auger recombination coefficient in the blue-green 

emission region if this process takes place.
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resonance in the Auger recombination coefficient due to inter-band Auger 
recombination that is caused by available states in the second conduction band 
(from Delaney et al. [36])

Inter-conduction band Auger recombination is, however, only predicted to occur in devices of 

a limited range o f energies (2.25eV to 2.75eV) and is unlikely to explain the efficiency droop 

effects for devices which have emission over the entire violet-blue-green region. Further 

calculations by Bertazzi et al. [37] also indicate that the contribution of Auger recombination 

due to transitions to the second conduction band will be negligible, hence this theory has not 

gained traction.

Microscopic many-body calculations [32] were performed to determine whether alternative 

forms of Auger recombination will also have cubic carrier density dependencies. Pasenow et 

al. [32] show that the carrier density dependence of indirect Auger recombination processes 

will be similar to that of the direct Auger recombination process and determined that an Auger 

recombination process which is mediated by a phonon (as illustrated in Figure 3-10) is a more 

probable cause than a direct Auger process. The release o f energy and momentum through the 

emission of a phonon will satisfy momentum and energy laws leading to an increased 

likelihood that an indirect Auger process occurs in comparison with the direct Auger 

recombination process.
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Figure 3-10- Illustration of a direct Auger process (left) and an indirect Auger process which 
is accompanied by a phonon (right) {taken from [32].

The authors suggest that the phonon-assisted Auger process is expected to be stronger in the 

nitride-based devices because there is a stronger electron-phonon coupling due to the smaller 

dielectric constants of the nitrides (GaN, 9.7) compared with longer wavelength devices from 

other material systems (e.g. GaAs, 12.9). The smaller dielectric constant is expected to cause a 

stronger coulomb interaction which may enhance the Auger recombination rate. The high 

effective mass of the holes in the nitride material system and the strong electron-LO phonon 

Frohlich interaction is also believed to enhance the Auger recombination rate. Carrier 

localization, which will be discussed in more detail in Section 3.7, is also likely to enhance the 

Coulombic interaction [38].

Further support that indirect Auger recombination may be significant in nitride based devices 

is found in the first principle calculations of Kioupakis et al. [33]. The calculations indicate 

that phonon-assisted and alloy scattering processes are the cause of indirect Auger 

recombination in InGaN. The alloy scattering process is found to be caused by the local break 

in crystal symmetry that is experienced by introducing indium atoms to the GaN lattice. The 

cause of the phonon-assisted Auger recombination processes is suggested to be enhanced in 

the nitride-based material due to their ionic nature which will result in strong carrier-phonon 

coupling [39]. The calculations find that the Auger coefficient increases, in addition to a 

reduction of the radiative recombination coefficient [39], with reducing band gap. The authors 
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therefore attribute indirect Auger recombination as the dominating cause of the “green-gap” 

problem where devices with emission in the green region have reduced efficiencies compared 

with devices which emit in the red or blue region.

Photoluminescence measurements taken by Shen et al. [31] on quasi-bulk InGaN layers grown 

on GaN which do not have strong internal polarization fields (these fields will be discussed in 

more detail in Section 3.6) indicate that droop will occur when carriers are optically excited 

despite there being no issues relating to the injection of holes (further details of this effect will 

be discussed in Section 3.5). Droop in the resonant optical excitation experiments was 

observed to occur at low excitation levels where there is not expected to be the escape of 

carriers over potential barriers. A fit of the efficiency as a function of excitation density 

provided Auger coefficients of (1.4-2) x lO'^^cm^s"  ̂ for different samples. Such an Auger 

recombination coefficient is four orders of magnitude higher than the value that is extrapolated 

from the Auger coefficient vs bandgap trend (1x10 '̂ "̂ cm̂ s"̂ ) (see Figure 3-8).

David et al provide further support that an Auger recombination model will result in 

efficiency droop by taking radiative and non-radiative differential carrier lifetime 

measurements [27]. The non-radiative lifetime is measured and extrapolated to obtain a 

lifetime value for Shockley-Read-Hall recombination. This value is then used with 

measurements of the efficiency and carrier concentration to calculate the radiative and non­

radiative lifetime as a function o f carrier concentration. It was found that the non-radiative 

lifetime is approximately constant at 45ns at low current injection (and hence low carrier 

concentration). The radiative recombination lifetime was determined to decrease with 

increasing current due to phase filling effects (see section 3.3.1). This value is shown to be 

constant at 3ns for high injection levels. A decreasing non-radiative recombination lifetime is 

measured in this current region that is suggested to be caused by the onset of an additional loss 

path. The additional loss path at high current injection was found to have a similar carrier 

density dependence to Auger recombination when phase space filling is considered (i.e. oc v}).

Zhang et al. [40] measured an Auger coefficient of 1.5xlO'^°cmV\ In the study, the defect- 

related recombination coefficient was calculated by determining the trap concentration, Ny, 

from deep level spectroscopy and the use of the following relationship,

A n r = ^  3-11
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where a  is the capture cross-section, is the deep level density and is the thermal 

velocity. The radiative recombination coefficient was determined by simulation and the 

remaining Auger coefficient and the carrier density at peak efficiency were determined by 

fitting the efficiency graph using an iterative approach. A similar iterative approach to fit the 

efficiency curve was carried out by Meneghini et al. [41] to produce an Auger coefficient of 

1.0xl0'^^cmV\ The groups who fit their data to obtain a value for the Auger coefficient 

neglect carrier leakage and assume that the reduced efficiency with increasing carrier 

concentration is only due to Auger recombination. Schreibenzuber et a/. [42], however, used 

optical gain measurements to separate losses due to carrier leakage and processes taking place 

within the quantum well to extract an Auger coefficient o f 4.5x10'^^cm V\ The literature 

therefore provides considerable variation of the Auger recombination coefficient that indicates 

high uncertainty.

Fitting experimental data using an Auger model (also known as the ABC model) are orders of 

magnitude higher than the trend of Auger coefficient as a function o f band gap predict as 

shown in Figure 3-9. These results clarify that if  Auger recombination is the cause of the 

efficiency droop phenomenon then it must be in the form of indirect phonon-assisted Auger 

recombination or inter-conduction band Auger recombination. Most groups which suggest 

that Auger recombination is the cause of efficiency droop reach such a conclusion based on 

the fact that measured observations can be fitted using the “ABC” model. The fitting using 

this model may, however, be caused by an alternative non-radiative recombination process 

which has a similar dependence on carrier concentration.

3.4.3 Defect Recombination at High Injection Currents

The cubic carrier density on injection current at high injection currents where efficiency droop

occurs in nitride based LEDs is the central argument that Auger recombination is the cause of

the relative reduction in efficiency as currents are increased to high values. However,

theoretical calculations carried out in Hader et al. [26] find the Auger recombination rate for

phonon-assisted transitions is too small to account for efficiency droop. The authors proposed

that a defect-related loss mechanism may be the cause of efficiency droop if it has a similar

carrier density dependence to the previously assumed Auger recombination at high injection

currents. The authors suggest that defect-related recombination will consist o f the

conventional monomolecular defect-related recombination in addition to a density-activated

defect recombination (DADR) process which occurs at high carrier densities.
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It is predicted that carriers will be localized away from most defect sites in potential minima at 

low injection currents (see Figure 3-1 la) where only conventional defect-related 

recombination occurs. However, the carriers will be delocalized due to the saturation o f the 

localized states at the band edge to areas where there is a larger defect-density (Figure 3-1 lb) 

causing the onset of density-activated defect recombination.
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Figure 3-11- Illustration to show (a) the localization of carriers in potential minima due to 
well-width fluctuations and/or composition fluctuations and (b) areas at higher 
energies which consist of defects (image from Hader et al. [26]).

The loss current density due to defect-related recombination, Jdefect, is expected to have a 

similar linear dependence on carrier density in the low current region as described in section 

3.4.1 and may therefore be described by.

J d e f e c t  ~  A n  
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The proportion o f current which is converted into photons, Jrad, is given by,

Jrad =  B (n )n 2  3-13

where the influence of phase space filling on the radiative coefficient (section 3.3.1) is also 

taken into consideration.

In the model it is assumed that at low carrier densities these are the only two recombination 

paths, conventional monomolecular recombination and radiative recombination. However, at a 

certain carrier density, noAOR, (related to when carriers are able to escape from potential 

minima and begin to fill the entire quantum well), there is an additional loss path related to 

recombination at defect states that become important as carriers become delocalized, Jdad r , 

which can be determined from the relationship,

J d a d r  =  forn>nDADR 3-14a
^DADR 2riD A D R

J d a d r  “ 0 for n < n o A D R  3-14b

where e is the charge of an electron, n^ is the number of quantum wells, n is the carrier 

concentration, and is the recombination time at high current densities where there is

density-activated defect recombination.

The authors suggest that one of the (n-noAOR) factor o f the density-activated defect 

recombination accounts for the conventional defect-related recombination and the second 

factor accounts for an increasing number o f defect centres which become available as there is 

an increase in the carrier concentration. It is therefore assumed that in the simplest form there 

is a (n-noADR)  ̂dependence.

It was found that the experimentally observed efficiency droop can be reproduced using the 

DADR model if  this carrier concentration dependence is employed. Therefore unlike 

conventional defect-related recombination, DADR will have a stronger dependence on the 

carrier concentration dependence than radiative recombination resulting in efficiency droop as 

shown in Figure 3-12.
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Figure 3-12- The efficiency modelled as a function of carrier concentration with the density- 
activated defect recombination as a cause of efficiency droop where 
A=6.25xl0^s'\ Bo=7xlO'^^cm^s'\ no=5xl0^^cm'^, tdadr=4.5x10'^s and
nDADR^4xl0^^cm'^ {taken from [43]}.

In more recent work by Hader et al. [44] it is shown that the efficiency droop curves at 

different temperatures can be modelled accurately by using the proposed density-activated 

defect recombination model. The conventional defect-related recombination has a strong 

temperature dependence related to the temperature activated dependence (proportional to 

exp((-Ea/kbT)), where Ea is the activation energy, and the density-activated defect 

recombination is shown to reduce with increasing temperature. The authors attribute this 

dependence to a lower occupational probability of the electron and holes with increasing 

temperature for a given carrier density. Therefore the electron-electron scattering that excites 

carriers above the potential barriers also decreases with increasing temperature. An increase in 

the threshold carrier density value, u d a d r ,  is therefore required in order to obtain the necessary 

scattering required to excite the carriers above the potential barriers of the potential minima.
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3.4.4 Carrier Leakage

The final non-radiative loss path whieh has been proposed by several groups to eause 

efficieney droop is carrier leakage. The carrier leakage process has previously been shown in 

GalnNAs materials [45] to be due to the escape of carriers from the conduction band minima 

whieh occurs at zero momentum, the F valley, to the conduction band minima which exist at 

different momenta that will eause a strong reduction in the radiative recombination rate. 

However, the escape of carriers from F valley to other conduction band minima to other 

conduction band minima is not expected in GaN as the energy gap between the A, M and L 

valleys and the valence band maximum are significantly larger than the separation for the F 

valley as shown in Figure 3-13.

Wurtzite

A-valley M-L-valleys

300 K
Eg= 3.39 eVr-valley
E \i- l— 4.5 - 5.3 qW 
E a =  4 .7 - 5 .5  eV  
E so=  0.008 eV 
E „ =  0.04 eV

Light holes

Split-off band

Figure 3-13- The band structure of GaN showing the F, A, M and L valleys of the conduction 
band and the heavy holes, light holes and split of bands of the valence bands 
(from [46]).

Groups have therefore proposed that the carrier leakage that causes droop is due to the non­

capture or escape of carriers in the quantum well as illustrated in Figure 3-14.
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Figure 3-14- Illustration to show the non-capture and escape of electrons from the conduction 
band of a quantum well.

Direct carrier leakage from the F in InGaN to the F in GaN is expected to reduce with 

increasing indium content due to the increasing confinement energy due to a larger band 

offset. However, this is not consistent with the increasing droop effect for green LEDs in 

comparison with blue LEDs as will be shown in Section 5.9.

A strong carrier leakage effect may be the result of strong internal polarization fields (which 

will be discussed in more detail in Section 3.6). Simulations by Kim et al. [47] indicate that an 

increased field strength will increase the likelihood of electron leakage occurring.

Schubert et al. [48] investigated the polarization effects further by using quantum wells which 

consist o f reduced strain by replacing the GaN barriers with AlGaInN barriers. Figure 3-15 

shows that there is a reduced droop effect for the LED whieh consisted of AlGaInN barriers 

along with a reduced peak efficiency. The authors suggest that the lower peak efficiency is 

caused by poorer growth quality and that the reduced droop effect is a direct consequence of 

the reduced electron leakage rate. This is due to the reduced internal fields resulting in a larger 

electron confinement because o f a higher effective barrier height.
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Figure 3-15- Efficiency droop behaviour of GaInN MQW devices with GaN barriers (black) 
and AlGaInN barriers (red) which has a lower polarization value and reduced 
droop effect {taken from [48]}

Hole injection issues are expected to result in a low hole concentration within the active region 

that will subsequently cause electron leakage. Xie et al. [49] provide evidence that hole 

transportation is problematic as it was found that LEDs which consisted o f p-doped barriers 

had a higher current density at which efficiency peaks in addition to a reduced efficiency 

droop effect. However, it is not clear from the paper whether the overall efficiency is 

improved or reduced as normalized efficiencies were presented. Similarly, Ni et al. [50] 

observe that reducing the width of the barriers also resulted in a higher current density at 

which the efficiency peaks. These findings suggest that the efficiency droop phenomenon is a 

result of poor hole transportation that cause a build-up of electrons that are then able to escape 

from the quantum well. Despite such findings, the fact that droop is observed in 

photoluminescence measurements indicates that hole injection is unlikely to be the cause of 

efficiency droop.

A direct observation of carrier leakage was observed in Vampola et al. [51] where an 

additional larger energy gap quantum well than the active region quantum well was grown 

between the electron blocking layer and the p-GaN cladding. The authors show that at low 

injection current the emission results from only the quantum well in the active region. 

However, an additional peak is observed in the emission spectra as the efficiency begins to 

show droop behaviour. Although these results show that electron overflow occurs, the cause of 

this overflow may be due to either direct carrier leakage or an Auger-induced overflow as the 
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Auger recombination process may also promote electrons to higher energy levels which 

scatter into the blocking layer.

3.5 Carrier Injection Issues

The efficiency droop effect (see Figure 3-1) indicates that there is a higher efficiency at 

currents where the carrier concentration is smaller. Optimization of devices has been achieved 

by reducing the carrier concentration at high currents by growing wider quantum wells. 

However, the increased well width will also cause a larger quantum confined Stark effect 

(QCSE) (described in more detail in section 3.6) which will reduce the radiative 

recombination rate which will be accompanied by an increase in the non-radiative 

recombination rate. The larger defect density of wider wells is due to an increasing proportion 

of indium used to grow the quantum well. An alternative method to reduce the carrier 

concentration and reduce the Fermi level is to increase the number of quantum wells in the 

active region. However, studies have shown that increasing the number of quantum wells will 

not reduce the carrier concentration due to the majority of carriers recombining in the quantum 

well which is closest to the p-GaN side due to the lower hole mobility [50, 52, 53].

The low hole concentration in the active region can be attributed to both the relatively low 

activation of Mg-dopants (Figure 3-16) and small hole mobility (Figure 3-17) which are issues 

that are expected to become more prominent at low temperatures.

0 1  2 3 4 5 6 7 8 9  10 11
1000/T(1/K)

Figure 3-16- Hole concentration as a function of temperature for Mg-doped samples with
different concentrations: sample A (1.6 x lO^^cm'^), sample B (4 x lO^^cm'^) 
and sample C (8 x 10^  ̂cm'^) [54]
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Figure 3-17- Hole mobility as a function of temperature for samples of increasing Mg-doping 
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Laubsch et al. [34] suggested that a weak temperature dependence of the droop effect is

unlikely to be caused by a thermally-activated loss mechanism such as electron leakage. 

However, the temperature dependence of carrier leakage in InGaN-based devices may be 

complicated by the improvement of hole injection with increasing temperature. Simulations by 

Piprek et al [55] show that an increase in the hole transportation will result in an improved 

electron-hole overlap thereby reducing the carrier leakage effect. Wang et al. have shown that

there is a reduced droop effect for devices grown with graded barriers (6% droop), as

illustrated in Figure 3-18, compared with that of a conventional LED (34%) [56].

Figure 3-18 shows that there is an improved carrier distribution for the device with graded 

barriers as the Fermi level for holes in the quantum wells which are closest to the n side o f the 

active region is closer to the valence band edge. Simulations in an alternative study also 

predict that there will be a reduced efficiency droop effect due to improved hole transportation 

if the conventional GaN barriers are replaced with InGaN barriers in order to aid hole 

transportation [57].
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Figure 3-18- Illustration of the band diagram of an LED with graded barriers compared with a 
conventional LED with the Fermi levels included to show larger distribution of 
holes in the valence band in the case of the graded barrier case {taken from 
[56]}.

Another important property o f InGaN-based devices is that there is the inclusion of an electron 

blocking layer (EBL) to reduce electron leakage from the active region [58]. However, the 

EBL may have a detrimental effect on efficiency due to the hindrance of hole transportation 

[59, 60]. An increased droop effect was observed by Han et al. [60] for an LED which 

included an EBL. A further increase to the efficiency droop effect was measured for an LED 

that included an AlGaN EBL of high aluminium content. The authors concluded that hole 

injection issues due to the inclusion of the EBL enhances the efficiency droop effect. Despite 

the enhanced droop effect, LEDs which include an EBL are found to have an improved light 

output performance [59] compared with LEDs that do not consist of an EBL. Figure 3-19 

shows the effects of the injection issues on the luminescence properties for LEDs with and 

without EBLs [59]. Whilst the electroluminescence was found to increase with reducing 

temperatures for the LED which did not include an EBL (LEDl), due to the reducing defect- 

related recombination rate, the electroluminescence of the LEDs with EBLs (LED2 and 

LED3) is found to drastically decrease below 200K. These findings are expected to show that 

there are poor injection issues that are exacerbated by the inclusion of the EBL. 

Photoluminescence measurements were also taken in order to overcome any issues relating to 

hole injection and it was found that the LEDs have similar temperature dependences 

regardless of whether they include an EBL or not.
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on temperature for LEDl (no blocking layer, 3% indium content), LED2 (with 
EBL, 3% indium content) and LED3 (with EBL, 15% indium content) {taken 
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The inclusion of an EBL is therefore necessary to improve the overall performance of nitride- 

based LEDs. However, this may come with a trade-off of a strong droop effect. The EBL must 

therefore be carefully designed to optimize performance by efficiently blocking electrons 

whilst not impeding the hole injection.

3.6 Piezoelectric and Spontaneous fields

Particular to the nitride-based quantum well devices is the existence of strong internal fields 

which have been observed to be a magnitude higher than in other III-V materials [61]. 

Simulations carried out by nextnano software are presented to show the effect o f the internal
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fields on an InGaN quantum well of 0.16 indium content that is surrounded by GaN barriers 

and an AlGaN EBL of 0.20 aluminium content. This software uses a k.p model to simulate the 

performance of quantum structures. Figure 3-20 shows simulations of the band edge and the 

effect on the electron and hole wavefunctions where there are no internal fields (a) and an 

internal field strength o f l.lM V cm '\
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Figure 3-20- Simulations showing show an InGaN quantum well structure with an indium 
content of 0.16 with a) no internal fields and b) an internal field of strength 
l.lMVcm'^ and the electron and hole wavefunction overlaps.
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The simulations show that the wavefunctions of the electron and hole strongly overlap (93%) 

in the case where internal field strength is zero. The overlap is found to reduce to (11%) for an 

internal field strength of l.lM V cm "\ The influence o f the changing wavefunction overlap 

will have a strong impact on the recombination processes occurring as discussed further in 

Sections 5.7 and 5.8.

The total electric field in the active (A) or cladding (C) regions results from a contribution of

the spontaneous (SP) electric field and the piezoelectric (PZ) electric field as described in

Equation 3-15.

Ea.c = E ^ T + E ^ T  3-15

The contribution from the piezoelectric field results from the induced strain which is caused 

by the difference in lattice constant between materials which are grown on top o f one another. 

The spontaneous field, however, is caused by the material composition and may exist in a 

system which is unstrained[62].

The strength o f the piezoelectric polarization field can be calculated as from Equation 3-16.

P^2 =  f . s  3-16

where ^  is the piezoelectric tensor and s is the strain field.

The strength o f the piezoelectric fields in the active and cladding regions are then

=  3-17
tcSA+tA^C

3-18
^ tc S A + tA E c

where and tA,c are the dielectric constants and thicknesses, respectively, o f the active and 

cladding regions.

The electric field contribution from spontaneous polarization can be calculated as

E iP  =  3-19
tc£A+tAEc

^  tcE A + ^ A E c
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A similar spontaneous polarization is found for GaN and InN despite a large change in lattice 

constant as shown in Figure 3-21.
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Figure 3-21- Spontaneous polarization for different alloy compositions for the nitride-based 
material systems as a function of lattice constant {taken from [61]}

Figure 3-22, however, shows there is a stronger change in the piezoelectric polarization 

between GaN and InN.
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Figure 3-22- Piezoelectrie coupling constants 033 (squares) and 031 (circles) for nitride based 
materials of varying alloys as a function of lattice constant {taken from [61]}.

The difference in the spontaneous polarization between the active and cladding layers may 

therefore be neglected in comparison with the changing rate of piezoelectric field with 

increasing indium content. Therefore the piezoelectrie field will be the main contribution to 

the internal polarization field in InGaN-based devices.

A reduced efficiency droop effect has been observed for devices grown in the non-polar 

direction where there are no internal fields [63]. However, despite these improvements there 

remain issues in producing devices whieh are grown with non-polar orientation due to the 

difficultly in growth procedures whieh result in an increased defect density [64, 65]. Whilst a 

lower efficiency droop effect has been observed in m-plane devices, the light output power 

remains comparable to devices grown along the e-plane at high injection currents [6 6 ] (see 

Figure 3-23).
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Figure 3-23- Comparison of light output and efficiency droop behaviour of LEDs grown along 
the c-plane (left) and m-plane (right) {taken from [6 6 ]}.

Commercial devices are therefore only expected to be grown along the m-plane if  there are 

significant improvements to the device efficiencies at high injection currents due to the 

increased difficulty in producing m-plane wafers.

3.7 Localization Effects Caused by Well Width and/or Indium Content 

Fluctuations

The high internal strain associated with InGaN-based emitters (described in Section 3.6) also 

causes a large threading dislocation density ( 1 0 ^-1 0  ̂ cm'^) that is expected to result in poor
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luminescence. It has been observed in other material systems that devices will have poor 

performance if the threading dislocation density is above 10^cm'^ [63]. The existence of 

potential minima due to well width and/or indium content fluctuations have been attributed to 

be the cause of the high radiative efficiencies of InGaN-based LEDs [67] due to the 

localization of carriers away from defect sites.

Until relatively recently, the localization of carriers in InGaN-based devices was believed to 

be caused by strong indium-rich clusters which reduce the band gap energy thereby localizing 

the carriers away from recombining at non-radiative defect centres [68]. This conclusion was 

reached due to the observations of dark spots in Transmission Electron Microscopy (TEM) 

images of InGaN samples which were thought to be areas of large indium content. However, it 

was shown by Humphreys’ GaN group at Cambridge University that the dark spots did not 

appear in the TEM images if a low beam intensity is used [69]. It was therefore concluded that 

the dark spots which appeared in the TEM images that use high beam intensity were caused by 

electron beam damage to the InGaN samples. Much weaker dark dots are observed which may 

be attributed to slight indium fluctuations. Three dimensional atom probe studies were 

undertaken on InGaN samples [70] as it is unclear if the electron beam in TEM imagery also 

causes damage to the samples even if a low intensity is employed. It was found that there is no 

evidence of indium clustering and that the InGaN samples show an indium distribution which 

follows a random distribution. The observations suggest there an alternative process which 

results in the formation of potential minima which localize carriers and prevent defect-related 

recombination in the InGaN material system.

Quantum well fluctuations have been observed in the more established AlGaAs material 

system which were able to localize carriers at low temperatures [71]. This localization effect 

was found to be only important at low temperatures. However, due to the high strain and 

piezoelectric effect found in the InGaN material system, the fluctuations in InGaN could lead 

to a stronger localization of carriers at higher temperatures. Quantum well thickness 

fluctuations o f l-2nm are shown in TEM imagery would result in a localization energy of 

60meV which is sufficient to localize carriers at RT ( kbT= 25meV) [72]. Therefore the 

localization effect may have an influence on the efficiency droop phenomenon (see Sections 

3.4.3 and 5.10).
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3.8 Chapter summary

The efficiency droop phenomenon, a process whereby there is a relative reduction of 

efficiency following a low current peak, was introduced in this chapter. The cause of 

efficiency droop has been widely debated in the literature with the main arguments including 

Auger recombination, carrier leakage and density-activated defect recombination.

It has been shown that phase-space filling effects are likely to reduce the current at which the 

efficiency will peak but will not cause the efficiency droop effect itself. It was therefore 

concluded that the efficiency droop phenomenon results fi*om an onset o f an additional non­

radiative recombination process at higher currents.

The observation that the light output power has cubic carrier density dependence at high 

currents where efficiency droop occurs is the main argument supporting the view that an 

Auger recombination processes is the cause of efficiency droop. The direct Auger 

recombination process was determined to be negligible in the wide band gap region and 

therefore a phonon-assisted Auger recombination is proposed by several groups to be 

responsible for efficiency droop. Different groups have found that an Auger coefficient that is 

significantly higher than expected is required to model the experimentally observed efficiency 

dependence on current using a simple ABC model. The Auger recombination was therefore 

attributed to phonon-assisted Auger recombination where energy and momentum are 

conserved by the emission or absorption of a phonon which accompanies the Auger 

recombination process.

However, calculations performed by other groups find that the Auger recombination rate, 

including that of phonon-assisted Auger recombination, is too small to explain efficiency 

droop. Another argument was therefore proposed as the cause of efficiency droop in the form 

of density-activated defect recombination whereby there in an additional defect-related 

recombination path at high currents. This model attributes the high peak efficiencies achieved 

at low injection levels to be due to carriers being localized in potential minima which form 

due to well-width and/or indium composition fluctuations. It was suggested that the additional 

defect-related loss path is the result o f carrier delocalization leading to carriers occupying 

areas of higher defect density.

69



Carrier leakage is the third candidate loss mechanism that is often attributed as the cause of 

efficiency droop. In this process, carriers either escape from, or overshoot, the quantum well 

to recombine elsewhere. Simulations show that the existence of internal piezoelectric fields 

(which result from high strain effects that are caused by the lattice constant mismatch between 

the active and cladding regions) will enhance the droop effect. Observations also found that 

there is a stronger droop effect with reducing hole injection efficiency. This is expected to be 

due to an enhancement of the electron leakage rate.

The final section o f this chapter described the effects of an inhomogeneous energy band edge 

which may be the cause of the high peak efficiencies in nitride-based devices. This is due to a 

reduction of defect-related recombination as carriers are localized in potential minima. The 

existence of the potential minima may also play a role in the efficieney droop process.

Investigating the validity of the different models forms a significant part of this thesis.
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4 Experimental Techniques

4.1 Chapter Aim

This chapter describes the experimental techniques used in this study to investigate the 

recombination processes occurring in InGaN-based devices. The first part o f this chapter 

shows images o f commercial blue and green InGaN-based LEDs which were produced using 

transmission electron microscopy (TEM). The TEM images reveal important structural 

properties which are useful for the analysis.

Spectroscopy measurements are then described which may be used to achieve information on 

the radiative recombination that takes place in InGaN blue-green LEDs. Another technique 

used in this study to investigate the device structure is photo-current spectroscopy which 

involves the absorption of light at different wavelengths. The final method to investigate the 

light output performance of the devices is by the use of silicon diode integrating spheres which 

are connected to light power meters.

The temperature and pressure dependence o f the light output performance in InGaN-based 

devices are the main techniques used in this thesis. Two cryogenic systems are described, a 

closed cycle helium gas cryostat and a liquid nitrogen cryostat, which are used to achieve 

temperatures between 20K and 400K. The final section of this chapter describes the technique 

o f applying pressure to semiconductor devices. Pressure techniques result in a change in the 

bandgap energy o f the devices and therefore provide a valuable tool to investigate different 

recombination mechanisms.

4.2 TEM characterization of commercially-available devices

The devices used in most o f this study are commercial LEDs manufactured by Nichia 

Corporation. The device details are therefore not supplied due to commercial secrecy. 

However, structural characterization o f the devices may be achieved by the use o f 

transmission electron microscope (TEM) images as shown in Figure 4-1 for a blue and a green 

LED.
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Figure 4-1- Transmission electron microscope images of a blue LED (upper image) and a 
green LED (lower image)

The images show that at the top of the devices (p side) there is a six layer superlattice 

followed by the active region. There is another superlattice which consists of ten layers that is 

included after the active region at the n-side of the device. The areas of different brightness in 

the images show elemental contrast. Bright areas are higher atomic numbers and darker areas 

are lower atomic numbers. It can then be concluded that the six layer superlattice at the top of 
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the device is likely to consist of AlGaN (“dark” lines indicating a low atomic number) layers 

separated by GaN. The active region of the blue LED is made up of 6 InGaN (“light” lines 

indicating a high atomic number) quantum wells which are separated by GaN barriers. The 

green LED shows four “light” lines which indicate that there are four quantum wells in its 

active region. On the bottom of the devices there are further “light” lines which are less bright 

compared with those of the active region which are expected to be lower indium content 

InGaN layers separated by GaN layers. This superlattice is expected to be included to reduce 

the threading dislocations from reaching the active region where they will reduce the radiative 

efficiency [73]. These dislocations arise because of the large lattice mismatch and thermal 

incompatibility o f the GaN layer and the substrate material which is usually sapphire. The 

addition of the superlattice at the bottom of the device is expected to be included to reduce 

dislocation density within the quantum well [74]. The AlGaN/GaN superlattice on the top may 

be attributed as an electron blocking layer [59] which is included in order to prevent electrons 

from leaking out from the active region to the pGaN side where they may recombine with 

holes.

The analysis of the contrasting lines is achieved through the use of imaging software imageJ to 

produce intensity profiles, an example of which is shown for the blue LED in Figure 4-2.
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Figure 4-2- The intensity profile o f a blue LED taken by TEM imagery using the computing 
software imageJ.
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The information obtained from the TEM images may be used to construct schematics of the 

blue and green LEDs as shown in Figure 4-3.
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Figure 4-3- Schematic o f the LED structure for the blue LED (top illustration) and the green 
LED (lower illustration) showing an active region of 6 MQWs and 4 MQWs, 
respectively.
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Dimensional information can also be obtained from the TEM images whereby it is observed 

that 1.8nm AlGaN layers are separated by 1.8nm GaN layers. The InGaN quantum wells are 

determined to be 2.9±0.4nm 'with GaN barriers of 13.2±0.6nm (blue LED) and 16nm (green 

LED), and the InGaN/GaN superlattice next to the nGaN side consisted o f 1.8nm layers with 

barriers of 1.8nm.

A further schematic of the LEDs can be used to show the different layers used to construct the 

LEDs.
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Figure 4-4- Schematic showing the different layers o f the LED structure for a blue LED and 
the dimensions
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The dimensions of the top surface of the LED, shown in Figure 4-5, were measured using a 

microscope. S l O p m

P contact

310W.

N contact 
pad

Figure 4-5- A schematic indicating the dimensions of the top surface of the LEDs with the 
contact pads shown

4.3 Preparation of commercial devices

The epoxy encapsulates of the LEDs (see Section 2.11.3) will influence the performance of 

devices under changing temperature and pressure conditions. It is therefore required that the 

epoxy encapsulate is removed before undertaking the experiments. The packaged LED must 

be placed in dichloromethane at room temperature for 24 hours to dissolve the epoxy resin in 

order to obtain the bare chip semiconductor device. The bare die is then mounted onto 

transistor outline (TO) headers using thermally conductive paint which is baked at 175°C for 

two hours. Finally the contact pads of the semiconductor chip are bonded to the legs of the 

transistor outline header using a gold wire bonder. The device characteristics were found to be 

similar before and after the deencapsulating and bonding process as shown in Figure 4-6 and 

Figure 4-7.
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Figure 4-6-The current dependence on voltage for a packaged device before and after 
deencapsulating and bonding processes
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Figure 4-7- Spectra of a device before and after deencapsulating and bonding processes at 
5mA.

Figure 4-6 shows the turn-on voltage remains at a similar value for the device in the packaged 

condition compared with the tum-on voltage of the LED following the deencapsulating 

process. The slight change in voltage for a fixed current is likely to be due to a small increase 

in the series resistance. The process is also shown to have negligible impact on the optical 

properties of the device as shown in the spectral measurements at 5mA (Figure 4-7).

4.4 Pulsed and Continuous Wave Measurements

Joule heating is an effect whereby the flow o f electrical current may generate heat in a 

resistive material. Current may be provided in pulsed mode where the signal is periodically 

turned on and off in short pulses in order to minimize the influence of Joule heating. An 

illustration of the signal is shown in Figure 4-8.
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Figure 4-8- Schematic illustrating the pulse mode of current flow where the signal is 
periodically turned on and off.

The frequency and period of the pulses are used to determine the duty cycle o f the pulse as 

shown below.

D u ty  cyc le  =
pulse width 
time period 4-1

In the experiment the frequency, f, is set and hence the time period can be calculated from

Tim e p e r io d  =  - 4-2

The duty cycle can also be calculated from 

D u ty  cyc le  =  pu lse  w i d th  x  f 4-3

The efficiency was measured at different pulse widths in order to determine which pulse width 

would provide the maximum light output power whilst minimizing the effects o f Joule heating 

as shown in Figure 4-9.
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Figure 4-9 Electroluminescence efficiency as a function of current for different pulsed widths 
at a frequency of lOkHz.

A pulse width of 2ps with duty cycle of 2%, which is typical for investigations into InGaN 

devices [48, 50, 75], was chosen as there is high light output whilst the effects o f Joule heating 

are acceptable.

Accurate measurements of the current and voltage are gained in the experiments by the use of 

oscilloscopes (Tektronix TDS 3012) and a current probe as schematically shown in Figure 4- 

10.
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Figure 4-10- Experimental set up when pulsed mode is used to power the device where the 
light output is measured by either an Ocean optics spectrometer or an 
integrating sphere

The study into efficiency droop may also be investigated by using the CW mode as efficiency 

droop has been observed in both CW and pulsed mode as shown in Figure 4-11. Since the 

devices are driven in CW mode in applications it is useful to be able to compare the behaviour 

under CW and pulse conditions.
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Figure 4-11- Electroluminescence efficiency as a function of current showing efficiency droop 
occurs in both pulsed and CW conditions. The efficiency in the pulsed 
conditions is divided by the duty cycle in order to be compared with the CW 
mode.

The advantages of using CW mode include an enhanced time-averaged light output power due 

to a continuous current flow and easier control of either the input current or voltage of the 

LED. This is particularly useful at low temperatures where the peak efficiency was found to 

occur at very small currents (less than 0.1mA) which are difficult to accurately measure in the 

pulsed measurements.

The set up to take measurements in CW mode is shown in Figure 4-12.
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Figure 4-12- Experimental set up in supplying a CW current to the device where the light 
output is measured by either using a light power meter or an Ocean optics spectrometer

4.5 Spectroscopy Studies

4.5.1 Ocean Optics Spectrometer

The spectral response of the light being emitted from the LEDs is a useful feature which can 

be used to investigate the processes which influence the radiative emission. In this study the 

spectral studies were carried out with an Ocean Optics spectrometer. The schematic in Figure

4-13 shows how such spectrometers operate.
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Figure 4-13- Diagram of the Ocean optics spectrometers used in the study {taken from [76]} 
where 1- SMA connector, 2- slit, 3- filter, 4- collimating mirror, 5-grating, 6- 
focussing mirror, 7- detector collection lens, and 8- CCD detector showing how 
light of different wavelengths can be detected.

The Ocean Optics spectrometers are set up to collect light which is transmitted through an 

optical fibre that is coupled to the spectrometer through a fibre connector. The light beam is 

then focussed onto a grating by the use of a collimating mirror. The grating directs the 

diffracted light onto the focussing mirror which then focuses the light through a lens onto a 

charge-coupled device array (CCD) detector. The CCD detector converts optical signals into 

electrical signals which can then be transmitted to the computer.

4.5.2 Photocurrent Spectroscopy

Important information about semiconductor materials can be obtained by the use of 

photocurrent spectroscopy. This technique relies on the photoelectric effect where the 

illumination of the semiconductor material will result in the promotion of electrons from the 

valence band to the conduction band that subsequently forms a current. The set-up of the 

experiment can be seen Figure 4-14.
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Figure 4-14- Schematic of the photocurrent set-up where light of a desired wavelength may be 
emitted onto the device and the induced current may be measured using a lock- 
in amplifier {image of monochromator from [77]}

The light emitted from a tungsten carbide light bulb is focussed into a monochromator which 

only allows light transmission of a desired wavelength. Light from the tungsten carbide light 

bulb enters the monochromator where a collimating mirror focuses the light onto a diffraction 

grating. The diffraction grating will diffract wavelengths of light at different angles. The 

positioning of the diffraction grating will therefore only allow the desired wavelength o f light 

to be emitted through the exit slit. This technique is very useful as it provides a means of 

measuring the absorption spectrum of a device.

4.6 Light Output Power Measurements

To measure the light output power that is emitted from a device an integrating sphere which is 

connected to a power meter is used. The collection efficiency is higher in the silicon-based 

integrating sphere compared with optical fibres due to a larger aperture which also makes it 

easier to achieve constant collection efficiency. The integrating sphere has a spherical shape 

and is coated with a white reflective coating in order for any light which is incident on the 

integrating sphere to be collected by scattering reflections. The light collection was taken by 

either an Anritsu Optical power sensor MA9802A, which is connected to an Anritsu Optical 

multimeter or an ILX integrating sphere which is connected to an ILX OMM-6810B optical 

multimeter.

85



The responsitivity must be considered when taking measurements as shown for a typical 

silicon based detector in Figure 4-15.
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Figure 4-15- Responsitivity of silicon-based detectors as a function of wavelength [78]

4.7 Temperature dependence experiments

The temperature of the devices was altered by the use of cryostat systems. In this study two 

different cryostats are used in order to investigate different temperature regions. Low 

temperatures, from 20K, were achieved by the use of a Leybold closed cycle helium RDK 

cryostat which has a maximum temperature of 300K. The closed cycle helium cryostat uses 

the Joule-Thomson effect to cool the cold finger whereby the expansion of the helium gas 

results in a drop in temperature. The varying pressure of the helium gas in each of the gas lines 

is achieved by a compressor system which causes different flow rates of the helium gas (see 

Figure 4-16). The desired temperature is set by a temperature controller. Electrical heaters are 

then able to increase the temperature to the desired stable temperature. Rotary and turbo 

pumps are used to generate a vacuum around the cold finger to reduce the conduction and 

convection of heat onto the cold finger and to remove water vapour which would otherwise 

condensate on the sample at low temperature.
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Figure 4-16- Schematic indicating the operation of the helium elosed-cycle cryostat where a 
compressor changes the rate at which the helium flows through gas lines and 
causes the sample to cool {taken from [79]}.

An electrical feed-through is used to provide current to the device. The device was attached to 

a copper plate which was made “in-house” in order to provide a good thermal contact. There 

were additional measures taken to ensure a good thermal contact in the form of applying 

thermal compound paste to the bottom of the transistor outline header and silver dag on the 

edge of the transistor outline header. Thermal compound paste was also used between the 

copper plate and the cold finger.

A liquid nitrogen cryostat, as shown in a diagram Figure 4-17, was used to investigate the 

temperature range between 8 OK up to 400K.
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Figure 4-17- Diagram of the liquid nitrogen cryostat {taken from [80]}.

The device was mounted onto a sample rod which is inserted through the sample rod entry 

point (see Figure 4-17) into the sample space. The sample space is then required to be filled 

with nitrogen gas that provides the thermal transport to the device. The cryostat has optical 

windows in order for the emitted light to be collected from outside the cryostat.

The reduction of temperature can be achieved in this cryostat by inserting liquid nitrogen into 

reservoirs which are required to be kept under a high vacuum. The temperature of the sample 

space can then be adjusted by three electrical heaters which are regulated by a temperature 

controller as shown in Figure 4-18.
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Figure 4-18-Schematic showing a desired temperature may reach in the liquid nitrogen 
cryostat by the use of a temperature controller which controls the electrical 
power to a heat exchanger {taken from [80]}.

4.8 High Pressure experimental set up

The application of high pressure is a very powerful technique that has been used to investigate 

the carrier dynamics of semiconductor devices. The application of high pressure will cause the 

compression of the semiconductor crystal reducing the lattice constant. This will lead to an 

increase in the bandgap energy and has the advantage that there are no significant changes to 

the carrier distribution that will occur in temperature-dependent measurements. The 

recombination mechanisms may then be investigated using this technique on a single device 

which is tuned to emit at different wavelengths. The bandgap-dependent properties may 

therefore be investigated without the need to grow a set of different wavelength emitting 

devices which would require different growth runs which may also influence the material 

characteristics.

A gas compressor system was used in this study to apply high pressure to the InGaN-based 

devices. A schematic of the system is shown in Figure 4-19 where there are three stages which 

provide the application of pressure.
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Figure 4-19- Schematic showing the three stages in which pressure can be applied to a 
pressure cell up to lOkbar by the compression of oil [81]

The capillary tube and the pressure cell are made from a high strength beryllium-copper alloy 

in order to withstand the high pressures that are applied by this system. A diagram of the 

pressure cell,

Figure 4-20 , shows that the side of the cell has electrical feed-throughs and has a sapphire 

window from which the emitted light from the device can be collected.

90



LED h o l d e r

He
High-pressure 

helium gas 
up to IGPa

Electrical feed- 
through

Easing Light to 
photo-dd;ector

Sapphire
window

Emitted light

Figure 4-20- Diagram of the pressure cell showing helium gas being inserted into the cell, 
electrical feed-throughs which supplies electrical connection to the device and a 
sapphire window where the light may be collected.

Helium gas is pumped into the pressure cell and the capillary tube in order to provide a 

pressure medium which may be compressed. Pressure is generated by a compressor system in 

three stages. These stages use the compression of oil to apply pressure to the piston. Valves 

are closed between each stage in order to maintain the current pressure which is up to Ikbar 

after the first stage and 3kbar after the second stage. The piston is moved up in the third and 

final stage in order to provide further compress of the helium gas that applies pressures o f up 

to lOkbar. Careful preparation of the system is required in the form of cleaning non-reusable 

seals on both the piston and the pressure cell in order to achieve high pressures. This can be 

achieved by inserting the seals with washing liquid detergent into a beaker which is then 

inserted into an ultrasonic bath. Thorough cleaning of the piston and pressure cell is also 

achieved by the use of methanol.

4.9 Chapter Summary

This chapter focussed on describing the techniques employed to study the recombination 

mechanisms of InGaN based devices.

It was then shown that pulsed measurements of 2ps at lOkHz may achieve the highest light 

output with acceptable Joule heating. It was shown that efficiency droop occur in both pulsed 

and CW conditions and therefore CW measurements at small injection levels (where there is
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expected to be a low influence o f Joule heating) may also be used to investigate the cause of 

such an effect.

The methods used to investigate the emission spectra o f the devices were then presented. 

Photocurrent is also found to be a valuable technique to investigate the absorption properties 

of the devices. The optical output power of the devices is also measured using silicon-based 

integrating spheres which are connected to light power meters.

One of the main techniques used to study the recombination mechanisms of InGaN-based 

devices in this study is by changing the temperature at which the devices operate. This is 

shown to be achieved by the use of either a closed cycle helium cryostat or a liquid nitrogen 

cryostat.

The use of high pressure to investigate semiconductors was presented in the final section of 

this chapter. It was shown that a gas compressor system which uses three separate stages may 

generate pressures of up to lOkbar. The pressure system is shown to consist of a piston-in- 

cylinder which builds up pressure by compressing helium gas in a compressor system which is 

delivered to the cell with a capillary tube. The devices may be inserted into this pressure cell 

with electrical and optical connections.
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5 Efficiency Droop Models in GaN-based 
Emitters

5.1 Chapter Aim:

The aim of this chapter is to extend the information on the efficiency droop phenomenon that 

was introduced in Chapter 3 by discussing relevant droop models to investigate the likelihood 

of the different candidate loss processes as the cause of efficiency droop. The efficiency droop 

phenomenon has attracted a lot of attention in recent years and despite extensive studies to 

date, the cause of this effect remains controversial. In this chapter the mechanisms that have 

been suggested as the cause of efficiency droop are discussed. The influence of different 

recombination mechanisms and their current dependence is investigated to understand which 

processes are most likely to be the dominant cause of efficiency droop. Near identical results 

may be obtained when modelling the efficiency using the different proposed loss mechanisms 

which are expected to have a higher dependence on carrier concentration compared with that 

o f radiative recombination.

It is shown that the efficiency droop effect is stronger in green LEDs compared with blue 

LEDs. Measurements also reveal that the internal polarization field strength is stronger for the 

green LED. The influence o f the internal field on the efficiency and its impact on efficiency 

droop is therefore investigated. The existence o f the internal fields is shown to result in an 

earlier onset o f efficiency droop. It is expected that there is a reduced recombination rate for 

devices with increasing internal polarization field strength. This is because there is a stronger 

quantum confined Stark effect (QCSE) that will cause a reduction in the electron-hole 

wavefunction overlap. The impact of the internal fields on candidate droop causing 

mechanisms is also described. It is shown that the Auger coefficient is expected to reduce for 

increasing field strength which is the result o f a reduction in the electron and hole 

wavefunction overlap. This effect, however, is expected to cause an increase in the carrier 

concentration and may lead to a larger Auger recombination rate (Cn^). If  such is the case, it is 

expected that there will be an increase in the current at which efficiency peaks when the field 

is increased. An increasing internal polarization field is found to cause a stronger efficiency 

droop if carrier leakage is the dominant loss process due to the reduced influence o f the
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electron blocking layer. It is shown that whilst there is expected to be a small influence of the 

internal fields on defect-related recombination, there will be a proportional increase o f this 

loss mechanisms with increasing field strength due to the reduced radiative recombination 

rate. A defect-related recombination cause of efficiency droop is proposed in the final section 

of this chapter whereby the defect-related recombination coefficient increases, in addition to a 

reducing radiative recombination rate, with increasing current. This is due to the fact that 

carriers will increasingly occupy defect states with increasing injection. A defect-related 

recombination model is accurately fitted to the measured efficiency vs current behaviour of 

both blue and green LEDs.

5.2 Phenomenon of Efficiency Droop in InGaN-based LEDs

The efficiency droop phenomenon was introduced in Section 3.2 where it was found that there 

is a relative reduction of efficiency as current is increased following a peak at low current 

density. The efficiency droop problem is observed for nitride-based devices which emit over 

the entire visible emitting range. It is also important to note that the efficiency droop 

phenomenon will also take place in other material systems [82] where there is a loss 

mechanism which has a higher dependence on carrier concentration than radiative 

recombination. The efficiency droop effect limits wider exploitation of InGaN-based LEDs as 

the relative reduced efficiency at high currents will cause a higher required electrical input 

power in order to achieve the desired light output power. Figure 5-1 shows that there is an 

increase of the light output power as the current density is increased despite the relative 

reduction of efficiency at high current densities.
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Figure 5-1- The electroluminescence light output power o f a blue LED increasing as a 
function of current density in pulsed mode

At high injection the sublinear dependence of the light output power as a function of current 

density is consistent with a non-radiative loss process becoming increasingly dominant.

5.3 Effect of efficiency droop on laser diode applications

The radiative efficiency of InGaN LDs is closely connected to efficiency in LEDs and studies 

on both LEDs and LDs are beneficial to each other. The effect of droop in InGaN LEDs is 

particularly problematic for LDs as the lasing threshold current density (~2kA/cm^ for blue- 

green emitters) is substantially higher than the current density at which the effect of droop in 

blue-green LEDs begins (~10A/cm^). The reduced radiative efficiency o f the LDs at high 

current will cause an increase in the threshold current. Thus a larger input power is required to 

obtain threshold due to the droop-causing process enhancing the losses experience by the 

laser. The effect of efficiency droop is observed in the efficiency measurements of LDs below 

the threshold current where the dominant contribution to the light output power will be 

spontaneous emission as shown in Figure 5-2.
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Figure 5-2- The electroluminescence efficiency as a function of current for a blue LD in 

pulsed mode with 500ns, lOkHz pulses showing the droop effect also takes place in laser 

diodes and will therefore increase the threshold current

The relative reduction of efficiency as current is increased from ~6 mA to -20mA will 

therefore lead to a higher required current in order for lasing to occur that will subsequently 

cause a relative reduction of lasing power at a given current.

5.4 Efficiency scenarios

The influence of different recombination processes on the efficiency is described in Section 

3.3 and 3.4. In this section the influence of different recombination processes on the efficiency 

will be modelled as a function of carrier density. The modelled efficiency as a function of 

carrier concentration may be used to provide a valuable insight into the effects which cause 

efficiency droop due to the different dependencies of the recombination processes. Equation 3- 

1 showed that the efficiency represents the ratio of the radiative recombination rate to the total 

recombination rate. Considering the ideal case where there is only radiative recombination 

taking place the efficiency, 77, will be determined by.

Ï] =
Bn^
Bn^ =  1 5-1

where B is the radiative recombination coefficient and n is the carrier concentration.
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In this ideal case the efficiency would obviously remain at 100% for all carrier concentrations 

(see Figure 5-3). However, experimental observations show that there is an increase of the 

efficiency with injection in the low current regime and therefore there is expected to be an 

additional contribution from defect-related recombination. The effects of the defect-related 

recombination may be taken into account in the efficiency equation to give,

Tj =  5-2
'  An+Bn^

where A is the monomolecular defect-related recombination coefficient.

Figure 5-3 shows that if  only defect-related and radiative recombination take place then the 

efficiency will gradually increase with increasing carrier concentration and will theoretically 

approach 100% for sufficiently large carrier concentration. This efficiency dependence on 

carrier concentration is caused by the radiative recombination having a stronger dependence 

on the carrier concentration (ocn^) compared with that of defect-related recombination (o(n). 

Therefore the proportion of radiative recombination will increase as the carrier concentration 

is increased as shown in Figure 5-3. The modelling uses the radiative recombination and 

monomolecular recombination coefficients determined by Shen et al  [31] which are described 

in more detail in Section 3.4.2.
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Figure 5-3- Modelled efficiency as a function of carrier density where only radiative 
recombination and recombination at defect states within the active region take place (with 
A = 5 .7 x l0 V  and B =1 .8 x l 0 ‘“ c m \ '')

As can be seen in Figure 5-3, the inclusion of defect-related recombination (ocn) in the 

efficiency equation cannot result in efficiency droop. Efficiency droop is also not expected to 

occur for a larger defect-related recombination rate. Figure 5-4 shows that for both A= 5.7 x 

(from Shen et al. [31]) and 1.4 x lOV^ will result in an efficiency which increases with 

increasing carrier concentration due to the increasing dominance of radiative recombination 

compared with defect-related recombination.
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Figure 5-4- Modelled efficiency as a function of carrier density for processes which involve 
radiative recombination and recombination via defect states for monomolecular coefficients of 
A= 7 X lO^s'^ (black line) and A=14 x 10  ̂s'  ̂ (red line)

The lack of efficiency droop if only defect-related and radiative recombination processes take 

place suggests that a non-radiative process which has a higher dependence on the carrier 

concentration than radiative recombination is required in order to cause efficiency droop. 

Figure 5-5 shows the efficiency dependence on carrier concentration if  the effects o f Auger 

recombination (black symbols), which is assumed to have a cubic carrier concentration 

dependence [32], or carrier leakage (red symbols), which is assumed to have an exponential 

dependence on the carrier concentration due to the increasing likelihood that carriers will 

escape at high injection [83], as determined by using the efficiency equations.

T] =
Bn‘

An+Bn'^+Cn^
(Auger recombination model) 5-3

Bn‘
An+Bn^+Dieak^xp(- ) (Carrier leakage model) 5-4

'' l̂eak
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Where Dieak is the rate at which carriers will escape from the quantum well and no is the carrier 

concentration which is confined to the quantum well.
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Figure 5-5-The modelled efficiency dependence on carrier concentration if the recombination 
paths consist of defect-related recombination, radiative recombination and the addition of 
Auger recombination (black line) or carrier leakage processes (red line). The models use A= 
5 .7 x l0 V \ B=1 .8 xlO'^^cm^s'\ C=1.5xlO’̂ ^cm V\ Dieak=2 x l 0 ^^cmV^ and no=lxlO^\m'^.

Figure 5-5 shows that the effects of including a non-radiative recombination process with a 

higher dependence on the carrier concentration than that o f the radiative recombination will 

result in efficiency droop.

The final efficiency droop model that is discussed in the literature was proposed by Hader et 

al. [26] where there is an additional density-activated defect recombination which becomes 

important at high injection as described further in Section 3.4.3. A theoretical study by Piprek 

et al. [43] finds that this loss mechanism may also be modelled to provide similar results as 

the model of Auger recombination and carrier leakage as shown in Figure 5-6.
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Figure 5-6- Graph to show that models which employ either Auger recombination, carrier 
leakage or density activated defect recombination may be able to reproduce 
near-identical results of efficiency droop (taken from [43]}

This observation shows that there is a strong need for experiments or device growth which 

may be used to differentiate between the candidate loss mechanisms in order to 

unambiguously determine the dominant cause of efficiency droop.

5.5 Influence of changing monomolecular rate on the efficiency droop 

phenomenon

The strong lattice constant mismatch between the InOaN well and GaN barrier has been 

shown to cause a high dislocation density as described in Section 3.7 which is expected to 

cause a high defect density in the devices. It is therefore important to consider the influence of 

the monomolecular recombination rate on efficiency droop. Figure 5-7 shows the effect o f a 

changing monomolecular defect-related recombination coefficient, A, from 1x1 Ô s'̂  to 9x1 OV
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 ̂ on the efficiency droop. This range is consistent with the monomolecular defect-related 

recombination coefficient value of 5.7xl0^s'^ determined by Shen et al. [31]. An Auger 

recombination model is used in the analysis as this model has accurately been shown to model 

efficiency droop. The values of the Auger recombination and the radiative recombination 

coefficient used in this modelling were the obtained from Shen et al. [31]. It is important to 

note that a carrier leakage or density-activated defect recombination also could have been used 

in the analysis to determine the influence of a changing monomolecular recombination rate.
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A = 4 x 1 0 V

A = 5 x 1 0 V

A = 6 x 1 0 V

A = 7 x 1 0 V
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Figure 5-7- The modelled efficiency droop behaviour for different defect-related 

recombination rates if  an Auger recombination model is used

The peak efficiency is found to reduce and occur at a higher carrier concentration with 

increasing defect-related recombination rate. The droop effect is expected to be reduced with 

increasing defect-related recombination due to a reduction in the proportion of radiative 

recombination at lower carrier densities that results in the reduced peak efficiency. These 

findings suggest that the efficiency at high current densities, as required for most applications.

102



has a relative small dependence on the monomolecular recombination rate compared to that of 

the peak efficiency.

5.6 Influence of the internal fields on the efficiency droop phenomenon

The existence of the strong internal fields in nitride-based devices (as described in more detail 

in Section 3.6) is expected to have an impact on the recombination processes as will be 

discussed in the following sections of this chapter. Experimental evidence of the internal field 

is observed in the photocurrent experiments as there is a strong Stokes shift for both blue and 

green LEDs as shown in

Figure 5-8 and Figure 5-9, respectively.
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Figure 5-8- Photocurrent intensity as a function of incident light beam wavelength and the 

emission spectrum of the device for a blue LED
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Figure 5-9- Photocurrent intensity as a function of incident light beam wavelength and the 
emission spectrum of the device for a green LED

The relatively weak rate of absorption as a function of incident light wavelength in both LEDs 

compared with most flat band devices may be attributed to the existence of the internal fields. 

The smaller rate at which the photocurrent increases as a function of emission wavelength in 

the case of the green LED (0.012±0.001nm'^) is compared with that of the blue LED 

(0.021±0.001nm'^) is expected to be explained by a stronger internal field strength. The 

saturation of the absorption rate with decreasing wavelength (increasing energy) is due to 

saturation of available states. Further evidence that these LEDs have strong internal fields is 

observed by the blue shift of the peak emission energy as a function of injection current as 

shown in Figure 5-10 [84].
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Figure 5-10- The electroluminescence peak emission energy normalized to the peak emission 
energy at 5mA as a function of current for a green LED (green line), blue LED 
(blue line) and a yellow AlGalnP LED (yellow line)

This blueshift is expected to be the result of carrier screening of the internal field with 

increasing current in an effect which is stronger for the green LED. Figure 5-10 also shows 

that the peak emission energy is relatively constant as a function of current for an AlGalnP 

yellow LED which is free of the strong internal fields.

5.7 The influence of the internal polarization field strength on the 

radiative recombination rate

The spontaneous emission rate, Rse, is given by Fermi’s golden rule [85],

R se= T\< ^r\H ’\Si)\^Pf 5-5

where Sf is the final state, is the initial state, H ’ is the operator for the physical interaction 

and Pf is the density of final states.

The perturbation Hamiltonian can be expressed as a function of the transmission matrix 

element =  \{Uc\e.p\Up)\^, where Uc,v are the conduction band and valence band Bloch

functions, \e.p\ is the transition matrix and the envelope function overlap | F^.^h I ̂  

where are the electron and hole wavefunctions [8 6 ].
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The overlap of the electron and hole wavefunctions therefore has a strong impact on the 

radiative recombination rate [87, 8 8 ]. An increased QCSE will cause a larger separation of the 

electron and hole wavefunction overlap leading to a reduction of the radiative recombination 

rate as described in Section 3.6.

The reduced radiative recombination rate with increasing internal polarization field strength at 

a fixed current will be accompanied by an increasing non-radiative defect-related 

recombination rate. The findings of Berkowicz et al. [8 8 ] show that there will be a strong 

reduction in the overlap of the electron and hole wavefunctions (inverse of the left y-axis of 

Figure 5-11) with increasing quantum well width due to an enhanced QCSE. The authors also 

measured an increasing radiative recombination lifetime with increasing well width (see right 

axis of Figure 5-11).
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Figure 5-11- The squared overlap of the electron and hole wavefunctions (left y axis) as a 
function of well width. The y axis (right side) also shows the increase of the 
radiative lifetime as a function of well width [8 8 ].

Similar observations were also found in Bai et al. [89] and Li et al. [90] where a reduced 

radiative recombination rate was measured for LEDs which consist of wider width wells.

Figure 5-12 shows theoretical calculations performed in this study for a blue LED consisting 

o f a 3nm quantum well with an indium content of 0.16, 13nm barriers and an AlGaN electron 

blocking layer with 0.2 A1 content at 300K by the use of the simulation software nextnano. It
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is shown that a reduction in the electron and hole wavefunction overlap will cause a strong 

reduction to the overlap of the electron and hole wavefunctions with increasing internal 

polarization field strength.
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Figure 5-12- The modelled overlap of the electron and hole wavefunctions as a function of 
internal polarization field strength for a blue LED with 16% indium content 
using Nextnano software.

The strong reduction of the electron and hole wavefunction overlap is the cause of the reduced 

radiative recombination rate as internal polarization field strength is increased as shown in 

Equation 5-5.

The effect of the radiative recombination rate on efficiency droop is now considered. A 

reduced radiative recombination rate is shown to cause a strong reduction in the peak 

efficiency but a similar droop effect is expected as shown in Figure 5-13 for different radiative 

recombination coefficients.
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Figure 5-13- The modelled efficiency dependence on carrier injection for different radiative 
recombination coefficients if  an Auger recombination model is employed

The efficiency over the entire current range is found to be considerably higher if there is an 

increase to the radiative coefficient. This therefore shows that design optimization is required 

to enhance the radiative recombination rate in order to achieve more efficient devices. The 

influence of the internal fields on candidate non-radiative loss mechanisms which have been 

suggested to cause efficiency droop will now be discussed.

5.8 The influence of the internal fields on candidate loss causing 

mechanisms

5.8.1 Carrier leakage

Carrier leakage has previously been shown to increase with increasing internal polarization

field strength [47, 48, 91]. This is due to the increasing separation of the electron and hole

wavefunction overlap increasing the likelihood of electron leakage. The effectiveness of the

electron blocking layer will also be reduced with increasing internal polarization field

strengths as the conduction band edge on the p-side of the quantum well will be at a relatively 
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lower energy compared with if there was no internal polarization field as can be seen in Figure 

3-20.

Section 3.6 showed that whilst there is a reduced droop effect in devices grown along the m- 

plane [6 6 ], the light output remains similar to that of devices which are grown along the c- 

plane. An alternative technique is therefore required to determine whether a reduction in the 

internal polarization field strength does indeed reduce the efficiency droop effect due to a 

reduction o f the carrier leakage rate.

5.8.2 Auger recombination

Auger recombination is another loss mechanism which has widely been speculated as the 

dominant cause of efficiency droop. The Auger recombination coefficient, which is 

proportional to the probability that Auger recombination will take place, is expected to reduce 

with increasing strength of the internal fields [92] due to the increased separation o f the 

electron and hole wavefunction overlap. However, the increased strength o f the internal fields 

within InGaN-based devices may enhance the Auger recombination rate (Cn^) [27, 40] due to 

the carrier concentration increasing for a given current.

If Auger recombination is present then it will be the dominant recombination process at high 

currents. At lower currents the dominant recombination will be radiative. Therefore the 

dominant recombination process will change from being radiative to an Auger process with 

increasing current density. The dominant recombination process will influence the factor in 

which the carrier concentration increases due to an increase in the internal field strength.

There will be an increase of the carrier concentration by a factor o f ^^2 if  the internal field 

strength is increased by a factor of 2  in the current regime where radiative recombination is 

the dominant recombination process. However, the carrier concentration will increase by a 

factor of V2  for an internal field strength which increases by a factor o f 2  at higher currents 

where Auger recombination is the dominant recombination process.
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The proportional increase in carrier concentration may be calculated as a function of current 

density by considering equation 3-9 (J=eL(An+Bn^+Cn^)). Figure 5-14 shows there is a strong 

reduction in the factor at which the carrier concentration will increase due to the internal field 

strength increasing by a factor of 2. This is due to Auger recombination becomes increasingly 

dominant over radiative recombination as there is an increase in the current density.
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Figure 5-14- The proportional increase of the carrier concentration as a function of current 
density if  the radiative and Auger coefficients are reduced by a factor of 2.

The increase in the carrier concentration as a function of current density may then be used to 

determine the effect of reducing radiative and Auger recombination rates on efficiency droop 

as shown in Figure 5-15.
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Figure 5-15- The modelled fît o f the efficiency as a function of current where the red line 
represents the behaviour if there is an equal reduction of the radiative and Auger 
recombination coefficients.

The onset of efficiency droop will occur at a slightly larger current density if  the increase in 

the internal field strength results in a reduction of the radiative and Auger recombination 

coefficients by a factor of 2. The droop effect however, will remain similar and the efficiency 

will reduce due to the proportional reduction of radiative recombination.

5.8.3 Defect-related recombination

The increase of the internal fields is expected to have a lower influence on defect-related

recombination compared with the radiative recombination rate. Previous studies find that the

reduction of the quantum well width will cause a strong enhancement of the peak efficiency

due to the enhanced radiative recombination rate as there is a larger overlap o f the electron

and holes wavefunctions as shown in Figure 5-11. This finding suggests that the defect-related

recombination has a weaker dependence on the internal polarization field strength compared

with the radiative recombination rate. Whilst the defect-related recombination coefficient may

not significantly change with increasing internal polarization field strength, it is expected that

there will be a relative increase in the defect-related recombination due to the reduced

radiative recombination rate at a fixed current (see section 5.7).
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5.9 Efficiency droop in blue and green LEDs

In agreement with previous studies [26, 33], the results of this study show that the efficiency 

droop phenomenon is stronger for green LEDs compared with blue LEDs as shown in Figure 

5-16.
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Figure 5-16- The measured efficiency normalized to the peak efficiency showing the droop 
effects in a blue LED (blue squares) and a green LED (green circles)

The cause of the stronger droop effect in the green LED may be due to its stronger internal 

polarization field strength. Whilst the carrier leakage rate is expected to be increased for larger 

internal field strengths (see section 3.4.4) the relatively larger band offset in the green LED 

compared with the blue LED will reduce the likelihood of carrier escape. Therefore the 

increased droop rate in green LEDs may only be explained using a carrier leakage argument if 

the carrier leakage rate due to the stronger fields dominates over the reduced carrier leakage 

rate due to the increased band offset.

The difference in the Auger recombination rates for the blue and green LEDs is unclear. 

Whilst the Auger coefficient is expected to be reduced in the green LED due to a reduced 

wavefunction overlap, the overall Auger recombination rate may be increased due to a higher 

carrier concentration as described in the previous section and due to lower band gap energy.
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The density-activated defect recombination (for more details see section 3.4.3) model may 

also explain the stronger droop effect for the green LED in comparison with the blue LED. 

LEDs of higher indium content will generally have a larger dislocation density due to larger 

strain effects which result from a larger lattice mismatch. The increased droop effect in the 

green LED may therefore be explained using this model if  there is a lower carrier 

concentration at which the density-activated defect recombination occurs and a lower density- 

activated defect recombination lifetime for the green LED as shown in Figure 5-17.
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Figure 5-17- The fitting of experimental data whereby a density-activated defect 
recombination model is applied for a blue LED (top) and a green LED (bottom)

113



5.10 Injection dependent monomolecular coefficient as a cause of 

efficiency droop

The defect-related recombination coefficient, A, is considered a constant as a function of 

current in all the models previously described. However, the existence of potential minima due 

to well width and/or indium content fluctuations, observed in TEM studies [72], is expected to 

localize carriers away from defect sites to cause a reduced defect-related recombination 

coefficient at low currents. A model is proposed in which efficiency droop may be explained 

by a defect-related recombination coefficient which increases with increasing carrier 

concentration because of the larger defect density where carriers have delocalized. It is 

assumed that there will be a constant defect-related recombination coefficient at low injection 

due to only sites within the active region bandgap being involved in the defect-related 

recombination. To a first approximation the defect-related recombination can be assumed to 

increase linearly with increasing carrier concentration at high currents. The defect-related 

recombination coefficient may therefore be described as,

A :=v4o, jGor]o<Qnp 5-6a

A = A q(1 D(n -  Up)) , for n>np 5-1 Ob

where np is the carrier concentration required to fill the potential minima. Ao is the 

monomolecular defect-related recombination in the current regime where there is no carrier 

concentration dependence as per the conventional model applied in most III-V systems. D is 

the rate at which the monomolecular defect-related recombination increases with increasing 

carrier concentration above rip. The increased defect-related coefficient at higher carrier 

concentration is the result o f a reducing non-radiative lifetime that causes a subsequent 

increase in the recombination rate via defect states.

If Auger recombination, carrier leakage and density activated defect recombination is assumed 

to be negligible then the efficiency may be determined using Equation 3-8. Figure 5-18 shows 

that efficiency will show droop behaviour if this model is employed. The Ao coefficient is 

considered to be 5.7xl0V^ which is consistent with the measurements of Shen et aï. [31]. Bq 

=7xl0'^^cm^s'^ is comparable with the values determined in previous experiments [27, 31]. 

np=8 x l 0 ^^cm'  ̂ is in line with the carrier concentration used for modelling the onset of density- 
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activated defect recombination of Piprik et al. [43]. It is assumed that D=7.52xlO'^V^cm'^ 

which will result in a similar non-radiative lifetime to that determined experimentally by 

David and Grundmann at high injection currents (-lO ’̂ s’ )̂.
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Figure 5-18- The modelled efficiency as a function of carrier concentration whereby there is 
an increase of the monomolecular defect-related coefficient. A =5.7xl0^s'\ Bo 
=7xlO"^^cm^s'\ D=7.52xl0‘^^s'^cm‘̂  and np=8xl0^^cm'^.

It can be seen that using this model with an increased monomolecular coefficient with 

increasing carrier concentration will indeed provide efficiency droop. Previous studies have 

shown that the radiative recombination rate is also expected to have a carrier density 

dependence which changes from having a quadratic to an approximately linear dependence 

due to phase-space filling effects [93]. David and Grundmann [27] have determined that the 

radiative recombination coefficient will have a dependence on the carrier concentration as 

follows.

B = Be
(1 + n /r io )

5-7

where Bo is the unperturbed radiative recombination rate and no is the characteristic carrier 

density which leads to a saturation of the radiative recombination rate as there is an increase of 
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carrier concentration. The cause of the saturated radiative recombination rate is due to the 

reduced optical matrix element at high injection [23, 25] as shown in Section 3.3.1.

Figure 5-19 shows that efficiency droop will occur if there is an increase of the 

monomolecular defect-related recombination coefficient and a reduction of the radiative 

recombination coefficient at high currents. The values used are the same as those in the 

modelling of Figure 5-18 with no= 5xl0^^cm'^ which has been determined by Eliseev et al. 

[23] and Piprek et al. [43].
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Figure 5-19- The modelled efficiency dependence on carrier concentration where the 
monomolecular and radiative recombination coefficients have dependences on 
the carrier concentration where A=5.7xl0^s"\ Bo =7xl0'^^cm^s'^ no= 5xl0^^cm' 

D=7.52xlO'*V^cm'^ and np=8 xlO^Vm'^

Figure 5-19 shows the model is more consistent with the observed droop behaviour measured 

in experiments if  the effect of the reduction of the radiative recombination coefficient is also 

taken into account. This is because there is not a saturation of the droop rate as shown in 

Figure 5-17 if phase space filling is not considered in the model.

Figure 5-20 shows the dependence of the defect recombination coefficient on the carrier 

concentration as determined from Equation 5-10.
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Figure 5-20-The modelled defect recombination coefficient as a function of carrier 
concentration as determined by eq.l with Ao=5.7xl0^s'^ D=7.52xl0'^^s’^cm'^, np=8xl0^^cm'^

Similarly, the radiative coefficient as a function of carrier concentration that is determined by 

using Equation 5-11 is shown in Figure 5-21.
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Figure 5-21- The modelled radiative recombination coefficient as a function o f carrier 
concentration that reduces due to phase-space filling effects determined from eq.3 with 
Bo=7xlO'^^cm^s’  ̂ and no=5xl0^^cm'^

The recombination rate of monomolecular recombination is calculated by multiplying the 

monomolecular recombination coefficient by the carrier concentration, n, and the radiative 

recombination rate is calculated by multiplying the radiative recombination coefficient by the
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cubic dependence, n .̂ The recombination rates as a function of carrier concentration is shown 

in Figure 5-22.
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Figure 5-22- The modelled defect recombination rate (red line) and the radiative 
recombination rate (blue line) as a function of carrier concentration showing that the radiative 
recombination rate has a stronger dependence on carrier concentration compared with the 
defect-related recombination rate at low currents, whilst the defect-related recombination rate 
has a stronger dependence at high current injection.

It can be seen in Figure 5-22 that at low carrier concentrations there is a stronger increase in 

the radiative recombination rate with increasing carrier concentration than compared with that 

of the defect-related recombination. This will result in an increase of the efficiency as a 

function of carrier concentration. However, as the carrier concentrations is increased above ~ 

lO^^cm'^, the rate at which the monomolecular recombination rate increases with increasing 

carrier concentration will be larger than that of the radiative recombination rate. This will 

cause the efficiency to show droop behaviour. The dependence of the recombination rates on 

carrier concentration is the result of phase space filling effects reducing the radiative 

recombination rate and the increase of the defect-related recombination leading to an increase 

of the monomolecular recombination coefficient at high carrier concentrations.
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The efficiency of both a blue and a green LED may be modelled using this argument where 

there is stronger defect-related recombination at high currents. A scaling factor has been 

included in the efficiency measurements to take into account the collection efficiency for the 

experimental data. The carrier density is calculated by using the area of the chip as determined 

in 4.2. The model uses Ao=5.7xl0^s'^ and 5x1 Ô s'̂  for the blue and green LEDs, respectively, 

which are in line with previous studies [26, 31]. The slightly smaller value for the green LED 

is attributed to stronger carrier localization effects which are the result of higher indium 

content [94]. It is assumed that Up = SxlO^^cm'^ and bxlO^^cm’̂  for the blue and green LED, 

respectively. The rate at which the monomolecular recombination coefficient increases with 

carrier density, D, is 7.8x1 O^^s'^cm'  ̂ and bxlO^^s’^cm’̂  for the blue and green LED, 

respectively.

0.4-

o
s

0 .2 -

10 1001

0 .2 -

f

1001 10

Current density (Acm'̂ Current density (Acm'^

Figure 5-23-The measured efficiency dependence on current density fitted using a model of 
efficiency droop that uses an increasing defect-related recombination 
coefficient as a function of carrier concentration for (a) a blue LED where 
Ao=5.7xloV^ B=7 xlO'^^cm3s '\  np=8xl0^^cm'^, D=7.8xl0-19s'^cm’̂  and
no=5xl0^^cm^ and (b) a green LED with Ao=5xlO's’\  B=2 x lO ''‘cm3S 
np=6 xlO^Vm'^ and no=5xl0^^cm^.

The experimentally measured efficiency droop has been shown to be fitted by employing a

model whereby there is an increase of the defect-related recombination coefficient as a

function of current density. The parameters Ao, B q, no were taken by the literature and the D

and np values were obtained from the fit. The efficiency equation will therefore only require

defect-related and radiative recombination in order for droop behaviour to occur. The

additional impact of phase space filling effects in the model will lead to efficiency droop

which is more consistent with experimental observations. The proposed model of an 
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increasing defect-related recombination rate is a simple model where to a first approximation 

it has been assumed that there is a linear increase of defect-related recombination with 

increasing carrier concentration. A more realistic model would include consideration of the 

rate at which there is a reduced carrier localization with increasing injection. Another basic 

assumption of the model is that there is a defect-related recombination coefficient is 

independent on carrier concentration at low injection levels due to only the active region 

bandgap defect sites being involved. In reality, there may also be a dependence on carrier 

concentration at low injection levels which is likely to have a lower dependence on injection 

than that at high injection due to the stronger carrier localization effects.

5.11 Chapter Summary

The efficiency droop effect that occurs in nitride-based emitters is the main topic of this 

chapter. Different models are presented which have been suggested to result in such an effect. 

It is shown that there is an increasing light output power with increasing current despite the 

reduction in efficiency. The efficiency droop effect is also found to be detrimental in InGaN- 

based laser diodes where it causes an increase to the current required to achieve lasing 

threshold.

Models are employed to describe the effect of different recombination mechanisms on the 

efficiency. It is shown that efficiency droop requires a non-radiative process which has a 

higher dependence on carrier concentration that the radiative recombination. Models which 

include Auger recombination or carrier leakage may provide near identical results. It is also 

shown that droop will occur if the efficiency is modelled using the DADR argument for 

efficiency droop.

A larger defect-related recombination coefficient with increasing carrier density is shown to 

have a strong effect on reducing the peak efficiency but there will be little influence at the 

high injections that are required for normal operation in most devices.

Photocurrent results indicate that internal polarization fields exist in the LEDs in an effect 

which is stronger in the green LED. Consistent with these results is the stronger blueshift with 

increasing current o f the green LED compared with that of the blue LED which may be 

attributed to a larger carrier screening effect of the internal field. The existence o f the high 

internal field strength is found to have a strong effect on the radiative recombination rate. This 
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is due to the reduction of the electron and hole wavefunction overlap with increasing internal 

field strength. A reduction of the radiative recombination coefficient is shown in a model to 

cause a strong reduction to the efficiency over the entire current range, but should only have a 

small effect on the efficiency droop.

The effect of the internal field strength on the candidate droop-causing mechanisms is then 

discussed. It was shown that carrier leakage is expected to be enhanced with increasing field 

strength due to the reduced effectiveness o f the EBL. The influence on the Auger 

recombination rate is less clear. Whilst a reduction to the Auger recombination coefficient is 

expected to occur due to the separation of the electron and hole wavefunction overlap, there 

will also be an increase to the carrier concentration at a fixed current because o f the reduced 

recombination rates. If such is the case then the efficiency will reduce and the onset of 

efficiency droop will occur at a larger current.

The stronger efficiency droop in the green LED compared vdth the blue LED may be 

explained by an increase in the internal fields which enhances the droop-causing mechanism. 

The increased dislocation density of the green LED due to larger strain effects may also be the 

cause of the increased droop effect.

In the final section of this chapter a defect-related recombination model is presented as the 

cause o f efficiency droop. Carriers are suggested to be localized in potential minima at low 

currents causing a reduced defect-related recombination rate. The delocalization o f carriers 

'with increasing carrier concentration leads to an increased likelihood that carriers will 

recombine at higher energy defect sites. An increasing defect-related recombination 

coefficient with increasing injection, along with a reduction in the radiative recombination rate 

due to phase space filling, was shown to fit the experimentally measured efficiency droop in 

blue and green LEDs.
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6 Temperature Dependence of the 
optoelectronic properties of blue-green 
InGaN LEDs

6.1 Chapter aim

The temperature dependence o f InGaN-based blue-green LEDs is presented in this chapter. 

The results show that the devices have the poorest performance at the lowest temperatures. An 

increasing light output power at a fixed current of 20mA is observed with increasing 

temperature from 80K up to 150K and 280K for the blue and green LED, respectively. A 

reducing light output power is observed with further increases of temperature in both LEDs. 

Such observations are likely to be caused by two different loss mechanisms, with opposite 

dependencies on temperature, dominating in different temperature regimes. The sublinear 

dependence of the light output on current injection at low temperatures suggests that defect- 

related recombination with states in the band gap is suppressed with decreasing temperature. 

Therefore an alternative loss mechanism which has a higher dependence on current than that 

of the radiative recombination is expected to cause the poor performance of the LEDs at low 

temperatures. It is also observed that the LEDs have a low peak efficiency and strong droop 

effect at low temperatures. This is consistent with a loss mechanism becoming increasingly 

dominant with reducing temperature. The increasing effect o f the loss mechanism that is 

responsible for the strong droop behaviour is expected to be due to issues relating to the hole 

injection efficiency. Evidence of hole injection issues is presented in the form of an increasing 

turn-on voltage with decreasing temperature. The reduction of the hole injection efficiency as 

temperature is decreased is expected to cause an increase to the effective internal polarization 

field strength which will increase the likelihood that electron leakage occurs.

For comparison, the temperature dependence of a blue LED which did not include an EBL is 

investigated. It was shown that the tum-on voltage of this devices increases at a weaker rate 

with decreasing temperature than that of the LEDs which included an EBL. This may be 

attributed to improved hole injection efficiency in this device as it does not include an EBL 

which hinders hole injection into the quantum well. For this device, the efficiency droop effect
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is still found to become stronger with reducing temperature. This shows that the carrier 

leakage becomes larger with decreasing temperature and is related to hole injection issues.

Evidence that a carrier leakage process occurs is observed at low temperatures by the 

existence o f a second emission peak in the spectra o f the green LED.

The temperature dependence o f the peak emission energy shows that carrier localization is 

expected to take place in InGaN devices. A characteristic “s-shaped” dependence of the peak 

emission energy on temperature is observed for both the blue and green LEDs. Further 

evidence of carrier localization effects occurring is shown by the increasing FWHM with 

decreasing temperature below lOOK.

The final section o f this chapter shows efficiency droop at temperatures where hole injection 

is not expected to be problematic. The temperature dependence of efficiency droop is shown 

to be fitted using a defect-related recombination model as the cause of efficiency droop.

6.2 Temperature dependence of the light output power in blue-green 

InGaN LEDs

Temperature-dependence techniques have been used in previous studies to gain information 

about the dominant recombination mechanism that limits the efficiency in semiconductor 

devices. This is due to different loss mechanisms having specific dependencies on temperature 

[29]. In this study, the effect o f temperature is found to have a similar influence on the 

optoelectronic properties in both blue and green LEDs as shovm in Figure 6-1.
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Figure 6-1- The electroluminescence light output power as a function of current for (a) a blue 
LED and (b) a green LED in pulsed mode at different temperatures.

It can be observed that the light output power is lowest at the lowest temperature (8 OK) for 

both the LEDs. Figure 6-2 shows this dependence more clearly where the light output at a 

fixed current of 20mA increases with increasing temperature up to -150K  and ~280K for the 

blue and green LEDs, respectively. There is a reduction of the light output power as 

temperature is further increased beyond these temperatures.
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Figure 6-2- The electroluminescence light output normalized to the highest light output value 
as a function of temperature at 20mA in pulsed mode with a pulse width of 2ps 
and a frequency of lOkHz for (a) a blue LED and (b) a green LED.

The highest light intensity occurs at a higher temperature for the green LED in comparison 

with that of the blue LED. This is expected to be the result of stronger localization effects for 

the green LED [94] that has a stronger effect at reducing defect-related recombination. This
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will result in a higher temperature required in order for defect-related recombination to 

become the dominant loss mechanism for the green LED. Figure 6-2 suggests that there are 

competing non-radiative recombination processes which have different temperature 

dependencies. The increase of the light output power with increasing temperature up to 160K 

and 28OK for the blue and green LEDs, respectively, indicates that there is a reduction of the 

dominant loss mechanism. In contrast, increasing the temperature above these temperatures is 

expected to increase the impact of the dominant loss mechanism that results in the reduction of 

light output power.

Figure 6-3 shows that there is a sublinear dependence of the light output power as a function 

of current. This observation is expected to show that the dominant loss mechanism at low 

temperatures is not due to defect-related recombination with sites in the active region 

bandgap. This is because devices consisting of a high density of defect sites within the active 

region bandgap will have a superlinear dependence on current owing to the fact that there is a 

stronger dependence of radiative recombination on the injection current compared with that of 

the active region bandgap defect-related recombination. The sublinear measurements at low 

temperature therefore show that there is a strong reduction in the defect-related recombination 

with defect sites in the active region bandgap with decreasing temperature as previously 

predicted [29].
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Figure 6-3- The electroluminescence light output normalized to the value at 20mA as a 
function of current at 8 OK and 28OK for (a) a blue LED and (b) a green LED in 
pulsed mode with a pulse width of 2ps and a frequency of 1 OkHz showing the 
sublinear behaviour at low temperature in both cases.
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The reduction of the active region bandgap defect-related recombination rate with decreasing 

temperature therefore suggests that there is another loss process which causes the poor 

performance of the LEDs at low temperature. Such a loss process reduces with increasing 

temperature causing the light output dependence on current to become increasingly linear.

6.3 Temperature dependence of efficiency droop in blue-green InGaN 

LEDs

Figure 6-4 shows the efficiency droop effect at different temperatures for a blue and a green 

LED. The efficiency droop effect is observed to be strongest at 80K with a reduced peak 

efficiency which indicates that there is a loss mechanism which is strongest at low 

temperatures.
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Figure 6-4- The electroluminescence efficiency dependence on current for a blue LED (left 
graph) and a green LED (right graph) in pulsed mode with a pulse width of 2ps 
and a frequency of lOkHz at different temperatures

As previously described, the active region bandgap defect-related recombination is expected

to reduce with decreasing temperature due to a “freeze out” of defect sites [29].

Recombination with defects sites at relatively high energy is also expected to reduce at low

temperature due to increased carrier localization. Auger recombination and carrier leakage

rates have also been shown to reduce with decreasing temperature [95-97] and therefore one

would not expect these non-radiative mechanisms to cause of the low peak efficiency and

strong efficiency droop at low temperatures. The poor performance of the LEDs at low

temperature is therefore expected to be caused by an alternative process occurring at low

temperatures which leads to an increase a non-radiative process.
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6.4 Hole injection issues at low temperature

The reduction of temperature is expected to reduce the mobility of carriers (see section 3.5). 

Figure 6-5 shows that poor hole injection causes an increase in the tum-on voltage with 

reducing temperature in both LEDs.
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Figure 6-5- The current dependence on applied voltage at different temperatures for the blue 
LED (left graph) and a green LED (right graph) in pulsed mode with a pulse 
width of 2ps and a frequency of 1 OkHz

The increase in tum-on voltage with decreasing temperature is observed to be stronger for the 

blue LED compared with that of the green LED. This observation can be explained by 

stronger hole injection issues in the blue LED which results from a larger number of quantum 

wells (see Chapter 4).

A further reduction in concentration of holes will result from the low activation of Mg-dopants 

with reducing temperature.

The increase in the applied voltage is expected to cause an enhancement in the effective 

internal field strength [98, 99] as the field due to the applied voltage is in the same direction as 

the internal polarization fields. The effect of applying voltage to the internal polarization field 

is illustrated in Figure 6 -6 .
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Figure 6 -6 - Schematic indicating the effect of applying a bias to the pn junction causing an 
increase to the internal field strength [98]

Previous studies have shown that an indication of the internal field strength may be achieved 

by measuring the blueshift as a function of current [48]. Figure 6-7 shows that the blueshift as 

a function of current is weakest at the lowest temperatures and is found to increase with 

increasing temperature in both LEDs.
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Figure 6-7- The blueshift of the peak emission energy as a function of current at different 

temperatures for (a) a blue LED and (b) a green LED in pulsed mode with a pulse width of 

2ps and a frequency of 1 OkHz.

The reduced blueshift at low temperatures may be the result of the emission spectra being 

highly influenced on the non-radiative recombination mechanism which causes the strong 

droop. For example, there will be fewer carriers available to screen the internal field if there is 

a strong carrier leakage rate and thus a reduction in the blueshift as a function of current will 

be observed. The peak emission energy shift is therefore measured over a fixed current range 
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which is below the peak efficiency. CW measurements are required to accurately obtain low 

currents (below lOpA) where it is assumed that Joule heating will be negligible. The blueshift 

in the peak emission over a fixed current range (from 0.5pA to 10 pA) was observed to be the 

largest at low temperatures and found to reduce with increasing temperature as shown in 

Figure 6 - 8  and Figure 6-9.
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Figure 6 -8 - The blueshift in the electroluminescence emission peak for a current of 0.5pA 
(black line) compared to lOpA (red line) at 3 OK (lower graph), lOOK (middle 
graph) and BOOK (upper graph) for a blue LED in CW mode.
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Figure 6-9- The blueshift in the electroluminescence emission peak for a current of O.SpA 
(black line) compared to lOpA (red line) at 3 OK (lower graph), lOOK (middle 
graph) and BOOK (upper graph) for a green LED in CW mode.

It is noteworthy to comment on the stronger blueshift in the peak emission as current is 

increased from O.SpA to lOpA at all temperatures for the green LED compared with the blue 

LED. This is expected to be caused by the stronger internal fields within the green LED due to 

its higher indium content (see section 5.9).

The increased internal field strength at the lowest temperatures is likely to increase the 

dominant non-radiative recombination process that causes the poor performance of the LEDs 

at the lowest temperatures. Previous studies have found that the carrier leakage rate will be 

larger for devices which have a higher internal field strength [48]. Such observations can be 

explained by the stronger field causing the conduction band n-side of quantum well to be at a 

higher energy than the conduction band at the p-side of the well. The reduced effectiveness of 

the electron blocking layer will therefore increase the probability of electron leakage as
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described in Section 3.4.4. The increased peak efficiency and reduced efficiency droop effect 

with increasing temperature up to ~120K and -160K  for the blue and green LEDs, 

respectively, (see Figure 6-4) is therefore expected to be the result o f a reduced carrier leakage 

rate with increasing temperature. These observations are in agreement with the theoretical 

calculations of Piprek et al. [55] where the improvement of the hole injection efficiency with 

increasing temperature was found to reduce the electron leakage rate.

6.5 Temperature dependence of the blue LED without an electron 

blocking layer

The inclusion o f the electron blocking layer (EBL) has been shown to reduce the rate at which 

electrons escape from the active region to recombine elsewhere. However, previous studies 

have also shown that the EBL may also hinder hole transportation (see Section 3.5). The 

reduction of hole injection efficiency at low temperatures is expected to increase the tum-on 

voltage (Figure 6-5). A blue InGaN-based LED (with emission at ~465nm) which did not 

include an EBL was observed to have a tum-on voltage which increases at a reduced rate with 

decreasing temperature compared with a blue LED (with emission at 460nm) which included 

an EBL as shown in Figure 6-10.
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Figure 6-10- The current dependence on applied voltage for a blue LED which does not 
include an EBL in pulsed mode with a pulse width of 2ps and a frequency of 
lOkHz (inset- comparison of the dependence of current on voltage for a blue 
LED that includes an EBL).

The increase in the tum-on voltage with reducing temperature is expected to also occur in this 

device despite the fact that an EBL is not included. This is due to the low activation of the 

Mg-dopants at low temperatures and a poor distribution of the holes among the quantum wells 

as holes struggle to overcome potential barriers [52]. Figure 6-11 shows a comparison of the 

voltage at a fixed current for the blue LEDs with and without an EBL.
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Figure 6-11- The voltage divided by the voltage value at 290K as a function of temperature for 
a blue LED without an EBL (black line) and a blue LED that includes an EBL 
(red line) that is taken at a fixed current of 10mA.

The LED which includes an EBL is observed to have a relatively voltage which is a factor of 2 

higher for a fixed current of 10mA compared with that of the LED without an EBL at 80K. 

These results show the EBL has a strong impact on reducing the hole injection efficiency at 

low temperature.

The larger tum-on voltage in comparison with at room temperature for the blue LED without 

an EBL is expected to enhance the effective internal polarization field. Figure 6-12 show the 

temperature dependence of the efficiency droop for the blue LED without an EBL.
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Figure 6-12- Electroluminescence efficiency normalized to the peak efficiency value at 20K 
as a function of current at different temperatures for a blue LED with no EBL 
in pulsed mode with a pulse width of 2ps and a frequency of lOkHz.

It can be seen that whilst the highest peak efficiency occurs at the lowest temperature, there is 

also a stronger efficiency droop effect. Figure 6-13 shows that the dependence of the peak 

efficiency on temperature.
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Figure 6-13- Peak electroluminescence efficiency values normalized to the peak efficiency 
value at 2 OK as a function o f temperature in pulsed mode with a pulse width of 
2ps and a frequency of 1 OkHz.
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The peak efficiency is observed to be approximately constant for temperatures below 15OK 

before showing a strong reduction with further increases of temperature. Interestingly, the 

efficiency at high injection currents is found to increase with increasing temperature from the 

lowest temperatures up to 15 OK but then reduce with further increases in temperature as 

shown in Figure 6-14.
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g  0.85
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Figure 6-14- The efficiency normalized to the highest efficiency value (which occurs at 180K) 
as a function of temperature at 40mA in pulsed mode with a pulse width of 2ps 
and a frequency of lOkHz.

The reduction of efficiency with increasing temperature above 13 OK is likely to be due to an 

increasing proportion of active region band gap defect-related recombination in the low 

current regime. The insensitivity of the peak efficiency on temperature below 13 OK may be 

explained by the reduction of the active region bandgap defect-related recombination rate 

being countered by an increase in the carrier leakage rate that is caused by the poor hole 

injection with decreasing temperature. The stronger influence of carrier leakage at high 

currents is expected to be reason that there is a reducing efficiency with decreasing 

temperature below 150K as shown in Figure 6-14.
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6.6 Evidence for carrier leakage

Evidence that a carrier leakage process takes place at low temperatures is found by the 

existence of a second emission peak in the spectra of the green LED at different temperatures 

shown in Figure 6-15.
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Figure 6-15- The electroluminescence emission spectra at a fixed current of 10mA at different 
temperatures for a green LED in pulsed mode with a pulse width of 2ps and a 
frequency of lOkHz.

The weak temperature dependence of the peak emission energy of the second peak suggests 

that the transition involves carrier recombination at a defect-level. This peak is found to occur 

at an energy of ~3.07eV. This energy corresponds to the energy difference between the 

conduction band and the Mg-dopant acceptor level within the p-GaN layer [100] as shown 

schematically in Figure 6-16.
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Figure 6-16- Schematic showing the transition between the conduction band to the Mg- 
acceptor level in GaN.

The weakening intensity of the second peak with increasing temperature may be explained by 

a reducing carrier leakage rate. The second peak did not appear at any temperature in the 

emission spectra of the blue LED as can be seen in Figure 6-15.
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Figure 6-17- The electroluminescence emission spectra at a fixed current of 10mA at different 
temperatures for a blue LED in pulsed mode with a pulse width of 2ps and a 
frequency of lOkHz.

These observations suggest that there is a stronger carrier leakage rate in the green LED 

compared with the blue LED. This may be explained by the stronger internal polarization 

fields for the higher indium content green LED. These findings are in agreement with those of 

Shin et al. [101] where the second emission peak was also only observed at low temperatures
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in the case o f a green LED which was also attributed to recombination at the Mg-acceptor 

level.

6.7 Temperature dependence of Auger recombination

Auger recombination is unlikely to explain the temperature dependence o f the LEDs. Whilst 

the Auger recombination rate has been shown to be reduced as temperature is reduced [44, 

95], the analysis does not include the effect of a possible increase to the internal field strength. 

Whilst the increase in the carrier concentration (Section 5.8.2) with reducing recombination 

rates for stronger fields may cause an increase to the Auger recombination rate it is unlikely to 

cause the strong efficiency droop effect that occurs at low temperatures. This is due to the fact 

that there will also be a reduction in the Auger coefficient with reducing electron hole 

wavefunction overlap [92] in addition to a reduction in the Auger recombination rate with 

reducing temperature.

6.8 Evidence of carrier localization in the temperature dependence of the 

peak emission energy

It is observed that there is an “S-shape” dependence of the peak emission energy on 

temperature, instead of the expected Varshni behaviour, that provides evidence that carrier 

localization occurs in the blue and green LEDs as shown in Figure 6-18.
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Figure 6-18-The electroluminescence peak energy emission as a function of temperature for a 
blue LED (a) and a green LED (b) with the expected Varshni behaviour of the LEDs where 
the bandgap at OK is extrapolated to 2.74ev and 2.42eV, Varshni thermal coefficients for cr =1 
X  lO'^eVK'^ and 1.06 x 10"^eVK'\ and = 1 196K and 1620K, for the blue and the green LED, 
respectively. The Varshni fitting coefficients for the blue LED were taken from Shan et al. 
[102] and extrapolated for the green LED. The measurements are taken in pulsed mode with a 
pulse width of 2ps and a frequency of lOkHz.

The “S-shape” dependence of the peak emission on temperature may be explained by the 

existence of potential minima that localize carriers as discussed further in Section 3.7. The 

reduction of the peak emission energy as temperature is increased from the lowest 

temperature to -lOOK may be attributed to the redistribution o f carriers from weakly localized 

states to relatively stronger localized states. At -lOOK the strongly localized states are 

occupied and therefore the effect of increasing temperature up to -190K  will cause the carriers 

to fill higher energies within the localized states. A further increase o f temperature above 

-190K  will result in a redshift of the peak emission energy due to the band gap shrinkage with 

increasing temperature that is commonly observed in most other semiconductor materials. The 

larger depth of the “s-shape” for the green LED (130meV) compared with the blue LED 

(58meV) may be attributed to stronger carrier localization effects which are caused by a larger 

indium content. Similar findings were also observed in Lee et al. [103] where the depth of the
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“s-shape” was found to reduce at high currents which was attributed to reduced carrier 

localization with increasing injection. This observation shows the importance of carrier 

localization in InGaN-based materials and suggests that an efficiency droop model which 

involves an increase in defect-related recombination with increasing current may take place 

due to reduced carrier localization and subsequent recombination at defect sites at higher 

energies (see section 5.10).

Further evidence of carrier localization is seen by the increase of the FWHM as temperature is 

reduced below -100K  for both LEDs (see Figure 6-19).
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Figure 6-19-The electroluminescence FWEiM (full-width half maximum) for the blue (blue 
circles) and green (green squares) LEDs in pulsed mode with a pulse width of 
2ps and a frequency of lOkHz as a function of temperature

The increased FWHM with reducing temperature below lOOK may be attributed to carriers 

being confined in weakly localized energy states that result in a larger spread of photon 

energies at low temperatures. There will be a reduction o f the FWHM as carriers are 

redistributed into stronger localized states with increasing temperature up to lOOK. The 

increase in FWHM with increasing temperature above lOOK is due to the thermal broadening 

of the carrier distribution which results in carriers reaching higher energy states.
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6.9 Efficiency droop above room temperature

The reduction of carrier localization with increasing temperature is expected to cause an 

increase in defect-related recombination in InGaN-based devices. The light output power 

reduces with increasing temperature at temperatures where hole injection is not problematic as 

was shown in Figure 6-2. Figure 6-20 shows that the efficiency over the entire current range 

reduces with increasing temperature above room temperature for both blue and green LEDs.
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Figure 6-20- The electroluminescence efficiency dependence on current at different 
temperatures for a) a blue LED and b) a green LED in pulsed mode with a pulse 
width of 2ps and a frequency of 1 OkHz above room temperature

Interestingly, the efficiency droop effect is found to reduce with increasing temperature above 

room temperature. The stronger reduction of the peak efficiency compared with the reduction 

of efficiency at high currents can be attributed to the active region bandgap defect-related 

recombination having a larger influence at low injection currents [30]. The reduced droop 

effect with increasing temperature is unlikely to be caused by carrier leakage or Auger 

recombination as both of these processes have been shown to become increasingly 

problematic at high temperatures [44, 95-97] as described earlier.

6.10 Modelling of the temperature dependence of the efficiency droop

Figure 6-21 shows that the efficiency dependence on current density above room temperature 

may be fitted using the model whereby the cause of efficiency droop is due to a defect-related 

process as described in Section 5.10.
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Figure 6-21- The efficiency dependence on current at different temperatures for a blue LED 
(upper graph) and a green LED (lower graph) which have been fitted using a

_ 7
defect-related model as the cause of efficiency droop where A oc T, B oc T 4 , 
Dc< e x p ( ^ ) .

A scaling factor has been included with the experimental data in order to account for the 

system efficiency. A good agreement between the model and the experimental data is found. 

The model uses an Aq coefficient which has a linear dependence on temperature as shown in 

Figure 6-22.
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Figure 6-22- The modelled temperature dependence of the Aq parameter for the blue LED 
(blue squares) and the green LED (green circles) where a linear relationship is 
used.

The increase of the Aq coefficient as temperature is due to carriers obtaining higher energy and 

therefore being more likely to recombine with defect sites within the bandgap and at high 

energy. The carrier concentration required to fill the potential minima, np, is assumed to be 

temperature insensitive as the thermal broadening of the carrier distribution will be countered 

by the reduction of the occupational probabilities of low energy states with increasing 

temperature [44]. Temperature insensitive values of Up = SxlO^^cm’̂  and np=6xl0^^cm'^ for the 

blue and green LED, respectively, are therefore assumed.

The rate at which there is an increase in the monomolecular recombination coefficient as there 

is an increase of the carrier concentration at high injection, D, has a exp(EaZkBT) with values 

activation energies of 38meV and 95meV for the blue and the green LED as shown in Figure 

6-23.
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Figure 6-23- The modelled temperature dependence of the D parameter for the blue LED (blue 
square) and the green LED (green circles) where an oc e x p (^ ^ ) is used.

The temperature dependence of D may be explained by the strong reduction in the influence of 

the potential minima with increasing temperature in an effect which is larger for the green 

LED. This is due to larger carrier localization and a higher defect density.

The model uses the dependence for Bq that was determined by Hader et al. [44] as shown 

in Figure 6-24. Hader et al. obtained this temperature dependence by fitting experimental data 

and therefore the physical cause of such dependence is unknown. The dependence of the 

radiative recombination coefficient with temperature is complex and will be influenced by the 

reducing bandgap and an increasing radiative lifetime due to the thermal broadening of the 

carrier distribution causing a lower proportion of carriers recombining at zero momentum with 

increasing temperature.
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Figure 6-24- The modelled temperature dependence of the Bo parameter for the blue LED
_ 7

(blue squares) and the green LED (green circles) where a oc T 4 .

The higher B q value for the blue LED is due to a reduced internal field strength [26] and an 

enhancement to the radiative rate due to the larger bandgap [33] in comparison with the green 

LED. The parameters A q, B q, and no were obtain from the literature values and the np and D 

values were determined by fitting the data.

The strong temperature dependence of the peak efficiency compared to the efficiency at high 

currents is expected to be due to the stronger influence o f carrier localization at low injection 

levels. In contrast, at high injection levels there is a relatively low influence of the carrier 

localization due to carriers filling the potential minima resulting in a similar proportion of 

defect-related recombination at all temperatures.
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6.11 Chapter summary

The aim of this chapter was to determine the recombination processes which dominate the 

emission of blue-green InGaN-based LEDs. The use o f temperature-dependent studies is a 

valuable technique to identify the dominant loss mechanism due to loss processes having 

different temperature dependencies. The findings of this study show that there is poor 

performance of the LEDs at low temperatures. The efficiency droop effect was also observed 

to be more severe at low temperatures. This indicates that there is a loss mechanism which is 

stronger at low temperatures. Poor injection of holes into the active region is expected to 

increase the rate of the dominant loss mechanism. Evidence of poor injection is found in the 

form of a higher required voltage to obtain a fixed current with reducing temperature. The rate 

at which there is an increase in the applied voltage with decreasing temperature is found to be 

reduced for a device which did not include an EBL. This observation indicates that the EBL 

hinders hole transportation at low temperatures. The highest peak efficiency was found to 

occur at the lowest temperatures in this device. This is expected to be due to reduced active 

region bandgap defect-related recombination with decreasing temperature. Interestingly, the 

efficiency at high current injection was found to increase with increasing temperature up to 

160K before reducing with further increases of temperature. The behaviour suggests that hole 

injection issues are present even in devices without an EBL. Such findings show that poor 

hole mobility and weak activation of Mg-dopants cause poor hole distribution and an 

enhanced carrier leakage rate at low temperatures. The poor injection of holes was shown to 

cause an increase to the effective internal polarization field strength. A stronger blueshift for a 

given current range below where the peak efficiency occurs at low temperatures provides 

evidence of a stronger internal field strength.

Evidence that a leakage process occurs at low temperatures is observed in the form of an 

additional emission peak, which has an energy that corresponds to the energy difference 

between the conduction band and the Mg-dopant level in the p-GaN layer, in the spectra of the 

green LED at low temperatures. Interestingly, this peak did not feature in the spectra of the 

blue LEDs. Such observations suggest that carrier leakage is stronger in the green LEDs due 

to the stronger internal field strength.

Another loss process which has previously been shown to have a strong influence on the 

output power of InGaN-based devices is defect-related recombination at sites within the band
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gap. It is shown that there is a reduction of this loss mechanism with reducing temperature as 

the light output dependence on increasing current becomes increasingly sublinear. The 

increasing influence o f bandgap defect-related recombination is expected to result in the 

reduction of the peak efficiency with increasing temperature above 120K and 160K for the 

blue and green LEDs, respectively. The high proportion of bandgap defect-related 

recombination is likely to result from the high threading dislocation density in InGaN-based 

LEDs. An “s-shape” dependence of the emission peak on temperature is observed for both 

blue and green LEDs suggesting that carrier localization takes place. The larger depth of the 

“s-shape” in the case of the green LED indicates that the random indium fluctuations are 

expected to be larger in devices of higher indium content. Additionally, an increase in the 

FWHM with reducing temperature below lOOK is observed which is also expected to be the 

result o f carriers occupying weakly localized states with a range of energies. The reduced 

effect of carrier localization at high temperature will lead to an increased proportion o f defect- 

related recombination that will reduce the efficiency with increasing temperature.

Such findings support the idea that there is a reduction of carrier localization with increasing 

current resulting in an increase in the defect-related recombination rate. It is shown that the 

efficiency droop effect at different temperatures may be modelled using a defect-related 

recombination process as the cause o f efficiency droop for temperatures where hole injection 

efficiency is not expected to be problematic. The results indicate that the luminescence o f 

InGaN-based LEDs above room temperature is strongly influenced by defect-related 

recombination and therefore efforts should be made to reduce both the defect density and 

develop an in-depth understanding of the defects involved.

147



7 Pressure Dependence of InGaN

7.1 Chapter Aim:

This chapter focuses on the technique of applying high hydrostatic pressure to semiconductor 

materials that have revealed important properties of nitride-based materials as well as those in 

other material systems. High pressure is a valuable technique to investigate and understand the 

impact of properties which have dependencies on the bandgap. In this study, the pressure 

coefficient o f blue-green LEDs, which represents the rate at which the bandgap changes with 

increasing pressure, is investigated. It is shown that the pressure coefficients o f blue-green 

InGaN-based devices are much weaker that those which have previously been determined for 

GaN and InN binary materials. The results also show that the pressure coefficient increases as 

a function o f injection current. The different mechanisms that influence the peak emission 

energy and their expected dependencies on current are described in this chapter in order to 

determine the cause of the increasing pressure coefficient with increasing current. The results 

are consistent with an increasing piezoelectric field strength with increasing pressure. Such 

fields become screened at high injection currents causing the pressure coefficient to increase 

from 2.14±0.06me/kbar at 5mA to 2.32±0.01meV/kbar at 300mA for the blue LED and from 

1.20±0.06meV/kbar at 5mA to 1.49±0.03meV/kbar at 300mA for the green LED.

The increase o f the piezoelectric field strength with increasing pressure is the result o f a 

changing internal strain that is caused by the different compressibilities of the InGaN quantum 

well and the GaN barrier. Such changes in strain are expected to increase the piezoelectric 

constants resulting in larger polarization field strengths of the wells and barriers. The 

difference in the rate at which the polarization strength increases with applied pressure 

between the wells and barriers is found to be the reason why there is an increasing field 

strength. Calculations indicate that the field increases from 2.47MVcm'^ to 2.56MVcm'^ and 

4.54MVcm’  ̂ to 4.70MVcm'^ for the blue and green LEDs, respectively.

The final section of this chapter describes the influence of indium inhomogeneities on the 

pressure coefficient in InGaN-based structures. It is shown that indium inhomogeneities will 

cause a reduction in the pressure coefficient at a similar rate to that at which is due to the 

increased piezoelectric field. The reduction in pressure coefficient is expected to be the result
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of an increasing energy at the top of the valence band which counters the increasing band gap 

energy with increasing pressure.

7.2 The influence of pressure on III-N semiconductors

Pressure has proved to be a valuable tool in determining the fundamental properties of a 

number of semiconductors. Extensive studies of semiconductor materials have revealed 

important electro-optical properties which have led to the optimization of device performance. 

Pressure may also be applied to lasers to provide tunability of wavelength which has a number 

of potential applications.

The change in the emission energy of the semiconductor material is the result of a reduced 

lattice constant with increasing pressure. This causes the conduction band minima to shift 

upwards causing an increase to the energy difference between conduction band minimum and 

the valence band maximum as illustrated in Figure 7-1.
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Figure 7-1- The band structure diagram showing the pressure coefficients of the of the F, A, M 
and L conduction band minima in GaN taken from [46].

Figure 7-1 shows that the conduction band of wurtzite GaN has different minima which

include the F, A, M and L valleys. Direct recombination is expected to occur between

electrons from the F conduction band minimum with holes from the valence band maximum

as described in further detail in Section 3.4.4. This is due to the large energy difference

between the A (1.3eV), M and L (both 0.9eV) conduction band minima with the F conduction 
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band minimum which makes electron occupation o f the F conduction band minimum more 

energetically favourable. Despite the F conduction band minimum having a stronger 

dependence on pressure (3.9meV/kbar) than the A (3.6meV/kbar), M and L (both 

1.4meV/kbar) conduction band minima [104], the pressure range used in this study (lOkbar) is 

too small to cause the F conduction band minima to move above the other indirect valleys.

7.3 Pressure coefficients

The pressure coefficient, which represents the rate at which the peak emission energy 

increases as a function of pressure at a fixed current, provides important information about 

different materials. Previous studies have shown that GaN, InN and InGaN materials have 

lower pressure coefficients than those of most other III-V material systems. One of the reasons 

for this observation is due to the small compressibility of nitride-based materials. For example, 

the bulk modulus, which is inversely proportional to the compressibility, for GaN (210GPa) 

[105] and InN (140GPa) [106] is larger than that o f GaAs (78.4GPa) [107].

An example of the emission energy spectra at different pressures which is used to calculate the 

pressure coefficient is showed in Figure 7-2.
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Figure 7-2- The electroluminescence emission spectra for a fixed current of 5mA at different 
pressure for (a) a blue LED and (b) a green LED in pulsed mode with a pulse 
width of 2ps and a frequency of lOkHz with a Gaussian fit used to determine 
the peak energy value

A Gaussian fit was applied to the data to determine the peak photon emission energy at 

different pressures for a fixed current. The determination of the pressure coefficients of this 

study rely on measuring the electroluminescence peak emission. The carrier distribution will 

therefore have an influence on the pressure coefficient causing the dEpeak/dP value to be 

different from the dEg/dP value as will be discussed. The peak electroluminescence energy is 

used to calculate the pressure coefficients of the blue and green LEDs as shown in Figure 7-3.
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Figure 7-3- The electroluminescence peak emission energy as a function of pressure for a) a 
blue LED and b) a green LED in pulsed mode with a pulse width of 2ps and a 
frequency of lOkHz at a current of 5mA

The pressure coefficient of the blue and green InGaN LEDs are found to be smaller than those 

of the binary GaN (3.9meV/kbar) and InN (2.7meV/kbar) structures [108, 109]. This indicates 

that there are mechanisms taking place that cause a reduction of the peak emission energy 

dependence on pressure in InGaN quantum well devices. The following sections will describe 

different effects on InGaN as pressure is applied.

7.4 Pressure induced strain

Nitride based materials have strong internal polarization fields [61] which are the result of 

strain and the relatively high piezoelectric constants compared with other material systems as 

previously discussed in section 3.6. For example, the piezoelectric constants are es3= 0.73Cm'^ 

and e3i=-0 .4 9 Cm'^ for GaN, compared with e33= -0.12Cm'^ and e3i=0.06Cm’̂  for GaAs. The 

induced strain due to the application of pressure is expected to oppose the biaxial compressive 

strain [110-112]. This is because the reduction of the lattice constant in the GaN barrier occurs 

at a weaker rate than that o f the InGaN well. The reduced strain as a function of pressure is 

assumed to be mainly caused by changes between the InGaN quantum well and the GaN 

barrier rather than being influenced by the sapphire substrate. This is due to GaN on sapphire 

epilayers having previously been shown to have similar behaviour as a function of pressure 

with that of bulk GaN [108, 113].
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In order to calculate the pressure induced strain the relationship of the changing lattice 

constant as a function of pressure [111], a(P), is used,

a(P) =  ao (l  -  ( ^ ) ) 7-1

where ao is the lattice is the strain at zero pressure, P is pressure (in GPa) and Bulk is the bulk 

modulus.

The changing lattice constants are then used in the strain equation, equation 7-2, to determine 

the relative change in the amount of strain as a function of pressure.

strain(P ) = 7-2
(̂ GaN̂P)

where ainOaN is the lattice constant of InGaN and aoaN is the lattice constant of GaN.

Figure 7-4 shows the relative change in strain compared with the strain at ambient pressure as 

a function of hydrostatic pressure for the blue and green LEDs.
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Figure 7-4- The calculated percentage change in the hydrostatic compressive strain as a 
function of pressure for a green and blue LED
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The change in the strain will have an impact on the piezoelectric polarization of the barriers 

and wells and will cause an increase to the internal field strength as described in more detail in 

the next section.

7.5 Piezoelectric fields as a function of pressure

One would intuitively expect that the polarization, which is calculated by Equation 7-2, will 

reduce as a function o f pressure due to a reduction in the biaxial strain o f the quantum well.

where straiuzz is the total strain in the growth direction, strain^x is the total in-plane strain and 

es3 and egi are the piezoelectric constants.

However, calculations in Shimada et al. [114] show that the piezoelectric constants will 

increase as the internal strain is reduced for GaN as shown in Figure 7-5.
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Figure 7-5- The dependence of the piezoelectric constants, 033 (upper graph) and 031 (lower 
graph) on the volume conserving strain for GaN {taken from [114]}.

The changes of the polarization in the barrier and well due to the reduction of strain and the 

subsequent increase of piezoelectric constants can therefore be calculated as shown in Figure 

7-6 for a blue LED and a green LED.
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Figure 7-6- The calculated change in the polarization strength in the barrier (upper graph) and 
well (lower graph) for the blue LED (blue squares) and green LED (green 
circles)

The polarization strengths are calculated by using non-linear piezoelectric coefficients from 

Pal et al. [115]. The changing polarization of the barrier and well can be used to calculated the 

internal field strength as a function of pressure by using the relationship,

Ppz — ^b^w~^w^b
7-4

where Lb,w is the width of the barrier and well, respectively. ?b,w is the polarization of the

barrier and well, respectively and is the dielectric constant of the barrier and well,

respectively.
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As determined by the TEM images in Chapter 4, Ly is 13nm and 16nm for the blue and green 

LEDs, respectively, and Lw is 3nm in both LEDs. The dielectric constants were considered to 

be 10, 10.5 and 11.4 for the GaN barrier, blue quantum well and green quantum well, 

respectively where the values for the blue and green LEDs were obtained from a linear 

interpolation [115] as shown in Figure 7-7.
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Figure 7-7- The dielectric constant as a function of indium content where Vergard’s law has 
been assumed with the dielectric constants of GaN and InN taken to be 10 and 
15.4 that were obtained from ref. [115]

The increase of the electric field as a function of pressure can then be calculated as shown in 

Figure 7-8.
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Figure 7-8- The dependence of the piezoelectric field on pressure for the blue LED (blue 
squares) and the green LED (green circles).

Figure 7-8 shows that the internal field increases from 2.47MVcm'^ to 2.56MVcm’  ̂ and 

4.54MVcm'^ to 4.70MVcm’  ̂ for the blue and green LEDs, respectively. These results show 

that the rate at which the internal field strength increases as a function of pressure is similar 

for both the blue and green LED at approximately 4% over a pressure range of lOkbar.

7.6 Effect of the increasing piezoelectric field strength on the pressure 

coefficient in InGaN quantum well devices

The increase of the internal polarization field strength will cause strong band-bending of the 

quantum well as pressure is applied. Subsequently, there will be an increase of the quantum 

confined Stark effect causing the peak emission energy to red-shift. The calculated increase in 

the internal field strength as a function of pressure that was determined in the previous section 

is used in the nextnano software to determine the effects of the increasing piezoelectric field 

strength on the pressure coefficient. The simulation which uses k.p theory to calculate a
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redshift of the peak emission energy with increasing piezoelectric field strength for a blue 

LED as shown in Figure 7-9.
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Figure 7-9- The calculated peak emission dependence on piezoelectric field strength for a blue 
LED with an indium content of 0.16.

The redshift of the peak emission due to the increasing piezoelectric field as pressure is 

applied will counter the blueshift of the peak emission energy that results from the upwards 

movement of the conduction band with increasing pressure (see Section 7.2). Figure 7-8 

compares these two effects with increasing pressure where it is assumed that the pressure 

coefficient of InGaN in the absence of piezoelectric fields will be 3.75mev/kbar taken from a 

linear interpolation of the pressure coefficient between GaN and InN.
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Figure 7-10- The calculated transition energy dependence on pressure if the effects of an
increasing piezoelectric field are not considered (black line) and including the 
effects of an increasing piezoelectric field with pressure (red line) for a blue 
LED.

The calculations show that the increasing internal polarization field strength with increasing 

pressure will cause a reduction of the transition energy at a rate of -2.19meV/kbar. The 

calculations show that this effect will reduce the InGaN pressure coefficient for a blue LED 

with an indium content of 0.16 from 3.75meV/kbar (in the absence o f internal fields) to 

1.56meV/kbar. The experimentally determined pressure coefficient of 2.14meV/kbar for a 

blue LED as shown in Figure 7-3 is within experimental error of this calculated value. The 

larger pressure coefficient in the measurements is expected to be due to carrier screening of 

the internal field, as discussed further in the next section of this chapter, which are not 

considered in the calculations.

7.7 Emission dependence on current at different pressures

It is important to consider how the peak emission energy will be influenced by different 

mechanisms with increasing current when calculating the pressure coefficient as a function of 

currents. Joule heating will be an effect which increases the temperature of the device due to 

the conduction taking place in a resistive material as previously described in Section 4. The 

Joule heating effect will cause the emission peak to show a redshift with increasing current 

due to the reducing bandgap with increasing temperature (see section 6 .8 ). It is important to 
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reiterate here that the emission peak in the measurements of this study is not expected to be 

significantly influenced by Joule heating as pulsed current is applied (see section 4.4).

Band filling effects are expected to result in a blueshift of the emission peak with increasing 

current. This is due to carriers occupying higher energy states with increasing current due to 

the filling of lower energy states filled. The existence of potential minima is expected to 

enhance the band filling effect [94]. The carrier screening of the internal polarization fields 

will also result in the blueshift of the emission peak and is expected to be the dominant cause 

of the strong blue shift observed in InGaN-based LEDs as shown for a blue LED in Figure 7- 
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Figure 7-11-The electroluminescence emission peak energy as a function of current for a blue 
LED in pulsed mode with a pulse width of 2ps and a frequency of 1 OkHz at 
room temperature and ambient pressure.

The existence of internal polarization fields is expected to provide a larger contribution to the 

blueshift with increasing current compared with the contribution from band filling effects. 

Figure 7-12 provides evidence of this as a device with AlGaInN barriers (consisting of a 

reduced polarization field strength) has a weaker blueshift. Figure 7-13 shows that there is a 

red-shift of the emission energy for a device grown along the m-plane that is expected to be 

caused by heating effects. Section 5.6 also shows that for a yellow AlGalnP LED there is not a 

significant effect on the shift in peak emission due to band filling effects for a device which 

does not have a strong internal field.
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Figure 7-12- The blueshift as a function of current for a conventional c-plane InGaN LED 
compared with that o f an LED grown with AlInGaN barriers to reduce the 
polarization field strength taken from [48]
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Figure 7-13- The emission wavelength dependence on current showing a slight redshift for an 
m-plane LED taken from [116]

The emission dependence on current at different pressures may therefore be used to gain an 

understanding of the recombination processes occurring in InGaN structures.

Measurements reveal that there is a large blueshift with increasing current which becomes 

stronger as pressure is applied in both LEDs as shown in Figure 7-14 and Figure 7-15.
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Figure 7-14- Electroluminescence peak emission wavelength as a function of current for a 
blue LED in pulsed mode with a pulse width of 2ps and a frequency of lOkHz 
at different applied pressures.
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Figure 7-15- Electroluminescence blueshift as a function of current for a green LED in pulsed 
mode with a pulse width of 2ps and a frequency of lOkHz under different 
applied pressures.
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A larger blueshift as a function of current was observed for the green LED and is expected to 

be caused by the stronger strength of the internal field in the green LED that is the result of a 

larger internal strain that occurs with increasing indium content.

The increasing blueshift with increasing pressure shows that the increasing piezoelectric field 

will cause a greater blueshift of the emission energy as a function of current with increasing 

pressure. This is expected to show that there is a larger QCSE with increasing pressure 

causing a larger current to screen the fields.

7.8 Pressure coefficients of blue-green InGaN LEDs at different currents

Figure 7-16 and Figure 7-17 show that the pressure coefficient is larger at a high current of 

300mA in both the blue and green LEDs compared with the pressure coefficient at a low 

current of 5mA.
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Figure 7-16- The electroluminescence peak emission energy vs pressure for a blue LED at a) 
5mA and b) 300mA in pulsed mode with a pulse width of 2p,s and a frequency 
of lOkHz resulting in a pressure coefficient of 2.14±0.03meV/kbar at 5mA and 
2.32±0.01meV.
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Figure 7-17- The electroluminescence peak emission energy vs pressure for a green LED at a) 
5mA and b) 300mA in pulsed mode with a pulse width of 2ps and a frequency 
of lOkHz where the pressure coefficient of 1.20±0.06meV/kbar and 
1.49±0.03meV/kbar is measured at 5mA and 300mA, respectively.

The weaker pressure coefficient at low currents may be explained by an increased influence of 

the internal field due to low carrier screening. Figure 7-18 shows that there is an increasing 

carrier screening effect with increasing current as there is observed to be an increase in the 

pressure coefficient.
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Figure 7-18- Pressure coefficient as a function of current density for the blue LED (blue 
squares) and the green LED (green circles) in pulsed mode with a pulse width 
of 2ps and a frequency of lOkHz.
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The sharp rise in the pressure coefficient of the green LED in comparison with the blue LED 

is expected to be due to the stronger internal field strength and the effects indium 

inhomogeneities as will be discussed in more detail in 7.10.

Consistent with our findings, it has been shown in previous photoluminescence studies that the 

pressure coefficients of semi-polar LEDs (which have a significantly smaller effect o f the 

internal fields) are higher compared with those o f polar LEDs [117]. It was found that a blue 

LED grown along the semi-polar orientation has a pressure coefficient of 2.9meV/kbar 

compared with that of the blue polar LED, 1.6meV/kbar. The study also showed that a green 

LED grown along the semi-polar direction also has a larger pressure coefficient 

(1.9meV/kbar) compared with the green LED grown along the polar direction (l.OmeV/kbar). 

The previous studies used photoluminescence techniques where there is a small carrier 

density. The reduced pressure coefficient of the green LED compared with the blue LED is 

also consistent with the findings of our study. This is expected to show that there is expected 

to be an additional cause of the weak pressure coefficient as will be discussed further in 

Section 7.10.

7.9 Influence of pressure on the Voltage-current characteristics

Further evidence that the piezoelectric field is enhanced at high pressures can also be observed 

with the increase of voltage for a given current as pressure is applied as shown for the blue 

and the green LEDs in Figure 7-19.
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Figure 7-19- The current dependence on voltage at different pressures for (a) a blue LED and 
(b) a green LED in pulsed mode with a pulse width of 2ps and a frequency of 
lOkHz.

The larger voltage for a fixed current with increasing pressure is expected to be the result of a 

reduced injection efficiency with increasing internal field strength. The increase in voltage for 

a fixed current of 100mA as pressure is applied to the LEDs is shown in Figure 7-20.
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Figure 7-20- The relative increase in voltage (Voltage-Voltage at 2kbar) as a function of 
pressure for a blue LED (blue squares) and a green LED (green circles).

A stronger relative increase of the voltage with increasing pressure for the blue LED 

compared with the green LED is observed. This is expected to be due to enhanced injection 

issues with increasing field strength due to the larger number of quantum wells for the blue 

LED (see chapter 4) which hinder hole transport.
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These observations are in agreement with the findings of Schubert et al. [48] where it was 

shown that an InGaN-based LED which consists of AlInGaN barriers, instead of 

conventionally used GaN barriers to reduce the polarization mismatch between the quantum 

well and the barrier also results in a reduced voltage at a fixed current compared with 

conventional InGaN-based LEDs as shown in Figure 7-21.
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Figure 7-21- The current dependence on voltage for an LED with GaN barriers (black line) 
and an LED with AlGaInN LED (red line) [48].

168



The reduced injection efficiency for stronger internal fields is a consequence of the triangular 

barriers impeding the flow of carriers into the quantum well as shown in the simulation o f a 

blue 6 QW InGaN/GaN LED (Figure 7-22).
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Figure 7-22- Simulation of the band structures of an InGaN/GaN LED with no internal 
polarization fields (shown in red) and with an internal field strength of IMVcm' 
 ̂ (shown in blue).

The reduced injection efficiency with stronger internal field results in a larger required applied 

voltage in order for carriers to be injected into the quantum wells. Consequently, the increased 

voltage will cause the n-side to be of higher energy than the p-side of the device. This will 

cause a reduced effectiveness of the electron blocking layer leading to a larger probability of 

electron leakage.
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7.10 The influence of indium inhomogeneities on the pressure coefficient 

in InGaN structures

The calculated increase of the internal field strength as a function of pressure was found to be 

similar for the blue and green LEDs as shown in Figure 7-8. Therefore the reduced pressure 

coefficient of the green LED (L20±0.06meV/kbar at 5mA) in comparison with that of the blue 

LED (2.14±0.03meV/kbar at 5mA) is unlikely to be the result of the increasing internal 

polarization field strength with increasing pressure (see Section 7.5).

A weaker pressure coefficient for structures of higher indium content was also observed in 

high-pressure photolumineseenee measurements on InGaN epilayers [118]. These structures 

do not have of internal fields and therefore confirm that the weak pressure coefficient for 

InGaN structures compared with GaN and InN is caused by an additional process. Figure 7-23 

shows the pressure coeffieient is expected to reduce with increasing indium content up to 

indium contents of 0.5 as determined in previous measurements.
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Figure 7-23- The pressure coefficient as a function of Aluminium and indium fraction in the 
case where the aluminium and indium distributions are uniform and clustered 
[118].

The strong bowing of the pressure coefficient as a function of indium content is expected to be 

caused by the existence of indium inhomogeneities. This is due to the reducing bond lengths 

between the In, N and Ga atoms in the case of a clustered distribution compared with a 

uniformed distribution as schematically illustrated in Figure 7-24.
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Figure 7-24- Schematic showing the arrangement o f the Ga, In, and N atoms with bond 
lengths (in Â) for the case where the indium distribution is uniform and 
clustered (case 1) for a structure with an indium content o f 0.25 {image taken 
from Gorczya et a l [119].

Figure 7-24 shows that there is a relative shortening of the bond length if  the indium 

distribution is clustered (2.07 Â) compared with the case where there is a uniform indium 

distribution (2.14 Â). The shortened bond length will lead to hybridization of the indium p and 

s states with those of the N atoms in the case where there is indium clustering. This will cause 

the top o f the valence band to be at a relatively higher energy compared with the case where 

there is a uniform indium distribution. Density of states calculations for a structure with an 

indium content of 0.25 in Gorczyca et a l [119] predict that the energy at the top o f the valence 

band will increase by ~0.45eV if  the indium distribution is clustered (Figure 7-25-Lower) 

compared with if  there is a uniform indium distribution (Figure 7-25-Upper). This increase 

represents the case where there is 1 0 0 % indium clustering and therefore in real devices the 

indium clustering effect is expected to be smaller. The authors use the bottom of the valence 

band (N-2s band) as an energy reference level.
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Figure 7-25- The density of states for the valence band if the indium distribution is uniform 
(upper graph) and if the indium distribution is clustered (lower graph). The 
lower graph shows an increased energy of ~0.45eV at the top of the valence 
band. The bottom of the valence band is taken as a reference point.

The effect of indium clustering is illustrated in Figure 7-26.
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Figure 7-26- An illustration of the conduction band (CB) and valence band (VB) where the 
valence band if indium clustering takes place (dashed line) is found to be at an 
energy which is ~0.45eV higher than the case where there is no indium 
clustering (straight line).

The increased energy at the top of the valence band will cause a reduction o f the band gap 

energy and consequently leads to a bowing of the bandgap energy with increasing indium 

content [119, 120]. Applying pressure causes a further shortening of the bond length leading 

to a stronger effect of hybridization. This will result in a further increase of the energy at the 

top of the valence band with increasing pressure. The increased energy at the top o f the 

valence band will therefore counter the increase of band gap that takes place with increasing 

pressure leading to a reduced pressure coefficient. The reduced pressure coefficients of the 

blue LED (2.14±0.03meV/kbar) and a larger reduction for the green LED 

(1.20±0.06meV/kbar) compared with GaN and InN is therefore consistent with indium 

clustering taking place within the quantum wells of the LEDs in an effect which is stronger for 

the higher indium content green LED. The inhomogeneous indium distribution is expected to 

be due to InGaN being a random alloy rather than gross indium clustering.

173



7.11 Chapter summary

The pressure dependence of InGaN blue-green LEDs is presented in this chapter. It is shown 

that the pressure coefficient of InGaN-based emitters is much weaker compared with other III- 

V material systems. Whilst this effect may partially be explained by relatively low 

compressibility of InGaN, there are further effects which reduce the pressure coefficient as 

lower pressure coefficients of blue and green InGaN-based LEDs are observed compared with 

those of GaN and InN.

It was shown that the blueshift with increasing current becomes larger with increasing 

pressure in both the blue and green LEDs. This observation is expected to be explained by an 

increase in the internal piezoelectric field strength with increasing pressure. The pressure 

coefficient was found to increase with increasing current for both LEDs and is expected to be 

due to the carrier screening of the internal polarization fields. The influence of the internal 

fields is found to be strong even at high injection due to the lower pressure coefficients 

compared with those of GaN and InN.

The cause of the increased piezoelectric field with increasing pressure is due to the pressure- 

induced strain causing an increase to the polarization of the well and barriers with increasing 

pressure. The difference in the rate at which the polarization of the well and barriers changes 

as a function o f pressure is shown to cause an increase to the piezoelectric field strength. It 

was found that there will be an increase of approximately 4% of the internal polarization field 

strength as pressure is applied up to lOkbar.

The final section o f the chapter showed that the existence o f indium inhomogeneities will also 

lead to a reduced pressure coefficient. This is due to the hybridization of the indium and 

nitrogen states at the top of the valence band that will reduce the bandgap energy. The effect 

of pressure will enhance such an effect as the nitrogen-indium bonds become smaller. This 

will result in a further increase of the energy at the top of the valence band which will 

consequently reduce the rate at which the bandgap increases with increasing pressure. The 

lower pressure coefficient of the green LED compared with the blue LED is found to be in 

agreement with its higher indium content causing larger indium clustering effects.
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8 Pressure Dependence of the optoelectronic 
properties of InGaN bine-green LEDs

8.1 Chapter Aim:

This chapter aims to extend the findings o f the previous chapter in investigating the 

performance of blue-green InGaN-based LEDs as a function of applied pressure. The previous 

chapter showed that the application o f pressure causes an increase o f the piezoelectric field 

strength. High pressure is therefore an important tool that can be used to investigate the 

influence of the piezoelectric field strength on the recombination processes o f InGaN-based 

devices.

A reducing light output power in both the blue and green LEDs with increasing pressure is 

observed. This reduction is shown to be consistent with a reducing radiative recombination 

rate that is caused by an increasing quantum confined Stark effect (QCSE) with increasing 

piezoelectric field strength. The proportional reduction of the light output power with 

increasing pressure is shown to be similar at low and high currents. This suggests that the 

reduced radiative recombination rate causes a similar reduction in the performance o f the 

LEDs over the entire current range. The results further show that pressure will cause a 

reduction to the efficiency over the entire current range, but the efficiency droop effect will be 

approximately pressure insensitive. This result is consistent with defect-related recombination 

being the cause o f efficiency droop since pressure is expected to changes the carrier leakage 

and Auger recombination rates.

The final section of this chapter shows that a model which uses a defect-related recombination 

argument as the cause of efficiency droop may be used to fit the efficiency measurements at 

low and high pressure. The fitting of the efficiency dependence on current at high pressure is 

found to be consistent with a comparatively reduced radiative recombination rate, which leads 

to an increased carrier concentration, and a pressure insensitive defect-related recombination 

coefficient.
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8.2 Light output characteristics as a function of pressure

The internal fields that exist within InGaN-based LEDs (see Section 3.6) are expected to be 

enhanced with hydrostatic pressure as described in the previous chapter. The benefit of using 

high-hydrostatic pressure to investigate the influence of the internal fields is that a single 

device may be used which therefore eliminates the influence of different growth conditions 

such as the threading dislocation density, the density of other defects and issues associated 

with device processing. This is an important property because m-piane LEDs (see Section 

3.6), which have been shown to exhibit a larger defect density, have previously been shown to 

have a reduced efficiency droop but with a lower peak efficiency [6 6 ]. Consequently, the light 

output power remains comparable in m-plane with c-plane devices at high injection currents 

(see Figure 3-23).

In this study, the light output power is found to reduce with increasing pressure as shown in 

Figure 8-1 for the blue and green LEDs.
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Figure 8-1-The electroluminescence light output power as a function of current at different 
pressures for (a) blue LEDs and (b) green LED in pulsed mode with a pulse 
width of 2|is and a frequency of lOkHz. Insets show the light output power 
dependence on pressure at high current.

Interestingly, the proportional reduction of light output power as a function of pressure for a 

fixed low current value of 10mA is found to be similar to the reduction of the light output 

power at a fixed high current of 250mA as shown in Figure 8-2.
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Figure 8-2- The normalized electroluminescence light output as a function of pressure at 
10mA (left graph) and 250mA (right graph) for (a) a blue LED and (b) a green 
LED in pulsed mode with a pulse width of 2ps and a frequency of 1 OkHz

The similar dependence of the light output power on pressure at low and high currents 

suggests that the influence of pressure is the same over the entire current range. The cause of 

this dependence will be discussed further in the following sections.

8.3 Dependence of efficiency droop on pressure

The light output dependence on current at different pressures (Figure 8-1) can be converted 

into efficiency in order to show the effect of pressure on the efficiency droop phenomenon as 

shown in Figure 8-3.
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Figure 8-3- The electroluminescence efficiency as a function of current for (a) a blue LED and 
b) a green LED in pulsed mode with a pulse width of 2ps and a frequency of 
lOkHz

A reduction of the efficiency over the entire current range for both LEDs is observed. 

Measurements of the efficiency droop effect at different pressures were also performed in CW 

mode at low currents (<20mA) where there is expected to be a minimal influence of Joule 

beating [28]. The benefit of using CW measurements is that there a significant increase in the 

light output power which reduces noise in addition to easier control of the injection current. 

Applications will also use CW mode so it is beneficial to investigate the LEDs using CW 

mode. The efficiency as a function of current at different pressures for the blue and green 

LEDs is shown in Figure 8-4.
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Figure 8-4-The electroluminescence efficiency as a function of current at different pressures 
for a blue LED (upper graph) and a green LED (lower graph) in CW mode

The application of pressure was found to reduce the peak efficiency in both LEDs. It is also 

found that the current at which the efficiency peaks is reduced with increasing pressure as 

shown in Figure 8-5.
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Figure 8-5- The electroluminescence peak efficiency current as a function of pressure for a) a 
blue LED and b) a green LED in CW mode.

The reduction in the current at which the peak efficiency occurs shows that there is an earlier

onset of efficiency droop. This therefore suggests the non-radiative recombination process

which causes droop occurs at a lower current with increasing pressure.

Figure 8 - 6  shows the rate at which the efficiency reduces from the peak efficiency to the 

efficiency at 20mA as a function of pressure. The efficiency reduction is an indication of the 

droop rate at different pressures.
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Figure 8 -6 - The reduction in efficiency from the peak efficiency value to the efficiency at the 
highest current as a fimction of pressure for a) a blue LED and b) a green LED

The results show that there is not a significant change in the reduction of the efficiency with 

increasing pressure and suggests that the loss mechanism responsible for efficiency droop is 

likely to be pressure-insensitive. This shows that the reduction of the efficiency over the entire 

current range reduces at the same rate and is consistent with the similar reduction of the light 

output power with increasing pressure at low and high currents as shown in Figure 8 -2.The 

following sections explore which mechanisms are consistent in explaining the weak pressure 

dependence of effieiency droop.
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8.4 Calculation of the electron and hole wavefunction overlap as a 

function of piezoelectric field strength

Nextnano software was used to simulate the effects of an increasing piezoelectric field on the 

electron and hole wavefunction overlap for a blue LED of 0.16 indium content including GaN 

barriers and an AlGaN EBL of 0.2 aluminium content. Figure 8-7 shows that the square of the 

electron and hole wavefunction overlap will reduce from -9%  as the piezoelectric field is 

increased from 2.46MVcm'^ to 2.56MVcm"\ This increase in piezoelectric field was 

calculated to occur as pressure is applied from 2kbar to lOkbar (see Section 7.5).

1.0546875

1.0156250

“ 0.9765625

I  0.9375000

0.8984375

2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 

Piezoelectric field (MVcm"’)

Figure 8-7- The square of the electron and hole wavefunction overlap as a function of 
piezoelectric field calculated using nextnano software for a blue LED with an 
indium content of 0.16. The y-axis in the right shows the normalized reduction 
of the overlap intensity.

The reduction of the overlap between the electron and hole wavefunction overlap is expected 

to be the cause of the reducing light output power with increasing pressure as shown in Figure

8-2. The influence of the increasing piezoelectric field as pressure is applied on the 

recombination processes will be described in the following sections.

8.5 The dependence of the radiative recombination coefficient on 

pressure

In addition to the reduction of the electron and hole wavefunction overlap with increasing 

pressure the radiative recombination rate is expected to increase at a rate which is proportional
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to the square of the increasing band gap energy [121, 122] . The black line in Figure 8 -8  

shows the expected proportional increase of the radiative recombination rate due to an 

increasing band gap energy if it is assume that the band gap will increase at a rate of 

3.75meV/kbar (see Section 7.6). The reduction of the radiative recombination rate with 

increasing pressure is calculated if both the effects of an increasing piezoelectric field strength 

and an increasing band gap energy are considered as shown by the red line in the diagram.
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Figure 8 -8 - The calculated proportional change in the radiative recombination rate as a 
function of pressure. The black squared line represents the change in the 
radiative recombination rate that is due to the increasing band gap energy, the 
red circled line also includes the influence o f an increasing field with increasing 
pressure.

The resultant change in the radiative recombination rate as pressure is applied is found to be 

approximately a 7% reduction as pressure is increased from 2kbar to lOkbar. This indicates 

the dominant effect on the radiative rate with increasing pressure is the increasing internal 

field strength. The 7% reduction is in line with the 4% of light output reduction observed in 

Figure 8-2. The reduction of the radiative recombination rate is expected to increase the carrier 

concentration for at a given current. The combined effect of a reduced radiative recombination 

coefficient and an increasing carrier concentration is expected to increase the relative non- 

radiative recombination rate with increasing pressure. The following sections will consider the 

effect of pressure on the candidate droop-causing mechanisms.
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8.6 The dependence of carrier leakage on pressure

The increase in the bandgap energy with increasing pressure is mainly due to the upwards 

movement of the conduction band compared where it is considered that the change in the 

valence band will be small [123]. Figure 8-9 shows that the effect of pressure in the absence of 

internal field would be to increase the confinement energy due to the larger pressure 

coefficient of the GaN barrier (3.9meV/kbar) compared with the InGaN quantum well 

(3.75me/kbar- extrapolated value for a blue LED with 0.14 indium content).

3.9meV/kbar

InGaN

3.75meV/kbar
GaN

♦ l.Sm eV

Okbar
  lOkbar

Figure 8-9- Schematic showing the influence of pressure on the conduction band of a blue 
InGaN quantum well of indium content 0.16 if  the influence of the internal field 
strength is neglected.

The increase in the confinement energy will be countered by the increasing internal 

polarization field strength that occurs with increasing pressure. The reduction of the GaN 

barrier is calculated to be 26.8meV as there is an increase in the piezoelectric field as pressure 

is applied from Okbar to lOkbar. The overall change in confinement energy of the conduction 

band as pressure is applied to lOkbar is therefore expected to reduce by ~25meV as 

schematically shown in Figure 8-10.
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Figure 8-10- Schematic showing the effect of pressure on the conduction band of an InGaN 
blue LED with 0.16 indium content as pressure is applied to lOkbar.

The probability of carrier leakage may be calculated by consideration of the Fermi function. In 

the calculation it is assumed that at Okbar the Fermi level is equal to the ground energy state as 

calculated using the nextnano software. The probability of carrier leakage may then be 

calculated by considering the probability that carriers will reach an energy which is larger than 

the top of the GaN barrier. Figure 8-11 shows that the probability of carrier leakage is 

expected to increase from -0.60%  to -1.15%  as the confinement energy is reduced from 

134meV to 109meV (corresponding to the energy of the GaN being at -2.74eV at Okbar to 

2.7leV at lOkbar).
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Figure 8-11- The Fermi function dependence on energy with a Fermi energy of 2.6eV where 
the black arrow represents the energy difference between the ground state 
energy level and the top of the GaN conduction band at Okbar and the red line 
represents the energy difference at lOkbar.

The carrier leakage rate would therefore be expected to increase by a factor of 2 as pressure is 

applied to 1 Okbar. As there is a lower dependence of the efficiency on pressure observed in the

186



experiment carrier leakage is unlikely to explain the observations of Figure 8-4. The carrier 

leakage rate is also likely to be further increased with increasing pressure due to the increase 

in carrier concentration that results from the reduction o f the radiative recombination rate.

The observations o f this section are in line with the findings of Lee et al. [124] and Li et al. 

[125] where it was found that the efficiency droop effect was not significantly different for 

devices grown on the m-plane (which are free o f the strong internal fields) compared with 

devices grown on the c-plane (which consist of strong internal fields). However, it must be 

noted that contrary to the findings (and the observations o f this chapter), other studies have 

shown that there is a reduced efficiency droop effect for devices o f reduced internal fields 

which may be due to an increasing proportion of defect-related recombination as described in 

further detail in Section 3.4.4 [48,126].

8.7 The dependence of Auger recombination on pressure

Auger recombination is another loss mechanism which has widely been speculated as the 

dominant cause of efficiency droop. Previous high pressure studies on other material systems 

(such as InGaAs/ GalnNAs) have found that the Auger recombination rate reduces with 

increasing pressure [127, 128]. An additional reduction to the Auger recombination coefficient 

will be caused by the reducing electron and hole wavefunction overlap with increasing 

piezoelectric field as shown in Figure 8-7. Whilst the dependence o f the Auger coefficient on 

the overlap will be different from that o f radiative recombination, it is also expected to reduce 

with increasing internal polarization field [92]. The reduced efficiency with increasing 

pressure is therefore not consistent with Auger recombination being the dominant 

recombination process.

The effect of pressure on inter-conduction band Auger recombination will depend on the band 

gap energy of the device. Figure 8-12 shows pressure will cause the band gap energy of the 

blue LED to move away from the Auger recombination resonance whilst the band gap o f the 

green LED will move towards the resonance.
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Figure 8-12-The theoretically calculated Auger coefficient dependence on band gap energy
due to interband Auger recombination showing that the effect of pressure on the 
band gap energy is expected to move the band gap of the green LED towards a 
predicted Auger recombination resonance and blue LEDs will move away from 
the resonance.

The efficiency of the LEDs is therefore expected to have opposite dependence on pressure if 

inter-conduction band Auger recombination is the dominant cause of efficiency droop. Inter­

conduction band Auger recombination is therefore not expected to be the dominant cause of 

efficiency droop as the efficiency is observed to decrease as pressure is applied to both the 

blue and green LEDs as shown in Figure 8-4.

8.8 Fitting the pressure dependence of droop using a defect-related cause 

of efficiency droop

There is expected to be a lower influence of the internal field strength on the monomolecular 

defect-related recombination coefficient, Aq, compared with the radiative recombination 

coefficient, Bq, as described in section 5.8.3. Despite this, the proportion of defect-related 

recombination compared with the total recombination is expected to increase with increasing 

field strength due to the reduced radiative recombination rate.

In Sections 8 .6  and 8.7 it was shown that carrier leakage and Auger recombination are 

unlikely to explain the pressure dependence of efficiency droop. A defect-related 

recombination mechanism as the cause of droop is therefore considered to explain the pressure 
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dependence of efficiency droop. In Chapter 5 a simple model was presented whereby there 

was an increase in the defect-related recombination coefficient as a function of carrier 

concentration due to the increasing probability that carriers will recombine with defect sites at 

high energies. A good fit with the experimental observations (Figure 8-13) is found if  the 

defect-related recombination model is used to model the data. Figure 8-13 shows the fitted 

efficiency behaviour as a function of current density when the following relationship, which is 

the same as equation 3-9 where Auger recombination is assumed to be negligible, is employed 

to convert the carrier concentration (which is used in the model) to the current density (which 

was measured in the experiment).

J =  eL(An +  Bn^') 8-1

where e is the electronic charge, L is the combined quantum well thickness, A is the defect- 

related recombination coefficient, B is the radiative recombination coefficient and n is the 

carrier concentration.
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Figure 8-13- Fitting to the efficiency as a function of current with a defect-related 
recombination model for efficiency droop is used for (a) a blue LED and (b) a 
green LED. The parameters used are Ao=5.7xl0^s'\ np=8xl0^^cm’̂  and D= 
6.0x10'^^cm^s'^ for the blue LED, Ao=5xl0^s’\  ru=6xl0^^cm'^ and D=7.5xl0‘ 
^^cm^s'  ̂ for the green LED and no=5xl0^^cm' which are assumed to be 
constant as a function of pressure. Bo=7.0xlO'^^cm'^s'^ at 2 kbar and reduces by 
3.75xlO‘^^cm’̂ s'^kbar-l for the blue LED. Bo=2.0xlO'^^cm'^s’̂  at 2kbar and 
reduces by 1.25xl0’^^cm-3s'^kbar'^ for the green LED.

The Ao parameter is the defect-related recombination coefficient at low currents where it is 

assumed that only active region bandgap defect sites contribute to the defect-related 

recombination. This is considered to be 5.7x1 Ô s'̂  for the blue LED and 5x1 Ô s'̂  for the green 

LED. These values are comparable to the monomolecular coefficient of previous studies [31] 

where a slightly reduced value for the green LED takes into account the increased carrier 

localization [94]. The higher carrier localization effect in the green LED is also assumed to be 

the cause of the lower D (6.0x10’^^cm^s’ )̂ compared with that of the blue LED (7.5x10’^̂  

cm^s'^). Up, is comparable with the carrier concentration required for density-activated defect 

related recombination to take place that is used in Piprek et al. with 8xl0^^cm'^ (blue LED)
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and ôxlO^^cm'^ (green LED) [43]. The lower carrier density for the green LED is also 

assumed to be due to its higher defect-density.

The parameters relating to the defect-related recombination are assumed to be constant as a 

function of piezoelectric field (and hence applied pressure), as described in Section 5.8.3, due 

to a lower dependence on the electron wavefunction overlap o f the defect states compared 

^vith radiative recombination [90].

The fitting of the pressure dependence of the efficiency is achieved by the reducing the Bo 

values in the model. The B q value at 2kbar is obtained from the literature [27, 31] and a higher 

value used for the blue LED takes into account (a) a reduced internal field strength that results 

from the reduced polarization mismatch between the active and cladding regions and (b) the 

relatively larger band gap [33]. The fitted model found that B q reduces from 7.0x10’^Vm'^s'^ 

at a rate o f 3.75x10'^^cm'^s'^kbar"^ in the case of the blue LED. For the green LED, B q =  

2.0x10'^^cm'^s'^ at 2kbar and reduces at a rate o f 1.25x10‘^^cm'^s'^kbar'L Whilst there is only a 

small reduction in the B q coefficient as pressure is increased from 2kbar to lOkbar (5%), there 

will be an impact on the radiative efficiency as the reduction in the radiative recombination 

rate will also cause an increase to the carrier concentration for a fixed current. The combined 

effect o f the reduced radiative recombination coefficient, in addition to an increased carrier 

concentration will cause there to be a proportion increase in the defect-related recombination. 

The no parameter that is due to the saturation of the radiative coefficient is assumed to be 

5xl0^^cm’̂  as determined in previous studies [23, 43] for both LEDs. As was the case in 

fitting the temperature dependence of efficiency droop, the parameters A q, B q, and no were 

obtain from the literature values and the np and D values were determined by fitting the data.

An earlier onset of efficiency droop with increasing pressure is expected to be the result o f a 

larger carrier concentration at a fixed current that is the result o f a reduced radiative 

recombination rate [40]. This causes the filling o f potential minima and an onset o f the 

increasing defect-related recombination coefficient to occur at a reduced current with 

increasing pressure. The relatively pressure-insensitive efficiency droop may be explained by 

a similar rate of non-radiative recombination at high injection currents where there is less 

influence of the potential minima at all pressures.
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8.9 Chapter Summary

This chapter builds on the pressure investigation of InGaN blue-green LEDs from chapter 7. It 

was shown that the light output power will reduce with increasing pressure for both the blue 

and the green LEDs. This reduction is expected to be the result of a reducing radiative 

recombination rate with increasing quantum confined Stark effect as pressure is applied. The 

proportional reduction of the light output power with increasing pressure is found to be similar 

at low and high currents. This result suggests that the reduction of the light output power with 

increasing pressure is due to the reduction in the radiative recombination that subsequently 

results in the relative increase of defect-related recombination.

The results show that the efficiency reduces almost equally over the entire current range with 

increasing pressure. Carrier leakage or Auger recombination arguments as the cause of 

efficiency droop are unlikely to explain these observations. This is because there is expected 

to be an increase in the droop effect due to the expected increase of the carrier leakage rate by 

a factor of 2 as pressure is applied to lOkbar. In contrast, Auger recombination is expected to 

reduce as a function of pressure and is therefore unlikely to explain the observed efficiency 

reduction with increasing pressure. The results are also inconsistent with interconduction band 

Auger recombination as opposite dependencies of the efficiency on pressure for the blue and 

green LEDs are not observed.

An efficiency model which uses an increasing defect-related recombination coefficient with 

increasing current (as described in Chapter 5) was shown to fit the measured efficiency 

dependence on current density at low and high pressures. This suggests that the reduced 

efficiency over the entire current range with increasing pressure is the result of an increasing 

proportion of defect-related recombination that results from the reducing radiative 

recombination rate. The reduced radiative recombination rate will lead to an increased carrier 

concentration which will cause the filling of the potential minima to occur at an earlier current 

and there will subsequently be an earlier onset of efficiency droop with increasing pressure.
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9 InGaN: Future Applications

9.1 Chapter aim

The aim of this chapter is to investigate the recombination processes which take place in 

InGaN-based LEDs grown on silicon substrates and InGaN-based laser diodes (LDs). This 

chapter investigates whether the loss mechanisms which limit the efficiency of InGaN-based 

LEDs on sapphire are the same as those which limit the efficiencies o f InGaN-based LEDs 

grown on silicon substrates. The second part o f this chapter will investigate the non-radiative 

recombination processes which limit the efficiency of InGaN-based LDs. The technology used 

to produce InGaN-based LDs has advanced rapidly in recent years leading to many 

commercially-available applications such as blu-ray players and HD-DVD storage. The 

threshold currents o f InGaN-based LDs, particularly those with emission in the green part o f 

the spectra, are required to be reduced in order to meet the increasing demand for applications.

The results of this chapter will be used as an extension of the findings in Chapters 6 , 7 and 8  

where the loss processes which affect InGaN-based LEDs were investigated. The 

determination o f the efficiency limitations o f the LEDs grown on silicon substrates and LDs 

may be used to understand how to achieve more efficient performance in devices which are 

expected to have a strong commercial impact over the next few years.

9.2 InGaN Based LEDs Grown on silicon substrate

There is a strong need for high intensity visible LEDs to be used in lighting applications as a 

replacement o f incandescent light bulbs. Silicon may be used as an alternative substrate 

material to sapphire in InGaN-based devices in order to reduce production costs by up to 90% 

[129]. The reduced costs can be attributed to the abundance of silicon in addition to the ability 

to produce six inch and larger wafers. In comparison, sapphire is currently only able to 

produce two inch wafers at a similar production cost. Not only will the larger wafers produce a 

larger number o f LEDs, but there will be a reduced proportion of poor quality LEDs that are 

produced near the edge o f the wafers. Researchers have also demonstrated that 8  and 12 inch 

silicon wafers may be produced [130,131] that will further reduce production costs. However, 

InGaN-based LEDs grown on silicon substrates currently have light output powers which are
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40% lower compared with InGaN-based LEDs grown on sapphire substrates [132]. A strong 

need to increase the efficiency of the LEDs grown on silicon is therefore required in order to 

enable commercialization.

9.3 Device Structure

A schematic of the InGaN-based LED grown on a silicon substrate which is studied in this 

chapter is shown in Figure 9-1.
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Figure 9-1- A schematic showing the device structure including the silicon substrate, 
nucléation layers, an silicon nitride interlayer, nGaN layer, InGaN/GaN MQW, 
pGaN layer and the p and n contacts [133].

The buffer and nucléation layers are required in order to prevent a high threading dislocation 

density from penetrating the active layers. More details on the device structure may be 

obtained from [133]. The high dislocation density results from the large lattice mismatch 

between the (17%) GaN and Si [132] which is larger than the lattice mismatch between GaN

194



and sapphire (14%) [134]. Previous TEM studies have shown that the threading dislocation 

density is larger in GaN-based devices grown on silicon (2x10^ cm‘̂ ) [132] compared with 

those grown on sapphire substrates (5xl0^cm‘̂ ) [30].

The influence of a larger defect density results in a reduced efficiency over the entire current 

range for LEDs grown on silicon substrates in comparison with blue LEDs grown on a 

sapphire substrates as can be seen in comparing blue LEDs in Figure 9-2.
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Figure 9-2- The electroluminescence efficiency dependence on current density for a blue LED 
grown on sapphire substrates (Nichia blue LED-black line) and blue LEDs 
grown on a silicon substrate (red line) in pulsed mode with a pulse width of 2 ps 
and a frequency of lOkHz

Whilst the peak efficiency is observed to be lower for the LED grown on silicon, there is also 

a reduced effect of efficiency droop. This is expected to be caused by the strong influence of 

defect-related recombination at on the peak efficiency compared with the efficiency at high 

currents.

9.4 The temperature dependence of InGaN-based LEDs grown on silicon 

substrates

The investigation into the temperature dependence of InGaN-based LEDs which are grown on 

sapphire substrates in chapter 6  is extended here to include the temperature dependence of
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LEDs grown on silicon substrates. Figure 9-3 shows the temperature dependence of efficiency 

droop in LEDs grown on silicon substrates for temperatures between 80K and 240K.
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Figure 9-3- The electroluminescence efficiency dependence on current for different 
temperatures between 80K and 240K for a blue LED grown on a silicon 
substrate in pulsed mode with a pulse width of 2ps and a frequency of lOkHz

In agreement with the results of Figure 6-12 for an InGaN-based LED which is grown on 

sapphire with no EBL, the LEDs that are grown on silicon substrates (also with no EBL) have 

a peak efficiency which is the highest at the lowest temperatures. These results are in 

agreement with the poor performance of the blue and green LEDs grown on sapphire in 

Chapter 6  (see Figure 6-4) being due to the inclusion of EBLs. This shows that there is an 

enhanced non-radiative recombination process for devices which include EBLs due to the low 

injection of holes into the active region. The reduced rate at which the voltage for a fixed 

current increases with decreasing temperature for the devices on either silicon or sapphire 

substrates which do not include EBLs is due to less issues relating to hole injection. Figure 9-3 

shows that the efficiency at a fixed current of 30mA increases with increasing temperature. 

Interestingly, the temperature-dependence of all the LEDs investigated in this study shows that 

the efficiency droop effect reduces with increasing temperature. This observation is likely to 

be attributed to an increase of the hole injection efficiency resulting in a reduction of field- 
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induced carrier leakage with increasing temperature. The reduction of the efficiency droop 

effect is found to continue as temperature is further increased above 240K as shown in Figure 

9-4.
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Figure 9-4- The electroluminescence efficiency dependence on current for a blue LED grown 
on silicon for temperatures above 260K in pulsed mode with a pulse width of 
2ps and a frequency of 1 OkHz

The results are consistent with the results of Section 6.9 where the efficiency droop effect was 

also observed to be highly influenced by defect-related recombination at temperatures where 

there are expected to be no hole injection issues. In agreement with those results, it was found 

that the reduction in the peak efficiency with reducing temperature occurs at a larger rate that 

compared with the reducing rate of the efficiency at high currents. This is likely to be 

explained by the larger influence of the defect-related recombination at low currents. The 

increase of defect-related recombination with increasing temperature causes a reduction of 

efficiency at a fixed low current of 0.5mA as shown in Figure 9-5.

197



5

S'
C
0 )  4 
ü
E
0  3 
■O

co
Ev_
O 1

0 -

Low injection current 
0.5mA

50
—T"
100 150 200

—T-
250

—T-
300 350

Temperature (K)

Figure 9-5- The electroluminescence efficiency normalized to the efficiency at 300K as a 
function of temperature for a blue LED grown on a silicon substrate in pulsed 
mode with a pulse width of 2ps and a frequency of lOkHz at a fixed current of 
0.5mA.

The efficiency at a fixed current of 30mA, where there is a lower influence of active region 

band gap defect-related recombination, is observed to increase with increasing temperature 

from 80K to 240K before reducing with a further increase in temperature as shown in Figure

9-6.
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Figure 9-6- The electroluminescence efficiency normalized to the efficiency at 300K in pulsed 
mode with a pulse width of 2ps and a frequency of lOkHz at a fixed current 
30mA at different temperatures.

The improvement of efficiency as temperature is increased from 80K to 240K may be 

explained by an improvement of hole injection. It is expected that the stronger influence of 

defect-related recombination as temperature is further increased above 240K causes the 

reduction in efficiency.

Figure 9-7 provides evidence that there are hole injection issues at low current due to a larger 

voltage required to achieve a fixed current with reducing temperature.
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Figure 9-7- The current dependence on voltage for a blue LED grown on a silicon substrate in 
pulsed mode with a pulse width of 2ps and a frequency of lOkHz with no EBL 
at different temperatures

The larger rate at which the current increases with increasing voltage at higher temperatures 

may be explained by the improvement of the hole transport. This results in holes obtaining 

enough energy to overcome potential barriers leading to an improved distribution of holes 

among the quantum wells.

9.5 The pressure dependence of efficiency droop in devices grown on 

silicon substrates

Figure 9-8 shows that the application of pressure on the LEDs grown on silicon substrates has 

a similar impact as that for the devices grown on sapphire substrates (Figure 8-4) where the 

efficiency reduces over the entire current range with increasing pressure.
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of 2jis and a frequency of lOkHz

As described in detail in Section 8.5, the reduction of efficiency is expected to be caused by 

the enhancement of the internal fields with increasing pressure that results in a reduction in the 

radiative recombination rate. The earlier current at which efficiency peaks is likely to be 

explained by an increased carrier concentration causing the filling o f potential minima to 

occur at an earlier current as described in section 8 .8 . Subsequently, there will be an earlier 

onset current at which the defect-related recombination coefficient increases and hence an 

earlier current at which the efficiency droops. These results are also unlikely to be explained 

by carrier leakage as there would be a stronger reduction of efficiency with increasing 

pressure. The Auger recombination rate is also unlikely to explain this observation as there its 

rate is expected to reduce with increasing pressure.
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9.6 InGaN Based Laser Diodes

In this section the temperature and pressure dependence of the optoelectronic properties in 

InGaN-based LDs will be presented. The LDs studies in this chapter are from a commercial 

source and therefore limited structural information was provided. Figure 9-9 shows the light 

output dependence on current at different temperatures for a violet LD.
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Figure 9-9- The electroluminescence light output dependence on current at different 
temperatures for a violet LD in pulsed mode with a pulse width of 500ns and a 
frequency of lOkHz

It is also important to note that the LDs did not lase at temperatures below 200K. This is 

expected to be consistent with the LED data whereby hole injection results in a low radiative 

recombination rate. The performance of the devices will therefore be limited at low 

temperatures if there is the inclusion of an EBL in the device structure. The poor hole injection 

is likely to cause the voltage at threshold current to increase with reducing temperature below 

25OK as shown in Figure 9-10.
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Figure 9-10- The voltage at threshold eurrent as a funetion of temperature for a violet LD in 
pulsed mode with a puise width of 500ns and a frequency of lOkHz

The diodes achieved lasing at temperatures above 200K. The threshold eurrent was observed 

to increase with increasing temperature for a violet, blue and green LD as shown in Figure 9- 

11, Figure 9-12 , and Figure 9-13, respectively.
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Figure 9-11- The threshold current dependence on temperature for a violet LD in pulsed mode 
with a pulse width of 500ns and a frequency of lOkHz
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Figure 9-13-The threshold current dependence on temperature for a green LD in pulsed mode 
with a pulse width of 500ns and a frequency of lOkHz

The increase in threshold current with increasing temperature may be due to increasing defect- 

related recombination as shown in for InGaN LEDs in section 6.9. However, the effects of 

Auger recombination and carrier leakage may also cause this threshold current dependence. 

This is because the carrier concentration is much higher in LDs compared with LEDs and 

therefore these two higher order loss mechanisms may have a significantly stronger effect.
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The external differential efficiency may be used to investigate the proportion of carriers 

injected into the well if  the losses are assumed to be temperature insensitive as described in 

section 2.12.3 (equation 2-16). The differential external efficiency is determined by,

(w) 9-1

where rji is the injection efficiency, is the mirror loss and ai is the internal loss.

Figure 9-14 show that there is an approximately temperature insensitive external differential 

efficiency for violet, blue and green LDs, respectively.
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Figure 9-14-The external differential efficiency as a function of temperature for a violet LD
(upper graph), a blue LD (middle graph) and c) a green LD in pulsed mode with 
a pulse width of 500ns and a frequency of lOkHz

These findings show that there are no injection issues or problems associated with carriers 

overshooting the quantum well (see Figure 3-14) for the LDs. It also shows that carrier 

leakage is unlikely to be the dominant loss mechanism in the LDs as a reducing external 

differential efficiency with increasing temperature would be expected to occur. A weak 

temperature dependence of the external differential efficiency is likely to show that the 

dominating loss mechanism of the LDs is either Auger recombination or defect-related 

recombination. Based on the data collected in Chapters 6 , 7 and 8 , it is unlikely that Auger 

recombination is the dominant non-radiative process in the LDs. The weak dependence is 

therefore expected to show that defect-related recombination is the dominant loss mechanism 

taking place in the InGaN-based LDs.

It must be noted that this analysis assumes that the carrier concentration pins at threshold 

current. The determination of whether this occurs is beyond the scope of this project, but a 

method to investigate the pinning effect is discussed in the future studies section of this thesis 

(Chapter 11).

9.7 Pressure dependence of InGaN-based LDs

The pressure coefficients of the LDs were calculated in a similar manner to those of the LEDs 

which are presented in Chapter 7. However, the pressure coefficient in the case o f the LDs is
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measured from the lasing emission energy which occurs above the threshold current where 

there is a large carrier concentration. Figure 9-15, Figure 9-16, and Figure 9-17 show the 

pressure coefficients for violet, blue and green LDs, respectively, are larger than those 

measured for the InGaN-based LEDs.
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Figure 9-15- The lasing electroluminescence emission energy dependence on pressure for a 
violet LD in pulsed mode with a pulse width of 500ns and a frequency of 
lOkHz
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Figure 9-16- The lasing electroluminescence emission energy dependence on pressure for a 
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Figure 9-17- The electroluminescence lasing emission energy as a function of pressure for a 
green LD in pulsed mode with a pulse width of 500ns and a frequency of 
lOkHz

The stronger pressure coefficients indicate that there is efficient carrier screening of the 

internal polarization fields at threshold current.

9.8 Dependence of the threshold current on pressure

The threshold current is found to increase with increasing pressure in violet, blue and green 

LDs as shown in Figure 9-18, Figure 9-19 and Figure 9-20, respectively.
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Figure 9-20- The threshold eurrent dependence on pressure for a green LD in pulsed mode 
with a puise width of 500ns and a frequency o f lOkHz where the red line 
represents the square of the band gap energy as a function of pressure

The radiative recombination is expected to increase with pressure at a rate proportional to Eg. 

The threshold current would also be expected to increase at a rate that is proportional to the 

square o f the band gap if radiative recombination was the dominant recombination mechanism 

(as shown by the red line in the graphs). The threshold current is observed to increase at a rate 

which is larger than this and therefore signifies that there is a loss process which is enhanced 

with increasing pressure. The result shows that Auger recombination is unlikely to be the 

dominant recombination process in the InGaN LDs as this loss process is expected to reduce 

with increasing pressure (see Section 8.7) and would therefore also cause the threshold current 

to have a weaker dependence on pressure than the radiative recombination.

The threshold current dependence is also not consistent with inter-conduction band Auger 

recombination as the blue LD moves away from the Auger resonance with increasing pressure 

and therefore the threshold current would be expected to be less than that of the radiative 

recombination. Similarly the application of pressure will also move the band gap energy o f the 

green LD (~2.52eV at ambient conditions) away from the resonance causing a strong 

reduction of the inter-conduction band Auger recombination rate as shown in Figure 9-21.
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Figure 9-21- The theoretically calculated Auger coefficient as a function of bandgap energy 
due to interband Auger recombination where the arrows represent the effect of 
pressure on the band gap energies of the blue and green LDs.

The results are therefore not consistent with interconduction band Auger recombination. 

Consistent with the findings shown earlier in this thesis, the increase in the threshold current 

with increasing pressure is expected to be due to an increase in the defect-related 

recombination rate. This is due to the fact that the defect sites in the GaN barrier are expected 

to have a weak dependence on pressure and therefore the application of pressure causes the 

Fermi level within the quantum well to move towards the defect level. Such an effect will lead 

to the enhancement of the defect-related recombination rate and an increase of the threshold 

current.

9.9 Chapter summary

The aim of this chapter was to explore the recombination mechanisms of devices which are 

expected to have a big impact in the future nitride-based device industry. The first section of 

the chapter investigates InGaN-based LEDs grown on silicon substrates which have reduced 

production costs in comparison with InGaN-based LEDs grown on sapphire substrates. It is 

observed that whilst there is a reduced efficiency droop effect in the LEDs grown on silicon 

substrates in comparison with that of LEDs grown on sapphire, there is also a lower efficiency 

over the entire current range. The relatively poor efficiency of the LEDs grown on silicon is 

expected to be the result of a high threading dislocation density which is caused by a large 

lattice constant mismatch between the GaN layer and the silicon substrate. It is shown that 

there is a high influence of defect-related recombination on the light output performance of
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these LEDs as the peak efficiency reduces with increasing temperature. This is expected to be 

due to the localization of carriers away from defect sites at low temperatures. In agreement 

with the results of chapter 6  the efficiency droop effect becomes more severe with reducing 

temperature. This is expected to be due to hole injection issues leading to a strong electron 

leakage rate for all of the LEDs investigated in this thesis. It is also found that there is an 

increase in the influence of defect-related recombination with increasing temperature at 

temperatures where hole injection is not expected to be problematic for the LEDs grown on 

either silicon or sapphire substrates. Similar findings are found for the pressure dependence of 

the LEDs which are grown on silicon as those grown on sapphire as the efficiency reduces 

almost equally over the entire current range with increasing pressure. The results are expected 

to be explained by a reduction in the radiative recombination rate due to the enhancement of 

the piezoelectric fields with increasing pressure. This will subsequently result in an increasing 

proportion of defect-related recombination for a given current as discussed in further in 

Chapters 7 and 8 .

In the final section of this chapter the findings on the temperature and pressure dependence of 

the optoelectronic properties in violet, blue and green InGaN-based LDs are presented. Hole 

injection issues are also found to occur in the LDs at low temperature as all the LDs did not 

lase. It was found that all the LDs exhibit an increasing threshold current with increasing 

temperature above 200K. Such behaviour is expected to be the result o f an increasing rate of 

defect-related recombination with increasing temperature. The external differential efficiency, 

which represents the efficiency of the laser above threshold current, was observed to have 

weak temperature dependence for the LDs and provides further support that the dominant 

recombination process is defect-related in the LDs.

The stronger pressure coefficients in InGaN LDs compared with those o f the InGaN LEDs 

indicates that there is efficient carrier screening o f the internal polarization field effects in the 

LDs. It was also observed that there is an increase in the threshold current with increasing 

pressure for all the LDs and is in agreement with the temperature dependent data that defect- 

related recombination is the dominant non-radiative process in InGaN.

The findings of this chapter indicate that defect-related recombination and the internal 

polarization field strength have a strong impact on the light output power of LEDs grown on 

silicon substrates and InGaN-based LDs. The enhancement of the efficiency o f LEDs grown
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on silicon substrates and the reduction of the threshold current in LDs will therefore be 

achieved by reducing the proportion of defect-related recombination through improvements of 

device growth. Efforts should also be made to reduce the internal polarization field that will 

enhance the radiative recombination rate in InGaN-based light emitters.
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10 Conclusions
The beginning of this thesis introduced relevant semiconductor theory that may be used to 

describe the operation of the devices investigated in this study. It was shown that the density 

o f available states in the conduction and valence bands are multiplied by the Fermi function in 

order to obtain the carrier concentrations of the bands. Doping is shown to be a necessary 

process in order to achieve efficient devices. The inclusion of a material with a relative 

reduced band gap energy is found to achieve efficient carrier and light confinement. Other 

methods are also presented to enhance the efficiency of such devices such as the inclusion of 

the epoxy encapsulates which increases the extraction efficiency by 50%.

The next chapter introduced the efficiency droop effect which occurs in nitride-based devices. 

It was shown that there is a relative reduction in efficiency as a function of current following a 

low current peak in an effect is shown to be stronger for green LEDs compared with blue 

LEDs. The main arguments which have been presented as the cause of efficiency droop 

including Auger recombination, carrier leakage and a defect-related recombination process are 

described. Many studies show that the measured efficiency dependence on current may be 

modelled using an ABC model whereby the only recombination processes are defect-related, 

radiative and Auger recombination. Whilst there is good agreement with this model and the 

experimentally measured droop effect, the physical reason for an Auger recombination 

coefficient which is orders of magnitude higher than expected remains unknown. Groups have 

suggested that the high Auger coefficient may be attributed to a phonon-assisted process, 

where there is an increase in the phonon-assisted Auger recombination rate due to the 

relaxation of energy and momentum laws. However, other studies have calculated that even 

including the phonon-assisted contributions the Auger recombination coefficient will be 

negligible at the low currents at which efficiency droop begins. Previous studies have also 

shown that devices which include an electron blocking layer to prevent electron leakage will 

have a larger efficiency at high currents compared with devices which do not consist of 

electron blocking layers. However, other studies have found that the efficiency droop effect is 

stronger in devices which contain electron blocking layers that may be attributed to poor hole 

injection that leads to an enhanced droop effect.

The temperature and pressure dependence of InGaN-based devices is presented in this thesis. 

Observations suggest that the performance of the devices at low temperature is limited by poor 
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hole injection which subsequently leads to strong electron leakage at low temperature. Poor 

hole injection is expected to cause an increasing in the required voltage to achieve a set 

current with decreasing temperature. A stronger blueshift in the emission peak for a fixed 

current range below where the efficiency peaks with reducing temperature is presented. This is 

expected to be due to an increasing internal field with reducing temperature. This effect is 

found to be stronger for the green LED compared with the blue LED. The existence of an 

additional emission peak in the spectra of the green LED at low temperature is also consistent 

with a stronger leakage effect in the green LED. The reducing electron leakage rate with 

increasing temperature is expected to be the result of improving hole injection efficiency due 

to the higher thermal energy of the holes facilitating hole transportation. At temperatures 

where the improved hole injection efficiency saturates, a strong influence of an increasing 

defect-related recombination rate on the performance of the LEDs occurs as the efficiency is 

observed to reduce with increasing temperature over the entire current range.

The peak emission is found to have an “s-shape” dependence on temperature which is 

consistent with carrier localization taking place in the InGaN-based LEDs in an effect with is 

stronger for the green LED. The carrier localization is expected to result from well width 

fluctuations and indium fluctuations due to being a random alloy which result in a fluctuating 

band gap. Such effects are expected to be enhanced in InGaN due to the high internal strain 

and piezoelectric fields which exist. Further evidence of indium fluctuations in InGaN is 

found in the relatively weak pressure dependence of the peak emission in electroluminescence 

measurements for both the blue and green LEDs compared with GaN and InN. The weaker 

pressure coefficient of the green LED compared with the blue LED is expected to also indicate 

stronger indium clustering effects.

Based on the findings a defect-related cause of efficiency droop is proposed. This is due to the 

fact that there is expected to be a relative low proportion of defect-related recombination at 

low currents where there is a strong localization of carriers. As there is carrier delocalization 

there is an increase in the defect-related recombination rate. This will consequently reduces 

the efficiency with increasing current density. A model is presented whereby there is an 

increase in the defect-related recombination coefficient. A, and a reduction in the radiative 

recombination coefficient, B with increasing current. This model is shown to be fitted to the 

experimentally measured droop behaviour for the blue and green LEDs. The droop behaviour 

with increasing temperature may also be fitted using this model for temperatures provided that 
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there are no hole injection problems. Measurements of efficiency droop at low and high 

pressures are also described using this model. The enhancement of the piezoelectric field 

strength with increasing pressure causes an increase to the quantum confined Stark effect that 

will result in an increasing separation o f the electron and hole wavefunction overlap that 

subsequently reduces the radiative coefficient. The reduced radiative recombination rate with 

increasing pressure is expected to cause an increase to the carrier concentration at a fixed 

current that will result in a lower current required in order for potential minima to be filled. 

This will cause an earlier efficiency droop onset current but the efficiency droop will remain 

approximately pressure insensitive.

In the final chapter of this thesis the temperature and pressure dependence o f InGaN-based 

LEDs which are grown on silicon substrates and InGaN-based laser diodes are presented. Both 

of these devices are expected to have a strong impact on the future nitride semiconductor 

industry. The results are consistent with those o f the study o f LEDs where defect-related 

recombination is expected to be the dominant loss mechanism influencing the light output 

performance o f InGaN-based light emitters. Improvements to the growth techniques used to 

produce the devices, in addition to a reduction o f the internal polarization field strength, must 

therefore be made in order to produce devices of higher efficiency.
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11 Future Studies into InGaN-based 
emitters

This section describes relevant experiments that could be used to build on the findings of this 

thesis. The temperature dependence of InGaN-based LEDs (Chapter 6 ) revealed that carrier 

leakage is likely to be enhanced with decreasing temperature and will result in a strong droop 

effect. The carrier leakage at low temperature is expected to be caused by poor hole injection. 

It would therefore be useful to grow a set of devices which could probe the effects of hole 

transportation at different temperatures. This could be achieved by the growth of a device 

which consists of quantum wells of different energies as illustrated in Figure 11-1.
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Figure 11-1- Band structure of proposed devices to investigate carrier leakage where device a) 
consists (a) consisting of 5% indium content (400nm) for quantum well 1 (2nm) 
and 20% indium content (470nm) in quantum well 2 (3nm) and (b) consisting 
of consisting of 20% indium content (470nm) quantum well 1 (3nm) and a 5% 
indium content (400nm) for quantum well 2 (3nm). The barriers in all the 
structures are 13nm

There are inconsistencies in the literature to whether the radiative recombination occurs across 

all the quantum wells or only the quantum well closest to the pGaN side of the active region. 

Spectroscopy measurements on the electroluminescence emission from the structures 

illustrated in Figure 11-1 could be used to show where the radiative recombination occurs. 

Most of its recombination is expected to occur in the quantum well on the nGaN side of the 

device shown in Figure 11-1 (a). The spectroscopy measurement will therefore be able to show 

whether this is the case over the entire temperature range. The structure shown in Figure 11- 

1(b) is the reverse of that in Figure 11-1(a) and would therefore be expected to have stronger 

emission from the quantum well on the nGaN side of the quantum well. It would therefore be 

interesting to observe whether there is emission from the pGaN side quantum well at high 

temperatures. Photoluminescence measurements could also be employed on the structures 

with lasing emission energy which corresponds to a slightly higher energy to that of the lowest 

energy quantum well. This would be able to investigate at which temperatures there will be 

leakage from the quantum well of lower energy to the higher energy quantum well.

The pressure range that is applied to the InGaN-based commercial blue-green LED (Chapters 

7 and 8 ) may be extended by using a new method that is currently being developed at the 

University of Surrey. This method uses a sapphire ball system to apply pressures up to 30kbar 

and would therefore be able to increase the pressure range by three times the amount as the 
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applied pressure investigated in this thesis. Such measurements would be used to confirm 

whether the measurements from this study will continue for larger applied pressures. This 

method of applying pressure would also be ideal to take absorption measurements as a 

function of pressure which could further measure the effects of the internal fields.

Another extension to the pressure-dependent findings would be the growth of devices with 

quantum wells of staggered indium content as shown in Figure 11-2.
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Figure 11-2- The growth of a device with quantum wells which have staggered indium content 
of 18%, 15%, 12% for 2nm quantum well width with quantum barriers of 3nm.

There is expected to be an increase in the radiative recombination rate with increasing 

pressure for the structure presented in Figure 11-2. This is due to the weaker pressure 

coefficient of the quantum well closest to the nGaN in comparison with that of the pGaN side 

leading to a larger overlap of the electron and hole wavefunction overlap. In this structure 

there is a small barrier width (3nm) to enhance the coupling between the quantum wells. An 

additional device could be grown which has the staggered quantum wells in the opposite 

direction (i.e. the lowest indium quantum well is positioned nearest to the nGaN side of the 

device). Applying pressure would have the opposite effect where the electron and hole 

wavefunction overlap will reduce leading to a reduced radiative recombination rate. These 

measurements could be used to determine whether the growth of staggered quantum wells is a 

viable method to produce high efficient InGaN-based devices.
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The investigations into the temperature and pressure dependence o f the InGaN-based laser 

diodes (LDs) could also be further investigated. As the LDs investigated in Chapter 9 were 

produced in their experimental stage, further investigations may be made on LDs which are 

now currently commercially-available and expected to have higher efficiencies. 

Photoluminescence measurements as a function of temperature could also be used to 

determine whether indium inhomogeneities play a role in the lasing emission. This could be 

achieved by measuring the peak emission energy for a relatively high beam intensity to 

observe whether there is “s-shape” or Varshni dependence with increasing temperature. 

Similarly, the peak emission energy in electroluminescence measurements at low and high 

currents could be used to investigate the influence of indium inhomogeneities in the 

spontaneous and stimulated emission, respectively. Investigating the pressure coefficient 

below and above threshold current could also provide additional information about the effects 

of indium clustering on the lasing emission. The simultaneous measurements of spontaneous 

ad stimulated emission over different temperature and pressure conditions would also provide 

further information about the recombination dynamics of InGaN LDs. The spontaneous 

emission of LDs may be measured by collecting emission through the GaN substrate (if less 

than 7pm as GaN will be transparent for a device consisting of top contacts) or by measuring 

the emission through a window that is fabricated by the use o f a FIB technique which was 

developed at the University o f Surrey. These experiments would also be able to investigate the 

efficiency droop effect in InGaN LDs under various conditions.
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