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Abstract — Source-gated transistors (SGTs) have potentially 

very high output impedance and low saturation voltages, which 

make them ideal as building blocks for high performance analog 

circuits fabricated in thin-film technologies. The quality of the 

saturation is greatly influenced by the design of the field-relief 

structure incorporated into the source electrode. Starting from 

measurements on self-aligned polysilicon structures, we show 

through numerical simulations how the field plate design can be 

improved. A simple source field plate around 1µm long situated 

several tens of nm above the semiconductor can increase the 

low-voltage intrinsic gain by more than two orders of magnitude 

and offers adequate tolerance to process variations in a 

moderately scaled thin-film SGT.  

I. INTRODUCTION 

Polysilicon field effect transistors (FETs) are the technology 

of choice in a number of large-area electronic applications, 

including flat-panel display/touch screens [1], fingerprint 

readers [2] and logic circuits [3]. Due to the high mobility of 

polycrystalline silicon [3, 4], electronic devices and circuits 

made with this material operate at high frequencies and have 

larger current densities in their “on” state when compared to 

those made with other thin-film technologies, such as 

hydrogenated amorphous silicon or amorphous carbon.  

Polysilicon technology has reached a maturity which 

enables reliable fabrication of high performance large area 

circuits [5, 6], however, intrinsic to the polycrystalline nature 

of the material is the problem of device-to-device variations 

in drain current [7]. Additionally, the high carrier mobility 

coupled with the body of the transistor being electrically 

floating lead to the deleterious “kink effect” [8], also seen in 

silicon-on-insulator (SOI) devices [9]. This manifests itself 

by a rapid increase in overall current at high drain bias due to 

the bipolar amplification of charge generated by impact 

ionization. Several fabrication techniques [10-13] have been 

developed which improve the quality of the film in an attempt 

to ensure the same number of grain boundaries (or none) are 

present in the channel of every device and advanced device 

structures have been implemented in order to mitigate the 

kink effect. Device engineering techniques include: lightly-

doped drain (LDD) [14-15]; gate-overlapping lightly-doped 

drain (GOLDD) [16] and drain field plate [17]. Their main 

role is to reduce the drain-field dependence of drain current, 

the main benefits being reduced power consumption in digital 

circuits [18] and improved signal amplification in analog 

blocks [19]. 

Source-gated transistors (SGTs) [20] are a class of FET in 

which the current is controlled by the effective height of a 

reverse-biased potential barrier at the source. In principle, 

SGTs could produce drain currents with a very small 

dependence on the drain field (low output conductance) and, 

at the same time, enter saturation at comparatively low drain 

voltage [21]. These characteristics are inherently favorable in 

terms of both power consumption and signal amplification, 

but they largely depend on the effectiveness of the 

mechanism which screens the source barrier from the drain 

field.  

We have previously shown source-gated transistors made 

in polysilicon and comprising Schottky source barriers with 

very good output characteristics [22], and high-performance 

devices have been made in amorphous silicon [20, 21]. These 

devices require small or no changes to conventional 

staggered-electrode processes. As a consequence, it is 

envisaged that SGTs and conventional FETs can be made 

using the same technology, and even in the same fabrication 

process with minimal cost implications. 

In this paper we investigate by numerical simulation the 

effect of a simple field-relief structure integrated in the source 

contact and compare these findings with measurements on the 

polysilicon structures. We subsequently develop 

recommendations for maximizing low-voltage gain, while 

keeping the influence of process variations to a minimum. 

 

II. POLYSILICON SOURCE-GATED TRANSISTORS 

Polysilicon n-type SGTs have been fabricated at the 

MiPlaza facility in Eindhoven, according to the recipe 



described in [23], with and without field plates. Micrographs 

of otherwise identical SGTs are shown in Figure 1. The field 

plate is created by allowing the source metal to overlap the 

edge of the source window.  

A cross-section of a typical device is shown in Figure 2. 

The source contact comprises a Schottky barrier, while the 

drain is made ohmic using an n+ implant. The source-drain 

gap is denoted d while the construction of the field plate (FP) 

has two parameters: the length that the FP protrudes above 

the source-drain gap (l) and the thickness of the insulator that 

separates the semiconductor from the field plate (h). In the 

case of the fabricated devices, this insulator was silicon 

dioxide with a thickness of 120nm and FP length according to 

mask design was 4µm. The source metallization of the device 

on the left was centered on the source window in the x 

direction, but as can be seen from Figure 1, misalignment 

during fabrication has resulted in an actual l of less than 2µm. 

This simulates conditions which might be present in a real 

fabrication run on a large substrate. 

  
Figure 1.  Micrographs of two source-gated transistors made in polysilicon, 

with source width W = 50µm, source length S = 4µm, drawn source-drain 

gap  d = 4µm (drain implant self-aligned to the gate). Left – no field plate; 

Right – l = 4µm drawn (2µm realized) field plate realized by overlapping the 

source electrode and the source window.  

 
Figure 2.  Schematic cross-section of an n-type source-gated transistor, 

showing the ohmic drain contact and Schotky source contact comprising a 

field plate of length l formed above an insulating layer of thickness h. The 

source-drain gap is denoted d. 

The SGT device concept allows for very low saturation 

voltages and flat output characteristics [20, 23]. Due to the 

presence of the reverse-biased source barrier, saturation 

occurs when the semiconductor depletes at the source at a 

much lower voltage than in a conventional FET:  

VSAT1 = (Ci  /  C i + Cs) · VSAT2, where VSAT2 = VG – VT is the 

saturation voltage of a regular FET when the drain pinches 

off, Ci and Cs are the specific capacitances of the gate 

insulator and semiconductor, respectively, and VT is the 

threshold voltage of the transistor [20]. Nevertheless, without 

adequate screening of the source from the drain field, the 

saturation is poor when drain voltage is between VSAT1 and 

VSAT2. Figure 3a illustrates the measured output characteristics 

of SGTs with and without field plate, of otherwise identical 

geometry and in the same bias condition. The current of the 

device which comprises a field plate is somewhat lower, but 

strong saturation begins well below VSAT2, whereas in the 

device without the field plate, the slope of the curve in the 

region ~1V < VD < ~4V is substantially higher, leading to 

higher current by the time the FET channel saturates (VD > 

VSAT2) [20]. The intrinsic gain of both devices is shown in 

Figure 3b. It can be seen that the gain of the device with a 

field plate is around 10 times higher around VD = 2V, which 

would allow operation as an amplifier from much lower 

supply voltages and thus minimize power dissipation. 

Saturation in both devices is strong above VSAT2, which is 

partly due to the SGT device architecture and partly to the 

fact that the source-drain gap (d) is fairly large. The curves in 

Figure 3a also show the absence of the kink effect which in 

conventional devices would lead to substantial drain current 

increase at high voltage, reducing amplification functionality. 

In fact, on similar polysilicon SGTs we have measured 

intrinsic gain above VSAT2 of up to 10
5

 [24], which is several 

orders of magnitude higher than in conventional polysilicon 

FETs. 

 

Figure 3.  a) Output characteristics measured on polysilicon SGTs of 

identical geometry but differing in their field plate configuration; b) Intrinsic 

gain measured on the same strucutres at low drain bias. Polysilicon thickness 

ts = 40nm; Equivalent oxide thickness ts = 300nm; Cr source contact [22]. 

III. NUMERICAL SIMULATION 

A. Simulation conditions and field plate architecture 

Based on the markedly different characteristics of SGTs 

with and without field plate, it is of interest to investigate to 

what extent the field plate design (l and h) improves 

saturation and whether the presence of a filed plate has 

adverse effects on other areas of device operation. 

Two-dimensional (2-D) numerical simulations using 

Silvaco Atlas have been performed on a structure resembling 

the fabricated devices and the cross-section in Figure 2. The 

effect we are studying is generally confined to the region of 

operation where VD ≤ VSAT2. Consequently, impact ionization 



effects, which manifest predominantly at high drain voltage, 

have not been included in the simulation. 

A bottom-gate structure has been generated, with 200nm 

SiO2 as gate insulator and a 50nm polysilicon active layer. 

The drain contact was made ohmic by n++ doping, while the 

source contact was left undoped and a Schottky barrier was 

formed with the following parameters [25]: barrier height, 

φB0=0.3eV; field-dependent barrier in the form of φB = 

φB0·(αE+ β E
0.5

), with α=3nm; β=0. The metallization of the 

source was extended on top of the source-drain gap to form a 

field plate (FP) of length l and the insulator layer between the 

FP and the semiconductor was SiO2, of thickness d (Figure 

2). Several values were considered for these two parameters: l 

= 100, 200, 500, 1000, 2000nm and h = 10, 20, 50, 100, 

200nm. 

 

B. Simulation of SGT operation 

Figure 4 shows the simulated output characteristics for two 

devices (no FP and FP with l = 500nm and d = 50nm) for 

three gate biases. It can be seen that the curves have the same 

shape as those in Figure 3a which were measured on the 

polysilicon devices. The discrepancy between the curves with 

and without FP is largest for higher VG, which makes VSAT2 = 

VG – VT larger and allows the current to increase over a larger 

range between VSAT1 and VSAT2 before it finally saturates due 

to pinch-off at the drain [20]. The same conclusion can be 

drawn as in the case of the measured devices: the 

performance of the SGT without FP is inadequate below 

VSAT2 and negates the advantage of the SGT over the FET in 

terms of high gain and low power. 

 
Figure 4.  Simulated output characteristics showing the effect of the field 

plate with l = 500nm and h = 50nm (continuous line) at three different gate 

voltages. The same improvement in output impedance when VD is between 

VSAT1 and VSAT2 [T-ED] shown in Figure 3 can be observed and the effect is 

stronger for curves for which VSAT2 is higher. VG  = 2.5, 5 and 10V. 

The simulated structures show SGT behavior in other 

respects: a small VSAT1 is achieved and the drain current is 

modulated by the applied gate voltage.  

The effect of the gate voltage for a device without source 

field plate can be seen in Figure 5a, where we show the 

effective barrier height, φB (represented by the difference 

between the conduction band edge and the Fermi level in the 

metal; nominal value φB0=0.3eV) along the length of the 

source electrode for different gate biasing conditions. At VG = 

0V, there is no gate-induced barrier lowering due to electric 

field, but as we increase VG we see the barrier lowering along 

the length of the source. Moreover, the edge of the source 

closest to the drain (x = 0 in Figure 5a) is subject to more 

pronounced barrier lowering as explained by the 2-D nature 

of the SGT’s operation [20, 26]. This confirms previous 

simulations in which the majority of the current was emitted 

by the first few hundreds of nanometers of source length [22, 

26]. 

 
Figure 5.  Simulated source barrier height vs. distance from the source edge 

for a SGT without a source field plate. Left: applied gate bias lowers the 

barrier at the edge of the source electrode (VD = 5V); right: the applied drain 

field has an undesired barrier-lowering effect (VG = 12V).  

We now turn our attention to the effect on the drain bias on 

φB. Figure 5b illustrates the barrier-lowering effect of VD. 

This effect is unwanted, since it degrades the output 

conductance, gd, of the SGT in saturation, leading to poorer 

amplification characteristics (intrinsic gain AV = gm / gd) and 

increased power consumption. From the figure we can 

observe that increasing VD from 2V to 5V (VSAT1 < VD < VSAT2, 

where source saturation has occurred but the FET channel is 

still in the linear region [20]) there is a large variation of φB 

with VD. However, increasing VD further, above VSAT2 = VG – 

VT has a minimal impact on φB; beyond drain pinch-off, the 

drain-induced field at the source remains largely unchanged. 

As a consequence, the change in drain current with drain 

voltage above VSAT2 is small. 

 

C. Field plate architecture and effect of drain field on source 

barrier 

Minimizing the drain field dependence (output 

conductance - gd) in the region VSAT1 < VD < VSAT2 would lead 

to very flat curves at drain voltages far less than VG – VT, an 

attractive prospect for linear drivers and low-power 

amplifiers. As shown in Figures 6 and 7, the source field-

relief plate is an effective route for improving the output 

characteristics. As h decreases and l increases, the 



characteristics saturate at much lower voltages, as expected 

for SGTs. Devices with long l or thin h are usable as constant 

current sources, active loads, amplifiers, etc. at much lower 

voltages than SGTs with no (or poorly designed: short l or 

thick h) field plate, allowing better power efficiency. 

 

Figure 6.  Output characteristics for VG = 5V and devices with different field 

plate insulator thicknesses; l = 500nm. 

 

 

Figure 7.  Output characteristics for VG = 5V and devices with different field 

plate lengths; h = 50nm. 

Figure 8 shows the effective values of barrier height at the 

edge of the source obtained by simulation for a variety of 

field plate lengths (l), field plate insulator heights (h) and 

different drain bias conditions. It can be seen that for the very 

thin field plate oxide, the barrier lowering due to drain field is 

virtually zero (curves at high and low VD are superimposed) 

for all but the shortest field plate. The effectiveness of the 

field plate decreases as the insulator is made thicker, resulting 

in a more pronounced barrier lowering at high VD. There is 

little difference between the curves for VD = 5V and VD = 20V 

for reasons discussed in the previous section. However, these 

curves diverge for the shortest field plates which reside far 

above the semiconductor (the least effective designs). We 

also observe that the curve obtained at VD = 5V, which is in 

the region of greatest interest (VSAT1 < VD < VSAT2) is strongly 

dependent on field plate length for low h, but is almost 

completely flat when h increases to 200nm, in which case it is 

too distant from the semiconductor to play a role in screening 

the source contact from the drain field. This can also be seen 

in Figure 9, where we show the longitudinal potential 

distribution in the vicinity of the active corner of the source 

for the three values of h. For the given bias condition, the 

design with h = 200nm offers effectively no screening, as the 

potential difference (approx. 3V) is dropped in around 100nm 

of semiconductor from the edge of the source, and large fields 

are generated in that region, leading to the barrier lowering 

effect seen in Figure 8c. Lower values of h permit far better 

screening: at h = 10nm, the potential drop in the x axis around 

the edge of the source is very small and spread around many 

hundreds of nanometers, producing negligible electric field in 

the x direction.  

 

Figure 8.  Effect of field plate length on the source barreir lowering due to 

drain field for three given field plate insulator thicknesses at VG = 12V. 

 a) h = 10nm;  b) h = 50nm; c) h = 200nm. 

 

Figure 9.  Distribution of longitudinal potential in the source region of the 

semiconductor for l = 0.5µm, VD = 25V, VG = 12V and: a) h = 10nm;  

b) h = 50nm; c) h = 200nm. 

Figure 10 shows the barrier lowering effect of drain 

voltage versus the thickness of the field plate insulator. It is 

apparent that the very short field plate has a limited effect 

(large modulation of barrier height by VD) regardless of h. For 

longer field plates and if h is lower than about 50nm, there is 

little drain field dependence of the effective barrier height, 

and the thinner the insulator, the higher the effective barrier 



height at any drain bias. Above that value of h, the field plate 

loses its effectiveness regardless of l. 

The potential distribution around the edge of the source 

(Figure 11) shows a large drop and a large electric field in the 

x direction for the short field plate. Longer field relief 

structures permit the spreading out of this potential drop over 

a much larger distance, thus reducing the magnitude of the 

field at the source edge.  

 

Figure 10.  Effect of field plate insulator thicknesses on the source barreir 

lowering due to drain field for three given field plate lengths at VG = 12V.  

a) l = 0.1µm; b) l = 0.5µm; c) l = 2µm. 

 

Figure 11.  Distribution of longitudinal potential in the source region of the 

semiconductor for h = 20nm, VD = 25V, VG = 12V  and: a) l = 0.1µm;  

b) l = 0.5µm; c) l = 2µm. 

D. Intrinsic gain increase at low drain voltage 

Good field plate designs are extremely effective at 

screening the source from the drain field. Figure 12a shows 

the intrinsic gain calculated from simulations for different 

values of h. The low-voltage gain drastically increases as the 

field plate insulator becomes thinner: around VD = 2V, a ~20x 

is obtained when h changes from 100nm to 20nm. We expect 

a similar increase in gain at low voltage in the fabricated 

devices (Figure 3b) through the optimization of h (from 

120nm to 20nm), to more than two orders of magnitude 

higher than in the device with no field relief structure.  

 We plot the minimum drain voltage at which the intrinsic 

gain reaches 100 in Figure 12b. Operation below 2V can be 

achieved if h is several tens of nm. The anomalous increase 

for h=10nm is due to the effect of the field plate around the 

threshold of the device. Figure 13 shows that the most 

effective field plates also behave as back gates which retard 

the turn-on of the device, lowering the current around 

threshold and implicitly gm and intrinsic gain. At higher VG, 

this effect all but disappears. 

 

 

Figure 12.  a) Simulated intrinsic gain vs. field plate height (h) for field plate 

length l = 500nm; b) Minimum voltage at which the curves in a) reach 100. 

 

Figure 13.  Simulated transfer characteristics of SGTs with different field 

plate lengths and h = 20nm. It can be seen that longer field plates degrade the 

characteristic around threshold and, in the extreme, lower the maximum 

attainable current.VD = 10V. 

E. Energy efficient operation 

Through simulation, we have studied the minimum power 

dissipation in SGTs and FETs. Since P = VSAT · I, SGTs with 

different field plate configurations and a FET with the same 

geometry were biased at the same drain current and the 

saturation voltages recorded and compared. For this purpose, 

the saturation voltage was defined as the minimum drain 

voltage for which the current is within 1% of its saturated 

value. Figure 14 shows the minimum power dissipation of the 

SGTs as a ratio of the FET power. The curves in Figure 14a 

illustrate the behavior of the SGTs when biased just above 

threshold (see previous section and Figure 13). For higher 

currents, the very effective field plate configurations (small h) 

improve power consumption by more than 50% versus the 

FET.  



Intrinsic gain values greater than 100 were obtained at VD = 

2V, which open the possibility of building high-gain SGT 

amplifiers with inexpensive large-area electronic techniques. 

Additionally, the low-voltage operation allows the design of 

low power linear drivers and amplifiers. 

 

Figure 14.  SGT power dissipation as a ratio of the power of a FET with 

identical geometry but an ohmic source contact; ID = a) 1µA; b) 2µA; c) 3µA. 

F. Design-for-manufacture considerations 

The barrier-lowering effects shown in Figures 8 and 10 are 

numerically specific to the transistor design and material 

system considered, but the trends derived from the analysis 

are valid and independent of process.  

From a manufacturability point of view, first consideration 

of the viability of realizing very thin field plate insulators 

(low h) is required. Techniques for nanometer-scale 

insulating layers have been proposed [27], but for more 

traditional materials, such as silicon dioxide, mechanical 

considerations, uniformity and repeatability of thickness limit 

the lower range of h to several tens of nm. As the analysis 

suggests (Figure 10b) these insulator dimensions are suitable. 

The second aspect we need to take into account in 

fabrication is the impact of potential misalignments of the 

source metal (which includes the field plate) with respect to 

the source contact (see Figure 1) which can lead to very 

different output characteristics from devices designed to be 

identical. For instance, by looking at the VD = 5V curve in 

Figure 8b we can conclude that devices with field plates 

designed to be 200nm long but misaligned by 100nm will 

have a large variation in their effective source barrier heights 

under a given bias and, implicitly, quite different drain 

currents. Devices with short l will be hard to match 

consistently. By way of contrast, the same curve has a much 

lower slope around and above l = 1µm. In the technology we 

have used, l = 1µm proves to be optimal, as longer field 

plates may have a detrimental effect on gm around threshold 

(Figure 13). 

 

IV. CONCLUSIONS 

We have investigated the effectiveness of field relief 

structures built into the source electrode of polysilicon 

source-gated transistors (SGTs) through a combination of 

measurements and numerical simulations. 

For the given fabrication process, a source field plate 1µm 

long and 20nm away from the semiconductor offers good 

screening from drain field while minimizing the impact of 

misalignments during fabrication. 

More generally, the presence of a good field plate leads to 

very low output conductance in saturation and opens up the 

possibility of operating these devices at very low drain 

voltages with good gain characteristics. Since metal layers 

overlapping contact windows are standard structures in 

semiconductor device fabrication, we expect the 

incorporation of source field plates to be possible in most 

established thin-film technologies.  

Numerical simulations reveal that, compared to devices 

without a field plate, low-voltage gain increases by two 

orders of magnitude when a simple field relief structure is 

built into the source contact. In the SGTs considered, intrinsic 

gain reaches 100 around VD = 2V and rises up to more than 

10,000 in strong saturation owing to the absence of the kink 

effect. The minimum power dissipation in these devices is 

more than 50% lower than in FETs made in the same 

technology and operating at the same drain current.  

We have shown that SGTs with effective field plates can 

operate in regimes inaccessible to conventional FETs and so 

can act as energy-efficient, high-gain amplifiers and precision 

linear drivers for analog applications in large area electronics. 
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