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Summary 

The prevalence of non-Alcoholic Fatty Liver Disease (NAFLD) has now reached epidemic 

proportions, but the role of gene-lifestyle interactions in its pathogenesis remains poorly 

understood. While evidence for an inverse association between odd-chain length fatty acids 

(OCFA) and cardiometabolic diseases, suggests a possible link between OCFAs and NAFLD, 

little is known about the impact of diet, gut microbiota and peroxisomal biogenesis on the 

metabolism of OCFAs. We hypothesized that suboptimal diet, altered gut microbiota and 

peroxisomal biogenesis could promote the development of NAFLD by impairing the 

metabolism of OCFAs. This thesis aimed to understand the effect of dietary fat/protein on the 

genetic and metabolic regulation of lipids and OCFAs in relation to NAFLD, using a high fat 

diet (HFD) model, well established in the literature for inducing obesity and insulin resistance 

in mice within 4 weeks, and a low protein diet (LPD) model, known to promote NAFLD. Under 

specific pathogen free or normal husbandry conditions, a HFD reduced serum OCFA in mice 

after 4 and 12 weeks of feeding, and down-regulated the activity of several key enzymes in 

fatty acid metabolism (desaturases, lyase, elongase). Liver histology also showed deposition of 

lipid droplets and higher expression of peroxin 14 protein in HFD fed mice (Chapter 3). The 

characterisation of gut microbiota revealed an alteration in propionate-producing bacteria, 

Lachnospiraceae and Clostridiales, in HFD fed mice (Chapter 4). Mice fed with carbohydrate 

rich-LPD for 7 weeks resulted in lower levels of serum OCFA, increased CD36 mRNA and 

peroxin 14 expressions. However, OCFA did not change in the reduced and quality 

carbohydrate-LPD after 8 weeks (Chapter 5). In conclusion, these findings provide evidence 

that HFD and carbohydrate rich-LPD reduced OCFA via changes in gut microbiota and 

peroxisomal biogenesis in the liver and increases our understanding of how suboptimal diets 

contributes to NAFLD. 

Key words: Protein malnutrition, High fat diet, Odd chain fatty acid, Lipid metabolism, 

Gut microbiota, NAFLD 
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1.1 Non-alcoholic fatty liver disease   

1.1.1 Clinical features 

Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by excessive fat build-

up in the liver with insulin resistance due to causes other than alcohol use, Ipsen et al 

(2018).  NAFLD is classified into a broad clinical spectrum ranging from non-alcoholic fatty 

liver to non-alcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis, and hepatocellular 

carcinoma (HCC), Perumpail et al (2017). NAFLD is commonly associated with metabolic 

comorbidities, including obesity, type II diabetes, dyslipidaemia, and metabolic syndrome, 

Paschos & Paletas (2009). It has been reported that >90% of obese, 60% of diabetic and up to 

20% normal-weight people develop the condition, Younossi (2018).                                            

NAFLD is diagnosed by elevated levels of serum alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), alkaline phosphatase (ALP) with ALT/AST ratio >1. Apart from 

biochemical test, NAFLD can be diagnosed by ultrasound or magnetic resonance imaging and 

magnetic resonance elastography of the liver as well as invasive liver biopsy, Sattar et al 

(2014).  

Global prevalence is estimated to 25.25%, Araújo et al (2018). Whilst NAFLD has become a 

global health concern, the incidence of this metabolic disorder is becoming more challenging 

in developing countries particularly in the Middle East where the prevalence rate is reported to 

be highest followed by South America and Africa, respectively, Younossi et al (2016). The risk 

factors of NAFLD include overweight or obesity, insulin resistance, dyslipidemia, type 2 

diabetes and having one or more traits of metabolic syndrome (MetS), Salt (2004); Anstee et 

al (2013). Studies have reported that excessive consumption of carbohydrates, particularly 

refined carbohydrates, fats, saturated fats and protein from meat are associated with NAFLD 

as well as higher intakes of soft drinks, Mirmiran et al (2017). An association between dysbiosis 

of the gut microbiota and liver diseases, particularly NAFLD has been reported, Sharpton et al 
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(2019).  Treatment guidelines for NAFLD are mainly based on lifestyle changes and dietary 

modifications, Nseir et al (2014). 

1.1.2 NAFLD subtypes 

Generally, there are two subtypes of NAFLD: non-alcoholic fatty liver (NAFL) and non-

alcoholic steatohepatitis (NASH). NASH is distinguished from steatosis by the presence of 

inflammation and hepatocyte injury, Lindenmeyer & McCullough (2017). A recent study has 

reported that about 25% of individuals with NAFL progress to NASH and out of those patients 

who develop NASH, 25% progress to cirrhosis, of whom at least 1%-2% per year develop 

hepatocellular carcinoma (HCC), Mato et al (2019). It is clinically important to differentiate 

patients with the NASH subtype, as most NAFLD patients have steatosis without 

necroinflammation or fibrosis and do not require medical therapy, Lindenmeyer & 

McCullough (2017). 

1.1.3 Genetic causes of NAFLD 

Apart from environmental factors that cause NAFLD, previous studies have identified a link 

between genetic changes with the pathogenesis of NAFLD and NASH. For instance, variation 

in the PNPLA3 and TM6SF2 genes have been shown to correlate with NAFLD presence and 

severity, Wong et al (2018). Studies indicate that the activity (expression) of the PNPLA3 gene 

decreases during fasting and increases postprandially, suggesting that the amount of 

adiponutrin protein produced is regulated as needed to help process and store dietary fats, 

Bruschi et al (2017).  
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1.2 Nutrient metabolism in metabolic organs 

After digestion of macronutrients including carbohydrate, proteins and fats, the end products 

of digestion including glucose, amino acids, free fatty acids (FFA), TG and monoacylglycerols 

are released and metabolised or stored in the muscle, adipose tissue and liver according to 

energy needs. These organs work together to maintain glucose and lipid homeostasis. 

Muscle 

The muscle utilizes glucose, fatty acids, and ketone bodies as its major fuel. Muscle has a large 

store of glycogen which is readily converted into glucose 6-phosphate for use within muscle 

cells. However, in the resting state, fatty acids are the major source of fuel, forming 85% of its 

energy demands. Fatty acids are also the major source of energy for heart muscle, in addition 

to ketone bodies and lactate. 

Adipose tissue 

The adipose tissues are traditionally known to be the major sites for storage of surplus energy. 

When fuels are abundant, the adipose tissue receives triglyceride (TG) from chylomicrons-TG 

released from the intestinal mucosa cells or very-low density lipoprotein-TG (VLDL-TG) from 

the liver released into circulation. TGs cannot be taken directly by adipocytes but are first 

hydrolysed by an extracellular lipoprotein lipase for uptake. The lipase is stimulated by 

processes initiated by insulin. Upon entry of fatty acids into the cell, the adipose cells activate 

these FFAs into acyl-CoA before they are shuttled via acyl-CoA-binding protein (ACBP) to 

mitochondria or peroxisomes for β-oxidation (and formation of energy as ATP and heat) or to 

endoplasmic reticulum for esterification to different classes of lipid. The resulting CoA 

derivatives is transferd glycerol in the form of glycerol 3-phosphate via glycerophosphate 

acyltransferase. This essential intermediate in lipid biosynthesis originates from the reduction 

of the glycolytic intermediate dihydroxyacetone phosphate. Hence, adipose cells require 
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glucose for the synthesis of TG. TG in adipose cells are hydrolysed by intracellular lipase 

particularly when food is scarce, or energy expenditure requirements increase. The 

triglycerides are hydrolysed into glycerol and fatty acids within adipocytes before being 

transported in the blood to the liver and muscle where they are used in fatty acid oxidation, 

Sethi & Vidal-Puig (2007). 

Liver 

The liver plays an important role in metabolism of glucose and lipids, hence is essential for 

providing fuel to the brain, muscle, and other peripheral organs. The liver is involved in 

production of glucose by breaking down glycogen and by carrying out gluconeogenesis. In 

gluconeogenesis, the main precursors are lactate and alanine obtained from muscle, glycerol 

from adipose tissue and glucogenic amino acids (e.g. methionine) derived from diet. In humans, 

the liver is the major site of fatty acid synthesis. The process of fatty acid regulation by the 

liver involves the digestion of dietary lipids to release free fatty acids (FFA) and 

monoacylglycerols after absorption into the small intestine. In the intestinal mucosa cells, FFA 

are re-esterified to TG, before being transported via lymphatic vessels into the circulatory 

system as part of chylomicrons. In the circulation, fatty acids are transported bound to albumin 

or as part of lipoproteins. FFA are taken up into hepatocytes mainly by protein transporters in 

the plasma membrane and are transported intracellularly via fatty acid-binding proteins 

(FABP). FFA are subsequently activated (acyl-CoA) before they are shuttled via acyl-CoA-

binding protein (ACBP) to mitochondria or peroxisomes for β-oxidation (and formation of 

energy as ATP and heat) or to endoplasmic reticulum for esterification to different classes of 

lipid, Hellerstein (1999). Glucose may be converted to fatty acids (lipogenesis) if there is an 

extra of glucose/energy in the cells, Rustan, & Drevon (2005). The pathway of lipid metabolism 

in muscle, adipose tissue and liver following dietary intake is summarised in figure 1.1. 
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Figure 1.1: Metabolic pathways of lipid metabolism in response to consumption of 

carbohydrate or protein (Diagram adapted from Hellerstein (1999)). 

Abbreviations:  TG, triglyceride: FFA, free fatty acid: LPL, Lipoprotein lipase: VLDL, very 

low-density lipoprotein: CO2, carbon dioxide                                                

 

1.3 The role of fatty acids in NAFLD                                                                                  

1.3.1 Lipids                                                                                                                        

Lipids comprise a large group of chemically heterogeneous compounds, De Carvalho & 

Caramujo (2018). Lipids are grouped on the basis of their solubility in organic solvents; each 

has contrasting functional roles. Fatty acids are the “building blocks” of lipids, as they are 

components of many complex classes called complex lipids. These include acyl glycerols 

(glycerides) and sphingolipids in which the fatty acids have been esterified into alcohol or 

amino groups, respectively. Simple lipids that do not contain fatty acids comprise a much 

smaller group, with cholesterol and other sterols being the major representatives. Lipids can 

also be classified into two groups based on polarity: polar lipids such as phospholipids play a 
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major structural role and neutral lipids are mainly responsible for storage of energy in the form 

of TGs and other storage components including sterol esters, Fahy et al (2011).   

1.3.2 Fatty acids 

Fatty acids (FAs) are important fraction of lipids and may either circulate in blood or constitute 

a basic structural component of a more complex lipids. They are incorporated into 

phospholipids and glycolipids of biological membranes and form triglyceride, Mika et al 

(2016). FAs play key roles in metabolism including metabolic fuel (storage of energy in the 

adipose tissue and skeletal muscles, and transport of energy via TG), as essential components 

of all membranes via phospholipid, and as gene regulators, Rustan & Drevon (2001). Almost 

all fatty acids play a role in energy provision and as structural components, but some specific 

fatty acids have key roles in control and regulation of metabolism, Beenakkers et al (1981). 

1.3.3 Fatty acid structure 

The basic structure of FAs consists of a long aliphatic chain with a carboxyl at one end and a 

methyl group at the other end. The hydrocarbon chain can be “saturated” thus, all carbon bonds 

are saturated with hydrogen, or “unsaturated” containing one or more carbon-carbon double 

bonds. Fatty acid such as C16:0 represents a saturated fatty acid containing a 16-carbon 

aliphatic chain with no double bonds and C18:1n9 denotes a monounsaturated fatty acid 

(MUFA) with an 18-carbon aliphatic chain with a single cis double- bond nine carbons from 

the methyl group. Polyunsaturated fatty acids (PUFAs) contain two or more double bonds and 

are most commonly separated by methylene (CH2) groups. For instance, C22:6n3 is a 22-

carbon containing six double bonds with the first positioned three carbons from the methylene 

group. A typical fatty acid consists carboxyl group, the carbon atom next to this group is called 

the α-carbon, and the subsequent one is the β carbon. The letter n is often used instead of the 

Greek ω to show the position of the double bond closest to the methyl end (figure 1.2). 
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Figure 1.2: Structure of a typical fatty acid 

(a) Saturated fatty acids (SFAs) 

Saturated fatty acids are mostly straight hydrocarbon chains with an even number of carbon 

atoms e.g. palmitic acid (C16:0), stearic acid (C18:0). The most common fatty acids contain 

12–22 carbon atoms. Saturated fatty acids are grouped into either short-chain containing 4–12 

carbon chains, mid-chain containing 13–16 carbon long chains and long-chain fatty acids of 

17–26 carbon chains, Grundy (2003). Dietary sources including tropical oils (i.e., palm oil, 

palm kernel oil and coconut oil) are high in SFA (30% of total FA) from plants, Zevenbergen 

et al (2009). Other saturated dietary fats are heterogeneous. For instance, coconut oil is high in 

lauric acid (12:0), whereas palm oil mainly consists of palmitic acid (16:0) and oleic acid 

(18:1n­9). Generally, most the common dietary SFA are C16:0 and stearic acid (18:0), present 

in animal fat as well as in plants, Iggman and Risérus (2011). Apart from dietary sources of 

SFA, these fatty acids can also be synthesized endogenously, Mozaffarian (2004); Carta et al 

(2017). It has been reported that long-chain saturated fatty acids (SFAs) particularly palmitate 

(C16:0) and stearate (C18:0), which are abundant in animal fat and dairy products and produced 

in the liver from dietary sugar, may be harmful to hepatocytes in NAFLD, Yu et al (2016). 

Increased dietary intake of saturated fatty acids increases intrahepatic triglyceride and insulin 

resistance, Luukkonen et al (2018). A previous study reported that palmitate, a saturated fatty 

acid, induced mild liver fibrosis, however, restricting palmitate intake improved NAFLD 

pathogenesis, Ogawa et al (2018). 
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(b) Odd chain fatty acids (OCFA) 

OCFA may be saturated fatty acids with odd chain carbon number e.g. pentadecanoic acid 

(C15:0) and heptadecanoic acid (C17:0). Odd-chain saturated fatty acids constitute less than 

1% of total fatty acids in human plasma, Weitkunat et al (2017). It has long been assumed that 

OCFAs are not synthesized endogenously by mammals and therefore reflect dietary habits, Sun 

et al (2007). Observational studies have demonstrated an association between plasma OCFAs 

and the consumption of dairy products, particularly milk fat, Weitkunat et al (2017). It is also 

known that in ruminants, OCFAs can derive from de novo synthesis via propionyl-CoA instead 

of acetyl-CoA for fatty acid synthesis, Massart-Leën et al (1983). Furthermore, another study 

reported that OCFAs originate from dairy fat as they are synthesized in relatively high levels 

by rumen microbial fermentation and microbial de-novo lipogenesis, Vlaeminck et al (2016). 

Many cohort and case-control studies have found an inverse association between plasma OCFA 

concentration (C15:0, C17:0, or both combined) and the risk of cardiometabolic diseases, 

Hodge et al (2007); Santaren et al (2014); Huang et al (2019). Serum levels of C15:0 and C17:0 

have also been negatively correlated with NAFLD, Yoo et al (2017). In a previous study, mice 

treated with C15:0-supplemented methionine- and choline-deficient diet (MCD) diet showed 

reduced serum AST levels and hepatic infiltration of ceroid-laden macrophages compared to 

MCD-treated mice, which suggests that C15:0 deficiency may contribute to liver injury in 

NASH, Yoo et al (2017). 

(c) Monounsaturated fatty acids 

MUFAs are fatty acid classes with only one double bond. The most common MUFAs are 

palmitoleic acid (16:1 n−7), cis-vaccenic acid (18:1 n−7) and oleic acid (18:1 n−9). Just like 

other fatty acids, MUFA are almost completely absorbed in the intestine and are oxidized for 

energy production, converted into other fatty acids, or incorporated into tissue lipids, 
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Schwingshackl & Hoffmann (2012). MUFA can be found in olive oil, in canola oil, in olives, 

avocadoes as well as oleaginous plants, Bressan et al (2009). A study has shown that oleic acid 

contained in olive oil (from 55 to 85%) can account for from 60 to 80% of the entire daily 

dietary intake of oleic acid, Oi-Kano et al (2007). The role of MUFAs in metabolic diseases 

are still not clearly defined as contrasting evidence exists. For instance, MUFA has been 

associated with lower risk of CVD, Roche (2005). The American Heart Association 

recommend MUFA intake to be <15% of total energy consumption (TEC). However, the 

American Dietetic Association proposed the corresponding value to be set to <20%, 

Schwingshackl et al (2011). MUFA have been suggested to play a protective role against 

increases in intrahepatic triglyceride (IHTG). Diets high in MUFA have been shown to improve 

serum lipid profiles associated with NAFLD, Garg (1998). A clinical trial of MUFA showed 

decreased abdominal fat deposition and improved insulin sensitivity, which are both conditions 

associated with NAFLD, Paniagua et al (2007). However, another study revealed a higher 

MUFA consumption in patients with NAFLD, Cortez-Pinto et al (2006). Moreover, dietary 

intake in 1128 NAFLD patients showed an association with the Fatty Liver Index (FLI; derived 

from BMI, waist circumference, triglycerides and gamma-glutamyl transferase [GGT]). 

MUFA consumption and total fat intake were positively associated with a higher FLI score 

Rietman et al (2018). Similarly, in the Rotterdam Cohort, MUFA consumption was not 

associated with beneficial effect in NAFLD, Perdomo et al (2019). 

(d) Polyunsaturated fatty acids 

PUFAs have two or more double bonds. PUFAs can be further subdivided based on the location 

of the first double bond relative to the methyl end group of the chain. For instance, n-3 and n-

6 FAs are two of the most important PUFA classes and have their first double bond on either 

the third or sixth carbon from the chain end group, respectively. The final carbon in the FA 

chain is also termed as the omega carbon, hence the common reference to these FAs as omega-
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3 or omega-6 PUFAs, Ander et al (2003). Aquatic species that have been shown to have long 

chain n-3 PUFA include fishes, shrimps, prawns, crabs, shellfishes, leafy green vegetables, 

nuts and seeds (e.g. sesame, hummus), oils (linseed/flaxseed), soya bean and algae, Abedi & 

Sahari (2014); Shefer-Weinberg et al (2007). Fats and oils, meat and poultry, cereal‐based 

products and cereals, vegetables, and nuts and seeds are reported to be important sources of 

n−6 PUFA, Meyer et al (2003). Long-chain n-3 and n-6 PUFAs (LC-PUFAs) are synthesized 

from the essential FAs alpha-linolenic acid (ALA) and linoleic acid, respectively. These two 

essential fatty acids cannot be synthesized by the body and can only be obtained via dietary 

sources. The most common LC-PUFAs are EPA (eicosapentaenoic acid, 20:5n-3), DHA 

(docosahexaenoic acid, 22:6n-3) and ARA (arachidonic acid, 20:4n-6), Zárate et al (2017). 

Animals and humans have the capacity to metabolize essential fatty acids into long-chain 

derivatives, Kaur et al (2014). It is generally thought that n-3 PUFAs are antithrombotic, anti-

inflammatory, and vasodilating whilst n-6 PUFAs are relatively prothrombotic, 

proinflammatory, and vasoconstricting, Sacks & Campos (2006).  

The role of polyunsaturated fatty acids (PUFAs) in inflammation is attributed to eicosanoid 

production, which are mediators and regulators of inflammation. It is well known that 

arachidonic acid is usually the major precursor for eicosanoid synthesis. Previous studies 

suggest that modestly increased intake of arachidonic acid results in incorporation of 

arachidonic acid into cells involved in inflammatory responses, Thies et al (2001). Eicosanoids 

include prostaglandins (PGs), thromboxanes, leukotrienes (LTs), and other oxidized 

derivatives, Calder (2006). The role of arachidonic acid as a substrate for the synthesis of 

eicosanoids indicates the potential for dietary n–6 PUFAs (linoleic or arachidonic acid) to 

influence inflammatory processes. Studies have reported that both n-6 and n-3 pathways 

compete with one another for enzyme activity, hence the ratio of n-6 to n-3 PUFAs is crucial 

to human health, Ander et al (2003). This means that increased consumption of long-chain n−3 
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PUFAs results in less substrate availability for synthesis of eicosanoids from arachidonic acid, 

Calder (2006) and is therefore protective against inflammation. Studies suggest that optimal 

ratio of n-6 PUFA to n-3 PUFA in the diet is 4 to 1, He et al (2016). Previous studies have 

reported that consumption of large amount of dietary fish oil results in decreased leukocyte 

chemotaxis, decreased output of ROS and proinflammatory cytokines, as well as decreased 

adhesion molecule expression, Calder (2006). Maresin 1 (MAR1), derived from 

docosahexaenoic acid (DHA) is known to protect against inflammation and insulin resistance, 

Jung et al (2018). 

Polyunsaturated fatty acids (n-3 PUFAs and n-6 PUFAs) also influence lipid accumulation in 

the liver. In human studies, dietary patterns of patients with NAFLD compared to controls have 

reported that individuals with NAFLD show lower omega-3 polyunsaturated fatty acid (n-3 

PUFA) intake and higher n-6/n-3 PUFA intake ratio, Araya et al (2004). Moreover, 

supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) is known to improve NAFLD, 

Oya et al (2010); Valenzuela et al (2019); Jeyakumar & Vajreswari (2019). In animal studies, 

n-3 PUFAs have been shown to reduce hepatic lipogenesis and inflammation, Putti et al (2016). 

(e) Branched-chain fatty acids 

Branched-chain fatty acids (BCFAs) are normally saturated fatty acids having one or more 

methyl branches on the carbon chain, Ran-Ressler et al (2008). BCFA are prominent 

components of bacterial membranes across many genera and species and in humans are 

synthesized in sebaceous and meibomian glands of human skin, Dingess et al (2016). 

They include iso tetradecanoic acid, iso C14:0; 13-methyltetradecanoic acid, iso C15:0; 12 

methyltetradecanoic acid, anteiso C15:0; iso hexadecanoic acid, iso C16:0; 15-

methylhexadecanoic acid, iso C17:0; 14-methylhexadecanoic acid, anteiso C17:0 and 

heptadecenoic acid, cis-9 C17:1, and are only in trace amounts, Fievez et al (2003). Human 

milk contains BCFAs, Nicolaides et al (1965); Adamska & Rutkowska (2014). These FAs can 
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also be found in tissues of ruminants and marine organisms however constitute only about 1% 

to 2% of total FA content in mammals, Adamska & Rutkowska (2014). Just like OCFAs, 

BCFAs exert a significant effect on human health. A study reported that obesity was associated 

with a decrease in serum iso‐BCFA level. A study found a strong association between serum 

concentrations of FAs between OCFAs and BCFAs which suggested that both FAs may, at 

least partially, originate from the same source, perhaps, ruminant fat and milk, Mika et al 

(2016). Interestingly, the role of branched-chain fatty acids on hepatic lipid accumulation has 

not been studied. However, the role of branched chain amino acids in NAFLD has been 

explored. NAFLD is well known to be associated with elevated plasma branched-chain amino 

acids (BCAAs), Koliaki et al (2015); van den Berg et al (2019). Branched-chain fatty acids can 

be biosynthesized using either branched-chain amino acids (BCAAs) or branched-chain alpha-

keto acids (BCKAs), or combination of both as precursor, Hirosuke et al (1994). We can 

therefore infer from this to hypothesize that BCFAs may be implicated in the pathogenesis of 

NAFLD. 
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Table 1.1: Summary of current evidence on effect of dietary fatty acids on circulating fatty 

acids in mouse and humans. 

Dietary FA Experimental model Metabolic effect/pathway 

Saturated in vivo humans 

 

 

 

in vivo humans 

 

High intake of SFA 

increased IHTG: (Rosqvist 

et al (2014), Bjermo et al 

(2012), Hodson et al (2020), 

Sevastianova et al (2012). 

Luukkonen et al (2018) 

High intake of SFA inhibit 

lipolysis: Wueest et al 

(2016) 

MUFA in vivo humans 

 

Hiigh intake of MUFA 

reduced IHTG: Bozzetto et 

al (2012), Ryan et al (2013) 

OCFA in vivo humans 

 

Decrease OCFA was 

associated with increased 

NAFLD risk (Kratz et al 

(2014) 

n-3 PUFA 

 

 

 

 

 

 

n-6 PUFA 

in vivo mice 

  

 

in vivo humans 

in vivo humans 

 

 

 

 

in vivo humans 

 

Increased n-3 PUFA intake 

decreased IHTG: Pachikian 

et al (2008),  

Scorletti et al (2014) 

Evidence support n-3 PUFA 

supplements containing 

DHA as treatment strategy 

for NAFLD Jump et al 

(2018). 

Increased n-6 PUFA 

reduced IHTG: Bjermo et al 

(2012), Rosqvist et al (2014) 

IHTG, Intrahepatic triglyceride 

1.3.4 Mechanisms of fatty acid metabolism 

The processes involved in fatty acid metabolism in the liver include fatty acid uptake from the 

blood and chylomicron remnant uptake, de novo lipogenesis and fatty acid oxidation, 

Wagenmakers et al (2006); Jump (2011). Each of these pathways is highly regulated hence, 
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their contribution to the total liver FA pool is variable, Mashek (2013). Changes in any of these 

pathways has potential to influence both hepatic and whole-body energy metabolism and can 

contribute to pathogenesis of diseases including NAFLD. 

(a) Fatty acid uptake by the liver 

The liver plays a role in the uptake of fatty acids from the blood, Mashek (2013). In human 

stable isotopic studies, evidence suggests that uptake of exogenous FFA is the single largest 

source of FA in stored hepatic TG and this contribution is further increased during fasting and 

NAFLD, Donnelly et al (2005). Clearance of chylomicron-remnant TG also contributes to the 

hepatic FA pool. Chylomicrons are formed in the intestine and are involved in the transport of 

dietary triglyceride to peripheral tissues and the liver. Chylomicron remnants are formed as a 

result of hydrolysis of chylomicron TG by the enzyme lipoprotein lipase, with apolipoprotein 

(apo)C-I1 as a co-factor. In humans, studies suggest that chylomicron remnant uptake accounts 

for 15% of the liver FA pool during fasting and 25% during the fed state, Barrows & Parks 

(2006), and this decreases with meal feeding compared with continuous feeding, Barrows et al 

(2005).                                                                                                    

The main plasma membrane transporters of FFA into the liver post-prandially and during 

obesity are fatty acid transporter proteins (FATP), caveolins, fatty acid translocase 

(FAT)/cluster of differentiation 36 (CD36), and fatty acid binding protein (FABP). Of the six 

member family, only FATP2 and FATP5 are highly expressed in the liver, Ipsen et al (2018). 

Knockdown of FATP2 in mice decreased the uptake of FFA and ameliorated hepatic steatosis 

induced by a high fat diet, Falcon et al (2010). Similarly, FATP5 knockout mice are resistant 

to diet-induced obesity and hepatic TG accumulation, Doege et al (2006) highlighting the 

significant role played by FATP in liver lipid accumulation. The second family of lipid 

transporters, caveolins, have three members namely caveolins 1, 2, and 3, and play an important 
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role in the formation of lipid droplets. Caveolin 1 is increased in the liver of mice with NAFLD, 

mainly in the centrilobular zone 3, where the steatosis tends to be severe; zone 3 predominant 

hepatic steatosis has been reported in adult NAFLD patients. Whole-body caveolin 1 knockout 

(cav1−/−) reduced hepatic steatosis in high fat fed mice in response to 24 h of fasting whereas, 

unexpectedly, liver-specific caveolin 1 knockout had no effect on hepatic fat content, Ipsen et 

al (2018).  FAT/CD36 accelerates FFA uptake via facilitated diffusion. Elevated hepatic 

expression of CD36 has been observed in NAFLD and is associated with enhanced uptake of 

FFA, Miquilena-Colina et al (2011). High fat diet-fed mice develop hepatic steatosis alongside 

increased mRNA and protein expression of CD36, Wilson et al (2015), which appears to 

suggest a positive feed-forward loop for FFA removal.  After uptake, the cytosolic fatty acid 

binding protein (FABP)s facilitate intracellular transport of FFAs. Targeted deletion of the liver 

isoform, LFABP in mice results in NAFLD-like pathology in female mice, Martin et al (2015).  

(b) De novo lipogenesis 

De novo lipogenesis (DNL) is a metabolic pathway that consisting of glycolysis (conversion 

of glucose to acetyl-CoA), biosynthesis of saturated fatty acid followed by desaturation, and 

the formation of TG. DNL has been suggested to be abnormally increased in and contribute to 

the pathogenesis of non‐alcoholic fatty liver disease (NAFLD), Donnelly et al (2005). At first, 

acetyl-CoA is converted to malonyl-CoA by acetyl-CoA carboxylase (ACC) and malonyl-CoA 

is then converted to palmitate by fatty acid synthase (FASN). Newly formed fatty acids may 

then undergo desaturation, elongation or esterification steps before ultimately being stored as 

triglycerides or exported as VLDL particles. Enzymes involved in the pathway include 

glucokinase and liver-type pyruvate kinase in the glycolysis, ACC and fatty acid synthase 

(FAS) in the fatty acid synthesis, long chain fatty acid elongase 6 (ELOVL6) and stearoyl-CoA 

desaturase (SCD) in the formation of MUFAs, and glycerol-3-phosphate acyltransferase 

(GPAT), lipins, and acyl-CoA: diacylglycerol acyltransferase (DGAT) in the formation of TG, 
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Koo (2013). In NAFLD, these key enzymes are upregulated, Mitsuyoshi et al (2009). A study 

showed that liver‐directed inhibition of ACC in rats caused a significant reduction in hepatic 

DNL and triglycerides after just a week of high‐fructose (60%) feeding, Goedeke et al (2018). 

The transcriptional regulation of DNL is mainly orchestrated by two key transcription factors: 

sterol regulatory element-binding protein 1c (SREBP1c), which is activated by insulin and liver 

X receptor α, and carbohydrate regulatory element-binding protein (ChREBP), which is 

activated by carbohydrates, Sanders & Griffin (2016). SREBP-1c is regulated by insulin 

through a phosphoinositide 3-kinase (PI3K)-dependent mechanism that involves the liver X 

receptor α (LXRα) (figure 1.3). LXRα promotes the expression of SREBP-1c and targets genes 

such as fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), stearoyl-CoA desaturase 

(SCD1) and lipin, Ferre & Foufelle (2010).                                      

Figure 1.3 Transcriptional regulation of lipogenesis. 

 

SREBP1c expression is enhanced in NAFLD and is consistent with its lipogenic role. A study 

reported higher levels of hepatic triglyceride in transgenic mice overexpressing SREBP1c 

while SREBP1c knockout mice showed a decrease in expression of lipogenic enzymes, Ipsen 

et al (2018). The activity of SREBP-1c can also be activated by mammalian target of rapamycin 

(mTOR) pathway and can be inhibited by PKA, AMP-activated protein kinase (AMPK), and 

salt inducible kinases (SIKs), Porstmann et al (2008).  
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ELOVL6 catalyzes the elongation of palmitate (C16:0) to stearate (C18:0) fatty acids and has 

been shown to promote NASH, Muir et al (2013). Increased ELOVL6 mRNA expression has 

been observed in NASH animal models, such as low-density lipoprotein receptor knockout 

animals fed a western type diet or a fructose diet, Muir et al (2013); Imajo et al (2013). SCD1 

is a microsomal enzyme that catalyses the synthesis of MUFAs from saturated fatty acyl-CoAs. 

The preferred substrates for SCD1 are palmitoyl- (16:0) and stearoyl-CoA (18:0), which are 

then converted to palmitoleoyl- (16:1 n-7) and oleoyl- (18:1 n-9) CoA respectively. Hepatic 

SCD1 activity was correlated negatively with liver fat in a human study, Stefan et al (2008). 

 

Figure 1.4: De novo synthesis of fatty acids, elongation and desaturation 

The product of carbohydrate or protein breakdown, Acetyl-CoA, is carboxylated with 

bicarbonate to generate malonyl-CoA via the activity of acetyl-CoA carboxylase (ACC). The 

malonyl-CoA combines with further acetyl-CoA units with fatty acid synthase enzyme 

complex (FAS) and further units are added to produce C16 saturated fatty acid palmitate, 

Ratnayake & Galli (2009). Palmitate produced then undergoes elongation and desaturation 

processes to generate new fatty acids. Elovl6 elongates fatty acids ranging from 12-16 carbons 

to a length of 18-carbons, Zadravec et al (2010). Stearate (C18:0) can be elongated by ELOVL 

1, ELOVL 3 and ELOVL 7 to produce arachidic acid (C20:0) with these enzymes capable of 



41 
 

further elongation up towards very long chain fatty acids >C20:0. Desaturation occurs at the n-

7 (Δ7) position of the carbon chain of palmitate or at the n-9 (Δ9) position of palmitate or 

stearate generating palmitoleate (C16:1)  and oleate (C18:1) respectively by Δ9 desaturase, also 

known as stearoyl-CoA desaturase 1 (SCD-1). The n-7 fatty acids can be subjected to 

elongation by ELOVL6 and ELOVL 5. The n-9 fatty acids are subject to elongation by elovl3 

generating cis-11-eicosenoic acid ethyl ester (C20:1), erucic acid (C22:1) and nervonic acid 

(C24:1), the final reaction being terminal in the production of monounsaturated fatty acids. In 

the absence of n-3 and n-6 fatty acids which cannot be synthesized and are required in the diet, 

oleic acid can undergo desaturation by Δ6 desaturase to produce the n-9 family of 

polyunsaturates, Zadravec et al (2010). 

 

In odd-chain saturated fatty acids, de novo synthesis of these fatty acids is achieved by repeated 

condensation of malonyl-coenzyme A (CoA) with propionyl-CoA, instead of acetyl-CoA as 

primer, Kaneda (1991). It is reported that straight-chain fatty acid synthetase accepts both 

acetyl-CoA and propionyl-CoA and the balance to which extent acetyl-CoA and propionyl-

CoA are used may be in part a function of the relative availability of both primers, rather than 

a reflection of an altered specificity of the fatty acid synthetase, Fulco, 1983; Vlaeminck et al 

(2016). 

Insulin signalling and de novo lipogenesis 

Insulin signalling in the liver is mediated by the hepatic insulin receptor (IR), which signals 

through the downstream kinase, protein kinase B/Akt, to coordinate hepatic metabolism. Akt 

signals through multiple downstream pathways, including those involved in mechanistic target 

of rapamycin (mTorc1) and the Foxo family of transcription factors. Studies suggest activation 

of mTorc1 by Akt is required but not sufficient for insulin-induced activation of DNL, Wan et 

al (2011).      
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Figure 1.5: Nutrient and insulin signalling pathway.                                                                                         

Amino acids (e.g. isoleucine) and glucose activate mTorc1, resulting in the induction of lipid 

synthesis. Insulin activates mTorc1 and Foxo1 via the Akt resulting in lipid synthesis. 

 

The role of Foxo1 in liver lipid metabolism is not fully understood, as some studies suggest 

Foxo1 can contribute directly to regulation of lipogenic gene expression by insulin and DNL 

in liver while other studies suggest it requires the presence of other proteins such as Akt to 

induce lipogenesis, Titchenell et al (2016).  Foxo1 regulated carbohydrate metabolism in the 

liver as demonstrated by liver-specific Foxo1 deletion leading to sufficient normalization of 

hyperglycemia and whole-body insulin sensitivity in mice lacking the hepatic IR, IR substrates, 

or the two Akt isoforms expressed in liver, Akt1 and Akt2, Titchenell et al (2016). 

VLDL secretion and TG transport 

Very low-density lipoprotein (VLDL) is responsible for endogenous lipid transport, Feingold 

& Grunfeld (2018). VLDL is assembled within the liver from TGs, cholesterol esters, and 

apolipoproteins (apoB). The assembly of VLDL in the endoplasmic reticulum (ER) requires 

the crucial interaction between apoB and microsomal triglyceride transfer protein (MTP) which 

facilitates the secretion of the lipoprotein particle. Insulin plays an important role in the 

regulation of VLDL assembly and secretion. VLDL particle is stabilized by a single molecule 
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of apolipoprotein B 100 (apoB 100). ApoB 100 is a long polypeptide that is lipidated with 

triglycerides within the lumen of endoplasmic reticulum (ER) while it is being translated and 

translocated across the ER membrane. Lipidation of apoB 100 is facilitated by microsomal 

triglyceride transfer protein (MTP), an ER resident protein that has both apoB 100 binding and 

lipid transfer domains. Hypertriglycedaemia and hepatic steatosis have been observed in 

NAFLD patients, Choi & Ginsberg (2011). Impaired VLDL assembly and secretion result in 

excessive hepatic lipid accumulation. 

(c) Fatty acid oxidation 

Mitochondria play a central role in energy generation. Fatty acids primarily enter a cell through 

fatty acid protein transporters on the cell surface. Inside the cell, a CoA group is added to the 

fatty acid by fatty acyl-CoA synthase (FACS), forming long-chain acyl-CoA. Carnitine 

palmitoyltransferase 1 (CPT1) conversion of the long-chain acyl-CoA to long-chain 

acylcarnitine facilitates the fatty acid moiety to be transported across the inner mitochondrial 

membrane via carnitine translocase (CAT), which exchanges long-chain acylcarnitines for 

carnitine. An inner mitochondrial membrane CPT2 then converts the long-chain acylcarnitine 

back to long-chain acyl-CoA. The long-chain acyl-CoA enters the fatty acid β-oxidation 

pathway, which results in the production of one acetyl-CoA from each cycle of fatty acid β-

oxidation (figure 1.6), Gumpen & Norum (1973). 
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Figure 1.6 Fatty acid β-oxidation pathway (diagram adapted from Fillmore et al (2011)). 

                                                                                                                                          

Peroxisome proliferator-activated receptors (PPARs) are ligand-induced transcription factors 

that regulate the transcription of target genes in response to specific ligands, both synthetic and 

endogenous. There are three isoforms that have been discovered PPAR-α (NR1C1), PPAR-β /-

𝛿 (NR1C2) and PPAR-γ (NR1C3). PPAR-α plays a central role in the transcriptional regulation 

of lipid and glucose metabolism genes in the liver, Mandard et al (2004). Hepatic PPAR- α 

expression was substantially reduced at 16-week after obese mice fed a high-fat (HF) diet made 

up of 60% of energy as lipids. PPAR- α regulates mitochondrial beta-oxidation of fatty acids. 

When PPAR-α expression in the liver is inhibited, the transcription of its target gene, carnitine 

palmitoyl transferase-1 (CPT-1), is impaired resulting in accumulation of excessive fatty acids 

in the form of triglycerides, Yu et al (1998). 
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Peroxisomes and mitochondria role in fatty acid oxidation 

Peroxisomes and mitochondria are cellular organelles involved in various liver metabolic 

functions including lipid metabolism and energy production. Changes in these organelles are 

associated with disorders affecting the liver such as Zellweger syndrome and non-alcoholic 

fatty liver disease, Begriche et al (2013).                                                                               

Peroxisomes are single bound membrane and play important role in bile acid synthesis, β-

oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), 

long-chain dicarboxylyl-CoAs, alpha oxidation of branched-chain fatty acids and cellular redox 

homeostasis, Reddy & Hashimoto (2001); Smith & Aitchison (2013). They are also involved 

in the maintenance of normal mitochondrial function, Schrader et al (2013).                                                                                                                          

Mitochondria are essential for aerobic ATP production, fatty acid β-oxidation (acyl-chain 

length of ⩽C20), ketogenesis and gluconeogenesis from pyruvate and tricarboxylic acid (TCA) 

cycle intermediates. It is well established in the literature that mitochondrial dysfunction 

contributes to the pathogenesis of NAFLD partly because it affects liver lipid homeostasis, 

promotes ROS production and lipid peroxidation, cytokine release and cell death, Nassir & 

Ibdah (2014). 

Beta-oxidation of very long chain fatty acids 

Beta-oxidation is primarily handled by the mitochondrial beta-oxidation pathway and there is 

very little contribution from the peroxisomal system. However, certain very long-chain fatty 

acids (VLCFAs), including C22:0, C24:0 and C26:0 can only be oxidized in peroxisomes and 

not in mitochondria. This is because VLCFAs are not suitable substrates for carnitine 

palmitoyltransferase 1 (CPT1) which is essential for their entry into mitochondria. Peroxisomes 

are known to lack a citric acid cycle and respiratory chain, hence the end products of beta-

oxidation in peroxisomes including acetyl-CoA, propionyl-CoA and other acyl-CoAs, and 
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NADH are then shuttled from peroxisomes to mitochondria for complete oxidation to CO2 and 

H2O in case of acetyl-CoA, propionyl-CoA and the other acyl-CoAs and re-oxidation of NADH 

back to NAD, Wanders (2014). Acyl-coenzyme A oxidase (Acox) 1, a rate-limiting enzyme in 

peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and 

hepatocellular damage over time. Twelve-week-old, chow diet–fed, Acox1Lampe1 mice showed 

increased energy expenditure, degradation of TGs stored in the white adipose tissue (WAT) 

degraded and released as fatty acids, via the process of lipolysis, to be used by brown adipose 

tissue (BAT). Moreover, this observation was in agreement with WAT mRNA expression 

of lipase E, hormone sensitive type (Lipe), PPAR-γ, and patatin-like phospholipase domain 

containing 2 (Pnpla2), which are genes associated with lipolysis, and was increased in 

Acox1Lampe1 mice compared with wild type controls, Moreno-Fernandez et al (2018). 

Alpha-oxidation pathway 

Branch-chain fatty acids including 3-methyl branched-chain fatty acids cannot undergo beta-

oxidation due to the location of the methyl-group at position 3. Moreover, even-numbered 

hydroxylated very-long-chain FAs and other even-chain fatty acids may undergo an alternative 

oxidation pathway, Vlaeminck & Fievez (2006); Pfeuffer & Jaudszus (2016).  These FAs 

undergo alpha-oxidation by removing the terminal carbon to generate a 2-methyl FA before 

entering into beta-oxidation pathway. For instance, phytanic acid which is a 3-methyl branched 

chain fatty acid in humans undergoes alpha-oxidation beginning with formation of phytanoyl-

CoA, followed by hydroxylation to produce 2-hydroxyphytanoyl-CoA, a reaction catalyzed by 

the enzyme phytanoyl-CoA 2-hydroxylase. Subsequently, 2-hydroxyphytanoyl-CoA is lysed 

by the enzyme 2-hydroxyacyl-CoA lyase (HACL) to pristanal and formyl-CoA and then 

hydrolyzed into formic acid and CoASH. Pristanal is oxidized to pristanic acid (2, 6, 10, 14-

tetramethylpentadecanoic acid) as catalyzed by a yet undefined peroxisomal aldehyde 

dehydrogenase. Finally, after activation to its CoA-ester, pristanoyl-CoA undergoes three 
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cycles of beta-oxidation in peroxisomes before the end-products are transported to 

mitochondria for complete oxidation, Wanders (2014). 

 

Figure 1.7: Pathways for C15:0 & C17:0 biosynthesis and alpha oxidation of branched-

chain fatty acid, phytanic acid. 

Pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) can be synthesized from short 

chain fatty acid, propionic acid (C3:0). Propionic acid can be generated via colonic bacterial 

fermentation of dietary fibre; breakdown of amino acids such as methionine valine, isoleucine, 

and threonine; peroxisomal oxidation of cholesterol side chain as well as α-oxidation of 

phytanic acid followed by successive β-oxidative degradation pathway. Aside chain 

lengthening of short-chain fatty acid (SCFA) to produce long OCFA, very long even-chain 

fatty acids can also undergo α-oxidation partial peroxisomal β-oxidation to yield C15:0 and 

C17:0, Pfeuffer & Jaudszus (2016). 

 

1.3.5 Peroxisomal and mitochondrial dysfunction and NAFLD 

As mitochondria and peroxisomes play important roles in fatty acid oxidation, changes in the 

biogenesis and functions of these organelles lead to impairment of lipid metabolism in the liver. 

Mitochondrial and peroxisome dysfunction has been implicated in the pathogenesis of 

NAFLD, Begriche et al (2006); Koliaki et al (2015). Moreover, impaired hepatic mitochondrial 

function has been reported in type 2 diabetes and steatohepatitis, Schmid et al (2011); Pérez‐
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Carreras et al (2003). A review study conducted by Nassir & Ibdah (2014) demonstrated a link 

between mitochondrial dysfunction and NAFLD. Another review has furthered our 

understanding of how mitochondria-derived oxidative stress leads to progression of NAFLD, 

Simões et al (2018).                                                                            

In dietary protein restriction, impairment of hepatic lipid metabolism result in consequential 

changes in peroxisome numbers and functions. A study by van Zutphen (2016) et al showed 

diminished hepatic peroxisome content and impaired peroxisomal function following a 4-week 

low protein diet (LPD). It was explained that a possible cause of hepatic steatosis was due to 

the loss or dysfunction of the organelles involved in lipid oxidation. Electron microscopic 

analyses revealed a near absence of peroxisomes in the periportal area of livers of LPD-fed 

animals compared to controls as shown by decreased immunofluorescence staining of 

peroxisomal membrane protein PEX14. Moreover, protein levels of peroxisomal membrane 

protein 70 (PMP70) and matrix protein catalase were decreased after 4 weeks of LPD, van 

Zutphen et al (2016). Proteins required for mitochondrial assembly and stability of complex I, 

oxidative phosphorylation (OXPHOS) complex I activity and level of NADH dehydrogenase 

(ubiquinone) activity 8 (Ndufb8) were reduced in the dietary challenged mice livers. Also, 

Complex IV activity and protein levels of subunit 1 were decreased in the LPD group.  

Proteomic analysis showed a decreased mitochondrial fatty acid oxidation enzyme such as 

medium-chain specific acyl-CoA dehydrogenase (Acadm), medium and short-chain L-3-

hydroxyacyl-coenzyme A dehydrogenase (Hadh) and enoyl-CoA hydratase (Echs1), Zutphen 

et al (2016).                        

 

 

 



49 
 

1.4 The role of diet in NAFLD 

1.4.1 Dietary fat and NAFLD risk 

1.4.1.1 Dietary fat and hepatic lipid accumulation 

Dietary fat is an important component of the human diet, although excessive fat or an imbalance 

of the type of fat can have detrimental effects on health. Over consumption of excess calories 

have been known to increase the risks of cardiometabolic diseases including type 2 diabetes, 

obesity and NAFLD, Jump (2011). A high-fat diet can influence free fatty acid concentration 

in circulation, Raatz et al (2001). In animal studies, rats fed HFD (60% energy as fat) diets 

showed significantly increased both serum TG and FFA composition from predominantly 

MUFA to predominantly PUFA. More importantly, linoleic acid and arachidonic acid, 

predominantly accounted for the increased percentage of PUFA in the serum TG (72% and 

15% of the PUFA were linoleic acid and arachidonic acid, respectively) and serum FFA (83% 

and 4%, respectively), Liu et al (2015). Moreover, consumption of high fat diet compared with 

a low-fat diet showed significantly greater percentages of plasma phospholipid total PUFA, 

total (n-6) fatty acids, and 18:2(n-6), Raatz et al (2001).                                                                                                                                   

Previous studies have demonstrated that triglycerides and FA are elevated in the liver of mice 

fed a HFD, Eisinger et al (2014). Feeding male C57BL/6 mice with a high-fat diet for 14 weeks 

resulted in decreased liver n-6 PUFA linoleic acid and n-3 PUFA α-linolenic acid with no effect 

on n-6/n-3 PUFA ratio compared to the control group. Moreover, the MUFA/SFA ratio was 

elevated and PUFA/SFA ratio was decreased in the fatty liver showing altered desaturation of 

FAs, Eisinger et al (2014). When the researchers performed analyses of SCD1 mRNA 

expression, which is involved in the conversion of palmitate and stearate to palmitoleate and 

oleate, they observed no changes in mice with the fatty liver (i.e HFD-fed group), Eisinger et 

al (2014).                                                                                                      
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1.4.1.2 High fat diet and lipid metabolism in the liver 

A variety of “high-fat” and “control” diet formulations have been used in rodent studies 

investigating their effect on lipogenesis. These have produced different effects on lipogenesis 

pathways depending on the type or source of fat used in diet formulation. It has been reported 

that high fat diet increases lipogenic gene expression, Lin et al (2005); Sampath et al (2007). 

In these studies, the high fat diet contained high amount of saturated fatty acids. Despite 

upregulation of lipogenic gene expression including acetyl CoA carboxylase (ACC), SCD1, 

this does not always correlate with de novo lipogenesis. For instance, increases in lipogenic 

genes did not result in a significant induction of de novo lipogenesis in mice, Oosterveer et al 

(2009). A relative decrease in the contribution of de novo lipogenesis to hepatic TG has also 

been reported in rats fed a high-fat diet, Delgado et al (2009). In human studies, de novo 

lipogenesis was not induced upon a short-term dietary fat challenge in human subjects, Schwarz 

et al (1995); Hudgins et al (1996). Buettner et al (2006) performed studies on different high-

fat diets (fat content 42% of energy) based on lard (HF-L), olive oil (HF-O), coconut oil (HF-

C) and fish oil (HF-F) on genes of lipid synthesis compared to rats fed a standard rodent chow 

(SC, fat content 11% of energy) for 12 weeks. They reported that the genes encoding fatty acid 

synthase or SCD1 were upregulated in HF-L, HF-O and HF-C, with the effect being 

quantitatively strongest in HF-O. Moreover, they reported that in HF-F animals, some 

liposynthetic genes, such as SCD1, were also upregulated, but, in general, there was no 

significant change to SCD1. When they analysed key enzymes of fatty acid oxidation, such as 

CPT1 or enoyl-CoA hydratase, these were downregulated in HF-L, HF-O and HF-C, but were 

not changed in HF-F. Moreover, transcriptional regulator of hepatic fatty acid synthesis, 

SREBP1c, was consistently upregulated in all diet groups, whereas PPARα, a key regulator of 

fatty acid oxidation, was upregulated only in HF-F, Buettner et al (2006).  
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1.4.2 Dietary protein intake and risk for NAFLD 

1.4.2.1 Protein malnutrition in developing economies 

Diets that favour high carbohydrate with a low protein intake are typical in developing 

countries and this may be a major risk factor for the increase prevalence of NAFLD. A 

comprehensive review by Kearney, 2010 showed that typical food intake in developing 

countries consist of a carbohydrate-rich staples (including cereals, roots, tubers), vegetable oils 

and sugar. In developing countries such as in Africa and parts of Asia, cereals can contribute 

more than 70 per cent of energy intake, Alexandratos 2006. The cereals consumed are mostly 

rice, wheat, sorghum and maize. This potentially deprives intake of other macronutrients such 

as proteins. Consumption trends for roots and tubers (including cassava, potatoes, yams, taro 

and plantain) have not seen a significant decline particularly in China and sub-Saharan Africa. 

For instance, 19 countries within sub-Saharan Africa depend on these products for at least 20 

per cent of their food consumption in terms of calories, Alexandratos 2006. Sugar, as well as 

vegetable oils, has seen marked increases in consumption among developing countries, most 

notably in Asia, India and to a lesser extent in Latin America and Africa. Whilst Diet and 

Nutrition data is scarce in most developing countries, one review of dietary surveys conducted 

on adult South African population from 2000 to 2015 revealed that out of the total energy intake 

of men and women, the % energy from protein ranges from 10.9% to 18.3%; fat from 17% to 

37.1%; and carbohydrate from 47.0% to 69%, Mchiza et al (2015). 

1.4.2.2 Dietary proteins and hepatic lipid accumulation 

Emerging evidence has shown that dietary protein insufficiency affects lipid content of the 

liver. Both human and animal studies have shown that a low protein diet (below 9% of total 

energy) causes an increase hepatic lipid accumulation. In human studies, a diet generally low 

in protein and high in carbohydrates, often seen in the elderly and typical of all ages in 
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developing countries, has been shown to cause liver lipid accumulation, Mayneris-Perxachs et 

al (2016). Moreover, children presenting with severe malnutrition were found to show several 

metabolic disturbances including increased oxidative stress and hepatic steatosis. 

In animal models, feeding Wistar rats for 4 weeks with a 3% isocaloric low protein diet, in 

which reduced dietary caloric intake of protein was replaced with higher sucrose consumption 

and a lower protein consumption per g/100g but no significant differences regarding 

carbohydrates, minerals, vitamins and fat per g/100g energy resulted in increased hepatic 

triglyceride accumulation, Kuwahata et al (2011). Moreover, feeding Sprague-Dawley male 

rats for 4 weeks with an 8% isocaloric low protein diet with energy intake reduced via protein 

deficiency replaced by sucrose also led to hepatic triglyceride accumulation which was 

associated with down-regulation of hepatic microsomal triglyceride transfer protein and 

increased expression of ACC, Kang et al (2011). Further, Kwon et al reported that an 8% low 

protein diet resulted in steatohepatitis with severe steatosis in lactating female Sprague-Dawley 

rats, Kwon et al (2012).  Despite the emerging evidence from animal models, there is a potential 

of confounding in the interpretation of the data; e.g. a low protein diet in mice for 16 weeks led 

to increased body weight, adiposity and fatty liver, Huang et al (2013) but the lack of dietary 

protein was substituted with a high carbohydrate content in the diet. Whether the development 

of fatty liver in this model was due to low protein or high carbohydrate or a combination of 

both has been addressed in part by dietary supplementation studies where the effect of protein 

extract or amino acids have been explored on low protein-induced NAFLD. 

1.4.2.3 Effect of amino acid supplementation on low protein induced-NAFLD 

Studies in animal models have reported a low protein diet supplemented with specific amino 

acids e.g. methionine, to moderate fat accumulation in major metabolic tissues such as the liver, 

muscle and subcutaneous adipose tissue. The amino acid derivative, betaine (trimethyl 
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glycine), occurs naturally in most living organisms. It is synthesized during the oxidation of 

choline, Ueland (2011). Betaine and choline are methylating agents and methyl donors are 

important for regulating DNA methylation and downstream gene expression. Choline is 

directed to maintain the S‐adenosyl methionine (SAM) cycle; both choline deficient diets 

(CDD) and methionine and choline deficient dietary MCDD models may be useful for 

understanding the role of dietary amino acids for human NAFLD partly due to their histological 

similarity with these diseases, Kulinski et al (2004); Lyall et al (2017). A study by Madeira et 

al demonstrated that betaine and arginine supplementation, either individually or combined, 

with reduced protein diets (160 g kg−1 versus 130 g kg−1 of crude protein) decreased plasma 

total lipids and total cholesterol that had been induced by low protein diets in lean pigs, Madeira 

et al (2018). In the presence of either betaine or arginine supplementation, except for FAS 

which was down‐regulated by protein reduction, no effects on hepatic FA composition and 

gene expression levels of lipid‐sensitive factors were induced by the protein restricted diet, 

Madeira et al (2018). Another study showed that supplementation with fish derived protein was 

hepatoprotective during a low protein diet, Bjørndal et al (2013). Together these studies 

indicate that in animals receiving low protein diets, the associated development of fatty liver 

may be prevented by simple amino acid supplementation. The beneficial effects of 

supplementing with methyl donors that are absent during protein malnutrition may be 

explained, at least in part, by epigenetic regulation of hepatic metabolic gene expression. 

Conversely, it has been demonstrated in rat pups from dams previously fed low protein diets 

during lactation; hypomethylation of PGC1-α was observed in the offspring, decreased 

metabolic gene expression and subsequently impaired mitochondrial fatty acid oxidation, 

Pooya et al (2002). It is not known whether a similar pattern of gene promotor hypomethylation 

may be induced by protein malnutrition in human liver.   
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1.4.2.4 Dietary protein and hepatic lipid metabolism 

Dietary protein is known to affect hepatic lipogenesis, Schwarz et al (2012). In an animal study, 

dietary protein restriction increased the expression of ACC in the liver of rats, Kang et al (2011). 

ACC is known to be a major lipogenic enzyme. A previous study reported a positive correlation 

between ACC protein levels and its enzymatic activity in rat liver, Atkinson et al (2002). 

Studies of specific amino acid deficiency have also provided evidence of their effects in altering 

lipid metabolism. It has been reported that the response to amino acid deprivation in mammals 

is thought to be characterized by upregulation of lipid synthesis, Guo & Cavener (2007). GCN2 

eIF2α kinase, is a sensor of amino acid deficiency and plays a key role in mammals in 

modulating amino acid metabolism as part of adaptation to nutrient deprivation, Guo & 

Cavener (2007); Laeger et al (2016). The GCN2 kinase is well established as the amino acid 

monitoring mechanism for the activating transcription factor (ATF) 4 pathway, Kilberg et al 

(2012). A study found that lipid synthesis was upregulated in the livers of Gcn2−/− mice during 

prolonged leucine deprivation resulting in severe liver steatosis, Guo & Cavener (2007). The 

same study reported that this was due to persistent increased expression of SREBP-1c and its 

downstream transcriptional targets underlying FA and TG synthesis. Leucine deprivation had 

marked increased on expression level of mRNAs encoding the transcription factor of Pparα, 

Aco, Lcad, and Mcad mRNA in the livers of Gcn2−/− mice. 

1.5 The role of inflammation and antioxidants in NAFLD 

1.5.1 Pro-inflammatory cytokines 

Inflammation is involved in almost all acute and chronic liver disorders including fatty liver 

disorders including NAFLD, Niederreiter & Tilg (2018). After prolonged lipid infiltration in 

the liver, progression to hepatocellular inflammation and fibrosis may occur, McCullough 

(2006). It has been reported that the amount of inflammation affects long-term outcomes of 



55 
 

liver disease including evolution of liver fibrosis, cirrhosis and hepatocellular carcinoma. Pro-

inflammatory cytokines have been implicated in the pathogenesis of non-alcoholic fatty liver 

disease, Kumar et al (2012). Among the various cytokines, the pro-inflammatory interleukin 

(IL)-1-type cytokines and tumour necrosis factor (TNF)-α have emerged as key factors that 

play an important role in various stages of liver diseases mediating fundamental aspects of 

those diseases including acute phase protein synthesis, lipid metabolism, cholestasis and degree 

of fibrosis, Niederreiter & Tilg (2018). 

TNF-α 

TNF-α was identified as the first inflammatory molecule linking obesity with insulin resistance, 

Lang et al (1992); Hotamisligil et al (1993). TNF-α is composed of three 17-kDa polypeptides 

forming a compact trimer, Jones et al (1989). TNF- α is produced by a variety of cell types 

including monocyte/macrophages, neutrophils, and T-cells, as well as many other tissues, such 

as the endothelium, adipose tissue, or neuronal tissue. In the liver, TNF-α is secreted directly 

by hepatocytes and Kupffer cells or indirectly by abdominal fat, Braunersreuther et al (2012). 

The TNF-α trimer may activate inflammatory responses by binding to normally two distinct 

cell surface receptors of 55 kDa (TNFR-I) and 75 kDa (TNFR-II), Tartaglia & Goeddel (1992). 

Several clinical and animal studies have demonstrated TNF-α as a key factor in the 

development of NAFLD and NASH, Braunersreuther et al (2012); Seo et al (2013). Moreover, 

TNFα levels were increased in adult and paediatric NASH subjects relative to controls, Wigg 

et al (2001); Engstler et al (2016). In another clinical study, TNF-α levels were found to be 

significantly higher in NAFLD patients relative to control patients, however there was no 

significant difference in TNF-α levels between patients with NAFLD and those with NASH 

via liver biopsy diagnosis. Moreover, another cross-sectional study of patients with NASH, 

NAFLD, and control patients showed serum TNF-α and soluble TNF receptor 1 to be 

significantly higher in patients with NASH relative to patients with NAFLD and controls, Seo 
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et al (2013). In an animal study, mice treated thalidomide which prevents TNF-α production 

resulted in improvements in the hepatic alterations mediated by a high-fat diet, de Fraia et al 

(2010). This study was also confirmed in rats, where the use of anti-TNF-α antibodies in an 

experimental model of NASH decreased inflammation, necrosis, and fibrosis in rats, Koca et 

al (2008). The role for TNF-α in obesity and related metabolic dysregulation has been studied, 

Kern et al (1995). TNF-α expression was increased in obesity and levels decreased after weight 

loss, Dandona et al (1998). Moreover, TNF-α was overexpressed in white adipose tissue of 

obese rodent models, Xu et al (2002). Furthermore, it was observed that obese individuals with 

insulin resistance displayed a higher adipose TNF-α mRNA level compared to lean patients, 

Arner (2003), suggesting that TNF-α may play a role in the pathophysiology of insulin 

resistance.  

Interleukins (IL) 

Apart from tumor necrosis factor (TNF)-α, other pro-inflammatory interleukin (IL) type 

cytokines have found to play a role in pathogenesis of fatty liver diseases and in various aspects 

of liver diseases. Two pro-inflammatory interleukins, IL-1 and IL-6, have been extensively 

studied with the later emerged as key factor in fatty liver diseases, Niederreiter & Tilg (2018). 

IL-1 was the first cytokine identified and is recognised by receptors on virtually all cells and 

organs in the body, Dinarello (2009). IL-1 triggers inflammation via IL-1 receptors (IL-1Rs), 

Boraschi et al (2018). Previous studies have shown that inflammatory cytokines, particularly, 

IL-1 family (IL-1F) members, are implicated in the regulation of insulin resistance, adipose 

tissue inflammation and atherosclerosis, which all share common characteristics of NAFLD, 

Tilg & Moschen (2008); Hotamisligil (2017). Within the IL-1 family, IL-1R antagonist (IL-

1Ra) and IL-37 are known to block the actions of IL-1 cytokines specifically at the receptor 

level and protect against liver inflammation. A previous study has reported that IL-1Ra anti-

inflammatory mediator is present in the healthy liver, Matsukawa et al (1997). On the contrary, 
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IL-family members IL-1α, IL-1β, IL-18 are pro-inflammatory and are increased following lipid 

accumulation in hepatocytes contributing to inflammation, hepatic insulin resistance and 

fibrosis, Kamari et al (2011); Niederreiter & Tilg (2018).                                                                                                                                        

Another pro-inflammatory interleukin that has been studied extensively in NAFLD is 

interleukin-6 (IL-6). Despite the interest in this cytokine, the role of IL-6 in liver pathology is 

very complex, and its involvement in the pathogenesis of NAFLD has not been fully 

understood, Braunersreuther et al (2012). IL-6 is known to activate several cells, including 

immune cells, hepatocytes, hematopoietic stem cells, and osteoclasts, Kishimoto (2010). 

Previous studies have reported that serum IL-6 levels were higher in animal models and patients 

with NAFLD, Cai et al (2005); Haukeland et al (2006). In humans with NASH, an association 

between IL-6 expression in hepatocytes and the severity of NAFLD has been reported, 

Wieckowska et al (2008). Blocking IL-6 in mice prevented liver damage but enhanced liver 

steatosis, Yamaguchi et al (2010). The link between insulin resistance which is a key feature 

of NAFLD and IL6 have been well defined. IL-6 produced by white adipose tissue (WAT) was 

found to contribute to insulin resistance observed in obese humans, Bastard et al (2002). 

Moreover, IL-6-deficient mice developed mature onset obesity and associated insulin 

resistance, Wallenius et al (2002). 

1.5.1.1 Effect of diet on pro-inflammatory cytokines 

Non-alcoholic fatty liver disease is strongly associated with obesity. Excess fat causes insulin 

resistance and inflammatory cytokine secretion, Tack et al (2012). Previous studies showed 

that poor diets are implicated in the activation of inflammation in various cells and tissues. 

Here we define a poor diet as any diet which either deficient or excessive in macronutrients 

such as protein, fat or carbohydrate. A study reported that protein malnutrition (5 g/kg) for 3 

weeks increased LPS-induced NF-κB activation as well as transcription levels of its 
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downstream genes IL-1β and TNF-α compared to control mice (150 g/kg), Li et al. (2002). A 

study in mice compared the effect of long-term (8-weeks) high carbohydrate (HC, 64% 

carbohydrate, 19% protein, and 11% fat)) or high-fat (HF, 45% carbohydrate, 17% protein, and 

38% fat) and standard rodent (chow) diet on secretion of TNF-α and monocyte chemoattractant 

protein-1 (MCP-1) inflammatory cytokines by the liver. This study reported increased plasma 

concentrations of TNF-α and MCP-1. Moreover, in the liver both diets (HC and HF) increased 

MCP-1 levels compared to control. However, the HC diet, but not the HF diet, increased TNF-

α concentration in the liver suggesting that the influence on the type of proinflammatory 

cytokines may depend on the nature of nutrients consumed, Ferreira et al (1992). Another high 

fat study in male C57BL/6J mice showed significantly elevated serum TNF-α levels, Qiao et 

al (2019).  

1.5.2 Oxidative stress and antioxidant activity 

Oxidative stress is a key mediator of hepatic damage and a major contributor to the progression 

from simple steatosis to steatohepatitis, Sumida et al (2013). Oxidative stress is defined as an 

imbalance between the excessive formation of pro-oxidants (including ROS and/or reactive 

nitrogen species, (RNS) and antioxidant levels, Gornicka et al (2011); Ferramosca et al (2017); 

Sies et al (2017). Cellular regulation of oxidative stress is extremely important in maintaining 

cell homeostasis which can be achieved via the antioxidant system, by controlling the formation 

of ROS or RNS and repairing oxidative damage to cells Valko et al (2007); Simioni et al (2018). 

Previous studies have classified antioxidants into enzymatic or non-enzymatic antioxidants. 

Most common endogenous enzymatic antioxidants include superoxide dismutase (SOD), 

catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GSR). Other 

physiologically important non-enzymatic antioxidants include ascorbate, glutathione, α-

tocopherol (vitamin E), ubiquinone, thioredoxin (TRX), bilirubin, Ore et al (2019). For the 

purpose of this thesis, GSR and TRX antioxidants are discussed. 
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Controlling ROS via GSR and TRX 

Activation of nuclear factor E2-related factor 2 (Nrf2; Nfe2l2 gene name) is critical in 

counteracting the detrimental effects of ROS and electrophiles on cells. Nrf2 is known to play 

an important role in regulating the expression of many antioxidant enzymes including 

glutathione (GSH) and TRX antioxidant system, Tonelli et al (2018). Glutathione reductase 

catalyses the reduction of glutathione disulfide (GSSG) to the sulfhydryl form GSH, a critical 

molecule in resisting oxidative stress and maintaining the reducing environment of cells, 

Deponte (2013). A previous study has reported that only two cytosolic enzymes can channel 

reducing power from NADPH into disulfide reduction reactions and these are thioredoxin 

reductase-1 (TrxR1) and glutathione reductase (Gsr). The thioredoxin system, composed of the 

selenoenzyme thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, plays a key role 

in redox regulation and is involved in many signaling pathways, Fang & Holmgren (2006). 

TrxR1 reduces the active site disulfide in oxidized thioredoxin-1 (Trx1) into a dithiol whilst 

Gsr reduces glutathione disulfide (GSSG) into 2GSH, which can reduce oxidized glutaredoxins 

(Grxs), Prigge et al (2017). Moreover, Prigge et al showed that show that liver-specific co-

disruption of the genes encoding Trx1, TrxR1, and Gsr (triplenull) causes dramatic hepatocyte 

hyperproliferation, Prigge et al (2017). In a previous study, a 13-week HFD-induced insulin-

resistant mouse model (HFD composed of 50% fat, 36% carbohydrate and 14% protein), it was 

reported that liver Trx and TrxR expression were significantly decreased compared to control 

(composed of 12% fat, 62% carbohydrate and 26% protein) suggesting impairment of lipid 

metabolism via induction of oxidative stress, Qin et al (2014). 
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1.6 Gut microbiota and NAFLD 

1.6.1 Gut microbiota community 

Animals and humans have a collection of diverse micro-organisms living in their gut. These 

groups of microbes that mutually inhabit their hosts are popularly referred to as microbiota, 

microflora or normal flora, Neish (2009). This community of microbes among others includes 

viruses, archaea and bacteria which have received increasing attention in the past few years. 

The gut harbours the largest number of bacteria, consisting of more than 150-fold of their 

eukaryotic nuclear genome, Qin et al (2010). More than 1014 bacteria are said to colonise the 

human gut. This figure is 10 times more than the overall number of human cell in our bodies. 

Moreover, there are over 1000 distinct species of bacteria inhabiting the human intestinal tract, 

which collectively constitute over 100 trillion organisms.  Again, the gastrointestinal tract 

which is the major coloniser organ has about 70% of entire human microbes inhabit in the 

colon alone, Ley et al (2006). The availability of molecules in the gut that can be used by 

bacteria as nutrients for the makes it the preferred site for colonization; Schloss and 

Handelsman (2004) showed that despite the over 50 bacterial phyla described so far, only two 

major of them dominate the human gut microbiota Bacteroidetes and the Firmicutes, in relation 

to Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria that 

constitute minor populations, Eckburg et al (2005). The phylum Firmicutes consist of a diverse 

group that comprises Gram-positive bacteria from more than 200 different genera such as 

Catenibacterium, Clostridium, Eubacterium, Dorea, Faecalibacterium, Lactobacillus, 

Roseburia, Ruminococcus and Veillonella. The phylum Bacteroidetes comprises mainly Gram-

negative bacteria from ∼20 genera including Bacteroides, Odoribacter, Prevotella and 

Tannerella, Tremaroli & Backhed (2012). Apart from these two major phyla, there are other 

common but less abundant gut microbiota such as Actinobacteria (Bifidobacterium, 
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Collinsella), Proteobacteria (Bilophila, Desulfovibrio, Escherichia) and Verrucomicrobia 

(Akkermansia), Eckburg et al (2005). 

Lactobacillus                           Actinobacteria                                           Bacilli,                                                                                                                                                                                                                                                                                                                                            

Veillonella                              Streptococcaceae,                                       Lachnospiraceae,                                                              

Helicobacter                            Actinomycinaeae                                       Bacteroidetes                                                                                       

 

101                103                     104                   107                     1012 CFU/mL  

Figure 1.8: Increasing numbers and diversity of microbiota in the GI tract 

The above figure shows that the intestinal microbiota is not evenly distributed. The amount of 

bacterial cells present in the mammalian gut increases from 101 to 103 bacteria per gram of 

contents in the stomach and duodenum, this is further increased to 104 to 107 bacteria per gram 

in the jejunum and ileum and progressing to 1011 to 1012 cells per gram in the colon. 

 

1.6.2 Formation of the gut microbiome 

The development of the gut microbiota begins after birth where the host genotype, mode of 

delivery and early feeding influence which microbes colonize the infant gastrointestinal tract, 

Lozupone et al (2012). The initial establishment of the human gut microbiota is believed to 

occur immediately after birth, which is dominated by key gut commensal bacteria genus 

Bifidobacteria known to be generally acquired from the mother, Turroni et al (2020). The early 

gut microbiota composition in vaginally delivered infants is similar to the vaginal microbiota 

of the mother which is mainly Lactobacillus and Prevotella species. In comparison, infants 

delivered through caesarean section have early gut microbiota that resemble that of the 

mothers’ skin, mostly Staphylococcus species, Dominguez-Bello et al (2010).  Again, 

depending on whether infants are breast or formula fed could determine the early microbial 

inhabitants, Azad et al (2013). Within the first 3 years of life, the diversity of the gut microbiota 

increases till it reaches a level comparable to that of the adult, Yatsunenko et al (2012). 

ColonIlleumJejenumDuodenumStomach
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According to Faith et al (2013) generally, there is stability of the individual’s gut microbiota, 

however, the relative abundance of bacterial species varies depending on an adults’ individual’s 

physiological state. This has been demonstrated by a number of studies including altered gut 

microbiota in pregnancy, obesity, type 2 diabetes, Koren et al (2012); Turnbaugh et al (2009) 

& Kalsson et al (2013). 

1.6.3 Functions of the gut microbiota 

The gut microbial community performs different physiological functions, including gut 

protection and metabolic regulation such as playing an active role in glucose and lipid 

metabolism, Prakash et al (2011). Recent studies implicate gut microbiota in the development 

of insulin resistance and obesity, Ley et al (2005); Ley et al (2006); Myers-Morales et al (2013); 

Bäckhed et al (2004), suggesting gut microbiota may play a role NAFLD. The close anatomical 

and functional relationship between gut and liver, through portal circulation may favour 

bidirectional influences, Compare et al (2012). For example, the liver receives about 70% of 

its blood supply from the intestine, representing the first line of defence against gut-derived 

antigens, Compare et al (2012). Thus, the gut microbiome may be critical in the maintenance 

of gut-liver axis health and in NAFLD pathogenesis.                                                                                                                             

The gut microbiota plays an integral role in human metabolism by contributing enzymes that 

are not encoded by the human genome, for instance, for the breakdown of polysaccharides, 

polyphenols and vitamin synthesis. Evidence for the role of the microbiota in metabolism of 

dietary components and for its effect on health have been derived from comparative studies in 

germ-free and conventional microbiota, or human microbiota-associated animals, and from in 

vitro studies using human faecal incubations or more complex continuous culture gut models. 

Also, observational studies where faecal microbiota of healthy subjects are compared with 

those of patients have strongly suggested that the gut microbiota plays a significant role in the 
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cause and/or development of a wide range of gastrointestinal diseases and conditions including 

inflammatory bowel disease, irritable bowel syndrome, colon cancer, and antibiotic-associated 

diarrhoea. In recent times, evidence has been accumulating that seem to suggest that microbiota 

may also be involved in obesity and diabetes, Greenblum et al (2012): Marchesi et al (2016). 

1.6.3.1 The role of gut microbiota in specific metabolic pathways  

Several mechanisms have been proposed on how gut microbiota contribute to the pathogenesis 

of NAFLD and other metabolic disorders. These include the gut microbiota role in increasing 

production and absorption of gut short-chain fatty acids (SCFAs), altered dietary choline 

metabolism as well as bile acid pools changes, increased delivery of microbiota-derived ethanol 

to liver; changes in gut permeability and release of endotoxin; and interaction between specific 

diet and microbiota, Yu et al (2016).                                                                                                                              

Turnbaugh et al showed that the cecum of ob/ob mice has an increased concentration of SCFAs 

and that transplantation of germ-free mice with the gut microbiome from ob/ob mice caused 

greater fat gain than transplants from lean animals, Turnbaugh et al (2006). Studies in humans 

also revealed an increased production of SCFAs by the gut microbiota in overweight and obese 

people compared to lean subjects, Schwiertz et al (2010). SCFAs account for a large part of 

caloric intake of the host, and they enhance intestinal absorption through activation of GLP-2 

signaling, Zhu et al (2014). Alterations to gut microbiota affect signaling pathways of host 

energy metabolism, Cani & Delzenne (2009).  Further, microbial metabolites and cell 

components are also involved in the development of hepatic steatosis and inflammation.                                                                                                                           

Altered gut microbiota in ob/ob mice, Ley et al (2005) and obese patients, (Ley et al (2006)) 

exhibited a reduced abundance of Bacteroidetes and proportionally increased abundance of 

Firmicutes.                                                                                                                              
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Dietary choline is necessary for VLDL synthesis and hepatic lipid export. Dietary choline-

deficiency caused increased hepatic steatosis which could be reversed by choline 

supplementation, Buchman et al (1995).  In hepatocytes, bile acids are synthesized from 

cholesterol via enzymatic pathways and then conjugated with either glycine or taurine before 

secretion into bile and released into the small intestine. The role of conjugated bile acids 

includes supporting lipid absorption and transport as well as acting as nuclear receptor binders 

and to have a putative role in altering the microbiome, Russell (2003). Activation of bile acid 

receptors with a receptor agonist was reported to improve NAFLD histology in an obese mouse 

model, McMahan et al (2013).                                                                         

Endogenous alcohol, ethanol, is produced naturally in all living humans. The resulting blood 

alcohol concentration is generally low. The concentrations of endogenous ethanol in the 

peripheral venous blood of healthy patients and those suffering from metabolic disorders such 

as diabetes, cirrhosis, or hepatitis ranged from 0 to 0.08 mg/dl captured in a study by Bukong 

et al (2016). Zhu et al observed that NASH patients exhibited significantly elevated blood 

ethanol levels. Similar blood ethanol concentrations levels were observed between healthy 

subjects and obese non-NASH patients, Zhu et al (2013).                             

 The gut microbiota help maintain the integrity of the intestinal barrier and therefore alterations 

in the composition of microbiota may lead to increased intestinal permeability and subsequent 

overflow of harmful bacterial by-products to the liver which can then trigger hepatic 

inflammation and metabolic disorders. Endotoxemia readily induces steatohepatitis in obese 

rats and mice, Yang et al (1997). Murine NAFLD models of bacterial overgrowth develop 

compositional changes of the gut microbiota and increased intestinal permeability, whilst the 

expression of tight junction proteins was reduced, Miele et al (2009). Similarly, studies in 

humans have reported a disruption in the intestinal barrier of biopsy-proven NAFLD patients 

in addition to increased rate of small bowel bacteria overgrowth which means that changes in 
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the microbiome may contribute to disturbance of gut barrier integrity, Miele et al (2009).                                                                                                                              

Evidence suggests that excess fructose consumption results in pathogenesis of NAFLD via 

upregulation of de novo lipogenesis and inhibition fatty acid β-oxidation, Lim et al (2010).  A 

study using fructose-induced NAFLD mouse model revealed fructose to significantly decrease 

Bifidobacterium and Lactobacillus and increase endotoxemia, Jin et al (2014).  Probiotic 

bacterial strains of Lactobacillus attenuated high-fructose-induced NAFLD in rats, Hsieh et al 

(2013). 

1.6.4 Gut microbiota metabolism of carbohydrates and SCFA synthesis 

A previous study has reported changes in the composition of the gut microbiota in response to 

the total quantity of carbohydrate intake in obese people. Thus, Bifidobacteria showed a 

significant reduction with decreased carbohydrate intake and some Clostridium subgroups 

(Roseburia and Eubacterium rectale), which correlated strongly with the reduction in stool 

butyrate levels, Duncan et al (2007).  To survive in the large intestine, bacteria rely on 

substrates that are undigested in the upper digestive tract. Some bacteria such as Saccharolytic 

bacterial fermentation products are generally beneficial metabolites, whereas if there is limited 

carbohydrate, bacteria tend to rely on an alternative energy sources leading to the secretion of 

other metabolites that may be more harmful to human health, Boyd et al (2013). The major 

products of bacterial fermentation following the fermentation of dietary carbohydrates are 

SCFAs and gases. It is known that in the gut, there is high concentration of bacteria in the 

colonic lumen (90–95%) and this is because of the increased availability of faecal SCFA 

concentrations in the colon which create a favorable niche for these bacteria, Venegas et al 

(2019).  Changing the carbohydrate content of the diet can also alter the faecal SCFA profile 

by affecting the bacterial composition. Reducing the carbohydrate content of the diet 

significantly reduced both faecal butyrate concentrations and numbers of the Roseburia/E. 

rectale group in human studies, Duncan et al (2007), while wheat bran supplementation 
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(consisting of >70% arabinoxylan oligo-saccharides; AXOS) raised the abundance of all three 

predominant SCFAs and thus also total SCFA concentrations, François et al (2012). However, 

it is probable that the indiscriminate increases in faecal SCFA concentrations observed in 

studies where the fibre content of the diet is increased are at least partly caused by the increased 

faecal bulking and reduced transit time resulting in decreased colonic absorption of SCFAs.  

Short chain fatty acids 

Acetate, propionate, and butyrate are the three most abundant SCFAs normally present in faecal 

samples in molar ratios which range from 3:1:1 to 10:2:1. These ratios have been shown to be 

consistent with values detected within the intestine in early sudden death victims, Macfarlane 

et al (1992). These three main short chain fatty acids (SCFA) perform very different but 

important roles in the human body. Butyrate is arguably the most important SCFA for human 

health. It constitutes the main energy source for human colonocytes and also has potential anti-

cancer activity through the ability to induce apoptosis of colon cancer cells and its ability to 

regulate gene expression by inhibiting histone deacetylases, Steliou et al (2012). There is also 

evidence that butyrate can activate intestinal gluconeogenesis (IGN) via a cAMP-dependent 

mechanism with beneficial effects on glucose and energy homeostasis, De Vadder et al (2014).                                                                                                       

Propionate is an energy source for the epithelial cells but is also transferred to the liver where 

it also plays a role in gluconeogenesis. Propionate is increasingly thought to be an important 

molecule in satiety signalling as it interacts with the gut receptors (G protein-coupled receptor, 

GPR) GPR 41 and GPR 43, and in turn activate intestinal gluconeogenesis, Brown et al (2003).                                                                                                                              

The conversion of propionate to glucose in intestinal gluconeogenesis directly promotes energy 

homeostasis by reducing the production of hepatic glucose, and consequently reduces 

adiposity, De Vadder et al (2014).                                                                                                                                      
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Acetate is the most abundant SCFA and is an essential co-factor/metabolite for the growth of 

other bacteria. For example, Faecalibacterium prausnitzii will not grow in pure culture in the 

absence of acetate, Duncan et al (2004). Within the human body, acetate is transported to the 

peripheral tissues and used in cholesterol metabolism and lipogenesis, and recent evidence 

from studies in mice indicates that it also plays a significant role in central appetite regulation, 

Frost et al (2014).                                                                                                                                       

While many bacteria produce acetate, other specific bacteria tend to produce propionate and 

butyrate, Luis et al (2017); Reichardt et al (2014). Within the environment of the gut, the 

predominant butyrate producers are Firmicutes including some Lachnospiraceae and 

also Faecalibacterium prausnitzii, whilst propionate is produced by Bacteroides species, 

Negativicutes, and also some Clostridium species. Metagenomic screening of over 3000 

sequenced bacterial genomes identified many other species containing butyrate production 

pathways, with no consistency within families, Vital et al (2014). Since the production of 

SCFA is not defined by bacterial phylogeny, diverse techniques which target key genes are 

needed to enumerate bacteria with specific metabolic activities. Louis and co-workers 

identified two major routes of butyrate production, Louis et al (2004) and three pathways for 

propionate production, Reichardt et al (2014) amongst the colonic microbiota. The primers 

designed against key metabolic genes in these pathways can provide help to enumerate 

functional groups of bacteria in different cohorts. They suggested that this approach may 

prove more useful than the current focus on the 16S rRNA gene, which gives information 

about the bacterial composition but does not indicate anything about fluctuations in metabolic 

activities.                                                                                                                   

It is relevant to note that propionate and butyrate can also be formed from peptide and amino-

acid fermentation by certain Bacteroidetes and Firmicutes species Louis & Flint (2016). In 
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vitro studies have shown that aspartate, alanine, threonine, and methionine are the main 

sources of propionate, whereas butyrate is predominantly resulted from fermentation of 

glutamate, lysine, histidine, cysteine, serine, and methionine, Louis & Flint (2017).                                                                                                                                           

A targeted gene approach revealed that most bacteria either had the ability to synthesize 

propionate or butyrate but very few had genetic capacity to produce both, Reichardt et al 

(2014). However, some bacteria can alter their fermentation and produce different SCFA in 

the presence of different, substrate-dependent, growth conditions. Roseburia inulinivorans is 

a butyrate producer, but during growth on fucose, it is able to completely change its gene 

expression pattern, switching on a set of genes capable of using fucose as a source of energy, 

and synthesizing propionate and propanol via a propanediol utilization pathway, Scott et al 

(2006). Ruminococcus obeum produces acetate, formate, and lactate during growth on 

glucose on pure culture, but in addition produces propionate during growth on fucose using 

the propanediol utilization pathway, Reichardt et al (2014). Fucose is a particularly important 

alternative dietary substrate, since many of the epithelial glycoconjugates are fucosylated. 

The ability of a bacterium to flick a metabolic switch and change its metabolism, and 

metabolic products, may give the bacterium a competitive advantage during times of low 

substrate availability. In Bacteroides thetaiotaomicron, the presence of fucose as a growth 

substrate not only stimulates expression of genes involved in fucose metabolism, but 

intracellular fucose levels are also important in activating a signalling mechanism to the host, 

upregulating synthesis of fucosylated glycans and thus ensuring a continued supply of 

substrate to the bacterium, Hooper et al (1999). This whole alternative metabolism is 

increased during periods of nutrient depletion, and it may also be relevant in early 

colonization events in the infant gut, El Aidy et al (2013). 
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1.6.5 Protein degradation by gut microbiota 

A previous study based on culture techniques identified Bacteroides and Propionibacterium 

species as the predominant proteolytic species in faecal samples, with proteolysis common also 

amongst Clostridia, Streptococci, Staphylococci, and Bacillus species. Furthermore, Gibson et 

al showed that the proteolytic activity of the faecal microbiota differed, both in quantity and 

quality of protein breakdown, from that in the ileum, Gibson et al (1989). Aromatic amino 

acids such as phenylalanine, tyrosine, and tryptophan can be fermented to phenylpropanoid 

metabolites, phenylacetic acid, and 4-hydroxyphenyl-acetic acid, which are abundant in faeces, 

Russell et al (2013). The organisms involved include several species of Bacteroides, 

Eubacterium hallii, and Clostridium barlettii. Interestingly, these phenolic compounds are the 

same as those generated by microbial breakdown of plant polyphenols. 

1.6.6 The effect of diet on gut microbiota 

Microbiota composition can be modified by changing dietary composition. A Western-type of 

diet (high fat) or low protein diet can change the microbiota unfavourably, resulting in 

increased Firmicutes and decreased Bacteriodetes, Chen et al (2015). Phylum-level changes 

have been identified in faecal microbiota affected by dietary composition and duration of 

feeding. It is possible that the metabolic effect of poor diet intake can be modulated by specific 

gut microbiota. Protein deficient diet alters the gut microbiota at different taxonomic level. 

Evidence of effect of diet on gut microbiota are summarized in the table 1 
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Table 1.2 Dietary fat/protein alters gut microbiota resulting inflammatory effect associated 

with NAFLD 

Diet Experimental 

model 

Effect on gut microbiota Metabolic or 

inflammatory 

effect 

High fat 

(35% 

energy 

from fat) 

in vivo in rats 

 

 

 

in vivo in 

mice 

in vivo in rats 

 

in vivo in rats 

Decrease of genera within the class 

Clostridia in the ileum. Increase 

Bacteroidales in large intestine, Hamilton 

et al (2015) 

Increase Firmicutes to Bacteriodetes 

ratio, Kim et al (2012).  

And increased Enterobecteriaceae, Chen 

et al (2015) 

Increase Bacteroidales, Clostridiales and 

Enterobacteriales, de La Serre et al 

(2010) 

Increase 

lipopolysaccharides 

(LPS), pro-

inflammatory 

cytokines (Toll-like 

receptors (TLRs), 

nuclear factor 

kappa (NF-kB), 

Baothman et al 

(2016). 

  

High 

protein  

(>20% of 

total 

energy 

from 

protein) 

in vivo in 

humans 

 

in vivo in 

humans 

Increased levels of Clostridium spp. and 

Bacteroides spp., Houghton et al (2016).  

Decreased level of Bifidobacterium spp., 

Roseburia spp., and Eubacterium spp., 

Russell et al (2011) 

Low butyrate 

production; 

increased 

endotoxemia; 

impaired mucus 

barrier function; 

decreased insulin 

sensitivity, Cani et 

al (2007). 

Normal 

protein 

(20% 

total 

energy 

from 

protein) 

in vivo in 

mice 

Bacteroidetes and Firmicutes decreased 

whilst Verrucomicrobia, Tenericutes, 

and Proteobacteria increased after 14 

days (postweaning mice). 

Verrucomicrobia, Tenericutes decreased 

after further 10 days whilst Firmicutes 

and Proteobacteria increased this time, 

Mayneris-Perxachs et al (2016).  

 

Protein 

deficient 

(2% of 

total 

energy 

from 

protein) 

(13% of 

LPD) 

in vivo in 

mice 

 

 

 

 

 

in vivo in pigs 

Post weaning increased in 

Verrucomicrobia. 

No decrease in Bacteroidetes but post 

weaning loss of Firmicutes observed, 

Mayneris-Perxachs et al (2016). 

 

 

Increased in genera of Prevotella and 

Coprococcus (in the caecum) as well as 

Sarcina, Subdoligranulum, Coprococcus, 

and Mogibacterium (in the colon) but 

decreased genera abundance of 

Lactobacillus (in the caecum) and 

Streptococcus in the colon of pigs, Zhou 

et al (2016). 

 

Increased lipocalin-

2 and 

myeloperoxidase in 

the stool 

(inflammatory 

markers),  

 

Mayneris-Perxachs 

et al (2016). 

Decreased in  

isobutyrate, 

isovalerate and 

branch chain 

proportion (BCP) 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/sarcina
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1.7 Models of NAFLD 

Animal models have played a critical role in elucidating the pathophysiological mechanisms 

of NAFLD and continue to do so. However, it is important to note that translation of results 

obtained in an animal model to a human population has repeatedly failed, Hebbard et al (2011). 

Therefore, selecting the right animal model for preclinical study is critical in order to be useful 

to study human disease and draw important conclusions.  In NAFLD and related diseases, mice 

and rats have been used most frequently for modelling human NAFLD. The C57BL/6 strain in 

mice and Wistar and Sprague Dawley strains in rats are considered to be ideal preclinical 

animal model for studying human metabolic diseases since they are cheap, easy to handle and 

above all susceptible to develop obesity, type 2 diabetes and NAFLD, Kohli & Feldstein 

(2011). In our current study, male C57BL/6 mice were used in all experiments since they are 

easy to handle and comparatively cheaper than rats.  Previous studies have reported that, wild 

type C57BL/6 male mice fed a high fat diet (HFD, 60% calories as fat [91% lard; 9% soybean 

oil, Research Diets)] or a high fat-high cholesterol diet [HFHC, 54% calories as fat + 

cholesterol (0.5 % w/w)] become obese and develop glucose intolerance (diabetes), 

hepatosteatosis and mild hepatic inflammation (Jump, 2016). In this thesis, we used (HFD, 

60% calories as fat [91% lard; 9% soybean oil, Research Diets)] for the dietary fat studies.                                                                                                                                   

Germ free and specific pathogen free models are good strategies to avoid the frustration with 

the presence of disease or infection as an unwanted variable in experiments, however, 

translation in human trials is often a challenge since the gut microbiota do not depict that of the 

“normal” environment, Lane-Petter (1962). The SPF methods are in direct contrast to breeding 

conventional healthy animals (sometimes called ‘dirty’ animals) in open cages in a controlled, 

health-monitored and more natural environment of antigenic exposures and indigenous gut 

flora. However, the conventional animals are more prone to diseases or infection which could 

affect the overall goal of the experiment. Given the variations in existing animal models, and 
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the difficulty associated with obtaining a model that perfectly satisfies all the criteria for an 

ideal animal model, in this thesis, SPF mice were used to investigate the role of gut microbiota 

in lipid metabolism as this was relatively cheaper than using germ free mice, Dobson et al 

(2019). 

1.8 Rationale and hypothesis of this thesis 

Non-alcoholic fatty liver disease remains a global health challenge as there is already high 

prevalence of the condition in the Western world. In recent times the frequency of this condition 

has been growing in the developing countries particularly in Africa, South America and the 

middle East. OCFAs (C15:0 &C17:0) have emerged as biomarkers for predicting metabolic 

diseases including NAFLD. Therefore, determining the factors that affect their levels will be 

important to understand the aetiology of NAFLD and could provide a mechanistic insight into 

their possible treatment route. It is thought that gut microbiota can influence lipid metabolism. 

Therefore, we wanted to understand how gut microbiota affect lipid metabolism in the state of 

high fat feeding. Moreover, there is the need to better understand on the effect of dietary protein 

is on lipid metabolism; thereafter the effect of decreased dietary protein on lipid metabolism 

was studied. Overall, we hypothesized that low protein or high fat diets alter the gut microbiota 

and impair odd-chain fatty acid metabolism leading to the pathogenesis of NAFLD.  
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1.9 Study aim and objectives 

1.9.1 Study aims 

The main aim of this study was to investigate the effect of dietary fat/protein on lipid 

metabolism and gut microbiota in mice. The specific aims were to: 

1.  characterize the differences in serum & liver FAs of male mice with protein-deficient 

diets/following high fat diets compared to those from control  

2. investigate the differences in gut microbiota in male mice following high fat diets 

compared to control 

3. elucidate the hepatic transcript expression related to specific fatty acid changes in the 

liver/serum in mice on protein deficient diets/high fat diets 

4. determine gene and protein expression of hepatic lipid metabolism in mice following 

protein deficient diets/high fat diets. 

1.9.2 Objectives 

1. Serum and liver FA analyses of protein and fat diet studies were performed with either 

GC-FID or GC-MS 

2. Hepatic transcript expression related to specific fatty acid changes in the liver/serum of 

dietary fat/protein study were characterized using qPCR 

3. Basic liver histological technique, H&E staining was used to investigate hepatic lipid 

accumulation. 

4. Peroxisome biogenesis protein expressions in fixed liver tissue were performed using 

immunohistochemistry technique. 

5. The gut microbiota of the high fat diet model were characterized by 16S rRNA 

sequencing platform 
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Chapter 2 

 

 

2 Materials and methods 
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2.1 Animals and treatment 

2.1.1 Housing and environmental conditions 

Male C57BL/6 males either maintained in normal husbandry or specific pathogen free (SPF) 

facility were used for the experiments in this thesis. Normal husbandry facility has no barrier 

or microbiota restrictions. Animals were housed either singly per cage or grouped depending 

on the experimental type under controlled conditions of light (12/12 h light-dark cycle) and 

temperature (20-22°C), with ad libitum access to chow and water. After five days of 

acclimatisation, the mice were used for the experiments. In this thesis, three high fat and two 

low protein dietary models were used. The LPD (Aston and Nottingham) models which were 

carried out in facilities in UK and the HFD (4-week SPF, 4-weeks normal husbandry and 12-

week normal husbandry) models which were carried out in facilities in China. All animal 

experiments in the protein study were carried out in strict accordance with the UK Home Office 

guidelines and the Animal Scientific Procedures Act (1986) under the project licence number 

PPL30/3253. The high fat diet experimental procedures were conducted under the State 

Council of the People's Republic of China (Decree No. 2 of the State Science and Technology 

Commission) October 31, 1988. Amendment Regulations and approval of the local ethics 

committee for use effective March 1, 2017. 

2.1.2 Low Protein dietary treatments 

In this thesis, two different low protein dietary models were studied. One was set up in Aston 

University’s Biomedical Research Unit and the other was set up at the University of 

Nottingham medical school facility. The procedures for dietary treatment in both models were 

similar.  Briefly, eight (8) week old C57BL/6 males were maintained at Aston University’s 

Biomedical Research Unit or University of Nottingham medical school’s facility on a 07:00–

19:00 light-dark cycle at a temperature of 20–22°C with ad libitum access to chow and water 
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for 5 days. In the Aston cohort, following acclimatisation, weight matched male mice were 

housed singly and fed one of three different diets either control normal protein diet (18 % 

casein; n = 8) isocaloric low protein diet (LPD) (9% casein; n = 8) or LPD supplemented 

with/without methyl donors (5 g/kg diet choline chloride, 15 g/kg diet betaine, 7.5 g/kg diet 

methionine, 15 mg/kg diet folic acid, 1.5 mg/kg diet vitamin B12; termed MD-LPD). Similarly, 

in the Nottingham group, mice were housed singly and fed either normal protein diet with 

methyl donors (MD-NPD), a low protein diet without methyl donor component, (LPD) and a 

low protein diet with methyl donor (MD-LPD) isocaloric with LPD (Special Dietary Services 

Ltd, UK, Table 2.1 and 2.2, respectively). Here, we housed the mice singly based on the fact 

that in experiments involving food intake and/or energy expenditure, social housing often is 

not feasible especially when individual intakes are the critical measures to ensure 

reproducibility of each sample, Robertson & Rowland (2005). Furthermore, mice are 

notoriously known to eat their faeces. All diets were given ad libitum for at least 7 weeks for 

Aston and 8 weeks for Nottingham group prior to culling via cervical dislocation for the 

collection of tissues. In both models, blood samples were collected via heart puncture and 

allowed to clot on ice before centrifugation at 10,000 rpm, 4 °C for 10 minutes. Isolated serum 

was aliquoted, snap frozen and stored at -80 °C. Samples of liver, kidneys, heart, lungs, testes, 

and gonadal fat were removed, weighed, snap frozen and stored at -80 °C. Moreover, in the 

case of Nottingham samples faecal samples were collected and stored in -80 °C freezer. 

 

 

 

 

 

 

 



77 
 

Table 2.1: Dietary composition of Aston low protein diet  

 Diet Type (w/w)  NPD  

(18% Casein w/w)  

LPD  

(9% Casein w/w)  

MD-LPD  

(9% Casein w/w)  

Starch (%)  42.5  48.50  48.50  

Sucrose (%)  21.30  24.30  24.30  

Casein (%)  18.00  9.00  9.00  

Corn Oil (%)  10.00  10.00  10.00  

Cellulose (%)  5.00  5.00  5.00  

Minerals (%)  2.00  2.00  2.00  

DL-methionine (%)  0.50  0.50  0.50  

Vitamins (%)  0.50  0.50  0.50  

Choline chloride 

(%)  

0.20  0.20  0.20  

Extra choline 

chloride (g/kg)  

-  -  5.00  

Betain (g/kg)  -  -  15.00  

Extra methionine  

(g/kg)  

-  -  7.50  

Folic acid (mg/kg)  -  -  15.00  

Vitamin 

B12(mg/kg)  

-  -  1.50  

Note: Protein energy loss in LPD was compensated for by only carbohydrate 
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Table 2.2: Dietary composition of Nottingham low protein diet  

 
                                   

g / kg 

MD-NPD  

(16.5% kcal-1 
protein) 

LPD  

(9% kcal-1 
protein) 

MD-LPD  

(9% kcal-1 
protein) 

 
   

Casein                                   175.2 98.9 96.0 

Corn starch                         413.6 467.0 453.3 

Fibre                                      48.7 54.9 53.3 

Sucrose                                 207.3 234.1 227.2 

Choline chloride                  1.9 2.2 2.1 

DL-Methionine                     4.9 5.5 5.3 

AIN-76 mineral mix              19.5 22.0 21.3 

AIN-76 vitamin mix             4.9 5.5 5.3 

Corn oil (gm/kl)                 97.3 109.9 106.7 

Choline chloride 4.9 0 5 

Betaine 14.6 0 16 

Methionine 7.3 0 8 

Folic acid 0.0146 0.000 0.016 

Vitamin B12 0.0015 0.000 0.002 

    
Weight (g) 1000.0 1000 1000 

Note: Protein loss in LPD group were compensated for by nutrient balance of all dietary 

composition including fibre, fat, minerals. 

 

Glucose tolerance test of Nottingham low protein diet 

A glucose tolerance was determined at the end of 8 weeks of feeding. The mice were fasted 

overnight, with access to water ad libitum, and weighed immediately prior to glucose tolerance 

testing (GTT). Following weight measurement, fasting blood glucose levels were determined 

in a sample collected from the tail vein using a hand-held glucometer (Freestyle Optium, UK). 

Subsequently, glucose bolus (2g/kg body weight in PBS) was administered via intraperitoneal 

injection. Blood samples were collected from the tail vein at 15, 30, 60 and120 minutes post-

bolus for determination of glucose concentration (figure 2.1). MD-LPD blood glucose 

concentration was higher at baseline (0), 15 and 30 minutes (area under the curve, AUC; 
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p<0.001, p=0.001 and p<0.001, respectively) compared to MD-LPD. However, from an hour 

time this difference disappeared. In terms of methyl donor effect on blood glucose, LPD mice 

displayed high glucose concentration from baseline to 15 minutes (AUC; p<0.001 and p=0.006, 

respectively) until this difference disappeared to the end of glucose tolerance test (GTT). 

A.                                                                 B. 

   

Figure 2.1:   Glucose tolerance test.                                                                                                                                                         

Data represent mean ± SEM. Male mice with MD-NPD; 16.5% kcal-1 protein, n=8, LPD; 9% 

16.5% kcal-1 protein, n=8 and male mice fed with MD-LPD, 16.5% kcal-1 protein, n=8. There 

were no significant changes at the end of GTT between MD-NPD vs MD-LPD or LPD vs MD-

LPD of feeding (week 8)  
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Table 2.3: Fatty acid composition of both models (Aston and Nottingham) 

 NPD    LPD  

Fatty acid g/kg diet %     g/kg diet %  

C12:0  0.02 0.25   0.01 0.13 

C14:0  0.02 0.25   0.01 0.13 

C14 1  0.01 0.12   0.01 0.13 

C16:0  1.01 12.56   0.99 12.44 

C16 :1  0.01 0.12   0.01 0.13 

C18:0  0.22 2.74   0.21 2.63 

C18 :1n9 2.37 29.48   2.35 29.52 

C18 :2n6 4.3 53.48   4.29 53.89 

C18 :3n3 0.08 1.00   0.08 1.00 

C20 :4n6 0 0   0 0 

C22 :5n3 0 0   0 0 

Total 8.04 100.0 
  

7.96 100.0 

SFA  15.80 
  

 15.33 

MUFA  29.72 
  

 29.78 

PUFA  54.48 
  

 54.89 
 

Dietary fat compositions. Both Aston and Nottingham diets had same FA composition 

2.1.3 High fat dietary treatment 

Four (4) week old C57BL/6 male mice (n=20) were maintained in Nanjing- China SPF animal 

facility on a 07.00-19.00 day/light cycle at 20-22°C with food and water ad libitum. They were 

housed 4 in a cage and fed either chow or HFD ad libitum for 4 weeks. The body weight of the 

mice was taken every week. In another HFD feeding experiment, 20 male mice were 

maintained in normal husbandry for either 4 or 12 weeks on similar conditions as the SPF 

raised mice (n = 5-10/group, table 2.4). The animals in the high fat diet (HFD) treated group 

were fed a 60% fat, 20% carbohydrate and 20% protein per kcal% while the animals in the 
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control (CD)-treated group received a 10% fat, 70% carbohydrate and 20% protein per kcal% 

(table 2.5). At the end of their respective periods of feeding mice were culled through cervical 

dislocation for tissue collection. Isolated serum was aliquoted, snap frozen and stored at -80°C 

freezer. Liver, kidneys, heart, lungs, testes, and gonadal fat were removed, and with systematic 

sampling part of the tissues were snap frozen and stored at -80 °C whilst others were fixed in 

4% formaldehyde for histological analyses. Faecal samples were also collected and stored in -

80 °C freezer. The growth rate of the mice fed high fat diet in an SPF facility is shown below 

(figure 2.4). 

Table 2.4: Details of the different high fat diet feeding experiments. 

Condition SPF SPF Normal 

husbandry 

Normal 

husbandry 

Normal 

husbandry 

Normal 

husbandry 

Treatments 

& 

Period 

(week) 

 CD 

  

4 

HFD 

  

4 

CD 

  

4 

HFD 

  

4 

CD 

 

12 

HFD 

 

12 

Sample size  10 10 5 5 5 5 

 

 

Table 2.5: Dietary composition of high fat diet used for both SPF and normal husbandry 

conditions 

  

 

Control Diet  HFD 

    % by weight   % of energy   % by weight   % of energy 

Protein  19.2  20  26.2  20 

CHO  67.3  70  26.3  20 

Fat  4.3  10  34.9  60 

Total    100    100 

kcal/g  3.85    5.24   
                  

  Control Diet  HFD 

    G   Kcal  g  Kcal 

Sucrose   350   1400  68.8  275.2 

Soybean oil  25  225  25  225 

Lard  20  180  245  2205 

Total   1055   4057  774  4057 

Diets compositions.  Data from Research Diet Inc. website: g-grams 

(http://www.researchdiets.com/opensource-diets/stock-diets/dio-series-diets) 

http://www.researchdiets.com/opensource-diets/stock-diets/dio-series-diets
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Table 2.6: Fatty acid composition of SPF and normal husbandry conditions dietary fat 

 Control Diet (D12450B)   HFD (D12492) 

Fatty acid g/kg diet        % by weight   g/kg diet         % by weight 

16:0 6.5 15.1   49.9 20.3 

16:1 0.3 0.7   3.4 1.4 

18:0 3.1 7.2   26.9 10.9 

18:1n9 12.6 29.2   86.6 35.2 

18:2n6 18.3 42.5   73.1 29.7 

18:3n3 2.2 5.1   5.2 2.1 

20:4n6 0.1 0.2   0.7 0.3 

Total 43.1 100.0   246.0 100.0 

SFA  22.0    31.0 

MUFA  30.0    37.0 

PUFA  48.0    32.0 

Fatty acid profile of the diets.  Data from Research Diet Inc. website 

(http://www.researchdiets.com/opensource-diets/stock-diets/dio-series-diets).   
 
 

2.1.4 Dissection of liver tissues 

At the study end, the animals were sacrificed by rapid cervical dislocation for liver histology, 

fatty acid and gene expression analyses. Using a fine scalpel, the liver tissues were dissected 

out and weighed. In some experiments, half were dissected out and fixed in 4% formaldehyde 

for histological analyses. The rest of the liver tissue was snap frozen in liquid nitrogen and 

stored at -80ºC prior to fatty acid and gene expression analysis. 

2.2 GC-FID/MS-based FA analyses 

Metabolomics refers to the comprehensive measurement of all metabolites and low-molecular-

weight molecules in a biological specimen Clish (2015). Gas Chromatography (GC), is a 

technique that is used to separate, detect, and quantify small volatile compounds in the gas 

http://www.researchdiets.com/opensource-diets/stock-diets/dio-series-diets
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phase. This thesis utilised GC coupled with mass spectrometer (MS) or flame ionization 

detector (FID) based detection following chromatography for lipid profiling in the blood and 

liver. In GC analyses, the analyte is either a gas or a liquid that is vaporized in an injection port. 

Typically, the compounds analysed in GC are less than 1,000 Da. For larger, aqueous, or polar 

molecules that are difficult to vaporize, liquid chromatography (LC) is considered as a useful 

alternative. In a typical GC experiment, a solution of a biological sample in an injection port is 

vaporized and carried by an inert gas (mobile phase). In this thesis, the mobile phase for the 

gas chromatography was helium and was selected because of its low molecular weight and 

being chemically inert. Pressure then builds up and the mobile phase moves the analyte through 

a long, thin column. The analyte separation is accomplished using a column coated with a 

stationary phase (Omegawax 250, a bonded polyethylene glycol-based phase was used for the 

GC-FID sample analyses in this thesis).  A typical gas chromatography consists of sample 

injection port, carrier gas, oven column and detector described below (figure 2.2).                              

Figure 2.2: Schematic operation of a typical gas chromatography. 

The GCMS platform sample is injected into the port which carried by a carrier gas. Then 

passes through and interact with the capillary column where samples are separated before 

entering the detector and finally data acquired are recorded on a computer system. 
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Sample Injection port 

A sample port is where the samples to be analysed are injected into the head of the column.  

These are often heated sample ports through which the sample can be injected and vaporized 

in a near simultaneous fashion.  Using a calibrated Hamilton blunt tipped syringe a small 

amount of sample can be injected via a rubber septum into the vaporization chamber.  In most 

cases, separations require only a small fraction of the initial sample volume and a sample 

splitter is used to direct excess sample to waste. The vaporization chamber is typically heated 

50 °C above the lowest boiling point of the sample and subsequently mixed with the carrier gas 

to transport the sample into the column. 

Carrier gas 

In GC techniques, generally the carrier gas must be dry, free of oxygen and chemically inert. 

Mostly, helium is commonly used as it is thought to be safer than, but comparable to hydrogen 

in efficiency, and has a larger range of flow rates vis-a-vis compatible with many detectors. In 

this thesis, helium was used for the GC-FID. Mass spectrometer detector uses nitrogen and this 

turns to improve vacuum pump efficiency due to its higher molecular weights compared to 

helium or hydrogen. 

Oven 

The thermostatic oven controls the temperature of the column. The temperature of the column 

can be set constant throughout the entire separation (isothermal) or programmed at specific set 

of temperatures. Isothermal programming works best only if the boiling point range of the 

sample is narrow. Rates of 5-7 °C/minute are usually typical for temperature programming 

separations. 
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Column 

There are two basic forms of capillary columns- a wall-coated open tubular (WCOT) column 

or a support-coated open tubular (SCOT) column. WCOT columns are capillary tubes that have 

a thin layer of the stationary phase coated along the column walls. Different types of columns 

can be applied for different fields. 

Detector 

The detector device is located at the end of the column and provides a quantitative measurement 

of the components of the mixture as they elute in combination with the carrier gas. An ideal 

detector should have adequate sensitivity to provide a high-resolution signal for all components 

in the mixture. In addition, it should be reliable, predictable and easy to operate.  

Mass spectrometry detector: In a GC-MS system, the mass spectrometer scans the masses 

continuously throughout the separation. When the sample leaves the chromatography column, 

it passes through a transfer line into the inlet of the mass spectrometer.  The sample then ionises 

and fragments via an electron-impact ion source. The sample is bombarded by electrons which 

ionize the molecule by causing them to lose an electron due to electrostatic repulsion. Further 

bombardment causes the ions to fragment. The ions then pass into a mass analyser where the 

ions are sorted according to their mass per charge (m/z) value, or ratio. Most ions are only 

singly charged. The chromatogram shows the retention times and analysing the mass spectra 

of the peaks to compare to existing libraries each kind of molecule in the mixture can be 

identified (figure 2.3). 
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Figure 2.3: Chromatogram of fatty acid peaks in a mouse plasma sample.  

Chromatogram was acquired using Agilent 5975 Inert XL MSD & 5973 network MSD 

GCMS’s with Chemstation software. 

 

Flame ionization detector (FID): These are the most generally applicable and widely used 

detectors.  In a FID, the sample is directed at an air-hydrogen flame after exiting the 

column.  At the high temperature of the air-hydrogen flame, the sample undergoes pyrolysis, 

or chemical decomposition via intense heating.  Pyrolized hydrocarbons release ions and 

electrons that carry current.  A high-impedance picoammeter measures this current to monitor 

the sample elution. FID is useful because the detector is unaffected by flow rate, non-

combustible gases and water.  These properties allow FID to have high sensitivity and low 

noise.  The unit is both reliable and relatively easy to use.  However, this technique does require 

flammable gas and can also destroys the sample.  
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Figure 2.4: Chromatogram of fatty acid peaks in a mouse plasma sample.  

Chromatogram was acquired using Agilent 7820A GC with flame ionization detector system. 

 

In general, the main stages of GC-FID/MS-based metabolomics include sample extraction, 

preparation of fatty acid methyl esters (FAMEs), gas chromatographic analysis, metabolite 

identification, and data analysis and interpretation (figure 2.5). Salimon et al (2017). 

 

Figure 2.5: Typical GC-FID/MS FA analysis workflow. 

The workflow consists of sample extraction, preparation of fatty acid methyl esters (FAMEs), 

gas chromatographic analysis, metabolite identification, and data analysis and interpretation. 
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The sample preparation is an important step and requires the use of suitable solvents that that 

dissolve fatty acids (e.g. chloroform, methanol). Extraction is followed by methylation to make 

samples suitable for GC analyses. Free online reference spectra such as NIST/EPA/NIH Mass 

Spectral Library (Peterson & Hayes, (1978) are available to compare their mass spectra with 

the sample spectra. The spectral data can then be analysed statistically. A major challenge 

associated with gas chromatography has to do with overlapping/co-eluting peaks, where 

different metabolites may peak at the same time. Also, if peak tops are broad and several local 

maxima are present, a component may be identified more than once. However, this challenge 

can be reduced in severity by using reverse matching logic (ignoring mass spectral peaks not 

in the library spectrum), but this can also increase false positive risks significantly. The GC-

FID/MS workflow employed in this thesis are discussed in greater detail below.  

2.2.1 Serum preparation for fatty acid extraction 

The frozen serum samples were thawed and lipid was extracted using chloroform-methanol 

mixture (2:1, v/v). The extraction procedure used was based on that described by Folch et al. 

(1957), but with some minor modifications. In brief, the frozen samples were allowed to thaw. 

after vortexing, 50μl of mouse serum, 450μl of PBS (Thermo-Fisher, UK) and 2.63μg/ml 

internal standard, undecanoic acid (C11:0) were mixed with 1.5ml of 2:1 Chloroform-methanol 

(Sigma, UK) containing 0.01% tert-butylated hydroxytoluene (Sigma, UK). The mixture was 

then centrifuged at 200 x g for 10 min at 4°C. Following centrifugation, the bottom phase 

(chloroform) is collected with glass pasteur pipette into a new glass tube. 

 

2.2.2 Preparation of liver extracts for fatty acid extraction 

The frozen liver samples were retrieved and put on wet ice. Following the same extraction 

procedure as described above (see 2.2.1), about 50mg of liver tissue samples was weighed 

before being homogenised in 80μL of normal saline (sodium chloride). Homogenates were 
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kept on ice and 2.63μg/ml C11:0, 1.5ml of 2:1 chloroform-methanol (Sigma, UK) containing 

0.01% tert-butylated hydroxytoluene (Sigma, UK) added. The mixture was then centrifuged at 

200 x g for 10 min at 4°C. The bottom layer containing the lipid was collected into a new tube. 

2.2.3 Preparation of fatty acid methyl esters (FAMEs) 

Following Folch lipid extraction, the chloroform layer was dried under nitrogen gas and FAs 

were methylated using 200 μl toluene (Thermo-Fisher, UK), 1.5 mL methanol and 0.3 mL of 

6.3% HCl in methanol at 35°C or 100 °C for 10 minutes or ~1 hour respectively, in PTFE-

sealed glass vials. The FA methyl esters (FAMEs) were subsequently extracted with 1 mL of 

hexane and 1 mL of water, evaporated under nitrogen and resuspended in 20 -150 μl of hexane 

(depending on GC detector used) prior to analyses by gas chromatography (GC)  

 
2.2.4 Gas chromatographic analysis 

2.2.4.1 GC-FID 

One microlitre volume of each sample was manually injected into GC equipped with FID for 

separation and quantification of the FAMEs. The analysis was carried out using OMEGAWAX 

250 polyethylene glycol-based capillary column (30m x 0.25mm ID x 0.25µm film thickness, 

(Sigma-Aldrich, UK). The separation was achieved under an optimised temperature 

programme as follows: initial column temperature 50°C held for 2 minutes, then programmed 

to increase at a rate of 1 °C min -1 up to 260°C. This temperature was maintained for 5 min. 

The injector temperature was 250°C. Helium was used as the carrier gas at a flow rate of 1 mL 

min-1 with no split ratio. All GC-FID analyses were done in School of Life and Health Sciences 

laboratory, Aston University, Birmingham. 

 

2.2.4.2 GC-MS 

In the GC-MS analyses, 0.2μl was injected by the autosampler of the GC equipped with MSD 

for separation and quantification of the FAMEs. The analysis was carried out using a Restek 
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FAMEWAX 250 polyethylene glycol-based capillary column (30m x 250µm ID x 0.25µm film 

thickness, Fisher Scientific, UK). The separation was achieved under an optimised temperature 

programme as follows: initial column temperature 100°C with 3 minutes hold time, 

programmed to increase at a rate of 25°Cmin-1 up to 200°C before holding for 6 minutes and 

ramped again at 25°Cmin -1 up to 240°C. This temperature was maintained for 5 minutes. The 

injector temperature was at 250°C. Helium was used as the carrier gas at a flow rate of 1.3mL 

min-1 and was in splitless mode. All GC-MS analyses were done at the Centre for Diabetes and 

Metabolic Research Laboratory, Leggett Building, Faculty of Health and Medical Sciences, 

University of Surrey, Guildford. 

 
2.2.5 Identification of fatty acids 

A commercial fatty acid standard mix consisting of 37 FA Components (i.e 37 FAME 

Standard) purchased from Sigma-Aldrich, UK was submitted to a similar procedure, as 

previously described and (1 μL) was injected in the GC under the same conditions used for 

analysing the samples. FAMEs in plasma or liver samples were accurately identified by 

conducting a comparison of similar peak retention times (Rt) using the 37 FAME standard as 

well as reference library NIST 2011 (in the case of GC-MS analytes) which include mass 

spectra of methyl esters of all analysed FAs.  

An internal standard, undecanoic acid 2.63μg/mL which was not present in the lipid extracts, 

was used for quantitative purposes. 

In the GC-MS analyses, in addition to the internal standard (IS), calibration curve was 

constructed for heptadecanoic acid (C17:0) against C11:0. A calibration plot of C17:0 

compound was run by applying the ratio of the peak area of the FAME in the standards to the 

peak area of the IS against the ratio of the concentration of the FAME to the concentration of 

the IS. The concentration of FAME in the heptadecanoic acid solution was then determined 

using the area ratio and the calibration plot. 
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The composition of the FAs (μM) in the samples was then recalculated and used to determine 

percentage fatty acid composition. 

 

2.2.5.1 Method validation of GC-FID/GC-MS 

Prior to analysing experimental samples various experiments were carried out to validate the 

chromatographic method including response linearity, detection and quantification limits, 

robustness, recovery, and precision of the analytical procedure. 

For GC-MS analysis, calibration curves with a range of concentrations as previously reported 

was constructed and used to determine the linearity via the values of correlation, coefficient (r) 

obtained, and the sensitivity of the detector via the values of slope obtained from linear 

regression equations for the analyte. 

The precision of the method was checked through the repeatability and reproducibility 

experiment. This was done for both GC-MS and GC-FID experiments. The repeatability of the 

method was calculated by using the measured data of a single day, and the reproducibility of 

the method was calculated by using the measured data of three successive days. Coefficient of 

variation were calculated to assess the repeatability and reproducibility of the method. 

 

2.2.5.2 GC/FID method validation for fatty acid analysis 

 
To develop a simple, robust and reliable extraction and analytical method for FFA, control 

standard was run four times within the same day (Repeatability), four times for 4 different days 

(Reproducibility) and coefficient of variation of each fatty acid calculated for the retention 

times (RT) and peak areas (PA; Table 2.7). For example, the results, running the control standard 

of C11:0 fatty acid showed very low coefficient of variation in repeatability and reproducibility 

in retention time (RT) and peak areas (PA) respectively, (Average CV~0.001min RT & ~0.11 

PA). This similarity was seen in the rest of all other fatty acids in the control run. Other 
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measures considered in optimizing the parameters/conditions for the analysis of the free fatty 

acids, include sample solvent selection, inlet temperature, column temperature and temperature 

program, stationary phase, inlet type, sample size and injection technique 

To optimise for volume of plasma for fatty acid extraction, different volumes of plasma but 

were spiked with the same concentration of C11 (0.2mg/mL) and then the amount of FA 

recovered as response into the detector was measured. Plasma volume of 50µL diluted with 

450µL of PBS was chosen since it produced the maximum fatty acid recovery when compared 

with 20 µL, 40 µL and 200 µL diluted with different volume of PBS (table 2.8). Again, the CV 

(~0.21 PA) for the FA recovered is very low (represented by peak areas) (table 2.8). 

 

Table 2.7: Repeatability and reproducibility of sample (C11:0). 
 

Day Retention 
time(minutes) 

Peak Areas (PA) 

1 

 

 
 

Mean 

CV(1) 

5.047 

5.049 

5.045 

5.04 

5.045 

0.0008 

4384.4 

3829.5 

4360.5 

4596.2 

4292.65 
0.076 

2 

 

 
 

Mean 

CV(2) 

5.070 

5.068 

5.064 

5.066 

5.067 
0.00051 

1561.28 

1883.81 

2437.98 

3487.35 

2342.61 
0.096 

3 

 

 
 

Mean 

CV(3) 

5.048 

5.054 

5.056 

5.060 

5.055 
0.00098 

1785.77 

3055.79 

2251.7 

2501 

2398.57 
0.22 

4 

 

 
 

Mean 

CV(4) 

5.053 

5.055 

5.054 

5.052 

5.054 
0.00026 

2638.6 

2521.28 

2631.72 

2883.18 

2668.70 
0.057 

CV for 1-4 0.002 0.315 

 



93 
 

Table 2.8: Optimization for plasma volume of C11 

Volume of plasma Retention time Peak Area 

20 µL + 480 µL PBS - - 
40µL + 460 µL PBS 5.039 5831.74 

50 µL + 450 µL PBS 5.039 6413.26 

200 µL+ 300 µL PBS 
CV 

5.044 
0.0006 

4227.52 
0.21 

 

Determining the percentage recovery of Internal standard spiked into samples is another 

important measurement to determine the accuracy and reliability of a GC method and is 

reported as percentage recovery. In determining the GC method for fatty acid analysis, 10µl 

of 0.2mg/μl of C11:0 was added to 450μL of PBS before extraction and methylation (table 

2.9). After extraction and methylation, the FAME was resuspended into 20µl of hexane before 

injection into the GC apparatus. The concentrations of the FAs in the non-spiked plasma were 

subtracted from the concentrations in the spiked plasmas and the recovery percentages (R %) 

were calculated by dividing the calculated concentrations by the expected concentrations. 

Table 2.9: Percentage recovery of GC method 

 
Sample Retention 

time 

Peak Area Calculated 

spiked 

(mg/ml) 

Conc. 

Recovery 

% Recovery 

Plasma + 

C11 

 4651.61 0.137532 0.687659 68.76586 

6.458     

Plasma alone - - -   

Internal 

standard 

6.448 2266.08 0.2   
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2.2.5.3 GC-MS method validation for fatty acid analysis 

 

Standard curve for heptadecanoic acid versus undecanoic acid. 

The concentration of the heptadecanoic acid (HA) was determined using their peak area with 

reference to internal standard, undecanoic acid (UA) (see Figure 2.6) assayed daily in a 0.2M 

chloroform from stock solutions of each compound (table 2.10). 

Table 2.10 Standard curve for heptadecanoic acid versus undecanoic acid 

 

 

Figure 2.6: Typical standard (calibration) curve used in the determining the 

concentration of C17:0 using standard fatty acids. 

Standard curve constructed using C17:0 against internal standard C11:0 

2.3 Immunohistochemistry 

Immunohistochemistry is a technique used for detecting the expression of biological markers 

in formalin-fixed and paraffin-embedded tissues Nguyen et al (2013). Thus, it is an effective 

method for the detection of a specific protein in tissues. In this thesis, the 

immunohistochemistry (IHC) technique was employed to evaluate the expression of proteins 

involved in the peroxisomal and mitochondrial pathway of fatty acid oxidation and lipid 

HA(Dil) UA(Dil)

Volume Wt. Conc. (Wt/Mwt) Volume Wt. Conc. 

ml mg mmol ml mg mmol

50 0.10 0.000372712 250 2.62 0.014087

100 0.20 0.000745424 250 2.62 0.014087

200 0.40 0.001490849 250 2.62 0.014087

300 0.60 0.002236273 250 2.62 0.014087

250 0.50 0.001863561 0 0.00 0.000000

0 0 0 250 2.62 0.014087
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metabolism associated with metabolic changes following low protein or high fat dietary 

treatment relative to normal diet controls. The first major step in an IHC is tissue preparation 

which determines the quality of overall imaging results. The preparation step includes fixation, 

embedding and sectioning. After tissue preparation step, the sections are 

immunohistochemically stained for imaging analysis (figure 2.7). 

 
Figure 2.7:   Project pathway for IHC technique 

The IHC steps consist of fixation, embedding, sectioning, staining, imaging, analyses and 

quantification. 

 

2.3.1 Fixation 

Fixation is a complex series of chemical events for preserving cellular architecture and 

composition of cells in the tissue to allow them to withstand subsequent processing. The aim 

of fixation is to harden, preserve, prevent changes such as autolysis and putrefaction of tissue 

etc. Thavarajah et al (2012). In this thesis, 10% formalin was selected for fixation as it is the 

most widely used fixative in pathology labs worldwide. It is convenient in handling with high 

degree of accuracy and extreme adaptability. Thavarajah et al (2012). Routine fixation in 

histological methods with buffered 4-10% paraformaldehyde is typical but there are a variety 

of fixatives and fixation methods.                                                                                                      

 

 



96 
 

2.3.2 Embedding 

Embedding is the orientation of tissue in melted paraffin or agar which when solidified 

provides a firm medium for keeping intact all parts of the tissue when sections are cut. 

Paraffin embedding provides a permanent archival block that can be cut at thicknesses 

ranging from 3 to 10μm. These thinner sections give better microscopic resolution and are 

useful for various staining applications. Antigen retrieval techniques are usually needed for 

immunohistochemical stains. 

2.3.3 Sectioning 

After embedding, paraffin-embedded tissue blocks are chilled on ice before sectioning.  

Thin paraffin blocks are normally cut with microtome.  

The microtome procedures used are described below: 

Paraffin-embedded tissue blocks were chilled on ice before sectioning. The cold wax was to 

allow thinner sections to be obtained by providing support for harder elements within the tissue 

specimen. Following this, water bath filled with ultrapure water was prepared. To begin the 

procedure, the blade was placed in the holder to ensure it is secure and the clearance angle was 

set. The clearance angle is to prevent contact between the knife facet and the face of the block. 

Then the paraffin block was inserted and orientated so that the blade will cut straight across the 

block. The block is carefully approached with the blade and a few thin sections are cut to ensure 

the positioning is correct. Any adjustment is made if necessary. The block is then trimmed to 

expose the tissue surface to a level where a representative section can be cut. Trimming is 

normally done at a thickness of 10-30 µm. Sections at a thickness of about 5 µm were cut. 

Using tweezers, the ribbons of sections were taken and drop in water to float them on the 

surface in the water bath so they flatten out. Again, the tweezers were used to separate the 

sections. Finally, the sections were collected out of the water bath and put in wells filled with 

phosphate buffered saline. 
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2.3.4 Immunohistochemistry staining 

During immunohistochemistry staining, a careful work up and inclusion of positive and 

negative controls is undertaken to ensure the final label is specific and sensitive are required. 

If this is not done the result is in question as merely an artefact of processing and staining. 

Work up requires titration of the antibody concentration and a sensitive positive control. 

Antigen retrieval may be required for most aldehyde fixed tissues and is essential to reveal 

antigens in the tissue. Polyclonal and monoclonal antibodies are mostly used and they have the 

ability to label target proteins. To detect a specific protein (antigen) from the formalin-fixed 

paraffin-embedded tissue, the tissue is incubated with a primary antibody that specifically binds 

to the target protein (antigen). After primary antibody incubation, any unbound antibody is 

washed off with a buffer (e.g. using a tris buffered saline with tween i.e. TBS buffer). The 

tissue is incubated again but this time with a secondary antibody that recognises and binds 

specifically to the primary antibody (Figure 2.8). The secondary antibody used in this thesis 

was biotinylated and through conjugation with the vector elite avidin-biotin peroxidase 

complex (ABC), the peroxidase was developed by NOVA red chromogen to produce colour or 

light, permitting it to be detected, imaged and quantified. Through these processes, therefore, 

the IHC technique allows the detection and quantification of target proteins from among a 

formalin-fixed paraffin embedded tissue.  
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Figure 2.8: The primary and secondary antibody complex in immunohistochemistry 

 

 

Regardless of the great utility of IHC, there are some limitations. IHC is less sensitive 

quantitatively than immunoassays such as Western blotting or ELISA, however, it enables the 

observation of processes in the context of intact tissue. This makes it especially useful for 

assessing the progression and treatment of diseases such as fatty liver. Generally, the 

information gained from IHC combined with microscopy literally provides a “big picture” that 

can help make sense of data obtained using other methods. IHC-P refers to the staining of 

tissues that have been fixed and then embedded in paraffin before being sectioned. 

The steps used in this thesis for the immunohistochemistry studies are detailed below: 

 

 

 

2.3.5 Preparation of liver samples 

Following SPF high fat or Nottingham low protein feeding of mice as described previously in 

2.1.3, part of the liver tissue was fixed in a 10% formalin solution. A 2 ml of formalin in 

microfuge tube was used for each ~100 mg of liver tissue. The tissue was fixed for a minimum 

48 hours at room temperature before transferring to new labelled-tubes and stored in fridge for 
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long term storage. To minimize variability of the study, all fixed tissues were kept at this 

standard condition.  

Prior to tissue embedding in paraffin wax, excess fixative was removed by washing 3 times in 

PBS (Thermo-Fisher, UK). Liver sections were cut on a microtome to a thickness of 3μm 

(Leica Biosystems, UK) and then mounted on microscope slides. Before proceeding with the 

staining protocol, the slides were deparaffinised and rehydrated. Complete removal of paraffin 

was performed to avoid poor staining of the section. Briefly, deparaffinization was performed 

as follows: 

After placing the slides in a rack, washes were performed according to steps 1-7 respectively, 

1. Xylene: 3 x 3 minutes 

2. 100% ethanol: 3 minutes 

3. 100% ethanol: 3 minutes 

5. 70 % ethanol: 3 minutes 

6. 50 % ethanol: 3 minutes 

7. dH20 to rinse. 

All slides were kept in water until ready to continue with the next step since drying out could 

cause non-specific antibody binding and therefore high background staining. 

 

2.3.6 Immunohistochemical staining 

Following dewaxing and rehydration steps, endogenous peroxidase blocking was performed 

before antigen retrieval. In this thesis, all IHC stainings were performed by Katherine Walker 

and the Veterinary histopathology lab team. Briefly the following steps were used during 

immunohistochemical staining: 

1. Endogenous peroxidase blocking was performed by exposing slides to 3% hydrogen 

peroxide in methanol for 15 minutes. 

2. Slides were washed for 10 minutes in distilled H20 and 2x 5minutes in TBS. 
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3. Antigen retrieval was performed using proteinase kinase (PK) for 10 minutes. PK was diluted 

at 40μl per 2ml TBS (0.02mg/ml). This antigen retrieval method serves to break the methylene 

bridges and expose the antigenic sites in order to allow the antibodies to bind. 

4. Slides were washed 2x 5minutes in TBS 

5. Slides were exposed to 10% normal blocking serum in TBS for 20mins at room temperature. 

6. Primary antibody was diluted in TBS was applied to slides and incubated for 18-22 hours at 

4°C. For all experiments, primary antibody dilution was 1:100 following titration experiments 

conducted to select optimised concentration.  

7. Slides were washed 2x 5minutes in TBS  

8. Biotinylated secondary antibody diluted in TBS was applied to slides incubated for 2 hours 

at 4°C. While 1:250 dilutions were used for the secondary antibodies, the primary antibody 

dilutions varied as shown in table 2.11 

9. Slides were washed 2x 5minutes in TBS  

10. Slides were exposed to conjugate ABC for 30minutes.  

11. Slides were washed 2x 5minutes in TBS 

12. To visualise protein with chromogen, NOVA RED chromogen was applied for 10 min at 

room temperature. 

13. Slides were washed 2x 5minutes in TBS and then washed in dH20 

14. Slides were counterstained with haematoxylin. 

15. Dehydrated in ethanol, cleared in xylene and mounted on a slide with DPX. 
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Table 2.11: Primary antibody dilutions for immunohistochemistry 

 

Description Catalase PEX-14 Goat Anti-

Rabbit IgG 

H&L (HRP) 

Species used to 

raise antibody 

Rabbit Rabbit Goat 

Target antigen 

species 

Mouse, rat, 

human 

Human, mouse, 

rat 

Rabbit 

Antigen target Catalase PEX-14 IgG 

Antibody 

isotype 

IgG IgG IgG 

Clonality Polyclonal Polyclonal Polyclonal  

Antibody code 

from supplier 

and source 

Abcam 

(Ab16731) 

Abcam(ab10999) Abcam (6721) 

 Dilution 1:100 1:100 1:250 

 

2.3.7 Control check 

A negative antibody control was set up by omitting the primary antibody and replacing with 

TBS. A positive tissue control was also set up to ensure that the antibody was performing as 

expected. 

 

2.3.8 Microscopy and image analyses 

Section images were acquired using a DMR Leica microscope equipped with a High-End DP 

72 Olympus digital camera (using ×60 lenses) and projected onto a computer monitor. The 

immunoreactivity was detected and the relative quantification of immunostaining was 

performed by ImageJ software, NIH, USA). Arbitrary numbers obtained from ImageJ entered 

into Prism vs 8 (GraphPad, UK) were analysed using student t-test with Mann Whitney 

comparison test between two groups with P<0.05 considered to be significant. 
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2.4 Polymerase chain reaction 

Polymerase chain reaction (PCR) is a molecular biology technique used to make many copies 

of a section of a gene (or DNA), which allows for the detection and/or identification of gene 

sequences. PCR was developed by Kary Mullis in 1983, Mullis et al (1987). PCR can be 

performed using DNA from a variety of biological samples including tissues (e.g. from liver, 

skin, etc.), fluids (e.g. blood, saliva), and hair. 

PCR employs two main reagents – primers (these are short single strand DNA fragments 

(usually between 20-30 nucleotides long) known as oligonucleotides that are a complementary 

sequence to the target DNA (region) and a DNA polymerase. 

The DNA polymerase is an important enzyme in the PCR technique as this enzyme links 

complimentary deoxynucleotides (adenine, thymine, guanine, and cytosine i.e. A, T, G, C) to 

an existing DNA template or complementary DNA (cDNA) (i.e. a short DNA strand), Garibyan 

& Avashia (2013). The template DNA or cDNA), DNA polymerase, deoxynucleotides, and 

primers, together with an appropriate buffer and magnesium source, are put in a thermal cycler 

and this allows repeated cycles of DNA amplification to occur via the following steps: 

denaturation, hybridisation/annealing, and elongation, Garibyan and Avashia (2013). The 

thermal cycler can be programmed to heat up at a high temperature of 90-95°C, to allow the 

double stranded DNA to split into two single stranded DNAs (denaturation). The temperature 

can then be reduced to the primer specific temperature (usually between 50-60°C) for the 

primers to bind to the complementary sequence of the single stranded DNA (annealing). After 

primer annealing, the temperature is then increased (to usually 72°C) and this allows the DNA 

polymerase enzyme to join the deoxynucleotides to the primer, thereby extending the DNA, 

Garibyan and Avashia (2013). These steps can be repeated to double the amount of amplified 

DNA molecules. 
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2.4.1 Real time quantitative PCR 

Real time quantitative PCR (RTqPCR) is used to monitor the amplification of a 

targeted DNA molecule during the PCR in real-time. It can be used to detect and quantify target 

DNA in real time. It is reported to be more sensitive than microarrays in detecting small 

changes in expression but requires more input ribonucleic acid (RNA) and is less adaptable to 

high-throughput studies, Wang et al (2006).                                                                                                            

Using RNA extracts, the process involves the conversion of the RNA to complementary DNA 

(cDNA) - this process is known as reverse transcription. This step is followed by the use of 

fluorescent reporters and a PCR reaction to amplify and detect specific genes. Normally, two 

types of fluorescent reporters are commonly used; these are SYBR green and Taqman probes. 

In this thesis, SYBR green fluorescence reporter was used for multiple genes studies as 

SYBR® Green was more economical choice than any other. 

The light source in the RT-qPCR instrument emits fluorescent signal in the presence of 

fluorescent molecules (eg SYBR green dye) in the PCR reaction mixture. As the amplification 

continues, the fluorescence accumulated is detected by the instrument after every cycle and this 

is translated into a RT-qPCR graph. (Figure 2.9).  RTqPCR requires the sequence of the 

specific target gene of interest to be known at hand (in order to design the PCR primers). 

Therefore, this technique can only be used for studying known genes. Similar to traditional 

PCR, RTqPCR uses Taq polymerase, buffer, dNTPs, and primers to amplify small amounts of 

DNA (or cDNA). It only differs from the conventional PCR with the addition of a fluorescent 

signal in each RT-qPCR reaction, which is monitored by a special, computerized thermocycler, 

Thornton& Basu (2011) 

https://en.wikipedia.org/wiki/DNA
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Figure 2.9: A typical real-time PCR amplification curve. 

Real-time PCR amplification curves are divided into phases: the exponential phase where the 

reagents are in abundance and PCR product doubles in every cycle, the linear phase where the 

reagents begin to run out and the PCR reaction slows down, and the plateau phase where the 

reactions are depleted and stops. Real-time PCR amplification results focus on the exponential 

phase since this phase provides the most accurate data for quantitation. Within the exponential 

phase two values are calculated: (a) the threshold line which is the level at which a reaction 

reaches a fluorescent intensity above background, and (b) threshold cycle (Ct) which is the 

PCR cycle number at which the fluorescent signal of the reaction crosses the threshold. This 

Ct value is used in quantitation. It is used to calculate the initial DNA copy number, because 

the Ct value is inversely related to the starting amount. 

 

Generally, RT-qPCR can be combined with reverse transcription, after which quantification of 

the cDNA may be performed with RT-qPCR. In this thesis, RNA was extracted from mice 

livers and reverse transcribed into cDNA. The genes of interest investigated here included the 

fatty acid binding protein 1 (FABP1), fatty acid binding protein (FABP3), fatty acid desaturase 

(FADS2), fatty acid desaturase 1 (FADS1), stearoyl-CoA desaturase (SCD1), elongation of 

very long chain fatty acids protein 6 (ELOVL 6), propionyl-CoA carboxylase (PCCA), branch 

chain keto acid dehydrogenase alpha (BCKHDα), 2-hydroxyacyl-CoA lyase 1(HACL1), 

carnitine palmitoyltransferase 1b muscle (CPT1B), malonyl-CoA decarboxylase (MLYCD), 

catalase (CAT), carnitine palmitoyltransferase 2 (CPT2),  tumour necrosis factor (TNF-α), 
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thioredoxin 1(TRX1), glutathione reductase that are associated with fatty acids transport, 

metabolism, oxidative stress and inflammation. 

 

Notwithstanding the numerous merits associated with PCR, in practice the technique can fail 

for various reasons. Since qPCR is highly sensitive technique, it is prone to contamination from 

extraneous DNA, resulting in the amplification of spurious DNA products. It is therefore 

necessary to address contamination with extraneous DNA adopting a laboratory procedure that 

separate pre-PCR mixtures from any potential source of DNA contaminants. Such laboratory 

measures may include spatial separation of PCR set-up areas from areas used for purification 

or analysis of PCR products, as well as thorough cleaning of the working bench between 

reaction set-ups. Robust primer design techniques are very essential in improving the yield of 

PCR products and avoiding the formation of spurious PCR products. Apart from these, other 

critical issues defining the reliability of real time quantitative PCR data are the choice of 

housekeeping (reference) genes and the sample preparation methods. The ideal housekeeping 

gene selected must exhibit stable expression levels but because not all currently available 

housekeeping genes may fulfil this prerequisite, there is the need to test and verify for constant 

expression of the chosen reference to obtain a reliable data. Alternatively, two or more 

reference genes may be used in the experimental setup for data analysis as done in this thesis. 

 

2.4.1.1 Study primers and design 

In this thesis a total of eight metabolic genes of interest, four inflammatory genes and two 

reference genes were selected and studied. The metabolic genes of interest selected were 

FABP1, FABP3, FADS2, FADS1, SCD1, ELOVL 6, PCCA, BCKHD α, HACL1, the 

inflammatory genes was TNF- α and antioxidant genes included TRX1, GSR. The two selected 

reference genes were phosphoglycerate kinase 1 (PGK1) and TATA-box binding protein (TBP) 
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which have been validated in previous studies and reported to be most stable pair reference 

gene for the liver tissue as stability expression was determined by geNorm and NormFinder 

algorithm, Lucas et al. (2011).                                                                                                               

The nucleotide sequence of each of the targeted genes specific for Mus musculus (mouse) was 

retrieved from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and a blast search 

conducted for verification.  The coding sequence of the matching contigs for each gene of 

interest was used in designing the primers using Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/), Sgamma et al (2016). To 

select the ideal primer pair, different factors were taken in consideration and set as parameters 

e.g. annealing temperature (60-67°C), GC content (40-60%), an optimum primer length of 20-

24 base pairs and a maximum product size of 233 base pairs (see Table 2.12). 

Primer secondary structures of each amplicon were examined via Beacon Designer Free 

Edition software (www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1). Primer dimers and non-

specific amplifications were further checked post-PCR, if any, by analysing the melting curve 

data.  

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/genbank/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1
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Table 2.12: Target primers and their annealing temperatures 

 
Gene Name Gene 

Symbol 
Accession 
Number 

                                                                
Forward Primer 

 
Reverse 
Primer 

Amplicon 
Length 

fatty acid 
binding protein 
1, liver 

FABP1 NM_01739
9.4 

acttctccggcaagtaccaa ttccctttctggat
gaggtc 
 

214 

fatty acid 
binding 
protein 3, 
liver  

 

FABP3 NM_0101
74.1  

 

ctttgtcggtacctggaagc  
 

cagagcgctggt
catgtagt  
 

222 

fatty acid 
desaturase 2  
 

FADS3 NM_0196
99.1  

 

attcgggagaagatgctac
g  
 

aagaacttgccca
cgaagtc  
 

233 
 

stearoyl-
Coenzyme 
A desaturase 
1  

 

SCD1 NM_0091
27.4  

 

ttccctcctgcaagctctac  
 

cagagcgctggt
catgtagt  
 

156 
 

fatty acid 
desaturase 1 

FADS1 
 

NM_14609
4.2 

ccagctttgaacccaccaa Catgaggcccat
tcgctcta 

130 

ELOVL family 
member 6, 
elongation of 
long chain fatty 
acids 

ELOVL 
6 

NM_13045
0.2 

Cagggaggaagggctatg
ggcag 

cgaacagggag
ggaggcgaaca 

81 

phytanoyl-coA 
hydroxylase 

PCCA NM_01072
6.2 

Acccactcaggcacaagc
aaga 

Tttctctgccatct
cgacaacttcc 

162 

2-hydroxyacyl-
CoA lyase 1 

HACL-1 NM_01997
5.3 

agaactgccttcctcgccac
agg 
 

caccttccacaca
gatgacccgct 

135 

TATA binding 
protein 

TBP NM_01368
4.3 

Ggtatctgctggcggtttgg
ct 

aaggtggaaggc
tgttgttctggtc 
 

199 

branched chain 
ketoacid 
dehydrogenase 
E1, alpha 
polypeptide 

BCKDH 
α 

NM_00753
3.5 

tggatgctgccccctgtgct Gccctggtccctt
cccaccc 

194 

cluster of 
differentiation 
36 

CD36 NM_00115
9558.1 

Gatgacgtggcaaagaac
ag 

Tcctcggggtcc
tgagttat 

151 

carnitine 
palmitoyltransfe
rase 1b, muscle 

CPT1B NM_00994
8.2 

Ggtcccataagaaacaaga
cctcc 

cagaaagtacctc
agccaggaaag 

195 

malonyl-CoA 
decarboxylase 

MLYCD 
 

NM_00136
4328.1 

gttctcctccggcttcct Gtttttcacaggg
tgcacag 

179 

carnitine 
palmitoyltransfe
rase 2 

CPT2 NM_00994
9.2 

gct ttc caa ccc gat ctc 
ct 

tgt gag cgg 
aag atc cca ac 

217 

Catalase CAT NM_00980
4.2 

Agcgaccagatgaagcag
tg 

Tccgctctctgtc
aaagtgtg 

181 

phosphoglycerat
e kinase 1 

PGK1 NM_00882
8  
 

tacctgctggctggatg
gaagacc  

 

cacagcctcggc
atatttct  
 

65 

tumor necrosis 
factor 

TNF- α NM_01369
3.3 

Tgacccctttactctgaccc
ct 

Ggaccctgagc
cataatcccc 

93 

thioredoxin 1 TRX 1 NM_01166
0.3 

Cctccccgcaacagccaa
aa 

Agcagagaagt
ccaccacgaca 

106 

glutathione 
reductase 

GSR NM_01034
4.4 

cgactgcctttaccccgatg Gcccccattttca
ccgctac 

166 

 
List of primers designed for the study 
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2.4.1.2 RNA isolation 

In this thesis, two methods of RNA isolation were employed: total RNA extraction using RNA 

extraction using RNeasy® Mini Kit (Qiagen, UK) and TRIzol™ Reagent (Thermo scientific, 

UK). 

Liver RNA extraction with RNeasy® Mini Kit 

Total RNA was extracted from the liver of a low protein diet experimental mice using the 

RNeasy Lipid Tissue Mini Kit (QIAGEN, UK) according to the manufacturer's instructions. 

Briefly, thirty-five milligram of the frozen liver tissue samples were dissected out on ice for 

total RNA extraction using RNeasy® Mini Kit (Qiagen, UK). Each 35 mg tissue was 

homogenised using 600 μL buffer RLT (lysis buffer) and the supernatant was carefully 

removed. 600 μL of 70% ethanol was added to the lysate and thoroughly mixed by pipetting. 

650 μL from each sample, including any precipitate, was transferred into an RNA mini spin 

column placed in a 2 ml collection tube and centrifuged for 15 s at 8,000 g, with the flow 

through subsequently discarded. Then 700 μL of Buffer RW1 (washing buffer) was added to 

the RNeasy spin column and centrifuged for 15 s at 10,000 g, with the flow through 

subsequently discarded. The samples were then gently washed by adding 500 μl of buffer RPE 

(mild washing buffer) to the RNeasy spin column and centrifuging for 15 s at 8,000 g, and the 

flow through discarded. Again, the samples were gently washed twice by adding 500 μL of 

Buffer RPE to the RNeasy spin column and centrifuging for 2 min at 8,000 g. The RNeasy spin 

column was then changed and centrifuged for 1 min at 8,000 g in order to dry the membrane. 

Finally, the RNeasy spin column was placed in a new 2 ml collection tube and 35 μL of RNase-

free water was added directly to the spin column membrane and centrifuged for 1 min at 10,000 

g. In order to obtain a high RNA yield (> 30 μg), the final step was repeated. The sample was 

then transferred into an Eppendorf tube and kept on ice. RNA was quantified using the 
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Nanodrop ND-1000 spectrophotometer, with A260/A280 absorbance ratios of ≥ 1.9 accepted 

for use. 

Liver RNA extraction with TRIzol™ Reagent 

Total RNA was extracted from the liver of SPF mice using the TRIzol™ Reagent (Thermo 

Scientific, UK) according to the manufacturer's instructions. The details of the extraction are 

as follows: A 5 ml of TRIzol reagent was pipetted into a sterile 50ml falcon tubes on ice. This 

was immediately homogenised using the IKA Ultra-Turrax homogeniser for 30 seconds. 

Following homogenisation, the samples were incubated for 5 mins at room temperature to 

allow nucleoprotein complexes to completely disassociate). It was then centrifuged for 10 mins 

at 12 000 x g in 4oC. This was to ensure an optional removal of any insoluble material such as 

protein, fat, polysaccharides, extracellular material etc) leaving RNA in the supernatant. The 

supernatants were transferred into a fresh, cold tube. 1 ml of 1-bromo-3-chloropropane (BCP) 

was added to the 5 ml of TRIzol and capped before vortexing for 15 seconds. It was incubated 

at room temperature for 5 mins and centrifuged at 12 000 x g for 10 mins at 4oC. The aqueous 

phase (upper layer) containing the RNA was transferred into a fresh tube. To precipitate the 

RNA, 1 ml of isopropanol was added to the aqueous phase. This was vortexed for 10 seconds 

and incubated at room temperature for 10 minutes before centrifuging at 12 000 x g for 8 mins 

at 4oC. The supernatant was discarded carefully without disturbing the pellet. The precipitated 

RNA forms a gel-like or white pellet on the side and bottom of the tube. Further, a 2ml of 75% 

ethanol was added to wash the RNA pellet, centrifuged at 7500 x g for 5 mins to remove the 

ethanol. The RNA pellet was air dried. Finally, the RNA pellet was dissolved in 50 uL of 

nuclease-free water and stored at -80oC for long term storage. RNA isolation with Trizol 

reagent was further treated with DNAse digestion kit. The TURBO DNA-free™ DNase 

treatment kit (Ambion Inc, USA) was used to remove genomic DNA contamination following 

the manufacturer’s guidelines. The concentration and quality of the RNA sample was then 
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verified by spectrometry using A260/280 ratios, with a Nanodrop Lite Spectrophotometer 

(Thermo Scientific, UK). This was achieved by placing 1 μL of the RNA sample on the 

Nanodrop Lite Spectrophotometer (detail RNA concentration found in Appendix, table 1). To 

ensure optimal amount of RNA is extracted from the liver, RNA quantified with A260/A280 

absorbance ratios of ≥1.9 was accepted for use. 

2.4.1.3 cDNA synthesis 

All cDNA were synthesised using 2.0 μg of the cleaned total RNA from each liver sample 

using nanoScript2 cDNA synthesis kit (Primerdesign, UK) following the manufacturer’s 

instructions. In brief, a reaction mix was prepared comprising: 2.0 μg RNA template, 1.0 μL 

RT primer and nuclease-free water adjusted to give a total volume of 10 μL. The reaction mix 

was then incubated in a heated water bath at 65°C for 5 minutes and immediately transferred 

onto ice to cool. A 10 μL reaction mix consisting: 5 μL nanoScript2 4x buffer, 1 μL nanoScript2 

reverse transcriptase, 1 μL of dNTP mix 10mM and 3.0 μL of nuclease-free water was added 

to each of the samples on ice and vortexed. The samples were initially incubated at 25 μL for 

5 minutes and then at 42 μL for 20 minutes and finally heat inactivated for 10 min at 75°C. The 

cDNA samples were then stored at -20°C until ready to use. Reverse transcriptase negative 

(RT-) controls were also prepared to check for genomic DNA contamination during real-time 

PCR (RTqPCR).  

2.4.1.4 Quantitative real-time PCR  

The RT-qPCR analysis was carried out using Stratagene (Thermo Scientific, UK) or Quant 

studio 7 Real-Time PCR system (Thermo Scientific, UK). RTqPCR reactions for tissue 

samples were prepared using Precision Mastermix (Primer Design, UK) containing SYBR 

Green, with a final concentration of 300 nM each of forward and reverse primers and 1 μL 

cDNA in a 20 μL reaction volume. Each sample was analysed in triplicate, using clear 96-well 
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plates (Axygen). For comparative studies between plates, a calibrator sample was included to 

control for inter-assay variation. Absence of contaminating genomic DNA was confirmed by 

analysis of RT-ve samples alongside a positive control. Triplicate reactions containing water 

in place of cDNA (‘no template controls') were also included for each assay. Thermal cycling 

and fluorescence detection were performed using a DNA Engine thermal cycler and Chromo4 

Real-Time Detector (BioRad, UK) with Opticon Monitor v3.1 software. Thermal cycling 

conditions were 95 °C for 5 min enzyme activation, then 40 cycles of 95 °C for 15 s followed 

by 60 °C for 1 min with a final extension step of 10 min at 72 °C. A melting curve was run to 

check the specificity of the amplified products. For each primer pair, efficiency (E) was 

determined across a range of standard dilutions (using a minimum 5 log range) and calculated 

according to the formula E = 101/slope. An efficiency of 2 would represent 100% efficiency, 

i.e., a doubling of fluorescent signal with each cycle of the PCR. All primer pairs used in this 

study showed efficiency greater than 90% (E >1.9). 

2.4.1.5 Relative quantification and statistical analysis 

Analysis of exported threshold cycle (Ct) values was performed in Microsoft Excel 2007. Ct 

values were converted to relative expression values using the dCt method and reference gene 

stability was determined using the VBA applets for geNorm (Vandesompele et al 2002) and 

NormFinder, Andersen et al, 2004). The data was then normalised to two genes: PGK1 and 

TBP which are stable in hepatic tissue. Normalisation factors derived from the geNorm output 

were then used to normalise the expression of each individual gene for comparison between 

treatment groups. The data from the varied diet studies were entered into Prism vs 8 (GraphPad, 

UK) and analysed using a Students t-test with Man-Whitney test to compare two treatments.  
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2.5 16S ribosomal RNA Gene Sequencing 

Next-generation sequencing (NGS) is a rapid, accurate, and inexpensive technique of profiling 

complex microbial communities. Generally, there are two common methods of sequencing the 

microbiome:16S rRNA sequencing and shotgun metagenomics. In this thesis, the 16S RRNA 

sequencing technique was employed in the microbial characterization of faecal samples 

obtained from SPF mice in response to high fat diet. The method is most commonly used to 

profile microbiota and it is based on sequencing of the gene encoding the small subunit of 

ribosomal RNA (16S). 16S rRNA gene sequencing has revolutionized the microbiome field by 

enabling researchers to determine the taxonomic composition of a given sample cheaply and 

easily, Rosen & Palm (2017). Insofar as function correlates with taxonomy, 16S rRNA gene 

sequencing can reveal the role of particular microbes, as certain effects on the host can vary 

predictably across taxonomic groups, Langille et al (2013).  

The metagenomics sequencing workflow involves DNA extraction, library preparation, 

amplicon sequencing, and microbial bioinformatics analysis. The steps applied in this thesis 

are described briefly as follow: 

Faecal DNA extraction 

Fresh faecal samples were collected from the animals in each group (n = 10 per group). Total 

genomic DNA was extracted using the MP Biomedicals DNA isolation kit (Fisher Scientific, 

UK) following their instruction manual for rapid isolation of genomic DNA from human and 

animal stool samples using the FastPrep system.  Briefly, about 50mg faecal sample was 

weighed into a 2ml lysing matrix E tube, and 825 μL sodium phosphate buffer and 275 μL of 

PLS solution were added and vortexed. The mixture was centrifuged for 5 minutes at 14,000 x 

g. After decanting the supernatant, 978 μL sodium phosphate buffer and 122 μL MT buffer 

were added and vortexed briefly. This was followed by homogenization in FastPrep 24 
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instrument at 6.0m/s for 40 second. The homogenized samples were then centrifuged at 14,000 

x g for 5 minutes before the supernatant was transferred to a clean 2.0mL centrifuge tube. 250 

μL of PPS solution was added, mixed by shaking, and incubated for 10 minutes at 4 degrees 

Celsius before centrifuging for 2 minutes at 14,000 x g. Whilst samples were being centrifuged, 

1ml of binding matrix solution was added to a clean 15ml conical tube. The supernatant from 

the centrifuged samples was added to the binding matrix solution in the conical tube and placed 

on a shaker for 5 minutes. This was followed by centrifugation for 2 minutes at 14,000 x g. 

Samples were decanted. The binding mixture pellet (BMP) was gently resuspended with 1ml 

Wash Buffer #1. The BMP was transferred to a SPIN filter tube and centrifuged for 1 minute 

at 14,000 x g. 500 μL of prepared Wash Buffer #2 was added to the spin filter tube and gently 

resuspended the pellet using the force of the liquid from the pipette tip. The samples were 

centrifuged for 2 minutes at 14,000 x g and the flow-through discarded. The centrifugation was 

repeated for 2 minutes to extract residual ethanol from the binding matrix and to dry the 

samples. Finally, the spin filter tube is transferred to a clean 1.9ml catch tube and 60μL TES 

elution solution was added, vortexed and centrifuged to elute the DNA in the catch tube ready 

to use. 

The concentration and integrity of bacterial DNA were assessed using a Cubit (Thermo 

Scientific, appendix: table 1) and agarose gel electrophoresis, respectively. The 16S rRNA gene 

amplicon sequencing was performed on the Illumina MiSeq platform using universal primers 

341F, 5′-CCTAYGGGRBGCASCAG-3′; and 806R, 5′-GGACTACNNGGGTATCTAAT-3′ 

targeting the V3-V4 hypervariable regions. The MiSeq instrument utilizes a double-sided, 

single-lane flow cell and reagent cartridge supplied in kit form.  Sequencing is performed by 

recording the synthesis of DNA strands in clusters of sample templates attached to the flow 

cell.  Each newly attached base liberates a fluorescent dye that is excited by diode lasers (530 

& 660 nm) and imaged using two digital cameras.  Sequential interrogation of bases allows for 
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the flexible adjustment of read length during a run.  Up to 96 samples may be sequenced in a 

single run with DNA libraries prepared with indexed or bar-coded adapters. 

Microbial Bioinformatic analyses 

Raw data were merged and filtered to get clean data. The effective data was used to do 

operational taxonomic unit (OTU) cluster and species annotation for the respective sequence 

of each OTU. The relative species, evenness and abundance distribution were analyzed with 

alpha diversity and beta diversity. Downstream statistical analysis to explain the community 

construction differences between samples or among groups were performed via principal 

coordinate analyses (PCoA). Statistic methods such as T-test, MetaStat, LEfSe, Anosim and 

MRPP were employed to test the significance of community composition and structure 

differences between groups.  

2.6 General statistical analyses 

All except microbial sequencing data were analysed using Prism vs 8 (GraphPad, UK). Data 

were assessed initially for normality using Kolmogorov-Smirnov test which determines if the 

test is insignificant (>0.05) to confirm normal distribution or if the test is significant (<0.05), 

to be non-normal. We confirmed the data for fatty acids, gene expression and 

immunohistochemical data were non-normal and therefore analysed using suitable non-

parametric statistical tool, Mann Whitney U-test. Statistic methods such as MetaStat, LEfSe, 

Anosim and MRPP were employed in the microbial gene sequencing data analyses to test the 

distribution and significance of community composition and structure difference between 

groups.  Data were presented as mean ± SEM. Statistical differences were considered 

significant at p < 0.05. A typical box-and-whisker plot is illustrated below in figure 2.10: 



115 
 

 

Figure 2.10: Box-and-whisker plot 
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Chapter 3 

 

 

3.0 Study of the effects of high fat diet on the metabolism of fatty acids of mice exposed 

to normal husbandry or a specific germ-free environment 
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Abstract 

Previous evidence suggests that HFD induces obesity-related metabolic diseases such as 

NAFLD through altered specific fatty acid metabolism. One critical fatty acid group is OCFA 

which recent studies suggest are inversely associated with NAFLD. The hypothesis was that 

high fat diet induces changes to specific fatty acids particularly OCFAs leading to the 

development of NAFLD.                         

Through feeding of C57B/6J mice with high fat diet in conventional or specific pathogen free 

environments, we comprehensively investigated possible contributions of these fatty acids 

from the diet, on fatty acid metabolic pathways. The investigations were done through a 

combination of fatty acid analysis by GC-MS, gene expression analyses by qPCR and 

immunohistochemical analyses of specific proteins. Circulating and liver OCFA including 

C15:0, C17:0 were decreased in HFD-fed mice in all dietary fat conditions studied and was 

associated with lower expression of HACL1. Overall, we show that impairment of OCFA 

metabolism after HFD was independent of growth environment. However, in contrast to 

normal husbandry, mice maintained at SPF conditions showed no change in even chain 

saturated fatty acids, an increase in MUFA and lower PUFA after a HFD which could be 

attributed to lower FADS2 expression.   
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3.1 Introduction 

Obesity, NAFLD and related comorbidities are multifactorial condition resulting from the 

interaction between the environment, genetic and life-style factors, Annalisa et al (2014).             

Diet is an important lifestyle factor involved in the genesis, prevention and control of NAFLD, 

diabetes, obesity and other metabolic diseases, and can influence the gut microbiota, Lazar et 

al (2019). Many popular dietary patterns exist including Mediterranean, gluten-free, vegan, 

Western (high fat) and omnivore diets. Among these dietary patterns, high fat diet has been 

studied extensively and been associated with several metabolic phenotypes, Waqar et al (2010), 

Moreno-Fernández et al (2018), Julibert et al (2019). 

Evidence from previous studies has associated a low-grade, chronic inflammatory state to 

obesity and its related metabolic conditions, including type 2 diabetes, metabolic syndrome, 

and NAFLD. It is well known that inflammatory mediators such as C-reactive protein, IL6, 

fibrinogen and plasminogen activator inhibitor-1 are synthesized in the liver and increased in 

NAFLD patients, Tarantino et al (2016). Moreover, it is reported that TNF-α, IL6 are increased, 

and are considered to be the major inflammatory mediators found in NAFLD, whereas IL-10 

and adiponectin are decreased, Asrih et al (2013).  Thioredoxin-interacting protein (TXNIP) is 

involved in regulation of inflammation, stress, and apoptosis, Shalev (2014). Despite the role 

of inflammatory cytokines mediating several metabolic diseases, the influence of dietary fat on 

inflammation is less understood. 

Oxidative stress is an imbalance between the production and the elimination of ROS as well as 

decreased production/availability of antioxidants, Klandorf & Van Dyke (2012). ROS and 

oxidative stress are known to induce cell death through necrotic and/or apoptotic mechanisms, 

resulting in cellular and tissue injury. Oxidative stress is thought to play a critical role in 

initiation and progression of various liver diseases including NASH. The oxidative stress 
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triggers hepatic damage by inducing irreversible alteration of lipids, proteins and DNA as well 

as modulating pathways that control normal biological functions, Li et al (2015).  The role of 

several antioxidants including catalase, GSR, Trx in obesity and its associated metabolic 

diseases have been studied, Amirkhizi et al (2010), Kumar et al (2013). However, this chapter 

goes further to investigate the effect of dietary fat on these antioxidants at the molecular level 

in the liver. 

High intake of fat has been shown to be associated with increased lipotoxicity and 

hypertriglyceridemia, Jacobs et al (2004), Schrauwen (2007), Badin et al (2013). Moreover, 

there is a paucity of data regarding the association between plasma odd-chain fatty acids in 

subjects with obesity, type 2 diabetes and NAFLD. However, the influence of dietary fat on 

OCFA metabolism has not been studied. 

It is thought that environmental condition where an organism is raised and fed can influence 

their metabolic outcome. For instance, feeding mice with HFD at normal husbandry 

environment caused them to gain weight whereas, those raised in a germ-free (GF) 

environment on same diet remained lean although their daily amount of food consumption was 

dramatically increased. Again, a study showed that mice consuming a HFD that had a high 

composition of both fat and sucrose was associated with a greater lipogenic effect on a normal 

husbandry fed mice compared to mice fed at GF environment, Annalisa et al (2014). 

In this chapter 3, we assessed the impact of dietary fat on lipid metabolism in mice fed at 

different environment by performing comprehensive serum and liver fatty acid analyses using 

the state-of-the-art GC-MS. This was achieved by feeding male C57BL/6J mice with high fat 

diets based on lard at both conventional and specific pathogen free (SPF). 

 

 



120 
 

3.1.1 Aims  

This study was aimed at investigating the effect of dietary fat on lipid metabolism in mice fed 

at normal husbandry or specific pathogen free environment. These experiments were set up to 

test the hypothesis that high fat diet intake would reduce serum and liver OCFA content and 

this is influenced by feeding at normal husbandry or SPF environment. The following were the 

specific objectives carried out:  

1. Serum and liver FA analyses of all dietary fat models were performed by GC-MS 

2. Hepatic transcript expression related to specific fatty acid changes in the liver/serum of 

dietary fat in SPF mice were characterized using qPCR 

3. Basic liver histological technique, H&E staining was used to investigate hepatic lipid 

accumulation in SPF mice. 

4. Peroxisome biogenesis protein expressions in fixed liver tissue were performed using 

immunohistochemistry technique in SPF mice. 

The following figure 3.0 summarizes the experimental design of the study. 
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Figure 3.0: Experimental design of the study.  

Male C57BL/6 mice fed CD, control diet or HFD, high fat dietary challenge at SPF condition 

or normal husbandry condition for 4 or 12 weeks (n=5 or 10 animals per group). 
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3.2 Method 

3.2.1 High fat diet and sample collection  

For a detailed description of the animal housing and HFD treatment procedures see Chapter 

2. In brief, four groups of C57Bl/6 male mice were used to assess the influence of dietary 

fat on lipid metabolism in mice fed at either normal husbandry or SPF condition; two 

groups were kept on a chow diet (n = 5-10/group) and two groups on a high-fat diet (n = 5-

10/group), from each subset there were both conventional or specific pathogen free (SPF) 

groups. The animals in the high fat diet (HFD) treated group received a 60% fat, 20% 

carbohydrate and 20% protein per kcal% while the animals in the control (CD)-treated 

group received a 10% fat, 70% carbohydrate and 20% protein per kcal%. All high fat diet 

studies were carried out in Nanjing- China SPF facility, China. All animals were given ad 

libitum of water and food prior to experimental treatment. After either 4- or 12-week period 

of feeding, the animals were killed via a cervical dislocation of the neck and blood samples 

were collected via heart puncture. The blood samples were allowed to clot on ice before 

centrifugation at 10,000 x g, 4 °C for 10 minutes to collect serum. Isolated serum was 

aliquoted, snap frozen and stored at -80 °C. Some of the liver samples were dissected out 

on ice, snap-frozen and stored at -80°C and others were fixed in 10% formalin. In this 

project, GC-MS-based analyses were carried out on serum and liver tissues. RT-qPCR 

analyses was performed on other snap frozen liver tissues, then the fixed liver tissues were 

used for the immunohistochemistry analyses. 

3.2.2 GC-MS analyses 

3.2.2.1 Serum and liver extract preparation and GC-MS experiments   

The serum and liver sample preparation procedure has been described in Chapter 2, sections 

2.2.1 and 2.2.2 
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3.2.2.2 Fatty acid methyl esters (FAMEs) derivatization  

Fatty acids were derivatized using 200 μL toluene (Thermo-Fisher, UK), 1.5 mL methanol 

and 0.3 mL of 6.3% HCl in methanol at 35°C for 10 minutes for both serum (50 μL) and 

liver (50mg) samples, in PTFE-sealed glass vials. This was followed by derivatization to 

FA methyl esters (FAMEs) before subsequent extraction with 1 mL of hexane and 1 mL of 

water, then evaporated under nitrogen and resuspended in 70 μL of hexane in case of serum 

samples or in 150 μL for liver samples prior to analyses by gas chromatography (GC) 

3.2.2.3 Gas chromatographic and mass spectrometry analyses. 

Serum and liver fatty acid analyses were done using Agilent GC7890 system linked to a 

MSD5975 with electron impact ionization (70 eV). For details and column information 

have been described in Chapter 2, section 2.2.4.2 

3.2.2.4 Fatty acid identification, data mining and normalization 

All GC-MS spectral analyses were done using chemstation analyses software, FA were 

identified by matching mass spectra of samples with mass spectral library (eg NIST library) 

and/or reference standard (37 FAME mix). In addition, identified FA were based on GC 

retention times. 

The internal standard (C11:0) was used to normalise mass spectral data for statistical 

analyses. 

3.2.3 Real time qPCR 

The Quant studio 7 RT-qPCR instrument was used to quantify the changes in mRNA levels 

of all genes studied in this high fat diet study (see Table 2.10). Primer information including 

selected genes, methods used in designing and verifying them have been as previously 

described (Chapter 2, section 2.4.1.2). The animals were sacrificed after 4 or 12-weeks of 
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feeding and the liver tissues removed and snap-frozen and then stored at -80°C until 

analysis (as previously described in Chapter 2, section 2.1.2). The RNA extraction 

procedure, the reverse transcription of RNA to complementary DNA (cDNA), and the RT-

qPCR processes have been described in Chapter 2, section 2.2.1.3.   

3.2.4 Histology & Immunohistochemistry 

Basic staining technique, H&E was used to stain for lipid deposition in fixed liver tissue. 

Immunohistochemistry (IHC) technique was applied to evaluate the effects of high fat diet 

intake on catalase (1:100; Abcam (Ab16731)) and PEX-14 (1:100; Abcam (ab10999)) 

protein expression in the fixed liver tissues (as previously described in Chapter 2, section 

2.3.5). Incubation of primary antibodies prior to conjugation with secondary antibody, goat 

anti-rabbit IgG H&L (HRP) (1:250; Abcam (6721)). In each HFD and control groups, 

samples from five animals selected for immunohistochemical analyses. Images of slides 

were captured with brightfield microscopy (as previously described in Chapter 2, section 

2.3.4.1 and 2.3.4.3). 
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3.3 Results 

3.3.1 Short‐term effects of high fat and normal chow diets on fatty acid composition in 

serum mice fed in a conventional environment 

 

Total serum fatty acid concentration 

When male mice were fed with a high fat or a normal chow diets (control) for four weeks, no 

statistically significant differences were apparent when the total serum lipid concentration 

when compared between the 2 diets (figure 3.1). The absolute serum fatty acid concentrations 

and relative proportional measures were similar (table 3.1a & 3.1b in appendix). 

                                                                          

Figure 3.1: Effect of high fat diet on total lipid concentration in mouse serum                                                                                                                                                                                                       

Total fatty acids was measured in the serum of mice. Values are given as means ± SEM for 

n=5. 
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Table 3.1a: Fatty acid composition of short term HFD feeding in conventional mice 

 

Group of 

FA 

% of total serum 

FA 

CD 

Median (min-

max) 

HFD 

Median (min-

max) 

p-value 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

0.78 (0.70-1.40) 

26.13(24.23-28.13) 

6.62 (4.70-8.08) 

32.51(31.62-36.93) 

0.12 (0.09-0.15) 

0.29 (0.24-0.32) 

0.42(0.34-0.44) 

1.99 (1.74-2.26) 

30.36(28.54-35.04) 

32.38(30.53-36.99) 

26.03(24.49-28.05) 

2.57 (1.73-9.81) 

1.82 (1.70-2.33) 

32.07(30.08-36.16) 

0.07 (0.06-0.09) 

5.08(3.76-6.28) 

0.07 (0.06-0.09) 

0.35 (0.32-0.46) 

28.26(27.45-35.48) 

14.33(12.12-18.10) 

42.51(43.09-53.97) 

0.08 (0.06-0.11) 

0.16 (0.12-0.20) 

0.25(0.20-0.28) 

7.85 (5.16-10.75) 

17.63(15.84-19.83) 

24.79(22.80-27.84) 

25.80(19.92-28.03) 

2.41(1.80-2.72) 

1.72 (1.02-2.32) 

29.92(22.97-32.90) 

0.24(0.15-0.39) 

1.31(0.97-1.44) 

0.07 (0.05-0.09) 

0.0079 

0.0952 

0.0079 

0.0079 

0.0159 

0.0079 

0.0079 

0.0079 

0.0079 

0.0079 

0.5476 

0.5476 

0.5476 

0.1508 

0.0079 

0.0079 

0.6905 

p<0.05, Control vs HFD, n=5, min-minimum, max-maximum 
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Even-chain saturated fatty acids 

Among the even-chain saturated fatty acids, C18:0 after high fat diet was significantly higher 

compared to control (p<0.001, figure 3.2). The even-chain saturated fatty acids C14:0 in the 

serum was significantly lower level in HFD group compared to control (p<0.05, figure 3.2). 

There was no difference in serum content of C16:0 between the two diets.  Moreover, total 

even-chain saturated fatty acids (C14:0, C16:0 & C18:0 combined) was significantly higher 

in HFD compared to CD fed groups (table 3.1). 

 

Figure 3.2: Effect of high fat diet on even-chain saturated fatty acid proportion in 

mouse serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. **p<0.001 HFD vs CD 

 

Odd-chain saturated fatty acids 

In order to assess the effect of HFD on odd-chain saturated fatty acids (OCFAs), we analysed 

serum from mice after 4 weeks of feeding. Total serum OCFA showed a significant 

difference between the 2 diets (p<0.001, table 3.1). Both the C15:0 and C17:0 fatty acids 

were significantly lower after the HFD (p<0.05, figure 3.3).  
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Figure 3.3: Effect of high fat diet on odd-chain saturated fatty acid proportion in mouse 

serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. *p<0.05, **p<0.001 HFD vs CD 

 

Mono-unsaturated fatty acids 

The total MUFAs (C16:1 and C18:1 combined) were significantly lower in mice fed the HFD 

relative to those on normal chow diet (p<0.001, table 3.1). Both the C16:1 and C18:1 fatty acid 

changed in opposite directions in response to the diets (table 3.1).  Among the MUFAs, there 

was significantly higher level in serum content of C16:1 between the HFD and control diet 

(p<0.001). On the contrary, short-term high fat feeding resulted in significantly lower content 

of serum 18:1 fatty acid in HFD compared to control (p<0.05, figure 3.4). 

 

Figure 3.4: Effect of high fat diet on mono-unsaturated fatty acid proportion in mouse 

serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5.  **p<0.001 HFD vs CD 
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Polyunsaturated fatty acids 

The total PUFAs (C18:2, C18:3 and C20:4 combined) did not show a significant difference 

between high fat diet and normal chow diet groups (table 3.1). Moreover, these fatty acids 

individually were not significantly different following 4 weeks of high fat intake (figure 3.5). 

 

Figure 3.5: Effect of high fat diet on polyunsaturated fatty acid proportion in mouse 

serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± SEM 

for n=5. 

 

Indices of desaturation enzyme activity.  

The 16:1n−7/16:0 ratio was significantly higher in the serum tissue of mice fed HFD compared 

to control (p<0.001). Interestingly, the 18:1n−9/18:0 ratio, however, was significantly lower in 

the serum after the HFD (p<0.001, Table 3.1) and the total MUFA to SFA ratio was 

significantly lower indicating decreased SCD1 activity. In the serum, the 20:4n−6/18:2n−6 

ratios were not significant in response to short-term high-fat feeding. 
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3.3.2 Long‐term effects of high fat and normal chow diets on fatty acid composition in 

serum of mice fed in a conventional environment 

Total serum fatty acid concentration 

Here, we have fed C57B/6 male mice with a high fat or a normal chow diets (control) for twelve 

weeks. We observed a higher but not statistically significant increase in total serum lipid 

concentration in HFD compared control diet (figure 3.6). The absolute serum fatty acid 

concentrations and relative proportional measures were similar (table 3.2a & 3.2b in appendix) 

 

Figure 3.6: Effect of 12-week high fat intake on total lipid concentration in mouse serum                                                                                                                                                                                                       

Total fatty acids was measured in the serum of mice. Values are given as means ± SEM for 

n=5. 
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Table 3.2a: Fatty acid composition of long term HFD feeding in conventional mice 

Group of 

FA 

% of total serum 

FA 

CD 

Median (min-

max) 

HFD 

Median (min-

max) 

p-value 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

0.87 (0.66-1.33) 

25.50(23.28-27.30) 

6.92 (5.91-9.12) 

34.22(30.11-37.10) 

0.18 (0.16-0.20) 

0.21 (0.20-0.32) 

0.40 (0.38-0.49) 

1.98 (1.29-2.48) 

30.82(29.56-33.03) 

32.88(31.53-34.92) 

25.05(23.13-26.73) 

0.22 (0.17-0.32) 

7.34 (5.16-10.50) 

33.86(29.61-35.18) 

0.08(0.06-0.11) 

4.31(3.38-5.59) 

0.29 (0.21-0.43) 

0.34 (0.32-0.43) 

25.47(24.20-26.67) 

12.01(10.74-14.72) 

37.34(36.76-41.81) 

0.11 (0.06-0.12) 

0.20 (0.18-0.23) 

0.29 (0.26-0.35) 

6.47 (5.09-9.74) 

16.33(16.08-18.13) 

23.96(21.45-26.01) 

26.59(21.66-26.79) 

0.20(0.19-0.22) 

14.14 (9.79-14.46) 

38.35(33.29-41.45) 

0.24(0.20-0.40) 

1.34(1.23-1.53) 

0.54(0.42-0.65) 

0.0079 

0.9999 

0.0079 

0.0159 

0.0079 

0.2222 

0.0079 

0.0079 

0.0079 

0.0079 

0.6905 

0.4206 

0.0159 

0.0556 

0.0079 

0.0079 

0.0317 

p<0.05, Control vs HFD, n=5 

 

 

 

 

 

 

 

 

 

 

 



132 
 

Even-chain saturated fatty acids 

Similar to short-term HFD experiment, for the even-chain saturated fatty acid, the serum 

concentration of C18:0 after the HFD was significantly higher compared to control (p<0.001, 

figure 3.7). However, the even-chain saturated fatty acids serum concentration of C14:0 was 

lower in HFD fed mice compared to control (p<0.001). Again, the proportion of C16:0 in the 

serum was insignificant between the 2 diets. Analyses of total even-chain saturated fatty acids 

(C14:0, C16:0 and C18:0 combined) showed a significant increase in HFD mice relative to CD 

groups (p<0.001, table 3.2). 

 

Figure 3.7: Effect of long-term high fat diet on even-chain saturated fatty acid 

proportion in mouse serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. **p<0.001 HFD vs CD 

 

Odd-chain saturated fatty acids 

Here total serum odd-chain saturated fatty acids (C15:0 & C17:0) showed a significant decrease 

in mice fed HFD compared to those on normal chow diet (p<0.001, table 3.2). Whilst odd-

chain saturated fatty acid C15:0 was significantly lower in response to the high diet (p<0.001, 

figure 3.8), and the C17:0 fatty acid proportion was not different between the 2 diets. 
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Figure 3.8: Effect of long-term high fat diet on odd-chain saturated fatty acid 

proportion in mouse serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. **p<0.001 HFD vs CD 

 

Mono-unsaturated fatty acids 

Here, we observed similar trend as short term HFD intake. Thus, the total MUFAs (C16:1 and 

C18:1 combined) decreased significantly in mice fed the high fat diet for 12 weeks relative to 

those on normal chow diet (p<0.001, table 3.2). Also, both the C16:1 and C18:1 fatty acid 

changed in opposite directions in response to the diets (table 3.2). There was a significant 

higher in serum content of C16:1 in HFD fed mice compared to those on control diet (p<0.001, 

figure 3.9). However, long-term high fat feeding resulted in significantly lower content of 

serum 18:1 fatty acid in HFD compared to control (p<0.001, figure 3.9). 
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Figure 3.9: Effect of long-term high fat diet on monounsaturated fatty acid proportion 

in mouse serum                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. **p<0.001 HFD vs CD 

 

Polyunsaturated fatty acids 

The proportion of total PUFAs (C18:2, C18:3 and C20:4 combined) was significantly higher 

in   HFD compared to CD groups (table 3.2). When the PUFAs were analysed individually, 

both C18:2 & C18:3 were not statistically different following 12 weeks of high fat intake 

(figure 3.10). In contrast, arachidonic acid (20:4n–6) was higher in response to the high fat diet 

which resulted in significant differences between the 2 diets (p<0.05, figure 3.10). 
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Figure 3.10: Effect of high fat diet on serum polyunsaturated fatty acid in mouse                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=5. p<0.05, HFD vs CD 

 

Indices of desturation enzyme activity.  

Again, similar to observation of short term HFD feeding the 16:1n−7/16:0 ratio was 

significantly higher in the serum tissue of mice fed HFD compared to control (p<0.001). 

However, the 18:1n−9/18:0 ratio was significantly lower in the serum of HFD versus CD 

(p<0.001, table 3.2) indicating decreased SCD1 activity. Additionally, we found an increase in 

20:4n−6/18:2n−6 ratios in response to long-term high-fat feeding. 

3.3.3 Effect of high fat intake on serum and liver fatty acids in mice raised in SPF 

environment 

3.3.3.1 Growth rate of specific pathogen free mice fed high fat diet  

Mice raised in specific pathogen free (SPF) facility adapted to a defined normal rodent diet 

(chow) were switched to a lard-based high-fat diet (chapter 2, table 2.3). During the first 

4 weeks of high fat diet (HFD) feeding, SPF mice significantly gained body weight (chapter 2, 

figure 3a). Starting from baseline (week 0) to week 4, both HFD and control diet (CD) mice 

significantly increased body weight over time. A significant increase in body weight between 

HFD-fed mice and CD mice was first evident at week 1 (p<0.0001). Increases in body weight 
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of HFD mice remained significantly greater than CD mice from week 2 onward (p<0.001 

between HFD mice and CD mice at week 2; all others p<0.05), figure 3a 

 

Figure 3a: Dietary fat from lard increases body weight in SPF mice.  

Body weight gain during the first 2 weeks of experimental feeding. ****p < 0.0001 and **p < 

0.001 for HFD relative to CD; p <0.05 to the end of the feeding trial (3 & 4 weeks). SPF CD: 

n = 10; SPF HFD: n = 10. 

 

3.3.3.2 High fat diet intake did not affect total serum and liver lipid concentrations in in 

SPF mice. 

Male C57B/6 mice were fed a high fat diet in SPF environment for 4 weeks. GC-MS analyses 

of both serum and liver samples from these mice showed no significant difference in fatty acid 

concentration between HFD and CD (figure 3.11). The absolute fatty acid concentrations and 

relative proportions of serum and liver obtained from mice after 4 weeks of HFD feeding at 

SPF condition are shown in table 3.3 & 3.4 respectively. Both absolute FA concentrations and 

proportional measures showed a similar pattern of FA changes although the effect was more 

clearly observed in relative proportions (table 3.3a & 3.4b in appendix). 
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Figure 3.11: Effect of high fat intake on total lipid concentration in the serum and liver 

in SPF mice                                                                                                                                                                                                      

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=10. 
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Table 3.3a: Fatty acid composition of serum in HFD-fed SPF mice 

Group of 

FA 

% of total serum 

FA 

CD 

Median (min-

max) 

HFD 

Median (min-

max) 

p-value 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

1.14 (0.93-1.34) 

26.59(21.74-30.72) 

8.59 (6.75-9.89) 

36.30(32.68-41.29) 

0.11 (0.08-0.13) 

0.23 (0.22-0.39) 

0.34 (0.33-0.48) 

2.75 (1.70-3.96) 

22.06(19.27-23.55) 

23.98(22.53-26.43) 

34.33(28.92-37.01) 

0.28 (0.21-0.76) 

5.79 (4.07-11.52) 

40.73(37.77-43.94) 

 

0.10 (0.08-0.14) 

2.32 (2.21-3.41) 

 

0.16 (0.11-0.39) 

1.01 (0.58-1.33) 

28.12(23.84-31.44) 

9.93(7.60-11.45) 

38.69(33.19-43.54) 

0.04 (0.03-0.06) 

0.25 (0.21-0.28) 

0.29(0.24-0.34) 

2.36 (1.75-2.89) 

29.39(24.72-33.05) 

32.00(26.61-35.05) 

24.49(21.50-26.76) 

0.16(0.06-0.36) 

7.61 (1.69-15.51) 

31.69(26.34-40.31)    

 

0.08(0.06-0.11) 

2.82(2.38-4.34) 

 

0.31(0.07-0.72)           

0.1128 

0.3562 

0.0789 

0.1333 

0.0001 

0.8254 

0.0002 

0.2428 

0.0001 

0.0001 

0.0001 

0.0101 

0.4967 

0.0001 

0.0508 

0.0760 

 

0.1276 

p<0.05, Control vs HFD, n=10 
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Table 3.4a: Fatty acid composition of liver in HFD-fed SPF mice 

Group of 

FA 

% of total liver 

FA 

CD 

Median (min-

max) 

HFD 

Median (min-

max) 

p-value 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

0.47 (0.36-1.05) 

29.52(24.51-37.06) 

11.27 (7.94-16.18) 

41.36(33.54-53.70) 

0.22 (0.20-0.25) 

0.43 (0.37-0.59) 

0.66 (0.58-0.83) 

1.43 (0.79-2.36) 

19.80(17.06-26.43) 

21.22(17.85-28.79) 

28.94(25.88-37.53) 

0.26 (0.20-0.61) 

7.56 (4.44-11.95) 

37.35(35.85-43.94) 

 

0.05 (0.02-0.09) 

1.72(1.08-3.32) 

 

0.26 (0.14-0.44) 

0.53 (0.46-0.74) 

27.32(22.36-33.58) 

9.87(7.33-13.23) 

37.95(30.28-45.28) 

0.15 (0.13-0.18) 

0.35 (0.32-0.38) 

0.49(0.47-0.53) 

1.13 (0.85-1.90) 

26.73(22.44-32.27) 

27.87(23.52-33.83) 

24.96(21.24-28.37) 

0.54(0.35-0.74) 

8.08 (6.12-10.60) 

33.47(30.71-35.40) 

 

0.04(0.03-0.07) 

2.71(1.84-4.40) 

 

0.32 (0.22-0.48) 

0.1431 

0.2176 

0.3150 

0.2176 

0.0001 

0.0001 

0.0001 

0.2176 

0.0021 

0.0039 

0.0021 

0.0005 

0.7959 

0.0001 

0.6842 

0.0185 

 

0.3930 

p<0.05, Control vs HFD, n=10 
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3.3.3.3 SPF mice fed high fat diet showed no differences in serum and liver concentration 

of even-chain saturated fatty acids 

After analysing the content of total even-chain fatty acids (C14:0, C16:0 &C18:0 combined), 

we observed no significant changes between HFD and CD fed groups either in serum or liver 

tissues (table 3.3 & 3.4). There was no significant difference between HFD versus CD groups 

in individual ECFAs concentration (i.e C14:0, C16:0 or C18:0) in both serum and liver (figure 

3.12).  

 

 

Figure 3.12: Effect of high fat intake on even-chain saturated FA proportion in the 

plasma and liver in SPF mice                                                                                                                                                                                                      

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=10. 
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3.3.3.4 Effect of high fat intake on odd-chain saturated FA concentration in the serum 

and liver in SPF mice 

Analysis of serum fatty acid profiles revealed HFD fed mice displayed lower levels of odd-

chain saturated fatty acids (C15:0 & C17:0 combined) when compared to CD mice (table 3.3, 

p< 0.0001). Similarly, in the liver samples, we observed that HFD fed mice showed lower level 

of total OCFA relative to CD fed mice (table 3.4, p<0.0001). Analysis of specific odd-chain 

fatty acids revealed HFD fed mice displayed significantly lower proportion of serum 

pentadecanoic acid (figure 3.13, p<0.0001) but no significant difference in serum 

heptadecanoic acids when compared to CD fed mice. In the liver, HFD mice displayed a lower 

content of both C15:0 (p<0.05) and C17:0 (p<0.05) levels compared to CD fed group (figure 

3.13). 

 

 



142 
 

 

Figure 3.13: Effect of high fat intake on odd-chain saturated FA proportion in the 

serum and liver in SPF mice                                                                                                                                                                                                       

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± 

SEM for n=10. ****p<0.0001 HFD vs CD) 

 

3.3.3.5 Effect of high fat intake on monounsaturated FA concentration in the serum and 

liver in SPF mice 

Here, analyses of total MUFAs (C16:1 & C18:1combined) of HFD fed mice showed elevated 

levels of total MUFA compared to CD group both in serum (table 3.3; p<0.001) and liver (table 

3.4: p<0.0001). Moreover, analyses of individual MUFAs showed higher proportion of 

C18:1n9 in HFD compared to CD in either serum or liver tissues, however, C16:1 showed no 

difference between HFD and CD in serum and liver samples (figure 3.14). 
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Figure 3.14: Effect of high fat intake on monounsaturated FA proportion in the serum 

and liver in SPF mice 

Fatty acids were measured in the serum of mice by GC-MS. Values are given as means ± SEM 

for n=10. **p<0.001, ****p<0.0001 HFD vs CD. 

 

3.3.3.6 Polyunsaturated fatty acid concentrations were reduced in HFD fed SPF mice 

When total PUFAs were analysed in serum, we observed a significantly lower proportion in 

SPF-mice fed HFD compared to CD (table 3.3: p<0.0001). Moreover, there was a significantly 

lower proportion of total PUFA in the liver of HFD fed mice relative to the control group (table 

3.4: p<0001). There was no significant differences between the two diets in C20:4n-6 in either 

serum or liver. However, the percentage of serum C18:3n3 (p<0.05) or C18:2n6 (p<0.001) 

were lower in HFD compared to CD fed mice (figure 3.15). In the liver the proportion of 

C18:3n3 (p<0.0001) was higher in HFD, however, C18:2n6 (p<0.001) was lower relative to 

CD (figure 3.15). 
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Figure 3.15: Effect of high fat intake on polyunsaturated FA proportion in the serum 

and liver in SPF mice                                                                                                                                                                                                      

Total fatty acids was measured in the serum and liver of mice. Values are given as means ± 

SEM for n=10. **p<0.001 HFD vs CD; ***p<0.0001 HFD vs CD) 
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Indices of desturation enzyme activity.  

Here, we assessed alternative markers for enzyme activities and observed no significant 

difference between HFD and CD with regards to serum 16:1n−7/16:0 and C20:4/C18:2 ratios. 

However, the 18:1n−9/18:0 ratio was significantly higher in the serum of HFD versus CD 

(p<0.05, table 3.3). There was no difference in liver 16:1n−7/16:0, 18:1n−9/18:0 and 

20:4n−6/18:2n−6 ratios, between the two diets (table 3.4) under SPF conditions. 

3.3.3.7 Effect of a high fat diet on expression of genes involved in fatty acid uptake in SPF 

condition 

Here we have investigated the effect of HFD on two fatty acid transporters (CD 36 and FABP3) 

after four weeks of feeding under specific pathogen free condition. Gene expression analyses 

of these fatty acid transporters did not differ between mice fed 60% HFD and those that 

consumed chow diet (CD) containing 10% fat (Figure 3.16).   

  

Figure 3.16: Effect of HFD on CD36 and FABP3 mRNA expressions.  

Mean relative transcript expression of genes involved in hepatic fatty acid uptake in mouse 

liver. Values are given as means ± S.E.M for n=10; Abbreviations: CD36: cluster of 

differentiation; FABP3: fatty acid binding protein 3. 
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3.3.3.8 Effect of high fat diet on fatty acid genes related to specific fatty acid metabolism 

To understand the mechanisms underlying fatty acid changes observed in the plasma and liver 

of mice fed under SPF condition, we performed gene expression analyses on 7 genes involved 

in specific fatty acid synthesis. They include stearoyl co-A desaturase 1 (SCD1), fatty acid 

desaturase 2 (FADS2), ELOVL family member 6, elongation of long chain fatty acids (ELOVL 

6), 2-hydroxyacyl-CoA lyase 1(HACL1), branched chain ketoacid dehydrogenase E1, alpha 

polypeptide (BCKDHA) and phytanoyl-coA hydroxylase (PCCA). The mRNA levels of steroyl 

co-A desaturase 1 (SCD1; p<0.001), fatty acid desaturase 2 (FADS2; p<0.001), ELOVL family 

member 6, elongation of long chain fatty acids (ELOVL6; p<0.0001), and 2-hydroxyacyl-CoA 

lyase 1 (HACL-1, p<0.05) were significantly lower expressed among mice fed high fat diet 

compared to mice on chow diet (figure 3.17). However, there was no significant difference in 

expression of branched chain ketoacid dehydrogenase E1, alpha polypeptide (BCKDHA) and 

phytanoyl-coA hydroxylase (PCCA) observed mice fed high fat diet and control diet. (Figure 

3.17) 
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Figure 3.17: Effect of a 4-week HFD feeding on ELOVL6, HACL1, SCD1, FADS2, PCCA 

and BCKDHA mRNA expressions in SPF mice.   

Mean relative transcript expression of genes related to specific fatty acid changes in mouse 

liver. Values are given as means ± S.E.M for n=10; *p<0.05, ****p<0.0001 CD vs HFD.  

 

 

3.3.3.9 High fat diet did not alter the expression of genes involved in inflammation or anti-

oxidant genes 

 

Fatty acids particularly n-6 PUFA are known to be pro-inflammatory and pro-oxidant. Here, 

we analysed specific genes involved in inflammation or anti-oxidant activities. TNF-α gene 

expression, involved in inflammation, was statistically insignificant between high fat diet 

(HFD) group and control diet (CD) group (figure 3.19). Moreover, glutathione reductase 

(GSR), and thioredoxin 1 (TRX1) genes which are antioxidants were not altered in HFD fed 

mice (figure 3.18).  
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Figure 3.18: Effect of HFD on pro-inflammatory and anti-oxidant mRNA expression in 

SPF mice.   

Mean relative transcript expression of genes involved pro-inflammatory and antioxidant 

activities in mouse liver. Values are given as means ± S.E.M for n=10 

 

 

3.3.3.10 Induction of steatosis in SPF mice through high fat diet 
 

Mice were maintained on either 60% high fat diet or control diet containing 10% of fat in a 

specific pathogen free environment for four weeks. Following this, part of the liver was fixed 

in 10% formalin for histological analyses. The liver H&E staining of control mice showed 

normal architecture without any evidence of steatosis. In contrast, the HFD feeding induced 

histological steatosis in the liver (figure 3.19). 
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Figure 3.19: Hepatic steatosis in the livers of SPF mice on high fat diet and appears as 

vacuolation in H&E stain.  

Representative chow diet group (CD) mouse and representative high fat diet (HFD) mouse 

liver. Representative liver sections stained with haematoxylin and eosin (original magnification 

20×). Arrows indicate large lipid droplets in HFD liver sections. Each image is a representative 

section from one mouse out of five different mice per dietary group. 

 

3.3.3.11 High fat diet induces peroxisomal biogenesis protein expression in liver tissues 

To test whether a high fat diet can induce the expression of peroxisomal biogenesis protein, an 

experimental design was employed by feeding mice with a 60% high fat diet (HFD) and 

compared to a control diet (CD) containing 10% of fat. Peroxisomal biogenesis protein, peroxin 

14 (PEX14) which is thought to be superior for detection of true abundance and distribution of 

peroxisomes compared to others including catalase were analysed using 

immunohistochemistry following a 4-week high fat diet intake Grant et al (2013). In response 

to the HFD, PEX-14 expression was increased in HFD compared to CD (figure 3.20 B & C).  
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A. 

 

B. 

 

C. 

 

Figure 3.20: Immunostaining of PEX 14 in liver from 4-week CD and HFD mice at SPF 

condition 

Immunohistochemistry was performed on mice obtained from CD and HFD using anti-PEX14 

antibody. Arrors head indicate PEX 14 staining in the liver cells. Negative control slide is 

unstained set-up by omitting primary antibody. Nuclei were counterstained with haematoxylin. 

(original magnification 60×). A: Negative control: B: A representative section from one mouse 

liver out of five different mice per group; C. IHC analyses of PEX14 stained intensity in 

arbitrary units (**p<0.001 HFD vs CD). 
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Furthermore, we analysed another protein, catalase, an important antioxidant defence enzyme. 

Here, after 4 weeks of high fat feeding in SPF mice and immunostaining of the liver, the HFD 

group showed higher expression of catalase protein than CD group as shown in (figure 3.21 A 

&B).  

A. 

 

B. 

 

Figure 3.21: Immunostaining of catalase in liver from 4-week CD and HFD mice at SPF 

condition. 

Immunohistochemistry was performed on mice liver obtained from CD and HFD using anti-

catalase antibody. Arrows head indicate PEX-14 staining in liver cells. Negative control slide 

is unstained set-up by omitting primary antibody. Nuclei were counterstained with 

haematoxylin. (original magnification 60×) A representative section from one mouse liver out 

of five different mice per group; B: IHC analyses of catalase stained intensity in arbitrary units.  
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3.4 Discussion 

3.4.1 Principal findings  

Gowth environment such as normal husbandry, germ free (GF) and specific pathogen free 

(SPF) conditions have particularly been employed in biomedical research to better understand 

the molecular mechanisms underlying diet–host interactions, Kübeck et al (2016); Dobson et 

al (2019). It is well known that the HFD diet modifies liver and serum FA distribution, 

Tranchida et al (2012). However, the effect of high fat feeding on plasma and liver FA 

distribution under SPF condition have not been investigated. Here, we provide some novel 

insights into the biochemical and metabolic mechanism of action of 4-week HFD-fed mice 

under SPF condition. We also provide a comprehensive fatty acid profile of mice that have 

been fed with high fat diet in a conventional environment for either 4 or 12 weeks respectively. 

For this purpose, a GC-MS, Rt-qPCR and immunohistochemistry approaches were employed 

to analyse the serum, and liver samples of mice that have undergone dietary challenge. Our 

data indicate changes in plasma and liver FA composition after 4 weeks of HFD feeding in SPF 

mice that are different from normal husbandary animals receiving the same diet, apart from 

OCFA. Indeed, the serum and liver FA profile in HFD-fed SPF mice were characterized by a 

decrease proportion of OCFA notably C15:0 and C17:0, respectively as well as by a higher 

proportion of MUFA compared to CD fed mice under same condition. Moreover, we showed 

similar changes in fatty acid profile in HFD-fed under normal husbandry condition for 4 and 

12 weeks respectively, except an observation of a decrease proportion in serum palmitoleic 

acid (C16:1) in HFD-fed SPF mice relative to CD. Although high fat diet induced-obesity and 

metabolic dysfunction is well established in the literature Buettner et al (2007), this study suffer 

from carbohydrate confounding limitation. Therefore, in the present study it is possible that the 

lipid metabolic changes observed in HFD fed mice relative to CD fed mice were in part 

influenced by imbalance of carbohydrate contents between the HFD and control diet.  
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3.4.2 Body weight and total lipid concentration in SPF mice 

A four-week HFD regimen was used in the current study to examine the effect of the HFD lipid 

metabolism and how changes in lipid metabolism are influenced by gut microbiota. Obesity-

prone mice (C57Bl/6) have a thrifty phenotype marked by a consistent, increased storage of fat 

into adipose tissue and decreased oxidation in skeletal muscle, Even et al (2017); Nicholson et 

al (2010). Under SPF condition, HFD-fed mice significantly gained body weight gain 

compared to CD fed mice as previously been reported in HFD-fed SPF mice, Kübeck et al 

(2016). We reported no significant changes in liver or serum total lipid concentrations in our 

current study. Previous studies showed that total serum FFA level was not different between 

control diet and HFD, Björntorp et al (1969), conflicting with the elevated FFA levels 

previously reported in the serum of obese human subject. Furthermore, another study reported 

no changes in plasma total free fatty acid but decreased in plasma total triglyceride (TG) and 

increased liver total TG after 3 weeks of HFD fed mice relative to CD fed mice, Liu et al 

(2015). Our study adds to existing data that suggest that obesity and its associated pathologies 

are not always linked with elevated serum FFA and other lipid subclasses, Liu et al (2015).  

3.4.3 Effect of HFD on ECFA and MUFA in SPF mice 

Changes in saturated fatty acids and MUFAs are associated with non-alcoholic fatty liver 

disease or diabetes in humans. In the current study, 4 weeks of HFD feeding significantly 

increased both serum MUFA (29%) and liver MUFA (26%) content compared to control. 

However, there were no significant change in ECFA in both serum and liver of HFD-fed SPF 

mice relative to control. Of the two MUFAs, oleic acid, largely accounted for the increased 

percentage of MUFA in the serum and liver C18:1 (92.6% and 95.4%, respectively) of HFD 

fed mice. Palmitoleic acid (C16:1) in the serum and liver of HFD fed mice was 7.4% and 4.4%, 

respectively. A previous study reported an increased composition of oleic acid and decreased 
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stearic acid in both liver and serum samples of cats fed HFD compared to control, Fujiwara et 

al (2015). The increased proportion of 18:1(n-9) in the HFD group after 4 weeks, reflects the 

dietary proportion of this FA, as well as an increased in ∆9D indexes [also known as stearoyl-

CoA desaturase (SCD)], activity as indicated by the significantly increased ratio of [18:1(n-

9)/18:0] used as a surrogate measure of this activity. In the present study, we found one of the 

SCD1 indices, SCD18 (18:1/18:0), in the serum and liver samples to be increased in the HFD 

fed SPF group. However, SCD16 (16:1/16:0) in the serum and liver was not significant in HFD 

fed SPF mice. SCD1 is predominantly expressed in the liver and plays an important role in the 

conversion of saturated fatty acids (C16:0 and C18:0) derived from dietary fatty acids or from 

de novo lipogenesis into MUFA (C16:1 and C18:1). Previous studies have reported that liver 

SCD1 mRNA expression is positively correlated with SCD1 desaturase indices in the liver and 

the plasma FA, Sjögren et al (2008); Liu et al (2015). Previous studies have reported SCD1 

indices to correlate positively with NAFLD, Kotronen et al (2009).  

3.4.4 Effect of HFD on PUFA in SPF mice 

Long-chain polyunsaturated fatty acids (LC-PUFA) form an integral component of all cell 

membranes and play critical role for normal cellular function, Burdge et al (2002). Here, we 

observed a significant decreased in total PUFA composition of liver or serum in mice fed high 

fat diet under SPF condition. Interestingly, serum C18:3n3 was decreased in the plasma but 

increased in the liver of HFD-fed SPF mice compared to control. The observation of decreased 

total PUFA in the liver and serum was not surprising since the fat source in HFD diets was 

lower in total PUFA (33.3%). The decreased serum C18:3n3 is likely as a result of the low 

amount of this fatty acid component of the HFD diet. However, in terms of the increased liver 

levels of this C18:3n3, since there was a decreased dietary supply in the HFD diets, increased 

availability of this FA would be achieved by mobilisation of C18:3n6 from adipose tissue to 

the liver, and/or down-regulation of C20:4n6 which would require decreased activity of 
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enzymes and transport proteins involved in this pathway Burdge et al (2002). However, in our 

study we observed no changes in the proportion of C20:4n6 in the liver or serum of HFD fed 

mice. Interestingly our HFD SPF model showed lower levels of liver C18:3n6 and no changes 

in C20:4n6, indicating anti-inflammatory effect. n-6 FAs, formed by FADS2 activity, are 

known to be pro-inflammatory. 

3.4.5 Effect of HFD on OCFA in SPF mice 

Many studies have shown an inverse association between circulating odd chain fatty acids (OC-

FAs); pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0), with metabolic disease risk, 

Forouhi et al (2014); Jenkins et al (2017). Here, we investigated the effect of high fat diet on 

circulating and liver levels of C15:0 and C17:0 under SPF condition. To do this, we performed 

analyses on liver and serum of mice fed a high fat diet or control diet. We observed that, the 

serum C15:0 levels decreased (63.3%) as expected compared to control. There was a lower 

level of serum C17:0 (7.4%) in HFD-fed SPF mice although this was not statistically 

significant. Combination of these FAs resulted in significant decreased in total OCFA in the 

HFD-fed SPF mice relative to control. Similar trends were observed in the liver where there 

was a significant reduction in C15:0 (31.8%) and C17:0 (22.2%) in mice fed high fat diet 

compared to control. To our knowledge, no other study has directly measured parameters of 

these odd chain fatty acids in high fat-fed mice. These findings of a decrease in content of 

serum and liver OCFA support the suggestion of an increased NAFLD risk in subjects on 

Westernized (high fat) diet, Yoo et al (2017); Jensen et al (2018). Several studies have 

documented that OCFA can originate from ruminant fat and milk, Mika et al (2016) and other 

studies have also suggested these FAs can be synthesized de novo in mammals, Pfeuffer & 

Jaudszus (2011); Jenkins et al (2017). In our studies, the fact that both CD and HFD 

components did not contain these OCFA-rich diets mean the observation of the decrease in 

OCFA in HFD-fed SPF may be related to alteration of de novo synthesis of these FAs. 
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3.4.6 Effect of high fat diet on fatty acid profile under normal husbandry conditions 

Here, to understand how feeding mice under normal husbandry condition changes specific fatty 

acid profile in the blood particularly OCFAs, we fed groups of mice with high fat diet or chow 

with similar dietary compositions as used for the SPF experiment in a normal husbandry 

environment for either 4 weeks or 12 weeks. Analyses of the serum fatty acid profile of these 

mice showed a similar change in fatty acid profile between 4 weeks and 12 weeks HFD-fed 

normal husbandry mice. In either 4 weeks or 12 weeks HFD-fed mice, we observed an 

increased serum levels of ECFA, C16:1/C16:0 ratio whilst OCFA, MUFA and C18:1/C18:0 

levels in the serum were decreased. The observation of decreased serum levels of OCFA 

suggests that there was no evidence that the SPF environment has an impact on circulating 

levels of OCFAs in the mice. However, the increased levels of MUFA and its enzymatic 

activity suggest that MUFA can be influenced by SPF condition in the mice. 

3.4.7 Effect of HFD on the expression of CD 36, and FABP3 in SPF mice 

CD36 is a multiligand class B scavenger receptor with high affinity for lipids and lipid-

containing ligands and it is  known for its lipid uptake function in liver, macrophages, skeletal 

muscle, and the heart, Garbacz et al (2016). Liver-specific knockout of CD36 in mice decreases 

hepatic lipid levels in both genetic and diet-induced steatosis, Ipsen et al (2018). Fatty acid-

binding proteins (FABPs) are a group of molecules that coordinate lipid responses in cells and 

are strongly associated with metabolic and inflammatory pathways, Furuhashi & Hotamisligil 

(2008). 

In this study, we report that a 4-week high fat diet at SPF condition had no significant changes 

of the mRNA expression CD36 and FABP3 in the mice liver. This is contrary to previous 

findings where mice fed a high fat diet for 6 weeks developed hepatic steatosis alongside 

increased mRNA and protein expression of CD36, Koonen et al (2007); Wilson et al (2015). It 
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can be explained that the high but insignificant expression of these fatty acid transporters could 

be as a result of the short duration (4 weeks) of feeding compared to what has been reported in 

other studies. Metabolic response to high fat diet is reported to be time dependent, Tranchida 

et al (2012). 

3.4.8 Effect of HFD on specific fatty acid gene expression in SPF mice 

The mechanism by which obesity and hepatic steatosis are induced by a high fat diet requires 

analyses of gene expression to track changes at the molecular level in the liver in response to 

increased fat consumption. Following observation of consistent OCFA profile changes in the 

serum and liver, we selected some specific genes (ELOVL 6, SCD1, HACL1, FADS2 and 

PCCA) related to unsaturated and odd-chain fatty acid synthesis to assess their expression in 

the liver of mice fed under SPF environment. ELOVL family member 6 (Elovl6) is a 

microsomal enzyme involved in the elongation of saturated and monounsaturated FAs with 12, 

14, and 16 carbons, Matsuzaka et al (2002).  Loss of Elovl6 function was reported to reduce 

stearate (C18:0) and oleate (C18:1n-9) levels and increase palmitate (C16:0) and palmitoleate 

(C16:1n-7) levels, Matsuzaka et al (2007). In this study, loss of ELOVL6 mRNA expression 

was observed despite no change in ECFA. 

The enzyme stearoyl-CoA desaturase 1 (SCD1), is predominantly expressed in the liver, and 

converts nutrient or de novo lipogenesis-derived saturated fatty acids (16:0 and 18:0) to 

monounsaturated fatty acids (16:1n-7 and 18:1n-9) and thereby prevents their lipotoxic effects, 

Silbernagel et al (2012). In our current study we reported a decreased in SCD1 mRNA 

expression and increased C18:1 in HFD-SPF fed mice. In the down-regulation of hepatic SCD1 

expression, increased in MUFA may be because the MUFA did not get further desaturated to 

C18:2 by FADS2 which was also lower in our HFD-SPF mice.  Branched fatty acids (e.g., 

phytanic acid) undergo α-oxidation via phytanoyl-CoA hydroxylase (PHYH) and 2-
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hydroxyacyl-CoA lyase (HACL1), both located in peroxisomes. PHYH introduces a 2-hydroxy 

group into phytanoyl-CoA, whereas HACL1 catalyses the cleavage between the first and the 

second carbon atoms, yielding formyl-CoA and pristanal, Jenkins et al (2017). Delta-5 (D5D, 

FADS1) and delta-6 desaturases (D6D, FADS2) are key enzymes involved in the metabolism 

of n-3 and n-6 PUFAs, which enable alpha-linolenic acid (ALA) and linoleic acid (LA) to 

produce long-chain polyunsaturated fatty acids (LC-PUFAs), Tosi et al (2014). In the SPF HFD 

study, we observed a systemic decrease in C18:2 and C18:3, which was reflected by a 

significant decrease in FADS2 mRNA expression.  PCCA is the key enzyme in the catabolic 

pathway of odd chain fatty acids, isoleucine, threonine, methionine and valine. It has been 

shown that PCCA -/- mice exhibit fatal extreme ketoacidosis as well as fatty liver, Miyazaki et 

al (2001).                                                                                                         

Branched-chain α-ketoacid (BCKA) dehydrogenase complex (BCKDC) plays a role in 

regulating branched-chain amino acid (BCAA) metabolism at the level of BCKA catabolism. 

Evidence suggest metabolism of branch-chain amino acids in adipose tissue results in odd-

chain fatty acid synthesis, Crown et al (2015).                                                                                             

In this study, we report that HFD significantly reduced SCD1 mRNA in the liver compared to 

mice on chow under SPF condition. This was contrary to increase SCD1 enzyme activity and 

C18:1 content observed in the liver and serum of SPF mice. This difference is partly due to the 

fact that only 50% of transcript changes were converted to protein level, and also activity can 

be further regulated post-transcriptionally. Interestingly, we saw significantly decreased 

expression of FADS2, ELOVL6 and HACL1 following high fat intake for 4 weeks. The 

repression of HACL1 mRNA expression in the liver was not surprising since this gene has been 

linked odd-chain fatty acid metabolism. It is possible that impairment of HACL1 resulted in 

lower OCFA levels in the liver of HFD-fed SPF mice. As ELOVL6 is thought to be involved 

in multiple fatty acid synthesis, the lower expression of this gene in the liver of mice fed high 
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fat diet may contribute to a lower proportion of PUFA. In the current study, lower content of 

PUFA in the dietary fat compared to control diet may account for the lower serum and liver 

levels in the HFD mice compared to CD mice. Moreover, lower level of systemic PUFA may 

result in down-regulation of ELOVL6 since they have been implicated in PUFA metabolism, 

Sun et al (2013). The decreased expression of SCD1 mRNA, ELOVL6 mRNA and FADS2 

mRNA may be accounted for by several factors as expression of these genes are further 

regulated by several transcriptional factors including ChREBP and SREBP-1c which require 

peroxisome proliferator-activated receptor co-activator-1α (PGC-1α). These transcription 

factors can in turn be regulated by diet and hormones (eg insulin), Mauvoisin & Mounier 

(2011); Bae et al (2016).  Interestingly, another PUFA metabolic gene PCCA which is involved 

in OCFA metabolism was not significantly different between mice fed high fat diet and the 

control. To the best of our knowledge no study has reported on PCCA mRNA levels in response 

to high fat dietary intake. Again, we did not observe a significant change in the expression of 

BCKDHA in the liver of mice fed high fat diet relative to control group. A previous study 

demonstrated that hepatic BCKDC kinase was down-regulated resulting in activation of hepatic 

BCKDC in rats fed HFD for 12 weeks, which implies that events associated with HFD feeding 

may promote BCKA catabolism, Kadota et al (2013). The differences in experimental design 

may account for the reason why we did not observe a significant change in BCKDHA mRNA 

expression, besides they measured activity of the enzymes as opposed to our expression 

analyses. 
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3.4.9 Effect of HFD on the expression of TNF-α, GSR and TRX1 in SPF mice 

TNF- α is a proinflammatory cytokine which is produced by macrophages/monocytes during 

acute inflammation. It is responsible for a diverse range of signalling events within cells, 

leading to necrosis or apoptosis, Idriss & Naismith (2000). TNF-α mediates hepatic 

inflammation, oxidative stress, and apoptosis or necrosis of liver cells, Seo et al (2013). 

Glutathione reductase (EC 1.8.1.7) catalyses the reduction of glutathione disulfide (GSSG) to 

the sulfhydryl form glutathione (GSH), and it is a critical molecule in resisting oxidative stress 

and maintaining the reducing environment of the cell, Deponte et al (2013). Thioredoxin 1, an 

antioxidant, is involved in providing reducing equivalents to thioredoxin peroxidases and 

ribonucleotide reductase, the regulation of transcription factor activity, and plays an important 

role in the regulation of enzyme activity, Lustgarten et al (2011). The expression of glutathione 

(GSR) and thioredoxin (TRX) antioxidant system can further be regulated by nuclear factor 

E2-related factor 2 (Nrf2) hence playing an important role in maintaining the redox 

homeostasis of the cell, Tonelli et al (2018). 

In this study, we evaluated the effect of high fat diet on the expression of TNF- α, GSR and 

TRX1 following a 4-week high fat feeding regimen. Here, following an exposure to increased 

lipotoxicity as a result of HFD intake, we thought this would correlate with increased in 

oxidative stress in mitochondria, however, whilst there was a general trend of increase 

expression of TNF-α and decrease GSR mRNA and TRX1 mRNA expression in the liver of 

HFD-fed SPF mice relative to control fed mice, these were statistically insignificant. This 

reflects the moderate effect of our 4-week high fat intake on the liver of mice fed under SPF 

condition. It is well known that elevated dietary fat intake results in reduction of antioxidant 

activity and expression, Ibrahim et al (1997); Qin et al (2014).  

 



161 
 

3.4.10 High fat diet feeding under SPF condition results in hepatic steatosis in mice 

It is well known that high fat feeding causes accumulation of lipid in the liver, Luo et al (2015); 

Meli et al (2013); Longato et al (2013). 

In this study, we performed H&E analyses to confirm whether lipid accumulated in the liver 

of mice fed high fat diet for 4 weeks under SPF conditions. There was increased accumulation 

of lipid in the liver of high fat fed mice compared to the control. This observation was similar 

to that reported previously for mice fed under conventional condition. 

3.4.11 Effect of high fat diet on peroxisome content in SPF mice 

Peroxisomes are involved in the catabolism of very long chain fatty acids (>C20:0 FA), 

branched chain fatty acids which are then mainly provided for further degradation in 

mitochondria, Reddy & Hashimoto (2001); Schrader et al (2013); Sassa T, Kihara (2014). It is 

suggested that hepatic steatosis is a metabolic manifestation of a loss or dysfunction of the 

organelles involved in lipid catabolism which include peroxisomes and mitochondria, van 

Zutphen et al (2016). Markers for identifying peroxisome in tissues include peroxin 14 (PEX-

14), catalase and ATP Binding Cassette Subfamily D Member 3 (ABCD3). Among these PEX-

14 has been reported to be an optimal marker for identification and localization of peroxisomes 

in different cell types, tissues, and species, Grant et al (2013).  

In this study, we evaluated the content of peroxisome in the liver of SPF mice following a 4-

week high fat diet regimen. This was done by immunohistochemical analyses of two key 

peroxisomal markers-PEX-14 and catalase. We observed an increased in PEX 14 as well as 

peroxisomal catalase in the liver of mice fed HFD diet compared to control. To our knowledge 

no study has reported changes in catalase and PEX 14 content in mice fed high fat diet using 

brightfield microscopy. With other microscopic analyses our study is supported by previous 

findings where electron microscopy analyses of hepatic peroxisomes of rats fed a high-fat diet 
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were more abundant than in the case of normal rats Ishii et al (1980). Moreover, in a clinical 

study, peroxisomal proliferation in liver cells appeared early in the cirrhotic process, De 

Craemer et al (1993). Combining evidence from our study and previous studies, we hypothesize 

that peroxisomal content may increase in response to initial metabolic stress. It is not known 

whether they disappear as the diseases progress. More studies are needed to define peroxisomal 

changes in diet associated liver diseases.  

3.5 Conclusion 

To understand how dietary fat affect specific fatty acids (eg OCFAs), we performed analyses 

of fatty acid profile of serum and liver obtained from mice fed under normal husbandry or SPF 

environment. Overall, serum OCFA profile of HFD-fed SPF mice resembled that of the HFD-

fed conventional mice. Constrasting effects were seen for oleic acid (C18:1) that was decreased 

in serum of HFD-fed conventional mice but increased in HFD-fed SPF mice. Nonetheless, high 

fat diet at 4 weeks irrespective of SPF environment or not resulted in decrease levels of serum 

OCFA, particularly C15:0. To further understand the mechanisms underlying fatty acids 

changes by a high fat diet, we performed several analyses of metabolic gene expression, and 

saw loss of HACL1, SCD1 and ELOVL6 after HFD in SPF mice. Histological analyses 

confirmed deposition of lipid droplet in fixed liver tissues as well as proliferation of 

perioxisomes as indicated by catalase and PEX-14 proteins in fixed liver tissues. The changes 

in OCFA, HACL1, catalase and PEX-14 proteins in our HFD animal models is important to 

explain the inverse association between OCFA and NAFLD in humans. It is important to note 

that extrapolating findings from animal studies into humans remains a challenge and therefore 

we suggest further validation experiment in other animal models such as Sprague-Dawley rats 

in order to translate the findings into humans. 
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Chapter 4 

 

4.0 Effect of high fat diet on gut microbiota in SPF mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



164 
 

Abstract 

In a strictly controlled specific pathogen free environment study, a high fat diet influence on 

the gut microbiota was studied. After a 4-weeks of being on normal rodent diet (chow), mice 

were assigned to either the control-diet (10% fat, 70% carbohydrate and 20% protein per 

kcal%, n = 10) or a high-fat diet (60% fat, 20% carbohydrate and 20% protein per kcal%, n =10) 

for 4 weeks. Faecal samples were collected after 4 weeks of feeding. The faecal microbiota of 

mice were characterized by 16S rRNA gene sequencing. Here we show that the phyla 

Firmicutes and Proteobacteria increased whereas Verrucomicrobia, Actinobacteria, 

Saccharibacteria, Spirochaetes were decreased in the gut microbiota of HFD mice compared to 

control. Moreover, a remarkable reduction of bacteria especially Akkermansia, Lactobacillus, 

Bifidobacterium in HFD mice were observed relative to the control. Increased abundance of 

propionate-producing gut microbiota such as of Lachnospiraceae and Clostridiales in HFD 

mice were observed. Finally, we report that the gut microbiota profile of HFD-fed mice under 

SPF condition was not different from HFD-fed mice under normal husbandry environment 

reported in the literature. 
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4.1 Introduction 

The human gut contains a large number of microorganisms, collectively referred to as the 

microbiota. It is known that a healthy human harbours more than 1014 microbial cells and is 

dominated by anaerobic bacteria including up to about 1,000 species. These bacterial genes 

outweigh the host genome by a factor of 150 times. The majority of these microbiota in the 

human body reside in the colon, Canny & McCormick (2008). This microbial community 

performs significant physiological functions, including metabolic regulation of glucose and 

lipid metabolism, Prakash et al (2011). It is reported that whilst intestinal microbiota plays an 

important role in maintaining human health, metabolic disorders including diabetes can intend 

lead to intestinal microflora imbalance, which will further aggravate metabolic disorders, thus 

forming a vicious cycle, Liu & Lou (2020).                                                                                          

There exists an extensive inter-individual diversity in microbiota composition, Rosen & Palm 

(2017).  The diverse nature of this ecosystem is shaped by events in early life; however, this 

can change over time through interactions between its constituents as well as dietary and health 

factors affecting the host such as medications, disease state as well as host genetics, Weinstock 

(2012). It is generally thought that more than 90% of the gastrointestinal microbiota belong to 

phyla Firmicutes (gram positive) and Bacteroidetes (gram negative), Allin et al (2015), 

however, there are minority phyla such as Verrucomicrobia (gram negative), Actinobacteria 

(gram positive) and Proteobacteria (gram negative), Jasirwan et al (2019).                                                                                                                                              

Changes in the composition of gut microbiota as well as components and metabolites derived 

from intestinal microbiota are thought to play a key role in modulating the pathological process 

of NAFLD.Such components include lipopolysaccharides, peptidoglycan, and extracellular 

vesicles, and metabolites ranging from SCFAs, indole and its derivatives, trimethylamine, 

secondary bile acids, to carotenoids and phenolic compounds, Ji et al (2019). SCFAs are 

volatile fatty acids (acetate, propionate, and butyrate) produced via fermentation of soluble 



166 
 

dietary fibers and nondigestible carbohydrates by gut microbes, den Besten et al (2013).                                                                                                                         

Bacteriodales and Clostridiales (specifically Lachnospiraceae) are the 

primary producers of propionate within the gut microbiome, Tian et al (2019). Moreover, at 

the phylum level, butyrate is generally produced by Firmicutes, while acetate and propionate 

are predominant products of Bacteroidetes, Jasirwan et al (2019. It is reported that long chain 

OCFA may be synthesized via propionic acid produced by the gut microbiota, Pfeuffer & 

Jaudszus (2016). Whether changes in propionate-derived gut microbiota affect long OCFA 

(particularly, C15:0 & C17:0) leading NAFLD have not been studied. 

With recent development of next generation sequencing (NGS) technologies, a great number 

of novel microbiota have been identified by employing metagenomic or single cell sequencing 

and bioinformatic strategies including 16S rRNA gene sequencing, molecular operational 

taxonomic unit (mOTU) analysis or metagenomic linkage group (MLG) analysis, Rajilic-

Stojanovic & de Vos (2014). 

Previous study showed that a high fat diet intake in mice changed the microbiota unfavourably, 

resulting in increased Firmicutes and decreased Bacteriodetes, He et al (2018). Moreover, a 

high fat diet reduced the abundance of Lactobacillus intestinalis and high abundance of 

Clostridiales, Bacteroidales, and Enterobacteriales, Lecomte et al (2015). A mice study showed 

different type of lipids influence the microbiota distinctively. While lard-fed mice harboured 

increased numbers of Bacteroides sp. and Bilophila sp. and reduced levels of Desulfovibrio sp, 

those fed with fish oil had increased lactic acid bacteria (Lactobacillus sp. and Streptococcus 

sp.), Verrucomicrobia (A. muciniphila), and Actinobacteria (Bifidobacterium sp. and 

Adlercreutzia sp.) and mice fed with a diet rich in milk fat or supplemented with taurocholic 

acid (a biliary acid) showed increased levels of Bilophila wadsworthia, Devkota et al (2013). 

Furthermore, the possible detrimental effect on hepatic lipid metabolism of high fat diets are 
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thought be mediated via the microbiota, which can cause inflammation and oxidative stress, 

Marciano & Vajro (2017); Clemente et al (2018). 

 Although few studies have explored the influence of high fat diet on the composition of the 

microbiota, little is known about those related to propionate-derived gut microbiota producers. 

Moreover, almost all previous studies on the effect of high fat diet on the gut microbiota have 

utilized normal husbandry mice. Therefore, in this thesis we investigated in our strictly 

controlled diet study (chapter 4) the influence of dietary fat on the gut microbiota of mice fed 

at SPF condition. 

4.1.1 Aim 

This study was aimed at characterising the faecal gut microbiota from mice fed a high fat diet 

in SPF conditions and compared with control diet fed mice under the same conditions using 

16S rRNA sequencing technology. The experiment tested the hypothesis that high fat diet 

changes to OCFA is mediated by altered propionate-derived gut microbiota. 

4.1.1.2 Objective 

The faecal gut microbiota of the high fat diet model were characterized by 16S rRNA 

sequencing platform 

4.2 Method 

4.2.1 High fat diet and sample collection  

For a detailed description of the animal housing and HFD treatment procedures see Chapter 2. 

In brief, two groups of C57Bl/6 male mice were used to assess the influence of high fat diet on 

gut microbiota in SPF mice for 4 weeks; the control group was fed chow diet (10% fat, 70% 

carbohydrate and 20% protein per kcal%, n = 10) and treatment group was fed a high-fat diet 

(60% fat, 20% carbohydrate and 20% protein per kcal%, n =10). All animals were raised and 
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fed under specific pathogen free (SPF) facility. In this study, following faecal DNA extraction, 

samples were sent to Novogene Company Ltd, Cambridge, UK for microbial sequencing and 

bioinformatics analyses. 

Faecal samples collected from the animals were processed for microbiome sequencing. Mice 

that were fed either a control (chow) diet or high fat diet were analyzed, totaling 20 mice. DNA 

was extracted from the animals’ faeces, and the 16S rRNA gene V3-V4 hypervariable region 

was sequenced on the lllumina MiSeq platform using universal primers 341F, 5′-

CCTAYGGGRBGCASCAG-3′; and 806R, 5′-GGACTACNNGGGTATCTAAT-3′. High- 

quality paired-end reads were combined with tags with an average read length of 250 base pair 

using FLASH (Fast Length Adjustment of Short reads, V1.2.7), Magoč & Salzberg (2011). 

Noisy sequences of raw tags were filtered by QIIME (V1.7) pipeline under specific filtering 

conditions to obtain high-quality clean tags, Caporaso et al (2010). The tags were compared 

with the reference database using UCHIME algorithm to detect chimera sequences and deleted. 

Sequence data analysis were performed by Uparse software (Uparse v7.0.1001) using all the 

effective tags, Edgar (2013). The representative OTU sequences were taxonomically classified 

using Mothur software against the SSUrRNA database of SILVA Database, Wang et al (2007).  

A 97% identity was used for clustering reads into OTUs (operational taxonomic units) 

discarding reads that failed to match the reference sequences. The OTUs and phylogenetic tree 

generated were used for diversity analysis. The QIIME 1.7.0 software package was utilized for 

analysis and comparison of microbial communities from high-throughput sequencing data. 

Statistical measures can be run in QIIME to compare and contrast microbial communities and 

measure significant differences between communities, Caparaso et al (2010). To estimate the 

diversity of the microbial community of the sample, we calculated the within-sample (α) 

diversity using the unique OTUs (known as the observed species metric) in each dietary group 

and beta diversity was calculated using the phylogenetic-based UniFrac metric and was 
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visualized with principal coordinate analysis (PCoA). Linear discrimination analysis coupled 

with effect size (LEfSe) was performed to identify the bacterial taxa differentially represented 

between groups at the genus or higher taxonomy levels.                                                                                                                                  

To evaluate the effect of HFD on the gut microbiota after 4-weeks of feeding SPF mice, some 

specific OTUs were compared between control (C) and HFD (H) groups. The differences 

between groups with normal distribution were evaluated by MetaStat, LEfSe and Anosim to 

find distributions of OTUs that were significantly different between HFD and Control. 
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4.3 Results 

4.3.1 Microbial diversity 

Alpha-diversity analysis indicated no significant difference in the richness of molecular species 

between HFD and control fed mice. Moreover, when considering most dominant species by 

taking into account evenness via calculation of Shannon effective counts, mice on HFD showed 

no difference in counts of species from those fed control diet (figure 4.1). 

         A. Richness of observed species                B. Shannon effective indices 

  

Figure 4.1: Alpha diversity analyses of SPF mice fed a high fat diet.  

Mice were fed either control diet, CD; High fat diet, HFD. Values are given as means ±S.E.M 

for n=10 

 

4.3.2 Beta diversity analyses 

4.3.2.1 Principal coordinate analyses 

Weighted Unifrac and Unweighted Unifrac, and Non-metric multi-dimensional scaling 

analysis (NMDS) based principal coordinates analysis (PCoA) revealed HFD group to display 

a distinct microbiota community that clustered separately from the control group (figure 4.2 A-

C). 
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A. 

 

Figure 4.2A: Weighted Unifrac Beta analysis showing principal co-ordinates analysis 

PC1 Vs. PC2.  

HFD group clustered distinctly different from the control group, n=10. (C: Control diet; H: 

High fat diet.). 

B. 

 

Figure 4.2B:  Unweighted Unifrac Beta analysis showing principal co-ordinates analysis 

PC1 Vs. PC2.  

HFD group clustered distinctly different from the control group, n=10. (C: Control diet; H: 

High fat diet). 
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C. 

 

Figure 4.2C:  NMDS based Beta analysis showing principal co-ordinates analysis PC1 Vs. 

PC2.  

HFD group clustered distinctly different from the control group, n=10. (C: Control diet; H: 

High fat diet.). 

 

4.3.3 Taxonomy summary of phyla 

Metastats analyses at the phylum level shows that HFD were associated with a decrease in the 

relative sequence abundance of phyla Verrucomicrobia, Actinobacteria, Saccharibacteria, 

Spirochaetes and an increase in Proteobacteria (Figure 4.3 A-E, p<0.01) 
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A. Verrucomicrobia                                                   B. Proteobacteria                                            

  

 

 

 

 

 

 

 

 

 

 

 

 

C. Actinobacteria 
D. Saccharibacteria 
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E. Spirochaetes 

  

Figure 4.3: Box plots showing relative sequence abundance of taxonomic groups that 

were significantly different between mice fed CD or HFD fed mice.      

Horizontal line represents the two groups with significant variation. "＊" represents significant 

variation (q value < 0.05) while "＊＊" represents highly significant difference (q value < 0.01, 

n=10). 

 

4.3.4 Bacterial microbiota composition 

Here we investigated the specific changes of microbiota in mice fed a high fat diet and those 

on the control diet, we assessed the relative abundance of taxa after 4 weeks. At the phylum 

level, the Verrucomicrobia was depleted in the HFD group after 4 weeks of feeding. However, 

Proteobacteria and Firmicutes phyla increased in HFD fed group within the same period 

feeding (figure 4.4 A). At the genus level, we observed 35 bacterial taxa that displayed different 

abundance between HFD and control group in the taxonomic abundance heatmap (figure 4.4 

B). Compared with the control group, 10 bacterial taxa were enriched in the HFD group, while 

25 bacterial taxa were depleted in the HFD group. The HFD-enriched bacterial taxa included 

Clostridium, Eubacterium, Faecalibaculum, Erysipelatoclostridium, Desulfovibrio, 

Odoribacter, Alistipes, Romboustsia, Mucispirillum, and unidentified members of 
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Lachnospiraceae. Bacterial taxa that were depleted in the HFD group included Roseburia, 

Lactobacillus, Akkermansia, Bifidobacterium etc, which were significantly more abundant in 

CD (Figure 4.4B). 

A. 

 

Figure 4.4A: Dietary fat effect on dominant gut bacteria phyla. 

The composition of gut microbiota at the phylum level were dominated by Firmicutes, 

Bacteroidetes and Proteobacteria in HFD treated group (H) whilst Firmicutes, Bacteroidetes 

and Verrucomicrobia dominated the control group (C), n=10  
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B. 

 

Figure 4.4B: Dietary fat effect on gut bacteria at the generic level. 

The heatmap shows 35 differentially abundant genera between HFD and control treatment. 

Each column represents a sample from HFD or control treatment. (C: Controls (C1, C2, C3…); 

H: High fat diet (H1, H2, H3….), n=10). 

 

4.3.5 LEfSe (linear discriminant analysis (LDA) Effect Size) analysis detects biomarkers 

To identify bacterial taxa that significantly differentiated between control and HFD groups, a 

metagenomic biomarker discovery approach (LEfSe) was used. The results from the LDA 

score and cladogram showed that in the genus/species level of Eubacterium, Odoribacter, 

Lactococcus, Lactococcus lactis, Desulfovibrio and Blautia were significantly enriched in the 

HFD group, while sequences from Lactobacillus reuteri, Lactobacillus murinus, unclassified 
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member of Coriobacteriaceae, Lachnospiraceae, Akkermansia spp. were more abundant in 

control group (Figure 4.5A & B).                                                                                                     

At the family level, HFD was associated with an increase in the relative sequence abundance 

of Desulfovibrionaceae, Lachnospiraceae, Rikenellaceae, Streptococcaceae, 

Ruminococcaceae, Porphyromonadaceae. On the contrary, mice on control diets after 4 weeks 

were characterized by abundance of family Verrucomicrobiaceae, Lactobacillaceae, and 

unclassified Bactriodales S24_4 group (Figure 4.5A & B).                                                                                          

At the order level, HFD group after 4 weeks of feeding was enriched with Clostridiales and 

Desulfovibrionales whilst the control group was enriched with order Coriobacteriales, 

Lactobacillales and verrucomicrobiales (Figure 4.5A & B). 
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A.  

 

 

 

Figure 4.5A: LDA score showing enrichment of bacteria at different taxonomic levels 

HFD fed mice were enriched in Lactococcus, Lactococcus lactis, Desulfovibrio, Blautia, 

Desulfovibrionaceae, Lachnospiraceae, Rikenellaceae, Clostridiales and Desulfovibrionales, 

whilst control group was enriched by Lactobacillus reuteri, Lactobacillus murinus, 

unclassified member of Coriobacteriaceae, Lachnospiraceae, Akkermansia spp., 

Verrucomicrobiaceae, Lactobacillaceae, unclassified Bactriodales S24_4 group, 

Coriobacteriales, Lactobacillales and verrucomicrobiales.  

 

 

 

 

 

 



179 
 

B.  

 

 

Figure: 4.5B: Cladogram score showing enrichment of bacteria at different taxonomic 

levels 

HFD fed mice were enriched in Streptococaceae, Porphyromonadaceae, Desulfovibrionaceae, 

Lachnospiraceae, Rikenellaceae, Clostridia, Clostridiales and Desulfovibrionales, 

Deltaprotebacteria, whilst control group was enriched by Lactobacillaceae, Lactobacilliales, 

Bacilli, Coriobacteriaceae, Coriobacteria, Verrucomicrobiaceae, Vericomicrobiae and 

verrucomicrobiales. 
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4.4 Discussion 

The current study measured the changes in gut microbiome following consumption of a high-

fat or control diet in SPF mice. Alterations of the gut microbiome has been linked to the 

pathogenesis of fatty liver disease and associated metabolic diseases, Campo et al (2019). 

Although the effect of a high fat diet on gut microbiota has been studied extensively, most of 

these studies have been investigated using normal husbandry C57BL/6 mice model and other 

animal models. Here, we have performed a comprehensive gut microbiota profiling of faecal 

samples obtained from mice fed a high fat diet for 4-weeks under SPF condition. Herein, we 

conducted 16S rRNA gene sequencing to characterize the bacterial of faecal samples obtained 

from mice fed a high fat diet for 4-weeks under SPF condition. In our current study, there was 

no difference between HFD fed mice and control in terms of alpha diversity which indicates 

species richness or Shannon effective counts (figure 4.1). In a previous study where mice were 

fed high fat diet based on lard (LHFD) or palm oil (PHFD) under SPF, alpha-diversity analysis 

showed no difference in the richness of molecular species, however, when Shannon effective 

counts were calculated, mice on both HFD were characterized by higher counts of species 

compared to control, Kübeck et al (2016). As our high fat diet was also based on lard and fed 

for 4 weeks, the increased diversity not observed in the current study may be due to age of the 

mice. Whilst our mice were put on high fat diet when they were 4 weeks old, the previous study 

mice were 12-weeks old when they were put on high fat diet and fed for 4 weeks, Kübeck et al 

(2016). Many factors have been reported to influence the diversity of gut microbiota including 

age, antibiotic treatment and diet, Cho et al (2012); Enqi et al (2019). It has been reported that 

lower bacterial diversity is observed in people with inflammatory bowel disease, psoriatic 

arthritis, type 1 diabetes, atopic eczema, coeliac disease, obesity, type 2 diabetes, and arterial 

stiffness, relative to healthy controls, Valdes et al (2018). This trend of a lower microbial 
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diversity was observed in our study though not statistically significant, and it is possible that 

the insignificant difference may be due to the low sample size of our study.                                                                                                                  

Beta diversity analyses showed that the composition of gut microbiota in the HFD group at 4 

weeks was distinctly different from that of the control group. The gut microbial community of 

the HFD group was characterized by compositional changes in phylum level, including striking 

depletion of Verrucomicrobia phylum. Moreover, gut microbial community of HFD decreased 

in abundance of Actinobacteria, Saccharibacteria, Spirochaetes phyla and an increased 

abundance of Firmicutes, Proteobacteria phyla when compared to control, Tomas et al (2016); 

He et al (2018). This finding is in line with a previous study that compared control diet group 

and HFD group after 12 weeks of feeding and reported a higher proportion of sequences 

assigned to Firmicutes and Proteobacteria and lower proportion of sequences assigned to 

Bacteroidetes and Verrucomicrobia in HFD group compared to control. This implies that the 

microbial profile of HFD under SPF conditions is similar to that of conventional environment 

at least at the phylum level, He et al (2018).  Moreover, mice fed a HFD for 4 weeks had a 

decreased abundance of Akkermansia spp belonging to the Verrucomicrobia phylum. 

Akkermansia spp, has been reported to maintain gut barrier function and suggested as 

biomarker for a healthy gut, since members of Akkermansia have been associated with 

intestinal health and improvement of the metabolic condition in obesity-related disorders 

including NAFLD and type 2 diabetes subjects, Everard et al (2013). Moreover, Everard et al 

reported that daily administration of A. muciniphila could counteract the deleterious metabolic 

features induced by a HFD in mice, Everard et al (2013). Apart from Akkermansia, other 

beneficial bacteria at the genus level such as Roseburia, Lactobacillus, Bifidobacterium were 

reduced in HFD-fed SPF mice compared to control group. It is not surprising that mice on 

control diet showed increased abundance of Bifidobacterium relative to HFD mice since this 

diet had high amount of carbohydrate (70% by weight) compared to the high fat diet (20% by 
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weight). Bifidobacteria are known to grow on carbohydrates, Duncan et al (2007). It has also 

been reported that the administering probiotics containing Bifidobacteria to NAFLD patients 

reduced levels of TNF-α, C-reactive protein, transaminase enzymes, endotoxins, and NASH 

scores, which are risk factors for NAFLD progression, Tojo et al (2014).                                              

More importantly, in our current study, an increased abundance of propionate-producing gut 

bacteria taxa of Lachnospiraceae and Clostridiales were observed in HFD fed mice compared 

to control. This suggests that changes in these bacteria taxa may affect propionate levels which 

in turn may mediate changes in OCFA metabolism observed in high fat diet studies reported in 

Chapter 3, hence contributing to the development of NAFLD. Other HFD-enriched bacterial 

taxa related to NAFLD and reported in current study include, Eubacterium, Desulfovibrio and 

Blautia. Consistent with previous findings, high fat diet has been associated with increased 

abundance of Clostridium, Eubacterium, Desulfovibrio and Blautia, Xiao et al (2017); He et al 

(2018); Rohr et al (2019). Moreover, a study in population of NAFLD patients showed an 

increased in Proteobacteria, Enterobacteriaceae, Lachnospiraceae, Escherichia, and 

Bacteroidete, Jasirwan et al (2019). Furthermore, at genus levels Oscillobacter was lower in 

NAFLD whereas Ruminococcus, Blautia, and Dorea were increased in NASH, Grabherr et al 

(2019).   

4.5 Conclusion 

We investigated the impact of a HFD on gut microbiota after 4 weeks of feeding SPF mice to 

identify propionate-derived gut microbiota related to diet-associated NAFLD via possible 

changes to OCFA. First, we observed that changes in gut microbiota following HFD fed under 

specific pathogen free environment is not different from those reported for conventional mice. 

Significant differences were seen in commensal bacteria at the phylum level with loss or 

reduction of phyla Verrucomicrobia, Actinobacteria, Saccharibacteria, Spirochaetes and 

increased abundance of Firmicutes and Proteobacteria. Within the genus level beneficial 
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bacteria such as Akkermansia, Lactobacillus, Bifidobacterium were reduced in HFD-fed SPF 

mice, whilst Clostridium, Eubacterium, Desulfovibrio and Blautia were enriched in HFD-fed 

SPF mice. The loss or decrease abundance of these beneficial microbes observed in our HFD 

mice models have also reported in previous human NAFLD study Grabherr et al (2019).  

Moreover, these shift in bacterial composition by high fat diet particularly propionate-

producing bacteria may underly the changes in OCFA associated with NAFLD.  
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Chapter 5 

 

 

 

 

 

5.0 Effect of a low protein diet on fatty acid metabolism in serum and liver of mice at 

normal husbandry condition 
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Abstract 

Protein malnutrition has been associated with increased risk of metabolic diseases including 

NAFLD. Manipulation of the dietary macronutrient composition, such as changing dietary 

protein content, has the potential to affect lipid metabolism and storage in the liver. In 

observational studies, serum OCFA is inversely associated with several metabolic diseases 

including type 2 diabetes and NAFLD. Here we hypothesized that lower OCFA content may 

underpin the mechanism of protein malnutrition-associated NAFLD.                                                                                                                                                                  

To study this, male C57BL/6 mice were fed either a low protein diet (LPD), a LPD 

ssupplemented with methyl donors (MD-LPD) or normal protein diet (NPD) (9% or 18% by 

body weight, respectively) for 7 weeks prior to culling to collect tissues. In parallel, another 

set of male C57BL/6 mice were fed MD-NPD, MD-LPD or LPD for eight weeks prior to 

culling to collect tissues. Serum and liver fatty acid analyses was performed by GC-FID/MS, 

peroxisomal proteins were characterized using IHC and brightfield microscopy, and hepatic 

FA metabolic transcripts analyses by RT-qPCR. In this study, we showed that carbohydrate-

rich (Aston) LPD reduced serum OCFA, increased CD36 mRNA expression. Whilst serum and 

liver OCFA was not altered in the relatively reduced carbohydrate-rich (Nottingham) LPD, 

hepatic lipid accumulation was observed suggesting fat deposition may occur prior to systemic 

fatty acid profile changes. 
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5.1 Introduction 

Emerging evidence shows that a low protein diet increases the risk of cardiometabolic diseases 

including type 2 diabetes and NAFLD, Watkins et al (2016).  A study in mice shows that 

feeding of a low protein diet (LPD) resulted in a significant reduction in glucose tolerance as 

well as elevated adiposity, Watkins & Sinclair (2014). Whether the impaired glycaemic 

response to a low protein diet is as a result of changes to circulatory odd-chain fatty acids 

remains to be determined.  

Proteins serve as important metabolic fuel source. Excess proteins cannot be stored and must 

be converted into glucose or triglycerides. The liver plays an important role in the regulation 

of the metabolism of amino acids and proteins. In endogenous protein metabolism, the liver is 

essential for the formation of plasma proteins (eg albumin, clotting factors), amino acid 

interconversion (synthesis of all non-essential amino acids), deamination of amino acids to 

produce energy and urea synthesis (for ammonia excretion), Charlton (1996). However, this is 

not enough and therefore additional amino acids should be supplied in diet particularly because 

humans cannot synthesize all of the 20 amino acids used to build proteins. Disordered protein 

and amino acid metabolism is a common feature of patients with liver disease especially those 

as results of protein-calorie malnutrition (PCM). PCM is defined as a wasting condition 

resulting from a diet deficient in both calories and protein, Charlton (1996).  

Methionine is an amino acid required for protein synthesis. Methionine adenosylated 

product, S-adenosylmethionine is an important substrate for methylation in epigenetic and 

epigenomic pathways, Robinson et al (2016). It has been reported that 

methyl donor deficiency induces liver steatosis and predisposes to metabolic syndrome, de 

Conti & Pogribny (2017). Methyl donor supplementation reverted the high fat sucrose (HFS)-

diet-induced hepatic TG accumulation in rats after 8 weeks of feeding Cordero et al (2013).                                                                                                                       
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NAFLD is linked with increased liver lipid production through de novo lipogenesis (DNL). 

The DNL pathway from protein energy sources involves synthesis of fatty acid using acetyl-

coenzyme A (CoA) as a carbon source, which is generated from metabolic reactions such as 

the deamination of amino acids. The pathway is initiated by carboxylation of acetyl-CoA to 

malonyl-CoA by acetyl-CoA carboxylase (ACC). Malonyl-CoA is then transferred to a 

complex multifunctional enzyme, fatty acid synthase (FAS). Multiple steps of activation of 

acetyl-CoA to malonyl-CoA, transferring to FAS and addition to the lengthening carbon chain 

to produce palmitate. Fatty-acyl chains are then incorporated into different classes of lipid 

species, including triglyceride and phospholipids, Charidemou et al (2019). An isocaloric low 

protein high carbohydrate diet (6% protein, 16.3 kJ/g) reduced liver weight and increased the 

lipid content compared to control (17% protein, 16.3 kJ/g) in the livers of rats fed for 2 weeks. 

This was attributed to the reduction in protein intake since the smaller supply of the amino 

acids in the diet impaired hepatic protein synthesis such as lipoprotein generation. It is thought 

that impairment in lipoprotein synthesis has the potential to limit the transport of FA to 

peripheral tissues, Menezes et al (2013). 

Apart from de novo synthesis of fatty acids, the gut also contributes to the fatty acid pool. 

Dietary fat in the form of di- and triglycerides is hydrolysed into monoglyceride and free fatty 

acids by pancreatic lipase in the small intestine. As monoglycerides and fatty acids are liberated 

via the action of lipase, they retain their association with bile acids and complex with other 

lipids to form mixed micelles. Long chain fatty acids are absorbed by the epithelial cells of the 

small intestinal villi called enterocytes, re-esterified and finally incorporated into chylomicrons 

as triglyceride. Chylomicrons are formed in the endoplasmic reticulum of enterocytes and 

undergo exocytosis before entering the lymphatic system, Stahl et al (1999). 

In this study, we have employed both GC/FID and GC/MS-based metabolomics approaches in 

order to explore the effects of two LPD models of different carbohydrate content and 
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composition on systemic fatty acid profile in mice. We used qPCR technique to explore the 

mechanisms underlying systemic fatty acid changes in the liver of the Aston LPD study.      

Following comparative differences in fatty acid profiles between the two LPD models, we used 

immunohistological approach to study changes in peroxisomal biogenesis markers in the 

Nottingham LPD model.  

5.1.1 Aims 

This study was aimed at evaluating the effect of dietary protein treatments on systemic 

metabolism of lipid using metabolomics, transcriptomics and immunohistochemistry 

approaches. The experiment tests the hypothesis that a low protein diet affects odd chain fatty 

acid metabolism leading to pathogenesis of obesity-associated metabolic diseases including 

non-alcoholic fatty liver disease.  

Specific objectives of the study were: 

1. Serum and liver FA analyses of mice fed NPD, LPD and MD-LPD in a dietary protein 

model where protein energy loss is compensated for by increasing only carbohydrate 

were performed using GC-FID (Aston LPD study). 

2. Hepatic transcript expression related to specific fatty acid changes and pathways were 

analysed by qPCR in mice fed NPD, LPD or MD-LPD (Aston LPD study). 

3. Serum and liver FA analyses of mice fed MD-NPD, LPD and MD-LPD in a dietary 

protein model where loss of protein is compensated by nutritional composition balance 

were analysed using GC-MS (Nottingham LPD study). 

4. Basic liver histological technique, H&E staining was used to investigate hepatic lipid 

accumulation of mice fed MD-NPD, LPD and MD-LPD (Nottingham LPD study). 

5. Peroxisome biogenesis protein expressions in fixed liver tissue were performed using 

immunohistochemistry technique following 8 weeks of feeding regimen and compared 

between MD-NPD, LPD and MD-LPD groups (Nottingham LPD study). 
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The following figure 5.0 shows the details of the experimental design employed in this study 

 

Figure 5.0: Experimental design of the Aston and Nottingham LPD studies. 

Male C57BL/6 mice were fed NPD, LPD or MD-LPD for 7 weeks (Aston LPD study) whilst 

in the Nottingham LPD study, male C57BL/6 mice were fed MD-NPD, LPD or MD-LPD for 

8 weeks (n=8 mice per group).NPD-Normal protein diet, LPD-Low protein diet, MD-LPD-

Low protein diet with methyl donor supplements, MD-NPD-Normal protein diet with methyl 

donor supplements, NHC-Normal husbandry condition. 

5.2 Method 

5.2.1 Low protein diet and sample collection  

For a detailed description of the animal housing and dietary treatment procedures see Chapter 

2. In brief, male mice (8 per group) were assigned to three treatment groups i.e. NPD, LPD and 

MD-LPD treated groups (Aston LPD study). The animals in the normal protein diet treated 

control group received a 18% casein protein while the animals in the LPD-treated group 

received a 9% casein protein and MD-LPD treated group receiving 9% casein protein with 

methyl donors consisting of 5 g/kg diet choline chloride, 15 g/kg diet betaine, 7.5 g/kg diet 
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methionine, 15 mg/kg diet folic acid, 1.5 mg/kg diet vitamin B12. The three diets were 

isocaloric and given ad libitum for 7 weeks. Another male mice (8 per group) were treated with 

different dietary low protein composition i.e. MD-NPD, LPD and MD-LPD (Nottingham LPD 

study) for 8 weeks.  In both studies, after the period of feeding, the animals were killed via a 

cervical dislocation of the neck and blood samples were collected via heart puncture and 

allowed to clot before centrifuging to collect the serum. Liver samples were dissected out on 

ice, snap-frozen and stored at -80°C or fixed in 10% formalin. In this project, both GC-FID and 

mass spectrometry-based analyses were carried out on serum and liver tissues. RT-qPCR 

analyses was performed on other snap frozen liver tissues and then the fixed liver tissues were 

used for the immunohistochemistry analyses. 

5.2.2 GC-FID &GC-MS experiments  

5.2.2.1 Serum and liver extract preparation and GC-FID/MS experiments   

The serum and liver sample preparations were performed as described in Chapter 2, sections 

2.2.1 and 2.2 

5.2.2.2 Preparation of fatty acid methyl esters (FAMEs) 

Fatty acids were methylated using 200 μL toluene (Thermo-Fisher, UK), 1.5 mL methanol and 

0.3 mL of 6.3% HCl in methanol at 35°C for 10 minutes (for liver (50 μLsamples) or 100 °C 

for 1 hour (for serum 50 μL samples), in PTFE-sealed glass vials. Specifically, the serum 

derivatization of Aston LPD study was long and harsh (100 °C for 1 hour). All other samples 

from both models were derivatised at shorter conditions (35°C for 10 minutes). In either serum 

or liver tissues, the FA methyl esters (FAMEs) were subsequently extracted with 1 mL of 

hexane and 1 mL of water, evaporated under nitrogen and resuspended in 20 μl of hexane in 

case of serum samples or in 150 μL hexane for liver samples prior to analyses by gas 

chromatography (GC).  
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5.2.2.3 Gas chromatographic and mass spectrometry analyses. 

The Aston LPD serum sample analyses were done using GC-FID. The serum of Nottingham- 

LPD were analysed by GC-MS. Liver samples of both models were analysed using GC-MS.  

For full details of analyses and column information have been described in Chapter 2, section 

2.2.4.1. 

Liver FA analyses was done using Agilent GC7890 system linked to a MSD5975 with electron 

impact ionisation (70 eV). For details and column information have been described in Chapter 

2, section 2.2.4.2. 

5.2.2.4 Fatty acid identification, data mining and normalization 

For GC-FID analyses, retention times of each chromatographic peak were compared with 

retention times of reference standard sample run in the same method along with the sample 

analyses. The reference standard used in this experiment is 37 FAME standard mix. Other 

properties used in accurate identification of sample is shape matching. 

In the case of GC-MS analyses, identification of fatty acids were based on matching mass 

spectra of samples with mass spectral library (eg NIST library) and/or reference standard (37 

FAME mix). In addition, identified FA were based on GC retention times. 

Peak areas were normalized by dividing each peak area value by the area of the internal 

standard (undecanoic acid) for a given sample. 

5.2.3 Real time quantitative PCR 

After 7 weeks on the low protein diet feeding regimen, the real-time quantitative PCR (RT-

qPCR) technique was used to quantify the changes in mRNA levels of several metabolic and 

inflammatory genes (see Table 2.10). The primers for these genes were selected, designed and 

verified as previously described (Chapter 2, section 2.4.1.2). The animals were sacrificed after 
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the 7-weeks of feeding and the liver tissues removed and snap-frozen and then stored at -80°C 

until analysis (as previously described in Chapter 2, section 2.1.2s). The RNA extraction 

procedure, the reverse transcription of RNA to complementary DNA (cDNA), and the RT-

qPCR processes have been described in Chapter 2, section 2.2.1.3.   

5.2.4 Immunohistochemistry 

The immunohistochemistry technique was employed to examine the effects of low protein diet 

intake on catalase (1:100; Abcam (ab16731)), PEX-14 (1:100; Abcam (ab10999)) protein 

expression in the fixed liver tissues (as previously described in Chapter 2, section 2.3.5). The 

primary antibodies were incubated with secondary antibody, goat anti-rabbit IgG H&L 

(horseradish peroxidase (HRP)) (1:250; Abcam (6721)). The animals were sacrificed after the 

end of low protein diet experiment and the livers removed and fixed in 10% of formalin and 

then stored at -4°C until analysis There were five animals assigned of each dietary group 

selected for immunohistochemistry analyses. Images of slides were captured with brightfield 

microscopy (as previously described in Chapter 2, section 2.3.4.1 and 2.3.4.3). 

 

5.3 Results 

Metabolic response to protein loss compensated by only carbohydrate (The Aston low protein 

diet study). 

To understand the metabolic response to a low protein diet where protein loss has been replaced 

by carbohydrate, we fed mice with either NPD, LPD or MD-LPD for 7 weeks and assessed 

their growth rate, serum and liver fatty acid profiles, as well as mechanism underlying lipid 

metabolism and oxidative stress. 
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5.3.1 Growth rate of low protein diet fed mice (Aston LPD study) 

To study the effect of protein restriction on body weight for 7 weeks, eight-week-old C57BL/6 

males were housed singly and fed three different diets either control normal protein diet (NPD; 

n = 8) isocaloric low protein diet (LPD; n = 8) or MD-LPD; n=8) ad libitum for at least 7 weeks 

(Table 2.1). Overall, the weights of the animals receiving NPD (controls) or LPD were 

statistically lower from MD-LPD fed mice (p < 0.05; n=8 mice) from week 5 to the day they 

were sacrificed (week 7). (Figure 5a). There were no difference between LPD and MD-LPD 

groups. 

 
Figure 5a:   Body weight changes with time (Aston LPD sudy).  

                                                                                                                                                        

Data represent mean ± SEM. Male mice with normal-protein diet (LPD; 18% casein protein; 

n=8), male mice with low-protein diet (LPD; 9% casein protein; n=8), male mice with LPD 

supplemented with methyl donors (MD-LPD; 9% casein protein with methyl donors (5 g/kg 

diet choline chloride, 15 g/kg diet betaine, 7.5 g/kg diet methionine, 15 mg/kg diet folic acid, 

1.5 mg/kg diet vitamin B12; n=8). *p<0.05; **p<0.001.   

 

5.3.2 Effect of low protein diet on serum and liver fatty acids 

Here we present serum and liver fatty acid profiles of fatty acids in NPD, LPD and MD-LPD 

group after 7 weeks of feeding (table 5.1 & 5.2). 
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Table 5.1:   Fatty acid composition of serum in mice fed with low protein diet (Aston LPD 

study) 

 

Group 

of FA 

% of total 

serum FA 

NPD 

Median (min-max) 

LPD 

Median (min-max) 

MD-LPD 

Median (min-max) 

ECFA 

 

 

 

 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C10:0 

C12:0 

C14:0 

C16:0 

C18:0 

C22:0 

C24:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C20:4n6 

C22:2 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2

n6 

5.86 (4.28-8.89) 

3.02 (1.89-6.79) 

5.23 (4.12-6.43) 

22.43(21.53-26.45) 

13.77 (9.85-17.03) 

0.80 (0.30-1.03) 

0.70 (0.56-2.29) 

53.59 (49.29-57.50) 

1.39 (1.27-3.44) 

5.81 (3.88-8.22) 

7.08 (5.21-10.56) 

1.39 (1.04-2.91) 

13.95(12.49-15.81) 

15.40(13.81-18.24) 

18.96(15.93-22.04) 

2.94 (1.28-3.93) 

1.55 (0.89-3.38) 

23.32(20.07-26.44) 

 

0.06 (0.05-0.13) 

1.07 (0.91-1.27) 

 

0.17 (0.06-0.21) 

2.28(1.20-6.00)** 

1.89(1.22-3.08)* 

2.00(1.49-2.65)*** 

16.39(14.29-35.34)* 

16.47(15.27-19.16)** 

0.42 (0.34-1.62) 

4.34 (2.41-5.84)*** 

43.89(43.57-65.21) 

1.07 (0.81-3.07)* 

2.87 (1.66-4.93)** 

4.14 (3.04-6.03)* 

0.80 (0.68-1.45)* 

15.45(10.66-19.12) 

16.34(12.12-19.90) 

18.65(11.96-19.62) 

15.71(3.55-17.57)** 

0.60 (0.39-2.44)* 

35.16(17.96-36.42) 

 

0.05 (0.04-0.07) 

0.93 (0.70-1.01) 

 

0.85 (0.30-0.99)*** 

6.85 (5.26-8.47)## 

7.42(3.97-10.22)### 

5.79 (4.28-6.29)### 

16.39(16.74-29.40) 

15.70(10.21-17.25) 

0.42 (0.34-1.62)## 

0.72 (0.27-1.75)### 

56.23(52.76-.21)## 

2.06 (1.06-2.61) 

8.56 (6.09-9.69)## 

9.94 (8.24-11.54)### 

1.20 (0.89-1.63)# 

12.18(9.62-12.89)# 

13.56(10.68-14.10)# 

11.70(5.27-14.71)## 

7.28 (2.08-9.36)# 

0.59 (0.49-1.51) 

20.00(7.87-25.30)## 

0.06 (0.04-0.10) 

0.77 (0.66-1.02) 

 

0.62 (0.39-0.67) 

*p<0.05 LPD vs NPD, #p<0.05 MD-LPD vs LPD 

 

 

 

 

 

 

 

 



195 
 

Table 5.2: Fatty acid composition of liver in mice fed low protein diet (Aston LPD study) 

 

Group 

of FA 

% of total liver 

FA 

NPD 

Median (min-

max) 

LPD 

Median (min-max) 

MD-LPD 

Median (min-max) 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

0.64 (0.42-0.80) 

29.30(24.18-39.72) 

12.27 (6.93-19.95) 

41.82(33.02-56.42) 

0.15 (0.09-0.20) 

0.12 (0.11-0.21) 

0.43(0.23-0.60) 

2.33 (0.79-5.47) 

22.44(14.35-38.34) 

24.47(15.66-43.81) 

20.91(12.79-27.36) 

0.50 (0.28-0.90) 

0.55 (0.26-1.51) 

29.22(17.45-35.52) 

 

0.07(0.03-0.18) 

1.86(0.72-5.53) 

 

0.36(0.23-0.65) 

0.93 (0.48-0.80)* 

26.81(20.59-31.85) 

7.15(6.04-10.32)* 

35.77(27.89-43.07)* 

0.12 (0.11-0.21) 

0.12 (0.10-0.18) 

0.30(0.26-0.49) 

3.61 (1.73-4.13) 

32.11(24.37-38.14) 

35.56(26.66-42.11) 

21.08(19.54-29.34) 

0.55(0.26-1.51) 

0.36 (0.28-0.53) 

28.04(24.08-40.86) 

 

0.13(0.07-0.15) 

4.78(2.36-5.82)* 

 

0.27(0.21-0.38)* 

1.24 (0.92-1.07)# 

26.57(23.32-34.36) 

6.92 (5.47-8.46) 

34.81(31.46-41.77) 

0.12 (0.10-0.18) 

0.16 (0.13-0.19) 

0.28(0.26-0.34) 

4.00 (3.03-5.79) 

37.61(34.03-39.75) 

42.17(37.15-45.03) 

17.79(14.10-21.38)# 

0.36 (0.28-0.53) 

0.36 (0.28-0.53)# 

22.07(18.55-26.98) 

0.14(0.12-0.23) 

5.61(4.02-7.17) 

 

0.25(0.19-0.30) 

*p<0.05 LPD vs NPD; #p<0.05 MD-LPD vs LPD 
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5.3.2.1 Effect of reduced protein intake on total fatty acid concentrations in liver and 

serum 

 

To investigate the effect of low protein diet on total fatty acid concentration of mice after 7 

weeks of feeding, we analysed serum and liver samples using absolute concentration of the 

fatty acids. There were significant differences between dietary groups in serum total fatty acid 

concentrations in mice (figure 5.1). Thus, analysis of serum total fatty acids in the male mice 

revealed a significant increase in level of total FA in LPD mice compared to NPD (p<0.0001). 

The increased in serum FA concentration may result from FA released into circulation from 

adipose tissue hydrolysis.  However, MD-LPD males displayed a significantly lower total 

serum FA concentration when compared to LPD-fed male mice (p<0.05). This suggests that 

methyl donor attenuated the metabolic effect of LPD and improved FA profile. Interestingly, 

there was no significant difference between groups in liver total lipid concentration in mice at 

the end of 7 weeks of dietary feeding (figure 5.1). 

 
Figure 5.1: Effect of diet on total fatty acid concentration in serum and liver (Aston LPD 

study)                                                                                                                                                                                                      

Total fatty acids were measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. ***p<0.0001 LPD vs NPD, MD-LPD vs LPD 
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5.3.2.2 Effect of reduced protein intake on mouse serum and liver even-chain saturated 

fatty acid   

 

To assess the effect of low protein diet on even-chain saturated fatty acid, we analysed serum 

and liver samples from the mice after 7 weeks of feeding. The percentage of even-chain SFAs 

in serum were not significantly different in LPD mice when compared to NPD group, however, 

the MD-LPD group showed significantly higher even-chain SFAs compared to the LPD group 

(p<0.001, table 5.1). In contrast, the liver proportion of even-chain SFAs to all other fatty acids 

was significantly reduced in LPD relative to NPD (p<0.05, table 5.2). The addition of MD-

LPD had no effect on liver even-chain SFA proportion when compared to the LPD fed group 

(table 5.2). A total of seven specific ECFAs were detected in the serum sample analyses: capric 

acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid 

(C18:0), behenic acid (C22:0), and lignoceric acid (C24:0) with C16:0 and C18:0 being the 

most abundant (table 5.3). On the other hand, in the liver sample analyses, a total of the three 

dominant specific even-chain FAs were detected: C14:0, C16:0, C18:0 (table 5.2). LPD was 

associated with decreased concentrations of serum C10:0, C14:0 and C16:0 (p<0.05) and 

increase concentrations of serum C18:0 (p<0.05) and C24:0 (p<0.001), compared to NPD 

(figure 5.2). However, MD-LPD showed increase proportion of serum C10:0 (p<0.001), C12:0 

(p<0.05) and C14:0 (p<0.001) but decrease C24:0 (p<0.0001) compared to LPD (figure 5.2). 

In contrast, hepatic C18:0 (p<0.001) concentration was significantly lower in the LPD fed mice 

compared to NPD group (figure 5.2). However, there was no significant difference in liver 

C14:0 and C16:0 concentration between NPD and mice fed the LPD. Similar to serum MD-

LPD levels of C14:0 (p<0.001), there was an increase concentration of hepatic C14:0 (p<0.05) 

when compared to LPD fed mice. 
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Figure 5.2: Effect of low protein intake on even-chain saturated FA in the serum and liver 

(Aston LPD study)                                                                                                                                                                                                       

Specific ECFAs were measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05, **p<0.001, ***p<0.0001 LPD vs NPD; *p<0.05, **p<0.001, 

***p<0.0001 MD-LPD vs LPD 

 

 

5.3.2.3 Serum and liver odd-chain saturated fatty acids (OCFAs) in a low protein fed 

mice. 

To investigate OCFA changes following a 7 week of low protein diet intake, we performed 

analysis of serum and liver samples obtained from the mice. There were significant intergroup 

differences in the serum total OCFA proportions (table 5.1), however, no significant 

differences were observed between dietary groups in liver total OCFA proportion (table 5.1). 

Serum proportion of odd-chain SFAs were significantly lower in LPD fed group compared to 

NPD group (p<0.05), whereas serum total OCFAs were significantly higher in MD-LPD 
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relative to LPD fed group (table 5.1, p<0.0001). Two specific OCFAs were detected in both 

serum and liver sample analyses: pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) 

(tables 5.2 & 5.2). The proportion of serum C17:0 or C15:0 was significantly lower in LPD 

animals compared to NPD (p<0.05). However, the proportion of serum C17:0 in MD-LPD 

mice was significantly higher when compared to those fed with LPD (figure 5.3, p<0.001). 

There were no effects of MD-LPD upon serum C15:0 content versus LPD. There were no 

significant effects of dietary protein intake on liver C15:0 or C17:0 levels between dietary 

groups (data not shown).  

 
 

 

Figure 5.3: Effect of low protein intake on odd-chain saturated FA in the serum (Aston 

LPD study)                                                                                                                                                                                                       

Specific OCFAs was measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05 LPD vs NPD; **p<0.001 MD-LPD vs LPD 

 

 

5.3.2.4 Effect of low protein diet on mouse serum and liver monounsaturated fatty acid 

(MUFA) concentrations 

In order to assess the impact of low protein diet on MUFA, serum and liver samples were 

analysed. The proportion of MUFA in serum and liver between NPD, LPD and MD-LPD is 

shown in table 5.1 & 5.2. In our dietary model for seven weeks, the sum of MUFA in either 

plasma or liver was not statistically significant between dietary groups. Serum content of 

palmitoleic acid (C16:1 FA) was significantly reduced in LPD fed mice than NPD group 

(p<0.05), however, they were reversed when LPD was compared with MD-LPD in the serum 
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(figure 5.4, p<0.05). On the contrary, whilst serum proportion of oleic acid (C18:1 FA) was 

significantly lower in MD-LPD relative to LPD (p<0.05), there was no change when LPD was 

compared with NPD (Figure 5.4). Interestingly, individual MUFA such as palmitoleic acid 

(C16:1) and oleic acid (C18:1) in the liver of animals fed either NPD, LPD or MD-LPD did 

not differ between groups (figure 5.4). 

 

Figure 5.4: Effect of low protein intake on monounsaturated FA content in the serum and 

liver (Aston LPD study)                                                                                                                                                                                                      

Specific MUFAs were measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05 LPD vs NPD; *p<0.05 MD-LPD vs LPD) 

 

5.3.2.5 Effect of reduced protein intake on mice serum and liver PUFA  

To assess whether a low protein feeding alters PUFA distribution in the blood and liver after 7 

weeks of feeding mice with NPD, LPD and MD-LPD diets, we analysed PUFA of LPD fed 

mice and compared it with the control (NPD) group. Also, serum and liver content of PUFA 

of MD-LPD fed mice were compared with LPD fed mice.  Here, we observed that serum n-6 

PUFA content was significantly lower in MD-LPD than LPD (p<0.001). There was no 

significant difference in serum n-6 PUFA between LPD and NPD (Table 3.1). Similar to serum 

n-6 PUFA concentration, there were significantly lower levels of total n-6 PUFA in MD-LPD 

fed mice compared to LPD (p<0.05), however, no observable change were recorded in liver n-

6 PUFA between LPD and NPD (table 5.2). With the method used for serum fatty acid 

analyses, a total of three specific n-6 PUFAs were detected from the dietary protein study 
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subjects: linoleic acid (C18:2), arachidonic acid (C20:4) and cis-13,16-docosadienoic acid 

(C22:2). In the liver fatty acid analyses too, two specific n-6 PUFAs were detected including 

linoleic acid (C18:2n6) and arachidonic acid, and an n-3 PUFA, linolenic acid (C18:3n3). In 

both serum and liver n-6 PUFA analyses, C18:2n6 & C20:4n6 were the most abundant (Table 

5.1 &5.2). The serum proportion of C20:4n6 FA were significantly higher in LPD compared 

to NPD (p<0.001), however, this was lowered when MD-LPD was compared with LPD. 

(Figure 5.5). Conversely, serum C22:2 were significantly lower in LPD group compared to 

NPD (p<0.05), whilst no significant difference was obtained between MD-LPD and LPD 

(Figure 5.5). In terms of serum content of C18:2n6, analyses of intergroup differences showed 

that there were significantly lower levels in MD-LPD compared to LPD (p<0.05), although no 

significant difference was seen when LPD fed mice were compared with NPD. (Figure 5.5). 

Surprisingly, in the liver neither C18:2n6, C18:3n3 nor C20:4n6 were significantly affected by 

LPD when subjected to multiple comparison analyses. Although, we could observe a trend for 

increased concentration of C18:2n6 and C18:3n3 in LPD fed mice compared to NPD, these 

were statistically insignificant (data not shown). 
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Figure 5.5: Effect of low protein intake on polyunsaturated FA content in the serum and 

liver (Aston LPD sudy)                                                                                                                                                                                                    

Specific PUFAs were measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05, **p<0.001 LPD vs NPD; *p<0.05 MD-LPD vs LPD 

 

 

5.3.2.6 Indices of desturation enzyme activity 

The surrogate markers of enzyme activities of serum and liver of mice on NPD, LPD and MD-

LPD are shown in table 5.1 & 5.2. The C18:1/C18:0 ratio was not significant in serum FAs 

between dietary groups after the seven weeks of feeding. However, the serum C20:4/C18:2 

ratios were significantly higher in LPD fed group compared to NPD fed mice (p<0.0001) 

although no significant difference was found between LPD versus MD-LPD groups.  The 

C16:1/C16:0 ratio was not significantly different in the liver tissue fatty acids between NPD, 

LPD or MD-LPD, however, the C18:1/C18:0 ratios were significantly lower in liver fatty acids 

of LPD compared to NPD which indicates reduced SCD1 activity. Interestingly, in the liver 

fatty acids the C20:4n6/C18:2n6 ratios were significantly lower in LPD groups relative to NPD 

in response to dietary protein feeding (p<0.05). No significant changes of C20:4/18:2 ratios 

were observed in liver fatty acids between LPD and MD-LPD. 

 

5.3.3 Effect of a low protein diet on expression of genes involved in fatty acid uptake. 

 

To understand the mechanisms underlying a low protein diet associated NAFLD, we performed 

gene expression analyses on two key genes involved in hepatic fatty acid transport (cluster of 
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differentiation (CD 36) and fatty acid binding protein (FABP)) using liver tissues obtained 

from mice following 7 weeks of a low protein dietary challenge using RT-PCR.  

After the 7-week feeding regimen, the mice in the 9% LPD group showed a significant 

upregulation of CD 36 expression in the liver compared to NPD group (p<0.001). There were 

no changes in CD 36 expression between LPD versus MD-LPD groups. Moreover, when we 

assessed the expression of two fatty acid binding genes-FABP1 and FABP3 we observed no 

significant difference between NPD and LPD as well as LPD versus MD-LPD (Figure 5.6).  

 

    

 

  

Figure 5.6: Effect of LPD on CD36, FABP1 and FABP3 mRNA expressions (Aston LPD 

study).  

Mean relative transcript expression of genes involved in hepatic fatty acid uptake in mouse. 

Values are given as means ± S.E.M for n=8; **p<0.001 LPD vs NPD. Abbreviations: CD36 

(cluster of differentiation; FABP1: fatty acid binding protein 1; FABP3: fatty acid binding 

protein 3. 
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5.3.4 Identification of specific fatty acid gene expression synthesis changes during a low 

protein intake in mice 

 

Following changes in composition of fatty acid profiles observed in the liver and serum of mice 

fed with low protein diet in the presence and absence of methyl donor, we performed gene 

expression analyses on specific genes related to metabolism of saturated fatty acid (SFA), 

MUFA, OCFA and PUFA. The selected genes include stearoyl-CoA desaturase (SCD1), fatty 

acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), 2-hydroxyacyl-CoA lyase 

1(HACL1). There were no significant changes in the mRNA expressions of SCD1, FADS1 and 

FADS2 after 7 weeks of low protein in mice compared with control (NPD). Furthermore, 

FADS1 expression was significantly increased in MD-LPD group compared to LPD (p<0.001). 

However, no significant changes were observed between MD-LPD and LPD relative to SCD1 

and FADS2 expression.  Finally, HACL-1, a gene which is thought to play a role in odd-chain 

fatty acid metabolism was not altered in the liver in the LPD fed group compared to NPD 

(Figure 5.7).  
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Figure 5.7: Effect of diet on mouse liver SCD1, FADS1, FADS2 and HACL-1 mRNA 

expression (Aston LPD study).  

Mean relative transcript expression of genes related specific fatty acid changes in mouse. 

Values are given as means ± S.E.M for n=8; ***p<0.0001 LPD vs MD-LPD. Abbreviations: 

scd1: stearoyl-CoA desaturase; FADS1: fatty acid desaturase 1; FADS2: fatty acid desaturase 

2; HACL-1: 2-hydroxyacyl-CoA lyase 1 

 

5.3.5 Low protein intake does not alter the expression of mitochondrial, peroxisomal 

redox and inflammatory genes and genes related to lipid metabolism 

 

In exploring the relationship between liver tissue and a low protein diet associated NAFLD, 

we tested the effect of a low protein diet on mitochondrial, peroxisomal, inflammatory and 

other gene expression in liver tissue. At the end of the low protein experiment mRNA analysis 

carnitine palmitoyltransferase 1b, muscle (CPT1), carnitine palmitoyltransferase 2(CPT2), 

malonyl-CoA decarboxylase (MLYCD), catalase (CAT), branched chain ketoacid 

dehydrogenase E1, alpha polypeptide (BCKDHA) and tumor necrosis factor (TNF- α). We did 

not observe any significant differences between NPD and LPD (Figure 5.8). Similarly, these 

genes were insignificant between LPD and MD-LPD except genes encoding CAT and TRX1 

that were increased in MD-LPD relative to LPD (p<0.05). 
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Figure 5.8: Effect of diet on mouse liver CPT1B, CPT2, FADS1, MLYCD, CATALASE, 

BCKDHA, TNF-α, TRX1 and GSR mRNA expression (Aston LPD study).  

Mean relative transcript expression of genes involved in hepatic mitochondrial, peroxisomal 

and inflammatory genes and genes related to lipid metabolism in mouse. Values are given as 

means ± S.E.M for n=8, *p<0.05 MD-LPD vs LPD 

 

 

5.3.6 Low protein diet in which protein loss is adjusted across all dietary components 

(The Nottingham low protein diet study). 

 

In order to further understand whether LPD-mediated metabolic phenotype was not solely by 

replacement of protein loss with extra carbohydrate, we designed a low protein dietary study 

where protein loss is compensated for by nutritional balance of all dietary components. Here, 

mice were fed with MD-NPD, MD-LPD and LPD for 8 weeks and we measured their body 

weight, blood insulin, serum and liver fatty acids as well as liver peroxisomal biogenesis 

markers. 

5.3.6.1 Growth rate and glucose response to low protein diet fed mice 

To evaluate the effect of protein restriction on body weight for 8 weeks, eight-week-old 

C57BL/6 males were housed singly and fed three different diets either control normal protein 

diet with methyl donor component (MD-NPD; n = 8), low protein  with methyl donors(MD-

LPD; n = 8) without methyl donors (LPD; n=8) ad libitum for 8 weeks (Table 2.1). There were 

no changes in body weight between MD-NPD and MD-LPD as well as between MD-LPD 

versus LPD from the start (0 week) until week 8 where the MD-LPD fed group gained 

significant weight compared to either LPD or NPD (figure 5b). Following weight 
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measurement, we performed glucose tolerance test to assess the mice metabolic response to 

glucose after 2 hours of glucose bolus administration. Here, no observable glucose intolerance 

was observed between MD-NPD and MD-LPD, neither was there any changes between MD-

LPD and LPD (chapter 2, figure 2.3). 

 

Figure 5b:   Body weight changes with time (Nottingham LPD study).                                                                                                                                                         

Data represent mean ± SEM. Male mice with MD-NPD; 18% casein protein, LPD; 9% casein 

protein; n=8 and male mice fed with MD-LPD, n=8. There were no significant changes in 

weight between between MD-NPD vs MD-LPD or LPD vs MD-LPD from beginning (week 0) 

to the end of feeding (week 8)  

 

5.3.6.2 Effect of low protein diet on serum fatty acids (Nottingham LPD study) 

Here serum fatty acid profiles of fatty acids in MD-NPD, MD-LPD and LPD group following 

8 weeks of feeding is presented in table 5.3. 
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Table 5.3:   Fatty acid composition of serum in mice fed with low protein diet (Nottingham 

LPD study) 

 

Group 

of FA 

% of total serum 

FA 

MD-NPD 

Median (min-

max)  

MD-LPD 

Median (min-

max) 

LPD 

Median (min-max) 

ECFA 

 

 

 

OCFA 

 

 

MUFA 

 

 

PUFA 

 

 

 

Activity 

ratio 

C14:0 

C16:0 

C18:0 

Total ECFA 

C15:0 

C17:0 

Total OCFA 

C16:1 

C18:1 

Total MUFA 

C18:2n6 

C18:3n3 

C20:4n6 

Total PUFA 

C16:1/C16:0 

C18:1/C18:0 

C20:4n6/C18:2n6 

2.01 (1.57-3.14) 

30.93(28.10-33.68) 

11.74 (9.75-25.79) 

44.00(40.96-61.85) 

0.26 (0.08-0.26) 

0.18 (0.11-0.86) 

0.32(0.21-1.12) 

6.26 (3.17-8.83) 

23.82(13.62-25.85) 

29.47(16.79-34.68) 

23.67(19.78-29.56) 

0.24 (0.19-0.26) 

0.53 (0.22-0.87) 

24.57(20.24-30.32) 

 

0.20(0.09-0.29) 

2.05(0.53-2.65) 

 

0.01(0.01-0.02) 

1.85 (1.40-2.25) 

29.85(28.85-30.93) 

10.04(8.76-12.22)* 

42.18(40.14-43.65) 

0.08 (0.07-0.09) 

0.16 (0.11-0.21) 

0.24(0.20-0.38) 

6.21 (3.26-7.39) 

24.67(22.88-26.37) 

31.02(26.92-33.69) 

26.08(24.24-28.46) 

0.23(0.04-0.34) 

0.59 (0.49-1.51) 

26.81(25.10-29.69) 

 

0.21(0.11-0.26) 

2.34(1.94-3.01) 

 

0.01(0.01-0.02) 

1.74 (1.16-2.74) 

30.02(27.46-33.17) 

11.01 (9.86-15.55) 

43.33(41.06-46.83) 

0.13 (0.08-0.15) 

0.20 (0.15-0.26) 

0.34(0.24-0.40) 

5.17 (2.29-6.91) 

23.10(20.19-25.43)# 

28.13(22.47-32.02) 

26.88(24.06-29.98) 

0.27 (0.14-0.31) 

0.69 (0.40-0.88) 

27.94(25.08-30.84) 

0.17(0.07-0.25) 

2.12(1.30-2.34)# 

 

0.01(0.01-0.02) 

*p<0.05, MD-NPD vs MD-LPD; #P<0.05, MD-LPD vs LPD 
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5.3.6.3 Effect of dietary protein intake on serum and liver total fatty acid concentrations 

in MD-NPD, MD-LPD and LPD fed mice 

 

Similar to the Aston LPD study, we investigated the effect of dietary protein intake on total 

fatty acid concentration of mice after 8 weeks of feeding. As stated earlier, this new protein 

study differs from the Aston LPD study by the fact that protein loss is compensated for by all 

other dietary components not only carbohydrate as in the Aston low protein study. Here we 

observed no difference between MD-NPD vs MD-LPD or MD-LPD vs LPD in both serum and 

liver total fatty acid concentrations in mice (figure 5.9).  

  

Figure 5.9: Effect of diet on total fatty acid concentration in serum and liver (Nottingham 

LPD study)                                                                                                                                                                                                       

Total fatty acids were measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. 

 

 

5.3.6.4 Effect of dietary protein on serum and liver ECFA, MUFA, PUFA and OCFA 

content in MD-NPD, MD-LPD and LPD fed mice 

 

Here, we fed mice on normal protein with and low protein with or without methyl donor for 8 

weeks and assess their effect on ECFA, OCFA, MUFA and PUFA in both serum and liver 

samples from these mice: 

(a) ECFA 

After 8 weeks of feeding, we observed that the sum of ECFAs in both serum and liver were not 

different between MD-NPD and MD-LPD or between MD-LPD and LPD (table 5.3). 

Moreover, analyses of individual ECFA showed a lower content of C18:0 in MD-LPD 
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compared to MD-NPD (data not shown). When MD-LPD was compared with LPD to assess 

the effect of methyl donor composition in the diet, the proportion of C18:0 in the serum was 

not different between these groups. Serum C14:0 and C16:0 contents were not different 

between groups. Similarly, proportion of C14:0, C16:0 and C18:0 in the liver was not different 

between groups (liver data not shown).  

(b) OCFA 

Here, when OCFA content in the serum and liver was analysed there was no observable 

changes between MD-NPD and MD-LPD. Similarly, no changes were observed when MD-

LPD was compared to LPD (table 5.3). However, although insignificant, the trend of lower 

OCFA (including Specifically C15:0 and C17:0) in MD-LPD relative to MD-NPD were 

observed in both the serum and liver samples analysed (liver data not shown). 

(c) MUFA 

We analysed MUFA content in both serum and liver and observed no significant changes 

between groups (table 5.3 & 5.4). Individual MUFAs such as C16:1 and C18:1 proportion did 

not change in serum and liver when MD-NPD was compared to MD-LPD. The proportion of 

C18:1 was higher in the serum of MD-LPD compared LPD (figure 5.10). 

    

 Figure 5.10 Effect of dietary protein intake on MUFA in the serum and liver 

(Nottingham LPD study)                                                                                                                                                                                                     

Specific MUFAs was measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05 LPD vs MD-LPD 
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(d) PUFA 

Here, when serum and liver content of PUFA were assessed, there was no difference between 

dietary groups (table 5.3). Similarly, individual PUFA C18:2n6, C18:3n3 and C20:4n6 levels 

in both serum and plasma were not different between MD-NPD and MD-LPD. In terms of 

methyl donor effect, we observed a higher proportion of C20:4n6 in MD-LPD compared to 

LPD in the liver after 8 weeks of feeding (figure 5.11). 

     

   

Figure 5.11 Effect of dietary protein intake on PUFA in the serum and liver 

(Nottingham LPD study)                                                                                                                                                                                                     

Specific PUFAs was measured in the serum and liver of mice. Values are given as means ± 

SEM for n=8. *p<0.05 LPD vs MD-LPD 

 

5.3.6.5 Low protein diet results in hepatic steatosis in mice (Nottingham LPD study) 

 

After 8-week feeding regimen, we performed H&E staining to confirm the presence of lipid 

droplets in mice fed a low protein diet study where protein loss is compensated for by all dietary 

components and assessed whether this is improved in the presence of methyl donor 

supplementation. Brightfield microscopy imaging analyses revealed extensive hepatic steatosis 

developed in the livers of 9% LPD mice, however, accumulation of lipid droplets disappeared 

in MD-LPD mice (Figure 5.12). The data clearly indicate that mice in the 9% LPD group may 

have developed hepatic steatosis. 
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Figure 5.12: Low protein diet consumption leads to hepatic steatosis (Nottingham LPD 

study).  

Representative normal protein diet group (MD-NPD) mouse, low protein diet group (LPD) 

mouse and representative MD-LPD mouse liver. Representative liver sections stained with 

haematoxylin and eosin (original magnification 20×). Arrows indicate large lipid droplets in 

LPD. Each image is a representative section from one mouse out of five different mice per 

dietary groups. 

 

5.3.6.6 Immunohistochemistry staining shows increased PEX-14 staining in low protein 

fed mice (Nottingham LPD study). 

To investigate peroxisome biogenesis and localization, IHC was performed on fixed liver 

tissues isolated from MD-NPD, MD-LPD and LPD mice using anti-PEX 14 and anti-catalase 

antibodies. Male mice liver sections obtained from LPD fed group were stained more strongly 

for PEX-14 than MD-LPD group, MD-NPD staining intensity was not different MD-LPD 

(figures 5.13). 
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B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



216 
 

C. 

  

Figure 5.13: Immunostaining for PEX 14 in mouse liver from 8-week MD-NPD, MD-LPD 

and LPD mice (Nottingham LPD study) 

IHC was performed on mouse liver obtained from MD-NPD, MD-LPD and LPD using anti-

PEX 14 antibody. Arrows head indicate PEX 14 staining in liver cells. Negative control slide 

is unstained set-up by omitting primary antibody. Nuclei were counterstained with 

haematoxylin (original magnification 60×). A: Negative control; B. A representative section 

from one mouse liver out of five different mice per group; C: IHC analyses of PEX 14 intensity 

in arbitrary units. 

 

Moreover, we observed no catalase expression in liver after NPD whereas LPD and MD-LPD 

both expressed catalase although the later was less immunostaining was less with methyl 

donor supplementation (figure 5.14). 

A. 

 

 



217 
 

B. 

  

Figure 5.14: Immunostaining of catalase from 8-week MD-NPD, MD-LPD and LPD mice 

(Nottingham LPD study). 

Immunohistochemistry was performed on mice liver obtained from NPD, LPD and MD-LPD 

using catalase antibody. Arrows head indicate catalase staining in liver cells. Negative control 

slide is unstained set-up by omitting primary antibody. Nuclei were counterstained with 

haematoxylin (blue colour). (original magnification 60×) A: A representative section from one 

mouse liver out of five different mice per group; B: IHC analyses of catalase stained intensity 

in arbitrary units (*P <0.05; LPD vs MD-LPD). 
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5.4 Discussion 

5.4.1 Principal findings and low protein feeding 

The present chapter describes the effects of two different low protein diets on the circulating 

and liver fatty acid levels in mice. In the first protein (Aston LPD) study, protein deficit was 

replaced with carbohydrate, therefore metabolic effect of this diet may largely be influenced 

by the increased carbohydrate rather than decreasing protein. Then a second protein 

(Nottingham LPD) study where protein loss was compensated for by nutrient balanced 

achieved from adjusting all dietary components. We hypothesized that if no effect of 

Nottingham LPD on lipid profile is observed then, the replacement of carbohydrate in Aston 

LPD would be driving lipid metabolism changes.  Measurements were done on serum and liver 

samples from both models. In addition, this chapter examined the mechanisms underlying a 

low protein diet induced changes to fatty acid profile in mice using Aston LPD study. Using 

the Nottingham LPD model, we assessed the impact of a low protein diet on hepatic lipid 

accumulation as well as its effect on specific protein expressions involved in peroxisome 

biogenesis using immunohistochemistry approach. The study from the Aston LPD model 

shows that a low protein diet reduces the levels of total serum OCFA (and C17:0). Methyl 

donor supplementation in most cases suppressed the effect of this low protein diet on systemic 

metabolism of lipid. CD 36 gene was upregulated in the liver after a low protein diet intake. 

On the contrary, in the Nottingham LPD model, no changes in fatty acid profile including 

OCFA were observed in both serum and liver samples obtained from mice after 8 weeks on 

respective diets. Interestingly in Nottingham LPD, we observed lipid accumulation in the liver 

as well as enhanced protein expression of catalase and PEX-14, a marker of peroxisome 

biogenesis in the liver tissues. It can therefore be inferred that lipid accumulation in the liver 

may occur prior to systemic lipid changes. 
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5.4.1.1 Effect of a low protein diet on fatty acid composition (Aston LPD study) 

 

There appears to be some support for the hypothesis that altered fatty acid homeostasis in the 

liver and serum are the main factors underlying NAFLD symptoms Cortez-Pinto et al (2006); 

Yoo et al. 2017; Perdomo et al (2019). The amount of hepatic lipids can be manipulated by the 

macronutrient composition of the diet by modulating liver fatty acid uptake, lipogenesis, fatty 

acid oxidation and triglyceride secretion Postic& Girard (2008). 

A low protein diet intake can alter liver fat, Kwon et al (2012); Zutphen et al (2016). Despite 

evidence of low protein diet associated with fat accumulation in the liver, to the best of our 

knowledge no study has reported their effect on fatty acid profile may have implications in the 

pathogenesis of NAFLD. In this thesis, we have used a lipidomic approach to study the amounts 

and types of lipids that accumulate within the serum and liver in a low protein diet-associated 

NAFLD and provided some novel and interesting insights into the pathophysiology of the 

condition. 

Here, the effects of a low protein diet on these fatty acid compositions in plasma and liver have 

been characterised in C57Bl/6 male mice. 

5.4.1.2 LPD increases serum total fatty acid concentration but not in the liver 

Previous studies have reported an increase in total lipid content in patients with NAFLD and 

NASH. This was explained to be driven by increased in triglyceride content, Puri et al (2007). 

Moreover, another study reported no significant differences between liver and plasma total 

lipid concentrations following a 20-day 9% low protein diet intake in female non-pregnant rats. 

In this thesis, using the Aston LPD model, we observed increase level of total lipid in the serum, 

however there was no significant difference between a low protein diet and normal protein diet 

groups in C57B/6 male mice fed a low protein diet for 7 weeks. It is possible that the increased 

serum concentration of total lipid we observe in our studies may be because of the long duration 

of feeding. However, this remains to be determined. Rietman reported that short term 
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increasing dietary protein in healthy subjects improved lipid metabolism, however, a high 

protein intake was related to a fatty liver, Rietman (2015). We also observed a decrease in 

serum total lipid when a low protein diet was supplemented with methyl donors. Methyl groups 

are important for many cellular functions including DNA methylation, phosphatidylcholine 

synthesis, and protein synthesis. The methyl group can directly be delivered by dietary methyl 

donors, including methionine, folate, betaine, and choline, Obeid (2013). The present study is 

in agreement with previous study that reported that dietary supplementation with methyl donors 

reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an 

obesogenic diet, Cordero et al (2013). ECFA palmitate (C16:0) and stearate (C18:0) are known 

to be substantially accumulated in NAFLD, Ogawa et al (2018); Nault et al (2013).  

 

5.4.1.3 LPD intake produces differential effects on levels of even-chain saturated fatty 

acids 

Even-chain saturated fatty acids have been studied widely and have shown to play a significant 

role on human health, Zheng et al (2017). In this thesis, using the Aston LPD model, we have 

shown a comprehensive report on serum and liver ECFA contents in mice fed a low protein 

diet. A low protein diet was associated with selective changes in the ECFA proportions in liver 

and serum. In particular, serum FA levels from animals fed a low protein diet were altered in 

identified specific ECFAs than FA profile in the liver. Importantly, we determined serum 

concentrations of the major specific ECFA in the serum and the liver- palmitic acid (C16:0) 

and stearic acid (C18:0) which play a significant role in the pathogenesis of NAFLD.  We 

showed that 7 weeks of a low protein diet intake results in decrease concentration of capric 

acid (C10:0), myristc acid (C14:0), palmitic acid (C16:0). However, proportion of serum 

stearic acid (C18:0) and lignoceric acid (C24:0) were increased. These dietary protein effects 

were mostly reversed by methyl donors supplementation of the low protein diet. Interestingly, 

despite the markedly effects in circulation, we observed no significant difference in specific 

ECFA between dietary groups in the liver. One possible explanation for the different patterns 
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of a low protein diet-associated changes in lipid composition is selective incorporation of 

individual ECFA species into different hepatic lipid pools destined either for incorporation into 

tissue or mobilisation from the liver.  

 

5.4.1.4 Serum OCFA in LPD fed mice 

Odd chain saturated fatty acids have increasingly become important target in recent studies 

because of its consistent inverse association with metabolic diseases. For instance, both C15:0 

and C17:0 have been negatively correlated with NAFLD and other metabolic diseases, Pfeuffer 

& Jaudszus (2016); Mika et al (2016); Yoo et al (2017); Jenkins et al (2017). In this thesis, 

using Aston LPD model, we determined serum and liver contents of C15:0 and C17:0. 

Moreover, we showed that dietary low protein intake decreased serum OCFA, however, the 

levels were improved when a low protein diet was supplemented with methyl donors. 

Although, a similar trend was observed in the livers, these were statistically insignificant. To 

best of our knowledge, we have for the first time determined a reduced OCFA profile in 

response to a low protein diet challenge in mice. This study further our understanding that a 

decrease in the contents of OCFA observed may be associated with increased NAFLD risk in 

subjects consuming a low protein diet. Due to the fact that the mice consumed a diet lacking 

C15:0 and C17:0 in both control and treatment groups suggests that these FAs can also be 

synthesized de novo via alpha oxidation pathway in mammals as proposed by previous studies, 

Crown et al (2015); Jenkins et al (2015).  
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5.4.1.5 Effect of LPD on MUFA levels 

MUFAs are largely known to be associated with reduced risk of NAFLD, Kani et al (2014). In 

order to understand how a low protein diet affect MUFA, using Aston LPD model, we analysed 

serum and liver content of MUFA following seven weeks of feeding. We reported no 

significant effect of reduced protein intake on total MUFA between NPD and LPD in either 

liver or plasma tissues. In humans, studies by Bozzetto et al (2012), Ryan et al (2013), and 

Properzi et al (2018) showed reductions of intrahepatic tryglyceride (IHTG) when a high-

MUFA Mediterranean diet was consumed. These studies are contrary to our current finding in 

mice study where no effect of dietary protein on MUFA was found. The difference may be in 

part due to physiological difference or different dietary design. However, in terms specific FA, 

we revealed that specific MUFA (C16:1) was decreased in the serum of mice fed a LPD 

compared to NPD. Specific MUFA C16:1 proportion was raised whilst C18:1 content was 

reduced by methyl donor supplementation of LPD suggesting methyl donor intake has a 

differing effect on individual MUFA. Further studies on the role of methyl donour on MUFA 

metabolism particularly, oleic acid would be beneficial since oleic acid is known to be 

protective against cardiometabolic diseases, Perdomo et al (2015).  

 

5.4.1.6 Effect of LPD on PUFAs 

Polyunsaturated fatty acids (PUFA), linoleic acid (LA, 18:2 n-6) is a short chain precursor that 

is converted into biologically active long chain (LC) PUFA such as arachidonic acid (20:4n-

6), Jeyapal et al (2018). These LA fatty acids can only be sourced from diet, hence termed 

essential fatty acids, Russo (2009). Few clinical evidence available suggest that linoleic acid is 

associated with reduced IHTG. For instance, Bjermo et al (2012) demonstrated that a high 

intake of n-6 PUFA (10–15 % total energy from linoleic acid) in abdominally-obese men and 

women for 10 weeks reduced IHTG compared with a higher intake of SFA, in the context of 
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an isoenergetic diet. Moreover, in a double-blind follow-up study, Rosqvist et al (2014) 

observed that a similarly high intake of n-6 PUFA (10–15 % total energy) during 

hyperenergetic conditions for 7 weeks did not lead to accumulation of IHTAG, which was in 

contrast to the group consuming SFA.  

In the present study, using the Aston LPD model, we observed no significant effect in total 

PUFA between LPD and NPD in analyses of serum and liver tissues obtained from the 

experimental mice. However, our finding is in line with previous animal study where a 9% low 

protein diet administered to non-pregnant female rats for 20 days had no effect on plasma and 

liver fatty acids, Burdge et al (2002). Supplementing LPD with methyl donors reduced the 

concentrations of PUFA compared LPD group. This suggests methyl donors may have the 

potential to reverse the deleterious effect of “bad” fats whilst increasing the levels of “good” 

fats. 

Interestingly, analyses of individual n-6 PUFAs showed a significant increase in serum 

concentration of arachidonic acid (C20:4n6). Higher levels of arachidonic acid have been 

associated with pathogenesis of NAFLD, Juárez-Hernández et al (2015).  

 

5.4.2.1 LPD induced CD36/FAT but no changes in FABP expressions in Aston LPD study 

CD36 is a member of the class B scavenger receptor family with the ability to bind long-chain 

fatty acids, phospholipids, and collagen, Febbraio et al (2002). CD36 is less expressed in 

normal hepatocytes however evidence shows that its expression is increased with lipid-rich 

diets, hepatic steatosis, and NAFLD, Wilson et al (2015). Moreover, increased 

liver CD36 expression can cause increase in fatty acid uptake as well as triglyceride 

accumulation, in many mouse strains including C57BL/6, CD36 has been identified as the gene 

most correlated with fatty liver, Wilson et al (2015). Fatty acid binding proteins (FABPs) also 

play active role in long chain fatty acid (LCFA) uptake and metabolism in the liver, Atshaves 
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et al (2010). FABP1 knockdown in the liver was associated with a decrease in liver weight and 

hepatic triglyceride accumulation, Mukai et al (2017). 

In this study, while a low protein diet does not significantly alter FABP1 and FABP3 

expressions in the examined liver tissues, LPD treatment significantly elevated the expression 

of CD36 in mice liver (Figure 3.8). This finding may support the role of this CD36 in the 

pathogenesis of non-alcoholic fatty liver disease. Previous findings have reported a role for 

CD36 in hepatic fatty acid uptake and hepatic steatosis in rodents, Sheedfar et al (2014). To 

the best of our knowledge, we have for the first time demonstrated the involvement of a low 

protein diet in liver fat accumulation via altered CD36 expression. Again, in our current studies 

we found no significant difference in expression in the FABP1 and FABP3, however, there 

seemed to be a trend of increased expression of either FABP1 and FABP3 following a low 

protein fed in mice. A study showed that a high-carbohydrate diet increases FABP1 content in 

the liver, Wang et al (2015). 

5.4.2.2 LPD and specific fatty acid gene expression in Aston LPD model 

Here, some specific genes involved in fatty acid metabolism were studied following changes 

in levels of fatty acids in the liver. The enzyme stearoyl-CoA desaturase-1 (SCD1) is 

predominantly expressed in the liver and catalyzes the synthesis of monounsaturated long-

chain FAs from saturated fatty acyl-CoAs, Peter et al (2010). In this study, using the Aston 

LPD model, we observed no significant changes in hepatic SCD1 expression in response to the 

7-week low protein diet. Our finding is contrary to previous study where a 4% low protein 

reduced scd1 mRNA expression in liver of wild-type mice after 27 weeks of feeding regime, 

Laeger et al (2016). This discrepancy may reflect the short period of feeding (7 weeks) and 

slightly higher proportion of protein (9%w/w) used in our study. Endogenous synthesis of long 

chain polyunsaturated fatty acids (LCPUFAs) and the degree of unsaturation of the biological 
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membranes are largely dependent on the actions of fatty acid desaturases Fads1(∆5-

desaturase), Fads2 (∆6-/∆8-/∆4-desaturase) and elongation of very long-chain fatty acids 

proteins (Elovls). FADS1 is the only mammalian Δ-5 fatty acid desaturase enzyme capable of 

producing the important polyunsaturated fatty acids (PUFAs) arachidonic acid (AA) and 

eicosapentaenoic acid (EPA) from substrates dihomo-γ-linolenic acid (DGLA) and 

eicosatetraenoic acid (ETA), respectively, Tanaka et al (2019). In this study, gene expression 

of both fads1 and fads2 were not altered after 7-weeks of low protein intake. This may reflect 

the observation of PUFA profiles in the liver and serum. Interestingly, supplementing low 

protein diet with methyl donors increased the expression FADS1. Previous studies have linked 

increased delta-5-desaturase (D5D) activity (FADS1) to be associated with a lower risk 

metabolic disease including NAFLD. Some studies have demonstrated a role of Hacl-1 in the 

biogenesis of odd chain saturated fatty acids (C15:0 and C17:0), Shibata et al (2012); Jenkins 

et al (2017); Kitamura et al (2017). This study therefore tested the effect of low protein diet on 

the expression of this gene in mice liver to understand if HACL1 may be involved in reduction 

of liver OCFA observed. However, we did not observe any significant difference in expression 

between dietary groups. Knockout Hacl1 was associated with significantly lower levels of 

plasma and liver C17:0 concentrations, Jenkins et al (2017). 

5.4.3 Effect of LPD on lipid oxidation and inflammatory genes using the Aston LPD model 

There were no significant changes in gene expression encoding enzymes involved in 

mitochondrial fatty acid transport (CPT1 and CPT2) in the livers of mice with a low protein 

diet. Our finding is in contrast to previous study that reported that a decreased level of hepatic 

CPT1A mRNA and CPT2 mRNA, and development of fatty liver in growing rats fed low 

protein diets, Kuwahata et al (2011). The difference observation from the current study may be 

attributed to the different experimental study design. Levels of cpt1a protein change during 

development and in response to nutritional status, Kuwahata et al (2011.                                                                   
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In the same time, another important gene, malonyl CoA decarboxylase (MLYCD) that promotes 

oxidation in the peroxisome was not altered in liver tissue of mice with protein restriction in 

our study. MLYCD overexpression is thought to decrease circulating free fatty acid (FFA) and 

liver triglyceride content, An et al (2004). So far studies on impact of diet on mlycd expression 

in the liver are rare and would require further study. Analyses of gene expression of hepatic 

BCKDHA in mice with protein restriction showed no significant difference compared to control 

mice in our current study. Branched-chain α-keto acid dehydrogenase (BCKDH) complex 

catalyses the irreversible oxidative decarboxylation of branched-chain α-keto acids, Webb et 

al (2019). A previous study in pigs show that a 14% crude protein diet increased hepatic 

metabolism of branched-chain amino acid, aromatic amino acid and gene expressions of 

BCKDHA than a 20% crude protein diet, Li et al (2015). BCKDHA complex gene was shown 

to decrease in expression of   NASH as well as decreased in expression of BCKDH complex 

inhibiting kinase, BCKDK gene Lake et al (2015). Moreover, when catalase expression in the 

liver was assessed in mice with protein malnutrition, there was no changes from those on 

normal diet. Catalase has been reported to play a role in lipid dysfunction, Heit et al (2017). 

Catalase deficiency in mice has been reported to increase the likelihood of fatty liver, Heit et 

al (2017). The fact that arachidonic acid concentration in the serum was increased in LPD fed 

mice, we measured TNF- α mRNA to assess inflammation in the liver of these mice. We 

observed no changes in expression of TNF- α. Our finding is in line with previous study where 

liver mRNA expression of TNF-α did not show significant changes of rats placed on low-

protein (protein-energy density of 0.012 MJ/60 ml) compared to controls receiving normal 

energy and protein energy density of 0.047 MJ/60 ml, Raina et al (2014). TNF-α trimer initiates 

inflammatory and immunoregulatory responses by binding to two distinct cell surface receptors 

of 55 kDa, (TNFR-I) and 75 kDa (TNFR-II) Tartaglia & Goeddel (1992). However, in Raina et 

al findings they observed an increase in TNF-α, TNFR-I, and TNFR-II protein expressions in 
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the liver of these rats placed on LP compared with control. These means that nutritional 

manipulations alter the differential expression of protein and mRNA of TNF-α and its receptors 

in organs and muscle, Raina et al (2014). Furthermore, there were no changes in expression of 

TRX1 mRNA and GSR mRNA expression in LPD fed mice relative to NPD, however, 

supplementation of LPD with methyl donor increased TRX1 mRNA and GSR mRNA 

expression suggesting methyl donor protection against LPD-induced oxidative stress.  

5.4.4 No effect of low protein diet on systemic fatty acid profile and GTT in the 

Nottingham LPD study 

Having observed changes in fatty acid profile in the liver and serum following the Aston LPD 

study, we set up the Nottingham LPD study to evaluate the real contribution of decreasing 

dietary protein. The experimental set up and conditions were similar to the Aston's LPD study. 

However, in this study loss of protein in MD-LPD or LPD were balanced by adjusting the 

nutrient composition of all nutrients including fibre, fat, minerals etc. In evaluating the effect 

of this model on serum and liver FA concentrations we observed no significant difference 

between MD-NPD and MD-LPD as well as no methyl donor effect on this model demonstrated 

by no changes in MD-LPD compared to LPD group. Analyses of total ECFA (except 

specifically C18:0), MUFA, PUFA and OCFA showed no changes in proportion between MD-

NPD and MD-LPD in both serum and liver samples. These were not surprised as measurement 

of growth rate and glucose tolerance of these mice showed no effect. As we observed potential 

effect of methyl donor supplementation on poor diet in the Aston LPD study, in this dietary 

protein (Nottingham LPD) study we observed that methyl donor rich diet increased the 

proportion of serum C18:1 and liver C20:4n6. This suggests that methyl donor has potential to 

ameliorate the metabolic effect of protein malnutrition. 
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5.4.5 LPD induces hepatic steatosis confirmed by H&E analyses using the Nottingham 

LPD 

Having observed a clear difference in lipid profile between Aston LPD and Nottingham LPD 

and further observed no significant metabolic effect of Nottingham LPD, we explored further 

the effect of Nottingham LPD on hepatic lipid accumulation. Our current study shows that this 

dietary protein restriction induces a fatty liver in mice. Similar findings have been reported in 

other animal studies. A study in young male rhesus monkeys for 9 weeks showed livers of the 

protein-deficient animals to be grossly fatty, Kumar et al (1972). Another study found that 

protein restriction (8% by body weight) induced hepatic steatosis (fatty liver) after examining 

liver sections with H&E and oil red O staining in a 4-week fed rats, Kang et al (2011). Our 

study together with others strongly support the hypothesis that a low protein diet is a key driver 

of NAFLD.  Clinically, severe malnutrition in young children have been associated with signs 

of hepatic dysfunction such as steatosis, van Zutphen et al (2016). 

5.4.6 LPD and peroxisomal biogenesis and localization in the Nottingham LPD study 

Peroxisomes and mitochondria dysfunction are implicated in various disorders affecting the 

liver including non-alcoholic fatty liver disease, Begriche et al (2013). Peroxisomes are 

important for bile acid synthesis, β-oxidation of very long chain fatty acids (VLCFA), α-

oxidation of methyl-branched phytanic acid and the biosynthesis of ether phospholipid 

(plasmalogen), Argyriou et al (2016); van Zutphen et al (2016). Peroxisome biogenesis 

involves the different processes required to assemble and maintain functional peroxisomes and 

this include matrix protein import, synthesis of new organelles, and fission of existing 

organelles, Argyriou et al (2016). Catalase is considered to be an important antioxidant enzyme 

in peroxisome and used as a marker of peroxisome function, Antonenkov et al (2010). Aside 

catalase and ABCD3 being frequently used as markers for the localization of peroxisomes in 

morphological experiments, recent study has identified peroxisome biogenesis protein PEX14 
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as optimal biomarker for identification and localization of peroxisomes in tissues and species, 

Grant et al (2013). The role of peroxisome biogenesis PEX14 and catalase in metabolic 

phenotype is not well defined. In this thesis, we observed increased IHC staining of 

peroxisomal membrane protein PEX14 in the liver of mice with protein restriction. Moreover, 

catalase expressions were detected in LPD and MD-LPD but no expression in MD-NPD in 

mice livers. This observation of higher catalase staining in MD-LPD group in this Nottingham 

LPD study is in line with our earlier observation of higher mRNA expression of CATALASE in 

MD-LPD mice of the Aston LPD study (figure 5.8). This means methyl donor may play a role 

in catalase regulation in the liver.  Our finding is in contrast with previous observation where 

there was decreased immunofluorescence staining of peroxisomal membrane protein PEX14 

and catalase after 4 weeks of LPD in rats, van Zutphen et al (2016). This difference is possibly 

likely to be due to differences in dietary design.   

5.5 Conclusion  

The current study shows that a low protein diet (Aston LPD study) where protein loss has been 

replaced with only carbohydrate, decreases the levels of OCFAs in the serum and the liver, 

with this effect being reversed in most cases with the supplementation of methyl donors. 

However, a low protein diet (Nottingham LPD study) with protein loss replaced by adjusting 

all nutrients composition to achieve a balance showed no effect on OCFA in the serum and the 

liver. Additionally, evaluation of liver histology revealed increased lipid accumulation in the 

liver after a low protein diet treatment despite no changes in systemic lipid profile. This means 

liver lipid accumulation may occur before any systemic metabolic changes.  In the Nottingham 

LPD, evaluation of the protein markers showed increased expression of catalase and PEX-14 

in the liver. Given that peroxisomes and catalase overexpression sometimes is associated with 

fatty liver Marcolin et al (2011), the increased of these two protein targets by a low protein diet 

indicates that the long-term effects of this diet could potentially impair liver function. In the 
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Aston LPD, gene expression study revealed an upregulation of CD 36 gene which is known to 

be involved in fatty acid uptake into the cell. With ethical challenges involved in clinical studies 

to evaluate the impact of low protein diet on OCFA metabolism and understand whether dietary 

effect of LPD is due to protein deficiency rather than carbohydrate quality or quantity, this 

animal model study provides an important insight to explain the mechanism underlying the 

lower OCFA concentration in NAFLD patients. This is particularly important since proportion 

of OCFA in the mice after dietary regimen was less than 1% similar to what has been reported 

in few epidemiological case-control studies of metabolic disorders including NAFLD, Mika et 

al (2016); Jenkins et al (2017). Further investigations of these molecular changes may help in 

translating these findings in humans. 
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Chapter 6 

 

 

 

6.0 General Discussion and Future work 
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6.1 General discussion 

Non-alcoholic fatty liver disease (NAFLD) remains the most frequently occurring chronic liver 

disease globally, Younossi et al (2016). In general, abnormalities in de novo lipogenesis of 

fatty acids in hepatocytes, the retention of lipids due to impaired hepatocyte apolipoprotein 

secretion, impaired oxidative pathway, dyslipidemia, insulin resistance as well as changes in 

environmental factors (including diet and gut microbiota) have been implicated in the 

pathophysiology of NAFLD, Kneeman et al (2012); Hartmann & Schnabl (2018). Impairment 

of mitochondria and peroxisome biogenesis and functions affect lipid metabolism and storage 

in the liver, Nassir & Ibdah (2014); Gusdon et al (2014); van Zutphen et al (2016). In addition, 

several studies have suggested that changes in the gut microbiota diversity and functions 

contribute to NAFLD pathology, Everard et al (2013); Zhu et al (2015); Houghton et al (2016). 

Moreover, poor diet may cause NAFLD possibly influencing the gut microbiota and hepatic 

metabolism of lipid, Velázquez et al (2019). Indeed, observations from dietary studies indicate 

that dietary patterns including high fat diets and low protein diets have become major risk 

factors for pathogenesis of NAFLD, Kumar et al (1972); van Zutphen et al (2016); Jensen et al 

(2018).  Therefore, this thesis explored the effect of varying dietary fat or dietary protein 

availability on lipid metabolism with particular interest on OCFA whose changes via 

peroxisomal biogenesis and/or the gut microbiota is thought to mediate the pathogenesis of 

NAFLD. Combining all evidence from dietary fat and dietary protein, table 6.1 highlights the 

similarities and differences in response to poor quality diet. 
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Table 6.1: Differences and similarities between poor diets and metabolic outcomes. 
 
Diet High fat High fat High fat Aston LPD  Nottingham 

LPD 
Condition SPF Normal 

husbandry 
Normal 
husbandry 

Normal 
husbandry 

Normal 
husbandry 

Feeding 
duration 
(weeks) 

4 4 12 7 8 

Dietary 
composition 

60% fat, 
20% 
carbohydrat
e and 20% 
protein per 
kcal% 

60% fat, 
20% 
carbohydrat
e and 20% 
protein per 
kcal% 

60% fat, 20% 
carbohydrate 
and 20% 
protein per 
kcal% 

10% fat, 81% 
carbohydrate 
and 9% 
protein per 
kcal% 

22.5% fat, 
68.5 
carbohydrate 
and 9% 
protein per 
kcal% 

Tissues 
analysed 

Serum and 
liver 

Serum  Serum Serum and 
liver 

Serum  

Even-chain 
SFA 

No effect in 
serum or 
liver 

Increased in 
serum 

Increased in 
serum 

No effect in 
serum/liver 

No effect 

MUFA Increased in 
serum and 
liver 

Decreased 
in serum 

Decreased in 
serum 

No effect in 
serum/liver 

No effect 

OCFA Decreased 
in serum 
and liver 

Decreased 
in serum 

Decreased in 
serum 

Decreased in 
serum but no 
effect in liver 

No effect 

PUFA Decreased 
in serum 
and liver 

No effect in 
serum 

Increased in 
serum 

No effect in 
serum/liver 

No effect 

Fatty acid 
transport and 
synthesis 
pathway 

Decrease in 
hepatic 
expression 
of HACL1, 
ELOVL 6, 
SCD1, 
FADS2 but 
no change 
in CD 36, 
FABP3, 
FADS1, 
BCKDHA  

- - Upregulation 
of hepatic 
CD 36 gene 
but no 
change in 
HACL1, 
FABP3, 
SCD1, 
FADS2, 
BCKDHA   

- 

Peroxisome 
biogenesis 
(PEX14 
expression) 

Higher - - - Higher 

Redox and 
inflammation 

No change 
in 
expression 
of GSR, 
TRX, TNF- 
α 
Increased 
catalase 
immunostai
n 

- - No change in 
expression of 
GSR, TRX, 
TNF- α 

- 
 
 
 
Increased 
catalase 
immunostain 

Confirmation 
of fatty liver 

Yes - - - Yes 

 

As summarized above in table 6.1, in this thesis, 4-week old C57BL/6 male mice were HFD 

for four weeks at SPF facility. Furthermore, other mice were fed HFD for 4-or-12 weeks in a 

conventional animal house. Following dietary feeding, serum and liver samples were analysed 
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for fatty acid profiles. In Chapter 3 of this thesis, we found that in both short- and long-term 

high fat feeding in a normal husbandry environment, total (even-chain) SFA in the serum was 

increased due to an accumulation of C18:0 only whilst serum total OCFA and total MUFA 

were decreased. However, whilst there was no change in total PUFA in HFD fed mice relative 

to CD in short term fat feeding, serum total PUFA proportion increased in the long term.   In 

the same vein, mice fed HFD in an SPF environment showed decreased serum total OCFA 

(and specifically OCFA C15:0), total PUFA (and specifically PUFA C18:3n3) and increased 

total MUFA (specifically C18:1n9) but no change in total (even-chain) SFA. Similarly, in the 

liver of HFD-fed SPF mice showed a decrease in total OCFA (and specific OCFA C15:0 & 

C17:0), total PUFA (and specific PUFA C18:3n3) and increased total MUFA (specifically 

C16:1) with no effect on total SFA. From the findings reported in this chapter, it can be 

concluded that OCFA was consistently decreased in response to all HFD. In clinical 

epidemiology study an inverse association between OCFA and NAFLD risk has been reported. 

Unlike OCFA, some findings of other classes of fatty acids such as MUFA and PUFA changes 

in mice were not consistent with studies in human.    

Given that changes in fatty acid composition were observed in the serum and liver of HFD-fed 

SPF mice relative to control, we sought to understand if these changes were related to changes 

in lipogenic pathways in the liver. We observed no significant changes to genes encoding CD 

36, FABP3, PCCA and BCKDHA in HFD-fed SPF mice compared to control. However, gene 

expression of ELOVL6, SCD1 and FADS2 were down-regulated in HFD mice compared to 

control after 4 weeks of feeding. HACL-1 pathway which is thought to be involved in OCFA 

metabolism was also down-regulated which suggest that it may mediate the lower OCFA 

concentrations in NAFLD.                                                                                                                      

Some studies have shown that a high dietary PUFA resulted in down-regulation of genes 

involved in lipogenesis pathway (particularly, acetyl coenzyme A carboxylase (ACC), fatty 
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acid synthase (FAS) and stearoyl CoA desaturase (SCD1)), Sampath & Ntambi (2005); Salter 

& Tarling (2007); Jump (2008). However, in our current study, we reported either no changes 

or low levels of PUFA in either the serum or liver of HFD-fed SPF mice and this could account 

for the observation of no changes in many of the lipogenic pathways. It is also possible these 

PUFAs have been taken up by the cells to regulate transcription factors such as SREBP that 

control lipid metabolism. Moreover, the observation of down-regulation of expression of gene 

for ELOVL 6 partially reaffirms the direction of the lipogenic mechanism in the high fat fed 

mice. It is reported that dietary polyunsaturated fatty acids can cause a profound suppression 

of ELOVL6 expression and this may play important role in de novo synthesis of long-chain 

saturated and monounsaturated fatty acids in conjunction with FAS and SCD1, Matsuzaka et al 

(2002); Matsuzaka et al (2009).  

Again, in chapter 3, another significant finding was the observation of increased expression of 

catalase and PEX14 proteins (markers of peroxisome localization) in HFD-SPF fed mice 

compared to control. The alpha oxidation pathway involving HACL1 is known to occur in the 

peroxisome, therefore changes in structure or biogenesis of this organelle may affect the 

regulation of OCFA. However, the fact that HACL1 mRNA decreased whilst peroxisome 

markers (PEX14 and catalase protein) increased suggest that metabolic enzyme regulation may 

not be associated with peroxisome biogenesis.                                                                                                                           

Having observed the changes in OCFA in response to HFD, in chapter 4, we sought to 

investigate whether the effect of HFD on OCFA was related to changes in gut microbiota 

involved in propionate synthesis which is a precursor for long chain OCFA biosynthesis. Here, 

we reported an increased abundance of propionate-producing gut bacteria taxa of 

Lachnospiraceae and Clostridiales in HFD fed mice compared to control suggesting that 

changes in these bacteria taxa may affect propionate levels which in turn may be the underlying 

factor resulting in the OCFA alterations observed in the HFD studies reported in Chapter 3, 
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thereby contributing to the development of NAFLD. In previous clinical study, at the genus 

levels abundance of Ruminococcus, Blautia, and Dorea were increased in NASH patients, 

Grabherr et al (2019). In our current study, Blautia was also elevated in abundance in HFD-fed 

SPF mice.  

Following our investigations on the impact of dietary fat on OCFA and other lipid metabolism, 

we set to understand how dietary protein too influence these same parameters in mice. In order 

to achieve this, in chapter 5, two low protein diet models that differed in carbohydrate content 

and composition were studied to understand the role of dietary protein in lipid metabolism. The 

purpose of the second low protein diet study (Nottingham LPD) was to address the high 

carbohydrate confounder in the first dietary protein study (Aston LPD).  The findings in 

Chapter 5 show that feeding C57BL/6 male mice with carbohydrate-rich LPD (Aston LPD) for 

7 weeks resulted in significant decreased serum total OCFA (and specific OCFA C17:0), no 

changes in serum total even-chain SFA (but decreased in specific SFA C10:0, C14:0, C16:0), 

no changes in serum total MUFA (but decreased in specific MUFA C16:1) and no effect on 

serum total PUFA (but increased in specific PUFA C20:4 and decreased PUFA C22:2) 

compared to NPD fed mice. On the otherhand feeding C57BL/6 male mice with relatively 

reduced carbohydrate-based LPD for 8 weeks resulted in no effect in serum and liver OCFA, 

MUFA, ECFA (except decreased C18:0) and PUFA. The fact that OCFA was reduced in 

carbohydrate rich-LPD diet reinforce the potential impact of suboptimal nutrition in OCFA 

metabolism. It is interesting to note that when the carbohydrate confounder was controlled for 

in the Nottingham LPD study, we observed no effect of dietary protein on OCFA. However, 

this Nottingham LPD showed hepatic lipid accumulation despite no effect on fatty acid profile 

suggesting protein malnutrition play a role in the development of NAFLD and that metabolic 

changes and fat storage occur before systemic lipid alteration.                                                              
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Also, in chapter 5, the effect of methyl donors on systemic lipid changes were also tested using 

both the Aston LPD and Nottingham LPD models. In the Aston LPD model where LPD 

increased or decreased a specific FA, methyl donor supplementation of the low protein (MD-

LPD) reversed that. For instance, decreased C10:0, C14:0 etc in LPD group were increased in 

MD-LPD group whereas increased C24:0, C18:1, C20:4 etc by LPD were decreased in MD-

LPD group. These alteration patterns in the serum were also observed in the liver except that 

most of these were statistically insignificant. Methyl donor improved antioxidant gene 

expression in the liver of Aston LPD model. 

Following the Nottingham LPD, despite methyl donor generally showing mild effect on 

systemic lipid profile, we observed few changes in specific FAs such as increase in liver C18:1 

and serum C18:0 in MD-LPD. Combining the evidence from the two LPD models 

demonstrates the potential role of methyl donors in lipid metabolism and oxidative stress.   

In trying to understand the mechanism underlying changes in fatty levels in response to LPD, 

in chapter 5 there was increased hepatic expression of gene encoding CD36 enzyme in LPD 

mice relative to NPD and down-regulated in MD-LPD mice compared to LPD in the Aston 

LPD model. However, we observed no changes in HACL1 expression in the Aston LPD model 

as reported in the HFD-SPF model which shows that any contribution to changes in systemic 

OCFA may differ according to diet and this warrants further studies.  Finally, similar to our 

HFD-SPF model, LPD mice showed higher catalase and PEX14 was reported.  

Despite significant revelation of the major influence of suboptimal nutrition on OCFA and also 

the fact that changes to this class of fatty acids may be in part as results of altered specific gut 

microbiota and changes in peroxisomal biogenesis thereby resulting in NAFLD. This study 

suffers from some limitations. Although experimental HFD and to lesser extent LPD C57BL/6 

are well-established and validated animal model for evaluating the development of metabolic 

diseases including NAFLD, Jump et al (2018), there are limitations in extrapolating findings 
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from experimental animal models and to humans. For instance, there were contrary observation 

of changes in certain subclasses of lipids such as PUFA, MUFA which are different from those 

reported in human studies. Again, in our HFD model studies, there was carbohydrate 

confounder which was not controlled for and this may contribute to the changes in lipid 

metabolism including OCFA or gut microbiota. This makes it difficult to attribute the 

molecular changes in HFD in chapters 3 and 4 to dietary fat alone.  Moreover, other limitations 

of the study include small sample sizes, short and non-uniform durations within either HFD 

models or LPD models. Therefore, we suggest future studies should take these into 

consideration to allow fair comparison between models. 

In summary this thesis helps to improve understanding of why people consuming suboptimal 

diets may have an increased risk for NAFLD disease and suggests that improving diet, targeting 

lipid accumulation, peroxisomal biogenesis and gut microbiota may slow down NAFLD 

progression. 

 

6.2 Future work 

The findings in this thesis indicate that high dietary fat or low dietary protein have an effect on 

liver fat accumulation and impair lipid metabolism. The current studies werer mainly focused 

on short term dietary effects; future research on dietary fat/protein should focus on more long-

term consequences of fat/protein intake in relation to lipid metabolism and address the 

molecular mechanisms. We would suggest, a strictly controlled dietary study should be 

performed for at least 3 months. This time-frame is necessary to control for possible 

confounding factors such as age, duration of feeding etc, which might affect the results from 

long-term observational studies.  

Insulin resistance is one of the hallmarks of NAFLD, Utzschneider & Kahn (2006) and should 

be measured in future study. In this thesis, we focused on measuring total fatty acids, future 
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studies can explore on the effect of dietary fat/protein on specific lipid sub-classes including 

triglyceride, phospholipid, oxysterol esters etc. One possible mechanism underlying the low 

protein diet associated with hepatic lipid accumulation was up-regulation of CD 36 enzyme in 

mice as reported in this thesis. This would benefit from in-vitro mechanistic validation in future 

dietary protein study. 

Moreover, in this thesis, we reported decreased concentration of OCFA in four dietary 

challenge studies as well as down-regulation of HACL1(gene related to OCFA metabolism) in 

high fat diet fed mice. We suggest carrying out a dietary intervention study using major dietary 

source of OCFA such as dietary fibre, Weitkunat et al (2017)) would be useful to understand 

if these fatty acid profiles will change. Future molecular studies exploring transcriptional 

factors eg ChREBP, SREBP1 and Nrf2 response to dietary fat/protein challenged would 

provide further explanation to our current findings.  

“Metagenomic” analyses (16S rRNA sequencing) was not performed for the protein study for 

lack of time and funding. As we discovered novel microbiota biomarkers relating to NAFLD 

in our high fat diet study. It would also be good in a future study to perform a comprehensive 

microbiota analyses to understand the effect of dietary protein on the gut microbiota to identify 

more NAFLD related microbiota changes. Additionally, a study to transplant beneficial 

bacterial lost due to poor quality of diet (high dietary fat or low dietary protein) can be 

considered to assess their effect on metabolic health.  
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8.0 Appendix 

Table 1; Faecal sample concentration sent for 16S rRNA sequencing at Novogene Company 

Ltd, Cambridge, UK 

# code ng/ μl Volume sent-off 

(μl) 

1 CD1 2.92 60 

2 CD2 0.95 60 

3 CD3 8.36 60 

4 CD4 13.8 20 

5 CD5 0.94 60 

6 CD6 3.86 60 

7 CD7 0.97 60 

8 CD8 1.2 60 

9 CD9 0.93 60 

10 CD10 0.89 60 

11 HFD1 15.4 15 

12 HFD2 5.46 40 

13 HFD3 5.36 40 

14 HFD4 7.62 35 

15 HFD5 15.1 15 

16 HFD6 8.2 30 

17 HFD7 4.86 40 

18 HFD8 11.6 20 

19 HFD9 6.38 30 

20 HFD10 7.96 30 

CD-Control diet, HFD-high fat diet 
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Table 2: RNA concentrations of Aston LPD 

Diet  Date 

extracted  

1st reading  

ng/ μL  

2nd reading  

ng/ μL  

3rd reading  

ng/ μL  

Average  

ng/ μL  

1  07/04/2017  684  677  673  678.0  

1  10/04/2017  992  1009  1008  1003.0  

1  10/04/2017  1261  1306  1297  1288.0  

1  10/04/2017  1370  1339  1311  1340.0  

1  11/04/2017  840  847  862  849.7  

1  11/04/2017  878  892  891  887.0  

1  11/04/2017  880  885  885  883.3  

1  11/04/2017  886  899  893  892.7  

1  10/04/2017  1274  1296  1289  1286.3  

2  10/04/2017  1736  1779  1768  1761.0  

2  10/04/2017  1402  1449  1425  1425.3  

2  10/04/2017  401  401  438  413.3  

2  11/04/2017  1415  1413  1429  1419.0  

2  11/04/2017  1205  1209  1233  1215.7  

2  11/04/2017  523  530  521  524.7  

2  11/04/2017  1575  1573  1578  1575.3  

2  12/04/2017  930  934  954  939.3  

3  12/04/2017  998  1010  1001  1003.0  

3  12/04/2017  1389  1385  1387  1387.0  

3  12/04/2017  734  714  719  722.3  

3  12/04/2017  988  964  963  971.7  

3  12/04/2017  1558  1494  1512  1521.3  

3  12/04/2017  1290  1352  1344  1328.7  

3  12/04/2017  1381  1393  1354  1376.0  
 

1-NPD, 2-LPD, 3-MD-LPD 
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Table 3: RNA concentrations of HFD-SPF mice 

 

       HIGH FAT DIET RNA EXTRACTION (LIVER TISSUE) 9-10OCTOBER 2018                                                                                                                               

Sample 

code 

Weight(m

g) 

Suspended 

in (μl)  

Conc.(ng/

μl) 

Conc.(ng/

μl) 

Conc.(ng/

μl) 

Average(ug/

μl) 

CD 1 70.8 50 5664.5 5642.5 5852.4 5719.8 

CD 2 63.8 50 6826.5 6752.8 6890.4 6823.233333 

CD 3 98.2 50 8899.4 8278 8955.8 8711.066667 

CD 4 65.4 50 6637.3 6232.9 6315.1 6395.1 

CD 5 80.2 50 6308.8 5945.7 6085.3 6113.266667 

CD 6 54.7 50 4627.4 4466.8 4481.9 4525.366667 

CD 7 63.3 50 4654.6 4645.9 4745.7 4682.066667 

CD 8 63.2 50 5035.5 5192.8 5298.2 5175.5 

CD 9 52.5 50 5116.3 5227.6 4912.3 5085.4 

CD 10 51.7 50 3803.6 3824.4 3845.4 3824.466667 
       

HFD 1 77.1 50 5597.9 5597.8 5933.1 5709.6 

HFD 2 56.1 50 3440.6 3550.8 3522.3 3504.566667 

HDF 3 59.9 50 3710.5 3643.3 3747.6 3700.466667 

HFD 4 83.7 50 5693.1 5653 5618.4 5654.833333 

HFD 5 54.4 50 3043.9 3085.4 3099.1 3076.133333 

HFD 6 57.4 50 3731.2 3799.9 3728 3753.033333 

HFD 7 59.3 50 4366.9 4189.5 4419.3 4325.233333 

HFD 8 60.8 50 4988.6 5105.2 5024.3 5039.366667 

HFD 9 62.4 50 4747.4 4886.5 4835.8 4823.233333 

HFD 10 52.7 50 4105.4 4094.9 4130.6 4110.3 

CD-Control diet, HDF-High fat diet 
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Table 3b: The absolute serum fatty acid concentrations of short term HFD feeding 

 

 

Table 3.2b: Absolute serum concentrations of a 12-week HFD fed mice at normal husbandry 

Serum FAs (µM)                CD             HFD p-value 

 Median 

×103 

Minimum 

×103 

Median  

×103 

Maximum 

×103 

 

C14:0 3.239          1.96-4.11  1.31           1.21-1.59 0.0079 

C16:0 87.05          77.52-93.28  96.81         92.69-99.91 0.0556 

C18:0 23.97          23.21-25.74 43.54         42.49-53.14  0.0079 

C15:0 0.58            0.54-0.69 0.42           0.23-0.43 0.0079 

C17:0 0.78            0.61-1.03 0.78           0.72-0.82 >0.9999 

C16:1 24.22          19.65-33.33 5.853         5.6-7.62  0.0079 

C18:1 97.24          88.66-130.0 63.62         60.19-65.98 0.0079 

C18:2n6 81.60          69.39-103.6 97.15         85.97-102.7 0.4206 

C18:3n3 0.73            0.66-0.99 0.78           0.73-0.81 0.8413 

C20:4n6 25.65          19.48-35.48 54.53         38.87-55.83 0.0159 

Control vs HFD, n=5 

Table 3.3b: Absolute serum concentrations of a 4-week HFD fed mice at SPF conditions 

Serum FAs (µM)             CD           HFD p-value 

 Median 

×103 

Minimum 

×103 

Median  

×103 

Maximum 

×103 

 

C14:0 2.17            1.474-4.74 1.56            1.39-2.94 0.2775 

C16:0 56.75          39.24-99.43 53.07          37.93-70.71 0.6607 

C18:0 18.00          12.63-26.37 19.29          14.19-25.16 0.8421 

C15:0 0.22            0.12-0.47 0.07            0.06-0.11 0.0006 

C17:0 0.51            0.44-0.87 0.47            0.33-0.72 0.2511 

C16:1 5.74            3.31-12.90  4.140          2.965-7.360 0.2110 

C18:1 43.96          28.58-89.19 51.29          38.88-86.82 0.7802 

C18:2n6 70.62          44.24-135.4 43.56          31.49- 73.66 0.0947 

C18:3n3 0.59            0.45-1.37 0.29            0.25- 0.35 0.0003 

C20:4n6 13.55          10.62-16.73 11.11          8.04-22.80 0.4470 

Serum FAs (µM)             CD             HFD p-value 

 Median 

×103 

Minimum 

×103 

Median  

×103 

Maximum 

×103 

 

C14:0 2.234          1.71- 3.73   1.124           0.88-1.44 0.0159 

C16:0 76.31          63.73-87.09 89.97           83.17-0.10  0.0556 

C18:0 18.93          15.99-21.01 46.95           34.82-52.95 0.0079 

C15:0 0.34            0.30-0.44 0.26             0.19-0.28 0.0159 

C17:0 0.82            0.66-0.96 0.46             0.39-0.64 0.0159 

C16:1 5.66            4.82-6.65  20.50           14.90-32.45  0.0079 

C18:1 95.95          70.37-109.4 54.61           45.88-65.21 0.0159 

C18:2n6 79.59          63.00-85.68 78.77           62.77-89.65 >0.9999 

C18:3n3 6.04            5.57-22.34 7.10             6.28-7.52 >0.9999 

C20:4n6 5.66            4.24-7.10 5.63             3.22-7.57 0.8413 
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Control vs HFD, n=10 

Table 3.4b: Absolute liver concentration of a 4-week HFD fed mice at SPF conditions 

Liver FAs (µM)              CD           HFD p-value 

 Median 

×103 

Minimum 

×103 

Median  

×103 

Maximum 

×103 

 

C14:0 1.640          1.13-2.63 2.06           1.624-2.83 0.2475 

C16:0 99.76          94.61-115.4 111.5         86.85-127.4 0.6842 

C18:0 37.96          36.79- 41.47 39.38         36.86- 41.50 0.5787 

C15:0 0.72            0.63- 0.98 0.57           0.44-0.74 0.0630 

C17:0 1.53            1.37-1.85 1.32           1.19- 1.55 0.0892 

C16:1 4.76            3.65- 7.99 4.39           2.835-7.27 0.7394 

C18:1 66.02          54.37-105.4 103.1        79.97-126.9  0.0753 

C18:2n6 96.54          81.75-141.6 98.57        74.56-119.0 0.7394 

C18:3n3 0.83            0.68- 1.35 2.11           1.38- 2.90 0.0029 

C20:4n6 26.99          25.55- 30.37 30.89         28.13-34.62  0.0892 

Control vs HFD, n=10 

 

 

 

 

 

 

 

 

 

 

 


