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Abstract 

In this study a hybrid numerical framework for modelling solid-liquid multiphase flow is 

established with a single-relaxation-time lattice Boltzmann method and the discrete element 

method implemented with the Hertz contact theory. The numerical framework is then employed 

to systematically explore the effect of particle concentration on the inertial migration of 

neutrally buoyant particle suspensions in planar Poiseuille flow. The results show that the 

influence of particle concentration on the migration is primarily determined by the 

characteristic channel Reynolds number Re0. For relatively low Re0 (Re0<20), the migration 

behaviour can only be observed at a very low particle concentration (≤5%). However, when 

Re0>20 the migration behaviour can be observed at a high concentration (≥20%). Furthermore, 

a focusing number Fc is proposed to characterise the degree of inertial migration. It was found 

that the inertial migration can be classified into three regimes depending on two critical values 

of the focusing number, Fc
+ and Fc

-: i) when Fc>Fc+, a full inertial migration occurs; ii) when 

Fc<Fc-, particles are laterally unfocused; iii) when Fc-<Fc<Fc+, a partially inertial migration 

takes place. 
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1. Introduction 1 

The transport of solid particles carried by liquid in pipes and vessels is a complex problem, 2 

which ubiquitously exists in nature and industrial processes, such as chemical production, food 3 

processing, pharmaceutics, oil and mining engineering. Various studies have shown that the 4 

behaviour for rigid spheres in fluid flow depends strongly on the specific bulk flow geometry 5 

and on whether or not the particle is neutrally buoyant [1]. Neutrally buoyant particles are the 6 

particles with the same density as the immersing fluid, implying that particles are suspended in 7 

the fluid. For a simple Poiseuille flow with a dilute suspension of neutrally buoyant spheres, 8 

Segré and Silberberg [2,3] first observed that a single rigid sphere in pipe flow migrated to an 9 

equilibrium position with its center located around 0.6R, with R being the pipe radius. The 10 

phenomenon of radial migration driven by inertia was termed as the tubular pinch effect (or 11 

Segré-Silberberg effect), implying that the uniform distribution of particles over the pipe cross-12 

section converges, or is ‘pinched’, to a narrow annulus as the suspension flows. These 13 

observations prompted a strong interest in the suspension community to identify the underlying 14 

mechanism and provide a theoretical explanation of this interesting phenomenon [1,4-31]. 15 

 Many theoretical studies were performed with attempt to explain the tubular pinch effect 16 

[1,4,5]. For example, Ho et al. [1] theoretically analysed the lateral migration of a neutrally 17 

buoyant rigid sphere in both simple shear flow and Poiseuille flow in 2D and confirmed the 18 

Segré-Silberberg effect in the 2D Poiseuille flow. But for the simple shear flow, the equilibrium 19 

position was found to be at the center line between the walls. The lateral forces and particle 20 

trajectories were also calculated based on the theoretical solutions. Schonberg and Hinch [4] 21 

calculated the inertial migration of a small sphere in a Poiseuille flow with the channel 22 
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Reynolds number of order unity, by means of a singular perturbation expansion with an Oseen-23 

like region. Assuming that the sphere is sufficiently small, the disturbance of the background 24 

flow is negligible. Thus, the convective terms were linearized and analytical solutions were 25 

derived. Their results showed that the equilibrium position moves towards the wall as the 26 

Reynolds number increases and the migration velocity increases more slowly than quadratically. 27 

Asmolov [5] calculated the lift force on both neutrally and non-neutrally buoyant small spheres 28 

in a channel flow at a large Reynolds number using the matched asymptotic expansion. The 29 

results indicated that the wall-induced inertia is significant in the thin layers near the walls, 30 

while the wall effect can be neglected in the major portion of the flow excluding near-wall 31 

layers. 32 

Further experimental investigations on Poiseuille flow were also repeated in the literature 33 

[6-17]. For instance, Han et al. [6] explored the migration of particles in the tube flow of 34 

suspension with particle concentration Φ=0.06~0.40 and a wide range of particle Reynolds 35 

number Rep, using a magnetic resonance imaging technique. The Segré-Silberberg effect was 36 

found at Φ (≤0.1) when Rep was not small. However, when Φ=0.4, particles always moved 37 

toward the center of the tube and the velocity profile was blunted, of which the degree was 38 

larger for a smaller Rep. Between these two limiting cases, the particle migration was dependent 39 

on Rep. Matas and co-workers [7-9] performed a series of experimental study on the migration 40 

of dilute suspensions of neutrally buoyant particles in Poiseuille flow with Reynolds numbers 41 

Re<2,000. The equilibrium positions obtained in the experiments were found to move toward 42 

the wall as Re increases. Long-lived trains of particles aligned with the flow were also observed. 43 

Furthermore, along with the matched asymptotic expansion method, the lateral migration force 44 
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exerted on a rigid neutrally buoyant sphere in a Poiseuille flow was evaluated and discussed 45 

[10]. The theories showed that three potential sources of lift forces could lead to the tubular 46 

pinch effect, including the Saffman force, the wall lubrication repulsion, and the lift force 47 

caused by the curvature of the velocity profile in a Poiseuille flow. Choi and Lee [11] carried 48 

out a 3D holographic analysis of the inertial migration of spherical particles in micro-scale pipe 49 

flows with the Reynolds number 1.6≤Re≤77.4 and the pipe-to-particle size ratio D/d=50, 23, 50 

12, and found that the micro-scale flows share the similar migration behaviour to that in the 51 

macro-scale flows. Di Carlo et al. [12,13] reviewed the inertial migration of particles in 52 

microfluidics and summarized the key factors in controlling the micro-flow, which shed light 53 

on the potential application of inertial migration in enhanced mixing, particle separation, and 54 

bioparticle focusing. Seo et al. [14-15] investigated particle migration and single-line particle 55 

focusing in both micro-scale pipe and square channel flows using a holographic technique. The 56 

effects of blockage ratio, flow rate, and entry length on particle migration induced by fluid 57 

elasticity were evaluated. A dimensionless focusing number was also proposed to describe the 58 

focusing behaviour of particles. 59 

Computer simulation has become a powerful tool in analyzing particle migration in pipe 60 

flows. The complex nature of hydrodynamic interactions between the particles and the liquid 61 

gives rise to great challenges in predicting the behaviours of both the particles and the liquid 62 

flow, which can be fulfilled by numerical modeling to fully understand the behaviour of 63 

particle-liquid flows. The numerical techniques vary from the direct numerical simulation 64 

(DNS) [18], the finite element method (FEM) [19], computational fluid dynamics (CFD) [20,21] 65 

to the fictitious domain method (FDM) [22] and the lattice Boltzmann method (LBM) [23,24]. 66 
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With these numerical approaches, comprehensive studies on the migration of particle 67 

suspensions were carried out in both 2D and 3D, where details of the velocity profiles, the lift 68 

forces, the equilibrium positions were provided. Moreover, the influences of Reynolds numbers, 69 

pipe-particle size ratios and pipe lengths can all be obtained and analysed [25-32]. 70 

Among these numerical techniques, LBM has been widely applied in the simulation of 71 

solid-liquid suspensions due to its simplicity in parallel programing, flexibility in handling the 72 

boundary conditions, high space-time resolution and greatly reduced computational time. 73 

Inamuro et al. [25] simulated the motions of a single and two lines of neutrally buoyant circular 74 

cylinders in fluid between two flat parallel walls with the Reynolds number of 12<Re<96, and 75 

the channel-cylinder ratio of 2≤D/d≤4. Chun and Ladd [26] numerically modelled inertial 76 

migration of neutrally buoyant particles in a 3D square duct with 100<Re<1,000, where 77 

multiple equilibrium positions located near a corner or at the center of an edge were reported. 78 

Yan and co-workers [27,28] discussed the hydrodynamic interactions of two solid bodies in 2D 79 

confined linear shear flow at a finite Reynolds number. Furthermore, they analysed the 80 

transport and sedimentation of suspended particles in a 3D square duct with particle 81 

concentration 0.13<Φ<0.34, which covers a wide range of buoyancy and Reynolds numbers. 82 

Chun et al. [29] modelled the migration of particle suspensions in combined plane Couette-83 

Poiseuille flows with a particle volume fraction Φ=0.4 and a channel-particle size ratio 84 

D/d=44.3, 22.3. The behaviours of migration are classified into three groups based on the value 85 

of a characteristic force, i.e. the relative magnitude of the body force against the wall-driving 86 

force. Sun and co-workers [30,31] applied an immersed boundary lattice Boltzmann method 87 

(IB-LBM) with multi relaxation time (MRT)-LB equation to investigate the hydrodynamic 88 
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focusing of particles in straight channel flows. A particle focusing entropy was proposed to 89 

quantitatively characterise the focusing behaviour. 90 

It is clear that previous studies on solid-liquid pipe flows were mostly confined to dilute 91 

suspensions with a very low particle concentration (<1%). Much effort was taken to reveal the 92 

mechanism of the Segré-Silberberg effect both theoretically and experimentally. The balance 93 

between the lift forces and the wall repulsion determines the equilibrium position of the 94 

migration, which moves towards the wall with the increase of the channel Reynolds number. 95 

However, little attention has been paid to the migration behaviour when the particle 96 

concentration increases. It is still unclear how the particle solid fraction will affect the inertial 97 

migration of particle suspension and whether there is a critical solid fraction governing the 98 

migration behaviour. Therefore, the aim of this study is to explore the impact of particle 99 

concentration on the inertial migration of particle suspensions. For this purpose, we first 100 

develop a numerical simulation framework using a lattice Boltzmann method (LBM) coupled 101 

with a discrete element method (DEM) that is implemented with the Hertzian contact model. 102 

The developed model is then validated using the data reported in literature. We then perform a 103 

systematical study on the migration of neutrally buoyant particles in a planar Poiseuille flow 104 

with particle concentration ranging from 1% to 50% and the channel Reynolds number varying 105 

between 4 and 100. The effects of the particle concentration and Reynolds number are fully 106 

analysed and discussed.  107 
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2. Numerical model 108 

2.1 Lattice Boltzmann method (LBM) 109 

LBM originated from the lattice gas automata (LGA) method, which can be considered as 110 

a simplified fictitious molecular dynamics model to simulate fluid flows. In LBM, the fluid 111 

domain is discretised with a number of lattices, which is similar to the mesh grid of 112 

macroscopic computational fluid dynamics. In each lattice, the packets of fluid are described 113 

by the density distribution functions fi(x,t), which relate the probable amount of the fictitious 114 

fluid 'particles' moving with a discrete speed in a discrete direction at each lattice node within 115 

each time increment. The density distribution functions are analogous to the continuous, 116 

microscopic density function of the Boltzmann equation. In every lattice, the density 117 

distribution functions follow the same discretised speed model, for which various algorithms 118 

are proposed. In our numerical framework, the widely used discretization schemes, i.e. the 119 

D2Q9 model in 2D and the D3Q19 model in 3D, are adopted, respectively. In the D2Q9 model, 120 

the fluid particles at each lattice are allowed to move to its 8 immediate neighbours with 8 121 

different velocities, ei (i=1~8), while the particles move to 26 neighbours with 18 discretised 122 

velocities in D3Q19 model, as shown in Fig. 1. Similarly, there are also other discretised 123 

models, such as D2Q7 model in 2D, D3Q15 and D3Q27 models for 3D cases. 124 
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 125 

Fig.1 The (a) D2Q9 and (b) D3Q19 lattice speed model. 126 

 127 

The density distribution functions fi(x,t) are governed by the lattice Boltzmann equation 128 

(LBE) [33], 129 

 130 

( , ) ( , ) [ ( , )]i i i i i if t t t f t f t F t+  + = + + x e x x ,      (1) 131 

 132 

where the vector x denotes the position of the node for which the calculation is being carried 133 

out, Δt is the explicit time step, Fi represents a body force acting on the fluid and Ωi[fi(x,t)] is 134 

the collision operator that controls the relaxation rate of the density distribution functions. 135 

 At each node, Eq. (1) is evolved by the collision and streaming processes at each time step. 136 

Collision (also known as relaxation) redistributes the functions that arrive at each node and 137 

then streaming (also known as convection) propagates the redistributed functions to their 138 

nearest neighbour nodes. Over a number of time steps the ordering of the streaming and 139 

collision operations is irrelevant. For the collision process, a single-relaxation-time LBE 140 
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linearized by the Bhatnagar-Gross-Krook approximation is employed [34-37], where the 141 

collision operator is given as 142 

 143 

[ ( , ) ( , )]eq

i i i

t
f t f t




 = − −x x .        (2) 144 

 145 

Here, τ is the dimensionless relaxation parameter and fi
eq(x,t) is the equilibrium distribution 146 

function defined as 147 

 148 
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 150 

In Eq. (3), ωi is the weight coefficient defined by the lattice speed model. For example, for the 151 

D2Q9 model, ω0 = 4/9, ω1,2,3,4 = 1/9, ω5,6,7,8 = 1/36. / 3sc c=  is the lattice sound speed, 152 

where c=|Δx/Δt| is the lattice speed. ρ and u  are the macroscopic fluid density and velocity, 153 

which are determined as 154 

 155 
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u e
         (4) 156 

 157 

and the fluid pressure field p is determined by p=cs
2ρ. To recover the incompressible Navier-158 

Stokes equations, the kinematic viscosity of the fluid ν is not directly used in the LBM model 159 

but implicitly determined from the discretization and numerical parameters as 160 

 161 
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.         (5) 162 

 163 

Based on Guo et al.'s work [38], in order to recover the correct form of the Navier-Stokes 164 

equation with a body force, the body force term Fi in Eq. (1) should be expressed as 165 

 166 

2 4

( )1
(1 ) [ ]

2

i i
i i i

s s

F
c c




− 
= − + 

e u e u
e F ,      (6) 167 

 168 

where F is macroscopic body force. Correspondingly, the macroscopic fluid velocity in Eq. (4) 169 

should be modified as  170 

 171 

2
i i

i

t
f


= +u e F .          (7) 172 

The recovery of the continuous Navier-Stokes equation from the lattice Boltzmann scheme can 173 

be obtained through a separation of scales by means of a Chapman-Enskog expansion analysis 174 

in power of the Knudsen number [33]. In order to reach their hydrodynamic limit, some 175 

symmetry properties must be satisfied for the particle density functions [39], which are not 176 

necessarily fulfilled in the conventional LBM numerical simulations. A more accurate and 177 

stable LBM with a regularization procedure before the collision step is available [39-40]. 178 

However, the numerical deviation in the current study due to the lack of the regularization can 179 

be negligible as the Knudsen number is very small [41]. For fluid flows of high Knudsen 180 

number, higher-order terms in the Chapman-Enskog expansion must be carefully considered. 181 

 182 
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 183 

2.2 Boundary conditions 184 

 As velocity and pressure are not the primary variables in the LB formule, the normal 185 

pressure, velocity and their combined boundary conditions cannot be imposed directly, but 186 

alternative approaches to specify the boundary conditions in terms of the density distribution 187 

functions need to be developed [42]. In the current study, the 'no-slip' wall boundary conditions 188 

and the periodic boundary conditions are considered. 189 

 190 

      191 

 192 

Fig. 2 Boundary conditions and bounce-back rules for the D2Q9 model in 2D. The solid 193 

circles represent solid boundary nodes, while the open circles are the internal fluid nodes. 194 

 195 

The 'no-slip' boundary condition at the interface between the fluid and the stationary solid 196 
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wall can be imposed by the so-called bounce-back rule [23,24]. Suppose that a solid wall is 197 

defined by a set of grid nodes, as shown in Fig. 2. The nodes lying within the wall region are 198 

called solid nodes and the nodes in the fluid region are fluid nodes. If i is a link (or direction) 199 

between a fluid node and a solid node, the bounce-back rule requires that the incoming fluid 200 

particles from the fluid node are reflected back to the node that it comes from, i.e. 201 

 202 

( , ) ( , )i if t t f t+

− + =x x ,        (8) 203 

 204 

where the subscript -i denotes the opposite direction of i and fi
+ represents the post-collision 205 

density distribution function. Take the simple channel displayed in Fig. 2 as an example. The 206 

number of lattice nodes in the x and y directions are Nx and Ny, respectively. In this case, the 207 

bounce-back rule simply gives 4,7,8 2,5,6( , ) ( , )x y x yf n N f n N=  at every node along the top wall 208 

and 2,5,6 4,7,8( ,1) ( ,1)x xf n f n=  at the bottom wall, where nx denotes the x-coordinate of the solid 209 

node. This simple rule ensures that no tangential velocity exists along the fluid-wall interface, 210 

so that a 'no-slip' condition is imposed. Note that the collision and streaming processes are also 211 

carried out at the solid nodes, which has been proved to achieve a second-order accuracy [43]. 212 

This bounce-back rule works reasonably well for stationary walls and can also be extended to 213 

any shaped wall or obstacle (including stationary particles) in fluid flows. 214 

Periodic boundary conditions are also implemented in the LBM. Distribution functions 215 

exiting the domain at one end are duplicated to a virtual node and transferred to the other end. 216 

A normal streaming process then takes place, where the distribution functions of the virtual 217 

node are treated as the input to the corresponding nodes at the other end. As shown in Fig. 2, 218 
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the periodic boundary conditions for the D2Q9 model give f1,5,8(1, ny) = f1,5,8(Nx, ny) at the inlet 219 

and f3,6,7(Nx, ny) = f3,6,7(1, ny) at the outlet, where ny is the y-coordinate of the node at the periodic 220 

boundary. 221 

It should be noted that in our LBM, the solid particles that are immersed in the fluid are 222 

treated as moving wall boundaries and the interactions between the moving particles and the 223 

fluid are the most important part in the coupling of LBM and DEM. For the moving boundaries 224 

between the solid particles and the fluid, a physically correct 'no-slip' boundary condition is 225 

required to impose at the interface, i.e. the fluid adjacent to the particle surface should have 226 

identical velocity to that on the particle surface. The first step is to represent the particle using 227 

the lattice nodes. Figure 3 illustrates lattice discretization of a circular particle, where nodes 228 

interior and exterior to the particle are the solid and fluid nodes, respectively. These nodes are 229 

further classified into three categories: (1) fluid boundary node - a fluid node connected at least 230 

with one solid node; (2) solid boundary node - a solid node connected at least with one fluid 231 

node; and (3) interior solid node - a solid node not connected to any fluid node. A link between 232 

a fluid boundary node and a solid boundary node is called a boundary link. The surface of a 233 

solid particle is assumed to be located in the middle of the boundary links. Clearly, the stepwise 234 

lattice representation of the surface of a circular particle is neither accurate nor smooth unless 235 

a sufficiently small lattice spacing is used. Nevertheless, this discrete representation provides 236 

a universal approach for any shaped particles. 237 

 238 
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 239 

Fig. 3 Lattice representation of a circular solid particle showing solid boundary nodes 240 

(orange), fluid boundary nodes (green) and internal solid nodes (blue). 241 

 242 

 Based on the lattice representation, a modified bounce-back (MBB) method is applied to 243 

handle the interaction the fluid regime with suspended particles. The MBB method was 244 

proposed by Ladd [23,24] as an improvement on the simple bounce-back technique for 245 

modelling the fluid-particle interaction with moving boundaries. This method enforces that the 246 

bounce-back occurs at the solid-fluid interface at halfway between the fluid boundary nodes 247 

and the solid boundary nodes. As shown in Fig. 3, the velocity of the boundary at the 248 

approximated interface is calculated as 249 

 250 

1
2

( ),b p p i pt= +  +  −v U Ω x e X        (9) 251 

 252 

where Up, Ωp and Xp are the translational velocity, the rotational velocity and the centroid of 253 
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the solid particle, respectively. With the boundary velocity at the link intersection, the bounce-254 

back procedures at the fluid and solid boundary nodes are, respectively, 255 

 256 

( , ) ( , ) 2 ,

( , ) ( , ) 2 .

i i i b i

i i i i i b i

f t t f t

f t t t f t t

 

 

+

−

+

−

+  = − 

+  +  = +  + 

x x v e

x e x e v e
     (10) 257 

 258 

Consequently, the force exerted on the solid particle as a result of the BB and momentum 259 

transfer is calculated from the net change at the links as follows 260 

 261 

1 1
, 2 2

( , ) 2[ ( , ) ( , ) 2 ] .f i i i i i i b i it t t f t f t t  + +

− −+  +  = − +  −  F x e x x e v e e   (11) 262 

 263 

The total hydrodynamic force and the torque are then calculated by summing over all the 264 

boundary links, i.e. 265 

,

1
,2

,

( ) .

f f i

i

f i p f i

i

t

−

−

=

= +  − 





F F

M x e X F
      (12) 266 

 267 

2.3 Discrete element method 268 

In our DEM framework, both the transitional and rotational motions of each particle in the 269 

system are considered using the Newton's second law [44,45], i.e. 270 

 271 
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,

,

p

f c

p

f c

d
m

dt

d
I

dt

= + +

= +

U
F F G

Ω
M M

        (13) 272 

 273 

where Up and Ωp are, respectively, the transitional velocity and the rotational velocity of an 274 

individual particle, which are the same as used in Eq. (9). m is the particle mass and I=2/5mrp
2 275 

is the moment of inertia. G is the gravity. F and M denote the force and the torque acting on 276 

each individual particle, and the subscript f and c represent sources of these interactions, from 277 

the fluid and the interparticle collision, respectively. The collision force and the torque include 278 

 279 

,

( ) ( ) ,

c n s s

c p s s r s t

F F

r F M M

= +

=  +  +

n t

n t t n n

F

M
      (14) 280 

 281 

where Fn is the normal force including the elastic contact force and the damping force, Fs is 282 

the tangential force due to the sliding friction, Mr is the rolling resistance and Mt is the twisting 283 

resistance. rp is the particle radius. n, ts and tr are the normal, tangential and rolling direction 284 

unit vectors, respectively. 285 

The normal force acts in the direction of the unit vector n that points parallel to the line 286 

connecting the centers of the two particles, denoted by i and j, such that n=(xj-xi)/|xj-xi|. We 287 

consider two particles with radii rp,i and rp,j, elastic moduli Ei and Ej, and Poisson’s ratios σi 288 

and σj. An effective particle radius R and an effective elastic moduli E are defined as 289 

 290 
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1 1 1
,

111
.

i j

ji

i j

R r r

E E E



 +

−−
 +

        (15)  291 

 292 

The particle normal overlap δN is defined by δN = rp,i + rp,j -|xj-xi|, where xi and xj denote the 293 

particle centroid positions. The normal force is described by the Hertz contact model along 294 

with a damping term, and expressed as follows 295 

 296 

 
1.5

n N N N RF k  = − − v n ,               (16) 297 

 298 

where
4

3
Nk E R= is the normal stiffness, ηN is the normal dissipation coefficient, and vR is the 299 

relative velocity at the contact point. The contact radius a is geometrically related to the particle 300 

radius and the normal overlap as Na R= . 301 

The rolling resistance exerts a torque on the particle in the tr×n direction, where tr is the 302 

direction of the "rolling" velocity. An expression for the rolling displacement of arbitrary-303 

shaped particles was derived by Bagi and Kuhn [46]. Applying the rate of this expression to 304 

spherical particles of equal sizes yields an equation for the "rolling velocity" vL of particle i as 305 

 306 

 ( ) .L i jR= − − v Ω Ω n         (17) 307 

 308 

An expression for the rolling resistance torque Mr is postulated in the form 309 

 310 

 ,r R R r R L rM k = −  − ξ t v t        (18) 311 
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 312 

where the direction of rolling is tr = vL/|vL| and the rolling displacement is 
0

( )
t

R L r
t

d = ξ v t . 313 

kR is the rolling stiffness and ηR is the rolling damping coefficient. The first term in Eq. (18) 314 

represents a spring force and the second term accounts for the effect of damping. If the 315 

magnitude of rolling resistance torque |Mr| is greater than a critical value Mr,crit, then it keeps 316 

constant as Mr = -Mr,crit. 317 

The standard sliding model is proposed by Cundall and Strack [47], for which the 318 

tangential force Fs is given by a linear spring-dashpot, 319 

 320 

,s T T s T s sF k  = −  − t v t         (19) 321 

 322 

where kT is the tangential stiffness coefficient, vs is sliding velocity and 
0

( )
t

T s s
t

d  =  v t  323 

is the tangential displacement. ηT is the rolling damping coefficient. When the magnitude of 324 

the tangential force reaches a critical value Fs,crit = μ |Fn|, where μ is the friction coefficient, the 325 

surfaces of the two particles start to slide against each other and the tangential force is given 326 

by the Amonton friction expression Fs = -Fs,crit. 327 

Similarly, the twisting model is given as 328 

 329 

0

( ) ,
t

t Q T Q T
t

M k d  = −  −         (20) 330 

 331 

where ΩT = (Ωp, i - Ωp, j)·n is the relative twisting rate, and kQ and ηQ are the torsional stiffness 332 

and the dissipation coefficient, respectively. Similar to the sliding resistance, particles start to 333 
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spin over each other when the magnitude of the imposed twisting moment equals a critical 334 

value Mt,crit, which is given as Mt,crit = 3πaFcrit/16. For twisting moments with magnitude 335 

greater than Mt,crit, the torsional resistance is given by Mt = -Mt,crit. 336 

 Apart from the particle-particle interactions, a lubrication correction is also implemented 337 

in the numerical framework. Lubrication force arises from the radial pressure in the interstitial 338 

fluid being squeezed from the gap between two close solid surfaces. In the current LBM-DEM, 339 

when the gap between the particles and the wall becomes less than the lattice resolution, i.e. 340 

one lattice unit, the local viscous flow is not fully resolved. Therefore, an analytical 341 

representation of the lubrication force in the local unresolved flow is constructed according to 342 

the lubrication theory [48], 343 

 344 

2 1 1
6 ( )( ),lub f p R

crit

r h
h h

= − −F v        (21) 345 

 346 

where Flub is the lubrication force, vR(h) is the relative velocity at the gap h, and hcrit is critical 347 

gap distance to trigger the lubrication correction. The critical distance used in our LBM-DEM 348 

framework is set to be one lattice unit, i.e. hcrit=1.0×Δx. As a result, the total fluid force acting 349 

on the particle can be smoothed from hydrodynamic force to the limiting leading-order 350 

lubrication force when the particle is approaching the wall, namely, 351 

 352 

,
.

,

hydro crit

f

hydro lub crit

h h

h h


= 

+ 

F
F

F F
        (22) 353 

 354 
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However, it should be noted that the lubrication correction is not applied in the particle-particle 355 

interaction, in order to avoid the so-called “Stokes Paradox”, which results in an infinite 356 

lubrication force when the gap approaches zero and leads to irrational collisions. 357 

 358 

2.4 Time step scheme in LBM-DEM coupling 359 

The coupling of the LBM and DEM explicit schemes necessitates matching of their 360 

respective critical time steps [49,50]. Stability criteria requires the DEM time step to be less 361 

than a critical value. However, the LBM the time step implicitly depends on the computational 362 

parameters. Both time steps can be varied by a number of orders of magnitude and therefore 363 

the ratio between two time steps can be much smaller or much greater than one. Consequently, 364 

an efficient technique to handle any disparity in the time steps and to couple the two explicit 365 

solution schemes is necessary. 366 

According to Li and Marshall [44,45], the critical time step in DEM must be around the 367 

order of the contact time between two colliding particles, which is estimated as 368 

 369 

2

0.2

2
[ ]

p

c

R

t R
E v


          (23) 370 

 371 

This time step is normally in the range of 10-6~10-9s depending on the particle properties. On 372 

the other hand, the time step in the LBM can be inversely calculated from Eq. (5). Hence, in 373 

our LBM-DEM coupling scheme a time step ratio λ is employed as λ=ΔtLBM /ΔtDEM. The time 374 

steps in both LBM and DEM will be estimated according to the simulation setup in order to 375 
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obtain the time step ratio. It should be noted that the time step ratio λ is not necessarily greater 376 

than one, even though in most of our cases it indeed is. As a result, in the simulations where 377 

ΔtLBM <ΔtDEM the critical time step can be set as the LBM time step. When ΔtLBM >ΔtDEM a sub-378 

cycling approach is taken, which allows the execution of a number of consecutive DEM time 379 

steps within a single LBM time step. It is important to note that during DEM sub-cycling the 380 

hydrodynamic forces and torques are not updated. 381 

 382 

2.5 Model setup 383 

 384 

Fig. 4 Schematic of the simulation setup. 385 

 386 

Pressure-driven flows of non-Brownian particle suspensions through a two-dimensional 387 

channel, as shown in Fig. 4, are considered. The channel is bounded by planar walls at the top 388 

and bottom and periodic boundary conditions are applied in the horizontal direction. The 389 

suspending fluid is assumed to be Newtonian and the density of the particle is the same as that 390 

of the fluid, i.e. the particles are neutrally buoyant. The pressure gradient, which drives the 391 

fluid and the particles to flow, is implemented by a constant body force. The initial positions 392 

of the particles are randomly distributed in the channel. As the suspension flows over, the 393 
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particles will migrate to their equilibrium positions, forming a steady solid-liquid multiphase 394 

flow. 395 

In the LBM computation, the physical parameters are usually dimensionless. Therefore, a 396 

unit conversion scheme between the real parameters and the computational ones is established. 397 

In the dimensionless lattice scheme, the size of the simulation domain is Lx×D=500×100, while 398 

the suspended particles are monodisperse with diameter d=6 and 12, respectively, which gives 399 

a corresponding channel-to-particle size ratio α=D/d=16.7 and 8.3. The particle concentration 400 

is varied between 1% to 50%. The pressure gradient ranges between 1.92×10-6 and 4.8×10-5, 401 

resulting in a channel Reynolds number (with no particles) of 4 ~ 100 based on the 2D Hagen-402 

Poiseuille law [51]. It should be noted that with the increase of particle concentration, the 403 

channel Reynolds number will decrease. In order to decouple the effect of particle 404 

concentration, the Reynolds number of channel with no particles, Re0, is denoted as the 405 

characteristic Reynolds number, hereinafter. However, it is very difficult to determine Re0 for 406 

a dense particulate flow without knowing the flow velocity. Therefore, the Re0 is tuned by 407 

varying the pressure gradient rather than the velocity. Table I summarizes the most important 408 

computational parameters, including those used in DEM. Other parameters can be found in the 409 

literature [52-53]. Note that the Youngs modulus is reduced by two orders of magnitude 410 

compared with the real physical value, in order to use a larger DEM time step so that the 411 

simulations are less computationally expensive. 412 

 413 

 414 

 415 
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Table I A list of simulation parameters 416 

Physical parameters Actual Lattice value (dimensionless) 

Fluid (LBM) 

Channel length (Lx) 0.02 m 500 

Channel height (D) 0.004 m 100 

Fluid density (ρf) 1,000 kg/m3 1 

Fluid kinematic viscosity (νf) 1.0×10-6 m2/s 0.2 

Relaxation parameter (τ)  1.1 

Fluid time step (ΔtLBM) 3.2×10-4 s 1 

Time step ratio (λ) 150 150 

Pressure gradient (ΔP/Lx) 0.75~18.8 Pa/m 1.92×10-6~4.8×10-5 

Channel Reynolds number 

with no particles (Re0) 
4~100 4~100 

Particle (DEM) 

Particle diameter (d) 2.4×10-4, 4.8×10-4 m 6, 12 

Particle mass density (ρp) 1,000 kg/m3 1 

Particle concentration ( ) 1%~50% 1%~50% 

Youngs modulus (E) 2.5×108 Pa 640 

Poisson ratio (ν) 0.33 0.33 

Friction coefficient (μ) 0.3 0.3 

 417 

3. Migration of dense particle suspensions in a 418 

Poiseuille flow 419 

 A systematical study on the migration of particle suspensions in a planar Poiseuille flow 420 

with different concentrations is performed with the parameters shown in Table I. As mentioned 421 
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above, the flow is driven by the pressure gradient with the specified body force. As the particle 422 

concentration increases, obviously the fluid will be accelerated more slowly since the drag 423 

resistance caused by the particles increases, which leads to a longer time for the solid-liquid 424 

flow to develop into a steady state. Figure 5 shows the snapshots of the flow field as well as 425 

the particle positions with the same particle concentration ( 10% =  ) but different 426 

characteristic Reynolds numbers, Re0. It can be seen that at a small Re0=4, the lateral migration 427 

develops very slowly. Only part of the particles migrate laterally at the end of the computation 428 

time t=1×106. However, with the increase of Re0, a full migration, which means that all the 429 

particles migrate laterally to their equilibrium positions, is developed very quickly. For Re0=40, 430 

it occurs around t=3×105, while for Re0=100, it takes place even more earlier around t=1×105. 431 

It is also noted that as the particle concentration increases, the flow velocity decreases 432 

compared with the pure channel flow. To better to illustrate the effects of particle concentration, 433 

Fig. 6 shows the flow field as well as the particle positions with different   and Re0. The 434 

velocity shown in the contour is normalized with the maximum velocity of the corresponding 435 

pure channel flow. It is clear that with a low particle concentration ( 1% =  ), the velocity 436 

profiles still look like parabolic for different Re0. However, as    increases to 40%, the 437 

velocities decrease drastically by approximately an order of magnitude. 438 

 439 

 440 
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Fig. 5 Snapshots of the migration process of particle suspensions (D/d=16.7) with 10% =  441 

but different characteristic Reynolds numbers, (a) Re0=4, (b) Re0=40, and (c) Re0=100. The 442 

four subplots from the top to bottom in each column correspond to different time points of 443 

t=0, 1×105, 3×105, and 1×106, respectively. 444 

 445 

 446 

Fig. 6 Snapshots of the flow field and the particle positions (D/d=16.7) with different particle 447 

concentrations, (a) 1% = , (b) 10% = , (c) 40% = . The three subplots from the top to 448 

bottom in each column correspond to different characteristic Reynolds numbers of Re0=4, 40, 449 

and 100, respectively. All the snapshots are taken at the time point of t=1×106. The colormap 450 

for each Re0 is the same as shown in Fig. 5. 451 

 452 

 Furthermore, the migration behaviour of the suspending particles was investigated in more 453 

details. To make sure that the statistics of the particle positions is reliable, we first check 454 

whether the equilibrium state is reached by means of tracking the radial position of all the 455 

particles, which is defined as yr=2y-D/D. Figure 7 shows the average radial position <|yr|> of 456 

all the particles as a function of the computation time for a typical case with Re0=40 and 457 

D/d=16.7. It can be seen that <|yr|> for the relatively dilute cases with 10%   rises rapidly 458 

and reaches a plateau at the time t=4×105. On the other hand, for the dense suspensions with 459 
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20% ~ 50% = , <|yr|> increases to a stable value only after t=8×105, which takes twice the 460 

time as in the relatively dilute cases. Note that the maximum simulation time in our present 461 

study is t=106. Hence, it can be concluded that the solid-liquid flow develops into a steady state 462 

in all our cases. 463 

 464 

Fig. 7 Average radial position of all the particles as a function of the computation time for 465 

Re0=40 and D/d=16.7. 466 

  467 

Once the particle suspensions reach the steady state, the local volume fraction along the 468 

channel width is measured. Note that the volume in this study is actually the area. For 469 

convenience, we the term “volume” is still used. The channel width is first divided into a 470 

number of intervals in the y-direction. Then the local volume fraction is determined as the ratio 471 
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of the total particle volume in each interval to the total volume of this interval. Note that many 472 

particles may lie across two neighbouring intervals. In this case only part of the volume is 473 

calculated. Figure 8 shows the volume fraction profiles as a function of the radial position for 474 

different characteristic Reynolds numbers Re0 and size ratios D/d. It is found that with a fixed 475 

Re0, two obvious peaks at |yr|>0.6 can be observed at a relatively low concentration 10%  . 476 

A large gap, where the local volume fraction is zero, lies between the two peaks, indicating that 477 

most of the particles are focused at a certain radial position. At a relatively high concentration 478 

20% 50% = − , the gap becomes smaller with the increase of the particle concentration. When 479 

40%  , the local volume fraction profile seems to grow a peak at the centerline, implying 480 

that particles tend to migration to the center of the channel in the dense case, which is consistent 481 

with the previous findings [54-56]. In Poiseuille flows, the shear rate varies across the channel, 482 

which results in an inhomogeneous stress field. As a result, the suspended particles tend to 483 

migrate into the center region of the channel. In addition, for different Re0 and D/d, slight 484 

differences in the volume fraction profiles are also observed. For instance, for D/d=16.67 and 485 

30% 40% = − , the volume fraction of Re0=100 at the centerline is lower than that of Re0=20 486 

(see Fig. 8a and 8b), which indicates that increasing the channel Reynolds number facilitates 487 

the migration of particles. Same observations can be found for D/d=8.33. On the other hand, 488 

for Re0=100 and 30% 40% = − , the volume fraction of D/d=16.67 at the centerline is lower 489 

than that of D/d=8.33 (see Fig. 8b and 8d), which suggests that smaller particles are easier to 490 

migrate. 491 
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 492 

Fig. 8 The volume fraction profiles for (a) D/d=16.67, Re0=20, (b) D/d=16.67, Re0=100, (c) 493 

D/d=8.33, Re0=20 and (d) D/d=8.33, Re0=100. 494 

  495 

From Fig. 8, it is clear that the particle concentration and characteristic Reynolds numbers 496 

impose significant effects on the migration behaviour of the particle suspensions. To 497 

quantitatively evaluate their influences, Choi et al.’s work [57] is followed and the degree of 498 

inertial migration is defined with the following function, 499 

 500 

1
( )

2
f rP PDF y R=  .        (24) 501 

 502 

Eq. (24) calculates the sum of the probability distribution function (PDF) of the particles in the 503 
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upper and lower quarter of the channel. Considering that the Segré and Silberberg effect gives 504 

the radial equilibrium position around 0.6, if all the particles migrate to their equilibrium 505 

positions, then we have Pf =1. Otherwise if all the particles are uniformly distributed in the 506 

channel, Eq. (24) gives Pf =0.5. Figure 9 shows the degree of inertial migration as a function 507 

of particle concentration for various D/d and Re0. Generally, Pf decreases from 1 to about 0.5 508 

as   increases from 1% to 50%, implying that all the particles completely migrate to their 509 

equilibrium positions in dilute suspensions, but almost remain at a uniform distribution in dense 510 

suspensions. Besides, the results for different D/d show similar behaviour. However, the 511 

migration behaviour strongly depends on Re0. For instance, when Re0=4, Pf drops dramatically 512 

from 1 to 0.5 as   is beyond 5%, while Pf stays at 1 and gradually decreases until 20%   513 

when Re0=100. 514 

 515 
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Fig. 9 The degree of inertial migration Pf as a function of particle concentration for different 516 

channel-to-particle size ratios D/d and characteristic Reynolds numbers Re0. 517 

  518 

It is hence of interest to seek a general criterion to describe the degree of inertial migration. 519 

Based on the setup of our system, the potential parameters that may affect the degree of inertial 520 

migration Pf include the characteristic Reynolds number Re0, the particle concentration  , the 521 

channel-to-particle size ratio D/d, and the channel length Lx. Considering that Pf is a 522 

dimensionless parameter, the following general correlation can be yielded based on the 523 

dimensional analysis 524 

 525 

0~ (Re , , , )xLD
f d D

P f  .         (25) 526 

 527 

If the channel length Lx is long enough, Pf is expected to be independent of Lx/D. Furthermore, 528 

the particle concentration can be expressed as 529 

 530 
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 532 

where 
p

x

N d

L
 =  is the length fraction (the number of particle diameters per channel length) 533 

[13], the size ratio and channel length can be merged into the particle concentration. Hence, we 534 

expect to have a simplified correlation 535 

 536 



30 

0~ (Re , )fP f  .          (27) 537 

 538 

Generally, the degree of migration increases as the characteristic Reynolds number increases, 539 

while it decreases when the particle concentration increases.  540 

In previous studies, Zhao et al. [58] proposed a migration index to quantitatively explain 541 

the effect of particle concentration on the inertial migration, which is defined as the ratio of the 542 

particle-particle interaction force using the Lennard-Jones potential to the inertial lift force with 543 

the Asmolov expression [5]. In defining the migration index, the inter-particle distance is 544 

replaced by a volume equivalent particle diameter, which depends on the particle concentration 545 

and is always greater than the real particle diameter. Thus the Lennard-Jones potential should 546 

be attractive and the migration index actually represents the ratio of attractive force to the lift 547 

force. For the dense particle flows considered in the present study, the short-range inter-particle 548 

collision forces are more important and the attractive force for such particle size is negligible. 549 

Therefore, the migration index introduced by Zhao et al. [58] is not applicable here. 550 

Alternatively, Di Carlo et al. [13] and Choi et al. [57] proposed two similar approaches to 551 

estimate the channel length required for inertial focusing by balancing the inertial lift force and 552 

Stokes drag force, and derived a dimensionless focusing number 553 

 554 
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 556 

where LE is the entry length of the channel. When Fc is larger than a critical value, the 557 

corresponding degree of inertial migration Pf will become 1, indicating a complete lateral 558 
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migration behaviour. However, this focusing number is not suitable for the cases considered in 559 

the present study for two reasons: i) It is derived for dilute suspension, where the flow field is 560 

assumed to be not disturbed by the particles. The effect of particle concentration is not fully 561 

considered. ii) There is no entry length as periodic boundary conditions are set at the inlet and 562 

outlet to explore the flow at the steady state, which is the main focus of this study. In order to 563 

find a general criterion to describe the degree of inertial migration when the multiphase flow 564 

is fully developed, a new dimensionless focusing number is proposed here to serve as a 565 

qualitative indicator on the degree of inertial migration phenomena for dense suspensions. 566 

The new dimensionless focusing number is determined using the simulation results. 567 

Through a fitting with two independent variables, the dimensionless focusing number can be 568 

expressed as 569 

 570 

0Rem

c n
F


= ,         (29) 571 

where m=0.36 and n=2.33 are obtained from the simulation data presented here. Figure 10 572 

shows the relationship between Pf and Fc, where an empirical fitting is given by 573 

 574 

1 exp[ (log ) ]c

c

fP a b F= − − .       (30) 575 

 576 

The fitting parameters are a=0.50, b=0.01 and c=6.51 based on the present simulation data. It 577 

can be seen that with the increasing of Fc, Pf rises from about 0.5 to 1. Three regimes can be 578 

identified based on two critical values of Fc, which include the upper critical value Fc
+ and the 579 

lower critical value Fc
-. For the current study, the two critical values are Fc

+≈300 and Fc
-≈30, 580 
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respectively. When Fc>Fc
+, all the particles undergo a complete lateral migration (Pf =1). When 581 

Fc<Fc
-, particles are laterally unfocused and tend to be uniformly distributed (Pf =0.5). 582 

Otherwise, the particles are partially focused in the lateral direction. 583 

 584 

Fig. 10 The degree of inertial migration as a function of the focusing number. 585 

 586 

Eq. (29) indicates that for a fixed channel, either increasing the characteristic Reynolds 587 

number or reducing the particle concentration could enhance the degree of inertial migration. 588 

Hence, even though Eqs. (29) and (30) are empirical formulas, they do reflect the underlying 589 

physics of inertial migration. Furthermore, more attention must be paid to the assumption that 590 

the current study is only performed in 2D. In 3D cases, the function Pf can be defined similarly, 591 
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and the dimensional analysis can be done in the same manner, which yields the same form of 592 

the focusing number Fc. Therefore, similar results are expected and our findings can be 593 

extended to 3D cases, except for the different exponents in Eqs. (29)-(30) and critical focusing 594 

numbers Fc
- and Fc

+. On the other hand, due to the lack of consideration of the particle-particle 595 

lubrication effect, a slightly different migration behaviour may occur, especially in relatively 596 

dense suspensions. The presence of inter-particle lubrication force will prevent the particles 597 

from getting further closer, which may lead to a decrease in the degree of inertial migration. 598 

Nevertheless, the overall influences of the characteristic Reynolds number and the particle 599 

concentration on the inertial migration are still expected to be similar to those in the cases 600 

without consideration of the inter-particle lubrication effect. It is also worth verifying these 601 

formulas further, especially experimentally, and exploring the physical background. 602 

 603 

4. Conclusions 604 

In this paper, a coupled LBM-DEM numerical model is developed, thoroughly validated 605 

and then applied to systematically analyse on the effects of particle concentration on the inertial 606 

migration of neutrally buoyant particles in a planar Poiseuille flow, especially over a wide range 607 

of particle concentration, as previous works on the inertial migration are mainly confined to 608 

very dilute suspensions, with very limited studies focusing on the influence of the particle 609 

concentration. In this work, we also proposed a general criterion to describe the degree of 610 

inertial migration covering a wide range of particle concentration. The numerical results show 611 

that the degree of inertial migration decreases with the increasing particle concentration. The 612 
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influence of particle concentration on the degree of inertial migration depends on the 613 

characteristic channel Reynolds number Re0, which is defined as the Reynolds number for the 614 

corresponding pure channel flow with liquid only and can be determined based on the pressure 615 

gradient. For Re0<20, evident migration behaviour is only observed with 5%  , while it can 616 

still be observed with 20%   for Re0>20. Finally, a new dimensionless focusing number is 617 

proposed to characterise the degree of inertial migration, using which three regimes are 618 

identified: the fully migration regime, the partially migration regime and the laterally 619 

unfocused regime. 620 
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 626 

Appendixes: LBM-DEM model validation  627 

A1. 2D Poiseuille flow 628 

 The model is first validated for a single phase planar Poiseuille flow in a channel illustrated 629 

in Fig. 4. The size of the channel is 10×101 and the fluid density, kinematic viscosity and 630 

relaxation parameter are 1,000 kg/m3, 1×10-6 m2/s and 1.1, respectively. The flow is driven by 631 

a constant body force, which induces a pressure gradient. By varying the body force, different 632 
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channel Reynolds numbers can be achieved. For a planar Poiseuille flow, the velocity profile 633 

is analytically derived as 634 

 635 
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= − ,         (A1) 636 

 637 

where G and μf represent the pressure gradient and fluid viscosity, respectively. 638 

 639 

Fig. 11 Velocity profiles for 2D Poiseuille flows. (a) LBM simulation results. (b) The 640 

normalized velocity profiles. 641 

 642 

Figure 11a shows the velocity profile for Poiseuille flows with different channel Reynolds 643 

numbers. The parabolic velocity profiles are well reproduced. Then the velocity is normalized 644 

with maximum channel velocity at the centerline, i.e. 
2

max
8 f

GD
U


= , which gives 645 
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Figure 11b shows the normalized velocity as a function of the normalized channel width. It can 649 

be seen that the normalized velocity profiles for various channel Reynolds numbers collapse 650 

onto a single curve, which agree perfectly with the theoretical prediction, within a maximum 651 

relative error less than 0.2%. Therefore, it is demonstrated that the numerical approach is 652 

capable of accurately modelling the single phase fluid flow. 653 

A2. Gravity settling 654 

 In order to validate if the solid-fluid coupling in the developed LBM-DEM can correctly 655 

compute the hydrodynamic forces and torques, gravitational settling in 3D is simulated. A 656 

particle is initially placed in the center of cuboid box of size 100×100×100. The gravity is in 657 

the vertical direction and periodic boundary conditions are set in all the faces of the box. The 658 

fluid density, kinematic viscosity and relaxation parameter are 1,000 kg/m3, 1×10-6 m2/s and 659 

0.65, respectively. The particle density is 3,000 kg/m3 and three particle radii are considered: 660 

2×10-5 m, 3.2×10-5 m and 4×10-5 m, which equal to 5, 8, and 10 in the lattice unit. The fluid is 661 

stationary initially and the particle starts to fall under the gravity. Then a drag force is induced 662 

by the fluid to stop the particle from further acceleration, which increases proportionally to the 663 

falling velocity. Finally, the drag force will balance the gravitational force and the particle will 664 

then fall at a constant speed, which is termed as the terminal velocity. It is well known that with 665 

a very low particle Reynolds number (Rep<1), according to the Stokes law the terminal velocity 666 

can be derived analytically as [59] 667 

 668 
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 670 

 671 

Fig. 12 Velocity and force profiles as a function of the computational time. (a) Simulation 672 

results. (b) Normalized velocity and force profiles. 673 

 674 

Figure 12 shows the velocity and force profiles as a function of the dimensionless 675 

computational time. It can be seen that the particle reaches the steady state very quickly, where 676 

the terminal velocity is reached. In all the cases, the drag force equals the effective gravity 677 

(gravity minus buoyance). The final terminal velocities are listed in Table II, in which the 678 

theoretical predictions (Eq. (A3)) are also given. It should be noted that for the case with 679 

particle radius r=10, the periodic effect may affect the result as the size of the domain is not 680 

large enough compared to the particle size [39], which leads to a relatively large error of 6.5%. 681 

However, the relative error for other cases is only within 2.0%, which demonstrates the 682 

accuracy of the developed numerical approach. 683 

 684 

Table II Terminal velocity of gravity settling (all in lattice unit) 685 
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Radius Rep Simulation Theory Relative error 

5 0.071 3.557×10-4 3.488×10-4 2.0% 

8 0.285 8.906×10-4 8.929×10-4 0.3% 

10 0.594 1.486×10-3 1.395×10-3 6.5% 

 686 

 Further validations are also performed to verify the lubrication force between the particle 687 

and the wall. For this purpose, the experiment of a single particle settling under gravity is 688 

reproduced numerically [60]. A particle is initially released from the height of 120 mm in a box 689 

with size of 100×100×160 mm, which corresponds to 50×50×80 in lattice units. The gravity is 690 

in the vertical direction and no-slip wall conditions are set in all the faces of the box. The 691 

relaxation parameter is set as 0.05. The fluid density and viscosity are exactly the same as in 692 

the experiment (see Table I in [60]). The particle diameter is dp=15 mm, which equals to 7.5 in 693 

lattice units, and the mass density is fixed at ρp=1,120 kg/m3. Figure 13 shows the particle 694 

settling trajectory and velocity profiles as a function of time, which is converted to SI unit to 695 

compare with the experimental results. It is clear that, for both the settling trajectory and the 696 

velocity, the numerical simulations are in excellent agreement with the experimental results, 697 

which confirms the validity and accuracy of our numerical approach. 698 
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 699 

Fig. 13 (a) Particle trajectory and (b) velocity profiles as a function of time. 700 

 701 

A3. Inertial migration of a single particle in Poiseuille flows 702 

 Simulations of a single particle migration in the Poiseuille flow are also performed to to 703 

examine if the model can reproduce the Segré and Silberberg effect. The simulations are 704 

performed in a small channel with size of 120×100 in 2D, with particle diameter of d=6 and 705 

12, which results in two different channel-to-particle size ratios D/d=16.7 and 8.3. The flow is 706 

driven by the body force. By varying the body force, different channel Reynolds numbers can 707 

be achieved. The single particle is initially placed at a random position except for the exact 708 

centerline inside the channel. This is because the curvature of the fluid velocity profile at the 709 

centerline is zero and the fluid shear becomes zero. Theoretically, if placed on the centerline, 710 

the particle will keep moving along it without migrating laterally. Furthermore, the fluid and 711 

the particle are both stationary at the beginning. Once the fluid flow starts, the particle starts to 712 

move due to the hydrodynamic interactions. After a sufficient long time, the particle will 713 

migrate to its lateral equilibrium position and moves at a constant velocity. 714 
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Figure 14 shows the migration trace of a single particle with diameter of d=6 as a function 715 

of the dimensionless computation time, where two different series of cases are presented. In 716 

Fig. 14a, the channel Reynolds number is fixed at Re=50, but the particle is initially placed at 717 

different vertical positions of y0=25 ~ 75. It can be seen that the particle finally migrates to the 718 

lateral equilibrium position around y/D≈0.2 and 0.8, which equals to the same radial position 719 

0.6. The further the particle is away from the lateral equilibrium position, the longer time the 720 

migration takes as expected. On the other hand, Fig. 14b shows the cases with different Re but 721 

the same initial position. Here we choose two symmetric initial positions of y0=40 and 60 on 722 

each side of the centerline. It is clear that with the increase of the channel Reynolds number, 723 

the lateral equilibrium position moves closer to the wall. Moreover, the lateral equilibrium 724 

positions are also symmetric about the centerline. 725 

 726 

Fig. 14 The migration trace of a single particle (d=6) as a function of the computation time 727 

for (a) different initial positions but the same channel Reynolds number Re=50, and for (b) 728 

the same initial positions but different Re. 729 

 730 

Figure 15 show the comparison of the simulation results with the experimental and 731 
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theoretical ones reported in the literature [2,3,7]. Note that the experiments and theory are in 732 

3D. However, as we mentioned in the introduction, the Segré and Silberberg effect is also 733 

confirmed to be valid in 2D [1]. Therefore, the present 2D simulation results are comparable 734 

and the vertical axis in Fig. 15 is also labelled with radial equilibrium position r/R (equivalent 735 

to |2y-D|/D in 2D) in order to be consistent with the 3D case. From Fig. 15, it can be seen that 736 

as the channel Reynolds number increases, the lateral equilibrium position increases from 0.55 737 

to 0.88, i.e. moving towards the wall. With the increase of the channel-to-particle size ratio, the 738 

equilibrium positions slightly move up to larger values. The numerical simulations agree well 739 

with both the experiment and theory, and hence it can be concluded that the numerical approach 740 

can well reproduce the Segré and Silberberg effect. 741 

 742 

Fig. 15 Lateral equilibrium position of a single particle as a function of the channel Reynolds 743 
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number. The solid line is the prediction from the asymptotic theory. 744 
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