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Errata

Page 8; Section (2.2); Note: The number of repeating units N  can be very large, up to I f f  
in a polymer molecule, and much larger for a D.N.A. molecule which is also a polymer.

Page 15; Section (2.2.3); Sentence should read: This represents the change in energy 
when two unlike components in the solution come into contact.

Page 21; Section (2.3.1); Equation (2.17) should include an additional random noise term 
on the right hand side to produce diffusive Brownian motion.

Page 49; Section (3.3.3); Equation (3.12) should read A~(4Dct)'m .

Page 111; Section (6.3); Sentence should read: Equations (6.7) and (6.8) are used to 
calculate the new values of re and t  corresponding to the new state of the system.
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Abstract

The development of two original Monte Carlo models of solvent diffusion into a 

polymer is described. Employing a coarse grained model of a polymer solution on a 

regular lattice, the dynamic properties of both the solvent and polymer molecules can be 

observed. The "Simple" Monte Carlo model reliably reproduces Case I dynamics, but no 

departure from this is seen for any reasonable model parameters. This "Simple" Monte 

Carlo model is unable to reproduce Case II diffusion dynamics. One reason for this is 

that in this Monte Carlo model the processes of solvent diffusion and polymer relaxation 

are entirely independent processes. In this thesis it is suggested that a simple Monte 

Carlo model of this type will always produce Case I diffusion dynamics. The dynamic 

algorithm described in this work relies on simple instantaneous molecular motions 

between neighbouring lattice sites. It is shown that a diffusion process based on these 

motions is purely concentration dependent, relying only on the current state of the system.

To use the Monte Carlo method to simulate Case II diffusion dynamics, the 

diffusion process is made time dependent by incorporating a history dependent model of 

diffusion first proposed by Crank (CRANK 1953). In this "History Dependent" Monte 

Carlo model the motions of both the solvent and the polymer are no longer instantaneous, 

but occur at a rate that approaches equilibrium by a first order process governed by a 

relaxation time characteristic of the viscoelastic relaxation of the polymer. This "History 

Dependent" Monte Carlo model successfully simulates most of the features of Case II 

diffusion and also demonstrates a return to Case I diffusion in the limit of long times. 

Unlike many models of Case II diffusion, this Monte Carlo model is able to 

simultaneously model the microscopic motions of both the solvent and the polymer 

molecules. This novel feature demonstrates the formation of a discontinuous moving 

boundary between the rubbery polymer and the glassy polymer that is typical of Case II 

diffusion dynamics.
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“Nothing is more repellent to normal human beings than the 

clinical succession of definitions, axioms, and theorems generated 

by the labours of pure mathematicians. ”

- John Ziman.

“If my hypothesis is not the truth, it is at least as naked; for I have 

not with some of our learned moderns disguis'd my nonsense in 

Greek, cloth'd it in algebra or adorned it with fluxions."

- Benjamin Franklin.



Preface

The work presented in this Ph.D. thesis represents three years of research carried 

out at the University of Surrey. The subject of this thesis is the computational modelling 

of solvent diffusion in polymers, in particular studying the usefulness of Monte Carlo 

modelling in two limiting cases of solvent diffusion known as Case I and Case II. Interest 

in polymer research has grown rapidly over the past fifty years due to the unique 

properties of polymers and the wide range of industrial applications in which they are 

employed. It is particularly important to understand how these polymer materials react in ■ 

different environs and in the presence of solvents, as this determines their usefulness in 

many applications. At the University of Surrey, research into polymers has been earned 

out with the use of Magnetic Resonance Imaging (MRI), a non-invasive experimental 

technique that provides spatial information on the diffusion dynamics occurring within a 

polymer solution. I undertook the task of developing a computational model of solvent 

diffusion into polymers with the aim of gaining new information on these diffusion 

processes, information that may not be available through experimental studies. The 

findings of this study are presented within this thesis, which is arranged as detailed below. 

Prior to this work, my only experience of polymers was of those found in everyday life. 

Therefore, this thesis also represents the knowledge I have gained in this interesting field 

of physics.

In Chapter 1 an overview of experimental and theoretical techniques employed in 

the field of polymer research is given before clearly defining the aims of this study. It is 

hoped that this will provide justification for the study undertaken here and of the methods 

used. In Chapter 2 a description is given of the fundamental properties of polymers,- 

polymer solutions, and their diffusion dynamics. The aim of this chapter is to provide a 

fundamental understanding of the concepts used later in this study. Chapter 3 provides a 

description of the ways in which polymer dynamics can be modelled using the Monte 

Carlo method. The Monte Carlo model developed for this study is then described, which 

simulates the ingress of solvent into a polymer. Results are given to demonstrate the



operation of this model. Chapter 4 describes an MRI experiment carried out to gain 

experimental data to compare with the results of the Monte Carlo model. A description of 

MRI theory is also given to provide a complete understanding of the experiment. In 

Chapter 5 the limitations of the Monte Carlo model are discussed with the aim of 

simulating both limiting cases of solvent diffusion in polymers. Current limitations of 

this and other models of solvent diffusion are critically examined. In Chapter .‘6 a novel 

Monte Carlo model is described that may overcome these current limitations and simulate 

both limiting cases of solvent diffusion in polymers. Finally, Chapter 7 provides a 

summary of the work presented in this thesis and suggestions for future work using the 

Monte Carlo model developed here.

In this thesis I have attempted to explain all of the ideas carefully so that a 

graduate student of physics may read this work and gain some understanding of the 

research undertaken. I have sought to refer to mathematical descriptions only where 

necessary and where they will augment the text. The two quotations prior to this preface 

are from two famous physicists separated by many generations, yet both convey views 

regarding the use of mathematical descriptions of physics with which I have to agree. 

Mathematics is a vital tool to the physicist, yet I believe that the physical description of a 

system is often neglected in favour of a purely mathematical description. I have found 

this during many years of education and believe that this dependence on mathematics can 

lead to unimaginative teaching and a poor understanding of the physical reality of a 

system. In dealing with the abstract ideas and the particular methods contained in this 

work I have had to think carefully about the physical reality of the systems in question 

and the ways in which they can be modelled without relying on mathematics. Only then 

have I turned to mathematics in order to study the system further. I hope that this will be 

apparent in my writing and I hope that this may encourage other students to understand 

the physical system before understanding the mathematical description of that system.

Stuart Parker.

Guildford, Sum m er 1999.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Overview

Polymers, which may be natural or synthetic, have become widely used in 

everyday life and are relied upon in many important applications. Plastics, rubbers, 

synthetic fibres and fabrics are all examples of polymers that pervade modem life. 

In fact, the volume of polymers produced already exceeds that of metals, even 

though polymers have been in production for only half a century. Polymers can be 

used to produce solid materials, flexible materials, adhesives or coatings, all having 

diverse properties that can be engineered to suit a particular application. These 

applications have become widespread, from the carrier bag to artificial valves 

implanted in the human heart. It is this diverse range of applications that has 

required a detailed understanding of the properties of polymers and of their physical 

and chemical stability. Of particular interest is the ingress of solvent into a polymer. 

This solvent ingress may cause swelling and softening of the polymer and ultimately 

lead to dissolution. This may be desirable in some applications, but often it is 

necessary to control this ingress, or at least be able to understand the extent of the 

ingress and predict its effect on the polymer. Particularly with biomedical implants, 

any material placed inside the human body must be resistant to the hostile chemical 

environment it encounters or, in the case of drug release implants, must degrade in a 

controlled manner as water ingresses. However, the action of a solvent does not 

produce a permanent chemical change in a polymer. The study of these different 

polymer systems can proceed in three main ways: experimental observation, analytic 

theory, or computer simulation.
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Experimental observation can provide information on known polymer 

systems and on the macroscopic properties that they exhibit. However, many 

measurements do not directly probe the microscopic motion of the polymer 

molecules. Theoretical models can provide analytic theories for the observed 

behaviour and aim to relate the microscopic properties of the polymer to the 

macroscopic properties measured experimentally. However, most problems in 

statistical physics are too complicated to allow exact solutions and due to the need 

for approximations the accuracy of the results is often uncertain. Computer models 

offer an important bridge between experiment and analytic theory. Computer 

simulations can provide results for problems in statistical physics that could 

otherwise be solved only by approximate methods. They provide a direct route from 

the microscopic detail of the system to the macroscopic properties of experimental 

interest. Furthermore, computer simulations can provide a test of existing theories 

and a comparison with experimental results. Eventually, a successful computer 

simulation can assist in the interpretation of experimental observations. Thus, 

computer modelling has an important role in the study of polymeric systems. 

However, it has not been until the relatively recent growth in personal computers that 

this type of research has become widely accessible. Computer modelling, 

particularly in the field of polymer research, is a relatively new and rapidly growing 

discipline, and one that has attracted much interest (FRENKEL 1996).

Computer models of molecular problems in statistical physics follow one of 

two main approaches. These two very different methods of molecular simulation are 

Molecular Dynamics simulation or Monte Carlo modelling (ALLEN 1989, BINDER 

1995). Molecular Dynamics simulation aims to model a molecular system by 

explicitly defining the classical Newtonian equations of motion for every molecule 

in the system and solving these equations exactly for a many body system of 

interacting molecules. Thus, Molecular Dynamics is a deterministic method that 

relies on the ability to describe the molecular system in full chemical detail. This is 

obviously a computationally intensive process and limits the size of the system in 

question to hundreds of particles and limits the time scale of the simulation to 

nanoseconds (COLBOURN 1994). Molecular Dynamics simulations were first 

accomplished for a system of hard spheres by Alder and Wainwright (ALDER 1957,
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1959) and have since successfully been used to examine the microscopic properties 

of polymer molecules.

Monte Carlo modelling is an entirely different technique that aims to give a 

probabilistic description of the molecular system from the outset, relying on the use 

of random numbers to simulate a random sample of the system. Thus, Monte Carlo 

modelling is a stochastic method that does not require the system to be described in 

full chemical detail. Simplifications can be made to the model which allow larger 

systems to be simulated. With the ability to model tens of thousands of particles 

over macroscopic times, the Monte Carlo method clearly offers an advantage, 

particularly when the aim is to model macroscopic systems and to make comparisons 

with experimental observations. The Monte Carlo method was first developed by 

Neumann, Ulam and Metropolis at the end of the Second World War to study the 

diffusion of neutrons into fissionable material. The method’s name was chosen 

because of the extensive use of random numbers in the calculation and hence the 

connection with the famous gambling casinos (METROPOLIS 1949, 1953).

The study of the dynamics of polymer solutions can be divided into two 

broad areas. The first area of investigation is the diffusion dynamics of polymer 

molecules within a solution. Experimentally, this has been studied by a number of 

methods. In 1952, Beuche et al. (BUECHE 1952) used radioisotopes to label 

polymer chains and to observe their motion through an unlabelled polymer. Since 

then, many methods have been employed to probe the motion of the polymer 

molecules; these include neutron scattering experiments (RICHTER 1989, 1993), 

infrared microdensitometry (KLEIN 1978), Rayleigh scattering (ANTONIETTI 

1986), and forward recoil spectrometry (BARTELS 1984). Many theories have been 

presented during the past fifty years to explain the polymer dynamics that have been 

observed. In 1953, Rouse (ROUSE 1953) developed a famous model of the 

dynamics of a single polymer chain in a dilute polymer solution. Zimm (Z3MM 

1956) continued this work in 1956 including a hydrodynamic interaction in the 

theory. It was not until 1971 that De Gennes (DE GENNES 1971) proposed a 

similar theory of polymer dynamics in a dense polymer solution. This work was 

later continued by Doi and Edwards (EDWARDS 1973, DOI 1978).
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Both Monte Carlo and Molecular Dynamics modelling techniques have been 

employed to investigate these theories. They have given consistent results in the 

study of polymers, particularly in the semidilute region where the dynamics can 

change from those of the Rouse model to those of the Reptation model. Molecular 

Dynamics has only proved to be a worthwhile method in relatively recent years due 

to the computational requirements of the technique. Pierleoni and Ryckaert 

(PIERLEONI 1992), and Dunweg and Kremer (DUNWEG 1993) explored the 

dynamics of a single polymer chain in a dilute polymer solution, whose results 

indicate that the Zimm model is valid. For dense systems Kremer and Grest 

(KREMER 1990) have shown that Molecular Dynamics simulations can confirm the 

behaviour of the Reptation model. Verdier and Stockmayer (VERDIER 1962, 1966) 

carried out one of the earliest Monte Carlo studies of polymer dynamics. They 

simulated the dynamic behaviour of linear polymer molecules in a dilute polymer 

solution and confirmed the behaviour predicted by Rouse. Evans and Edwards 

(EVANS 1981) have used a similar model to Verdier and Stockmayer to model a 

polymer chain in a dense network of obstacles. They conclude that at high densities 

the Reptation model and its predictions are confirmed. Kovac and co-workers 

(GURLER 1983, CRABB 1985, DIAL 1985) have also developed Monte Carlo 

models based on the model of Verdier and Stockmayer to investigate the dynamics 

of polymer solutions but include the important constraint that two or more polymer 

molecules cannot simultaneously occupy the same region in space. Naghizadeh and 

Kovac included this excluded volume interaction in a Monte Carlo model that 

considered the simultaneous motion of the polymer molecule and the obstacles 

(NAGHIZADEH 1986).

The second broad area of investigation is the diffusion of solvent molecules 

into a polymer. The fundamental theory of diffusion was given by Fick in 1855 

(FICK 1855) and has since provided an excellent description of solvent diffusion in 

many cases. However, studies of solvent diffusion into polymers have demonstrated 

diffusional behaviour distinct from Fickian dynamics. One of the first observations 

of this anomalous behaviour was by Hartley (HARTLEY 1949) and later by Crank 

(CRANK 1953). Based on this and other experimental evidence, Alfrey et al. 

(ALFREY 1966) classified two limiting cases of solvent diffusion into polymers.
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Fickian diffusion was termed Case I diffusion and the non-Fickian diffusion was 

termed Case II diffusion. Many theories have been proposed to explain Case II 

diffusion and the departure from Fickian dynamics; for example those by Thomas 

and Windle (THOMAS 1980, 1981, 1982). Experimentally, Magnetic Resonance 

Imaging (MRI) has proved to be a very powerful technique in the study of this 

problem. The application of this method was established by Blackband and 

Mansfield (BLACKBAND 1986, MANSFIELD 1992). This and other MRI studies 

have demonstrated Case I diffusion in a range of polymer systems (WEBB 1990a/b, 

1991, HALSE 1994, 1996). However, there is now a wide range of experimental 

evidence to demonstrate Case II diffusion (WEISENBERGER 1990a/b, ERCKEN 

1996, LANE 1997).

Molecular Dynamics simulations have increasingly been used to model the 

ingress of solvent into polymers. The ingress of small penetrant molecules has been 

studied by several groups (TAKEUCHI 1990a/b, MULLER-PLATHE 1993), who 

have demonstrated the simulation of diffusion processes that deviate from Case I 

dynamics. These studies have explicitly defined the solvent component of the 

polymer solution. However, previous Monte Carlo studies of polymer solutions 

have not explicitly considered the motion of the solvent molecules. Therefore, 

Monte Carlo modelling has been underused in this field and has not previously been 

employed to study the ingress of solvent into a polymer in the limit of Case II 

diffusion.

1.2 Aims

The aim of the work presented in this thesis is to develop a computational 

model to simulate the diffusion of solvent into a polymer. This model will be 

developed using the Monte Carlo method, which has been chosen as the most 

suitable and interesting method to study this problem. This method has been widely 

used in the study of problems in statistical physics, but has been underused in the 

study of solvent diffusion dynamics. Yet, the Monte Carlo method is particularly 

well suited to the study of random processes, such as the diffusion of a penetrant into
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a polymer. It will also be necessary to understand the applications and limitations of 

the Monte Carlo method in the study of solvent ingress into polymers.

In particular, the aim of this study is to examine the usefulness of the Monte 

Carlo method in simulating the ingress of solvent into polymer and to determine the 

extent to which this method can simulate the two important limiting cases of solvent 

diffusion. Case I and Case II diffusion (ALFREY 1966) define the two extremes of 

solvent dynamics observed in experiments of diffusion in polymers. A desirable 

feature of the model developed here would be the ability to simulate both limiting 

cases of solvent diffusion through the same model. It would also be of interest to 

observe whether any transition occurs between these two limiting cases. However, 

the ability of the Monte Carlo method to simulate solvent diffusion into polymers is 

yet to be determined.
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Chapter 2

Polymers and Polymer Solutions

2.1 Introduction

The study of polymers has grown dramatically, particularly over the last fifty 

years, and has become an independent field of research. Early work on the synthesis 

of polymers was earned out by Staudinger (STAUDINGER 1920) in the 1920s who 

recognised that polymers consisted of large molecules, but who thought that these 

molecules were quite rigid. It was Kuhn (KUHN 1930, KUHN 1934) who, a decade 

later, discovered that the majority of polymer molecules are actually very flexible. It 

is this flexibility that leads to the diverse range of properties mentioned previously. 

It was not until the 1940s that Flory (FLORY 1942) and Huggins (HUGGINS 1942) 

independently proposed a thermodynamic theory for the static properties of a 

polymer solution. In 1953 Rouse (ROUSE 1953) proposed a theory for the 

dynamics of a flexible polymer molecule in a dilute polymer solution. This work 

was developed further by Zimm (ZIMM 1956) a few years later. It was not until the 

1970s that de Gennes considered the dynamics of a polymer chain in a dense 

polymer solution and produced his model of Reptation (DE GENNES 1971). This 

work was later developed by Doi and Edwards (EDWARDS 1978). These theories 

and models have formed much of the modern understanding of polymers. The 

description of molecular motions in polymer solutions enables many non

equilibrium processes, such as diffusion, to be understood.

The aim of this chapter is to provide some understanding of the field of 

polymer science and the issues involved. Important definitions are made to
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introduce the properties that are unique to polymers. Then a description is given of 

the most important models of polymer dynamics in a solution. Finally, fundamental 

theories of the diffusion of solvents in polymers are given to introduce the concepts 

used in iater chapters of this work. It is hoped that this chapter will introduce the 

reader to this interesting field of science. Further reviews of static properties of 

polymers are given in Flory’s book (FLORY 1953) and those concerning polymer 

dynamics in various reviews (FERRY 1970, GRAESSLEY 1974). An excellent 

review of the mathematics of diffusion is given by Crank (CRANK 1975).

2.2 Properties of Polymer Molecules

A polymer is a substance composed of molecules characterised by the 

multiple repetition of one or more species of atoms or groups of atoms (repeating 

units or monomers) (METANOMSKI 1991). These are linked to each other by 

covalent bonds in amounts sufficient to provide a set of properties that do not vary 

markedly with the addition of one or a few more of the repeating units. A specific 

example is Polyethylene where the repeating unit is [CH2]jv- The number of 

repeating units N  can be very large, up to 105 in a molecule, and this is called the 

degree of polymerisation. The average length of the polymer molecule N  is related 

to an average molecular weight that can be defined in two ways. Mn denotes a 

number average molecular mass whilst Mw denotes a weight average molecular 

mass. The ratio of Mw to Mn represents the spread of molecular masses in the 

polymer and is known as polymer dispersity. If Mw is equal to Mn then the polymer 

is monodisperse. The word polymer originates from the Greek, meaning many - 

parts. Polymers may consist of only one type of repeating unit, homopolymers, or of 

two or more types of repeating units, copolymers. It is important to remember that 

polymer molecules are classified as macromolecules because of their very large size 

on a molecular scale.

The conformation of a polymer refers to the structure of the molecule defined 

by its sequence of bonds and torsion angles. The change in shape of a given 

molecule due to torsion about single bonds is referred to as a change of 

conformation. The molecular architecture of a polymer deals with the shape of a
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polymer molecule. These may be classified as linear, branched, or ring polymers 

amongst others. The molecular architecture is important for many physical 

properties of polymers, such as strength and thermal stability (GEDDE 1995).

2.2.1 The Ideal Polymer Chain

A polymer molecule has many internal degrees of freedom and can take on 

many different conformations. Because of this high degree of flexibility a polymer 

chain can be considered as a very long piece of string, tangled up in a random, three 

- dimensional coil. This random conformation is illustrated in figure (2.1a). To 

simplify and study such a polymer molecule, the polymer chain is often restricted to 

following a simple regular lattice. In this lattice model the polymer’s repeating units 

are called segments and lie only on the lattice sites, the rods connecting the segments 

are called bonds and are nearest - neighbour links on the lattice. This simplified 

polymer chain is also illustrated in figure (2.1b). It is assumed that there is no 

correlation between the directions that different bonds can take and that all directions 

have the same probability. The conformation of the polymer chain can then be 

described in the same way as a random walk on the lattice. This theoretical concept 

has been applied to many problems and provides a description of the dimensions 

produced by such a random path. It has been extensively ’reviewed by 

Chandrasekhar (CHANDRASEKHAR 1943).

Figure (2.1): a) A two - dimensional representation of a linear polymer molecule as a randomly 

entangled coil; b) The corresponding polymer chain represented on a regular square lattice.
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Two different measures are commonly used to describe a random polymer 

chain: the end - to - end distance and the radius of gyration. The end - to - end 

distance, r, is simply the distance between the two ends of the random coil. The 

radius of gyration, s, is defined as the average distance of the collection of segments 

in the chain from their common centre of gravity. However, meaningful chain 

dimensions can only be values averaged over the many chain conformations 

possible. Therefore, the two averages are defined as the mean square distance
7 obetween the chain ends <r >, and the mean square radius of gyration <s >. For 

purely random polymer chains these two quantities are related by (GEDDE 1995);

Consider the end - to - end vector r  connecting one end of the polymer chain 

to the other. If the polymer consists of N  bonds each of length /, with r n the vector of

The average value of r  is zero, since the probability of the end - to - end 

vector being +r is the same as it being - r  so that the two contributions cancel. 

Therefore, the mean square end - to - end distance is calculated;

Since there is no correlation between the directions of different bond vectors, 

if n /m  then < rn.rm > = 0, therefore;

< r2 > = 6 < s2> (2.1)

the rcth bond, then;

N
(2.2)

(2 .3 )

< r2 > = £  < r2n > = NI2 (2 .4 )

■ 1 0 -
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where I is the length of each bond. So the end - to - end distance of an ideal polymer 

chain is proportional to N l/2,

The probability density function of r  can be shown to be a Gaussian 

distribution (DOI 1996) for very long polymer chains. The probability density 

function in this case is given by;

P(r) = Qexpf -3r2/2Nl2) (2.5)

Here Q is a constant factor given by;

Q = (3/2KNl2f n (2.6)

These Gaussian chains exhibit a random chain conformation as described above. 

These are termed “ideal” polymer chains, the reason for which will soon be clear. 

These ideal polymer chains are found in polymer melts and polymer glasses.

Polymers are found in many different states and can be classified into four 

phases depending on the kind and strength of interactions between the monomers. 

These phases are a semicrystalline state, a polymer glass, a rubbery polymer and a 

polymer melt. A perfect polymer crystal cannot easily be formed due to 

crystallisation occurring independently in different parts of the polymer. Crystalline 

regions in the polymer are usually separated by amorphous layers, forming a 

semicrystalline state. A polymer melt is a viscous liquid composed only of polymer 

molecules. The long polymer chains become highly entangled, but can move with 

respect to each other under thermal motion. If an external force is applied to the 

polymer melt it will begin to flow with an overall motion of the molecules. 

However, this can be rather slow due to the large number of entanglements. This is 

why polymeric liquids are usually highly viscous. If crosslinking occurs in the melt, 

where polymer molecules are joined together with covalent bonds to form a network, 

it becomes impossible for the polymer to flow. However, the mobility of the 

molecules between crosslinks will not be constrained by the crosslinks, they will be 

able to stretch from their original coiled state. This produces a rubbery state with



Chapter 2 Polymers and Polymer Solutions

large elastic reversible deformations. If the temperature of the polymer melt is 

reduced the thermal motions become less and the motions of the polymer molecules 

become restricted. Eventually the temperature reaches a point where any thermal 

motion at any scale larger than the size of a monomer ceases to exist. Polymers in 

this frozen state are known as polymer glasses and are formed by a process known as 

a glass transition. The end - to - end distance of a chain in a polymer melt or a 

polymer glass scales as Nm  as shown for an ideal polymer chain.

The effect of short range interactions between monomers in the lattice model 

of the polymer must now be considered. Short range interactions are those that 

occur only between segments in close proximity along the polymer chain. If the 

orientation of each bond is random and completely independent of the previous 

bonds then the polymer chain is able to double back onto itself. This is a physical 

impossibility since two segments of the polymer chain cannot occupy the same 

region in space at the same time. The lattice model can be modified to disallow such 

doubling back of the polymer chain, however, this does not change the result that the 

mean square end - to - end distance is proportional to N  for very long chains. If the 

interactions between the bonds extend only up to a finite distance along the chain, 

then in equation (2.3) the quantity < r n.rm > will decay exponentially for long chains. 

For such systems the mean square end - to - end distance is always proportional to N  

for large N, and the distribution of r  remains Gaussian. Such polymer chains are 

called ideal chains because this distribution of end - to - end distances is always 

maintained. These polymer chains incorporate short range interactions but exclude 

long range interactions.

Long range interactions are those that occur when two segments, widely 

separated along the chain, become spatially close to one another. An example of a 

long range interaction is the excluded volume interaction which prevents any two 

polymer segments from simultaneously occupying the same point on the lattice. 

Long range interactions cause a departure from the behaviour of an ideal chain.
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2.2.2 Non -  Ideal Polymer Chains

The ideal chain model described above only takes into account short range 

interactions along the polymer chain. This model allows a chain to fold over onto 

itself so that segments which are widely separated along the chain can occupy the 

same region in space at the same time. This is physically impossible since each 

segment has a finite volume. The excluded volume effect is therefore included by 

imposing the condition that two segments cannot simultaneously occupy the same 

lattice site. This effect was realised by Kuhn and Kuhn (KUHN 1943) in an attempt 

to make this model of a polymer chain more realistic. This excluded volume effect 

corresponds to the condition that the path of the chain cannot pass through any lattice 

sites that have been traversed previously. This corresponds to a self - avoiding 

random walk.

The average size of an excluded volume chain is larger than that of an ideal 

chain since the possibility of segments overlapping in an ideal chain is greater. The 

excluded volume polymer chain is therefore larger than the ideal chain of the same 

length. It can be shown (GROSBERG 1997) that for an excluded volume chain the 

root mean square end - to - end distance is proportional to N3/5 and not Nm . The 

reason for this difference is that for the normal random walk of an ideal chain, each 

step is independent of all previous steps. In the case of the non - ideal chain the self 

- avoiding random walk is highly dependent on the previous steps of the walk. 

These polymer chains can be found in dilute solutions of polymers in a good solvent.

2.2.3 Polymer Solutions

A solution is any phase containing more than one component. Polymer 

solutions of primary interest are those in which a polymer interacts with one or more 

solvents. In a dilute polymer solution the polymer molecules are widely separated 

and hardly interact with each other at ail. A polymer molecule in a dilute solution 

can be pictured as a coil, continuously changing its shape under the action of thermal 

motions. Thus a polymer molecule in a dilute solution can be characterised as a



random coil. As the concentration in a polymer solution is increased, the molecules 

start to overlap and begin to entangle with each other. This entanglement begins at a 

critical concentration called the overlap concentration c* where the polymer 

molecules just begin to come into contact with one another. This situation is 

schematically illustrated in figure (2.2).
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Figure (2.2): a) A  dilute polymer solution with w idely separated chains; b) A  polymer solution at the 

overlap concentration where the chains are just in contact with one another; c) A  dense polymer

solution with highly entangled chains.

The overlap concentration c* can be estimated by considering the volume 

occupied by a single random polymer coil; V -  (4/3)kR3 oc r 3 oc 13n 3/2. The 

average concentration of the segments in the coil is then;

C  *  = N/V ~ N/( ?Nm) ~ r3N~I/2 (2.7)

This overlap concentration is dependent on the number of segments N  in the polymer 

chain. The overlap concentration is lower if N  is large, therefore long polymer 

chains are almost always in an entangled state even for very dilute solutions. At this 

concentration the polymer coils are entangled, yet there is still little polymer in the 

solution. This is known as a semi - dilute polymer solution. As the concentration of 

the polymer solution is increased further the polymer molecules become highly 

entangled and strongly interact with each other. This is a dense polymer solution. 

For convenience, the concentration c is often replaced by the volume fraction 0. 
This is the fraction of the whole volume occupied by the polymer segments.
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The models described above do not explicitly include the presence of solvent 

molecules. However, the average size, or spread, of the polymer chain greatly 

depends on the type of solvent in which it is placed. If there is a high affinity with 

the solvent, a good solvent, and the polymer segments tend to repel each other, then 

the polymer is easily dissolved and the polymer configuration will be very widely 

spread. If the solvent is a poor solvent and the polymer segments tend to attract each 

other, then the polymer will not dissolve and the polymer configuration will be 

compact. The dependence of the polymer size on the type of solvent is due to the 

interactions between polymer and solvent molecules.

Assume each solvent molecule is the same size as a polymer segment and 

also occupies one site on the lattice. The interaction energies between neighbouring 

elements on the lattice are of three types: polymer - polymer, polymer - solvent, 

solvent - solvent. These energies, epp, eps and sss respectively, are attractive and so 

are negative by convention. A quantity Ae can be defined to include the effects of 

the solvent interactions (FLORY 1953);

This represents the change in energy when two unlike components in the solvent 

come into contact. If Ae<0 the polymer and solvent tend to attract each other and the 

solvent is a good solvent. If Ae>0 the polymer and solvent tend to repel each other 

and the solvent is a poor solvent.

The effects of these solvent interactions and the effects of the excluded 

volume can be expressed by a single parameter called the excluded volume 

parameter (FLORY 1953);

Sps - V2(spp + Sss) (2 .8)

v= vc(l-2x) (2.9)

where vc is the volume of one lattice site and % is a dimensionless quantity called the 

^parameter, which is defined as;
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% -  zAe  / k T (2 .10 )

Here, z is the co-ordination number of the lattice, k is Boltzmann’s constant and T is 

temperature.

In a good solvent, As is small and the excluded volume parameter v is 

positive. In a poor solvent, As is large, and as the temperature increases v will 

change sign from positive to negative at a certain temperature. The temperature at 

which the excluded volume parameter equals zero is called the Theta temperature. 

The Theta temperature is given by;

At this temperature the repulsive excluded volume effect balances the attractive 

forces between the polymer segments and the polymer behaves as an ideal chain. 

The Theta state arises because of the cancellation of the effect of volume exclusion 

between segments, which tends to enlarge the molecule, and the effect of van der 

Waals attractions between segments, which contract the molecule. The polymer 

chain behaves as an unperturbed chain when in a solvent in the Theta state. Such 

solvents are called Theta solvents. All polymers dissolved in Theta solvents adapt to 

equation (2.4) for the mean square end - to - end distance. This is determined only 

by short range interactions. Long range interactions cause expansion of the coil that 

can be expressed by a swelling coefficient or linear expansion factor a;

Here the subscript signifies the mean square end - to - end distance for the ideal 

unperturbed chain. The linear expansion factor measures the extent to which the 

linear molecule dimension is perturbed by the excluded volume effect and is also 

affected by temperature and type of solvent. At the Theta temperature the chain is 

unperturbed and a must equal unity. In a good solvent and for temperatures T> 6, a

6  — 2zAs /  k (2 .1 1 )

2 2 2 
< r  > =  a  < r  > 0 (2 .1 2 )
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is greater than unity, and in a poor solvent and for temperatures T < 0, a is less than 

unity. If the temperature decreases below the Theta temperature, attraction between 

the polymer segments prevails making the solvent poor and the size of the polymer 

becomes much smaller than that of an ideal chain. At temperatures above the Theta 

temperature, repulsion between polymer segments prevails making the solvent good, 

the polymer swells and the dimensions of the polymer coil increase.

2.2.4 Flory - Huggins Theory

Theoretical models of the static properties of solutions were proposed as 

early as 1910. In the 1930s the theory of a regular solution was independently 

introduced by Hildebrand and Wood (HILDEBRAND 1932) and Scatchard 

(SCATCHARD 1931). The regular solution theory is a useful description of 

mixtures of small molecule liquids. However, it is not valid for solutions containing 

polymers. The Flory - Huggins mean - field theory is a development of the regular 

solution theory with the inclusion of polymers. This was independently introduced 

by Flory (FLORY 1942) and Huggins (HUGGINS 1942) in the early 1940s using a 

lattice model of polymer solutions.

Simple molecule solutions often behave as ideal solutions for which many 

laws have been defined. However, solutions containing polymers exhibit large 

deviations from ideality. Ideal solution behaviour requires that the entropy of 

mixing the pure components must be given by;

where nt and n2 are the numbers of molecules of the two components, Nj and N2 their 

mole fractions, and k is Boltzmann’s constant. This entropy is the difference 

between the total entropy and the weighted average of the entropies of the pure 

polymer and pure solvent. Ideal solutions also require that the heat of mixing must 

be zero;

A S m  -  - k / n j l n N ]  + n 2\ n N 2) (2.13)

AHm =  0 (2.14)

- 1 7 -
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Deviations from ideality may arise from failure of either of these conditions. 

However, these expressions rely on the assumptions that the two components are 

identical in size, spatial configuration, and external force field. This cannot possibly 

hold for polymer solutions in which the solute molecule may be a thousand times the 

size of the solvent molecule.

The Flory - Huggins model derives these two quantities for a polymer 

solution based on the lattice model in which the components of the solution are 

placed. The polymer chain is considered to consist of N chain segments, each of 

which is equal in size to a solvent molecule. A segment and a solvent molecule may 

replace one another in the lattice and it is assumed that the volume of the lattice is 

unchanged during mixing. Figure (2.3) shows the lattice model of a binary mixture 

of a polymer solute and a solvent. Each segment of the polymer occupies one site in 

the lattice as does each solvent molecule.

/
Polymer 
Segm ent

Solvent 
M olecule

Figure (2.3): Lattice model o f  a binary polymer solution on a regular square lattice where the 

polymer segm ents are indicated in grey and the solvent m olecules are indicated in white.

Flory calculated the total configurational entropy of the polymer solution 

arising from the variety of ways of arranging the polymer and solvent molecules on 

the lattice. This lead to the entropy of mixing of the polymer and solvent;

ASm =  -k (n i In 0 j +  n2 In 0 2) (2.15)
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where 0 1 and 0 2 are the volume fractions of the polymer and solvent. Comparison of 

equations (2.13) and (2.15) reveals an analogy to the ideal entropy of mixing. Mole 

fractions occurring in the ideal expression are replaced with volume fractions in the 

formula for mixing molecules dissimilar in size. The ideal expression can be derived 

if the solvent and solute molecules are identical in size, in which case the mole and 

volume fractions are equal and the two expression are identical.

The heat of mixing is the difference between the total interaction energy in 

the solution as compared with that for the pure components. The absolute interaction 

energies are of no concern. Interaction energies are only considered between 

molecules or chain segments that are nearest - neighbours on the lattice. The heat of 

mixing, therefore, can be considered as originating in the replacement of the contacts 

between like species with contacts between unlike species in the solution. The 

formation of a solution may be likened to a chemical reaction in which the bonds 

between the solvent and polymer are formed at the expense of an equal number of 

the solvent - solvent and polymer - polymer bonds. Flory showed that the heat of 

mixing could be written as;

A H m  =  k T x r i j  0 2  ( 2 .1 6 )

where % is the dimensionless interaction parameter which characterises the 

interaction energy per solvent molecule divided by kT, where T is the temperature. 

The quantity kTx represents the difference in energy of a solvent molecule immersed 

in the pure polymer compared with one surrounded by molecules of pure solvent.

This simple lattice treatment of the mixing of polymers and solvents does 

have limitations. The most important of these is the assumption that a single lattice 

can describe both the polymer and the solvent. The lattice is merely a scheme to 

describe the positions of molecules and their nearest neighbours, but it does not 

account for the different spatial requirements of different species. Furthermore, this 

theory neglects correlations between segments of the polymer chain and hence is 

intrinsically associated with ideal chains. However, this remains the simplest 

approach to dealing with polymer solutions.

- 1 9 -
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2.3 Molecular Motion of Polymers in Solution

Theoretical studies of polymer dynamics have developed over the past 50 

years, but remain based on only a few important theories. Particular attention has 

been given to the dynamics in the crossover region from dilute polymer solutions to 

dense polymer systems. It has already been stated that the root mean square end - to 

- end distance scales differently in these two regions. In dilute polymer solutions 

this distance scales as N3/s due to the swollen polymer chains, but in dense polymer 

melts it scales as Nm and the polymer chains behave as ideal chains. Dynamics in 

the dilute regime have been described by the Rouse model (ROUSE 1953) whilst 

dynamics in a dense polymer system have been described by the Reptation model 

(DE GENNES 1971). This change in dynamics can be described in terms of a 

hydrodynamic screening first introduced by Edwards (EDWARDS 1966). This can 

be considered (DE GENNES 1976a/b) in terms of a correlation length § dependent 

on the polymer concentration but independent of polymer chain length. This 

correlation length is inversely proportional to the number of entanglements between 

different chains in the entangled polymer and may be considered as the average 

distance between entanglement points. At distances greater than repulsive 

interactions between the monomers in a chain are screened out by the other chains in 

the system and the chain statistics are Gaussian. At distances less than each chain 

shows strong excluded volume effects. On increasing the polymer concentration, the 

range of the correlations decreases more and more, and the dynamics cross over from 

Rouse behaviour to Reptation behaviour. Understanding the molecular motions of 

polymers in solution allows many non - equilibrium phenomena, such as diffusion, 

to be explained.

2.3.1 Brownian Motion

Brownian motion was discovered in 1827 by the English botanist Robert 

Brown who observed the random motion of pollen particles suspended in water. The 

particles undergo chaotic thermal motion due to collisions with other molecules. In 

any polymer system the molecules undergo thermal motions of varying degrees. An

- 2 0 -
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understanding of Brownian motion provides the initial foundation for theories of 

polymer dynamics and a description of their diffusive properties.

Consider the Brownian motion of a particle suspended in a solvent. If the 

particle moves through the solvent with a velocity V it experiences a frictional force 

-AV opposing its motion. Here A is the coefficient of friction, which is also 

proportional to the viscosity of the solvent. The equation of motion for this particle 

can be written as;

From this it can be seen that the velocity decays exponentially with a characteristic 

relaxation time x-m/A. The mean square displacement of this motion <x2> can be 

related to a quantity known as the diffusion coefficient by;

Here D is the characteristic diffusion coefficient and it can be seen that the mean 

square displacement is proportional to the time for which the particle has been 

diffusing. Evidently, the greater the coefficient of friction, the lower the diffusion 

coefficient. The exact form of this relationship is given by the Stokes - Einstein 

relation;

Here, D is again the diffusion coefficient, k is Boltzmann’s constant, T is 

temperature, and A is the coefficient of friction. This relation states that D increases 

with temperature, the particle undergoes greater thermal motions thus producing a 

greater mean square displacement. Polymer molecules are frequently modelled as a 

collection of interacting Brownian particles. However, before studying these models 

of polymer dynamics, it is first necessary to define the diffusion coefficient D more 

explicitly.

mdV/dt = -XV (2.17)

D  =  <x2>/2t (2.18)

D  =  kT/X (2.19)
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The diffusion coefficient D is a measure of the rate at which a particle 

diffuses through a system on some random trajectory. However, a number of 

different diffusion coefficients can be specified. The chemical diffusion coefficient 

Dc describes the random motion of indistinguishable particles diffusing along a 

potential gradient. The tracer diffusion coefficient Dt describes the random motion 

of distinguishable particles for a system in equilibrium where no potential gradient 

exists. These two diffusion coefficients become equal in the limit of zero 

concentration of solvent where the diffusion coefficient of the particle is called the 

intrinsic diffusion coefficient Do. In equations (2.18) and (2.19) the diffusion 

coefficient in question is the tracer diffusion coefficient for a distinguishable tracer 

particle in a system where no potential gradient exists. With these elements in place, 

various models of polymer dynamics will now be described.

2.3.2 The Rouse Model

Rouse (ROUSE 1953) considered the Brownian motion of a single polymer 

molecule in a dilute polymer solution and studied its viscoelastic properties. The 

viscous and elastic properties of such systems arise from three factors: the length of 

the polymer molecule, the flexibility of the polymer chain, and the interactions of the 

polymer molecule with itself and other polymer molecules. For such a linear 

molecule to move through a viscous liquid it must co-ordinate the thermal motions 

of relatively short segments of the chain. Three types of force act on each segment 

of the polymer chain: a frictional force proportional to the relative velocity of the 

polymer segment with respect to the surrounding medium, a force from the adjacent 

polymer segments of the chain, and a random force due to Brownian motion. The 

Rouse model describes the effect of these forces on the flow dynamics.

The physical basis of Rouse’s theory is that a velocity gradient in a solution 

of a linear polymer continuously alters the distribution of configurations of the 

polymer molecules. The co-ordinated thermal motions of the segments of the 

polymer molecules cause the configurations to drift continuously toward their most 

probable distribution. Direct contacts of a chain segment with other molecules or
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with other segments of the same molecule are considered as contributing to the 

viscous forces that oppose the thermal motions.

The Rouse model consists of a polymer chain of N  freely jointed segments or 

beads, each connected by a series of ideal springs. This bead - spring model is 

illustrated in figure (2.4). Each spring represents a series of monomers which is just 

long enough to obey Gaussian statistics. The motion of the surrounding liquid is 

modelled by a shearing stress applied to the liquid by a plane surface. This surface 

executes simple harmonic motion to produce a velocity gradient that varies rapidly 

with distance from the surface. The velocity gradient produces motions of the 

polymer molecule which can be resolved into two contributions; a motion at a 

junction between two segments with a velocity equal to that of the surrounding 

liquid, and the co-ordinated Brownian motion of the segments of each polymer 

molecule. The justification of this relies on the flexibility of the polymer chain. For 

each part of the polymer molecule to move with the velocity of the surrounding 

liquid the configuration of the molecule must be able to change as rapidly as required 

by the gradient of velocity of the liquid. Thus, the primary effect of the velocity 

gradient is to carry each segment of the polymer molecule along with the liquid.

Figure (2.4): The bead -  spring model o f  a polymer chain. Each chain segm ent is modelled by a 

bead connected to the next by an ideal spring.

Rouse gave a linear equation describing the relaxation of a polymer chain to 

an equilibrium state and resolved the co-ordination of the motions of the chain into a 

series of eigenmodes. Each mode has a characteristic relaxation time, the time taken
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for the system to relax to its equilibrium state. Rouse found that the fundamental, or 

longest, relaxation time increased with the square of the chain length, t  «  N . 
Furthermore, it was found that longest relaxation time accounted for the solution’s 

viscosity. This model also predicts the dependence on the chain length N  of the 

viscosity, rj °c N, and the tracer diffusion coefficient, Dt °<= N 't

Limitations of the model arise because long range interactions between 

polymer segments were not included and the excluded volume interaction was 

neglected. The Rouse model may seem a natural way to describe the Brownian 

motion of a polymer chain, but its conclusions do not agree with experiment 

(BINDER 1995). The main reason for this is that Rouse assumed the average 

velocity of a particular segment is determined only by the external forces acting on it 

and is independent of the motion of other segments. In reality the motion of one 

segment is influenced by the motion of the surrounding segments through the 

medium of the solvent. However, Rouse’s work remains the basis of many 

descriptions of polymer dynamics.

2.3.3 The Zimm Model

Zimm (ZIMM 1956) continued the work of Rouse and considered the motion 

of a polymer molecule diffusing through a viscous medium under the simultaneous 

influence of an external force field and of Brownian motion. In a viscoelastic fluid 

the external force on the polymer chain is supplied by the flowing medium as 

described above. However, Rouse neglected one important aspect. If one polymer 

molecule moves, the solvent surrounding it will also move and as a result other 

polymer molecules will be dragged along. This effect is termed a hydrodynamic 

interaction and was first modelled by Zimm. This hydrodynamic interaction 

amounts to long range correlations in the displacements of the chain segments, 

mediated by the flow of solvent. The effect of this interaction is illustrated in figure

(2.5).
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Figure (2.5): The hydrodynamic interaction; if  particle n m oves under the action o f  a force F  a flow  

is created in the surrounding fluid which causes the other particles to move.

Zimm also used a bead - spring model consisting of a chain of N freely 

jointed segments connected to each other by ideal springs. The polymer chain is 

suspended in a viscous liquid with which it is supposed to interact only through the 

polymer segments, or beads. This interaction consists of a force exerted on the 

segments by the liquid. The force is assumed to be proportional to the velocity of 

the segment through the liquid. The connecting springs also exert a force on the 

segments. In addition to these mechanical forces, there is an effective force resulting 

from the Brownian motion of the chain. Zimm described a complicated equation of 

motion that included these three contributions, based on the Rouse model, that also 

included the hydrodynamic interaction.

Zimm found that the relaxation time x of the polymer chain increases as Ns/2, 
which provides better agreement with experiment. The inclusion of the 

hydrodynamic interaction modified the relationship between relaxation time and 

polymer chain length. Rouse found that relaxation time increased with N2, while 

Zimm has modified this dependency by considering a more detailed model.
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2.3.4 The Reptation Model

In a dense polymer system, such as a polymer melt or a concentrated polymer 

solution where chains are highly entangled, polymers can flow like a highly viscous 

liquid or can behave elastically like a rubber. This viscoelastic behaviour has been 

understood for a long time (GREEN 1946, LODGE 1956). Depending on the 

frequency of an applied external force, polymeric fluids can behave either as viscous 

liquids or elastic solids. Generally, viscoelastic bodies tend to show a viscous 

response to slowly changing forces and an elastic response to ones that vary quickly. 

These two regions are separated by a relaxation time x that strongly depends on the 

polymer chain length. The Reptation model (DE GENNES 1971) argues that every 

polymer chain is confined within an effective tube formed by the entangled 

neighbouring chains. This idea of a tube was proposed later by Edwards 

(EDWARDS 1973) in 1973. The chain cannot move through the walls of the tube, 

as it cannot intersect other polymer molecules. The chain thus moves inside this 

tube with a snake-like motion known as reptation, from the Latin reptare, “to crawl”. 

At small times t < x, the crosslinks between the entangled chains do not have time to 

break and the polymer behaves as an elastic body. At large times t > t, the 

crosslinks decay by Brownian motion; the chains can slide past one another and are 

no longer confined to tubes, resulting in a behaviour similar to a liquid. This 

transient network is due to the finite lifetime of crosslinks between polymer chains. 

The time x is called the longest relaxation time, when the polymer’s type of response 

to stress changes. It is the time taken for a reptating polymer chain to leave its 

original tube. The Reptation model has since been augmented by Doi and Edwards 

(DOI 1978).

De Gennes originally considered a system simpler than an entangled polymer 

melt, where a single ideal polymer chain is trapped within a three - dimensional 

network. This network is illustrated in figure (2.6) and is described by fixed 

obstacles. The polymer chain consists of N freely jointed segments of length /. The 

chain is not allowed to cross any of the obstacles, but may move freely in a snake -
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like fashion between them. This motion corresponds to the migration of certain 

defects along the chain, similar to the motion of unravelling a knotted rope.

^  ©0  ©
© © @

Figure (2.6): The Reptation model o f a free polymer chain. The polymer chains forming the 

tube are modelled by fixed obstacles between which the polymer chain reptates through

the propogation o f a defect.

The notion of a tube in which the polymer chain is trapped is illustrated in 

figure (2.7). Within this tube the chain progresses by reptation, eventually leaving 

some parts of the tube and creating new parts.

Figure (2.7): The tube model o f a reptating polymer chain trapped within 

an effective tube o f  length L  from which it diffuses into new tubes.
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The longest relaxation time, or terminal relaxation time t>, is the time 

required for complete renewal of the tube. Within the tube the polymer chain has a 

certain mobility p which is inversely proportional to the length of the polymer chain 

N. Similarly the diffusion coefficient within the tube Dt is also inversely 

proportional to the length of the polymer chain N. To completely renew the tube, the 

polymer chain must progress by tube diffusion over a distance equal to the length of 

the tube L. The corresponding time is;

This is the time to completely disengage the chain from the tube confining it. 

This relationship has been shown to be very close to the experimentally observed 

result of t  oc N3'3 (Kramer 1974, Kramer 1975). This relaxation time is very long, of 

the order of macroscopic times. Thus the reptation concept does give a plausible 

explanation of viscoelastic behaviour of polymers. In this time the polymer chain 

diffuses a distance in space smaller than L due to the contorted nature of the tube. 

The translational diffusion coefficient of the reptating chain can be shown to scale as 

D oc AT2 and viscosity as r\ °c N3. This work neglected the back flow effects studied 

by Zimm and the excluded volume interaction, but in a dense polymer system these 

effects are screened out and make no contribution.

2.4 Theory of Solvent Diffusion

The diffusive nature of a polymer solution poses many problems regarding 

the dynamics of the motion of the polymer chains. However, it is also important to 

be able to describe the diffusion of the solvent molecules within this system. 

Research in this area has been very active in the past few decades. It has been 

observed that solvent diffusion in a polymer rubber generally agrees with the

t, ~ l 2/d , (2 .20)

Since L is linear in N, the relaxation time is expected to scale as;

Tt oc N 3 (2 .2 1 )
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predictions of Fick’s law (FICK 1855), However, solvent diffusion in a polymer 

glass often deviates from Fickian diffusion, leading to anomalous or non - Fickian 

diffusion. It was Alfrey et al. (ALFREY 1966) who recognised the two limiting 

cases of diffusional behaviour. Fickian diffusion was termed Case I diffusion and 

non - Fickian diffusion was termed Case II diffusion.

2.4.1 Case I or Fickian Diffusion

Diffusion is the process by which matter is transported from one part of a 

system to another as a result of random molecular motions (CRANK 1975). This 

can be demonstrated when a vessel is carefully filled with iodine solution and water 

so that no convection currents occur. Initially a clearly defined boundary is seen 

between the coloured iodine and clear water, but after a time the iodine diffuses into 

the water until the whole solution appears uniform in colour. A transfer of iodine 

molecules has occurred between the two regions of liquid. The motion of each 

iodine molecule is a random one with no preferred direction due to the constant 

collisions with solvent molecules. A net transfer of matter is seen from a region of 

higher concentration to a region of lower concentration because, on average, equal 

fractions of molecules will cross an arbitrary plane in the solution as a result of 

random molecular motions. If one side of this plane contains a higher concentration 

of iodine molecules than the other there will be a net transfer of iodine molecules to 

the region of lower concentration. Thus, diffusion is a purely random process that 

occurs to equilibrate any concentration gradient within the solution.

In 1855 Fick (FICK 1855) put diffusion on a quantitative basis by adapting 

the mathematical equation of heat conduction derived by Fourier in 1822. The 

transfer of heat is also due to random molecular motions and is analogous to a 

diffusion process. The theory of diffusion in isotropic substances is based on the 

hypothesis that the rate of transfer of diffusing substance through a unit area of a 

section is proportional to the concentration gradient measured normal to the section;

F  = - Dc dc /  dx (2.22)

- 2 9 -
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This fundamental equation is known as Fick’s First Law. Here, F is the flux, or rate 

of transfer per unit area of cross section, c is the concentration of the diffusing 

substance, x is the distance measured normal to the section and Dc is the chemical 

diffusion coefficient. In some systems, such as dilute solutions, the diffusion 

coefficient can be taken as constant, while in other systems, such as polymers, 

diffusion is highly dependent on concentration. The negative sign in this equation 

indicates that diffusion occurs in the opposite direction to the increasing 

concentration gradient.

The fundamental differential equation of diffusion in an isotropic medium 

can be derived from equation (2.22). If the concentration gradient exists only along 

the x axis then diffusion is in one dimension and this can be written simply as;

d c /d t  = Dc d2c /d x 2 (2.23)

This equation is usually referred to as Fick’s Second Law and is the fundamental 

differential equation of many diffusion processes where the diffusion coefficient is a 

constant. In many systems the diffusion coefficient depends on the concentration of 

the diffusing substance. In this case Dc may be a function of x and c, thus equation 

(2.23) becomes;

dc / dt -  d/dx (Dc(c) d c /d x ) (2.24)

Solutions of Fick’s diffusion equations can be found for many different 

systems to provide a numerical solution of the diffusion process. General solutions 

of Fiek’s Second Law can be obtained for a variety of initial and boundary 

conditions provided the diffusion coefficient is constant. Such solutions will usually 

take the form of a series of error functions or related integrals, or the form of a 

trigonometrical series.

Several general characteristic features of Fickian diffusion remain dominant 

for all solutions of these equations. Firstly, solutions of the diffusion equation will 

be in the form of smoothly varying functions. If the solvent profile is plotted as
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solvent concentration against distance for a particular time, then the solvent 

concentration will be a smoothly varying function of distance. Secondly, the 

distance that these solvent fronts progress through the system will be proportional to 

the square root of time. Thus, the distance of penetration of any given concentration 

will be proportional to the square root of time. Thirdly, the time required for any 

point to reach a given concentration is proportional to the square of its distance from 

the surface and varies inversely with the diffusion coefficient. Also, the amount of 

diffusing substance entering the medium through a unit area of its surface varies as 

the square root of time. These fundamental properties define the Fickian diffusion 

process and are illustrated in figure (2.8).

Figure (2.8): An illustration o f  the characteristics o f  Fickian diffusion show ing solvent concentration 

against penetration distance for four solvent profiles at four equal time intervals. In this example, the

solvent concentration at x = 0  is held constant.

2.4.2 Case II or Non - Fickian Diffusion

Non - Fickian diffusion was first classified by Alfrey et al. in 1966 (ALFREY 

1966) and was termed Case II diffusion. This second limiting case of diffusion has 

been observed for solvent diffusion into a polymer glass, especially where the 

penetrant causes extensive swelling of the polymer. Case II diffusion exhibits 

characteristic features distinct from those for Fickian diffusion. Firstly, the solvent 

profile for Case II diffusion shows a sharp vertical front which marks the innermost 

limit of penetration of the solvent and is the boundary between the unswollen 

polymer glass and the swollen rubbery polymer. The solvent concentration behind 

this front remains constant in the swollen polymer. Ahead of the front a region of

Solvent
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>
Penetration Distance
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low solvent concentration is seen entering the polymer glass with Fickian 

characteristics. This Fickian precursor was first described by Peterlin (PETERLIN 

1965) and is the result of Fickian diffusion into the polymer glass. Secondly, the 

solvent front advances through the polymer linearly with time. Thus, the distance of 

penetration of any given concentration will be proportional to time. If this distance d 
is described by the following equation at a time f;

d - k f  (2.25)

where lc and n are constants, then for Case I diffusion n=V2 and for Case II diffusion 

n= 1. Thirdly, the amount of diffusing substance entering the medium through a unit 

area of its surface varies linearly with time. These features of Case II diffusion are 

illustrated in figure (2.9). Anomalous diffusion occurs between the limits of Case I 

and Case II diffusion where l>n>Vi. Extensive reviews are available of the 

experimentally observed diffusion anomalies in various polymer systems (ROGERS 

1965, PARK 1968, PETROPOULOS 1970).

Solvent
Concentration

Figure (2.9): An illustration o f  the characteristics o f  Case II diffusion show ing solvent concentration 

against penetration distance for four solvent profiles at four equal time intervals. In this example, the

solvent concentration at x=0 is held constant.
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2.5 Conclusions

This chapter has provided an introduction to all of the aspects of polymer 

physics that will be used in subsequent parts of this work and has given an overview 

of this interesting area of science. The current understanding of the properties of 

polymers, their dynamics, and the diffusive behaviour of the solvent is by no means 

complete. Many theoretical models have been presented to explain aspects of these 

different problems and some models have been very successful. However, these 

models rely on approximations and idealisations and may still need further 

development in the light of new advances in this field. There is still the opportunity 

for new models to be developed that will supersede current models if they provide a 

better explanation of experimental findings and a better understanding of the 

underlying physics.

The most important points that the reader should carry forward from this 

chapter regard the random nature of the polymer systems considered here. The ideal 

polymer chain can be considered as a random coil whose statistics are analogous to a 

random walk. The models of polymer dynamics presented here rely on the idea of a 

collection of interacting particles undergoing random Brownian motion. Finally, the 

diffusion of solvent in a polymer is also a random process that equilibrates any 

concentration gradient in the solvent. These properties will be utilised in the 

modelling of solvent diffusion in a polymer.
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Chapter 3 

Monte Carlo Modelling 
of Solvent Ingress into Polymer

3.1 Introduction

Polymer science has profited from the development of computer simulations 

in many ways. They have been used to study complex macromolecular systems in 

detail and provide insights that may not have otherwise been gained. Since the 

invention of the Monte Carlo algorithm (METROPOLIS 1953) more than 40 years 

ago, Monte Carlo modelling has become a widely used tool for problems of 

statistical mechanics (BINDER 1979) and also for polymers (BINDER 1995). There 

have been a number of studies of polymer systems using the Monte Carlo method to 

investigate the static and dynamic properties of polymer molecules in melts 

(NAGHIZADEH 1986, TEN BRINKE 1988, BASCHNAGEL 1995) and solutions 

(WALL 1957, 1959, VERDIER 1963, 1966, 1973, GEROFF 1993, SHENG 1995). 

However, this method has not previously been used to explicitly study the ingress of 

solvent into a polymer.

In this chapter a Monte Carlo method is described to model the ingress of 

solvent into a polymer. A brief discussion is given of the considerations necessary in 

choosing a suitable model and the simplifications that must be made to make the 

model computationally viable and efficient. The Monte Carlo method is also 

reviewed briefly. The details of the methods used and the algorithm developed for 

this "Simple" Monte Carlo model are then described. Results are given to show the

-34-
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model’s dependence on a number of interesting model parameters. This chapter 

should provide an understanding of the development, and application, of a Monte 

Carlo model of solvent ingress into polymers.

3.2 Monte Carlo Modelling of Polymers

Monte Carlo modelling can be a very powerful tool in the study of a wide 

range of numerical systems. However, as with all numerical modelling techniques, 

assumptions and simplifications must be made to reduce the physical problem to a 

computationally viable and efficient model. Numerical simulations of polymers 

pose particular challenges due to the enormous spread of length scales and time 

scales involved. Length scales may vary from the dimensions of the chemical bond 

(~ lA) to the dimensions of the radius of gyration (~ 100A). Since a valid computer 

simulation must choose a system size with linear dimensions larger than the 

characteristic lengths of the problem, one finds that for many problems of interest it 

would be necessary to simulate systems containing of the order of at least 106 atoms 

(BINDER 1995). Simultaneously, time scales may range from bond vibration times 

(~ 10‘13 sec) to macroscopic times (~ 103 sec). For these reasons one must abandon 

the idea of simulating polymeric systems in full atomistic detail. One method that 

achieves this is to introduce a coarse - grained model.

3.2.1 Coarse - Grained Models

There are many ways to construct coarse - grained models that abandon 

chemical detail to simplify the polymer system of interest. The choice of model 

depends on the physical problems that one may wish to address, and also on the 

desire to construct computationally efficient algorithms. Generally though, a coarse 

- grained model of a polymer chain replaces several monomers by one effective 

segment. These segments are connected together by bonds thus producing an 

equivalent chain of N segments and (N-l) bonds. Coarse - grained models may be 

free to take on arbitrary angles between successive segments of the chain or 

alternatively may be restricted to a regular lattice.
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For an off - lattice, coarse - grained model each polymer chain is modelled by 

a succession of rigid bonds jointed together at arbitrary angles as illustrated in figure 

(3.1). The relaxation of polymer chains to an equilibrium state in this model is 

achieved by the random rotation of bonds around the axis connecting the nearest - 

neighbour segments along the chain to some other arbitrary angle. The most popular 

(KREMER 1986, 1990, 1993) and efficient off - lattice model is the bead - spring 

type used by Rouse (ROUSE 1953). In this model the rigid bonds are replaced by 

bonds with a simple harmonic potential, giving the polymer chain a certain 

extensibility. The segments in this model are known as beads because they represent 

solid spheres.

Figure (3.1): O ff -  lattice model o f  a freely jointed polymer chain show ing how a new conformation 

may be achieved (dashed lines) by the random rotation o f  bonds.

Lattice models simplify the problem further by representing the polymer 

chain as a self - avoiding walk (ROSENBLUTH 1955) on a regular lattice. This 

approach is very old and has been used to study the static properties of polymers in 

solutions (FLORY 1941, HUGGINS 1941) and polymer melts. The simplest model 

consists of a regular lattice where each segment of the polymer chain occupies only a 

single lattice site, and the bond connecting two segments is simply a nearest - 

neighbour link on the lattice. This is illustrated in figure (3.2). Since each lattice site 

can at most be occupied by one segment of the polymer chain, the chain cannot 

intersect itself and thus an excluded volume interaction is inherent in the model. A 

simple cubic lattice also imposes rigid bond angles of 90° and 180° and is thus a 

further idealisation. The main advantages of this method are that integer arithmetic

Segm e~f



Chapter 3 Monte Carlo Modelling of Solvent Ingress into Polymer

can be used, and that the excluded volume interaction is implicitly included through 

the occupancy of lattice sites.

Figure (3.2): Lattice model o f a polymer chain on a square lattice where each segm ent is represented 

by a dark circle connected by a series o f  rigid bonds.

Various dynamic algorithms can be applied to the lattice model to allow the 

polymer chains to relax to an equilibrium state. These elementary moves were first 

proposed by Verdier and Stockmayer (VERDIER 1962) whose original algorithm 

used only two types of motion: end rotations and bend moves. This resulted in a 

slow algorithm (VERDIER 1966) which neglected to include the excluded volume' 

interaction. The bend move is simply an exchange of two neighbouring bond vectors 

that are mutually perpendicular. Therefore, new bond vectors are only created by the 

random rotation of bonds at the chain ends and must slowly diffuse into the interior 

of the chain to equilibrate its configuration (VERDIER 1970). These two types of 

motion form the minimum useful set, but additional moves can be included. In the 

generalised Verdier - Stockmayer algorithm the crankshaft rotation is also included. 

This type of motion is the rotation of two locally parallel bond vectors to a new 

orientation. These three motions, illustrated in figure (3.3), will have a low 

acceptance rate at high volume fractions 0 of occupied sites, since the vacant sites 

needed for an acceptable move are then very rare. Due to the need for sufficient 

vacancies this algorithm has only been used for volume fractions 0 <0.8 (SAREBAN 

1988). Another problem with this algorithm is that it can be proven to be non-
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ergodic (MADRAS 1988). Locally compact chain configurations can be found that 

cannot relax by the simple motions shown.

F igure (3.3): The generalised Verdier - Stockmayer algorithm on a sim ple cubic lattice showing  

three types o f  motions: end rotations, bend m oves, and crankshaft rotations as described in the text.

Alternatively, the “slithering snake” algorithm (WALL 1975), illustrated in 

figure (3.4), needs only one vacant lattice site near to a chain end for a move to be 

accepted and can be used for significantly denser systems 0 < 0.976 
(BAUMGARTEN 1984). In this algorithm an end bond of the polymer chain is 

removed and added to the opposite end of the chain with a random orientation. 

However, this algorithm is not strictly ergodic and has no counterpart in the 

dynamics of real chains. The advantage of this algorithm is that it relaxes faster than 

the Verdier - Stockmayer algorithm as new chain conformations are generated more 

quickly due to the need for fewer vacancies. However, the generalised Verdier - 

Stockmayer algorithm must be used if one is interested in dynamical chain 

properties.
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Figure (3.4): The “Slithering Snake” algorithm; an end bond is removed from one end o f the chain

and replaced at the other.

For most static properties of single polymer chains the pivot algorithm is 

used (MADRAS 1988). A bond in the chain is chosen at random and rotated, 

together with the rest of the chain, to a randomly chosen new orientation on the 

lattice as shown in figure (3.5). The advantage of this algorithm is that new chain 

configurations are generated very rapidly which are not correlated with their 

predecessors. However, this algorithm cannot be used to study the dynamic 

properties of the chains and is also not useful for dense polymer systems due to the 

need for a large number of vacant lattice sites for an acceptable move to be made.

Figure (3.5): The Pivot algorithm; a bond (X) is randomly chosen and rotated , together with the 

preceding section o f  chain, to a new orientation.

-39-
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To represent a linear polymer chain as a self - avoiding walk on a lattice 

appears to be a very crude model. Real linear polymer molecules live in continuous 

space, usually have tetrahedral bond angles (109.47°) and have a complicated 

monomer - monomer interaction potential. The self - avoiding walk however, lives 

on a discrete lattice, has non - tetrahedral bond angles (90° and 180° for a simple 

cubic lattice), and has a repulsive hard - core monomer - monomer potential due to 

the excluded volume interaction. However, this method of simplification has been 

shown to be very effective and a very good model of real polymers (SARD3AN 

1988, BINDER 1995).

3.2.2 The Monte Carlo Method

The Monte Carlo method is based on the use of random numbers. It was in 

1953 that Metropolis et al. (METROPOLIS 1953) first described how random 

numbers could be used to investigate many - body problems. In this method, 

random numbers generated by a computer can be used to simulate any process where 

an event occurs on the basis of some probability. Monte Carlo methods can be 

classified as static or dynamic. Static methods are those that generate a random 

sequence of statistically independent samples from a given probability distribution of 

possible states. Dynamic methods are those that generate a random sequence of 

correlated samples from some stochastic process.

Static Monte Carlo is the simplest method for generating a random sample of 

polymer chain configurations. A lattice site is chosen at random as the chain’s 

starting point. From here the polymer chain is formed by randomly selecting one of 

the nearest - neighbour lattice sites and extending the chain by one segment length I 
in that direction. This is repeated until the desired chain length N  is achieved. If the 

chosen site is already occupied by a chain segment the chain cannot be extended in 

this direction without violating the excluded volume principle. In this case the entire 

chain conformation is discarded and the process repeated from the beginning. In this 

way many uncorrelated chain conformations are generated, each with equal 

probability.
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The dynamic Monte Carlo method generates new polymer chain 

conformations from existing chain conformations through a stochastic process where 

each event occurs with some probability (LOWRY 1970). The time evolution of this 

stochastic process is then simulated, starting from an arbitrary initial configuration of 

chain conformations. In physical terms, a stochastic time evolution is invented for 

the given system to allow its dynamic properties to be studied. However, this time 

evolution need not apply to any real physical dynamics, the process is simply the 

numerical dynamic algorithm chosen for its computational efficiency. In practice the 

stochastic process is always taken to be a Markov process, where successive events 

form a Markov chain. This has the property that, given all previous values of the 

process, the nth step con depends only on the preceding step cu,,./. In this way the 

Markov chain will gradually forget its initial state as new polymer chain 

conformations are generated.

A dynamic Monte Carlo algorithm is specified by the state space S and the 

transition probability matrix P={p(con-^con+1)} for a change of conformation from 

configuration con to con+1• Here S specifies the model, while P specifies the 

numerical algorithm by which the model is studied. To define P, one must specify 

the set of allowed elementary moves, i.e. the transitions cu„—>con+i for which 

p(con-+con+i)>0, and their probabilities p(con-^con+i). Each self -  avoiding walk has 

equal probability, therefore the transition probability must satisfy the detailed 

balance principle. This requires that the probability of making a transition cu„—>cun+/ 

must be equal to the probability of making the reverse transition con+I-+cQn. For each 

transition from state con to a)n+I, the chosen algorithm should also be ergodic; such 

that each state can eventually be reached from any other state by some finite 

sequence of allowed moves.

In practice a segment of a polymer chain is chosen at random from the initial 

configuration of the system and an attempted move is made using one of the 

elementary moves discussed in section (3.2.1). This elementary move will produce a 

new random - walk that is not guaranteed to be self - avoiding. Therefore, if the 

walk is self - avoiding, the attempted move is accepted. However, if the attempted 

move would violate the excluded volume principle, the attempted move is rejected.
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This procedure can be understood as the Metropolis criterion for the energy function 

E(co): E(co)=0 if co is self-avoiding and E(co)=+°° otherwise. The energy required 

to make the move is zero if the new random - walk is self - avoiding, but an infinite 

positive repulsive energy exists if the move is not self - avoiding. This procedure 

can be modified further to include the energy difference AE between states con and 

con+7, where;

If the new walk is self - avoiding and the difference in energy is negative, 

then the attempted move will happen with certainty, p(con—̂con+j)~l. This follows 

the convention that a favourable interaction has a negative change in energy. If the 

new walk is self - avoiding and the difference in energy is positive, then the move 

will happen with a transition probability;

where k is Boltzmann’s constant and T is the temperature of the system. Practically, 

these moves are realised according to their transition probability by selecting a 

random number from a uniform distribution in the interval [0,1], If the transition 

probability is greater than the random number, the attempted move is executed. 

Otherwise, the attempted move is abandoned and the existing chain configuration is 

taken once again. By repeating this procedure over many cycles a dynamic 

algorithm is created. After every cycle the elapsed time for the system is 

incremented by one time period. In this case, the time period will be equal to the 

time between attempted moves and is a constant.

The Monte Carlo algorithm has since been developed further in the study of 

Molecular Beam Epitaxy (MAKSYM 1988) and electron transport. Instead of a 

polymer segment being chosen randomly at each cycle and a dynamic move being 

attempted, a transition rate r is now defined. If r„ is the rate at which a segment at 

lattice site n can attempt to move by a particular process, then the total transition rate 

R of the'system is given by;

A E  =  E ( m n+1) - E ( c o n ) (3.1)

p(cQnt i w n+i) = exp (3.2)
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N

(3.3)

Here, N is the total number of occupied lattice sites. A random number is then 

chosen between 1 and R, corresponding to a particular attempted move. The 

advantage of this method is that only segments of the polymer chain that are able to 

make an attempted move can be chosen. A linear series of segments of the chain are 

unable to move and consequently would be assigned a rate r-0. These segments 

would not be chosen in this scheme and hence this quasi - random sampling is a 

more efficient algorithm. In this method, the time period by which the elapsed time 

is incremented is not constant, but depends on these rates to allow for different 

processes occurring on different time scales. The relative probability of a particular 

process occurring will be the ratio of the rate r of that process to the total rate R of 

the system. The time between attempted moves x must be distributed according to a 

Poisson distribution (WALPOLE 1978), where;

If P(u) is the distribution of a uniformly distributed random number between 0 and 1, 
i.e. P(u)-1 where (0 < u< l), then the following identity can be used;

P (t) = R exp (-R t) (3.4)

P(t)  dr = P(u) du (3.5)

which, comparing these two equations, yields;

du/dr -  R exp (~Rr) (3.6)

Thus, the time increment of the system may be evaluated by generating a uniformly 

distributed random number u and substituting it into the integrated form of equation

(3.6);
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r  = - ( l /R ) \n u  (3.7)

The time elapsed for the system is therefore not proportional to the number of Monte 

Carlo cycles but increases in random increments scaled by the total transition rate. 

The importance of this method is that it allows a number of different processes to 

take place in the system, each on different time scales, and is necessary if the number 

of particles in the system able to attempt to move is not constant with time.

3.3 A Monte Carlo Model of Solvent Ingress

The methods discussed above are now applied to a Monte Carlo model of 

solvent ingress into a polymer. Recent Monte Carlo studies of polymer solutions 

have not explicitly included the solvent component (GERROFF 1993, MELCHEV 

1993). These models have used a reduced polymer density to represent the volume 

fraction of the polymer in a solution. In this model the solvent component is 

explicitly included to study the diffusive properties of the solvent in the polymer. 

The diffusion of the solvent is also a random process and is incorporated into the 

dynamic Monte Carlo method previously described. The computer code developed 

for this problem was written in FORTRAN 77 and its operation is illustrated in the 

appendix, figure (A.l).

3.3.1 The ’’Simple" Model

The physical system to be studied by this model is that of a bulk polymer that 

comes into contact with a solvent reservoir at a time t=0. The system then evolves 

with time as the solvent diffuses into the polymer. It is assumed that only one face 

of the bulk polymer at x- 0  is in contact with the solvent and that an infinite supply 

of solvent at this surface maintains a constant surface concentration. Furthermore, 

the bulk polymer is semi - infinite, in that, the dimensions of the bulk polymer 

extend to infinity so that the solvent molecules never reach these boundaries and 

introduce surface effects other than those described at x=0.
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The Monte Carlo computer model of this system employs a semi - infinite 

three - dimensional cubic lattice which defines an array of locations at which the 

solvent molecules or polymer segments may be placed. Both the solvent molecules 

and polymer segments are modelled as hard spheres. It is assumed that the solvent 

molecule has the same dimensions as the polymer segment and that each occupies 

only one lattice site. Thus, the excluded volume interaction is automatically 

included. Periodic boundary conditions are used in the y and z directions to simulate 

the semi - infinite bulk polymer. In the x direction the lattice extends to infinity, or 

at least to a distance well beyond the maximum penetration distance of the solvent. 

This configuration is illustrated in figure (3.5).

X —* oo

F igure (3.5): A  two - dimensional illustration o f  the model configuration show ing the placement o f  

solvent m olecules (white circles) and polymer m olecules (grey) on the semi - infinite lattice. Periodic

boundaries are also indicated

Solvent molecules are placed at random in the initial surface plane x=0 by 

selecting a target site at random and placing a solvent molecule there only if that site 

is unoccupied. This is repeated until the required volume fraction of lattice sites 

occupied by the solvent 0S is achieved in that plane. Polymer chains are placed 

within this lattice using the static Monte Carlo method described previously. An 

initial lattice site is chosen at random for the start of each polymer chain. A target 

site is then chosen at random from the six nearest - neighbours and, if unoccupied, 

the polymer chain is extended by one segment length I in that direction. This is 

repeated until the required chain length N is achieved. The volume fraction of lattice 

sites occupied by the polymer chains 0P placed in the lattice is equal to the volume
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fraction of solvent molecules 0S placed in the initial plane to conserve density across 

this boundary. The conformation of each polymer chain placed is then tested to 

decide which of the three Verdier - Stockmayer (VERDIER 1962) moves each chain 

segment would be able to perform. Each of these three types of move constitutes a 

distinct process, as does the motion of a solvent molecule. Therefore, within this 

system there are four possible processes that may occur with each cycle. For each 

particle successfully placed in the system the computer program uses linked arrays to 

store a unique numeric label for the particle, its location within the lattice, and the 

type of process associated with that particle. In addition, a further array is used to 

count the number of particles corresponding to each process.

The main body of the program now implements the Metropolis 

(METROPOLIS 1953) dynamic Monte Carlo method to study the dynamics of this 

system. A rate r  is defined for each of the four processes described above: rs, re, rb, 
rc for solvent, end, bend, and crankshaft moves respectively. The transition rate for 

each process is then this process rate multiplied by the total number of particles 

corresponding to that process, Rs=Nsrs, Re=Nere, Rb=Nbrb, Rc-N crc. The total rate R 
for the system is the sum of these four transition rates. For each cycle of the 

program, an attempted move is chosen at random by selecting a random number 

between 0 and R. If this total rate is considered in terms of a rate line along which a 

random position is selected, then this method can be illustrated by figure (3.6).

Solvent
M oves

End
Rotations

Bend
M oves

Crankshaft 
Rotations ■

Label number: 1 2 3 4 5 6 7 8 9  10 
M---------------------------- X

11 15 16 20
X

12 17 18 19 13 14
 ^ ^
Rs+Re+Ri, Rs+Re+Rh+RC=R0 Rs

Position selected  
at random

Figure (3.6): An illustration o f the selection method for an attempted m ove from a transition rate 

line. In this example, position 12 is chosen at random along the total rate line. This corresponds to 

particle number 15 which is able to attempt an end rotation.
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From the random number selected, the computer program uses a simple search 

algorithm to find the corresponding particle, its location, and the type of move it is 

able to attempt. If a polymer segment has been chosen then one of the three Verdier 

- Stockmayer moves is carried out as described in section (3.2.1). If a solvent 

molecule is chosen from the initial plane then it will move in a randomly chosen 

direction to a nearest - neighbour site, but a constant volume fraction is always 

maintained in the initial plane. If a solvent molecule is removed from the initial 

plane it is immediately replaced to maintain this constant volume fraction. Similarly, 

if a solvent molecule enters the initial plane then it is absorbed into the solvent 

reservoir. The probability of an attempted move being successful is calculated 

according to the Metropolis Monte Carlo algorithm described in section (3.2.2). 

Each move is assumed to occur instantaneously and, following a successful move, 

each of the linked arrays must be updated to account for any change in the state of 

the system. Following every attempted move the elapsed time of the system is 

incremented according to the method also described previously. In this way a Monte 

Carlo algorithm is specified to study the ingress of solvent into a polymer.

3.3.2 Solution of the Diffusion Equation

For the physical system described above there is an analytic solution of the 

differential diffusion equation, equation (2.23), assuming that the chemical diffusion 

coefficient Dc is constant with increasing solvent volume fraction. The net flow of 

solvent molecules is in the positive x direction along the concentration gradient, thus 

only a one - dimensional solution is required. This is described in detail by Crank 

(CRANK 1975 p.20). Here, the solution for the semi - inifinite medium is reviewed 

briefly. The boundary at x-0  is kept at a constant surface volume fraction 0o and the 

initial volume fraction, at time t-0, is zero throughout the medium x>0. A solution 

of the diffusion equation is required that satisfies the following boundary conditions;

0 - 00, , x - 0 ,  t > 0.

0 = 0, x  > 0, t = 0
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This can be solved by using the Laplace transform to remove the time variable, 

leaving an ordinary differential equation the solution of which yields the transform 

of the volume fraction as a function of the space variable. An expression for the 

volume fraction in terms of the time and space variables can then be found that 

satisfies the boundary conditions. Following this method, the solution of the 

diffusion equation is given by;

0 =  0 o erfc [x/2d(Dct)f (3.8)

Here, erfc is known as the error function complement. This is related to a standard 

mathematical function, the error function, usually written as erf \ by;

erfc(z) = 1- erf(z) (3.9)

where;

erf(z) = (2/dn) f exp (-x2) dx (3.10)JO

Expression (3.8) shows that the solution of the problem of diffusion into a 

semi - infinite medium with a constant surface volume fraction involves only a 

single dimensionless parameter;

x / 2 i( D c t)

From this the characteristic features of Fickian diffusion can be inferred that were 

described in section (2.2.1). The most important of these is that the distance of 

penetration of any given volume fraction will be proportional to the square root of 

time. Therefore, the analytical solution of the diffusion equation for this system 

predicts Fickian diffusion.



Chapter 3 Monte Carlo Modelling of Solvent Ingress into Polymer

3.3.3 Measuring the Solvent Diffusion Coefficient

To study the diffusion of solvent through the polymer, one of the most 

important parameters that must be measured is the diffusion coefficient of the 

solvent molecules. In this work three different methods have been used to find this 

chemical diffusion coefficient for the diffusion of solvent molecules along the 

concentration gradient.

Firstly, the analytic solution given by equation (3.8) can be used to fit a 

solution to the solvent profile generated by the computer simulation. By fitting a 

function of the form;

to the solvent profile at a particular time t, a graphics software package (XVGR) will 

give the value of A, where;

Hence, Dc can be easily deduced assuming that Dc remains constant with increasing 

solvent volume fraction. For cases where the diffusion coefficient is not a constant 

another method must be used.

A second method reverts to Fick’s original hypothesis given in equation 

(2.22) which stated that the rate of transfer of diffusing substance through a unit area 

of a section is proportional to the concentration gradient measured normal to the 

section. By defining a plane in the lattice that is perpendicular to the net flow of 

solvent molecules, the number of solvent molecules moving through this plane can 

be counted to give a measure of the flux. The concentration gradient can also be 

deduced from the simulation, hence only the diffusion coefficient Dc remains to be 

calculated.

0 = 0o erfc (Ax) ( 3 .1 1 )

A  = (4Dct f ( 3 .1 2 )
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The third method used required the development of a second computer 

simulation using finite difference methods to generate the solvent profiles 

independently of the Monte Carlo simulation. The advantage of this numerical 

simulation is that the functional form of the chemical diffusion coefficient must first 

be specified. Therefore, data from this model can be fitted to the Monte Carlo model 

to determine the best functional form for the diffusion coefficient. This method is 

also reviewed by Crank (CRANK 1975 p. 139).

3.4 Results of the "Simple” Monte Carlo Model

The aim of the following simulations is to study the operation of this 

computer model with different model parameters and to see which types of diffusion 

the model can reproduce. In each set of results that follow a three - dimensional 

cubic lattice is used of 100x50x50 lattice sites with a lattice spacing of 1x1 O'8 m. The 

size of this lattice was chosen to be large enough to reduce any statistical errors in 

the results whilst remaining small enough to be computationally viable. The 

elementary period of time was chosen to be lxlO '9 s. These dimensions were chosen 

arbitrarily, but can be scaled to a particular system of interest. In each simulation the 

volume fraction of solvent in the initial plane of the lattice is always maintained at 

0.5. Unless stated otherwise, the volume fraction of polymer in the lattice is also 

0.5, with a molecular weight N=200, and the rates of the solvent and polymer, rs, re, 

n, rc, are unity. Also, the system can be considered as athermal where % -0  and 

temperature has no effect on the polymer structure. This is the case for a good 

solvent (DE GENNES 1979).

3.4.1 Polymer Concentration Dependence

The results shown in figure (3.7) show the effect of the polymer volume 

fraction 0P on the solvent diffusion for four different polymer volume fractions. In 

the first case, figure (3.7a), there is no polymer present in the lattice 0P-O. The 

solvent is free to diffuse into an empty lattice. Figure (3.7a) shows the solvent 

volume fraction 0S against the distance d through the lattice for five solvent profiles 

at five consecutive times: t=lxl0'5s, 5x1 O'5 s, lxl0'4s, 5x1 O'4s, lx l O'3 s. For each
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profile three different curves are shown: the bold black line is the result of the Monte 

Carlo model; the solid black line is the fit of the analytic solution of the diffusion 

equation; the dashed black line is the fit of the finite difference simulation. In this 

case both the analytic solution and the finite difference solution can be seen to fit 

almost exactly to the Monte Carlo data. This confirms that the Monte Carlo model is 

working as would be expected for this system, producing solvent profiles in the form 

of error functions that are identical to the analytic solution for a semi - infinite media 

with a constant diffusion coefficient. The finite difference simulation confirms this 

where a constant diffusion coefficient has been assumed.

Figure (3.7b) shows the same simulation but with a polymer volume fraction 

of 0P-O.25. Therefore, in this figure the five additional curves represent the volume 

fraction of polymer in the lattice and are shown by a solid thin line for each 

consecutive time. In this case the solvent profiles do not appear to be significantly 

different, but closer inspection shows that their distance of penetration is less. This 

is expected since the volume fraction of polymer restricts the number of available 

lattice sites to the solvent; the probability of a successful solvent move is then less. 

Most importantly- though, the analytic solution of the diffusion equation is now no 

longer a good fit to the Monte Carlo data and shows significant differences. The 

finite difference simulation is therefore used to find the best fit to the Monte Carlo 

data. It was found that by specifying a functional form for the chemical diffusion 

coefficient’s dependence on solvent volume fraction, a good fit could be achieved. 

The form of this function is given by;

D c(0J  =  D 0 exp  (- p  0S) (3.12)

where D0, the intrinsic diffusion coefficient, and p are constants. Equation (3.12) 

was found to give the best fit to the Monte Carlo simulation although fits were 

attempted with other exponential and linear functions. The form of this function is 

discussed further in Chapter 5. It can be stated that the chemical diffusion 

coefficient is no longer a constant in the presence of polymer but instead has some 

dependence on the volume fraction of solvent in the lattice. However, this 

dependence may not be on the volume fraction of solvent but rather on the number-

-57-
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F igure (3.7): Volum e fraction against solvent penetration distance showing solvent profiles obtained 

from the Monte Carlo simulation (bold), analytic solution (solid), and finite difference solution 

(dashed) for five consecutive times at four different polymer volume fractions: a) 0,,-OM, b) 0t>=O.25,

c) 0l)=O.5, d) 0,,=O.75. The corresponding polymer profiles (solid) are shown for each time.
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of free lattice sites available, which itself is a function of the solvent volume fraction 

within the system given that the total number of lattice sites occupied by polymer 

molecules remains constant.

Figures (3.7c) and (3.7d) show the same simulation for polymer volume 

fractions of 0P=O.5 and 0P-O.75 respectively. The difference between the Monte 

Carlo data and the analytic solution appears to increase with increasing polymer 

volume fraction due to the further reduction of free lattice sites. The finite difference 

simulation confirms this where fits were obtained for an increasing value of p with 

the polymer volume fraction, showing an increasing dependence on 0S. At the same 

time Do decreases with increasing polymer volume fraction as would be expected for 

a system with fewer free lattice sites restricting the diffusion of solvent molecules. 

This is shown explicitly in figure (3.8), which shows the chemical diffusion 

coefficient against time for each of the four polymer volume fractions. With no 

polymer present Dc is constant with time, but with polymer present this figure shows 

an initial fall in Dc before a constant value is reached. This suggests that at 

extremely short times the diffusion coefficient would essentially be independent of 

solvent volume fraction and that the volume fraction dependence described above 

becomes significant after a short time.

Finally, figure (3.9) shows the progression with time of the solvent fronts 

shown in figure (3.7). If the penetration distance of the solvent front is related to the 

elapsed time by equation (2.25), then by plotting a double logarithmic plot of 

distance against time, the coefficient n can be immediately measured from the 

gradient of that plot. It is found, unsurprisingly, that the solvent fronts’ progression 

with time in this simulation is characterised by n=0.50 ± 0.06. This is characteristic 

of Fickian diffusion and shows that the penetration distance of solvent is 

proportional to the square root of time.
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F igure (3.8): Solvent chemical diffusion coefficient against time for the M onte Carlo data shown in 

figure (3.7) for each o f  the for four polymer volume fractions v./.

log (time)

F igure (3.9): Double logarithmic plot o f  solvent penetration distance against time for four polymer 

volum e fractions show ing progression o f  the solvent front with time.
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3.4.2 Molecular Weight Dependence

The effect of molecular weight, or polymer chain length N, is now studied. Figure 

(3.10) shows the solvent profiles as described previously, but for four different 

molecular weights. In figure (3.10a), the solvent front is shown for a system with a 

polymer volume fraction of 0p-O.5 and a chain length of N=10. Again, it can be 

seen that solvent profile is not quite an error function and that the analytic solution of 

the diffusion equation is a poor fit. However, the finite difference simulation again 

provides a good fit to the Monte Carlo data using the functional form for the 

chemical diffusion coefficient given by equation (3.12). Figures (3.10b), (3.10c) and 

(3.10d), show the solvent profiles for molecular weights of N=50, 100 and 200 
respectively. With increasing chain length, there are few differences between these 

four sets of data. The volume fraction of polymer is identical in each, the only 

difference being the increased length of the chains. This behaviour is confirmed by 

the finite difference simulation where a small decrease in Do is observed with 

increasing polymer chain length. However, the value of p remains constant, showing 

no change in the diffusion coefficient’s dependence on the solvent volume fraction 

with increasing chain length. This is acceptable since the number of free lattice sites 

available to the solvent molecules remains constant in these simulations despite 

varying the length of the polymer chains. The variation in the solvent's chemical 

diffusion coefficient with time for each of the four molecular weights is shown in 

figure (3.11). These show the same trend with time described previously and a 

decrease in diffusion coefficient with increasing molecular weight. This change is 

due entirely to the connectivity of the polymer chains since the volume fraction of 

occupied sites is unaltered. This can be related to Rouse’s model (ROUSE 1953) 

since he predicted that the viscosity of the polymer chains would be proportional to 

the molecular weight. With higher molecular weights, the polymer chains would be 

more viscous due to the greater number of entanglements and would move more 

slowly. Therefore, the vacancies in the bulk polymer would become available to the 

solvent molecules more slowly, inhibiting their diffusion. The progression of the 

solvent front with time is again Fickian in each case, with the coefficient n measured 

as previously where n-0.50 ± 0.04.
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Figure (3.10): Volum e fraction against penetration distance showing solvent profiles obtained from 

the M onte Carlo simulation (bold), analytic solution (solid), and finite difference solution (dashed) for 

five.consecutive times at four molecular weights: a) N ~10, b) N =50, c) N =100, d) N =200. ....
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In this and the previous simulation, the graphs of volume fraction with 

distance show the polymer volume fraction moving slowly in response to the solvent 

molecules entering the system. On average, it is more probable that a polymer 

segment will move away from the initial solvent plane and the ingressing solvent 

molecules than move towards this region with fewer vacancies in the lattice. This is 

indeed seen in figures (3.7) and (3.10). However, this creates a localised increase in 

the polymer volume fraction at a distance away from the initial solvent plane. This 

simulation has therefore been modified to allow a localised swelling of the polymer 

to occur in response to this. If the volume fraction of occupied sites in a particular 

plane in the lattice changes from its initial average value, the distance between this 

lattice plane and the next will change by a distance proportional to this change in 

volume fraction. In this way the density of every plane in the system remains 

constant and a swelling of the polymer is simulated. This is evident in figure (3.10) 

where the polymer volume fraction for the longest elapsed time extends beyond the 

initial length of the lattice. This swelling scales with time as n-0.5  ± 0.05 as 

expected for Fickian diffusion.

F igure (3.11): Solvent chemical diffusion coefficient against time for the M onte Carlo data shown in

figure (3.10) for four molecular weights N.
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3.4.3 Rate of Polymer Motion Dependence

The process rates described in this chapter are now put into use to study their 

effect on the simulation. Firstly, the rates of the polymer processes re, r r c, are 

varied whilst the solvent process rate is maintained at a constant rs=L0. These 

control the rate at which the polymer segments attempt to move. In this simulation 

these three rates have been assigned values re=ry=rc-0.0, 0.25, 0.5, 0.75, LO 

consecutively. In figure (3.12) solvent profiles are shown for polymer process rates 

of 0.0 and 1.0 for comparison. In the first case, figure (3.12a), the polymer process 

rate is zero, simulating a polymer glass where polymer chain configurations are 

frozen and will not move. Here the solvent profiles indicate that the diffusion of 

solvent is inhibited by the polymer chains with a solvent profile that is clearly not an 

error function. The finite difference simulation produces only a reasonable fit to the 

Monte Carlo data. The solvent profiles in this case are due to diffusion through a 

porous media where the solvent molecules have to diffuse through vacancies 

between static polymer chain configurations. Consequently, there may be a large 

proportion of free lattice sites that the solvent is unable to reach. In comparison, 

figure (3.12b) shows the same simulation with a polymer process rate of unity. This 

illustrates the features previously described for a system in which the polymer 

molecules are free to move in response to the solvent ingress. Thus, this system can 

be thought of as a rubbery polymer and demonstrates the features of Fickian 

diffusion expected for such a polymer. In fact, for all five polymer process rates the 

progression of the solvent front with time remains Fickian and the coefficient n is 

found to be n=0.48 ± 0.04.
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Figure (3.12): V olum e fraction against penetration distance showing solvent profiles for two different 

polymer process rates: a) polymer glass, r~ 0 .0 , b) polymer rubber, r -L O .

The variation of the solvent’s chemical diffusion coefficient with time is 

shown in figure (3.13) for each of the five polymer process rates. This figure 

illustrates how the average value of the diffusion coefficient decreases with the 

polymer process rate. This is to be expected in this model since the diffusion of 

solvent molecules in this polymer glass is inhibited by the frozen chains, whereas 

diffusion in the rubbery polymer is aided by the co-operative motion of the polymer 

chains.
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F igure (3.13): Solvent chem ical diffusion coefficient against time for five polym er process rates r.

3.4.4 Rate of Solvent Motion Dependence

Next, the rate of the solvent process is studied in the same way as above 

whilst maintaining constant values of the polymer process rates re-ry=rc-1.0. The 

solvent rate rs is assigned five different values rs-1.0 , 1.25, 1.5, 1.75, 2.0, and the 

solvent profiles with time are recorded for each. Figure (3.14) illustrates the solvent 

profiles for solvent process rates of 1.0 and 2.0 for comparison. Few differences are 

seen to the results previously described, other than an increase in the penetration 

distance of the solvent with increasing solvent process rate. This simply confirms 

the operation of the model. If the solvent process rate is doubled then the probability 

that a solvent molecule will make an attempted move will also double given that all 

other process rates remain unchanged. Therefore, solvent diffusion becomes a faster 

process where the mean time between actual solvent moves decreases.
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F igure (3.14): V olum e fraction against penetration distance showing solvent profiles obtained from 

the M onte Carlo simulation (bold), analytic solution (solid), and finite difference solution (dashed) for 

five consecutive times at two different solvent process rates: a) r - 1 .0 ,  b) r -2 .0 .

This behaviour is also illustrated by figure (3.15), which shows the solvent’s 

chemical diffusion coefficient against time for each of the five solvent process rates. 

Again, a higher average value of the solvent diffusion coefficient is seen with an 

increasing solvent process rate. This diffusion coefficient increases approximately 

linearly with the solvent process rate and demonstrates that this simulation behaves 

as expected. For this simulation, both the solvent front’s progression with time and 

the system’s swelling with time demonstrate Fickian diffusion with a coefficient of 

n=0.47 ±0.04 and n=0.5I ±0.06 for each respectively.
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F igure (3.15): Solvent chemical diffusion coefficient against time for five solvent process rates r. 

3.4.5 Interaction Energy Dependence

Interaction energies are now introduced into this system which has hitherto 

been athermal. In this model an interaction energy eps is considered only between 

the polymer segments and solvent molecules and only between particles at nearest - 

neighbour lattice sites. A particle is more likely to move to a new lattice site if that 

site is surrounded by attractive nearest - neighbours. The change in energy AE 
associated with such a move would be negative and would lower the energy of the 

system. Hence, attractive interaction energies between the polymer and solvent are 

negative and repulsive energies are positive. This is realised in the computer 

program by summing the interaction energies for the particle’s six nearest - 

neighbour sites at its initial location and at its proposed location following the move.
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The change in energy AE is then the difference between these two values. The 

probability that the attempted move is successful is governed by the Metropolis 

algorithm as described in equations (3.1) and (3.2). In reality, the magnitude of the 

polymer - solvent interaction energy is of the order 0.1 eV (GROSBERG 1997). It’s 

effect on the system though is relative to the thermal energy of the system governed 

by kT, where k is Boltzmann’s constant and T is temperature. At room temperature, 

kT is of the order 0.01 eV.

In this simulation the interaction energy between the polymer and the solvent 

eps is assigned five different values: eps=-2.0, -1.0, 0.0, +1.0, +2.0. It was found that 

only a doubling of the interaction energy was sufficient to produce significant 

changes in the solvent profiles produced by the Monte Carlo simulation. The units 

of these energies are unimportant since the program deals only with values relative 

to kT, equation (3.2). Unless stated otherwise, the thermal energy is defined by 

kT-1.0. Results of this simulation for eps=-1.0 and eps=+1.0 are illustrated in figures 

(3.16a) and (3.16b) respectively.

For a negative interaction energy it is expected that the polymer and the 

solvent components will attract each other. This is illustrated in figure (3.16a) where 

the solvent profiles are steeper and penetrate further than would be expected if the 

system were athermal (figure (3.14a) for example). Furthermore, the solvent 

actually attracts the polymer towards the initial plane of solvent thereby causing a 

local increase in the polymer volume fraction in this region. If the interaction energy 

is positive then it is expected that the polymer and solvent components will, repel 

each other. Again, figure (3.16b) demonstrates this, where the solvent profiles have 

suddenly become very steep and do not penetrate as far into the polymer. In this 

figure a separation can be seen developing between the polymer and the solvent. 

This causes a local increase in the volume fraction of the polymer near to the initial 

plane of solvent and consequently creates a barrier, impeding the diffusion of solvent 

molecules. No attempt has been made to fit a solution to either of these solvent 

fronts. It is clear that they are no longer error functions and the use of the finite 

difference simulation would require something more complex than a simple 

exponential function to generate these profiles. However, despite these extreme
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changes in the profiles of the solvent fronts, this diffusion process remains Fickian as 

characterised by a coefficient n=0.46 ± 0.06. The swelling of the system also scales 

with the square root of time where n=0.50 ± 0.05.

The chemical diffusion coefficient for this simulation has been estimated 

from the flux of solvent molecules through a plane of the lattice as described in 

section (3.3.3). The results of this are shown in figure (3.17). For the positive 

repulsive energies a sudden decrease in the solvent diffusion coefficient is seen 

compared to the case for zero interaction energies. This is due to the separation of 

the polymer and solvent and the local increase in the polymer volume fraction 

creating a barrier to the diffusion of the solvent molecules. For the negative 

attractive energies the solvent diffusion coefficient initially rises with increasing 

interaction energy before falling to below its athermal value. What appears to 

happen is that the solvent attracts the polymer towards the initial plane to such an 

extent that the polymer volume fraction increases in this region and again impedes 

the solvent diffusion in the same way that the positive interaction energy did. The 

reality of this is questionable although the simulation is working in accordance with 

the program. The effects seen here may be extreme and may simply require more 

refined parameters to make the simulation more realistic.
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F igure (3.16): Volum e fraction against penetration distance showing solvent profiles for two different 

interaction energies: a) E = -1 .0 , b) E = + 1 .0 . Only the Monte Carlo data is shown.
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Figure (3.17): Solvent chemical diffusion coefficient against time obtained from the flux o f solvent 

m olecules measured in the Monte Carlo simulation for five interaction energies E.

3.4.6 Tem perature Dependence

Finally, the effects of temperature are studied through the parameter kT and 

equation (3.2). In this simulation, temperature only affects the probability at which a 

particle will move against a repulsive force, governed by equation (3.2). The 

probability at which a particle moves in response to an attractive force is unity and 

remains unchanged. If the temperature of the system increases, the probability that a 

particle will make a successful move against a repulsive force increases. This can be 

understood physically, since particles in a system with greater thermal energy will be 

more thermally active and are more able to oppose any repulsive forces. This has a 

significant effect on the diffusion of solvent into the system.
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This simulation was carried out for five values of kT between 0.1 and 2.0, 

with a constant attractive interaction energy between the polymer and the solvent. 

For low temperatures very little diffusion is seen indicating that the probability of a 

successful move is greatly reduced. For higher temperatures the diffusion increases 

as the probability of a solvent molecule opposing a repulsive force increases. This is 

illustrated in figure (3.18), which shows the chemical diffusion coefficient of the 

solvent against time for each of the five temperatures. Furthermore, the progression 

of the solvent fronts with time also changes with temperature. For low temperatures 

the progression of the solvent front is severely restricted and the coefficient n is 

measured as n=0.05 ± 0.04 due to the restricted diffusion of the solvent. As 

temperature increases, so the progression of solvent front increases until the 

coefficient n is n=0.48 ± 0.04. This is shown in figure (3.19). Thus, Fickian 

diffusion is still dominant in this simulation and, more importantly, the progression 

of the solvent front never exceeds this dependence on the square root of time.

Figure (3.18): Solvent chemical diffusion coefficient against time obtained from the flux o f solvent 

m olecules measured in the M onte Carlo simulation for five temperatures kT.
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F igure (3.19): Double logarithmic plot o f solvent penetration distance against time for five  

temperatures kT, showing progression o f  the solvent front with time.

3.5 Conclusions

The results presented in this chapter represent the preliminary findings of an original 

dynamic Monte Carlo model of solvent ingress into polymer. These results have 

been chosen to demonstrate the operation of the model and to illustrate the effects 

that the model parameters have on the solvent diffusion process. The behaviour of 

this "Simple" model is in accordance with the computer algorithm developed in that 

no unexpected behaviour is seen. Furthermore, the simulated behaviour of the 

system can be related to the dynamics of a real system to gain a better understanding 

of the processes taking place. Limitations of this model have not been discussed in 

detail here and will be examined in chapter (5). However, the most obvious 

limitation is that only Fickian diffusion is simulated with no departure from this 

behaviour for any reasonable parameters.
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Chapter 4

Comparison With MRI Experiment

4.1 Introduction

Many experimental methods have been employed over the past fifty years to 

study polymers and polymer solutions, including optical, radiative and penetrant 

mass uptake methods (CRANK 1968). Amongst these, Nuclear Magnetic 

Resonance (NMR) has proved to be one of the most powerful and useful methods for 

studying the dynamic properties of polymers and their solutions non-invasively. 

This technique was established by two groups of physicists working independently 

in the 1940s (PURCELL 1946, BLOCH 1946). Nuclear magnetic resonance was 

first applied to the study of polymers in 1951 when Holroyd (HOLROYD 1951) and 

co-workers studied the mobility of polymers. More recently Kimmich and co

workers (KIMMICH 1993, WEBER 1993) have carried out extensive studies to 

correlate NMR data with theories of polymer dynamics.

Magnetic Resonance Imaging (MRI) relies on the principle of nuclear 

magnetic resonance and is increasingly being used to study the ingress of solvent 

into polymers. It is a non-invasive method that can provide spatially resolved 

information on the solvent concentration within the polymer as a function of time. 

Blackband and Mansfield (BLACKBAND 1986, MANSFIELD 1992) established 

the basic principles by which MRI is used to study solvent in polymer with a study 

of the ingress of water into solid blocks of nylon. Solvent diffusion processes have 

been studied in a wide range of systems from rubbers (WEBB 1990a/b, 1991, 

HALSE 1994) to biomedical polymers (BOWTELL 1994). These polymer systems
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have predominantly displayed Fickian diffusion characteristics, but systems 

displaying Case II diffusion characteristics are increasingly being investigated. The 

ingress of methanol into polymethylmethacrylate (PMMA) has been extensively 

studied (WEISENBERGER 1990a/b, ERCKEN 1996, LANE 1997) and exhibits 

Case II diffusion.

The aim of this chapter is to describe an MRI experiment carried out to gain 

data to compare to the results of the "Simple" Monte Carlo model. Only by 

comparing the simulated data to real data can the validity of the model be 

ascertained. This chapter will first outline the principles of Magnetic Resonance 

Imaging required to gain an understanding of this experiment. Reviews of MRI and 

NMR theory are given in books by Callaghan (CALLAGHAN 1991) and Goldman 

(GOLDMAN 1993). The experimental procedure is then explained before 

comparing the results of this experiment to the results of the Monte Carlo model. It 

is hoped that this chapter will also provide a link to the extensive experimental field 

currently using MRI methods to study the properties of polymer systems.

4.2 Magnetic Resonance Imaging

Atomic nuclei within a polymer sample possess an electric charge and an 

angular momentum or spin. This rotating charge creates a magnetic dipole. In the 

absence of any external magnetic field, these magnetic dipoles are randomly oriented 

in all possible spatial directions throughout the sample. If a magnetic field B0 is 

applied to the sample along the z direction, the magnetic dipoles attempt to align 

with the direction of the magnetic field and precess along a conical path around the 

field direction with a frequency coo. However, the spins of the atomic nuclei in the 

magnetic field are quantised and can achieve only two possible stable orientations 

relative to the magnetic field. These spins can align either parallel to the magnetic 

field or anti-parallel to the magnetic field. Hence, the magnetic dipole moment also 

aligns in just these two directions. An orientation parallel to the external magnetic 

field requires less energy than an anti-parallel orientation as energy is required to 

rotate the magnetic dipole against the magnetic field. Thus, two energy levels are 

created for a spin Vi system such as !H, known as Zeeman levels. The difference in
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energy A E  between these two levels is proportional to the field strength Bo. At room 

temperatures, more spins are aligned parallel to the magnetic field than anti-parallel 

due to the thermal energy of the system. This situation is illustrated in figure (4.1). 

Consequently, a macroscopic magnetisation M z of the sample in the magnetic field 

exists which can be detected by a nuclear resonance experiment.

E

A

AE Bn M 7

Parallel Spins

F igure (4.1): Illustration o f energy level difference AE  during spin alignment in an applied field B0 

resulting in a macroscopic magnetisation Mz within the sample.

4.2.1 Nuclear Magnetic Resonance

Transitions of nuclei between the two energy levels described above are 

produced by the absorption of electromagnetic radiation with a frequency co0 defined 

by the relationship;

A E  =  Pico0 (4.1)

where h ~ h /2 n : and h is Planck’s constant. The transition of a spin from one energy 

level to another represents a change of its spin direction. However, as the probability 

of spontaneous emission or absorption is very low this is only possible if an 

additional electromagnetic field with frequency a>o is applied to the sample. This is 

the resonance condition where co0 is the resonant frequency;
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co0 =  j B 0 (4.2)

here y is a constant called the gyromagnetic ratio, specific to the type of nuclei, and 

coo is known as the Larmor frequency. For the hydrogen ]H nucleus in a magnetic 

field of strength 1 Tesla this resonant frequency is 42.58 MHz. Such radio 

frequencies are easily produced inside the coil of a resonance circuit so that nuclear 

transitions can be excited by a radio frequency electromagnetic field.

If a short, intense radio frequency pulse of frequency coo is applied to the 

sample perpendicular to the magnetic field Bo, an equilibrium in the distribution of 

nuclei between the two energy levels is produced. With equal numbers of parallel 

and anti-parallel spins the magnetisation Mz in the z direction is zero and the 

magnetisation is aligned in the x-y plane, i.e. Mx>y. A pulse which has turned the 

magnetisation through 90° is called a 90° pulse. Following this 90° pulse, the 

magnetisation is aligned with the axis of the electromagnetic coil. This 

magnetisation can be pictured as the nuclear spins precessing in phase. The nuclear 

spins have a rotational frequency co0 and hence cause the magnetisation to oscillate 

with this same frequency. This oscillating magnetic field induces an alternating 

voltage in the electromagnetic coil also with frequency coo. Thus, it is possible to 

detect the magnetisation of the sample. The electromagnetic coil therefore acts as 

both a transmitter, to excite the nuclear resonance, and a receiver, for the detection of 

nuclear resonance signals. Following the application of the radio frequency pulse 

the nuclear resonance signal decays, resulting in the observed signal known as the 

Free Induction Decay. However, an important property of the nuclear resonance 

signal is that the signal intensity at a constant field strength is a measure of the 

density of a particular type of atomic nucleus within the sample.

4.2.2 Nuclear Magnetic Relaxation

The nuclear resonance signal decays with time and can also yield important 

information. Following the excitation, the sample returns to a state of equilibrium 

within a certain time. This means that the oscillating magnetisation in the x-y plane
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Mx>y no longer exists and is restored in the z direction Mz. This transition to the state 

of equilibrium after the disturbance by the pulse is termed the relaxation of the spin 

system. Two relaxation processes may be differentiated: spin - spin relaxation and 

spin - lattice relaxation (BLOEMBERGEN 1948). The decay of the transverse 

magnetisation Mx>y is characterised by the spin - spin relaxation time T2. The 

recovery of the longitudinal magnetisation Mz is characterised by the spin - lattice 

relaxation time 2 /  The difference between these two relaxation times is illustrated 

below.

Mx,y(t) = Mo exp (-trro  (4.3) Mz(t) = M0 [ l-e x tf- t/T ,)]  (4.4)

F igure (4.2): Illustration o f a) the spin - spin relaxation and b) the spin - lattice 

relaxation as characterised by equations (4.3) and (4.4) respectively where M 0 is 

the net magnetisation o f  the sample.

By applying different radio frequency pulse sequences to the sample, 

different magnetisations can be induced in the sample and hence Tj or T2 can be 

measured as required. The spin - echo sequence uses a 90° pulse to turn the 

magnetisation to the x-y plane and produce the transverse magnetisation Mxy. Due to 

inhomogeneities in the applied magnetic field, individual spins possess slightly 

different resonant frequencies, some precessing faster and some slower (HAHN 

1950). This de-phasing causes the nuclear resonance signal to decay in a time T2*. 
After a time xe, a 180° pulse is applied to invert all the spin directions and the de- 

phasing process is converted to one of re-phasing. After a further period xe has 

elapsed, the spins align in phase as they were after the initial 90° pulse. This re

phased signal is termed the spin - echo and xe is known as the echo time. Despite 

this rephasing, the amplitude of the spin - echo signal will still decay with a 

characteristic time T2, the true spin - spin relaxation time. If a multiple sequence of
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180° pulses is applied, the intensity of successive spin - echos decay with time. This 

method is used to determine the T2 relaxation time of the sample (CARR 1954, 

MEIBOOM 1958).

4.2.3 Spatial Imaging

Magnetic resonance imaging can provide spatial information about the 

sample in question as well as temporal information (ERNST 1987). Spatial 

information can be obtained using the resonance frequency if the applied magnetic 

field changes linearly with distance through the sample (LAUTERBUR 1973). This 

magnetic field gradient increases linearly in a particular direction and hence the 

magnetic field strength and consequently also the resonance frequency increase 

linearly with distance. Nuclei at different spatial locations along the magnetic field 

gradient precess at different Larmor frequencies. Therefore, if the nuclear resonance 

signal is plotted as a function of frequency, a density profile of the nuclear spins with 

distance is obtained. However, the two directions perpendicular to the magnetic 

field gradient remain unresolved and only a one - dimensional profile of the sample 

is obtained. This situation is illustrated in figure (4.3). Three - dimensional profiles 

are possible by manipulation of three magnetic field gradients applied in orthogonal 

directions.

Direction o f  
M agnetic Field 
Gradient Ba(x)

<

Frequency
co(x)

Sample Signal
Intensity

F igure (4.3): A  schematic illustration o f  a magnetic field gradient applied along the length o f a 

sample containing different densities o f  spins. A  plot o f  the nuclear resonance signal intensity with 

frequency produces a profile o f this changing spin density with distance.
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4.3 Experimental Procedure

With the aim of comparing experimental MRI data to the results of the 

"Simple" Monte Carlo model, it is clear that a solvent/polymer system is required 

that displays Fickian dynamics. The diffusion of decane into lightly crosslinked 

natural rubber is such a system. Halse (HALSE 1994, 1996) has shown that this 

system can be studied by MRI and that it produces Fickian diffusion dynamics. The 

decane/rubber system is therefore chosen for this experiment, but it is also an 

important example of the softening of rubbers by organic solvents used in many 

industrial processes.

4.3.1 Sample Geometry and Preparation

The ingress of solvent into a polymer can cause significant swelling of the 

polymer. The volume of the swollen polymer is approximately equal to the sum of 

the volumes of the separate components. However, if the volume of absorbed 

solvent is very much less than the volume of dry rubber, the swelling can be 

neglected and known analytic solutions of the one - dimensional diffusion equation 

can be used. Polymer samples are prepared in the form of thin sheets of thickness 2L 
and are immersed in the decane for a period of time before being removed and 

imaged. A thin layer of solvent is absorbed onto each surface, which then diffuses 

towards the interior of the polymer sample. This is illustrated in figure (4.4). Halse 

(HALSE 1994) assumed that the thin layer of solvent absorbed onto each face of the 

sample approximated a delta function in concentration. Using this boundary 

condition and the condition that no solvent reached the centre of the sheet, a solution 

of the differential equation of diffusion was given for the solvent concentration as a 

function of time and distance through the polymer sheet for a constant diffusion 

coefficient. This solution was based on a derivation given by Parker (PARKER 

1961). However, Halse recognised that this solution was only true if the exposure of 

the polymer to the solvent was infinitely short and that the finite exposure time used 

could be too long. While the polymer sample is immersed in the solvent, the surface 

of the polymer is exposed to a constant concentration of solvent for a finite time
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before being imaged. This is closely related to the system modelled by the Monte 

Carlo method provided that the imaging process is carried out within a short period 

of time after the polymer sample is removed from the solvent.

2L
< ►

Edge
View

Figure (4.4): Sample geometry showing the direction of solvent diffusion into a rubber sheet of 

thickness 2L where decane is absorbed onto only two faces of the sample as indicated.

Samples of vulcanised, unfilled natural rubber sheets of thickness 2 mm were 

supplied by the Tun Abdul Razak Research Centre. Two different cure systems were 

used during production, each producing three different effective crosslink densities 

as specified in figure (4.5).

Sample Number Cure System Crosslink Density (mol/m3)

1 Dicumyl peroxide 1 phr 35

2 Dicumyl peroxide 2 phr 66

3 Dicumyl peroxide 3.5 phr 123

4 Sulphur/CBS 0.8/0.8 phr 28

5 Sulphur/CBS 1.6/1.6 phr 63

6 Sulphur/CBS 3/3 phr 118

Figure (4.5): Samples of natural rubber showing the cure system and effective crosslink densities for

each sample.
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The solvent decane (Q 0H22) was supplied by Aldrich chemicals. Rubber 

samples of 50x10 mm and thickness 2 mm were cut from each rubber sheet. They 

were then immersed in the decane for a time T before being removed and dried on 

filter paper to remove any excess solvent. A section of polymer of 10x10 mm was 

then cut from the sample and trimmed to approximately 8x8  mm to eliminate edge 

effects before immediately imaging the sample. The remainder of the sample was 

returned to the solvent for a further time T. This was repeated for five consecutive 3 

min periods T  so that the total immersion time of the fifth section was 15 min. Once 

each section of each sample was prepared, it was mounted in a sample holder and 

placed into the magnetic resonance imager.

4.3.2 Imaging Procedure

The MRI system used for this study was a 0.47 T (20 MHz for bench - 

top system built by Maran Resonance Instruments. A temperature controller 

maintained the sample at a constant 20 °C. A  spin - echo sequence consisting of a 

90° excitation pulse followed by a 1800 rephase pulse was used to induce the 

transverse echo magnetisation Mx>y as described above. The signal amplitude was 

recorded at 256 points across the echo and Fourier transformed to produce a spin 

density profile. This was repeated for each section of the sample at successive 

solvent exposure times T. However, in this study it is important to be able to 

differentiate between the resonance signal arising from the solvent and the signal 

arising from the polymer. This is possible because of the large differences between 

the relaxation times of the solvent and polymer signals. The dry rubber has a T2 

relaxation time of approximately 1  ms whilst the decane has a T2 relaxation time of 

approximately 200 ms. Similarly, the dry rubber has a Tj relaxation time of 

approximately 50 ms whilst the Tj relaxation time of the swollen rubber is 

approximately 500 ms. This relaxation contrast avoids the need to use a deuterated 

solvent. For rapidly repeated measurements the signal amplitude at position r is 

given by;
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Mz(r) = £  M0‘ (r)[l-exp(-tRD/T/)]sxp(-te/T(4.5)
i= 1

where i indicates each component of the polymer solution and Mq(r) represents the 

local magnetisation intensity of component i. In equation (4.5) tRD is the relaxation 

delay, the time between the 900 pulse and the start of the next average of the data 

acquired; xe is the echo time, the time between the 90° pulse and the 180° pulse. By 

choosing a suitable time for this relaxation delay, it is possible to selectively image 

either the dry rubber or the swollen rubber. If tRD is much less than the 7) of the 

solvent but longer than the 77 of the rubber, the magnetisation signal from the rubber 

will be dominant since the longitudinal magnetisation of the solvent has not had 

sufficient time to recover. However, if tRD is greater than the 77 of the solvent as 

well, then the longitudinal magnetisation amplitude will consist of contributions 

from both the rubber and the solvent. By a minimum of three measurements at 

suitably chosen tRD it is possible to extract Mz for the decane component only. In this 

experiment xe is defined as a constant 900 ps, which is short compared to the 77 of 

the polymer and the solvent. Therefore, the second exponential term in equation 

(4.5) can safely be neglected.

For each sample imaged, three profiles are recorded at three relaxation delay 

times of 25 ms, 50 ms and 2000 ms. The last of these times will produce a spin 

density profile comprising contributions from both the decane and the rubber. To 

eliminate the rubber contribution from this final profile, the signal amplitudes for the 

two shorter relaxation delay times are extrapolated at each point across the profile 

using equation (4.5) to give the expected amplitude Aj of the magnetisation signal 

arising from the rubber after a relaxation delay of 2000 ms. This amplitude profile 

can then be subtracted from the recorded profile to leave a profile consisting only of 

the magnetisation signal amplitude arising from the solvent. This is illustrated in 

figure (4.6).
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Profile for 
rubber and 

decane'

tRD = 25 ms tRD = 50 ms tRD = 2000 ms

Figure (4.6): Illustration of the spin density profiles recorded at each of the three relaxation delay 

times tRD showing the amplitude expected for a pure rubber sample at receiver delay time of tRD -  

2000 ms. The corresponding amplitude arising from the decane is assigned As.

For each of the two rubber profiles (tRD-2 5  ms, tRo=50 ms), an equation can 

be written for the amplitude of each point of the profile using equation (4.5);

Solving these equations simultaneously gives the amplitude As of the rubber 

component as tRD approaches infinity and A 3—>Mq.

Figure (4.7) shows these three profiles at each exposure time for sample 1 as 

an example of the typical spin density profiles recorded in this experiment. Also 

shown are profiles for the dry rubber (t=0 ) and profiles for the swollen rubber after 

an exposure time of 60 mins. For this latter time the sample is saturated with decane, 

showing a constant signal amplitude across the sample. For the remaining five 

profiles a marked variation in signal amplitude can be seen across the sample.

A] = M0 {1 -expf-25/T;)} 

A2 = M0{l-exp(-50/Ti)}

(4.6)

(4.7)

A, -  A]2/(2Ai - Ai) (4.8)
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t=3mins

0
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t=12mins t=15mins

0
■1e+05■le+05 -5 e+ 0 4 ■5e+04

t=60mins

:25ms
:50ms
:2000ms

-1 6 + 0 5  -5 e + 0 4  0  5 e + 0 4

Figure (4.7): Spin density profiles for sample 1 showing magnetisation signal amplitude against 

recorded position for seven solvent exposure times. For each exposure time three profiles are shown 

for relaxation delay times of 25 ms, 50 ms, and 2000 ms .

- 8 0 -
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4.4  C om p arison  w ith  th e M on te C arlo M odel

Figures (4.9) and (4.10) show the experimental data for samples 1, 2, 3 and 4, 

5, 6  respectively. Each graph shows the experimental data plotted as points for each 

of the five solvent exposure times stated above. In deriving the experimental data 

points, the amplitude of each point has been calculated using the method outlined 

previously to eliminate the signal arising from the rubber. Thus a one - dimensional 

profile of solvent intensity against distance is obtained. In figures (4.9) and (4.10) 

this solvent intensity has been normalised to give a solvent volume fraction with 

distance through the sample.

Furthermore, the original MRI data showed solvent ingressing from two 

opposing faces towards the centre of a sample of width 2L. Provided that the solvent 

does not reach the centre of the sample, this is equivalent to the solvent ingressing 

two semi - infinite media from opposite directions. Thus, these two effective sets of 

data are used to reduce statistical errors by reversing one of the data sets and taking 

an average of the two. Therefore, figures (4.9) and (4.10) show the decane 

ingressing only in one direction through a sample of width L.

In this study, the "Simple" Monte Carlo model has been used as described in 

the previous chapter to generate solvent profiles to compare to the experimental data. 

Solvent molecules and polymer chains were placed in the lattice with equal volume 

fractions of 0=0.5 and a maximum polymer chain length of N=200 segments. 

Transition rates were uniformly set to unity and no interaction energies were 

included in the model as is the case for an athermal system of a polymer in a good 

solvent (DE GENNES 1979). A lattice spacing of IxlO '6 m was used, with equal 

time increments between successive profiles. This lattice spacing produces a very 

coarse - grained model compared to the scale of the solvent molecule. However, it 

was chosen in order to achieve a manageable computing time. The simulated data 

was fitted to the experimental data, primarily, by varying the transition rate of the 

polymer motion between successive sets to simulate the effect of the increasing 

crosslink density in the rubber and a reduction in the polymer’s mobility.
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The main difference between the experimental data shown here and the 

results of Monte Carlo model is that the sharp discontinuity expected at the edge of 

the profile has been rounded by the finite image resolution of the MRI method. To 

allow for this effect, the Monte Carlo data fitted to these experimental results was 

first convolved with a Gaussian point spread function of the form;

G(x) = exp { -(x/Ax)2} (4.9)

where Ax is an adjustable parameter equal to the standard deviation of Gaussian 

broadening function. An example of this convolution is shown in figure (4.8) for a 

typical set of simulated Fickian solvent profiles. The best fit for the Monte Carlo 

data was obtained with Ax=0.15 mm.

Figure (4.8): An example of the effects of convolution for a typical set of Fickian solvent profiles at 

five equal time intervals. The original simulated profiles are shown by thin lines, while the 

convoluted data is shown by the thick lines.
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Figure (4.9): Averaged one - dimensional solvent profiles showing MRI experimental points

together with fits from the Monte Carlo model (solid lines) for samples a) 7, b) 2, c) 3.



Chapter 4 Comparison With MRI Experiment

O  T=3m ins 
□  T=6m ins 
O T = 9 m in s 
A T = 1 2 m in s 
+  T =15m ins

O T = 3 m in s 
O T = 6 m in s 
O T = 9 m in s 
A T = 1 2 m in s  
+  T=15m ins

O T = 3 m m s 
□  T= 6m ins 
O T = 9 m fn s 
A T = 1 2 m in s  
+  T= 15m lns

0 .4  0 .6
d is ta n c e  (m m )

0 .4

0 .4  0 .6
d is ta n c e  (mm)

0 ,4  0 .6
d is ta n c e  (m m )

Figure (4.10): Averaged one - dimensional solvent profiles showing MRI experimental points

together with fits from the Monte Carlo model (solid lines) for samples a) 4, b) 5, c) 6.



Chapter 4 Comparison With MRI Experiment

The Monte Carlo results shown in figures (4.9) and (4.10) do not show a 

conclusive fit with the experimental data due to the errors in the experimental data 

arising from the manipulations it has undergone. In particular, errors arise from the 

use of equation (4.8) if the amplitude A i« A 2/2. It is unclear how this may be 

avoided using the current method. The accuracy of the Monte Carlo data is also 

questionable due to the large lattice spacing used here. This limitation of the model 

arises from the need to maintain a manageable computing time. An accurate fit of 

the Monte Carlo model to the experimental data would require careful specification 

of the model parameters to correlate with the dimensions of the system being 

studied. Therefore, the simulated data is only an approximation intended to show the 

general features of the diffusion process. However, it is clear that there is some 

correlation between the experimental data and the Monte Carlo data and that the two 

sets of data follow similar trends. It is possible to conclude that the "Simple" Monte 

Carlo model offers a reasonable comparison to the MRI data presented in this 

chapter.

4.5  C onclusions

Magnetic Resonance Imaging is an important experimental method in the 

study of the dynamic properties of polymers and polymer solutions. The results 

presented in this chapter demonstrate the type of information that can be extracted 

from such an experiment and the methods that are used. These results show the 

diffusion of the decane into the interior of the rubber. However, errors introduced 

during the analysis of the results mean that the extracted solvent profiles are 

relatively poor. It is possible to fit data from the "Simple" Monte Carlo model to. this 

experimental data and show that the Monte Carlo method provides a comparison to 

the experimental data that reasonably reproduces its general features. It is therefore 

possible to conclude that the Monte Carlo model is able to reproduce the general 

features of solvent diffusion into polymer in the limit of Fickian diffusion. To 

improve the accuracy of these results would require improvements in the collection 

and analysis of the experimental data. The imaging system used for this experiment 

is a relatively basic "bench-top" system. Better MRI techniques and systems have 

been developed to study polymer systems in more detail. For example, Stray - Field
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Magnetic Resonance Imaging (STRAFI) has been used extensively at the University 

of Surrey and will be discussed in Chapter 6. To improve the fit of the Monte Carlo 

model would require a detailed knowledge of the binding energies of the particular 

solvent/polymer system and of the solvent and polymer molecules. A finer lattice 

would also improve the situation, simulating more closely the scale of the solvent 

molecule. However, this would require a much greater computing time. Both are 

beyond the scope of this work.
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Chapter 5  

Limitations of Current Models 
of Solvent Diffusion

5.1 In trodu ction

It has so far been demonstrated that the Monte Carlo method may be used to 

model the ingress of solvent into a polymer. Case I, or Fickian, diffusion dynamics 

have been successfully modelled, but the limitations of this method have not been 

discussed in detail. However, it is the aim of this work to use the Monte Carlo 

method to also model Case n, or non - Fickian, dynamics. So far, this has not been 

achieved with the current "Simple" Monte Carlo model and must be the primary 

limitation of the model. This is a very important consideration and requires detailed 

examination. It is necessary to understand why Case II dynamics have not been 

achieved and what modifications are required to move away from Case I dynamics.

In this chapter the limitations of the Monte Carlo method, and specifically the 

limitations of the "Simple" Monte Carlo model, are critically discussed. The 

possibility of using the Monte Carlo method to model Case II diffusion in its current 

form is also considered. However, an important limit is proposed that restricts the 

use of the Monte Carlo method in its present configuration. Current theories of Case 

II diffusion and their limitations are then discussed. It is hoped that this chapter will 

provide a discussion of the limitations of these different models and provide an 

understanding of the motivation for adapting the Monte Carlo method to produce 

Case II dynamics.
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5.2  L im itation s o f  the M onte C arlo M ethod

In Chapter 2, the qualitative differences between Case I and Case II solvent 

diffusion dynamics were described. The most important of these is the time 

dependence of the progression of the solvent front characterised by f ,  where n=0.5 

for Case I diffusion and n=l for Case II diffusion. It is now necessary to examine 

the differences in the diffusion processes that give rise to these two types of 

behaviour. Case I diffusion is commonly associated with solvent diffusion in 

rubbery polymers (WEBB 1991, HALSE 1994). In this state, the polymer molecules 

respond rapidly to changes in their condition brought about by the ingress of solvent. 

Case II diffusion is generally associated with solvent diffusion in glassy polymers 

(WEISENBERGER 1990a/b, ERCKEN 1996). Unlike the rubbery polymer, the 

properties of the glassy polymer tend to be time dependent and show a slow response 

to changes in their condition (CRANK 1975). Therefore, Case I diffusion occurs 

when the polymer responds instantaneously to the ingress of solvent, the mobile 

polymer molecules moving rapidly to accommodate the ingressing solvent. Case II 

diffusion occurs when the polymer’s response to the ingressing solvent is 

characterised by the relaxation of the polymer molecules at some finite rate. 

Furthermore, this relaxation time decreases as temperature or solvent concentration 

is increased and the polymer molecules become more mobile. The change from a 

polymer glass to a rubber is therefore associated with a decrease in the polymer 

relaxation time due to either an increase in temperature or an increase in solvent 

concentration. These differences have been classified further (ALFREY 1966) 

according to the relative rates of the solvent ingress and polymer relaxation. For 

Case I diffusion the rate of solvent ingress is much less than the rate of polymer 

relaxation, whilst for Case II diffusion the rate of solvent ingress is very rapid 

compared to the relaxation of the polymer molecules. In general then, the diffusion 

of solvent molecules into a polymer depends on two processes, the rate of solvent 

ingress and the rate of polymer relaxation, which are coupled together.

It is now necessary to examine whether the Monte Carlo method is able to 

reproduce the finite relaxation rate of the polymer described above. In Chapter 3,
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section (3.2.2), the criteria for the Monte Carlo method were described in terms of 

the polymer chain transition probabilities p(cQn-+a)n+1) for a change of conformation 

from configuration con to con+i. It was stated that these transition probabilities must 

satisfy the detailed balance principle, where the equilibrium probability density 

function of state con is Peq(con) (MULLER-KRUMBHAAR 1973);

P e q ( U J t)p(o)n  > C O n + j )  —  Peq(C0n+]) p(C0n+] > C O n ) (5.1)

The dynamic interpretation of the Monte Carlo algorithm involves associating a time 

with the successive chain configurations so that the probability density function is 

interpreted as P(con,t) for a system evolving with time. Furthermore, if the transition 

probability is taken as the probability per unit time, the Markov chain process can be 

considered as the numerical realisation of the following master equation (BINDER

This equation states that the probability of state con decreases by all processes that 

lead away from this state to other states con+i. This loss in probability is counteracted 

by the inverse process from can+i to con, leading to a gain in probability. In thermal 

equilibrium, gain and loss processes compensate each other because of the detailed 

balance principle and hence dP(con,t)/dt=0. This master equation describes the time 

evolution of a system simulated by dynamic Monte Carlo methods and it is 

necessary to know how this is related to the physical dynamics of the polymer. To 

what extent can the Monte Carlo method model the configurational relaxation of the 

polymer chain? Equation (5.2) describes a change of probability that depends only 

on the present state con of the system. There is no memory of the past history of the 

system. Dynamic moves in the Monte Carlo method therefore depend only on the

1997);



Chapter 5 Limitations o f Current Models o f Solvent Diffusion

current state of the system and have no dependence on slow relaxation dynamics 

arising from some previous state of the system. The Monte Carlo method simulates 

the random motions of polymer segments very well where the movement between 

configurations is instantaneous, but this motion contains no component that relaxes 

with some finite rate.

An obvious example of this type of problem can be seen for polymer 

solutions. The hydrodynamic backflow interaction (ZIMM 1956) mediated by the 

flow of solvent is completely missing. A disturbance in the solvent should create a 

hydrodynamic flow in the surrounding media, but this type of response is not 

modelled by the Monte Carlo method. Thus, dynamic Monte Carlo simulations of 

polymer chains in the dilute solution limit produce Rouse (ROUSE 1953) dynamics 

rather than the correct dynamics of the Zimm model. This is because the dynamic 

algorithms used in this work conserve only the particle number and not the 

momentum. This lack of momentum conservation removes any hydrodynamic 

effects, but it is not currently known how this could be introduced into the Monte 

Carlo method (BINDER 1997). In dense polymer solutions this fact remains, but 

since the viscosity of the solution is high, the hydrodynamic interaction is small and 

can normally be neglected (BINDER 1995).

5.2.1 Limitations of the "Simple" Model

The "Simple" Monte Carlo model described in Chapter 3 also has inherent 

limitations as well as the general limitations described above. These will now be 

discussed in relation to the desire to model Case II diffusion dynamics and the 

discussion given above. The first limitation of the model is that the volume fraction 

of polymer placed in the lattice reaches a maximum at 0P~O.7 for polymer chain 

lengths of 200 segments. This can be seen in figure (3.7d). Using the current 

methods, it is not possible to place polymer chains in the lattice at a volume fraction 

greater than this. This is due to the static Monte Carlo algorithm used to place the 

polymer chains and the need for sufficient vacancies in the lattice to extend the 

polymer chain up to the required length. If there are insufficient vacancies, and 

attempts to place new chain segments are blocked by existing segments, then the
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algorithm dismisses the current polymer chain configuration and attempts to place a 

different one. However, at high polymer volume fractions (0P>OJ), attrition is high 

and it is almost impossible to find a continuous chain configuration that extends to 

the desired maximum chain length. This limitation must be considered in future 

work as there will always be a vacancy volume fraction of at least 0V~O.3.

It is also necessary to consider the solvent volume fraction dependence of the 

chemical diffusion coefficient given by equation (3.12). This equation shows an 

exponential decrease in the diffusion coefficient with increasing solvent volume 

fraction. This is correct in this simple Monte Carlo model and shows a decrease in 

the diffusion of the solvent molecules as the vacancies in the lattice fill with solvent 

molecules and impede the further movement of solvent molecules between the 

polymer chains. As time increases towards infinity and the lattice becomes saturated 

with solvent molecules a limit would be reached where all the lattice sites are 

occupied and no motions would be possible by either the solvent molecules or the 

polymer chain segments due to the absence of any empty lattice sites. This type of 

behaviour has been observed in some polymer systems (BARRIE 1966), and Rouse 

proposed that this was due to the clustering of the solvent molecules within the free 

volume of the polymer (ROUSE 1947).

However, experimental studies of systems displaying Case I diffusion have 

generally shown strong evidence for the chemical diffusion coefficient of the solvent 

actually increasing exponentially with increasing solvent volume fraction 

(MANSFIELD 1991, 1992, HALSE 1994). This highlights an important difference 

between the current Monte Carlo model and most real polymer systems. In real 

polymer solutions, the ingressing solvent causes a change in the dynamics of the 

polymer. The polymer chains become more mobile and swell in response to the 

increasing solvent volume fraction. Thus, larger vacancies develop in the polymer, 

which become available to the ingressing solvent molecules more quickly as the 

mobile chains move to accommodate the solvent molecules. Hence, the rate of 

diffusion increases. However, in the Monte Carlo model, there is no change in the 

polymer dynamics with ingressing solvent. The mobility of the polymer chains 

remains,constant with an increasing solvent volume fraction and the number of free

- 9 1  -
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lattice sites, or vacancies, actually decreases. Hence, the rate of solvent diffusion 

decreases in this case.

Two other limitations of the Monte Carlo model must be mentioned here, but 

will not be examined further. Firstly, the random numbers used in the computer 

simulation are generated by a standard FORTRAN algorithm. However, any random 

number generator of this type can only produce a sequence of numbers that is 

pseudorandom. The sequence of random numbers is exactly reproducible and after a 

long, but finite, period the sequence will be repeated again. Secondly, the use of 

periodic boundary conditions can produce limitations due to finite size effects. A 

diffusing solvent molecule will, after a long period of time, move through the same 

lattice a number of times. Neither of these effects pose serious limitations to the 

current work but must be considered in the development of such simulations and are 

themselves independent fields of research.

It is clear that in real polymer systems the ingressing solvent produces 

changes in the structure and dynamics of the polymer. However, the "Simple" 

Monte Carlo model currently used in this work is not capable of reproducing such 

changes. In this simulation the rate of polymer motion is a predetermined parameter 

that remains constant with increasing solvent volume fraction. The actual 

probability that a particular attempted move will be successful decreases with 

increasing solvent volume fraction as the number of vacant lattice sites decreases. 

This is evident in figure (3.12) where frozen polymer chains, with a process rate of 

zero, were used to simulate a polymer glass. In this case, the solvent molecules 

diffused through the free volume between the static polymer chains, since the 

polymer chains remained frozen and were not activated by the increasing solvent 

volume fraction. In general, the processes of solvent ingress and polymer relaxation 

are decoupled in this model. Attempts must be made to modify the Monte Carlo 

model so that the polymer chain dynamics change in response to the ingressing 

solvent. Such attempts have been made in the course of this work and are outlined in 

the next section.
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5.2.2 Attempts to Model Case II Diffusion

It is clear that the current Monte Carlo model lacks the coupling between the 

diffusion of the solvent molecules and the relaxation of the polymer chains necessary 

to produce Case II diffusion dynamics. In this work, attempts have been made to 

introduce an effective coupling between these two processes. Initially, it was 

proposed that the rate of the solvent ingress could be coupled to the rate of the 

polymer relaxation by introducing an entirely new motion into the dynamic Monte 

Carlo algorithm. This novel move would involve the direct exchange of a solvent 

molecule and a polymer chain segment in one instantaneous move as illustrated in 

figure (5.1).

O

Figure (5.1): A polymer - solvent exchange move showing the exchange of a polymer segment 

(grey) performing a bend move with a solvent molecule (white) in one instantaneous motion.

However, due to programming considerations and the need to maintain a relatively 

fast and efficient algorithm, it was only possible to allow this motion to occur if the 

particle chosen to make an attempted move was a polymer segment. If a solvent 

molecule were chosen to make the attempted move then it would be quite difficult to 

determine which type of motion the corresponding polymer segment would be able 

to perform. Therefore, a polymer - solvent exchange is allowed, but a solvent - 

polymer exchange is not included.

With this new motion implemented within the "Simple" Monte Carlo model 

it was necessary to consider ways of increasing the effective density of polymer 

chains within the lattice above the maximum polymer volume fraction described
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above. This was necessary otherwise the solvent molecules could diffuse freely into 

the free volume of the lattice without the polymer - solvent exchange motion ever 

being used. As stated previously, it is not possible to use the static Monte Carlo 

algorithm to place polymer chains at high densities due to the high rate of attrition. 

Therefore, an entirely new approach was required. This approach was to place 

polymer chains in the lattice to a volume fraction of 0P=O.5 and then to restrict the 

maximum volume fraction of the lattice to this value. Therefore, the lattice is filled 

to an effective maximum volume fraction, but the number of lattice sites has 

effectively doubled to produce a finer array of points to which particles can move. 

Furthermore, the Monte Carlo algorithm had to be modified to consider the 

probability of a particle making a successful move into a lattice plane at, or near to, 

the maximum volume fraction. This was accomplished by using a Gaussian 

probability distribution to determine the probability of a particle making a successful 

move to another plane in the lattice. This probability distribution is illustrated 

below.

Figure (5.2): The probability distribution function used to determine the success of an attempted 

move between lattice planes for an effective maximum volume fraction of 0=0.5.

Thus, a particle attempting to move to a lattice plane of low volume fraction will do 

so with a probability of unity. However, a move to a. plane close to the maximum 

volume fraction will occur with a probability determined by a Gaussian function. 

This is centred about the effective maximum volume fraction of occupied lattice sites 

of 0=0.5.
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These novel modifications were made to the "Simple" Monte Carlo model, 

tested extensively, and shown to successfully produce a new motion in the dynamic 

Monte Carlo algorithm that allows the solvent to move in response to the polymer 

motion. The probability distribution function described here to increase the effective 

maximum volume fraction of polymer chains is also a useful method. It avoids the 

problems of attrition normally associated with the placement of polymer chains by 

the static Monte Carlo method. However, after being studied under, a range of 

conditions, the only diffusion dynamics measured as a result of these modifications 

were Case I, or Fickian, dynamics. It seems that these modifications were 

unsuccessful at producing any dynamics other than those already demonstrated in 

this work. The new polymer - solvent exchange motion introduced here is an 

important development, but is incomplete without the opposite process of solvent - 

polymer exchange. It is this latter motion that would cause the polymer chains to 

move in response to the solvent ingress, whereas the polymer - solvent move 

effectively causes the solvent to move in response to the polymer motion. 

Furthermore, the effective volume fraction of occupied sites within the lattice has 

been increased, but without the solvent - polymer exchange the solvent molecules 

will be more likely to diffuse though the unoccupied volume of the lattice. A solvent 

molecule entering the lattice will see the polymer chain as an obstacle, whereas the 

polymer chain can move regardless of whether solvent molecules occupy the 

surrounding sites. However, both of these motions are still relatively simple 

instantaneous motions that have no time dependent part. Therefore, the introduction 

of the solvent - polymer exchange into this work has not been attempted considering 

the complexity of the algorithm that would be required and because it is unclear 

whether introducing this additional motion would even improve the situation. In the 

next section, a theory is proposed to suggest that a Monte Carlo model of this type 

will always produce Case I dynamics where the dynamic algorithm is based on a 

simple hopping process between lattice sites.
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5.3  T he C ase I L im it

Most, if not all, dynamic Monte Carlo models of polymer solutions use 

simple hopping algorithms to model the dynamic processes. Simple hopping 

algorithms refer to the type of dynamic algorithms used in this work where a simple 

movement between neighbouring lattice sites occurs instantaneously with a certain 

transition probability or transition rate. A theory is now proposed that relates this 

type of simple hopping to the diffusional flux of the solvent molecules where a 

concentration gradient exists.

For simplicity, consider a system of three consecutive lattice planes i-1, i, 

i + 1 , containing <zh-i, 0u 0i+i, volume fractions of solvent molecules respectively. It is 

assumed that a concentration gradient exists through the jc direction of the lattice 

such that 0i.j>0i>0i+i. Now consider the transition probabilities of all possible 

motions into, or out of, plane i. These probabilities p( i—>i)  are stated in the 

illustration of this system below for transitions between planes i and i'. Each 

probability consists of the product of the probability of finding a particle able to 

move in plane i and the probability of finding a vacant lattice site to which it is able 

to move in plane V. In this case the system is athermal with no interaction energies 

included and the probability of finding an occupied lattice site is equal to the volume 

fraction of occupied sites.

M  I i+1

p(i—*i-l)- 0i(l- 0 )̂ p(i—*i+l)= 0j(1- 0i+l)

— ► <4—
p(i-l-+i)= 0i_, (1 - 00 p(i+l—*i)- 0i+,(l- 00

 ► x

Figure (5.3): Schematic illustration of a system consisting of three lattice planes giving the transition 

probabilities for particle motions into, and out of, plane i.
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Now, the change in volume fraction of plane i in a time increment dt is equal 

to the sum of these four probabilities;

d0i/dt =  p(i~l-+i) +  p(i+l-^i)

- p(i-+i-l) - p(i—>i+l) (5.3)

d0i/dt = 0iA (1- 0i) + 0i+I( l-  0i)

- 0 i { l - 0 i . l )  - (5.4)

By suitable rearrangement of equation (5.4) it can be shown that;

d0i/dt = (0i+I - 0i) - (0i - (5.5)

and since the three lattice planes are arranged spatially in the x direction, this is also 

equal to;

d0i/dt = d20i/dx2 (5.6)

This is Fick’s differential equation of diffusion -for a chemical diffusion coefficient 

equal to unity and has been derived from a simple consideration of the transition 

probabilities used in the Monte Carlo method.

If interaction energies are introduced into this analysis, each lattice plane will 

have a mean energy E,=a0i where a is the activity of the solvent. Transitions down 

the concentration gradient will therefore occur with a probability independent of this 

energy, whereas transitions against the concentration gradient will occur with an 

additional probability based on Boltzmann statistics and the energy difference 

between the two planes, p(i—*i')~exp[-(Er - E )]. In addition to this, transitions in the 

dynamic Monte Carlo method occur with a probability proportional to the energy in 

each lattice plane, p(i—>i)~Qxp[-Ei], which previously was assumed to be equal to 

unity in all planes. This situation is illustrated in figure (5.4).



Chapter 5 Limitations o f Current Models o f Solvent Diffusion

i-l i+l

p(i-+i-l)= 0i(l- 0i.])exp-a(0j-r 0/)exp-«0, p(i~>i+l)= 0t(l- 0i+1)Qxp-a0i

>  <■
p(i-l—>i)= 0j-i (1- 0j)exp-a0i.1 p(i+7->/y= 0i+l (]- 0i)exp-a(0r 0i+I)Qxp-a0i+l

 ► x

Figure (5.4): Schematic illustration of a system consisting of three lattice planes giving the transition 

probabilities for particle motions into, and out of, plane I with additional probabilities depending on

the interaction energies of the system.

Therefore, in this case the rate of change of solvent volume fraction is given by;

d0i/dt = 0i.j (1 - 0i)QXip-a0i.}

+ 0i+1(l-  0i)exg-a(0i-0i+1)exip-a0i+I 

- 0 i( l-  0i_])Qxp-a(0i_1 - 0i)exp-a0i

- 0 i( l-  0i+1)exp-a0i (5.7)

Again, this can be reduced, by suitable rearrangement, to give Fick’s law of diffusion 

exactly;

d0i/dt = d20i/dx2 (5.8)

Therefore, it is possible that for any dynamic Monte Carlo algorithm where the 

motion of the solvent is modelled by a simple, instantaneous, hopping process, the 

diffusion dynamics of the solvent will always be Case I, or Fickian. This provides a 

suitable explanation of the limited dynamics observed so far in this study and also 

illustrates that an entirely different approach is required if a Monte Carlo model is to 

be used to simulate Case II diffusion.
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5.4 C ase II T heories o f  D iffusion

Many efforts have been made to develop mathematical models of Case II 

diffusion over recent years. Possibly the earliest theory was proposed by Crank 

(CRANK 1953), where the diffusion coefficient was considered as a time dependent 

function of local penetrant concentration. In 1969, Frisch (FRISCH 1969) produced 

a penetration distance that varied linearly with time by introducing into Fick’s 

equations a corrective term, which itself was linear with time. Peterlin (PETERLIN 

1979) proposed that the steep solvent profile was a consequence of a strong 

dependence of diffusion coefficient on solvent concentration. However, he also 

noted that the penetration distance of the front must be controlled by a material 

property of the polymer, possibly the disentanglement of the polymer chains. 

Astarita and Sarti (ASTARITA 1978) assumed that the velocity of the solvent front 

was a function of penetrant concentration after some critical concentration had been 

reached. This arbitrary assumption produced a successful model. Increasingly, it is 

accepted that the velocity of the solvent front is a consequence of some process of 

molecular relaxation in the polymer chains (SARTI 1979). Thomas and Windle 

(THOMAS 1980, 1981, 1982) developed an important model of Case II diffusion 

where the rate of penetration of the solvent front was due to the time dependent 

mechanical deformation of the polymer chains in response to thermodynamic 

swelling. Hui and Wu (HUI 1987a/b) gave analytic solutions of this model in the 

strong Case II limit and more recent advances were proposed by Wu et al. in 1993 

(WU 1993a/b).

5.4.1 The C rank Model

In 1953, Crank (CRANK 1953) wrote a paper on the influence of molecular 

relaxation on diffusion in polymers. This was possibly the first theory of Case II 

diffusion based on the idea of polymer relaxation as a rate controlling process. In 

fact, at the time this paper was written Case II diffusion was yet to be defined, but 

experimental evidence for anomalous diffusion did exist. Crank proposed a model to 

relate the solvent diffusion coefficient to slow structural changes in the polymer.
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When a penetrant diffuses into a polymer, the polymer chains must take up a 

new configuration in order to accommodate the solvent molecules. Crank suggested 

that the polymer motion consisted of an instantaneous component and a relatively 

slow component compared with the diffusion of the solvent. Therefore, the diffusion 

coefficient of the solvent will also change with an instantaneous part and a slow part. 

The instantaneous component of the diffusion coefficient will accompany a change 

in solvent concentration. The slowly changing component of the diffusion 

coefficient represents a drift towards an equilibrium value that takes place even when 

the solvent concentration is not changing. It is this slow drift towards an equilibrium 

value of the solvent diffusion coefficient that depends on the finite relaxation rate of 

the polymer chains.

Crank assumed that these two components proceed independently of each 

other, so that the total change in the diffusion coefficient of the solvent can be 

written as the sum of these two parts;

dD/dt = (dDi/dC) (dC/dt) + a(De - D) (5.9)

In this equation, D, is the instantaneous component of the diffusion coefficient, 

which is a function of solvent concentration only. The equilibrium diffusion 

coefficient is denoted by De and a is the rate parameter controlling the approach to 

equilibrium. These three parameters are also assumed to be exponentially increasing 

functions of solvent concentration. The essential part of this theory is that there is an 

equilibrium configuration of polymer chains to which there is a corresponding 

equilibrium value of the diffusion coefficient. In general, this equilibrium value will 

depend on the solvent concentration, and the diffusion coefficient in any element of 

the polymer will never attain its equilibrium value for a particular concentration but 

will get closer to it the longer the concentration remains at a given value. Therefore, 

the diffusion coefficient in a given element of the polymer depends not only on the 

concentration there, but also on the time taken by the element to reach that 

concentration. This implies a diffusion coefficient that depends on the previous 

history of the diffusion process.



Chapter 5 Limitations of Current Models o f Solvent Diffusion

Crank coupled equation (5.9) with Fick’s differential equation of diffusion to 

define a set of equations that describe the solvent diffusion into the polymer and the 

finite relaxation rate of the polymer molecules. It is not possible to derive exact 

mathematical solutions for a variable diffusion coefficient of this kind, so Crank 

employed finite difference methods to obtain numerical solutions. However, general 

features of this model can be deduced without detailed calculation. At low solvent 

concentrations where a is very small, D =A  and the diffusion coefficient is purely 

concentration dependent. At high concentrations where a is very large, D effectively 

always has its equilibrium value, D=De, and the diffusion process is again 

concentration dependent. Intermediate values of a show time dependent effects. 

Although Crank was unable to calculate the form of the ingressing solvent profile, he 

does relate these diffusion coefficients to a sharp discontinuity in the diffusion 

process suggesting the development of the steep solvent profiles characteristic of 

Case II diffusion. If a increases very rapidly above some critical concentration, the 

change from A  to De may occur over a relatively small concentration range. This 

produces a discontinuous change in the diffusion coefficient and a moving boundary 

between the dry and swollen polymer.

In 1983, Cohen (COHEN 1983, 1984) developed Crank’s theory further to 

produce a more general mathematical formalism. In this theory the diffusion 

coefficient is written as an integral equation;

t

D(C,t) = j K(t,s,C(x,s))f(C(x,s),dC(x,s)/dt)dt (5.10)
0

The integration of this equation means that the diffusion coefficient at a time t 

depends on the history of the process prior to this time where the kernel K(t,s,C) 

represents the history dependence inherent in the polymer relaxation process and 

f(C,dC/dt) is a concentration dependent function. The instantaneous response of a 

rubbery polymer can also be modelled by this equation if the integration kernel is 

taken as a Dirac delta function. Cohen also showed that Crank’s equation was a 

special case of this more general formalism. With both this model and Crank’s
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model, numerical solutions can be obtained using finite difference methods. 

However, problems arise when using this method to solve a discontinuous function. 

In order to produce an accurate solution the spatial and temporal increments must be 

made quite small, and this limits the range of dimensions over which a solution can 

be obtained by a computer simulation.

5.4.2 The Thomas and Windle Model

Thomas and Windle (THOMAS 1980, 1981, 1982) proposed a theory for 

Case II diffusion where the rate controlling process is the mechanical viscous 

resistance of the polymer to increase in volume and change shape. The 

thermodynamic relationship between the solvent concentration 0, pressure P and 

activity a in the swollen polymer is considered in terms of the chemical potential p, 

based on the previous work of Flory (FLORY 1953). As the solvent molecules 

diffuse into the polymer the chemical potential changes due to the thermodynamic 

interactions between the polymer and solvent molecules. However, the low mobility 

of chains in a polymer glass creates a resistance to swelling due to the solvent 

ingress. Thus, the solvent molecules experience an additional osmotic pressure P 

that also affects the chemical potential. The swelling kinetics depend on the viscous 

response of the polymer chains to this internal pressure. It is assumed that the 

increase in volume of the polymer due to swelling is proportional to the volume of 

solvent absorbed. Furthermore, it is assumed that the viscosity rj of the polymer 

decreases exponentially with increasing solvent concentration as the polymer chains 

become more mobile. From this an equation is derived for the rate of swelling of the 

polymer, based on a linear viscous relationship for the viscoelastic response of the 

polymer;

The flux of penetrant F(x,t) is obtained from the restatement of Fick’s First Law 

where 0e is the local equilibrium value of the solvent volume fraction;

d0/dt = P/rj (5.11)

F(x,t) = - D(0) (0/0e) d0e/d x (5.12)

-102-
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Furthermore, conservation of penetrant implies that;

d0/dt + dF(x,t)/dx = 0 (5.13)

Combining equations (5.12) and (5.13) gives;

d0/dt = d/dx[D(0) (0/0e) d0e/d x ] (5.14)

Thus, equations (5.11) and (5.14) define two coupled differential that may be solved 

for the solvent concentration by finite difference methods assuming that 0e is a state 

function of 0 (HUI 1987b). The two equations given by Thomas and Windle 

represent the increase in solvent concentration due to concentration dependent 

diffusion, and the swelling of the polymer. They consider these to be the two main 

processes occurring during the ingress of solvent molecules into a polymer glass. 

Numerical solutions of these equations produced steep solvent profiles with linear 

kinetics as expected for Case II diffusion dynamics and this model is still regarded as 

one of the foremost descriptions of Case II diffusion.

However, this model is far from ideal. Numerical solutions of the coupled, 

non - linear equations can be highly unstable, with exponential terms diverging 

rapidly under particular conditions. More importantly, the solvent front progression 

has been found to scale with the spatial step size used in the model (LANE 1998). 

For a doubling of the spatial step size, the solvent front scaled by a factor of 1/^2. 

These problems again relate to the integration of discontinuous functions and are 

therefore only serious in the true Case II limit where the solvent profiles are very 

steep. Fu and Durning (FU 1993) have studied these problems extensively and 

suggest methods to avoid these problems in the Thomas and Windle model. Further 

extensions of this model have been considered by Hui et al. in terms of swelling 

(HUI 1987a) and solvent front formation (HUI 1987b), where the Thomas and 

Windle model was reduced to a single non - linear differential equation.
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5.4.3 The Wu and Peppas Model

Wu and Peppas proposed a model of Case II diffusion (WU 1993a/b, 

PEPPAS 1994) based on polymer dissolution through the process of polymer chain 

disentanglement. They began by solving Fick’s differential equation of diffusion for 

a concentration dependent diffusion coefficient, but included a second differential 

term based on the thermodynamic swelling of the polymer in response to the 

ingressing solvent. As the increasing solvent concentration in the polymer reaches 

some critical value 0g, at a time tj, the polymer undergoes a transition from a glass to 

a rubber. In this latter state the polymer chains begin to disentangle and diffuse 

according to the reptation model (DE GENNES 1971). The polymer chains diffuse 

out of the effective tubes that confine them and become more mobile. Wu and 

Peppas assume that the characteristic dissolution time of this process is equal to the 

renewal time xt described in section (2.2.4). Thus, after this renewal time the 

polymer chains have disengaged from the tubes confining them and, at a time t2, the 

polymer has dissolved. This renewal time is effectively the delay in the response of 

the polymer chains to the solvent concentration reaching the critical concentration 0S 

for the polymer glass to become a rubber. The solvent volume fraction reaches 0g at 

a time tj, whereas the polymer has dissolved after a time t2. Thus this model again 

introduces a relaxation process that depends on the previous history of the system. 

As different elements in the polymer reach the critical solvent concentration at 

different times, the dissolution process begins at different times with distance 

through the polymer. Therefore, a moving boundary is generated between the 

entangled chains of the polymer glass and the unentangled chains of the polymer 

rubber. However, a large number of assumptions are made to relate these 

characteristic times to the diffusion coefficient of the solvent. Furthermore, finite 

difference methods are used to solve the equations proposed by Wu and Peppas, 

which suffer from the same problems previously encountered. Devotta used similar 

ideas to Wu and Peppas to model the dissolution of the polymer chains in a rubbery 

polymer (DEVOTTA 1994) and in the presence of a mixed solvent (DEVOTTA 

1996) consisting of two different components.
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5.5 C onclusions

The ingress of solvent into a polymer relies on the coupled processes of 

solvent diffusion and polymer relaxation. In a rubbery polymer the polymer 

relaxation process is very rapid compared to the solvent diffusion and Case I, or 

Fickian, dynamics are seen. In a polymer glass the polymer chains are relatively 

immobile and the relaxation process is very slow compared to the solvent diffusion. 

Under these conditions Case II diffusion is observed. It is clear that these two 

processes are decoupled in the current "Simple" Monte Carlo model and that the 

solvent diffusion produces no significant change in the dynamics of the polymer. 

Efforts to change this situation produced no significant differences and it is proposed 

that this is due to a fundamental limitation of Monte Carlo models based on simple, 

instantaneous, hopping motions. Current theoretical models have successfully 

coupled the solvent and polymer dynamics, but all result in non - linear differential 

equations that must be solved numerically by finite difference methods. However, 

the application of this method to a discontinuous function, such as a steep and 

sudden change in the solvent profile, can produce an unstable solution. Therefore, it 

would be desirable to construct a numerical method that could model the coupled 

processes of solvent diffusion and polymer relaxation, whilst avoiding the 

computational problems faced by current models of Case II diffusion.
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Chapter 6  

Monte Carlo Modelling of 
History Dependent Diffusion

6.1 In trod u ction

The history dependent diffusion of solvent into polymer was first proposed 

by Crank (CRANK 1953, 1975) and has been introduced in the previous chapter. In 

this model the diffusion process consists of two components, one that varies 

instantaneously due to the ingressing solvent, and one that continues to vary slowly 

due to the finite relaxation time of the polymer chains. Thus, the diffusion of the 

solvent molecules depends on some previous state of the system and is history 

dependent. Since then, many successful models of Case II diffusion have relied on 

the coupled processes of solvent diffusion and polymer relaxation (e.g. THOMAS 

1981, PEPPAS 1994). In all of these models, the rate limiting process is the 

viscoelastic response of the polymer (CODY 1994). However, solutions of these 

models have encountered many problems due to the methods employed.

The "Simple" Monte Carlo model of solvent diffusion presented in Chapter 3 

is now reconsidered. This model of solvent ingress into polymer was successful 

only at modelling Case I diffusion due to the processes of solvent diffusion and 

polymer relaxation being decoupled and entirely independent. Furthermore, the 

simple hopping mechanisms used to model the solvent and polymer motions depend 

only upon the current state of the system and show no history dependence. 

Therefore, the aim of this chapter is to demonstrate an entirely new Monte Carlo
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method that incorporates the concept of history dependent diffusion and couples 

together the processes of solvent diffusion and polymer relaxation. It is hoped that 

this will establish a new method for the modelling of Case II diffusion that will avoid 

many of the problems encountered previously. In this chapter, the principles of 

history dependent diffusion are described before explaining the adaptations that are 

necessary to include them in the Monte Carlo method. The results of this "History 

Dependent" Monte Carlo model are then studied in a number of important areas.

6.2  T heory o f  H istory  D ep en d en t D iffusion

The model of history dependent diffusion described here is a development of 

the Crank model (CRANK 1953). Crank’s model used two coupled differential 

equations, describing the ingress of the solvent and the rate of change of the solvent 

diffusion coefficient due to the relaxation of the polymer respectively;

d0/dt -  d/dx (D(0) d0/dx) (6.1)

dD/dt = (dDi/d 0) (d0 /dt) + <x(De - D) (6.2)

where,

Di = D0 expf a0) (6.3)

De = D0 sxp(b0) (6.4)

a = aOQXp(c0) (6.5)

Equation (6.1) is Fick’s Second Law for the diffusion of the solvent molecules. 

Equation (6.2) describes the rate of change of the solvent diffusion coefficient, which 

varies with an instantaneous part Dt and a part that drifts continuously towards an 

equilibrium value of the diffusion coefficient De. The slowly changing part of the 

diffusion coefficient is controlled by a relaxation rate a . Crank assumed that these 

three quantities increased exponentially with solvent volume fraction, given by 

equations (6.3), (6.4), (6.5), where Do, a0, a, b, and c are constants.
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In the "Simple" Monte Carlo model of solvent diffusion described in Chapter 

3, only the instantaneous part of this theory has been modelled and the second term 

on the right hand side of equation (6.2) has effectively been neglected. In this case, 

with a constant value of a -0 , Crank’s coupled equations reduce to Fick’s law and 

hence only Case I, or Fickian, dynamics are observed. This is confirmed by previous 

simulations. Thus, it is necessary to modify the Monte Carlo method by introducing 

a component that changes slowly with time toward some equilibrium state of the 

system.

Crank has used the solvent diffusion coefficient in this theory to describe the 

rate of ingress of the solvent molecules. In the Monte Carlo model the analogous 

quantity is the process rate of solvent diffusion rs described in chapter (3). Thus, it is 

assumed that rs approaches some equilibrium rate re by a first order process 

governed by a relaxation time r;

Furthermore, it is also assumed that re and t  are both functions of the solvent volume 

fraction. To produce Case II dynamics it is assumed that the polymer is initially in a 

glassy state (CODY 1994), where re is low and the polymer chains are relatively 

immobile. The equilibrium solvent rate is expected to increase with increasing 

solvent volume fraction due to the greater mobility of the polymer chains as the 

polymer undergoes a transition to a rubbery state. Similarly, the relaxation time is 

expected to decrease as the solvent volume fraction increases (COHEN 1993/1994). 

The exact form of these functions will be considered later in this chapter, but for 

now, exponential functions are assumed for re and t  similar to those defined by 

Crank, where A and B are constants;

drs/dt ~ -(rs- r j / t (6 .6)

re = roexp(A0) (6.7)

t  =  T0 e x p  (- ( 6 . 8 )
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In its initial state, the given system will have a process rate rs equal to the 

equilibrium process rate for the solvent defined by equation (6.7) and a relaxation 

time defined by equation (6.8). As time progresses and solvent molecules diffuse 

into the system, the equilibrium process rate will increase and the relaxation time 

will decrease. However, the solvent process rate will no longer vary instantaneously 

in response to this new state of the system. Instead, the actual solvent process rate rs 

will attempt to attain the new equilibrium process rate according to equation (6.6). 

This is realised according to the solution of equation (6.6);

Thus, an initial value of the solvent process rate rsl will attain a new value rs2 in a 

time At following a change of the equilibrium solvent rate in response to the

(6.9)

rs2 = re + (rs l - rjexpf-flt/z) (6 .10)

changing solvent volume fraction. This process is illustrated below, where rs will 

attain its equilibrium value as time approaches infinity provided the state of the 

system undergoes no further changes.

r,
A

>
0 < t—+00At

Figure (6.1): A schematic illustration of the relaxation of the solvent process rate rv toward an 

equilibrium solvent rate re with time t. The solvent process rate attains a value rs2 in a time At.
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Thus, through this process, the solvent rate is continually trying to attain an 

equilibrium value set by some previous state of the system. This occurs regardless 

of whether the solvent volume fraction continues to change. The rate at which this 

process occurs is controlled by the relaxation time r. It is through this relaxation 

time that the viscoelastic relaxation of the polymer molecules is modelled. If t is 

very long then the solvent process rate will take a long time to attain its equilibrium 

value, corresponding to a glassy polymer where the polymer chains are slow to relax. 

If r is very short then the solvent process rate will rapidly reach its equilibrium value, 

corresponding to a rubbery polymer where the polymer chains relax quickly in 

response to the ingressing solvent molecules.

6.3  A d a p ta tio n  o f  th e M onte C arlo M odel

To implement this history dependent diffusion process in the Monte Carlo 

method requires an important development of the dynamic Monte Carlo method 

described in Chapter 3. In that chapter the dynamic Monte Carlo method was 

described in terms of a rate line comprising the sum of the transition rates for the 

individual processes occurring within the system. In that case the transition rates 

were global rates for the whole system. The transition rate of a solvent molecule 

occupying a lattice site in a plane at x=0 was the same as a solvent molecule in a 

plane at x=oo .

In this new dynamic Monte Carlo method it is now necessary to define the 

transition rates of the individual processes within each plane of the system. Thus, 

the transition rate of a particular process will vary with distance in the ;c direction 

through the lattice. The four process rates rs, re, rb, rc, previously defined are now 

defined as rSiX, re>x, rb,x, rCiX where x refers to a particular plane of the lattice. The 

transition rate RPtX for a particular process p  is then this process rate rPiX multiplied by 

the number of particles NPiX corresponding to that process in a plane jc. The revised 

total rate line R, used to select an attempted move in the dynamic Monte Carlo 

algorithm, is illustrated below.
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Figure (6,2): An illustration of the new selection method for an attempted move from a transition 

rate line where the process rate is defined for each individual process in each plane of the system.

Following the random selection of a particle along this rate line, a revised 

search algorithm is used to determine the type of process that may occur and the 

plane that it occurs in. From this, the corresponding process rate rPiX can be read for 

that particular particle in plane x. Once a particle move has successfully been 

completed, the equilibrium rates and relaxation times corresponding to the lattice 

planes involved in that process are updated. Equations (6.7) and (6.8) are used to 

calculate the new values of r and x corresponding to the new state of the system. 

After every time increment of the system, equation (6.10) is used to calculate the 

new values of the actual process rates for every plane in the system, regardless of 

whether the system has undergone a change of configuration. The operation of the 

computer program for this "History Dependent" Monte Carlo model is illustrated in 

the appendix, figure (A.2).

6 .4  R esu lts o f the "H istory D ependent"  M on te C arlo  M odel

The Monte Carlo model has been adapted to incorporate this method of 

history dependent diffusion. However, it is now necessary to examine the operation 

of this model under a range of conditions to determine the extent to which the 

"History Dependent" Monte Carlo model is successful. It is particularly important to
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discover which parameters produce Case II diffusion and whether Case I diffusion 

can still be simulated as a limiting case of this new method.

6.4.1 Solvent Front Dependence

The most important parameters in this model are those that determine the 

equilibrium process rate re and the relaxation time x corresponding to the solvent 

volume fraction 0S in each plane of the system. In the description of this method 

given previously, it was assumed that the functions describing re and x were 

continuous exponential functions of 0S similar to those described by Crank (CRANK 

1953); equations (6.7) and (6.8). The form of these functions is now examined in 

more detail to determine their effects on the system and the conditions necessary to 

produce Case II diffusion. In the results that follow, no polymer chains are present 

in the system. The effect of the finite relaxation time of the polymer on the solvent 

diffusion is modelled entirely through the parameter x.

If the functions for re and r were constant with 0S, then with increasing 

solvent volume fraction there would be no change in re and the actual process rates 

would remain unchanged with increasing solvent volume fraction and time. This is 

the situation that occurred in the previous Monte Carlo model and hence only Case I, 

or Fickian, diffusion is observed. To model Case II diffusion it is first assumed that 

both re and x change discontinuously at a critical value of the solvent volume fraction 

0g corresponding to the solvent volume fraction at which the polymer glass begins its 

transition to a rubbery polymer. Therefore, four parameters are defined for the 

equilibrium process rates and the relaxation times in both the polymer glass and the 

rubbery polymer: rg, xs, rn xr respectively. As the solvent volume fraction increases 

beyond 0S the equilibrium process rate is assumed to increase suddenly as the 

process rate in a rubbery polymer will be greater with increased mobility. Similarly, 

the relaxation time will decrease suddenly as the relaxation time becomes shorter. 

This situation is illustrated in figure (6.3a) where 0g=O.l. The resulting solvent 

volume fraction profiles are shown in figure (6.3b) for ten equal time increments. 

Whilst these solvent profiles do not display the sharp fronts characteristic of Case II 

diffusion, their progression with time has become anomalous with a f  exponent of
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n=0.85 ± 0.04. The position of the solvent front is measured at a point of constant 

volume fraction close to the leading edge of the profile.

Figure (6.3): a) Illustration of discontinuous functions for the equilibrium process rate and relaxation 

time showing the glassy and rubbery regions where the discontinuity occurs at the critical solvent 

volume fraction 0g=O.l, b) The resulting solvent profiles shown at ten equal time intervals obtained 

from the "History Dependent" Monte Carlo simulation.

It is then assumed that the equilibrium process rate continues to increase 

exponentially above the critical solvent volume fraction whilst the function for the 

relaxation time remains unchanged. This is illustrated in figure (6.4a). The effect of 

this change is shown in figure (6.4b). Once the solvent volume fraction reaches 0g 

the equilibrium process rate increases exponentially with solvent volume fraction 

and the actual process rate quickly attains this value due to the short relaxation time. 

Therefore, the ingress of solvent into planes that have reached 0g increases with 0S 

and is much greater than the diffusion of solvent into planes ahead of the solvent 

front. Thus, the solvent volume fraction increases behind the solvent front and the
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profiles become sharper and more characteristic of Case II diffusion. In this case the 

value of the exponent n is n-0 .87  ± 0.05.

Figure (6.4): a) Illustration of discontinuous functions for the equilibrium process rate and relaxation 

time where the equilibrium process rate increases exponentially above 0g=O.l, b) The resulting 

solvent profiles shown at six equal time intervals.

It was found that the equilibrium process rate must increase 'quite 

substantially above 0g to produce solvent profiles that approach those of Case II 

diffusion dynamics. Then the discontinuous step function at 0s—0g becomes 

insignificant compared to the exponential function above 0g. Therefore, the step 

function is neglected and the equilibrium rate can be defined by a single continuous 

exponential function;

re =  rs exTp[(0s -0 0 / A ]  ( 6 .1 1 )

-114-
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In this equation, rg is the initial process rate in the glass where 0S=O, and A is a 

constant. This is illustrated in figure (6.5a), with the results shown in figure (6.5b). 

Here, the solvent front proceeds still with an exponent of n=0.87 ± 0.04, but the 

solvent profiles are now very steep and characteristic of Case II diffusion.

Figure (6.5): a) Illustration of the functions for the equilibrium process rate and relaxation time 

where the equilibrium process rate is now a continuous exponential function, b) The resulting solvent

profiles shown at ten equal time intervals.

Finally, the form of the function for the relaxation time is considered. This 

must be a decreasing function of the solvent volume fraction. Since the value of the 

relaxation time rs is very long in the polymer glass, 0S< 0g, the system is insensitive 

to this value providing the polymer chains are essentially frozen at this solvent 

volume fraction. Therefore, this value of rg is set equal to infinity. Above the 

critical volume fraction 0g the Williams, Landel, Ferry (WLF) equation (WILLIAMS 

1955) is used to model the discontinuity in the relaxation time;
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t  = Tr exp [B/(0S - 0g)J (6.12)

Here, r,- is the relaxation rate in the polymer rubber where 0S=1-O, and B is a 

constant. This function is illustrated in figure (6.6a) and the results of this

simulation are shown in figure (6.6b). In this final figure of this series the solvent 

profiles are characteristic of Case II diffusion and progress with an exponent of 

n=0.88 ± 0.05. Whilst this progression is still not linear, n=1.0, this model has 

clearly produced diffusion dynamics that are non-Fickian and are a definite departure 

from the Fickian dynamics produced by the previous Monte Carlo model.

50
so lv en t v o lu m e fraction

100 150
d is ta n c e  (nm )

200

a) b)

Figure (6.6): a) Illustration of the functions for the equilibrium process rate and relaxation time 

where the relaxation time is now equal to infinity below 0s=O.l and is modelled by the WLF equation 

above this critical solvent volume fraction, b) The resulting solvent profiles shown at ten equal time

intervals.
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This model of history dependent diffusion is based on an equation for the 

equilibrium solvent process rate, equation (6.11), and an equation for the relaxation 

time of the polymer, equation (6.12). These two equations are coupled through 

equation (6.6), which defines the rate of change of the actual process rate. Finally in 

this section, these two equations are used to study the different types of behaviour 

that this model can simulate. Primarily, the value of the exponent n is given for a 

range of parameters to show the conditions under which both limiting cases of 

solvent diffusion can be observed.

Figure (6.7) shows the dependency of this Monte Carlo model on the solvent 

process equilibrium rate re given by equation (6.11), and on the value of the constant 

A. In this simulation the initial solvent volume fraction is maintained at a constant 

0S- 1.0, with no polymer present in the system. The critical solvent volume fraction 

remains fixed at 0S=O.O5 with a relaxation time of t—320 ms. The equilibrium 

process rate in the polymer glass rs was then varied between 10’6 s'1 and 1 O'2 s'1 for 

three different values of the constant A. The exponent n is recorded for each of these 

values and the results of this are shown as a linear -  logarithmic plot in figure (6.7b). 

This graph shows the dynamics of the diffusion process changing from n=0.5 (Case 

I) to n-1 .0  (Case II) with increasing rg. This shows a linear trend on this plot. At 

small values of rg, the equilibrium process rate is relatively slow compared to the 

relaxation rate of the polymer. In this case, the time between actual solvent moves is 

quite long and it is possible that the actual process rate is able to quickly approach 

this equilibrium value and Case I diffusion dynamics are observed. If rg is high, the 

equilibrium process rate is fast and the time between actual solvent moves is 

relatively short. In this case it would be more difficult for the actual process rate to 

ever attain its equilibrium value and Case II diffusion dynamics are observed. Figure 

(6.7b) also shows this trend for two other values of the constant A. As A decreases, 

this trend approaches n-1 .0  more quickly. This corresponds to the exponential 

function for re, equation (6.11), increasing more rapidly and the equilibrium process 

rate increasing at lower solvent volume fractions. The three trends appear to 

converge towards n -1 .0  at large values of rg and towards n=0.5 at small values of rg. 

This is reasonable, as these are the limiting values of the exponent n. Also included 

in figure (6.7) are two sets of solvent profiles demonstrating typical results for the
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two limiting cases of solvent diffusion. Figure (6.7a) demonstrates Case I diffusion 

for an equilibrium process rate of rg=10'6 s'1 where n=0.5 ± 0.05, and figure (6.7c) 

demonstrates Case II diffusion for rg=10'2 s'1 where n=L0 ± 0.06.

Figure (6.8) shows the dependency of this Monte Carlo model on polymer 

relaxation time x given by equation (6.12), and on the value of the constant B . The 

critical solvent volume fraction remains fixed at 0g=O.O5 with the equilibrium 

process rate rg now having a constant value of IO’3 s'1. The relaxation time in the 

polymer rubber xr was then varied between 0 ms and 1500 ms for three different 

values of the constant B. The exponent n is recorded for each of these values and the 

results of this are shown in figure (6.8b). This graph shows the dynamics of the 

diffusion process changing from n=0.5 to n=1.0 with increasing xr. This displays 

and exponential trend, with the exponent n approaching unity with increasing xr. As 

the relaxation time in the rubbery polymer becomes longer, the actual solvent 

process rate takes more time to approach its equilibrium value and Case EE dynamics 

are observed. If the relaxation time is shorter, the actual solvent process rate will 

approach its equilibrium value more quickly and Case I dynamics are observed. 

Figure (6.8b) also shows this trend for two other values of the constant B. As B 

increases, the exponent n approaches unity more quickly, corresponding to the 

relaxation time decreasing more slowly with increasing solvent volume fraction. 

Therefore, the relaxation time is greater at lower volume fractions and the 

equilibrium solvent rate is approached more slowly at lower solvent volume 

fractions. Figure (6.8) again displays two sets of solvent profiles to show the typical 

results of this simulation at the two extremes of solvent diffusion. Figure (6.8a) 

shows the case for xr=1.0 ms where n=0.5 ± 0.04 and figure (6.8c) shows the case 

for xr=1500 ms where n=0.9 ± 0.05. Thus, it is possible to demonstrate a complete 

range of diffusional behaviour based on the relatively simple set of equations defined 

in this model of history dependent solvent diffusion.
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Figure (6.7): a) Case I solvent profiles obtained from the "History Dependent" Monte Carlo model 

for rs=10'6 s'1, b) Variation of the exponent n with rg for three values of the constant A, each exponent 

obtained from the gradient of a double logarithmic plot of solvent penetration distance against time,

c) Case II solvent profiles for rg=10'2 s'1.
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Figure (6.8): a) Case I solvent profiles obtained from the "History Dependent" Monte Carlo model 

for tr-1.0 ms, b) Variation of the exponent n with rr for three values of the constant B, each exponent 

obtained from the gradient of a double logarithmic plot of solvent penetration distance against time,

c) Case II solvent profiles for tr=1500 ms.
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6.4.2 Velocity Dependence

During the course of the study presented in the previous section, it was noted 

that the penetration distance of the solvent front varied dramatically with changing 

parameters, despite a constant simulation time. Therefore, the velocity v of the 

solvent front must also be a function of the parameters rs and xr discussed in the 

previous section. The velocity v of the solvent front was deduced from the total 

penetration distance of the solvent front for a given simulation time assuming that 

the velocity of the solvent front is constant with time for the strong Case II limit. 

This velocity was recorded for the parameters rs and xr within the ranges used in the 

previous section. This is shown in figure (6.9). Figure (6.9a) shows the solvent 

process rate rg against v2 and illustrates that v2 is proportional to rg. Figure (6.9b) 

shows the relaxation time xr against v2 and suggests that v2 is inversely proportional 

to xr. Thus, it is possible to write;

Lasky et al. (LASKY 1988) measured the velocity of an iodohexane Case II 

solvent front in polystyrene using Rutherford back - scattering spectrometry. They 

deduced that the velocity dependence of the solvent front could be written as;

where D is the diffusion coefficient of the solvent in the glassy polymer and rjo is the 

viscosity of the polymer glass in the absence of penetrant. This relationship can also 

be deduced from the Thomas and Windle model (LASKY 1988, THOMAS 1982). 

Therefore, if the parameters used in equation (6.13) can be shown to be analogous to 

the parameters used by Lasky in equation (6.14), the behaviour of the history 

dependent Monte Carlo model is consistent with the behaviour of the Thomas and 

Windle model.

v oc (rg/ r , f (6.13)

v « (D/tjof (6.14)
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It is straightforward to relate D to rg. Firstly, both of these quantities are 

measured where the polymer is in a glassy state and the solvent volume fraction is 

less than some critical value 0g. Secondly, Bueche (BUECHE 1962) considered a 

simple three - dimensional model of solvent diffusion and related the diffusion 

coefficient D of the solvent to the frequency of the solvent "jumps" by;

where r  is the solvent jump frequency, or rate, and I is the mean jump distance. 

Therefore, it is reasonable to assume that the diffusion coefficient D is proportional 

to the solvent process rate rg.

It is less obvious how to relate rjo to zn although both are properties of the 

polymer. Cody and Botto (CODY 1994) discuss solvent diffusion in glassy 

polymers and state that the diffusion of solvent is governed by the viscoelastic 

response of the polymer. They write a relaxation rate constant ar\

where Kr is the osmotic bulk modulus of the rubbery polymer and rjo is the viscosity 

of the bulk polymer. Kr is a quantity proportional to the' rate of change of osmotic 

pressure P with the localised polymer volume fraction 0P in the rubbery polymer. 

This relaxation rate ar is the reciprocal of the relaxation time z> and thus the 

relaxation time xr is proportional to the polymer viscosity rj0. As the polymer 

becomes less viscous and polymer mobility is increased, the relaxation time of the 

polymer will decrease. Therefore, the relaxation time xr should be proportional to 

the polymer viscosity rjo-

Therefore, it is reasonable to conclude that equations (6.13) and (6.14) are 

consistent and that the Monte Carlo model developed here confirms the behaviour 

observed by Lasky, predicted by the Thomas and Windle model.

D = rl2/6 (6.15)

a r =  K r/rio (6.16)
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a) b)

Figure (6.9): The velocity dependence of the solvent front showing the square of the velocity 

against: a) the solvent process rate rg and b) the reciprocal of the polymer relaxation time lh r. The

solid lines show best fits to the data points.

6.4.3 Comparison W ith M RI Experiment

It is now useful to compare the results of this Monte Carlo model to 

experimental data in order to ascertain the reality of the simulation. A system 

displaying Case II diffusion dynamics that has been extensively studied by MRI 

methods is the ingress of methanol into polymethylmethacrylate (PMMA). This has 

been studied by a novel MRI method known as Stray - Field Magnetic Resonance 

Imaging (STRAFI) by Lane (LANE 1997, 1998) at the University of Surrey. This 

technique makes use of the large magnetic field gradients that exist in the fringe 

fields surrounding superconducting magnets. Thin sheets of PMMA were exposed 

to liquid methanol, and solvent profiles were obtained using the STRAFI technique. 

Methanol is a poor solvent, and the influence of a good solvent, acetone, on the 

ingress rate of the methanol was also studied by preparing PMMA samples with
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residual amounts of acetone in the polymer. The ingress of the methanol in the 

PMMA was then monitored as normal in these pre-swollen samples.

Data from these experiments is given in figure (6.10). Figure (6.10a) shows 

the solvent profiles obtained for methanol ingress into PMMA. Figures (6.10b) and 

(6.10c) show the methanol profiles for ingress into pre-swollen PMMA samples 

exposed to 3.3% and 8% acetone weight fraction respectively. All data was taken at 

a temperature of 25°C. The solid lines shown in figure (6.10) show the fits obtained 

from the history dependent Monte Carlo model described above. These simulated 

solvent profiles have been convolved with a Gaussian point spread function as 

described in section (4.4). In this case, the adjustable parameter used was Ax-24pm  

as indicated by Lane (LANE 1998).

The simulated solvent profiles in figure (6.10a) show good agreement with 

the experimental points and the distance of penetration is reproduced well by the 

Monte Carlo model. The shape of the experimental solvent profiles is reproduced 

less well by the Monte Carlo model which fails to show the rounding of the profiles, 

particularly at long times. In this case the exponent n was found to be n=0.89 ± 0.05 

which is close to the linear dependence expected. The parameters used to model this 

data were as follows: rg= lxl0 '4 s'1, x,-320  ms and 0g=O.O5. The simulated profiles 

shown in figure (6.10b) were produced with the same parameters but with the time 

increment between successive profiles increased by a factor of 1.33. In this case the 

PMMA was pre-swollen with 3.3% acetone. No attempt has been made to modify 

the Monte Carlo model to include the effect of this pre-swelling and the agreement 

between the simulated solvent profiles and the experimental data is less clear. The 

situation becomes worse in figure (6.10c) for the case of 8% acetone pre-swelling. 

In this case, the best fit was obtained for a reduced relaxation time of t r=100 ms 

which produced an exponent of n=0.61 ± 0.06. This perhaps indicates a more 

mobile polymer with a shorter relaxation time due to the pre-swelling by acetone. 

Consequently, the diffusion dynamics move toward the Case I limit. However, the 

simulated solvent profiles fail to reproduce the shape of the experimental solvent 

profiles.
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6.4.4 Polymer Motion

A particularly novel aspect of the "History Dependent" Monte Carlo model 

presented here is now introduced. This feature is the model’s ability to explicitly 

simulate both the ingress of the solvent molecules and the motion of the polymer 

molecules. Previous results presented in this chapter have not explicitly included the 

polymer component within the lattice. Instead, the effect of the finite polymer 

relaxation rate on the ingress of the solvent was modelled through the relaxation time 

rr. As a final study of the operation of this new Monte Carlo method, the polymer 

molecules are explicitly included within the lattice of the model. The method of 

placement of the polymer chains and their individual motions are unchanged from 

the original Monte Carlo model presented in Chapter 3. However, the history 

dependent algorithm described at the start of this chapter now governs the process 

rates for each type of polymer motion. Therefore, the polymer also has an 

equilibrium process rate described by equation (6.11), which the polymer chains 

continually attempt to attain. The approach to this equilibrium is also governed by 

the relaxation time given by equation (6.12). Therefore, the polymer is initially in a 

glassy state with the mobility of the polymer chains increasing in response to the 

increasing solvent volume fraction as the polymer becomes a rubber.

For comparison, figure (6.11) first shows the result of a simulation carried 

out using this history dependent Monte Carlo model with no polymer present. In this 

case the simulation has been performed on a larger system than previously to reduce 

the statistical errors of the result and to yield more detailed information about the 

solvent profiles. The dimensions of the lattice used were 30x30x30 units with a 

lattice spacing of IxlO'10 m. The model parameters were chosen from those defined 

previously with rs=0.001 s'1, t r=320 ms, A=0.045, B=0.001, to produce Case II 

solvent profiles that progress through the lattice linearly with time. This is indeed 

shown in this simulation, with the sharp solvent fronts that are typical of Case II 

solvent diffusion and an exponent n=0.90 ±0.05. Furthermore, in this figure there is 

now evidence of a Fickian precursor at the leading edge of the solvent front as 

described by Peterlin (PETERLIN 1965). This is due to Fickian diffusion dynamics
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into the glassy polymer ahead of the solvent front, where the solvent volume fraction 

is less than the critical solvent volume fraction, in this case 0g=O.l. Therefore, this 

appears to be a successful demonstration of Case II dynamics produced by this 

Monte Carlo model.

In previous numerical simulations of Case II diffusion, problems have arisen 

through the method of numerical solution as described in Chapter 5. Often finite 

difference methods have been employed to solve the model equations, but these 

methods suffer from inaccuracies for discontinuous functions such as the sharp 

solvent profiles of Case II diffusion. However, these problems are not evident 

within this Monte Carlo model. Changing the spatial step size, or lattice spacing, of 

the model simply produces a simulation on a different spatial scale. No changes are 

seen in the solvent profile shape or its progression with time. This must be a 

significant advantage of this new method over other simulations of Case II diffusion.

distance (x10‘6m)

Figure (6.1X): Case II diffusion profiles produced by the "History Dependent" Monte Carlo model 

for ten equal time increments. No polymer chains are present in this case. Fickian precursors are 

seen at the leading edge of each solvent front.
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Figure (6.12) shows the same simulation as figure (6.11) but with an average 

polymer volume fraction of 0P=O.5 now placed throughout the lattice, with polymer 

chains of length N=20 lattice units. In figure (6.12a), the solvent profiles show no 

significant changes due to the effect of the polymer content. A longer simulation 

time is required to produce the same penetration distances as previously, but this is a 

computational factor due to the greater numbers of molecules within the system that 

attempt to move at each time increment. A small decrease is seen in the exponent n, 

with n=0.85 ± 0.05, which must be due to the presence of the polymer impeding 

some of the solvent motions. However, it is now possible to observe the 

microscopic motion of the polymer chains with time as the solvent diffuses through 

the lattice.

The polymer profile is shown in figure (6.12a) as a thin dark line 

corresponding to each solvent profile at ten equal time intervals. The polymer chains 

to the left of each solvent front are in a rubbery state and are highly mobile due to the 

high volume fraction of solvent in that part of the lattice. With the ingress of solvent 

molecules polymer motions are, on average, more likely to move away from this 

ingressing solvent front as the number of free lattice sites in that part of the lattice is 

reduced. This is illustrated in figure (6.12a), which shows a discontinuity in the 

polymer volume fraction at the leading edge of the solvent front and an increase in 

the local polymer volume fraction ahead of the solvent front. To the right of the 

solvent front the polymer chains are still in their initial glassy state and are relatively 

immobile. This is also demonstrated by this figure. This local movement of the 

polymer chains is correct according to the algorithm of this model and demonstrates 

a discontinuous moving boundary created between the rubbery and the glassy 

polymer. This movement of the polymer chains may help to explain the formation 

of the sharp solvent profiles typical of Case II diffusion dynamics, but it is physically 

unrealistic to expect the polymer volume fraction to increase ahead of the solvent 

front. However, if this change in polymer volume fraction can be related to the 

density of the polymer chains, then this model begins to illustrate the swelling of the 

polymer commonly observed with Case II diffusion.
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In Chapter 3, the Monte Carlo model was modified to introduce a localised 

swelling of the lattice. If the total volume fraction of occupied lattice sites in a 

particular plane changes from its initial average value then the distance between this 

lattice plane and the next will change by a distance proportional to that change in 

volume fraction. Thus, the density in every lattice plane remains constant with 

changing volume fractions and a swelling of the lattice is simulated. This has been 

reintroduced in this simulation, the results of which are shown in figure (6.12b) 

where the only difference from figure (6.12a) is the inclusion of the swelling 

process. This causes the lattice planes in the region of the rubbery polymer to swell 

to a greater extent than the planes in the glassy polymer where the total volume 

fraction of occupied sites is lower. Thus, the rate of diffusion increases in the 

rubbery polymer as the average lattice spacing increases in the x  direction and the 

molecules jump a greater distance with each successful move. This is evident in 

figure (6.12b) as the total penetration distance of the solvent front is greater by a 

factor of 1.8 than in figure (6.12a). At the same time, the exponent n in this case has 

returned to its original value of n=0.90 ± 0.05. The extent of the swelling can be 

seen in the polymer profiles. The polymer chains were initially placed in a lattice of 

length 0.003 pm, but the final polymer profile in figure (6.12b) extends to a distance 

of approximately 0.004 pm. Furthermore, the swelling of the lattice scales 

approximately linearly with time as expected for Case II diffusion, where n=0.87 ± 

0.05 in this example.

Figure (6.12c) shows this same simulation again, but with the total simulation 

time increased by a factor of 2 to produce a total of twenty solvent profiles.. The 

purpose of this is to examine whether the exponent n changes in any way for long 

simulation times. It is believed that Case II diffusion will return to Case I diffusion 

in the limit of long times. This is because the rate of swelling of the polymer 

depends on the solvent gradient in the swollen polymer. This solvent flux decreases 

with time so that at long times the polymer may reach at point at which it is unable 

to swell any further. Thus a transition is possible from the Case II limit to the Case I 

limit at long times. This Monte Carlo model offers the opportunity to study the 

progression of the solvent fronts at long simulation times where experimental data 

may be difficult to obtain. In the case of this simulation a change in the progression
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of the solvent fronts with time is clearly seen in figure (6.12c) with the separation 

between successive solvent fronts becoming increasingly less with time. If the 

progression of the solvent front is measured over the total simulation time an average 

value of the exponent n is found to be n=0.80 ± 0.05 compared to the original value 

of n=0.90 ± 0.05. However, if the double logarithmic plot of penetration distance 

against time is studied it is evident that its gradient decreases with time. This is 

shown in figure (6.13a). To quantify this change in the exponent n, the gradient of 

figure (6.13a) is measured separately for the initial ten profiles and for the final ten 

profiles. It is found that the gradient initially gives a value of n=0.87 ± 0.04 before 

falling to a value of n=0.71 ± 0.05. The total simulation time was then increased by 

a factor of 3 and this procedure repeated for thirty equal time increments. The 

double logarithmic plot for this case is shown in figure (6.13b). The exponent for 

the final ten profiles in this case gives a value of n=0.62 ± 0.05. Therefore, the 

exponent n decreases with time indicating a move towards Case I diffusion. Had the 

simulation time been continued for much longer times it is believed that the 

exponent would eventually fall to a value of 0.5 characteristic of Case I diffusion. 

This is significant and demonstrates that the progression of the solvent fronts is 

returning towards the Case I limit for long times. In this model the polymer volume 

fraction increases ahead of the solvent front and the number of free lattice sites 

remaining in that part of the lattice becomes increasingly smaller with time. 

Therefore, the number of free lattice sites to which the solvent molecules can move 

becomes less with time as the increasing polymer volume fraction begins to impede 

the progression of the solvent molecules further into the lattice. This movement of 

the polymer chains reduces the diffusion of the solvent further into the lattice 

resulting in the falling exponent described above. This reduction in the number of 

vacant lattice sites available to the solvent molecules is because the swelling 

simulated here does not introduce additional free lattice sites but simply increases the 

distance between existing lattice sites. Therefore, the return towards Case I 

dynamics is due to the decreasing number of free sites in the lattice, but the result is 

the same as that due to the decreasing flux of solvent. The simulation of this 

transitional behaviour is an important development that has not been demonstrated 

by other models of Case II diffusion. It confirms that Case II diffusion can return 

towards the Case I limit for long times.
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Figure (6.12): a) Case II diffusion in the presence of polymer showing the discontinuous change in 

the polymer voiume fraction with distance moving with time but excluding the swelling process, b) 

including swelling, c) for long times with the total simulation time increased by a factor of 2.
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a) b)

Figure (6.13): Double logarithmic plot of solvent penetration distance against time showing a 

decreasing gradient with time where the simulation time has been increased by a factor of a) 2, b) 3. 

The solid lines show the average gradient measured over the initial ten profiles and the final ten

profiles in each case.
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The effect of the polymer motion on the ingress of the solvent can be seen by 

changing the relative equilibrium rates of the two processes. This is illustrated in 

figure (6.14), which shows the ingress of the solvent for three different polymer 

equilibrium process rates respectively. Here the swelling process has been 

neglected. In figure (6.14a), the polymer process rate is a factor of 10 lower than the 

solvent process rate for all solvent volume fractions. In this case, the diffusion of the 

solvent is impeded by the relatively immobile polymer chains, resulting in a reduced 

penetration distance. The exponent n in this case is also reduced to n-0.62  ± 0.05. 

However, this example clearly illustrates the activation of the polymer chains by the 

ingressing solvent molecules. The polymer chains at the furthest extreme from the 

ingressing solvent molecules are frozen and show no motion, as is expected.

Figure (6.14b) shows the case for equal solvent and polymer process rates, 

with a total penetration distance of approximately 0.0015 pm  and an exponent of 

n-0.85 ± 0.05. The polymer in the glassy region of this example increases as the 

mobile polymer chains are moved ahead of the solvent front. Figure (6.14c) shows 

the case where the polymer process rate is now a factor of 5 greater than the solvent 

process rate. The polymer chains are now highly mobile, allowing the solvent 

molecules to diffuse into the lattice with little hindrance. This is evident from the 

greater penetration distance of the solvent fronts and an increased exponent of 

n-0.93  ± 0.05. The polymer volume fraction ahead of the solvent front is seen to 

increase significantly due to the mobile chains moving away from the ingressing 

solvent molecules so that they may be more easily accommodated within the lattice.

The ingress of the solvent molecules in this Monte Carlo model still relies on 

the co-operative motion of the polymer chains to allow sufficient free volume in the 

lattice to accommodate the solvent molecules. The motion of the polymer chains 

creates a discontinuous moving boundary at the leading edge of the solvent front 

between the rubbery and the glassy regions of the polymer. This is a characteristic 

feature of Case II diffusion as originally described by Crank (CRANK 1953).
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6.5 C onclusions

A novel Monte Carlo model of solvent diffusion into a polymer has been 

developed in this chapter using the concept of history dependent diffusion first 

proposed by Crank (CRANK 1953). The process rates of both the solvent and the 

polymer are described by a first order approach to an equilibrium rate, controlled by 

a relaxation time characteristic of the viscoelastic response of the polymer. By 

careful selection of suitable functions for both the equilibrium rate and the relaxation 

time with solvent volume fraction, it has been possible to demonstrate the formation 

of non-Fickian solvent profiles that approach the Case II limit. It has also been 

possible to show the change from Case I to Case II diffusion dynamics by variation 

of the model parameters for these functions. Consequently, this model has been able 

to successfully simulate Case II diffusion dynamics, showing linear dynamics and 

characteristic solvent profiles.

The scaling of the velocity of the solvent front has been studied and shown to 

be consistent with the predictions of the Thomas and Windle model (THOMAS 

1982) as described by Lasky (LASKY 1988). Simulated data has also been fitted to 

experimental data gained in a MRI study of methanol ingress into PMMA (LANE 

1998). The simulated data has shown a good fit to the experimental data providing 

confidence in the results of the model.

Importantly, this model’s ability to simultaneously study the microscopic 

motion of both the solvent and polymer molecules is a novel feature not thought to 

have previously been achieved in a Monte Carlo model. Through this, the effect of 

the polymer motion on the ingress of the solvent has been illustrated. Furthermore, 

the localised movement of polymer within the lattice in response to the ingressing 

solvent has been shown to create a discontinuous boundary between the swollen 

rubbery polymer and the unswollen glassy polymer. These features are typical of 

those observed in studies of Case II diffusion and have been reproduced well by this 

"History Dependent" Monte Carlo model of solvent diffusion.
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The Monte Carlo method is an established numerical method that has been 

used to study a wide range of problems. Its application here provides a novel way of 

solving a difficult coupled differential equation as specified by Thomas and Windle 

(THOMAS 1981) and others. By specifying a set of elementary moves for the 

solvent and polymer molecules that occur with a time dependent probability, the 

need to define and solve a difficult non - linear differential equation is avoided. 

Hence, by specifying a relatively simple set of elementary "rules" the problems 

associated with solving a non - linear differential equation for the case of a 

discontinuous function are also avoided, producing a more stable result. The Monte 

Carlo algorithm can produce a relatively slow computer simulation with computing 

times of a few hours for most problems studied in this thesis. If polymer chains are 

absent from the simulation then this time is reduced to approximately an hour. By 

comparison, the Fickian solvent profiles presented in this thesis that were obtained 

from a simple finite difference simulation had a typical computing time of only a few 

minutes. However, this "History Dependent" Monte Carlo model has been 

successful in demonstrating Case II diffusion and its associated features. It offers the 

opportunity to systematically change the microscopic parameters of the model to 

study the effects on the macroscopic properties that are observed.
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Chapter 7

Conclusions

7.1  S u m m ary

In this thesis, the development of two original Monte Carlo models of solvent 

diffusion into polymer has been described. The "Simple" Monte Carlo model uses a 

coarse grained model of a polymer solution on a regular lattice. The dynamic 

properties of both the solvent and polymer molecules can be observed where their 

motions are modelled by simple instantaneous moves between neighbouring lattice 

sites. This Monte Carlo model has reliably reproduced Case I, or Fickian, dynamics 

for a solvent ingressing into a semi - infinite lattice. The operation of this model has 

also been demonstrated under a range of conditions. However, the most important 

limitation of this model is the fact that no departure from Case I dynamics is seen for 

any reasonable model parameters. This "Simple" Monte Carlo model is not able to 

reproduce Case II diffusion dynamics. The reason for this is that in this simple 

Monte Carlo model the processes of solvent diffusion and polymer relaxation are 

entirely independent processes. In most successful models of Case II diffusion it is 

recognised that these two processes are coupled processes and that the diffusion of 

the solvent is controlled by the viscoelastic relaxation of the polymer molecules. 

Efforts to modify this Monte Carlo model to couple the solvent diffusion to the 

polymer motion have been unsuccessful, and only Case I diffusion dynamics have 

been observed. It is suggested that a simple Monte Carlo model of this type will 

always produce Case I diffusion dynamics. The dynamic algorithm described in this 

work relies on simple instantaneous molecular motions between neighbouring lattice 

sites. It has been shown that a diffusion process based on these motions is purely
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concentration dependent, relying only on the current state of the system. The 
diffusion process shows no time dependent features and has no memory of the past 
history of the system. Under these circumstances, only Case I diffusion dynamics 

can be modelled.

To use the Monte Carlo method to simulate Case II diffusion dynamics, the 
diffusion process is made time dependent by incorporating a history dependent 
model of diffusion first proposed by Crank in 1953 (CRANK 1953). In this "History 
Dependent" Monte Carlo model the motions of both the solvent and the polymer are 

no longer instantaneous, but occur at a rate that approaches an equilibrium value by a 
first order process governed by a relaxation time characteristic of the viscoelastic 
relaxation of the polymer. Therefore, the diffusion process is time dependent and 
depends on the previous history of the state of the system. Instead of a purely 
concentration dependent process, a diffusion process is now produced that depends 
explicitly on the solvent concentration and on the time of the system. This novel 
Monte Carlo model has successfully simulated most of the features of Case n 
diffusion, including the linear progression of the solvent front with time, the sharp 
solvent profiles, even showing evidence of a Fickian precursor. Case I dynamics can 
also be reproduced by suitable choice of the model parameters, where a rapid 
relaxation of the polymer in response to the ingressing solvent reduces the time 
dependent effects.

Unlike many models of Case II diffusion, this "History Dependent" Monte 
Carlo model is able to simultaneously model the microscopic motions of both the 
solvent and the polymer molecules. This novel feature is not thought to previously 
have been achieved in a Monte Carlo model of solvent diffusion into polymer. This 
has demonstrated the formation of a discontinuous moving boundary between the 
rubbery polymer and the glassy polymer that is typical of this type of diffusion. The 
model has also been able to demonstrate a transition from Case II diffusion to Case I 
diffusion in the limit of long simulation times. A swelling process has been 
incorporated in this model to compensate for the observed changes in the polymer 
volume fraction, but has had limited success and requires a more detailed 
examination of the swelling of the polymer. However, using this method to study
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Case II diffusion avoids many of the problems previously encountered with the 
solution of non-linear equations described by other models of Case II diffusion. This 
Monte Carlo model does not suffer from the same sensitivity to model parameters 
that has arisen in other Case II models.

This work has studied the fundamental operation of this novel "History 
Dependent" Monte Carlo model and has shown that the essential features of Case II 

diffusion can be simulated successfully. The most important feature of this model is 
the realisation that the solvent diffusion process must be time dependent. In glassy 
polymers the relaxation of the polymer is slow and time dependent effects are 
dominant which give rise to Case II diffusion dynamics. In rubbery polymers the 
relaxation of the polymer is rapid and time dependent effects are less prevalent, 
eventually producing Case I diffusion dynamics. However, it would now be of 
considerable interest to apply this model to specific problems of solvent diffusion 
into polymers and to hopefully gain new insights into the microscopic processes 
taking place.

7.2 Future Work

This "History Dependent" Monte Carlo model could now be applied to 
specific problems of solvent diffusion into polymers. One example that could be 
easily simulated by this model is the ingress of binary mixtures of solvents into 
polymers. This is of importance in several industrial applications where it is thought 
that the combined effect of multiple solvent components is very different to the 
effect of any single component acting alone. This was studied by Lane (LANE
1998) who examined the diffusion of acetone - methanol mixtures in PMMA as 
described in Chapter 6 . It would be straightforward to adapt the Monte Carlo model 
to simulate this problem, simply by defining a fifth process rate for the additional 
solvent component. This additional solvent rate could be specified independently of 
the original solvent process rate, thus allowing two different types of solvent to be 
modelled. Then the combined effects of good and bad solvents could be examined. 
The use of process rates in the Monte Carlo model developed here provides great 

potential for future simulations. It is possible to define any number of process rates
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for any number of different polymer or solvent processes, each of which can be 
defined independently. Therefore, it would also be possible to refine the model at a 
later date by introducing additional polymer motions to the set of elementary moves 
used in this model.

Other problems of interest that could be easily studied with simple 
modifications to this model include such problems as the size of the solvent 
molecules ingressing into the polymer (ENSCORE 1977, ARNOULD 1992). This 
was studied by Gall et al. (GALL 1990), who used Rutherford back - scattering to 
examine the exposure of polystyrene to the vapour of a series of iodo-rc-alkanes 
ranging from iodopropane (n=3) to iodooctane (n=8), where n is the number of 
carbon atoms on the alkane chain. All solvents used in this study exhibited Case II 

solvent profiles and it was found that the velocity of the solvent front decreased 
exponentially with n. Solvent molecules of different sizes could be simulated in this 
Monte Carlo model by changing the definition of the solvent molecule within the 
simulation. Currently, each solvent molecule occupies only a single lattice site, but 
the solvent molecule could be defined as a chain in the same way as the polymer is 

modelled. Then it would be reasonable to expect the velocity of the solvent front to 
decrease as the solvent chain length increases, due to the need for a larger number of 
free lattice sites to be available for each successful solvent move.

Finally, the simulations presented here have been performed on a three - 
dimensional, semi - infinite lattice only. It would be of interest to observe the 
diffusion process in systems of different dimensions, particularly for thin polymer 
films. This is of particular interest where polymer materials are used in industrial 
coatings to form protective barriers (EDWARDS 1996). It would be straightforward 
to define a lattice of different dimensions to represent a thin polymer film, but edge 
effects would then become more important and more work would be required to 
define more exactly the motions of the polymer chains at the edge of the lattice. 
However, these examples of areas where this Monte Carlo model could be applied 

illustrate how simple modifications could make this "History Dependent" Monte 
Carlo model a useful tool in the study of a range of different problems where the 
ingress of solvent into a polymer is of primary interest.
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Appendix

A p p e n d i x

A.l Flow Chart of the "Simple" Monte Carlo Model

A.2 Flow Chart of the "History Dependent" Monte Carlo Model



Appendix

Place solvent molecules in initial 
plane of lattice x=0i

Place polymer chains in lattice 
x>0

Count number of configurations 
corresponding to each type of 

polymer process

Assign rate to each process and 
calculate total rate

Start clock at t=0 and increment 
time by At

Select random number and 
determine possible process

Solvent
Move

End
Rotation

Bend
Move

Crankshaft
Rotation

r .... i V
Determine Determine Determine Determine two

proposed site proposed site proposed site proposed sites

F igure (A .l):  F low  chart to illustrate the operation o f the "Simple" Monte Carlo model and the main 

operations that the computer program makes during each cycle. This is explained in full in the text.



Appendix

Count number of configurations 
corresponding to each type of 

polymer process

Calculate initial transition rate in 
each plane

Start clock at t-0  and increment 
time by At

Select random number and 
determine possible process

Calculate new  
process rate in 
each plane for 
elapsed time 

period and new  
transition rate 

for new  
configuration

Solvent
Move

End
Rotation

Bend
Move

Crankshaft
Rotation

V 1 1 i
Determine Determine Determine Determine two

proposed site proposed site proposed site proposed sites

F igure (A .2): Flow  chart to illustrate the operation o f  the "History Dependent" Monte Carlo 

model and the main operations that the computer program makes during each cycle.

This is explained in full in the text.
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