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Abstract

With the advent of moiecularly targeted agents in place of the traditionally employed 
chemotherapeutic cytotoxic compounds, cancer treatment has recently entered a 
new and exciting phase. Thus, the aim of this thesis was to explore the use of 
nanotechnology to deliver new-targeted cancer therapies using a carbon nanotube 
based interfering RNA (RNAi) gene delivery system.

To consider carbon nanotubes (CNTs) as nano-bio agents for gene therapy, it is 
important first to understand how they behave at a cellular level. CNTs, in the form 
of double-walled CNTs, were oxidised and wrapped with biomolecules prior to 
incubation with cells. Evidence of CNT uptake and release was demonstrated 
through Raman spectroscopy, of single cells and cell lysates, from PC3 and HeLa 
cancer cell lines. Results show a maximum uptake at 3 hours with 20 % of CNTs 
being internalised by PC3 cells (5.85 pg/ml_) and a consequent release within a 24- 
hour time frame (< 0.31 pg/mL). An increase of Id/ Ig ratio and loss of the outer 
diameter of the DWNT during incubation period suggests that CNTs are being 
degraded in the intracellular environment. However, the internalisation of complexes 
led to no significant changes in cell components, such as DNA/RNA, proteins and 
lipids. In addition, no significant stress, evaluated by activation of phosphorylated 
MAPK, was induced when celis were exposed to carbon nanotubes.

Intracellular localisation and trafficking of carbon nanotubes was studied by means 
of antibody staining to specific cellular compartments and revealed that an endocytic 
pathway is involved in the internalisation of carbon nanotubes. In this endocytic 
pathway, carbon nanotubes were found to co-localise specifically with clathrin 
coated vesicles, early endosomes, lysosomes, and slow recycling endosomes.

To study the feasibility of applying CNTs to deliver nucleic acids, green fluorescent 
protein (GFP) was employed as a reporter gene for both gene delivery and gene 
silencing in an in vitro model. Firstly, gene delivery protocols were optimised by 
transfecting GFP-encoding plasmid DNA (pDNA) to mammalian cells via CNTs. 
Secondly, CNTs were used to deliver siRNA to the target GFP gene integrated into 
the host cell genome (through Lipofectamine transfection of pDNA). Gene targeting 
was achieved by silencing the GFP gene through small interfering RNA-CNT
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complexes (siRNA-CNT) delivered to GFP expressing cells. However, results 
indicate that CNTs-nucleic acids (pDNA and siRNA) complexes do not reach their 
target sites, resulting in poor GFP expression or silencing. Data analysed by 
fluorescent microscopy and flow cytometry revealed that less than 1 % of cells were 
expressing the GFP gene (plasmid DNA delivery) or 2 % of cells presented 
knockdown of GFP gene (siRNA delivery). The expression and silencing using 
CNTs was very low compared to delivery of constructs with transfection reagent 
(Lipofectamine), which led to 43 % of cells expressing GFP and around 40 % of 
cells where the GFP gene was silenced.

Nevertheless, the experience of other researchers has been that the GFP gene is 
very difficult to silence to a significant degree because of its high level of 
endogenous expression. We therefore used CNTs to deliver siRNA targeting 
survivin, an anti-apoptotic protein, which is known to be overexpressed in several 
cancer cells lines and is thought to contribute to their oncogenic character. Reduced 
survivin silencing effect by immunoblotting was observed when siRNA-CNTs were 
employed, in comparison with DharmaFECT transfection reagent. However, after 
extended incubation periods the silencing induced via survivin-s\RNA delivered 
through CNT cause ceils to undergo apoptosis.
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Chapter 1: Introduction

Nanotechnology concerns the knowledge and control of components generally in the 
1-1000 nm dimensional range [1]. The application of nanotechnology to medicine, 
referred to as nanomedicine, concerns the use of precisely engineered materials in 
this size range in the development of novel therapeutic and diagnostic modalities [2, 
3]. The nanoscale materials involved -  such as liposomes, polymeric carriers, 
dendrimers, micelles, nanotubes, nanoshels and others (Figure 1.2) have been 
developed for the treatment of cancer, diabetes, pain, asthma, allergy, infections and 
many more [4, 5]. In addition, these agents may provide more effective and/or more 
convenient routes of administration, lower therapeutic toxicity, extend the product life 
cycle, and ultimately reduce health care costs. Figure 1.1 displays the applications 
and research targets of nanomedicine [6]. For diagnostic applications, nanoparticles 
allow detection on the molecular level, by identifying abnormalities such as fragments 
from viruses, pre-cancerous cells and disease markers that cannot be detected by 
traditional established diagnostics [7]. As therapeutic delivery systems, nanoparticles 
permit targeted delivery and controlled release. Nanoparticles are recognized for their 
many advantages, such as delivery of drugs in a targeted manner to minimize side 
effects, precise delivery to only the affected area, release of drugs at a sustained rate, 
prolonging the haif-iife of drug systemic circulation by reducing immunogenicity and 
improvement of dispersibility of poorly water-soluble drugs. In addition, the use of 
nanoparticle systems allow the possibility for delivering two or more drugs 
simultaneously for combination therapy in order to generate a synergistic effect [7].

There are many examples of nanoparticles being used in current clinical practice, 
which are at various stages of clinical development [8-10] (Figure 1.2); these complex 
agents show improved pharmacological and toxicological properties in comparison to 
the parent non-complexed counterparts. Amongst these products, liposomal drugs 
and polymer-drug conjugates are the two dominant classes, accounting for more than 
80 % of the total amount [7].
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Medical Applications

Research

Drug Screening
(Labeling)

Gene Delivery
(Transfection)

Diagnosis
(Devices and Labeling)

Nanotechnology
Clinical

Drug Delivery
(Therapy)

Detection
(Imaging)

Diagnosis/Monitoring
(Disease Markers)

Figure 1.1: Medical applications of nanotechnology. N anopartic les  have been designed 

w ith  chem ica lly  m od ified  surfaces on to  w h ich  various ligands attach, w h ich  can turn  the 

nanom ateria ls  in to  b iosensors, m o lecu la r-sca le  fluo rescen t tags, im ag ing agents, ta rge t 

m o lecu la r de live ry  veh ic les  and o the r usefu l b io log ica l too ls  (adap ted from  re ference [6]).

Liposomes are spherical lipid vesicles with bilayered membrane structure composed 
of natural or synthetic amphiphilic lipid molecules [11, 12], Liposome-encapsulated 
formulations of doxorubicin were approved 10 years ago for the treatment of Kaposi’s 
sarcoma, and are now used for the treatment of breast cancer and refractory ovarian 
cancer.

Magnetic resonance imaging (MRI) contrast enhancement has been obtained by 
protocols using several types of nanoparticles. These comprise gadolinium-based
[13], iron-oxide-based nanoparticles [14-19] and multiple-mode imaging contrast 
nano-agents that combine magnetic resonance with biological targeting [20] and 
optical detection [12, 20], Low-density lipid nanoparticles have been used to enhance 
ultrasound imaging [21, 22], and show promise in the clinical setting.

Furthermore, many polymer-based nanoparticles have been investigated [23, 24]. For 
example, dendrimers are self-assembling synthetic polymers with elegantly 
adjustable nanoscale dimensions [24].

Silicon [25] and silica [26] are emerging as attractive candidate materials for 
nanoparticles for medical applications. Porosified silicon is biodegradable [27], with
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k ine tics  th a t a re  m uch  m ore  rap id  (m in u te s  to  hou rs) than  th o se  o f b io d eg ra d a b le  

p o lym e rs  (w eeks  to  m on ths ). A n o th e r typ e  o f s tud ied  n a n o p a rtic le s  a re  the  

n a n o sh e lls  [28], w h ich  inc lude  a go ld  la ye r o ve r a s ilica  co re . T he  th ickn e ss  o f the  

go ld  la ye r can be p re c ise ly  tu n e d , so  th a t th e  nanoshe ll can be se le c tive ly  ac tiva ted  

th ro u g h  tissu e  irrad ia tion  w ith  nea r- in fra re d  ligh t to  p e rfo rm  loca lized  th e ra p e u tic  

th e rm a l ab la tion .

F o llow ing  the  d isco ve ry  o f fu lle re n e s  by K ro to , C url and S m a lle y  and the  id en tifica tion  

o f ca rbon  n a n o tu b e s  (C N T s) by lijim a  [29 ], ca rbon  n a n o te ch n o lo g y  has a lso  been 

in te n s ive ly  s tud ied  in te rm s  o f th e ir p o ten tia l fo r  b iom ed ica l a p p lica tio n s .
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Figure 1.2: Example of different nanoparticles currently studied. Nanoparticles can be 

designed with a whole range of delivery agents, but the main components typically include 

the nanoparticle, a targeting moiety conjugated to the nanoparticle, and a cargo (such as  

chemotherapeutic drugs) (adapted from Peer e t  a l . 2007 [30]).
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1.1 Nanotechnology fo r cancer therapy

Cancer is a fundamental aberration in cellular behaviour and may be described at the 
molecular biology level. Most cell types of the body can give rise to malignant tumour 
(cancer) cells. Cancer cells can multiply in absence of growth-promoting factors 
required for proliferation and are resistant to signals that normally program cell death 
(apoptosis) [31].

Current cancer therapy typically involves intrusive processes that include the 
application of catheters for chemotherapy, initial chemotherapy to shrink the cancer 
(adjuvant therapy), and surgery to then remove the tumour(s), followed by more 
chemotherapy and radiation. Cancer drugs are used to destroy malignant cells, 
generally via their DNA damaging effects and the induction of cell death processes 
such as apoptosis (programmed cell death). However, due to their untargeted mode 
of action (i.e. in that they damage DNA whether in tumour cells or normal healthy 
body cells) cancer chemotherapeutic drugs frequently kill healthy cells/tissue giving 
rise to toxic side-effects.

As mortality due to cancer remains a worldwide problem, two approaches are 
bringing hope to improved therapies. Firstly, genomic and proteomics research is/will 
be capable of identifying new tumour-specific molecular targets [32], and secondly, 
innovative drug delivery systems [33, 34] are being developed to guide drugs more 
precisely to tumour cells and away from non-specific sites thus reducing toxicity. 
Further, new drug delivery systems can introduce favourable and improved 
pharmacokinetic modifications, which can for example prolong drug half-life so 
effective dosing is maintained over long periods of time. Several therapeutic 
nanoparticles have been recently approved for clinical use, as shown in Table 1.1.
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Table 1.1: Examples of nanoparticle-based drug currently available on the market

(adapted from Peer et al. 2007 [30]).

Polymer-protein conjugateStyrene maleic anhydride- 
neocarzinostatln (SAMNCS)

PEG-L asparaginase

PEG-granulocyte colony- 
simulating factor (G-CSF)

IL2 fused to diphtheria toxin

Anti-CD33 antibody 
conjugated to calicheamicin

Anti-CD20 conjugated to 
yttrium-90 or indium-111

Anti-CD20 conjugated to 
iodine-131

Daunorubicin

Doxorubicin

Vincristine

Paclitaxel

Zinostantin/Stimalmer

Oncaspar

Neulasta/PEGfilgrastim

Ontack (Denilelukin 
diftitox

Mylotarg

Zevalin

Bexxar

DaunoXome

Doxil/Caelyx

Onco TCS 

Abraxane

Polymer-protein conjugate 

Polymer-protein conjugate

Immunotoxin (fusion 
protein)

Chemo-immunoconjugate

Radio-immunoconjugate

Liposomes

Liposomes

PEG-Liposomes

Liposomes

Albumin-bound paclitaxel 
nanoparticles

Hepatocellular carcinoma

Acute lymphoblastic 
leukemia

Prevention of 
chemotherapy associated 
neutropenia

Cutaneous T-cell lymphoma

Acute myelogenous 
leukemia

Relapsed or refractory, low- 
grade, follicular, or 
transformed non-Hodgkin’s 
lymphoma

Kaposi's sarcoma

Combinational therapy of 
recurrent breast cancer, 
ovarian, Kaposi’s sarcoma

Refractory Kaposi’s 
sarcoma, recurrent breast 
cancer, ovarian cancer

Relapsed aggressive non- 
Hodgkin’s lymphoma

Metastatic breast cancer

1.1.1 Targeted delivery to  tumours

A single cancerous cell surrounded by healthy tissue will replicate at a higher rate 
than other cells, placing a strain on the nutrient supply and elimination of metabolic 
waste products [4]. Thus, in order to survive a tumour must successfully recruit a 
blood supply to meet its nutritional requirements. The vascularity of tumours is highly 
heterogeneous, with areas of vascular necrosis and areas densely vascularised,
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which promote the adequate supply of oxygen and nutrients to the growing tumour. 
Tumour blood vessels have several abnormalities compared to normal blood vessels, 
including a high proportion of proliferating endothelial cells with aberrant underlying 
basement membrane, increased tortuosity of blood vessels, and deficiency in 
pericytes [35]. Tumour microvessels demonstrate enhanced permeability, which is 
regulated in part by abnormal secretion of vascular endothelial growth factor (VEGF), 
bradykinin, nitric oxide, prostaglandins, and matrix metalioproteinases [35]. The 
transport of macromolecules across tumour microvasculature may occur through 
open interendothelial junctions or transendothelial channels. In vivo experiments (in 
tumour xenographs) using liposomes of different mean sizes, suggested that the 
threshold vesicle size for extravasation into tumours is approximately 400 nm [36]. 
However, other studies have shown that particles with diameters below 200 nm are 
more effective [36-39].

The tumour lymphatic system is also abnormal, resulting in fluid retention in tumours 
and high interstitial pressure with an outward convective interstitial fluid flow [40]. This 
property is thought to promote tumour cell extravasation, resulting in tumour
metastasis and blockage of nanoparticle extravasation from microvasculature into the 
tumour interstitium. However, the lack of an intact lymphatic system also results in 
retention of the nanoparticles in the tumour interstitium since these particles are not 
readily cleared from this compartment. When taken together, the leaky
microvasculature and the lack of intact lymphatic system results in the enhanced 
permeation and retention (EPR) effect and “passive” cancer targeting through the 
preferential accumulation of nanoparticles in the tumour compared with the plasma 
and in other tissues [41]. The release of drugs from nanoparticles in this case results 
in a relatively higher intratumoural drug concentration translating into enhanced 
tumour cytotoxicity. These nanoparticles may be further modified for “active” cancer 
targeting by functionalising the surface of nanoparticles with ligands such as
antibodies, aptamers, peptides, or small molecules that recognise tumour-specific or 
tumour associated antigens in the tumour microenvironment. When nanoparticles are 
prepared to target tumour antigen at the extracellular portion of transmembrane, they 
may be specifically taken up by cancer cells through receptor-mediated endocytosis 
[42-48]. The specific targeting, enhanced intracellular uptake and regulated
therapeutic delivery of a payload are parameters that can potentially be controlled via 
rational design of nanoparticles. Figure 1.3 presents the different mechanisms by 
which nanoparticles can deliver drugs to cancer cells, either by “passive" or “active” 
targeting.
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Nanoparticle

lymphatic

drainage

Figure 1.3: Schematic representation of different mechanisms by which nanoparticles 

can deliver drugs to tumours. Passive tissue targeting is achieved by extravasation of 

nanoparticles through increased permeability of the tumour vasculature and ineffective 

lymphatic drainage (EP R  effect). Active cellular targeting (inset) can be achieved by 

functionalisation the surface of nanoparticles with ligands that promote cell-specific 

recognition and binding (adapted from Peer e t  a l . 2007 [30]).

1.1.2 Nucleic acid-based nanoparticles (DNA, RNAi, anti-sense)

Following the sequencing of the human genome and many key model organisms, 
nucleic acid-based approaches that act to silence a specific gene expression in a 
sequence-specific manner have emerged as powerful tools to investigate gene 
functions. Furthermore, these nucleic acid molecules are also being developed as 
therapeutic agents that target disease-causing genes.

The greatest impact of these technologies is expected to be in cancer therapy where 
there is a differentially abnormal pattern of gene and protein expression between 
normal and tumour cells.
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Different types of molecules capable of knocking-down gene expression by 
sequence-specific targeting of mRNAs have been developed in the hope of creating 
therapeutic agents. The three major nucleic-acid-based gene-silencing molecules are 
chemical modified antisense oligodeoxyribonucleic acids (ODNs), ribozymes and 
siRNAs. ODNs are generally ~20 nucleotides in length and act by hybridizing to pre- 
mRNA and mRNA to produce a substrate for ribonuclease H (RNase H), which 
specifically degrades the RNA strand of the formed RNA-DNA duplexes [49]. 
Ribozymes bind to RNA through Watson-Crick base pairing and act to degrade target 
RNA by catalysing the hydrolysis of the phosphodiester backbone [50]. siRNAs are 
21-23 nucleotide duplexes, which are components of the RNAi machinery leading to 
the cleavage of mRNA containing perfectly complementary sequences (see below).

Comparison between the different approaches for gene silencing suggests that siRNA 
is far more potent and longer lasting than ODNs. Additionally, inhibition levels of 
siRNA are some 100- to 1000-fold higher that the optimal obtain for ODNs directed 
against the same target [51-53].

Recently, the mechanism and strategies for effective delivery of antisense and siRNA 
oligonucleotides were summarised and surveyed by Juliano et al. [54]. There are 
several obstacles, which have to be overcome in order to achieve the sufficient 
delivery of siRNA molecules into targeted cancer cells [55]. The first problem is 
significant degradation by serum and tissue nucleases. Unlike DNA, the RNA 
backbone contains ribose that has a hydroxyl group in the 2’ position of the pentose 
ring instead of a hydrogen atom [54]. It is this feature that makes the RNA backbone 
more susceptible to hydrolysis by serum nucleases in the extracellular environment 
via cleavage along the phosphodiester backbone of nucleic acids. The second 
problem is the rapid renal excretion due to the size of siRNAs; these molecules are 
relatively small and consequently are rapidly excreted through urine when 
administrated into the blood stream [56]. The third challenge is the inefficient 
endocytosis by targeted tumour cell coupled with inefficient release from the 
endosomes.
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1.1.2.1 Mechanism o f RNAi

RNA interference (RNAi) therapeutics represent a fundamental new route to treat 
human disease as there are a huge number of targets that are otherwise “unbeatable” 
with existing medicines [57]. In 1998, RNAi gained international attention, when Fire, 
Mello and colleagues discovered the ability of double-stranded RNA to silence gene 
expression in the nematode worm Caenorhabditis elegans [58]. Three years later, 
Tuschl and co-workers published the experiment that was regarded as the proof-of- 
prlnciple, and revealed that synthetic small interfering RNA (siRNA) could achieve 
sequence-specific gene knockdown in a mammalian cell line [59],

RNAi is a fundamental pathway in eukaryotic cells by which sequence-specific siRNA 
is able to target and cleave complementary mRNA [59]. RNAi is triggered by the 
presence of long pieces of double-stranded RNA, which are cleaved into fragments 
known as siRNA (21-23 nucleotides long) by the enzyme Dicer (Step 1, Figure 1.4)
[60]. In practice, siRNA can be synthetically produced and then directly introduced into 
the cell, thus circumventing Dicer mechanics. This shortcut reduces the potential for 
an innate immune response and the shutdown of cellular protein expression that can 
occur following the interaction of long pieces (>30 nucleotides) of double-stranded 
RNA (dsRNA) with intracellular RNA receptors [61]. Initial applications using long 
dsRNA, showed that dsRNA was not effective in most mammalian ceils because it 
induced the antiviral interferon (IFN) response [62], which leads to cell death.

Figure 1.4 shows a schematic representation of the RNAi mechanism, once siRNA is 
present in the cytoplasm of the cell (step 2), it is incorporated into a protein complex 
called the RNA-induced silencing complex (RISC) [63]. Argonaute 2 (AG02), a 
multifunctional protein contained within the RISC, unwinds the siRNA, after which the 
sense strand of the siRNA is cleaved [64]. The activated RISC, which contains the 
antisense strand (or guide strand) of the siRNA, selectively seeks out and degrades 
mRNA that is complementary to the antisense strand (Figure 1.4) [65]. The cleavage 
of mRNA occurs at a position between nucleotides 10 and 11 on the complementary 
antisense strand, relative to the 5’-end [66]. The activated RISC complex can then 
move on to destroy additional mRNA targets, which further propagates gene silencing
[67]. This extra potency ensures a therapeutic effect for 3-7 days in rapidly dividing 
cells, and for several weeks in non-dividing cells [68]. Eventually, siRNA is diluted 
below a certain therapeutic threshold or degraded within the cell, and so repeated 
administration is necessary to achieve a persistent effect [57]. Theoretically, when
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using suitable designed siRNA, the RNAi machinery can be exploited to silence 

particular genes in the body, giving it a broader therapeutic potential than typical 

small-molecule drugs [57],

siRNA
YAYAY/

Long dsRNA 
YAYAYAYAYAYA

Cytoplasm
YAy7VyA*AyAYA

Step 1

Step 2 YAYA// » s
Dicer

AG02

RISC

YAVAl^^VAYA
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RISC assembly 

/ . _  \
• \ / \ / <

\ / \ / \  jy \ / \ / \  
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Target mRNA recognition 
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Target mRNA Recycled RISC-
cleavage siRNA activated

complex
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A / V / V  Antisense strand 
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Figure 1.4: Mechanism of RNA interference. Long double-stranded RNA (dsRNA) is 

introduced into the cytoplasm, where it is cleaved into small interfering RNA (siRNA) by the 

enzyme Dicer (step 1). Alternatively, siRNA can be introduced directly into the cell (step 2). 

The siRNA is then incorporated into the RNA-induced silencing complex (RISC), resulting in 

the cleavage of the sense strand of RNA by argonaute 2 (AG02). The activated RISC-siRNA 

complex selectively seeks, binds to and degrades complementary mRNA, which leads to the 

silencing of the target gene. The activated RISC-siRNA complex can then be recycled for the 

destruction of identical mRNA targets (adapted from Whitehead et al. 2009 [69]).

- 1 0 -
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1.1.2.2 Targeting individual genes by RNA interference

To date, various individual genes in different tumour cell models have been targeted 

using RNAi and their knockdown ied to profound biological consequences. These 

genes include oncogenes/anti-apoptotic molecules, telomerase, growth factor 

receptor genes, and signalling molecules. A representative sample of these studies is 

given below (Table 1.2) [70].

The anti-apoptotic protein Bcl-2, for example, is an oncogene that is over-expressed 

in many human tumours. Treatment of human cancer cells in vitro by siRNA targeting 

bcl-2 induced apoptosis in 50 % of cells. Moreover, expression of short-hairpin RNAs 

(shRNAs) against bcl-2 in mice with xenograft tumour suppressed tumour growth by 

more than 60 % [71].

Survivin is a member of the mammalian IAP family and a biofunctional regulator of 

spindle microtubule function during mitosis. Survivin is significantly up-regulated in 

many human cancers [72] but practically undetectable in normal human tissues. It has 

been shown that expression of shRNA against survivin diminished expression in vitro 
and induced apoptosis in transfected ceils [73]. Downregulation of survivin by RNAi in 

esophageal squamous cell carcinoma resulted in significant inhibition of tumour 

growth in vitro and in vivo, via induction of apoptosis [74]. In contrast, downregulation 

of survivin by RNAi in sarcomas did not lead to apoptosis, but to G2 arrest and a 

reduction in clonogenic survival independently of p53 status [75]. Transient 

transfection of survivin siRNA led to downregulation of survivin in apoptosis-resistant 

lung cancer cells and sensitized these cells to cell death [76].
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Table 1.2: Potential targets for anti-cancer therapy, suppressed by RNA interference

(adapted from Gartel e t al. 2006 [70]).

Target Cancer type In vitro/ln vivo Result

Bcl-2 Cervical In vitro Apoptosis
Gastric
Prostate

In vivo Tumour growth inhibition

X-IAP Breast In vitro Apoptosis
Survivin Esophageal In vitro Apoptosis

Tumour growth inhibition

Skp-2 Lung In vitro Apoptosis
Squamous cell 
Carcinoma

In vivo Inhibition of cell growth (in vitro) 
Tumour growth inhibition (in vivo)

Stat3 Breast In vitro Apoptosis
Prostate
Laryngeal

In vivo Inhibition of cell growth 
Tumour growth inhibition

MDR1 Uterine sarcoma In vitro Enhanced the cytotoxicity of vincristine,
Colon In vivo paclitaxel, and doxorubicin

HPV E6, E7 Cervical In vitro Increased sensitivity to cisplatin
Telomerase Colon In vitro Inhibition of cell growth

Melanoma
Bladder

In vivo Tumour growth inhibition

Integrin-linked Kinase Pancreatic
adenocarcinoma

In vitro Inhibition of cell growth

EWS-FL11 VEGF Ewing's sarcoma In vivo Tumour growth inhibition
ERK1/2 Ovarian In vitro Apoptosis

Necrosis
Inhibition of cell growth

Polo-kinase 1 Prostate
Glioblastoma
Cervical

In vitro Apoptosis 
Cell cycle arrest

HER2/neu Breast In vitro Apoptosis
Inhibition of cell growth

C-Myc Breast In vitro Apoptosis
Inhibition of cell growth

RhoA Breast In vitro 
In vivo

Stimulates breast cancer cell invasion 
Inhibited the growth and angiogenesis

RhoC Breast In vitro Impedes breast cancer cell invasion
Met Prostate In vitro Inhibition of invasion in vitro

Sarcoma
Glioblastoma
Gastric

In vivo Apoptosis
Tumour growth inhibition

IGFBP-5 Neuroblastoma In vitro Apoptosis
Inhibition of cell growth 
Sensitization to X-ray irradiation

EGFR Lung In vitro 
In vivo

Inhibition of cell growth 
Tumour growth inhibition 
Sensitization to cisplatin

- 1 2 -
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Tablel (continued)

Target Cancer type In vitro/ln vivo Result

BRAF NRAS Melanoma In vitro 
In vivo

Apoptosis
Inhibition of cell growth 
Inhibition of invasion in vitro

uPA uPAR Prostate In vitro Apoptosis
Glioma In vivo Inhibition of cell growth

Inhibition of invasion and angiogenesis
Paxillin Osteosarcoma In vitro Inhibition of motility
Androgen receptor Prostate In vivo Apoptosis
Cyclophilin A Lung In vitro 

In vivo
Apoptosis
Inhibition of cell growth 
Tumour growth inhibition

Pln1 Prostate In vitro 
In vivo

Apoptosis
Inhibition of cell growth
Tumour growth inhibition
Inhibition of invasion and angiogenesis

Fatty acid synthase Prostate In vitro Apoptosis
Inhibition of cell growth

Acetyl-CoA-
carboxylase

Prostate In vitro Apoptosis
Inhibition of cell growth

1.1.2.3 Different delivery strategies for siRNA

The simplicity of siRNA delivery is partially dependent on the accessibility of the 

target organ or tissue within the body. Localised siRNA delivery, directly to the target 

tissue, offers several benefits, such as higher bioavailability given the proximity to the 

target tissue, and reduced adverse effects typically associated with systemic 

administration [69]. There are several tissues that are susceptible to topical or 

localised therapy, including the eye, skin, mucous membranes, and local tumours [77- 

80]. Contrasting, systemic delivery, i.e., the intravenous injection of delivery particles 

that travel throughout the body to the target organ or tissue, requires that particles 

have the ability to avoid the uptake and clearance by non-targeted tissues [69]. 

Therefore, cell-specific delivery of siRNAs in vivo is an important consideration in 

developing an effective, RNAi-based therapeutic agent. Duplex siRNAs are negatively 

charged and so cannot easily penetrate hydrophobic cellular membranes without 

assisting carriers such as liposomes or nanoparticles [81].

Another strategy for siRNA delivery is the viral transport of RNAi-inducing agents. 

Treatment of chronic diseases require long-term RNAi, which must be mediated by 

viral expression vectors; this involves a gene therapy approach to incorporate small
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hairpin RNA (shRNA) transgenes into cells for genomic integration. Gene therapy 

vectors have been under development; however there have been ongoing issues of 

safety, mainly immune responses, which also apply to the RNAi-based therapies. 

Thus, progress is needed for targeting viral vectors to specific cell types and to 

minimise their toxicity.

1.2 Design of nanoparticles

in 2008, Sanhai et al. [82] commented on the seven challenges for nanomedicine. 

Establishing priorities based on regulations formalised at a workshop that visioned the 

creation of a more efficient and transparent “critical” path for nano-product 

development, by the FDA and Alliance for NanoHealth. The seven areas of concern 

are presented below:

1. The determination of the distribution of nanoparticle carriers in the body 

following the systemic administration through any route. With special focus on 

imaging modalities for visualising the biodistribution overtime.

2. The ability of the nanoparticle to carry and deliver multiple therapeutic and 

imaging payloads [83], and individual tracking.

3. Understanding the transport across the compartmental boundaries in the body 

and achieving targeted delivery.

4. Mathematical models that will contribute to a “periodic table” of nanoparticles 

[84] to predict risk and benefit parameters.

5. Computer models that will contribute to a “periodic table” of nanoparticles to 

predict risk and benefit parameters.

6. Establish standards, reference materials and testing protocols that can 

provide benchmarks for the development of novel classes of materials

7. Present an analytical toolkit for nano-pharmaceutical manufacturing, 

accompanied by a specification sheet of toxicological, safety and 

biodistribution properties obtained through standardized, validated methods.
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1.2.1 Size matters

An obvious advantage of nanotechnology for biomedical applications is the ability to 

control the size of the resulting particles and devices. Nanoparticles are in the same 

size range as biomoiecular entities, as shown in Figure 1.5. Nanoscale constructs are 

smaller than human cells (10000 -  20000 nm in diameter) and organelles; however, 

they are similar in size to large biological macromolecules such as enzymes and 

receptors [6]. Nanoparticles smaller than 20 nm can transit through blood vessel walls 

and have the ability to penetrate the blood-brain barrier and the stomach epithelium 
[85-89].

To be suitable as a drug-deiivery platform, the size of nanoparticies must be small 

enough to avoid rapid filtration by the spleen, with junctions spaced at roughly 200 nm 

[90]. Similarly, to transverse the liver, the particles must be small enough to pass 

through the organ’s 150-200 nm-sized fenestrae and avoid the Kupffer cell-lined sieve 

plates [91]. The size of nanoscale devices also allows them to interact readily with 

biomolecules on the cell surface and within the cell, often in ways that do not alter the 

behaviour and biochemical properties of those molecules [92].



Chapter 1: Introduction

Carbon nanotube

Length

Diameter

Tennis ball

Nanometers

Liposome Quantum Dot Fullerene

Water Glucose Antibody Virus Bacteria Cancer celt

*  v  #  i ’ cm
i<r1 1 10 io* io3 io4 io5 to*

Dendrimer Gold nanoshell 
1 10 io 2

Nanometers

Figure 1.5: Relative sizes of nanoparticles. Relative size of nanoparticles compared with 

familiar items (adapted from McNeil et al. 2005 [6]).

1.2.2 Dispersibility matters

Modification of the nanoparticle surface allows that a variety of chemical, molecular, 

and biological entities to be covalently or otherwise bound. These types of 

manipulations provides advantageous properties to the particle, such as increased 

dispersibility and biocompatibility [6]. For example the attachment of hydrophilic 

polymers to the surface, such as PEG, greatly increases the hydration, and 

consequent dispersibility of the nanoparticles and can protect the payloads from 

enzymatic degradation when used for in vivo applications [93]. These hydrophilic 

polymers can also act as a platform for lipophilic molecules and overcome the 

dispersibility barrier. Insoluble compounds can be attached, adsorbed, or 

encapsulated in the hydrated nanoparticle [94, 95]. Therefore, dispersibility of the
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composite entity becomes a function of the nanoparticle rather then being strictly 

dependent on the drug itself [6].

The surface addition of PEG (“PEGylation") and other hydrophilic polymers increases 

the in vivo compatibility of nanoparticies [6]. When injected intravascularly, uncoated 

nanoparticles are cleared rapidly from the bloodstream by the reticuloendothelial 

system (RES) [96]. Nanoparticies coated with hydrophilic polymers have prolonged 

circulating half-life, believed to result from decreased opsonization and subsequent 

clearance by macrophages [97].

1.2.3 Biodistribution and transport across the compartmental 
boundaries

The circulating half-life of a drug complex, maximal tolerated dose (MTD), and target 

selectivity are the most important factors culminating in a high therapeutic index (ratio 

between the amount of therapeutic effect and the amount of drug toxicity). The 

therapeutic load is typically conjugated to the surface of nanoparticies, or 

encapsulated and protected inside the core. The nanoparticle can also be designed to 

provide either controlled or triggered release of the therapeutic molecule [98]. The 

particle surface can then be functionalised by various methods with the objective of 

increasing the circulating half-life, and by reducing nonspecific distribution in some 

cases by targeting tissue with specific ceil surface antigens with a targeting ligand 

(peptide, aptamer, antibody, small molecule). Surface functionalisation can address 

the major limiting factor of long-circulating nanoparticies, notably protein absorption. 

Proteins adsorbed on the surface of the nanoparticle promote opsonization, leading to 

aggregation with subsequent rapid clearance from the bloodstream [99-101]. The 

resultant rapid clearance is due to phagocytosis by the mononuclear phagocyte 

system (MPS) in conjunction with the liver and spleen filtration network. Typically, the 

majority of opsonized particles are cleared by a receptor-mediated mechanism within 

minutes due to a high concentration of phagocytic cells in the liver and spleen or 

alternatively they may be excreted [100].

Numerous biological barriers exist to protect the human body from invasion by foreign 

particles. The biodistribution of any nanoparticle is primarily ruled by their ability to 

transverse biological barriers [1]. These barriers include: the RES,
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endothelial/epithelial membranes, complex networks of blood vessels, abnormal flow 

of blood and interstitial gradients. Endothelia composing the blood vessels have been 

classified as continuous, fenestrated, or discontinuous, depending on the 

morphological features and organ location. Continuous endothelium morphology 

appears in arteries, vessels [102], and the lungs [103]. In contrast, fenestrated 

endothelium appears in glands [104], digestive mucosa, and kidney (wherein 

fenestrae form pores of approximately 60 nm). Discontinuous endothelium is a 

characteristic of the liver (fenestrae of 50-100 nm) [105]. Endothelial cells from the 

blood vessels are able to respond to the physiological environment, resulting in 

angiogenic activity. Angiogenesis pertaining to tumour biology has been well 

characterised in many studies. During tumour growth, angiogenesis results in 

defective hypervasculature and a deficient lymphatic drainage system, which explains 

the concept of passive targeting of nanoparticies to tumours through the EPR effect 

[106, 107]. The EPR effect is a unique tumour-related feature, which allows 

macromoiecules or nanoparticies (cutoff size of >400 nm) to preferentially accumulate 

and diffuse within tumour tissues [39].

Additionally, boundaries exist at a cellular level, for example, the cell membrane and 

the different organelles inside the cell, in particular the nuclear envelope and 

endosomes [82]. For example, if internalisation of nanoparticies is via receptor- 

mediated endocytosis, it is usually through the endosome/lysosome pathway and can 

lead to the therapeutic agent to being trapped in the organelle or be degraded.

More recently, CNTs have been considered for biomedical applications and a number 

of research groups are currently involved in elucidating their uptake and 

biodistribution.

1.3 CNTs in nanotechnology

Carbon is the most versatile element of the periodic table, owing to the type, strength, 

and number of bonds it can form with many different elements. Carbon in the solid 

phase can exist in four main aliotropic forms: diamond, graphite,

buckminsterfullerene, and amorphous carbon (Figure 1.6) [108]. Diamond (Figure 1.6 

A) is one of the best-known aiiotropes of carbon; its crystalline network gives diamond 

its hardness (it is the hardest known natural mineral) and excellent heat conduction
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properties (about five times better than copper). The sp3 hybridized bonds account for 

its electrically insulating property and optical transparency. Graphite (Figure 1.6 B) is 

made by layered planar sheets of sp2 hybridized carbon atoms bonded together in a 

hexagonal network. The different geometry of the chemical bonds makes graphite 

soft, slippery, opaque, and electrically conductive [108].

Buckminsterfullerenes (Figure 1.6 C), or fullerenes, are part of a family of spherical or 

cylindrical molecules with all the carbon atoms sp2 hybridized. The tubular form of 

fullerenes gives rise to CNTs (Figure 1.6 D).

In the mid 1980’s, Smalley and co-workers developed the chemistry of fullerenes

[109]. After their discovery, fullerenes led to the synthesis of CNTs. CNTs are long, 

thin fullerenes where the walls of the tubes are hexagonal carbon (graphite structure) 

and often capped at each end.

These forms of carbon, which are essentially segments of a graphene sheet that have 

been rolled up as a cylinder, have extreme exceptional properties that are a 

consequence of their symmetric structure. For the past nineteen years, CNTs have 

gained increasing interest due to their remarkable mechanical and electrical 

properties. CNTs are among the stiffest and strongest tube known due to the strength 

of the sp2 carbon-carbon bonds. In reality, the stiffness of CNTs measured in terms of 

its Young’s modulus (ratio of stress over strain) can be as high as 1 TPa, which 

makes them 5-times stiffer than steel. In addition, their tensile strength or breaking 

strain can reach values of up to 63 GPa, which is around 50-times higher than steel

[110]. Despite the strength, CNTs also exhibit extraordinary electronic properties; they 

can be metallic or semiconducting, depending on their structure (chirality) [111]. 

Consequently, some nanotubes have conductivities higher than copper, while others 

behave like silicon. Lastly, CNTs display the highest known thermal conductivity at 

moderate temperatures alongside with two other carbon-based materials; diamond 

and in-plane graphite [108].
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Figure 1.6: The allotropes of carbon. (A) Diamond; (B) C60 Buckminsterfullerenegraphite; 

(C) graphite; and (h) single-walled carbon nanotube (SWNT) (adapted from O’Connell et al. 
[108]).

These all-carbon hollow graphitic tubes with high aspect and nanoscale diameter

[112] can be classified by their structure into two main types: single-walled nanotubes 

(SWNTs), which consist of a single layer of graphene sheet seamlessly rolled into a 

cylindrical tube, and multi-walled nanotubes (MWNTs), which comprise multiple layers 

of concentric cylinders with a space of about 0.34 nm between the adjacent layers

[113].

In recent years, efforts have been dedicated to explore the potential biological 

applications of CNTs, motivated by their interesting size, shape and structures, as well 

as their unique physical properties [114-117]. These cylindrically shaped entities can 

have diameters of 0.4 to 10 nm for SWNTs and 2 to 100 nm for MWNTs; and lengths 

ranging from as short as 10 nm up to 1 cm. Their dimensions along with their one­

dimensional structure, contribute to their distinct behaviour in the form of spherical 

nanoparticles in biological environments, offering new opportunities in biomedical 

research [118]. The flexible one-dimensional nanotube can bend to facilitate multiple

- 2 0 -
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binding sites of a functionalised nanotube in one cell, leading to a multi-valence effect, 

and improved binding affinity of nanotubes conjugated with targeting ligands [118]. 

With all atoms exposed on the surface, CNTs have an ultrahigh surface area that 

permits efficient loading of multiple molecules along the length of the nanotube 

sidewall. In addition, supramolecular binding of aromatic molecules can be easily 

achieved by at-ra stacking of those molecules onto the polyaromatic surface of 

nanotubes [119].

The intrinsic optical and electrical properties of CNTs can be employed for multimodal 

imaging and therapy. Owing to the quantum effect, CNTs behave as quasi 1-D 

quantum wires with sharp densities of electronic states (electronic DOS) at the van 

Hove singularities, which can correlate with their distinctive optical properties [120]. 

For example, SWNTs are highly absorbing materials with strong optical absorption in 

the near-infrared (NIR) range (800-1600 nm). These wavelengths include the tissue 

transparent region of the electromagnetic spectrum (800-1400 nm), in which radiation 

passes through without significant scattering, absorption, heating or damage to 

tissues [121]. Moreover, semiconducting SWNTs with small band gaps exhibit 

photoluminescence in the NIR range. The emission range of SWNT is 800-2000 nm 

[117, 122, 123], which covers the biological tissue transparency window, and is 

therefore suitable for biological imaging. CNTs also have distinctive resonance- 

enhanced Raman signatures for Raman detection and imaging, with large scattering 

cross-sections for single tubes [124, 125J. Therefore, CNTs have various attractive 

properties that have led to research into their potential biomedical applications.

1.3.1 Uptake and intracellular localisation of carbon nanotubes

Pantarotto and colleagues published the first evidence that CNTs translocate across 

cell membranes [126]. In that particular study, water-disperse, amino-functionalised 

SWNTs were conjugated to a fluorescent dye via either a short organic linker or a 

peptide. When incubated with fibroblasts (Human 3T6 and murine 3T3) both 

conjugates were internalised but the peptide-SWNTs were found to accumulate in the 

nucleus, whereas the directly labelled SWNTs were solely confined to the cytoplasm. 

The uptake mechanism described was shown to be endocytosis-independent given
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that internalisation was unaffected by temperature or presence of endocytosis 

inhibitors. Thus, it was proposed that CNTs behave like cell penetrating peptides 

(CPPs) and related synthetic oligomers [126]. Following this study, uptake of CNTs 

was also demonstrated by changes in gene expression [127] when CNTs were used 

for gene delivery. The interaction of SWNTs with HeLa cells (human cervical cancer) 

was reported using transmission electron microscopy (TEM) with evidence of 

nanotubes crossing the plasma membrane. A mechanism whereby CNTs pass 

through the cell membrane as "nanoneedles” without loss of ceil viability, was 

proposed [127]. In this study they have suggested that the cationic functional groups 

facilitate a spontaneous insertion mechanism allowing them to pass through the 

biomembrane. Additionally, it was demonstrated that various types of functionalised 

CNTs can be taken up by a wide range of cells, some of which were deficient in 

phagocytotic function (i.e. fibroblasts) or lacked the capacity to undergo endocytosis 

(e.g. fungi, yeast and bacteria) [128]. Hence the term “nanosyringe” was adopted to 

describe these properties and this was further explored by Lopez et al.. They 

proposed a model whereby nanotubes interact with lipid biiayers via a diffusion 

process directly through the biomembrane, as illustrated in Figure 1.7. The 

mechanism involves a two-step process in which the nanotubes are first associated 

onto the membrane surface and then reoriented to adopt a transmembrane 
configuration [129].
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Figure 1.7: CNTs acting as nanoneedles. (A) Schematic of a carbon nanotube crossing 

the plasma membrane; (B) TEM image of MWNT-NH3+ interacting with the plasma 

membrane of A549 cells; and (C) TEM image of MWNT-NH3+ crossing the plasma 

membrane of HeLa cells (adapted from Lacerda et al. 2007 [130]).

As an alternative to the “nanoneedle” mechanism, Kam et al., subsequently reported 

uptake of SWNT and SWNT-streptavidin by human promyelocytic leukemia and 

human T cells (HL60 and Jurkat cell lines, respectively) via an endocytic pathway. In 

that study, not only it is shown that CNTs are taken up by cells but they can also carry 

large cargos such as streptavidin (MW « 60kD) [115]. To elucidate the mechanism of 

entry of CNTs into the cells, a membrane/ endosóme marker FM 4-64, and reduced 

temperature were used. By adding both endosóme marker and nanotube conjugates 

co-localisation was observed which provided direct evidence for the endocytotic 

uptake. A later study from the same group further demonstrated uptake of CNTs 

conjugated with different labelled proteins: streptavidin, protein A, bovine serum 

albumin and cytochrome c in various adherent and suspension cell line cultures. 

Data obtained were in support of an endocytic pathway, showing co-localisation of

- 23 -
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nanotubes with an endosomal marker but absence of nuclear localisation (Figure 1.8) 

[131]. To investigate the release of nanotubes by the endosomes they added 

chloroquine to the cell medium during incubation of cells with protein-SWNT 

conjugates. Chloroquine is a membrane permeable basic drug capable of localizing 

inside endosomes, increasing the pH and giving rise to endosomal rupture. With 

chloroquine addition it was shown that the intracellular fluorescence signal was more 

diffuse and uniform as opposed to a more punctuate staining pattern. To assess the 

role of clathrin coated vesicles, further experiments were carried out in the presence 

of sucrose and potassium-depleted medium, which revealed a significantly reduced 

level of CNT uptake [132]. The study also demonstrated that the nanotubes were not 

internalised via the caveolae or lipid-raft pathway. Moreover, using filipin and nystatin 

treatment, known to perturb the cholesterol distribution on the cell membrane had no 

influence on uptake of CNTs. In conclusion, SWNTs, complexed with proteins and 

nucleic acids, penetrate cell membranes following a clathrin-dependent endocytotic 

process.

A B

i .

C D

Figure 1.8: Confocal microscopy of ceils after incubation with protein-SWNT (proteins 

labeled to fluoresce green). (A) HL60 cells after incubation with BSA-SWNTs. (B) HeLa 

cells after incubation with cytochrome c-SWNTs in the presence of the FM 4-64, a red 

membrane and endocytic vesicle marker. Co-localisation of proteins and lysosomes is 

demonstrated by the yellow colour in the image. Endosomal rupture, was revealed by the 

release of SWNT-protein conjugate (D), where overall green is visualised across the cell due 

to incubation with chloroquine, contrasting with the green individualised spots localised 

inside cells (C) (adapted from Kam et al. 2005 [131]).

- 2 4 -
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In the approaches described above carbon nanotube uptake was studied by 

visualising internalisation by covalent linkage of a visible-wavelength fluorophore. 

Caution should be exercised when considering this approach with respect to 

parameters such as: chemical linkage that must resist enzymatic cleavage, also the 

emission from the visible-wavelength fluorophore, which must be detected above 

background endogenous fluorescence and the chemical processing of nanoparticles 

may dramatically change their ultimate biological fate. Cherkuti et al. presented a 

technique that permits the observation of pristine, hydrophobic SWNTs in biological 

media by near-infrared (NIR) fluorescence [117]. CNTs present a unique NIR intrinsic 

fluorescence making them advantageous for use in biological systems, as there is 

minimal background autofluorescence from cells, tissues, and other biological 

molecules in this spectral range. Furthermore, biological tissues facilitate high 

transmission penetration of NIR light (near ~ 1 ¡¿m) for detection within an organism 

or under the surface of tissues [133]. Using this technique, mouse macrophage-like 

cells have been seen to actively engulf significant quantities of SWNTs, with an 

average ingestion rate of approximately 1 nanotube per second per cell. It was further 

shown that incubating cells at a reduced temperature of 27 °C caused a reduction of 

uptake of nanotubes compared with incubation at 37 °C, suggesting an active 

ingestion of the nanotubes [117]. Another uptake study involving spectroscopic 

measurement of DNA-wrapped CNTs indicated a length-selective uptake of 

nanotubes. The assay determined an approximate uptake threshold of approximately 

189(±17) nm. After 16-hours incubation 32 % of nanotubes remained in solution, 

suggesting that only a proportion of nanotubes available may be ingested [134]. 

Heller et al., used a combined approach of NIR and Raman spectroscopy for 

assessment of cellular uptake [124]. Raman spectroscopy is a general, rapid (-1 min 

per spectrum) non-destructive technique that operates at standard room temperature 

(-300 K) and pressure conditions, and uses readily available Raman characterisation 

instrumentation [135]. Due to electronic structure and diameter of CNTs strong 

resonance-enhanced Raman bands are produced at 150-300 cm'1, -1350 cm'1, 1590- 

1600 cm'1, and -2600 cm'1 away from the excitation wavelength [136], The first, 

termed the radial breathing modes (RBMs), are caused by uniaxial vibrations and 

depend linearly on the nanotube diameter; then the tangential mode (or G band), 

which is caused by stretching along the C-C bonds of graphene [136-138]; the -1350 

cm'1 for the disorder-induced D band, and at -2900 cm'1 for its second-order 

harmonic, the 2D band [136]. After incubation, of murine myoblast stem cell and 3T3
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fibroblast cells, with DNA-wrapped SWNT, persistent Raman scattering and a parallel 

marked decrease in intensity in fluorescence (relative to Raman) was observed due 

to internalisation of nanotubes. The deposition of the nanotubes could be determined 

up to three months in culture. Raman signal of cells incubated with DNA-SWNT left in 

culture for 48-hours and 8 days showed that the nanotubes concentrated near, but 

outside, the nuclei of cells. The perinuclear accumulation of nanotubes was confirmed 

by TEM where it was shown that CNTs formed uniaxial, ordered bundles inside 

vesicles located near the nucleus, but not within the nuclear envelope. In view of 

these observations it was suggested that there was an endocytic transport 

mechanism for DNA-SWNT aggregates. Interestingly, it was also reported that 

aggregates remained in cells during repeated cell divisions [124]. By use of Raman 

spectroscopic measurement carbon nanotube uptake was analysed in SWNTs 

dispersed in media containing fetal bovine serum or a peptide (nano-1), indicating this 

to be a time- and temperature-dependent process [139]. Measurements of the G 

band in different regions within the cell were performed showing that it was detected 

in both the cytoplasm and nucleus. However, it was suggested that the localisation 

was more realistically associated with CNTs at the perinuclear region and/or in the 

cytoplasm immediately above or below the nucleus. It was proposed that the intensity 

of the G band produced was due to an active uptake of CNTs, as incubation at 4 °C 

resulted in a 98% decrease in intensity [139]. Yehia et al. conducted a similar study 

with time-dependent uptake studied using Raman spectroscopy in conjunction with 

TEM to examine intracellular distribution. They reported that CNTs were not 

associated with mitochondria, Golgi bodies or the nucleus, but they accumulated in 

cytoplasmatic vacuoles [140].

Another label-free approach for visualising CNT uptake is by AFM. Lamprecht et al.. 
demonstrated that AFM could be used to visualise non-covalently functionalised 

SWNT and double walled CNTs (DWNT) immobilised on different biological 

membranes, such as plasma membranes and nuclear envelopes, as well as on a 

monolayer of avidin molecules [141].
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Figure 1.9: A comparison of net internalization (endocytosis) and exocytosis rates 

(#/s) and net accumulation (#/cell) over time by single particle tracking. This results in 

NIH3T3 fibroblast cells, shows that the data imply that endocytosis and exocytosis rates for 

DNA-SWNT are closely regulated (adapted from Jin et al. 2008 [142]).

Jin and colleagues were the first to report evidence of exocytosis by cells containing 

CNTs; by single particle tracking (SPT); they demonstrated that the rate of exocytosis 

closely matches that for endocytosis [142]. NIH-3T3 fibroblast cells were exposed to 

DNA- SWNTs for approximately 16 min, followed by media perfusion for a period of 

approximately 2 hours. Endocytosis took place throughout the duration of the 

experiment at a slow rate, with an uptake of CNT aggregates occurring as a later 

event. It has been suggested that the DNA-SWNT could be recycled back to the 

membrane together with its receptors. The endocytotic rate was higher initially, and 

the exocytosis rate closely matched with a negligible temporal offset (Figure 1.9). 

Given that Au nanoparticles of diameters from 14 to 100 nm undergo exocytosis -  

according to a size associated linear relationship, with the larger particles being less 

likely to be exocytosed [143]. Those data were in agreement with the previously 

reported agglomeration observed within cell (as above). However it should be noted 

that the accumulation observed represented a small fraction of SWNTs processed by 

the cell, as illustrated in Figure 1.9. The fundamentals for the endocytotic mechanism 

is explained by adsorption of proteins from the media to the surface of functionalised 

SWNTs, confirmed by electrophoretic mobility and zeta potentials of DNA-SWNT in

- 2 7 -
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water and in media [142]. Additionally, the same group has recently published a study 

on size-dependent uptake and expulsion of SWNTs using the same methodology 

(SPT) [144]. This study comprises a mathematical model for size dependent uptake 

and shows that for SWNTs an optimal endocytotic rate occurs around 25 nm [144].

Intracellular trafficking of CNTs was firstly described by Lacerda et al. [145]. The 

previously described “nano-needle” CNTs (SWNT-NH3+), which contains a 

luminescence signal due to the functionaiisation method, were incubated with human 

iung carcinoma cells (A549 cell line) without staining. The results demonstrated that 

uptake of nanotubes led to perinuclear accumulation with no effect on cell viability. As 

this set of experiments was not performed under standard tissue culture conditions 

(i.e. absence of serum), which differed from the experimental conditions used in the 

exocytosis experiments, this could explain the effects seen on intracellular 

accumulation [145].

In summary, progress has been made towards our understanding of how nanotubes 

interact with the cell. However, it is important to note, that besides different 

mechanisms of uptake described, there are many variations on experimental design 

and methodologies used, - such as functionaiisation of the material, concentration 

and others.

1.3.2 Biodistribution of CNTs

Elucidating the pharmacological profiles of in vivo administered CNTs, is very 

important when considering their potential for medical use. Potential harmful effects 

associated with nanotubes, due to their nanoscale dimensions and carbon backbone 

may arise from their ability to readily enter the respiratory tract, deposit in the lung 

tissue, redistribute from their site of deposition, escape from the normal phagocytic 

defences, and modify the structure of proteins. Therefore, nanotubes might 

potentially activate inflammatory and immunological responses, affecting normal 

organ function and could give rise to a harmful pathological response [146].

Initial studies of biodistribution of CNTs focused on their toxicological profile in vivo 
[147-153]. Studies focused on the effects of CNTs in terms of pulmonary toxicity 

following inhalation, intratracheal instillation [149, 150], and pharyngeal aspiration 

[151], in addition to their effects on skin toxicity after topical application [147], and
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subcutaneous administration [152, 153]. These reports cited acute pulmonary toxicity 

effects, induction of granulomas, and inflammatory reactions to CNT. However, all of 

those particular studies used pristine, non-functionalised CNTs, usually dispersed in 

an aqueous buffer with the aid of a surfactant such as Tween 80 [150]. In contrast, 

toxicity of acid-treated CNTs of two different lengths (200 and 825 nm) 

subcutaneousiy administered to rats showed, no severe inflammatory response such 

as necrosis, tissue degeneration, or neutrophil infiltration [153]. Thus, 

functionaiisation and aqueous dispersibility contribute significantly to biocompatibility 

of these materials, improving dramatically their in vitro toxicity profile [154,155].

The first in vivo study on functionaiised CNTs biodistribution was reported by Wang et 
al., using mice treated with intraperitoneai (i.p.) administered short hydroxylated 

single walled CNTs. SWNTs were shown to accumulate mainly in the liver and 

kidney, lesser so in the spleen and lung, and excreted mainly by the kidney within 18 

days [156]. In another study, using intravenous administration (i.v.) it was 

demonstrated that functionaiised SWNTs with a chelating molecule 

diethylenetriaminepentaacetic (DTPA) and labelled with indium (111ln) -  [111ln]DTPA- 

SWNT, followed by radioactivity tracing using gamma scintigraphy, resulted in no 

retention in any RES organs (liver or spleen) and were rapidly cleared from the 

systemic blood circulation again via renal excretion [146]. In addition this study 

allowed a comparison of the biodistribution of two types of functionaiisation: the first 

with no free amino groups and a second one with 40% free amino groups resulting in 

surface charge. Both functionaiised SWNTs were found in kidney, muscle, skin, and 

blood after 30 minutes. However the surface-charged SWNTs led to a higher affinity 

for kidney, muscle, skin, and lung, leading to their rapid clearance from all tissues. As 

rapidly as 3-hours the nanotubes were cleared from all organs down to levels of 1-2 

% (relative to the 30 minute time point). TEM analysis of urine samples indicated high 

levels of intact functionaiised CNTs showing that they are rapidly cleared from the 

systemic circulation via the kidney [146]. Subsequently, Lacerda et al. presented an 

elimination mechanism for CNT complexes using [111ln]DTPA-MWNT. The CNT 

complexes were tail vein injected and showed very rapid entry into the systemic blood 

circulation followed by rapid urinary clearance (Figure 1.10) [157]. The reason for 

rapid elimination observed here, when compared to CNTs functionaiised with 

surfactants is that once in the blood these surfactants desorbed from the CNTs, which 

leads to bundles circulating and consequent accumulation in the iiver tissue. The 

mechanism of [111ln]DTPA-MWNT eliminations has been shown to be via the kidney 

glomerular filtration system. It is important to note that [111ln]DTPA-MWNT complexes
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used in this study were considerably larger than the dimensions of the glomerular 

capillary wall. Hence, the length does not appear to be a critical parameter in their 

renal clearance. The mechanism by which CNTs pass through the glomerular 

filtration system is believed to involve the acquisition of a conformation in which the 

longitudinal dimension of the nanotube is perpendicular to the giomeruiar 

fenestrations, (cross section is between 20-30 nm) and small enough to allow 

permeation through the glomerular pores [157]. This hypothesis was later confirmed 

by TEM imaging, where individualised, well-dispersed MWNTs were observed in the 

renal capillary lumen. During their translocation through the glomerular filtration 

barrier their longitudinal axis was shown to be vertically oriented to the endothelial 

fenestrations [158]. Moreover, histological examination of the different tissues 

confirmed that those MWNT complexes did not induce any physiological abnormality 

after 24-hours post-injection [159].

Systemic clearance of SWNTs was also demonstrated by NIR. SWNTs were 

dispersed in a solution of PIuronic-F108 surfactant and injected in rabbits showing 

that the concentration of nanotubes in the blood serum decreased exponentially with 

a half-iife of 1 hour. Moreover, near-IR fluorescence microscopy on tissue revealed 

that only SWNTs in the liver were detected at significant levels at 24 hours [160]. 

Considering the safety and efficacy of CNT-complexes for medical applications issues 

other than their clearance have to be addressed. They need to achieve good 

biodistribution and show good target specificity in order to have therapeutic efficacy. 

The targeted accumulation of CNTs in vivo was first demonstrated by Lui et al., using 

PEGylated SWNTs linked to an arginine-glycine-aspartic acid (RGD) peptide. This 

modified RGD peptide is a potent integrin v|33 antagonist, aiming the in vivo targeting 

of integrin a vb3-positive tumours in mice via specific RGD -  integrin a binding [161]. 

In vivo models of U87MG human glioblastoma and HT-29 human colorectal tumour 

were used (with an implantation protocol of injection of 5x106 cells in phosphate buffer 

saline (PBS) into front legs of mice and allowed to reach a tumour volume of 200-300 

mm3). Furthermore, with the purpose of increasing the circulating half-life, two 

different lengths of PEG chains were used (molecular weight of PEG chains of 2000 

and 5400, respectively). The lengths of the PEG molecule influenced biological 

behaviour, with the longer PEG chain leading to increased blood levels and reduced 

RES uptake when compared with the shorter chain complex. The explanation for this 

was suggested to be due to the fact that PEG5400 renders SWNTs more hydrophilic 

and resistant to protein non-specific binding (NSB). These properties were not seen 

with the CNT complex involving functionaiisation with PEG2000. which was unable to
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prevent protein NSB to SWNT. in addition, the CNT bound to the RGD peptide, which 

is a ligand for ceil-surface integrins, led to an increased in uptake into the tumour, 

with PEG5400 achieving higher tumour accumulation due to its increased plasma half- 

life. Moreover, the study used Raman spectroscopy to directly detect SWNT in the 

various murine tissues. The analysis revealed the existence of SWNT in the liver and 

tumour samples with high G band Raman intensities, proving the tumour uptake of 

the complex [161]. Subsequently, Raman spectroscopy was also used to image the 

localisation of SWNT in live rodents [162]. Similar to the previous study, increased 

accumulation of RGD-SWNT in tumour was demonstrated, compared to control non- 

targetted SWNT. These findings demonstrated the ability of Raman spectroscopy to 

non-invasively localise targeted SWNT in vivo [162], The biodistribution and long-term 

fate of CNTs injected intravenously in vivo, was later studied, using the same 

technique, of Raman spectroscopy [163]. Besides the enhancement in biood half-life 

of CNTs (up to 15-hours), SWNT have also been detected in various organs and 

tissues of mice ex vivo over a period of up to 3 months. To study in depth the 

excretory pathway CNTs were injected at high dose in mice and urine and faeces 

collected at different time points. There was evidence for CNTs in faeces and 

intestine revealing excretion via the hepato-biliary pathway. The Raman signal was 

measured in the kidney and biadder after 24-hours, suggesting SWNTs were also 

renal excreted, as demonstrated in other studies. Since the average of lengths used 

in that study exceeded the renal excretion threshold and the majority of CNTs 

accumulated in the liver, it was suggested the urinary excretion occurs for a small 

percentage of CNTs of very short length (<50 nm in length, diameter 1-2 nm). The 

overall conclusion from these studies is that in fact CNTs are excreted chiefly via the 

biliary pathway, with faecal elimination [163]. In addition, necropsy, histology and 

blood chemistry reveal no toxicity in mice injected with SWNT with no impact on body 

weight or mortality [163].

The findings described above have revealed that CNTs can be designed in many 

ways to form pharmaceutical complexes, which allow them to enter blood circulation, 

target cells, deliver payloads, be exocytosed and finally eliminated from the body. A 

variety of approaches have been described above, for example, chemical 

modification via functionaiisation, which increased circulatory half-life and led to 

enhance tumour accumulation. As a nanoparticle for medical applications, the carbon 

nanotube shows promise in offering lower toxicity with enhanced efficacy.
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Figure 1.10: Rat distribution of radioactive labelled multi-walled CNTs ([111ln]DTPA- 

MWNT). (A) Dynamic anterior planar images of whole body distribution of [111ln]DTPA- 

MWNT within 5 min after intravenous administration in rats. (B) Static anterior planar images 

of whole body distribution of [111ln]DTPA-MWNT within 5 and 30-minutes, 6 and 24-hours 

post-injection. (C) % ID radioactivity per gram tissue at 24-hours after intravenous 

administration of [111ln]DTPA-MWNT quantified by gamma counting (n=3 and error bars for 

standard deviation) (adapted from Lacerda et al. 2008 [157]).
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1.3.3 Nucleic acid-base delivery using CNTs

Along with the first evidence that CNTs translocate across cell membranes, Pantarotto 

et al. [127] reported the first study using CNTs as a gene delivery system. In their 

work CNTs were covalently modified using the a method based on the 1,3-dipolar 

cycloaddition of azomethine ylides [164]. Both SWNTs and MWNTs were 

functionalised with pyrrolidine ring holding a free amine-terminal oligoethyiene glycol 

moiety attached to the nitrogen atom. The presence of this functional group increases 

the aqueous dispersibility of CNTs. The delivery of plasmid DNA and the expression 

of (3-galactosidase in Chinese hamster ovary cells (CHO cell line) were evaluated. 

Like other nonviral gene delivery systems, the amine-functionalised nanotube was 

able to condensate pDNA to form supramolecular complexes with globular 

conformations through electrostatic interactions [165]. In addition, they found that the 

charge ratio between the amino groups at the CNT surface and the phosphate groups 

of DNA backbone are important factors that determine the level of gene expression. 

The expression obtained was only 10 times higher than the naked DNA, which is still 

much less effective than liposomes. On the other hand, they found that DNA-CNT 

complexes do not wield any mitogenic or toxic effect on the activated lymphocyte, 

which is in contrast with other nonviral gene delivery vectors, such as dendrimers and 

liposomes. These traditional non-viral gene deliver systems generally cause 

destabilisation of the cell membrane and lead to pronounced cytotoxicity whilst 

achieving effective gene delivery [127]. In the work from Pantarotto et al. the lower 

cytotoxicity was attributed to the ability of the DNA-CNT complexes to penetrate the 

cell membrane. As described previously (section 1.3.2) the mechanism of 

internalisation of the amino functionalised CNTs was found to pierce the cell 

membrane as “nano-needles” [129].

To increase the efficiency of DNA condensation, Liu and colleagues reported a non- 

covalent association of plasmid DNA onto the surface of CNT functionalised with 

polyethylenimine (PEI) -  a polymer with high density of terminal amine groups [166]. 

The complexes were tested at different charge ratios in different cell lines (293, COS7 

and HepG2 cells) and the level of gene (pCMV-Luc) expression was found to be much 

higher than those of DNA alone. This study suggested that the uptake mechanism of 

the CNT-PEI-pDNA conjugates took place by endocytosis. The high transfection 

efficiency of PEI-MWNTs was attributed to several factors. The first was the secure
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immobilisation of DNA onto the surface of MWNTs, which leads to the formation of 

stable complexes that protect the DNA from degradation. The second factor is that the 

proton-sponge effect of the grafted PEI would allow the DNA-PEI-MWNT complexes 

to escape easily from endosomes or other vesicles in the cells [167]. In addition, the 

large complexes of DNA-PEI-MWNTs would improve the proton-sponge effects of the 

PEI and facilitate a more effective sedimentation onto the cells [168].

In support of the above, Wang et al. employed ammonium-functionalised SWNTs to 

deliver siRNA targeted to cyclin A2 in chronic myelogenous leukemia K562 cells, 

resulting in suppression of cyclin A2 expression [169]. The depletion of cyclin A2 

causes cell proliferation arrest and promotes apoptosis of chronic myelogenous 

leukemia K562 cells. Furthermore, the described ammonium-functionaiized SWNTs 

were applied to mediate the delivery of telomerase reverse transcriptase (TERT) 

siRNA into tumour cells [170]. TERT is an essential gene for development and growth 

of tumours, therefore the treatment with SWNT-TERT siRNA complexes led to 

suppression of cancer cell growth. Through injection of these complexes to mice 

bearing Lewis lung carcinoma tumour or HeLa cell xenografts, tumour growth was 

inhibited and the average tumour weight was significantly reduced when compared 

with untreated animals. A second report on SWNT mediated nucleic acid delivery in 
vivo was carried out by Podesta et al. [171]. SiRNA was employed for the treatment of 

a human lung carcinoma model, by delivery of ammonium-functionaiized MWNTs. 

The results demonstrate that MWNT-NH3+:siRNA complexes were active by triggering 

an apoptotic cascade, leading to extensive necrosis of the human tumour mass and 

increased survival of tumour-bearing animals. This work provided the first comparative 

in vivo study comparing “benchmark” nanoparticles, such as liposomes with CNTs. In 

this work they found that MWNT-NH3+:siRNA complexes were more effective in 

prolonging the survival of tumour-bearing animals, presumably due to their facile 

translocation into the tumour cell cytoplasm (Figure 1.11) [171]. Although, the 

complexes were administered by intra-tumourai local injection the work seems 

promising for the development of new therapeutic formulations to battle various 

diseases.
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Figure 1.11: A proprietary toxic siRNA sequence (siTOX) was complexed with either 

one of the most widely used cationic liposome delivery systems (DOTAP:cholesterol) 

or with functionalized multi-walled CNTs (f-MWNTs). MWNT-NH3+:siTOX complexes 

induced tumour collapse and apoptosis of human Calu 6 lung xenograft tumours. Whole 

tumours were excised upon reaching 800-1000 mm3 and photographed. Top-row images 

(left to right) are representative tumours from naive, MWNT-NH3+ alone, MWNT- 

NH3+:siTOX, and liposome:siTOX groups. Tumours were then fixed in 10% buffered formalin, 

paraffin embedded, and sectioned. Haematoxylin/eosin (H&E) staining was performed 

(second row) or sections were deparaffinised and rehydrated through graded ethanol; then 

TUNEL and propidium iodide (PI) nuclear counterstain were used to identify apoptotic 

(green) cells from the total cell population (red, third row). Phase images of corresponding 

fields of view for TUNEL/PI are shown in the last row to indicate MWNT-NH3+ localisation 

(adapted from Podesta et al. 2009 [171]).

- 3 5 -
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Another SWNT mediated in vivo delivery of siRNA for tumour therapy was published 

in 2006 by Yang et al. [172]. In this study they believed that phagocytosis was the 

mechanism by which functionalised SWNTs entered cells. Based on the mechanism 

they hypothesised that i.v. delivered SWNTs might be preferential engulfed in vivo by 

antigen-presenting cells that possess phagocytic potential, such as dendritic cells and 

macrophages. The experimental results demonstrated that i.v. injection of siRNA- 

SWNT complexes significantly reduced tumour growth after 15 days while siRNA 

alone or the mock SWNTs complex had no significant effect. This group was also 

involved in the development of an approach for target delivery of DNA mediated by 

SWNTs [173]. First, double stranded DNA (20 bp) was complexed with ammonium- 

functional ised SWNTs, and then the obtained complex was mixed with phosphoiipid- 

PEG containing a tumour targeting moiety (folic acid), followed by sonication in an ice 

bath for 30 min and agitation in the dark for 24 hours. Although the authors did not 

test the therapeutic effect of this targeting DNA-complex they found that the complex 

had good cell targeting properties.

Dai and colleagues have developed “smart” DNA/siRNA delivery systems based on 

SWNTs [121, 174, 175]. In contrast to the approaches described above, DNA and 

siRNA cargos can be controllably released from the carbon nanotube surface upon 

cellular uptake for efficient targeting and deliver [55]. Firstly, their work started with 

conjugation of antisense ONs or siRNAs onto functionalised CNTs by incorporation of 

biologically triggered cleavable bonds [174]. The first step involves making a stable 

aqueous suspension of short SWNTs by non-covalent adsorption of phospholipid 

molecules with poly(ethy!ene glycol) (PL-PEG) chains and terminal amine or 

maleimide groups. The PL-PEG strongly binds to the SWNTs via Van der Waals and 

hydrophobic interaction, via two PL alkyl chains and the SWNT sidewall, with the PEG 

chain extending into the aqueous phase to impart the dispersibility in water. The 

suspension is very stable in PBS buffer even if heated at 70 °C for weeks. Thiol- 

modified DNA or siRNA cargo molecules can be linked to the amine or maleimide 

groups on the sidewalls of SWNTs through cleavable disulfide bonds, which can be 

cleaved by thiol reducing enzymes thus releasing the cargos from the SWNTs once 

the conjugates are internalised into the endosomal or lysosomal compartments 

through endocytosis. The released cargos can freely reach their intended biological 

destination.

This system was employed to deliver siRNA into human T cells and primary cells that 

are difficult to transfect by traditional nonviral agents, like liposomes [175]. They found
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that the delivery ability and RNAi efficiency of these CNTs far exceed those of several 

existing nonvira! transfection agents including four formulations of liposomes. The 

high efficiency observed for CNTs was attributed to the large surface area of SWNT 

for siRNA loading, high intracellular transporting ability of SWNTs and high degree of 

endosome/lysosome escape due to intracellular cleavage of the disulfide bond.

CNTs were also studied for innovative methods for nucleic acid delivery into cells. 

Rojas-Chapana et al. [176] reported that CNTs can be used as nanoscale 

“electroporation vectors” to deliver plasmid DNA into bacteria, taking advantage of the 

unique shape (large aspect ratio) and electronic properties of CNTs. Under microwave 

radiation, MWNTs created temporary transmembrane “nanochannels” to facilitate 

plasmid DNA delivery into cells. When placed in an electric field, charges are induced 

on the tip of CNTs and the electric field at the tips drastically enhanced by a factor if 

10-100 depending on their length to diameter aspect ratios.

Along a similar line, Cai et al. [177] proposed a spearing technique for cellular 

internalisation of CNTs and plasmid DNA. CNTs containing ferromagnetic nickel 

catalyst particles enclosed on their tips can respond to a magnetic agitation. The 

spearing technique involves a two-step procedure. First the cells and CNTs are 

exposed to a magnetic field. This allows the CNTs to spear the cell membrane. Next 

the cells are transfected to fresh medium and a static field is applied that enhances 

the spearing procedure and pulls the CNTs into the cell. The expression of the 

enhanced green fluorescent protein (EGFP) gene was evaluated by fluorescence 

microscopy and flow cytometry. Gene delivery through CNT-Ni produced 80-100% 

fluorescent cells, while CNT deprived of Ni particles did not produce any fluorescence 

signal. In this way, another illustration of the possible use of CNT to transport and 

express a gene was demonstrated. However, such techniques are only appropriate 

for in vitro or ex vivo gene transfer.
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1.3.4 CNTs-mediated delivery of drugs

CNTs have been, in the recent years, intensively investigated as a new type of drug 

delivery system, as they can be can be loaded with therapeutic molecules on their 

surface and the inner cavity. Furthermore, due to their high surface area other 

therapeutic and diagnostic molecules can be conjugated, such as targeting or 

imaging agents.

One of the first studies on the use of CNTs for drug delivery was carried out by Wu 

and co-workers in 2005, who conjugated the antibiotic amphotericin B to MWNTs 

[178]; a drug considered problematic due to its narrow therapeutic index and poor 

aqueous dispersibility. Both issues could be improved by conjugating amphotericin B 

to MWNTs, which reduced the toxicity of the drug and mantained its antifungal 

activity. As stated previously, nanoparticles hold great promise in the area of new 

cancer therapeutics and both in vitro [119, 179-185] and in vivo [186-189] systems 

have been the subject of extensive study. So far, SWNTs have been the preferred 

type of nanotubes, perhaps owing to their smaller dimensions, in terms of 

functionalisation, several covalent and non-covalent methods have been developed, 

according to the therapeutic requirements. Non-covalent binding, for example, is 

susceptible to environmental factors, such as pH and salt concentration, and it is in 

general less stable than a covalent bond. This may be a disadvantage for efficient 

attachment of the drug, but advantageous for its release at the target location. In 

contrast to this, covalent attachment of drug molecules to CNTs provides a strong 

and stable chemical bond, but needs to include a part that is cleavable within 

intracellular conditions to allow for release of the drug. In almost all cases, this is 

facilitated by the reductive environment in the cytoplasm. For example, Chen and co­

workers conjugated a taxane to SWNTs via a cleavable disulfide bond [179], based 

on former work of Kam et al. [174]. Similar to this, two other studies on the delivery of 

cisplatin as a piatinum(IV)-prodrug accomplish drug release by intracellular reduction 

of platinum(IV) to its active form platinum(ll) under concomitant loss of the axial 

ligands, by which the drug is tethered to the nanotube surface [182, 190]. Regarding 

to non-covalent approaches, the release of drugs inside the target cells is often pH- 

dependent. A typical example is the non-covalent binding of the anticancer drug 

doxorubicin to CNTs via jt-ot interactions. At a high pH, the amino group in the sugar 

moiety of doxorubicin is deprotonated, promoting strong hydrophobic interactions with 

the nanotubes’ sidewalls and a low dispersibility in water. However, at a lower pH the
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amino group becomes protonated and thus charged, which increases the molecule’s 

hydrophilicity and dispersibility in water. This property can be used in relation to 

cellular uptake pathways based on endocytosis, as first demonstrated by Liu et al., 
who showed that the lower pH environment inside endosomes triggered the release 

of doxorubicin from SWNTs due to increased hydrophilicity [191]. Work in our lab has 

further investigated the fate of doxorubicin-loaded CNTs by labelling the nanotubes 

with a fluorescent dye and visualising the separate localisation of the drug and of the 

nanotubes upon cellular uptake by confocal microscopy. It could be demonstrated 

that doxorubicin is indeed released inside the cells and translocates to the nuclei, 

whereas the nanotubes remain in the cytoplasm [185]. An entirely different strategy in 

terms of drug loading has been applied by Hempel et al., who filled MWNTs with the 

anticancer drug carboplatin by a wet chemical approach [183], In vitro studies 

revealed a concentration-dependent cytotoxic effect of carboplatin-filled nanotubes on 

human bladder cancer cells in contrast to unfilled, opened nanotubes - however, the 

study did not provide quantitative data on the release of carboplatin from their 

nanotube container.

The already described aspect of active targeting (section 1.1.1), by which agents are 

attached on the surface of the carrier, may involve antibodies, aptamers or ligand 

binding to cell surface receptors. A widely-employed example in this category is the 

attachment of cyclic arginine-glycine-aspartic acid (RGD) peptides to CNTs, as shown 

by Liu et al. and Villa et al. [187, 188]. RGD peptides impart a recognition moiety for 

integrin av|53 receptors; a class of transmembrane cell adhesion receptors that are up- 

regulated in a variety of solid tumours. A similar strategy exploits the interaction of 

folate and its receptor, which is a common, though relatively non-specific tumour 

marker expressed at high levels by a broad spectrum of human cancers [186]. 

Binding of folate to its receptor facilitates cellular internalization of folate-conjugated 

SWNTs by receptor-mediated endocytosis, as shown by Dhar et al. [184]. Antigen- 

antibody interactions have also been employed as a targeting strategy for carbon 

nanotube-mediated drug delivery, though not very frequently. For example, McDevitt 

et al. designed a SWNT-antibody construct to target the CD20 epitope on human 

Burkitt lymphoma cells (U-937 cell line) and deliver a radionuclide to these cells, 

whilst quantifying tumour uptake in vivo [186]. Their study showed that covalent 

attachment of antibodies to the nanotube conjugates altered their pharmacokinetics 

and biodistribution dramatically when comparing tumour bearing and non-tumour 

bearing mice, in the same year, Shao and co-workers reported that SWNTs 

functionalised with HER2- and IGFR1-specific antibodies showed selective
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attachment to breast cancer cells compared to SWNTs functionalised with non­

specific antibodies [192].

Successful targeting and sufficient therapeutic efficacy in vitro are the prerequisites 

for testing drug delivery systems in an in vivo setup, which has so far been achieved 

by three published studies. In 2007, McDevitt et al. reported the design a SWNT-CD 

20 antibody construct to deliver a radionucleotide to mice bearing lymphoma 

xenografts [186]. Apart from the targeting aspect and quantification of tumour uptake, 

this study was one of the first to yield information regarding blood clearance and the 

distribution of the nanotube complexes to key organs. In 2008, Liu et al. conjugated 

paclitaxel, a widely used anticancer drug, to branched PEG chains on SWNTs and 

tested these carbon nanotube-based drug delivery vehicles to achieve efficient in vivo 
tumour treatment in mice [187]. The conjugate afforded similar efficacy in in vitro 
experiments and a higher efficacy in suppressing tumour growth than paclitaxel in a 

murine 4T1 breast cancer model, owing to prolonged blood circulation and 10-fold 

higher tumour uptake of paclitaxel by nanotube delivery; likely mediated by the EPR 

effect (Figure 1.12). In a very recent study by Bhirde and co-workers, SWNTs were 

functionalised with the anticancer drug cisplatin, epidermal growth factor (EGF) as a 

targeting agent, and quantum dots as imaging agents [189]. These conjugates were 

injected into mice bearing a head and neck squamous carcinoma tumour xenograft 

and tumour growth was monitored for two weeks. Mice treated with the targeted 

conjugates showed a rapid decrease of tumour size, whereas mice treated with a 

non-targeted nanotube-cisplatin conjugated did not show tumour regression.

Drug delivery is clearly one of the most promising bioapplications of CNTs and the 

coming years will reveal their true potential in comparison with more established drug 

delivery systems.
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Figure 1.12: In vivo drug delivery with CNTs for cancer treatment. (A) Illustration of 

paclitaxel conjugation to SWNT functionalised by phospholipids with branched PEG chain. 

(B) Tumour growth curves of tumour-bearing mice receiving the different treatments 

indicated. The same PTX dose (5 mg/kg) was injected on days 0, 6, 12 and 18. Inset: A 

photo of representative tumours taken out of an untreated mouse, a taxol treated mouse and 

an SWNT-PTX treated mouse and the end of the treatments (adapted from Liu et al. 2008 

[187]).

1.3.5 CNTs as selective cell destruction agents

Apart from destroying diseased or dysfunctional cells by delivering drugs and 

therapeutic nucleic acids, CNTs can also be applied for selective cancer cell 

destruction by acting as NIR heating devices. This technology is based on the fact 

that biological systems are highly transparent to NIR light, whereas CNTs exhibit a 

strong optical absorbance in this spectral window. Thus, treating tissue or cell layers 

after internalisation of CNTs with continuous NIR radiation can cause cell death due
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to excessive local heating. The first study to demonstrate this effect was published by 

Kam et al. in 2004 [121]. In their work, SWNTs functionalised with phospholipid-PEG 

and folate as a targeting moiety were incubated for 12-18 hours with HeLa cervical 

carcinoma cells over-expressing the folate receptor. After abundant washing, the cells 

were irradiated continuously with an 808 nm laser (1.4 W/cm2) for 2-minutes, causing 

drastic morphology changes and extensive cell death. HeLa cells that did not 

overexpress the folate receptor, however, did not internalise the nanotubes and were 

thus not affected by the laser treatment. A similar study by Shao et al. in 2007 used 

the same method, but a different targeting strategy [192]. In their approach, SWNTs 

were functionalised with antibodies targeting the insulin-like growth factor 1 receptor 

(IGF1R) and the human epidermal growth factor receptor 2 (HER2), both over­

expressed by certain breast cancer cell lines. Unoccupied surface spaces on the 

nanotube surface were coated by PEG8ooo. which supposedly formed a self­

assembled monolayer to prevent undesirable binding with other molecules. Following 

incubation of MCF7 breast cancer cells (over-expressing IGF1R) and BT474 breast 

cancer cells (over-expressing HER2) with the SWNT-antibody conjugates, laser light 

of 808 nm (0.8 W/cm2) was dosed for 3-minutes to all samples. The localized photo- 

thermal effect produced heat that lead to complete destruction of the cells when 

targeted with the specific nanotube-antibody conjugate. Targeting with non-specific 

antibody conjugates only caused minor collateral damage. In a more recent study, 

Chakravarty et al. have designed and prepared anti-CD22 and antiCD25-targeted 

SWNT constructs to thermally ablate human Burkitt’s lymphoma cells (U-937 cell line) 

(CD22+CD25') and peripheral blood mononuclear cells (PBMCs) (CD22’CD25+) in 
vitro [193]. Once more, it could be demonstrated that the binding of the antibody- 

nanotube constructs to their respective antigen-positive target cells leads to their 

specific ablation after exposure to NIR light. Compared to the earlier studies, a higher 

laser power (5 W/cm2) and a longer radiation time (7-minutes) was applied in these 

experiments. A novel approach using carbon nanotube-mediated hyperthermia based 

on heat release in a radio frequency field was pursued by Gannon et al. to produce 

thermal cytotoxicity in malignant cells in vitro and in vivo [194]. Exposure to a 13.56 

MHz radio frequency field induced efficient heating of aqueous suspensions of 

SWNTs. This effect was used to induce non-invasive, selective, and SWNT 

concentration-dependent thermal destruction of human cancer cells having 

internalised SWNTs. Furthermore, direct intratumoural injection of SWNTs in rabbits 

bearing hepatic tumour xenografts was shown to lead to complete necrosis of ail 

SWNT-treated tumours after 48 hours, whereas control tumours without SWNTs
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remained completely viable. Another study recently published by Kang et al. used the 

photoacoustic effect of SWNTs for targeting and selective destruction of cancer ceils 

via a “firecracker-like explosion" at the nanoscale triggered by irradiation of a 1064- 

nm Q-switched millisecond pulsed laser [195]. The treatment was targeted by 

functionalising SWNTs with folic acid, causing 85 % cell death compared to 10 % cell 

death for the non-targeted SWNT sample. It should be noted that during the treatment 

no temperature changes exceeding ± 3 °C were observed, suggesting that the 

destructive effect of nanotubes on cancer cells is mainly due to mechanical damage 

induced by the strong shockwave generated during the photoacoustic explosion, 

rather than a thermal damage caused by high temperatures as in studies mentioned 

previously. This approach might, therefore, provide a new mechanism for using the 

photoacoustic properties of SWNTs in therapeutic and biological imaging 

applications.

As for other biomedical applications, the use of CNTs for selective cancer cell 

destruction is stiii in an early developmental state. Only three in vitro studies have 

been published in five years of research on CNTs as NIR heating agents, which 

indicates the difficulties encountered with this approach. The next few years will most 

likely show whether this area of application deserves to be further investigated. Even 

less reported is the approach of magnetic hyperthermia based on the incorporation of 

magnetic materials into CNTs, which provides more efficient heat transfer to deep 

tissues than the NIR approach and allows for positioning and induction of local 

heating effects by a combination of static and alternating external magnetic fields at 

the same time [196]. Although much has been achieved regarding the filling of CNTs 

with magnetic materials, there are still no studies investigating magnetic heating 

effects of filled CNTs in cells, tissue or living systems to date. Hence, CNTs as 

heating agents are currently inferior in comparison to magnetic nanoparticle-based 

systems, which are already being used successfully in the clinic [197]. However, the 

NIR heating effect of CNTs is a unique property of this material and requires further 

investigation, although its application in cancer therapy will always be restricted to 

surface tissues, since NIR light is only capable of passing through several 

centimetres of tissue and its interaction with biological matter is by far larger than that 

of magnetic fields [196].



Chapter 1: Introduction

1.3.6 CNTs toxicity

Undeniably, CNTs are emerging as one of the key innovative materials for biomedical 

applications, which may bring revolutionary strategies to solve some current 

untreatable diseases and help solving fundamental biological issues. However, their 

potential toxic effects have become an issue of considerable concern for the 

environment and human health. Therefore, the successful application of CNTs in 

medicine is dependent on proper assessment of the potential hazards to humans and 

other biological systems [55].

In the literature titles such as “Pulmonary toxicity of single-wall carbon nanotube in 

mice 7 and 90 days after intratracheal instillation" [149]; "Unusual inflammatory and 

fibrogenic pulmonary responses to single-walled CNTs in mice” [151]; “CNTs 

introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a 

pilot study” [198]; “DNA damage induced by multi-walled CNTs in mouse embryonic 

stem cells” [199]; “Direct and indirect effects of single-walled CNTs on RAW 264 7 

Macrophages: Role of iron” [200] are frequent. On the other hand many other 

published work, present consistent results showing internalization, imaging, targeting, 

biodistribution and therapy with no toxic effects [117, 121, 126, 127, 131, 139, 146, 

177, 200-210]. In Table 1.3 is presented a compilation of some in vitro and in vivo 
studies of CNT toxicity. The discrepancies and large diversity in conclusions reported 

for a number of studies in the literature are an outcome of the application of CNTs 

with a wide range of distribution of tube diameters, lengths, and chiralities produced 

by the current synthesis methods. In addition to the different functionalisations, varied 

degrees of functionaiisation, and plethora of functionalisations have been employed. 

Therefore, explicit discrimination of toxicity of CNTs and implementation of precise 

measurements, complete characterisations, and the use of well-defined high 

precision materials is mandatory. In addition, the use of different protocols, cell lines, 

and animal models in evaluating the toxicity and long term fate of CNTs may be very 

important reasons for the inconsistency. Standard experimental protocols (including 

but not limited to animal models, cell assays, quantification, and characterisation 

methodologies) should be established so that studies may be compared across 

laboratories [55].
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1.4 Thesis hypothesis and aim

RNA-wrapped CNTs have several potential advantages for biomedical applications in 

comparison with DNA. DNA has been shown to efficiently functionalise CNTs and has 

been used for several studies [132, 223-225], as discussed above. Firstly, unlike 

DNA, RNA cannot integrate directly into the host chromosome and is therefore less 

likely to be mutagenic [226]. Secondly, modification of RNA has been shown to 

suppress recognition by the mammalian immune system [227]. Modified RNA- 

wrapped CNT may therefore be able to bypass the host immune system and more 

efficiently deliver their payload to the host ceils. Thirdly, unlike DNA (which has to be 

transcribed), RNA is directly functional in cells. RNA released from CNT may be 

translated to yield a protein, may act as antisense RNA to inhibit protein synthesis, or 

may act as interfering RNA (RNAi) to silence a target gene.

More recently, RNAi approach is being intensively investigated as a therapeutic 

strategy for gene targeting and holds great promise for targeted cancer therapy.

The hypothesis of this thesis is that CNT are able to be internalised and deliver their 

cargo into particular celluiar compartments. Therefore, research wiii be carried out to 

explore the uptake of CNT and their intracellular localisation and trafficking through 

cells. Studies regarding the efficiency of CNT construct were also assessed in 

particular cell lines in order to demonstrate in vitro feasibility to target cancer genes. 

Therefore, the individual objectives of this thesis are as follow:

1. Study the cellular uptake of RNA-wrapped CNTs in mammalian cells, with full 

characterisation of complexes and measurement of cytotoxic effects.

2. Study the uptake mechanism by which CNTs are internalised by mammalian 

cells and determine the intracellular localisation of the complexes by 

compartmental staining

3. Determine the ability of CNTs to deliver nucleic acids, and evaluate its 

capability for gene expression and gene silencing.

4. Investigate the feasibility of CNT-siRNA complexes to target specific cancer 

genes (e.g. the anti-apoptotic factor survivin).
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This chapter includes the description of the methods applied, as well as a description 

of the primary material of study: the CNTs. Owing to the muiti-discipiinary nature of 

this project, a variety of techniques were employed, including: microscopy, 

spectroscopy and other chemical analysis; and also techniques used routinely in 

molecular biology.

2.1 Introduction to CNTs

CNTs were discovered by Sumio lijima in 1991. CNTs are molecular-scale tubes of 

graphitic carbon, and they are members of the fullerene structural family. Their name 

is derived from their size, since the diameter of a nanotube is in the order of a few 

nanometers (approximately 1/50,000th of the width of a human hair) and, up to 

several millimetres in length. CNTs possess a unique and fascinating one-dimensional 

nanostructure, which impart a formidable range of properties to the nanomaterial, 

such as tremendous strength [228], high thermal conductivity [136] and amazing 

electronic properties, ranging from metallic to semiconducting [229-232]. They can 

exist in three forms: SWNT, MWNT (figure 2.1) [29] and double-walled nanotubes 

(DWNT). DWNTs are intermediary in structure between SWNT and MWNT. The main 

interest in this material is the possibility of functionaiisation of the outer wail, which will 

ensure the contact with the external environment, while retaining the remarkable 

mechanic and electronic properties of the inner wall. For these reasons we have 

employed DWNT in all our studies.



Chapter 2: General methods

Figure 2.1: Carbon nanotube structure. Molecular structures of defect free SWNT 

(A) and MWNT (B) with open ends, showing typical dimensions of length, width, and 

separation distance between graphene layers in MWNTs (adapted from Reilly et al. 
[233]).

2.2 Synthesis of CNTs

CNTs can be synthesised mainly by three procedures: laser evaporation, carbon arc 

discharge and catalytic chemical vapour deposition (CCVD). All these synthesis 

techniques use metallic catalysts for the decomposition of the carbon source. 

Depending on the technique the metals can be mixed with: (a) carbonaceous solid 

electrodes -  arc discharge - or target -  laser ablation method, or included in a 

substrate (substitution, impregnation) in the case of CCVD.

DWNTs applied in the present work were produced by the CCVD technique. The 

mechanism of nanotube “growth” during production is not fully understood. Since the 

metal catalyst is necessary for the growth of SWNTs, it must involve a role for the Co 

or Ni atoms. One proposal, referred to as the “scooter mechanism”, suggests that 

atoms of the metal catalyst attach to the dangling bonds at the open end of the tubes,
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and that these atoms scoot around the rim of the tube, absorbing carbon atoms as 

they arrive [234].

Generally, when nanotubes are synthesised, the result is a mix of different kinds of 

CNTs, some being metallic and some semiconducting, depending on their geometrical 

characteristics, namely their diameter and the orientation of the hexagons with respect 

to the nanotube axis (chiral angle) [230, 231, 235]. CNTs of different structures can be 

produced considering the way the graphite sheet is rolled up. They can be of an 

“armchair” structure, when the C-C bonds of the carbon hexagons are parallel. And 

when the tubes have different orientations in the graphite plan, they can have a zigzag 

or chiral structure. The raw material that is produced, contains up to 70 % CNTs by 

weight. The contaminants are mainly amorphous carbon and catalyst particles, which 

can be removed by treatment with oxidizing acids [113, 236-241], microfiltration [242], 

or chromatographic procedures [243, 244].

2.2.1 Synthesis of DWNT by catalytic chemical vapour deposition 
(CCVD)

In this work, DWNT were prepared by CCVD synthesis prepared by Flahaut et al. (our 

collaborators from CARBIO network in Toulouse). DWNTs were produced by CCVD 

decomposition of CH4 over Mgi.xCoxO solid solution containing small addition of 

molybdenum in a CCVD reactor (Figure 2.2). After the CCVD the catalyst and by­

products were removed by treatment of the sample with a concentrated aqueous HCI 

solution. High-resolution transmission electron microscopy showed that a typical 

sample consists of ca. 80% DWNTs, 20% SWNT, and a few triple-walled CNTs. The 

diameter distribution of the DWNTs ranged from 0.5 to 2.5 nm for inner tubes and 

from 1.2 to 3.2 nm for outer tubes. The length of individual DWNTs usually ranges 

between 1 and 10 micrometers, although bundles may be much longer (up to 100 

micrometers at least). Due to the synthesis and catalyst-elimination process, the walls 

of the DWNTs are not expected to have been functionalised (and in particular not by 

oxygen-containing functional groups) [245].
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Figure 2.2: CCVD reactor. Consisting of a horizontal quartz tube housed in a cylindrical 

furnace, in which a constant nitrogen gas flow rate is maintained at pressures slightly above 

the atmospheric, in order to provide the condition of a laminar gas flow. A Pyrex flask 

containing the reagent mixture (composed by a carbon precursor and a catalyst source) is 

connected, via T joint, to the tube close to the nitrogen inlet. A heater plate is located below 

the flask [246].

The final product obtained typically has an 97.7 mol% carbon content and the 

HRTEM observation did not reveal any significant amorphous deposit on the CNTs. 

The CNTs were mainly isolated, or gathered into small bundles, mainly composed of 

DWNTs (Figure 2.3A). Analysis of HRTEM of 96 isolated CNTs images revealed the 

diameter distribution of CNTs (Figure 2.3 B, C and D). The distribution of CNTs vs. 
number of walls (Figure 2.3B) shows that final product contains mainly DWNTs (77 

%) and only 18 % of SWNTs or 5 % triple-walled CNTs. The distributions vs. diameter 

for all 96 CNTs and for the DWNTs alone are shown in Figure 2.3 C and D 

respectively. The inner and outer diameters range from 0.53 to 2.53 nm and from 

1.23 to 3.23, respectively [247],

In addition, Raman analysis revealed that the ratio between the intensity of the D and 

G band is close to 8.9 % and that the analysis of the radial breathing mode (RBM) 

indicates the presence of CNTs with diameters ranging from 0.7 to 2.13 nm, with 

many pairs of peaks (with a difference of about 0.7 nm between the corresponding 

diameters), which could correspond to the inner and outer diameters of DWNTs [247, 

248].
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Figure 2.3: HRTEM characterisation of DWNT synthesised by CCVD. (a) HRTEM

images of DWNTs and (b) distribution of the numbers of walls for the whole population 

(established from 96 individual CNTs). Distribution of inner (c/i) and outer (do) diameter for 

the whole population of CNTs (c) and for DWNTs only (d) (adapted from Flauhaut et at. 
[247]).

2.3 Purification of CNTs

As-prepared CNTs (pristine nanotubes) usually contain impurities, which can be 

divided into carbonaceous impurities and metal catalyst particles. These impurities 

can interfere with the desired properties of the nanotubes. Therefore, many 

purification techniques have been developed to improve the quality of the raw carbon 

nanotube material.

Acid oxidation of CNTs can gasify amorphous carbon and oxidise metallic catalyst 

particles, which then become disperse in the acid. However, it also opens up the 

tubes’ ends and introduces carboxylic groups to the ends and results in further defect 

sites [249]. This can be useful if the nanotubes are to be further functionalised by 

covalent coupling chemistry. In summary, acid oxidation is considered to be a very 

efficient process, resulting in the formation of very short tubes (pipes) 100 - 300 nm in 

length [113]. However, with under these harsh conditions, there can be a loss of up to 

90% of the initial material [250],
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2.3.1 DWNT acid oxidation

Herein, as-prepared CNTs were purified by a two-step procedure based on acid 

oxidation. In the first step, 100 mg CNTs were dispersed in 20 mL concentrated nitric 

acid, sonicated with a tip sonicator (MSE Soniprep 150, amplitude 8 pm) for 6-times 

for 10s, and incubated in a water bath (Grant ultrasonic bath XB2, Farnell, UK) at 95 

°C for 2-hours. After oxidation, the acid was diluted with water and the mixture 

centrifuged (10 min, at 50000g, 4 °C) (Beckman Avanti J25, Buckinghamshire, UK), 

followed by through washing with water (distilled water). These pre-treated CNTs 

were then re-dispersed in a 3:1 mixture of concentrated nitric and sulphuric acid and 

the above described process was repeated. Afterwards, the oxidised CNTs were 

vacuum filtered using a 0.2 pm polycarbonate filter (Whatman Ltd., UK) until the 

eluate was clear and of neutral pH. The filtrate was then sonicated with a tip sonicator 

for 6-times for 10s and centrifuged three times at 75000 g to remove big 

agglomerates and CNT bundles. The concentration of these dispersions was 

determined gravimetrically and adjusted to 100 pg/mL for storage in the fridge at 4 °C.

2.4 Functionalisation of CNTs

One important feature of CNTs is that this material is practically insoluble in both 

aqueous and polar/nonpolar organic solvents. They can be dispersed in some 

solvents by sonication, but precipitation immediately occurs when this process is 

interrupted. On the other hand, it has been demonstrated that CNTs can interact with 

different classes of compounds [238, 239, 251-257]. CNTs can undergo chemical 

reactions that make them more disperse for their integration into inorganic, organic, 

and biological systems [258],

The main approaches for modification of CNTs can be grouped into three categories: 

(a) covalent attachment of chemical groups through reaction onto the jc-conjugate 

skeleton of the CNT; (b) noncovalent adsorption or wrapping of various functional 

molecules; and (c) endohedral filling of their inner empty cavity.

A number of routes to covalent functionalisation of CNTs have been developed. 

According to the location of the functional groups, the strategies to covalently 

functionalise CNTs can be classified into two main types: (a) defect functionalisation
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and (b) sidewall functionalisation. The covalent functionalisation of nanotubes is more 

robust and better controllable compared to functionalisation based on noncovalent 

methods.

Covalent functionalisation of CNTs takes advantage of carboxylic acid moieties of 

acid-treated CNTs or via derivatisation. The acid treatment is basically carried out in 

the same way as for acid purification techniques, only sometimes, stronger acids are 

used in order to increase the amount of functional groups. The treatment has to be 

adjusted for every nanotube sample with respect to acid concentration, time and 

temperature, as some samples are more sensitive to oxidation than others, which 

might destroy them more easily. Once oxidised, CNTs can be coupled covalently to a 

variety of different biomolecules bearing amino groups. However, the carboxylic 

groups of oxidised nanotubes are not reactive enough to undergo spontaneous 

reactions. A common solution to this problem is to convert the carboxylic groups into 

amine-reactive esters using Sulfo- NHS (Nhydroxysulfosuccinimide) and EDC (1- 

Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride), the latter serving as a 

dehydrating agent [259]. One of the main advantages of this procedure is that both 

EDC and Sulfo-NHS are soluble in water and thus allow for coupling reactions in 

physiological environments.

In the search for non-destructive purification methods, CNTs are wrapped or covered 

with molecules which act as surfactants, in non-covalent approaches. These can be 

common anionic, cationic or non-ionic surfactants, but also complexing agents, 

organic biopolymers, proteins, oligomers, or bile salts [260]. The lipophilic part of 

these molecules generally attaches to the sidewalls of the nanotubes via hydrophobic 

interactions or Tr-stacking, in contrast the hydrophilic part sticks out into the solution 

and provides aqueous dispersibility. A particularly interesting method is the wrapping 

of CNTs with single-stranded DNA or RNA, as this increases the biocompatibiiity of 

the nanotubes and enables them to interact with living tissue [261]. The advantage of 

the non-covalent approach is that the sp2 orbital structure of the nanotubes is 

preserved and hence so are their electronic characteristics. However, non-covalent 

binding is dependent on environmental factors, such as pH and salt concentration, 

and it is in general less stable than covalent binding.

The wrapping with a phospholipid, as PL-PEG-NH2 and a polypeptide, such as 

Po!y(Lys:Phe) (applied in this study) rely on the interaction between the hydrophobic 

regions of the polypeptide that binds to the hydrophobic surface of the CNTs through
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j e - j c  interactions leaving the hydrophilic groups exposed to the solvent and allowing for 

the dispersion of the CNTs in aqueous media.

2.5 Characterisation of CNTs

CNTs can be classified according to their number of walls, but they can also vary in 

diameter distribution, length distribution, chirality, purity, catalyst material, impurity 

species and defects; factors mostly dependent on the production method. Therefore, 

it is important to distinguish between these materials and determine the quantity, 

quality, and properties of nanotubes in a sample.

Characterisation techniques can be divided into microscopic techniques, 

spectroscopic techniques, and thermogravimetric techniques. The first group 

comprises scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), atomic force microscopy (AFM), and confocal microscopy, in contrast 

spectroscopic techniques include Raman spectroscopy and Ultra Violet-Visible-Near 

Infrared (UV/Vis/NIR) absorption spectroscopy.

2.5.1 Transmission electron microscopy (TEM)1

Electron beams can be used to produce images of nanoparticles and provide 

crystallographic information about these structures. Under TEM the electrons from a 

source such as an electron gun enter the sample, and scatter as they pass through it. 

Electrons are subsequently focused by an objective lens, are amplified by a 

magnifying (projector) lens, and finally produce the desired image [234].

There are a number of drawbacks to using the TEM technique. Many materials 

require extensive sample preparation to produce a sample thin enough to be electron 

transparent, which makes TEM analysis a relatively time consuming process with a 

low throughput of samples [234].

 ̂ TEM was performed by Ewa Borowiak-Palen at West Pomeranian University of Technology in 
Szczecin

- 5 4 -
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2.5.2 Atomic force microscopy (AFM)2

AFM has become an important technique in biology and chemistry due to its unique 

ability to image and characterise structures in liquid, ambient and vacuum 

environments [262-265]. When the tip is brought into proximity of a sample surface, 

forces between the tip and the sample lead to deflection of the cantilever. Typically, 

the deflection is measured using a laser spot reflected from the top of the cantilever 

into an array of photodiodes. Compared to other microscopic techniques, AFM can 

produce a true, three-dimensional surface profile of a sample, rather than a two- 

dimensional projection. Concerning CNT characterisation, AFM can be used to obtain 

size and length distributions and provides information about surface coatings.

2.5.3 Confocal microscopy

Confocal microscopy is a widely used tool for fluorescent imaging of biological 

objects. Confocal microscopy can constitute the bridge connecting high-resolution 

analysis and observation of spatially extended areas. Fluorescence provides the 

possibility to analyse location and expression of many target molecules at the same 

time. Furthermore, confocal microscopy has the unique ability to optical section a 

sample into thin slices almost in real time, thereby providing a full three-dimensional 

view of the sample.

Therefore, we have used confocal laser scanning microscopy (CLSM) (Zeiss Axiovert 

LSM510) using 63x oil immersion objective lens (Carl Zeiss Inc., Thornwood, NY) to 

view fluorescently tagged CNTs in a method similar to that of viewing biological 

materials such as antibodies, in order to accurately analyse and quantify the 

interaction between them.

2 AFM imaging was performed by Cristina E. Giusca at University of Surrey.
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2.5.4 UV-VIS-NIR spectroscopy

UV-VIS-NIR involves the spectroscopy of photons in the UV-visible region. It uses 

light in the visible and adjacent near ultraviolet (UV) and near infrared (NIR) ranges. In 

this region of the electromagnetic spectrum, molecules undergo electronic transitions. 

The optical spectrum of CNT was found to be very structured. Moreover, it was found 

that nanotubes fluoresce in the near-IR, with clearly identifiable and similar spectra 

[266].

In UV/vis/NIR absorption spectroscopy, the intensity of a beam of light is compared 

before and after interaction with a sample. This provides information about 

concentration, as according to Lambert-Beer’s Law, the absorbance is proportional to 

the concentration. Furthermore, the vis/NIR part of a CNT spectrum (600 to 2500 nm) 

exhibits characteristic absorption features called “van-Hove singularities”, which are 

due to the one-dimensional nature of the conducting electron states in CNTs and 

originate from the inter-band transitions in semiconducting and metallic SWNTs [267]. 

According to Itkis et ai, the strength of these characteristic features in comparison 

with the featureless baseline provides a measure of the purity of the SWNT material 

[268]. However, van-Hove singularities can only be observed for good dispersions and 

non-oxidised CNTs, since strong acid treatment destroys the electronic properties of 

CNTs [269].

The first peak centred at 1700 nm is due to the first van Hove singularity in 

semiconducting nanotubes while the second one is seen centred at 900 nm. A third 

set of peaks centred near 650 nm is assigned to the first transition of metallic SWNT 

[270]. The van Hove peaks are overlapped on a background that decreases smoothly 

from the UV to the NIR.

2.5.5 Raman spectroscopy

Raman spectroscopy is a powerful technique with a wide-range of applications for the 

study of CNTs. As a vibrational spectroscopy it has been shown to be an invaluable 

tool for characterisation of CNT diameter distributions and monitoring production 

methods [271-273]. Experimentally, the technique is relatively simple, in particular for 

bulk samples and the instrumentation is widely available. Spectra can be recorded at 

room temperature, and the technique is quick, non-destructive and sensitive. Raman
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can also be applied to individual nanotubes, however it is experimentally more 
demanding. Easy evaluation of nanotube diameters is made possible by the presence 
of the radial breathing mode (RBM), which appears at low frequency (100-400 cm'1) 
region of the nanotube. The Raman spectrum and has an inverse dependence on 
nanotube diameter (Figure 2.5 B, left) [274]. The Raman is also capable of identifying 
the nanotube electronic nature through analysis of the nanotube G-band, found near 
1600 cm'1 (Figure 2.5 B, right). A typical spectrum of a SWNT sample is presented in 
Figure 2.5 A. The main features can be identified as: a) the low-frequency mode (< 
200 cm'1), RBM; b) strong feature at around 1340 cm'1, so called D line, assigned to 
disorder graphitic material; c) G band in the approximate range 1550-1600 cm'1. In 
graphite the G band exhibits a single peak at 1582 cm"1 related to the tangential mode 
vibrations of the C atoms, d) A line at around 2600 cm'1, the second order harmonic of 
the D mode, it is labelled as 2D (or G’).

The frequency of the radial breathing mode, varies inversely with diameter, d, at 
least for small tubes [273]

curbm -  o- Id

Equation 1.

where a is a factor that depends on the nature of the sample. This has been 
confirmed in a number of experimental studies [125]. For CNTs with diameters larger 
than 2 nm, the character of the electronic states becomes essentially independent of 
the tube diameter, and therefore approximates to that of the graphene sheet. It has 
also been established that corbm is dependent on the (/?, m) chiral indices of a tube 
[275].

- 5 7 -
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Figure 2.5: Raman characterisation of CNTs. Raman spectrum of SWNT (A) and atomic 

displacements associated with the RBM and G-band normal mode vibrations (B) (adapted 

from et al. [276]).

In addition to the RBM line, the G band can also be used to determine the nanotube 

diameter. However, this is only true for SWNT, where the G band is composed of two 

features, one at 1590 cm'1 labelled G+ and the other at about 1570 cm'1 named G*. 

Dresselhaus et al. demonstrated that on individual SWNTs the frequency of the G+ 

band is essential independent of diameter, but the G- band depends on the diameter 

[277-279]. It has also been shown that this band can be used to distinguish between 

metallic and semiconducting SWNTs, through differences in their Raman line-shapes. 

Furthermore, information about the structure and electronic properties can be 

obtained by analysing the second order bands in the spectrum, D and 2D (G’) bands, 

although these are usually much weaker that the first order features [280].

- 5 8 -
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2.6 Tissue ceil culture

Tissue cel! culture refers to maintenance of viable single cells (cell culture) or 

functional unit of cells (organ culture) outside their normal multicellular organism of 

origin. The cells may be removed from the tissue directly and disaggregated by 

enzymatic or mechanical means before culture, or they may be derived from a cell 

line or cell strain that has already been established.

There are three main types of cultures: a primary culture, which refers to the stage of 

the culture after the cells are isolated from the tissue and proliferated under the 

appropriate conditions until they occupy all of the available substrate (i.e., reach 70 to 

80 % confluence). At this stage, the cells have to be subcultured (i.e., passage) by 

transferring them to a new vessel with fresh growth medium to provide more room for 

continued growth. After the first subculture, the primary culture becomes known as a 

cell line or subclone. A large component of cell lines derived from primary cultures 

have a limited life span (i.e., they are finite; see below), and as they are passaged, 

cells with the highest growth capacity predominate, resulting in a degree of genotypic 

and phenotypic uniformity in the population. If a subpopulation of a cell fine is 

positively selected from the culture by cloning or some other method, this cell line 

becomes a cell strain. A ceil strain often acquires additional genetic changes 

subsequent to the initiation of the parent line. In the work presented different ceil lines 

were utilized but also work involved derivations of a ceil strain expressing green 

fluorescent proteins (GFP) (see chapter 6). For the present work mainly two cell lines 

were used as cellular model system: human prostate adenocarcinoma cells (PC3) 

(ECACC, Porton Down, Salisbury, UK) and human cervical carcinoma cells (HeLa) 

(ATCC, supplied by Promechem, Teddington, UK). However, human colon 

adenocarcinoma (SW948 and WiDr) and human prostate cancer (DU 145) (from 

ATCC, supplied by Promechem, Teddington, UK), were also used for controls and 

comparison (Chapter 6). SW948 and WiDr are adherent cells from human colon with 

colorectal adenocarcinoma. The SW948 are from a stage Dukes' type C, grade 3 (81- 

year-old, female, Caucasian), while WiDR is derivative of HT-29 ceil line. PC3 and 

DU145 are also adherent cells from a prostate carcinoma. PC3 was established from 

a grade 4, prostatic adenocarcinoma from a 62-year-old male Caucasian, while 

DU 145 derives from a metastatic brain (69-year-old male Caucasian).
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Cell culture is one of the major tools used in cellular and molecular biology, providing 

excellent model systems for studying the normal physiology and biochemistry of cells 

(e.g., metabolic studies, aging), the effects of drugs and toxic compounds on the 

cells, and mutagenesis and carcinogenesis. It is also used in drug screening and 

development, and large scale manufacturing of biological compounds (e.g., vaccines, 

therapeutic proteins). The major advantage of using cell culture for any of these 

applications is the consistency and reproducibility of results that can be obtained from 

using a batch of clonal cells.

Regardless the ultimate goal of the work, the cell type or the cells to be cultured, the 

methodology in tissue culture is the same: to maintain viable functional cells outside 

of their normal, in vivo environment. In the environment of origin the cell was 

protected from external pathogens, it had a regular supply of nutrients and oxygen, its 

metabolic by-products, potentially toxic at high concentrations, were removed at 

regular intervals. If it were part of a mammal, its environment also included a constant 

temperature.

The most elegant cell culture systems and experiments will not be worth much if the 

cells are contaminated with microorganisms. Culture work requires that all reagents 

and equipment in contact with the ceils to be sterile. To maintain sterility, aseptic 

techniques are used at all times (i.e., autoclave, radiation and filtration).

2.6.1 Maintaining cell cultures

Adherent, such as HeLa and PC3, cultures should be passaged when they are in the 

log phase, before they reach confluence reach 70 to 80 % confluence). Normal cells 

stop growing when they reach high confluence (contact inhibition), and it takes them 

longer to recover when reseeded. Therefore, passaging cells according to a strict 

schedule ensures reproducible behaviour and allows monitoring their health status.

Many continuous mammalian cell lines can be maintained on a relatively simple 

medium such as minimum essential medium (MEM) supplemented with serum, as 

described for HeLa cells. However, when a specialized function is expressed, a more 

complex medium may be required. Information for selecting the appropriate medium 

for a given cell type is usually available in published literature, and may also be 

obtained from the source of the cells or cell banks. For example, PC3 cells it is
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recommended to use (RPMI) medium supplemented with serum and glutamine.

2.6.2 Freezing and thawing ceils

Cell lines in continuous culture are prone to genetic drift, finite cell lines are fated for 

senescence, all cell cultures are susceptible to microbial contamination, and even the 

best-run laboratories can experience equipment failure. Because an established cell 

line is a valuable resource and its replacement is expensive and time consuming, it is 

vitally important that they are frozen down and preserved for long-term storage. As 

soon as extra cells becomes available from subculturing, they should be frozen as a 

seed stock, protected, and not be made available for general laboratory use. Working 

stocks can be prepared and replenished from frozen seed stocks. If the seed stocks 

become depleted, cryopreserved working stocks can then serve as a source for 

preparing a fresh seed stock with a minimum increase in generation number from the 

initial freezing.

The best method for cryopreserving cultured cells is storing them in liquid nitrogen in 

complete medium in the presence of a cryoprotective agent such as dimethylsulfoxide 

(DMSO). Cryoprotective agents reduce the freezing point of the medium and also 

allow a slower cooling rate, greatly reducing the risk of ice crystal formation, which 

can damage cells and cause cell death.

The thawing procedure is stressful to frozen cells, and using good technique and 

working quickly ensures that a high proportion of the cells survive the procedure. As 

with other cell culture procedures, therefore It is recommend thawing frozen ceils 

rapidly (less than 1 minute) at 37 °C water bath.

2.6.3 Counting cells in an haemocytometer

A haemocytometer is a graduated counting chamber that can be viewed under a 

microscope to determine the concentration of cells in a suspension. There are a 

number of manufactures of these types of chambers and some have a slight variation
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in style. Herein, the “Neubauer” type chamber was used. The chamber is made of 

ground glass with a central area that is defined by a set of grooves that form an “H” 

shape, in order to determine the concentration of ceils in a suspension, count the 

ceils in the large, central gridded square, corresponding to 1 mm2 (multiplying by 104 

gives an estimation of the number of cells per mL). The haemocytometer can be 

used for determining cell viability using trypan blue. Cell viability is calculated as the 

number of viable cells divided by the total number of cells within the grids on the 

haemocytometer. If cells take up trypan blue, they are considered as non-viable.

2.6.4 Transfection of mammalian cells

The reason, for introducing DNA into mammalian cells is to analyse gene expression. 

There are several techniques to introduce DNA into mammalian cells, such as: 

calcium phosphate transfection, Diethylaminoethyl-dextran (DEAE-dextran) 

transfection, electroporation, liposome-mediated transfection and nanoparticles. The 

first two procedures produce a chemical environment that results in DNA attaching to 

the cell surface; the DNA is then endocytosed.

Electroporation uses an electric field to open up pores in the cell. The DNA 

presumably diffuses into the cell through the pores. This technique therefore is not 

dependent upon special characteristics of the cell and can be used with virtually any 

cell type. The optimal amplitude and length of pulse will vary for each cell type.

In liposome-mediated transfection, negatively charged phosphate groups on DNA 

bind the positively charged surface of the liposome, and the residual positive charge 

then presumably mediates binding to negatively charged sialic acid residues on the 

cell surfaces, with consequent internalisation by endocytosis [281].

Nanoparticles have been recently introduced as new transfection methodologies. 

Herein CNTs are used to study their feasibility as delivery agents for genetic material, 

such as plasmid DNA and small interfering RNA (siRNA) (Chapter 5 and 6).
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2.6.5 Plasmid DNA transformation, screening and selection

Plasmids are circular, double-stranded DNA (dsDNA) molecules that are separated 

from a cell’s chromosomal DNA. These extrachromosomal DNAs, which occur 

naturally in bacteria, yeast, and some higher eukaryotic ceils, exist in a parasitic or 

symbiotic relationship with their host cell. Many naturally occurring plasmids contain 

genes that provide some benefit to the host cell, for example, some bacterial 

plasmids encode enzymes that inactivate antibiotics.

Plasmids can be engineered to be used as cloning vectors, basically they need to 

contain: a replication origin, a drug-resistance gene, and a region in which exogenous 

DNA fragments can be inserted. In the particular case of the study presented here the 

plasmid DNA (pAcGFP-N1) is already engineered, containing an early promoter 

(CMV) and a SV40 origin of replication in mammalian cells; a multi-cloning site 

(MCS); a selection marker for bacteria -  the kanamycin gene and a selection marker 

for mammalian cells -  geneticin (G148). Furthermore the plasmid hoids a gene of 

interest -  the GFP gene.

Plasmid DNA is generally transformed into E.coli that results in an alteration of a cell 

caused by the uptake and expression of foreign DNA. The uptake of plasmids by 

E.coli is stimulated by a high concentration of calcium chloride (CaCi2). Even in the 

presence of CaCI2, transformation occurs with quite low frequency, and only a few 

cells are transformed by incorporation of a single plasmid molecule. Cells that are not 

transformed die on selective media, containing antibiotics. Once incorporated into a 

host cell, a plasmid DNA can replicate independently of the host-cell chromosome. 

As a transformed cell multiplies into a colony, at least one plasmid segregates to each 

daughter cell.

Further investigation of the resulting colonies must be required to confirm that cloning 

was successful. This may be accomplished by means of PCR, restriction fragment 

analysis and/or DNA sequencing.

Restriction enzymes are bacterial enzymes that recognise specific 4- to 8-bp 

sequences, called restriction sites, and then cleave both DNA strands at this site. 

After digestion with restriction enzymes the isolated DNA fragments can be separated 

and analysed by gel electrophoresis. Before transfection into mammalian cells 

plasmid DNA should be purified for ultra-pure, transfection grade plasmid DNA. This 

can be achieved using commercial kits, such as Qiagen purification kits (See chapter 

5).
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2.7 Western blotting

A particular protein can be detected in a complex mixture by combining a resolving 

gel electrophoresis, specific antibodies and sensitive enzymatic assays. The 

technique is named Western blotting or immunoblotting, and consists of this three- 

step procedure that is commonly used to separate proteins and then identify a 

specific protein of interest. As shown in figure 2.6, two different antibodies are used in 

this method, one specific for the desired protein and the other linked to a reporter 

enzyme for amplification of the signal for final visual detection of protein expression.

2.8 Flow cytometry

A flow cytometer can identify different populations of ceils by measuring the light they 

scatter, or the fluorescence they emit, as they flow through a laser beam; thus it can 

sort out cells of a particular type from a mixture, in fact, a fluorescence-activated cell 

sorter (FACS), is an instrument based on flow cytometry and can select one cell from 

thousands of other cells (Figure 2.7). For example, as it will be demonstrated in 

chapter 6 GFP expressing cells will be separated from other cells when they fluoresce 

in the FACS. Once sorted from the other cells, the selected cell can be grown in 

culture.

Another use of flow cytometry includes the measurement of a cell’s DNA and RNA 

content and the determination of its general shape and size. The FACS can make 

simultaneous measurements of the size of a cell (from the amount of scattered light) 

and the amount of DNA it contains (from the amount of fluorescence from a DNA- 

binding dye). As an example, apoptosis can be evaluated using a flow cytometer, 

which is possible by applying a Annexin V-FITC apoptosis detection kit as described 

in chapter 7.
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Figure 2.6: Western blotting or immunoblotting. (A) A protein mixture is electrophoresed 

through an SDS gel, and then transferred from the gel onto a membrane. (B) The membrane 

is flooded with a solution of antibody (Ab1) specific for the desired protein. Only the band 

containing this protein binds the antibody, forming a layer of antibody molecules (although 

their position can’t be seen at this point). After sufficient time for binding, the membrane is 

washed to remove unbound Ab1. (C) In the development step, the membrane first is 

incubated with a second antibody (Ab2) that binds to the bound Ab1. This second antibody is 

covalently linked to alkaline phosphatase. In the final step, the substrate is added and will 

luminesce when exposed to the reporter on the secondary antibody. The light is then 

detected by a photographic film (adapted from Lodish et al. [31]).

- 6 5 -
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Figure 2.7: Fluorescence-activated cell sorter (FACS). A concentrated suspension of 

cells is allowed to react with a fluorescent antibody or a dye that binds to a particle or a 

molecule such as DNA. The suspension is then mixed with a buffer, the cells are passed 

single-file through a laser light beam, and the fluorescent light emitted by each cell is 

measured. The light scattered by each cell can be measured at the same time as the 

fluorescence; from measurements of the scattered light, the size and shape of the cell can 

be determined. The suspension is then forced through a nozzle, which forms tiny droplets 

containing at most a single cell. At the time of formation, each droplet is given an electric 

charge proportional to the amount of fluorescence of Its cell. Droplets with no charge and 

with no different electric charges (due to different amounts of bound dye) are each separated 

by electric field and collected. It takes only milliseconds to sort each droplet, so up to 10 

million cells per hour can pass through the machine. By this means, cells that have desired 

properties can be separated and then grown (adapted from Lodish et al. [31]).

- 6 6 -
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3.1 Introduction

An important characteristic of CNTs is their ability to cross cell membranes [115, 126]. 

The uptake of CNTs has been previously described to occur via two major pathways. 

One method describes nanotubes as “nanoneedles” that have the capability to 

penetrate cell membranes [126], in contrast the second method refers to an active 

uptake via clathrin mediated endocytosis [115]. As controversy the mechanism of 

uptake of CNTs persists, the final fate of nanotubes has been largely open to 

speculation. The previously described “nanoneedle” CNTs internalisation, has been 

proposed to lead to perinuclear accumulation with no effect on ceil viability [145]. 

Conversely, CNTs wrapped with biomolecules, such as DNA, have been shown to be 

subjected to exocytosis by NIH-3T3 fibroblast cells in a study carried out by Jin et al. 
[142].

Previously, the most commonly used technique to visualise the uptake of CNTs 

focused on visualising internalisation facilitated via the covalent linking of a visible- 

wavelength fluorophores [115, 126, 128, 131, 145, 282]. However, as discussed 

above it is important to consider certain particular parameters (section 1.3.1) such as 

the chemical linkages must resisting enzymatic cleavage (due to activity in cytosolic 

compartments), and also the chemical processing of nanoparticles may dramatically 

changing their ultimate biological fate. As an alternative to the linking of fluorophores, 

it is possible to use the unique NIR intrinsic fluorescence associated with CNTs. The 

latter property is considered as being advantageous for use in biological systems 

since there are minimal background signals associated with autofluorescence from 

cells, tissues, and other biological molecules in this spectral range, as this property 

has largely been shown to be confined to the visible spectral range [117]. Raman 

spectroscopy is a multi-purpose, rapid (~1 min per spectrum) non-destructive 

technique that operates at normal ambient (room temperature) (-300 K) and pressure 

conditions, and uses readily available Raman characterisation instrumentation. [135] 

Due to the electronic structure and diameter of CNTs, strong resonance-enhanced 

Raman bands are produced at 150-300 cm'1, 1590-1600 cm'1, and ~2600 cm'1 away
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from the excitation wavelength [136]. The first of these, referred to as the radial 

breathing mode (RBMs), is caused by uniaxial vibrations and depend linearly on the 

nanotube diameter. The RBM is then followed by the disorder-induced D-band, the 

tangential mode (or G band), which is caused by stretching along the C-C bonds of 

graphene [136-138]; and finally the 2D or G’ band, a two-phonon mode [136].

Besides the fate of CNTs, the major challenge of using them in biological systems is 

assessing whether CNTs are inherently cytotoxic [200, 283-288], At the present, there 

are roughly as many publications reporting no apparent cytotoxicity [117, 121, 126, 

127, 131, 139, 146, 177, 200-210], as there are reporting varying degrees of 

significant loss of cellular viability associated with CNTs [150, 213, 285, 289-297]. 

Two major considerations in this area are how the CNTs are presented and another is 

their purity and concentration. For example, pulmonary toxicity of SWNTs has been 

established when large doses of dry, unpurified SWNTs have been blown into lungs of 

rats [149, 150, 298]. This method of presentation is not relevant to the small 

measured doses of CNTs that would be used as chemotherapy and drug delivery 

systems. In fact, the biodistribution of chemically modified SWNTs injected into mice 

or rabbits, was studied recently, and the CNTs were reported to be rapidly excreted 

with no evidence of toxicity [146, 160, 161]. The purity of CNT preparation is a crucial 

consideration their use as bio-nano agents. Many methods of CNT synthesis use 

metal catalysts that are known to be toxic. Such impurities, and other carbonaceous 

impurities, must be removed from the samples in order to reach safe conclusions 

regarding the inherent toxicity of CNTs. At the present the data is unclear in relation to 

which factors contribute to the various reported toxicological profiles of CNTs.

As stated, in our experiments we use DWNT, which were oxidised and therefore 

shorter, rendering them less toxic. Our CNT system possesses carboxylic groups at 

their sidewalls, which allows further fuctionalisation suitable for biomedical 

applications. This could be in the form of a triple functionalisation of SWNTs with an 

anti-cancer agents and fluorescent markers [185], The benefit of using DWNT is that 

apart from creating defects at the outer wall that allow better funtionalisation, the 

physical and mechanical properties of CNTs are maintained by the inner wall.

Herein, we propose to study cellular uptake and release of DWNTs by Raman 

spectroscopy using single cell mapping and spectroscopy analysis of whole cell 

lysates incubated with RNA-wrapped oxidised DWNTs (oxDWNT-RNA), and evaluate 

their toxicity by examining cells for any sign of cellular stress response to CNTs 

uptake.
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3.2 Experimental section

In this section, a detailed description of the methodology employed is presented. First 

CNTs were prepared in order to be biocompatible and to allow further attachment of 

different molecules such as RNA. Secondly, Raman was used to evaluate uptake and 

release of the complexes, changes in the cellular biochemistry and concentration of 

internalised CNTs. Finally cellular stress response was assessed for cells exposed 

and not exposed to CNTs.

3.2.1 Preparation of biofunctional CNTs

DWNTs synthesised by the CCVD technique [247] were purified in concentrated nitric 

acid and oxidised in a mixture of nitric and sulphuric acid (detailed information in 

general methods) [185]. After oxidation, nanotubes were sterilised by autoclaving at 

121 °C for 1-hour and were maintained under sterile conditions for the duration of the 

experiment. In a second step, the oxidised DWNTs were coated with RNA in a 

proportion of 1:1 (w/w) [261]. Complexes were formed by sonication in a water bath 

for 60-minutes. To remove excess of RNA, the suspension of oxDWNT-RNA was 

filtered using a 100 kDa filter devices (Amicon Ultra-4 centrifugal filter devices from 

Millipore, UK) and then resuspended in deionised water. The concentration of the 

complexes was determined by the total weight after oxidation. The final supernatant 

was analysed by AFM and TEM.

3.2.2 Raman mapping of single cells

PC-3 and HeLa in culture were used as cellular model systems for the present study. 

PC-3 cells were cultured in RPMI-1640 medium, supplemented with 10 % (v/v) fetal 

bovine serum (FBS), 2mM Giutamax™ and 1 % (v/v) penicillin-streptomycin (all 

obtained from Invitrogen, Paisley, UK). HeLa cells were cultured in MEM medium, 

supplemented with 10 % (v/v) FBS, 1 % (v/v) non-essential amino acids and 1 % (v/v) 

penicillin-streptomycin (all obtained from Invitrogen, Paisley, UK). Cells were cultured 

in 35 mm sterile petri dishes (Nunc, Thermo scientific) containing glass coverslips.
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Assessment of the uptake of CNTs, was performed at different time points ranging 

from 0.5 to 24-hours. 3-hours after the incubation with oxDWNT-RNA (concentration 

of 30 pg/mL) diluted in Opti-MEM serum-free culture medium, the cells were washed 

twice with ice cold, sterile PBS and fresh medium containing serum and antibiotics 

was added. At the end of each time point (0, 0.5, 3, 6, 9, 12, 18 and 24-hours) the 

medium was removed and the cells washed several times with PBS, as before. Cells 

were subsequently fixed with 4% paraformaldehyde solution (Sigma Aldrich, Poole, 

UK) to prevent morphological and chemical changes during acquisition. Finally, the 

samples were again washed with PBS and slides mounted and hermetically sealed 

using nail lacquer. Raman mapping was performed using a Renishaw InVia Raman 

microscope, E/aser=1.59 eV (785 nm wavelength). RBMs were used to map the 

intensity of oxDWNT-RNA in cells, where the RBMs peaks acquired were at 156, 205, 

230 and 266 cm’1. Applying the equation <oRBM = 248/dt, where coRBm is the RBM 

frequency in cm-1 and dt the diameter in nm [275], it was possible to extrapolate the 

diameters present in the mixture. The diameters in the sample ranged from: 0.9 nm to

1.1 nm, 1.2 nm and 1.58 nm, with 0.9 nm and 1.58 nm being the most abundant. 

Thus, the diameter of 0.9 nm was used for all data analysis.

3.2.3 Raman spectroscopy of whole cell lysates

PC-3 and HeLa cells were grown in medium as described above and cultured in 25 

cm2 tissue culture flasks until 80 % confluence was reached. At this point, they were 

incubated for various times ranging from 0.5 to 24-hours with oxDWNT-RNA at a 

concentration of ~30 pg/mL diluted in serum-free Opti-MEM medium. After 3-hours 

incubation, the remaining samples were washed twice with PBS and then with fresh 

medium containing serum and antibiotics. At each time point, the medium was 

removed from the cells, followed by several washes with PBS. The ceiis were 

subsequently trypsinized, washed with ice cold PBS and ruptured via hypotonic shock 

using a lysis buffer (Tris buffer containing 50 mM Tris HCI and 150 mM NaCI at pH 7.5 

and additionally 1 % NP-40, 0.2 % SDS, 1 mM phenylmethanesulfonyl fluoride 

(PMSF), 10 pg/mL aprotinin, 10 pg/mL leupeptin, 1 mM sodium orthovanadate 

(NasVdO as cellular protease inhibitors). After lysing, suspensions were spun down 

(10 min, at 500 g, 4 °C) (Eppendorf 5415R, Hamburg, Germany) to remove nuclei and 

unbroken ceils and supernatants were used to evaluate CNT content. For Raman
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measurements, a droplet of cell lysate (4 pL) was allowed to dry on a glass slide. 

Spectra of samples were recorded using the EiaSer=2.64 eV (473 nm wavelength) of an 

NT-MDT NTEGRA Spectra Probe NanoLaboratory inverted configuration microscope.

3.2.4 Protein quantification and SD S polyacrylamide gel 
electrophoresis

Protein quantification was performed according to instructions in the manual of the DC 

(detergent compatible) protein assay (Bio-Rad Laboratories, UK). A standard curve 

was prepared with BSA concentrations from 0.2-1.5 mg/mL (detailed information in 

the general methods). Protein/sample from cell lysates were electrophoresed on SDS- 

polyacrylamide gel (Novex, invitrogen, Paisley, UK), with subsequent coomassie 

staining for 2-hours.

3.2.5 Concentration of DWNTs per cell

G band intensity (section 3.2.3) was use to detect the concentration of CNTs inside 

cells. A calibration curve was determined by measuring the G band intensity for 

different concentrations of RNA-wrapped oxidised DWNTs (93.50; 46.75; 23.37;

11.69; 5.84 and 2.92 pg/mL). The concentration of the previously prepared RNA- 

wrapped oxidised DWNTs dispersion was determined by weighing the mass of filtrate 

in pre-weighted polycarbonate filters (Millipore, UK), followed by serial dilutions. A 

logarithmic fit was used to determine the equation that permits one to calculate the 

concentration in the whole cell lysates. Finally, an estimation of cell volume of 

5.75x10"9 pL [299] was used to determine the concentration of DWNTs per cell.

3.2.6 Western blotting

Whole-cell lysates were obtained by trypsinizing the monolayer of adherent cells and 

washing with PBS at 4°C. Cell pellets were then subjected to osmotic rupture in 

hypotonic detergent-based buffer (1 mM PMSF, 1 mM NaV04, 2 pg/mL aprotinin, and 

2 pg/mL leupeptin as protease inhibitors, 150 mM NaCI in 50 mM Tris buffer, 0.2% 

SDS, 1% Nonidet P-40, pH 7.5) and 50 pg of protein/sample were then
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electrophoresed on SDS-polyacrylamide gel electrophoresis (Novex, invitrogen, 
Paisley, UK) with subsequent transfer blotting. Membranes were incubated overnight 
at 4°C with primary antibodies to MAPK, or phospho-MAPK (Cell signalling 
technology®, UK). After washing, membranes were incubated with a secondary 
horseradish peroxidase-linked appropriate species antibody preparation at room 
temperature (± 21) for 1-hour with chemiluminescence used for visualisation. After the 
probing of each membrane with the primary antibody of choice, the membrane was 
stripped and re-probed using a GAPDH antibody (Sigma Aldrich, Poole, UK) to act as 
a loading control.

3.3 Results and discussion

Efforts to develop CNTs as nano-vehicles for precise and controlled drug and gene 
delivery, as well as markers for in vivo biomedical imaging, are currently hampered by 
uncertainties with regard to their uptake, their fate in the body and their safety [115, 
128, 142, 145, 160, 198, 205]. All those processes are likely to be affected by the 
purity of CNT preparation, as well as size and concentration of CNT used, parameters 
often poorly controlled in biological experiments [134, 198]. For instance, a 
concentration limit of 30 pg/ml was employed in our studies, since in a study by 
Becker et al [134] concentrations above 25 pg/ml cause a decrease in cell viability. 
Herein, we demonstrate that under standard transfection methodologies DWNT are 
taken up by cultured cells but are then release after 24-hours with no discernable 
stress response.

3.3.1 Characterisation of DWNT

The successful preparation of RNA-purified CNTs has been already demonstrated in 
our group [261] and permits suitable dispersions of CNTs for potential medical 
applications. Similarly to what has been described for DNA [124, 132, 134, 144], RNA 
coating gives rise to high dispersion rates [300]. For these studies not only were the 
CNTs non-covalently wrapped using RNA, but they were also oxidised. Oxidation 
processes generate shorter CNTs, an aspect which is specially important when 
considering their potential biomedical applications since it has recently been
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described that longer CNTs are asbestos-like in their toxicology profile in contrast the 
shorter length CNTs are significantly less toxic [198].
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Figure 3.1: Structural characterisation of double walled CNTs (DWNT) by AFM (A), 

TEM (B) and Raman spectroscopy (C and D). (A) and (B) Surface analysis of RNA- 
wrapped oxidised DWNTs (oxDW NT-RNA) by AFM and TEM, respectively. Image shows 
that wrapping of CNTs is not complete, by AFM it is possible to visualise parts of the CNT  
not covered by the RNA. In addition, oxDW NTs-RNA were found to range between 200 nm 
and 2 pm in length. (C) and (D) Raman spectrum of pristine and oxDW NT-RNA at different 
laser energies: 473 and 785 nm. Intense bands can be seen at 120-350 cm'1 for the radial 
breathing modes (RBM); at -1 5 9 0  cm'1 for the tangential G-band; at -1 3 5 0  cm'1 for the



Chapter 3: Uptake and release of CNTs in mammalian cells

disorder-induced D band, and at -2 9 0 0  cm"1 for its second-order harmonic, the G ’ band 
[136].

Recently, direct and label-free mapping of CNTs inside living cells has been 
demonstrated using the intrinsic NIR [117, 124, 301] and Raman scattering [124]. 
Figure 3.1 C and 3.1 D represents the Raman spectra of pristine and oxidised-wrapped 
with RNA double walled CNTs (DWNT and oxDWNT-RNA, respectively) in two 
different laser energies: 473 and 785 nm, respectively. As displayed, Raman 
spectroscopy of CNTs present intense bands at 120-350 cm"1 for the RBM; at -1590 
cm"1 for the tangential G-band; at -1350 cm"1 for the disorder-induced D band, and at 
-2900 cm“1 for its second-order harmonic, the 2D or G’ band. The different laser 
energies present the same structure for oxDWNT-RNA and the pristine sample, 
indicating that the resulting Raman spectrum is originated from the same nanotubes. 
Additionally, TEM and AFM demonstrate that oxidised samples wrapped with RNA 
(Figure 3.1 A and 3.1 B) were more de-bundled and individualised, with length ranging 
from 200 nm to 2 pm.

3.3.2 Cellular uptake and release of DWNT by Raman spectroscopy

Detection of CNTs inside ceils is not trivial as (in their pure form) they consist of only 
carbon atoms linked by covalent C=C double bonds and thus are not easily 
discernable from biological materials by standard spectroscopic methods. Their small 
size and low contrast also makes them difficult to distinguish from cellular structures 
by microscopy techniques. Direct and label-free mapping of CNTs inside living cells 
has recently been demonstrated using the characteristic intrinsic NIR fluorescence 
[117, 124, 301] and Raman scattering [124] of CNTs. However, a marked decrease in 
intensity of CNT intrinsic fluorescence has been observed [124] following protracted 
periods (8 days) in culture; in contrast the Raman signal is stable over the same time 
period. The aim of this study was to further investigate cellular uptake and fate of 
DWNTs.
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3.3.2.1 RBM mapping of single cells

The RBM is a unique phonon mode, appearing only in CNTs and its observation in the 
Raman spectrum provides direct evidence that a sample contains single or double 
walled CNTs. It depends linearly on the nanotube diameter and each nanotube wall in 
a sample will have different RBM spectra. The same distribution of RBMs with peaks 
at 156, 205, 230 and 266 cm'1 were detected in pristine DWNTs, DWNTs inside PC3 
cells (human prostate adenocarcinoma cells) and extracellular DWNTs, indicating that 
there was no selectivity of DWNTs by the cellular system (Figure 3.2A). Applying the 
equation co RBM = 248/dt, where coRBm  is the RBM frequency in cm'1 and dt the diameter 
in nm [275], it is possible to extrapolate the diameters present in the mixture. The 
diameters in the sample ranged from: 0.9 nm to 1.1 nm, 1.2 nm and 1.58 nm, where 
the diameters 0.9 nm and 1.58 nm dominate. This unique property allows the 
identification of structural features of DWNTs and for that reason can be used to 
accurately identify their distribution inside cells.

PC-3 cells, were used to evaluate the temporal uptake of CNTs by means of Raman 
mapping of RBMs. Cells were exposed to nanotubes for a period of 3-hour and further 
incubated for 24-hour. Before data acquisition, a grid was defined on a single cell, and 
then mapping obtained by collecting spectra with 1-minutes exposure time and 
moving the sample with increments of 1 p,m (spectral resolution of 4 cm'1). To analyse 
the data an intensity o f-260 cm"1 was used, corresponding to the 0.9 nm diameter, as 
that was the most recurrent peak in the sample collection.
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Figure 3.2: Single cell mapping of PC3 and HeLa cells exposed to DWNTs. RBMs were 
used to track DWNTs in cells. As displayed, a uniform distribution of diameters is obtained in 
all different conditions: pristine nanotubes, oxidised DW NT wrapped with RNA, and the same 
oxDW NT-RNA in cell medium and inside cells (A). A grid was defined on a single cell, and a 
map obtained by collecting spectra with 1 min exposure time and moving the sample with 
increments of 1 pm (spectral resolution of 4 cm'1). Data analysis was performed at ~260 cm'1 
as illustrated by RBM spectra and the 3D map (B). (C and D) 2D mapping at various time 
points from 0.5 to 24-hours in PC3 (C) and HeLa (D). The broken line in the different figures 
from 0.5 to 24-hours crudely represents the boundaries of the cell and demonstrates that a 
high intensity is confined to the cell, an effect not observed for media alone. Different scales 
are exhibited at different time points demonstranting a reduction in the signal with time.

- 76-
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Figures 3.2C and 3.2D illustrates the distribution of those nanotubes inside PC3 and 
HeLa cells at different time points, from 0.5 to 24-hours, it exhibits different levels of 
intensity at the different time points, starting with high intensity after 0.5-hours, which 
gradually loses intensity after 9-hours of incubation. The broken line in the different 
figures from 0.5 to 24-hours crudely represents the boundaries of the cell and 
demonstrates that high intensity is confined to the cell an effect not observed for 
media alone. Additionally at 0.5-hours, an interesting feature was detected whereby 
the intensity associated with CNTs was well confined as dots. This is suggestive of 
nanotubes residing inside subcellular structures, possibly endosomes. Between 3 and 
9-hours the intensity is lower but more spread throughout the cell indicating that CNTs 
have been released from their initial site of sequestration. After 12-hours the intensity 
drops, until finally at 24-hours no intensity for RBM mode at 260 cm'1 could be 
measured (merely a residual signal which can be related with an increase in the 
signal/ noise ratio).

3.3.2.2 Cell viability and percentage of carbon nanotube intake in 
mammalian cells

An estimation of the percentage of cells containing CNTs is presented in Table 3.1, 
which indicates the number of cells with CNT specific Raman peaks. The maximum 
percentage of cells with nanotubes was obtained at 3-hours, with 50 % of the cells 
giving rise to a Raman signal. The proportion of ceils containing CNTs decreased 
roughly 3-fold at 12-hours and 5-fold at 24-hours. Finally, viable cells were counted 
over time, demonstrating that no significant cell death occurred during incubation with 
CNTs complexes described herein (Table 3.1).
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Table 3.1: Cell viability after exposure to CNTs. Cell count and percentage of cells 
containing to CNTs over 24-hour.

Time points 

(hours)
Cell count 
(cell/mL)

Proportion of cells 

containing CNTs (%)

0 8.25 x104 0.00
0.5 7.25 x104 20.00
3 8.58 x104 50.00
6 8.50 x104 37.50
9 7.42 x104 22.00
12 8.25 x104 16.67
24 11.58 x104 11.00

3.3.2.3 G band intensity on whole cell lysates

In another approach PC3 and HeLa cells exposed to CNTs were disrupted and the 
cellular content was used to evaluate the time dependent uptake. By disrupting the 
cells only the cytoplasm is considered, excluding CNTs associated with the plasma 
membrane and nucleus. Our findings therefore possible eliminate the possibility that 
CNTs might merely be associated with the cell surface and not represent an 
experiment artifact. Furthermore, one could consider that reduction of the Raman 
signal observed over the 24-hour time-course in individual cells (Figure 3.2) could be 
due to diffusion of discrete concentrations of DWNTs (for instance, from endosomes) 
throughout the entire volume of the cell; or by loss of DWNTs by the cell. Though, by 
lysing the cells, CNTs were measured in the same volume for all samples throughout 
the time-course. Our results focus essentially on the 700cm'1 to 3000 cm'1 region of 
the spectra, giving a full picture of the behaviour of the different Raman bands 
observed. Figure 3.3 displays the Raman spectra for PC3 cells exposed to DWNTs at 
the various time points. The CNT-characteristic G, D and 2D (G’) Raman bands were 
detected. Additionally, four other peaks were visualised at -1090, -1450, -1660 and 
-2900 cm"1, which previous studies [302-304] have associated with cellular 
constituents.

- 7 8 -
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Figure 3.3: Temporal evaluation of CNT uptake by PC3 prostate cancer whole cell 

lysates. Raman spectrum at different time points obtained after exposure to oxidised, 
oxDW NT-RNA. CNT features are visualised at 1350, 1590 and 2700 cm'1 with D, G and G' 
bands and cellular constituents at 1090, 1450, 1660 and 2900 cm'1. Spectra are normalized 
such that in each data set 100% represents the sum of all values in the data set.

The CNT-specific G band at 1590 cm'1, is derived from the symmetry breaking of the 
tangential vibration when the graphene sheet is rolled to make a cylindrically shaped 
tube. For SWNTs the G band produces a multi-peak, which permits differentiation 
between metallic and semiconducting nanotubes. This multi-peak feature is not 
observable for DWNTs and MWNTs due to the large tube diameters. The G band 
corresponds to the LO phonon breathing modes of CNTs that is characteristic of all 
sp2 carbon materials [305] and is therefore a useful tool to quantify DWNTs.

Figure 3.4 illustrates the variation of the area of G peak over time, in both PC3 and 
HeLa cells. Revealing a maximal intensity at 3-hours (statistically significant p<0.0001, 
one-way ANOVA) and a minimum at 24-hours (p > 0.05, one-way ANOVA), which 
corresponds to the times for maximum uptake and release measured in individual 
cells (Figure 3.2 and Table 3.1). The observed reduction of Raman signal in cell 
lysates indicates that the DWNTs are being lost from the cell, rather than merely 
diffusing through the cells. In addition, to investigate the effect of proteins and 
biomolecules on the G band intensity over time, cell lysates were incubated with 
known concentrations of DWNTs. In Figure 3.5 no significant alterations for the G
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band are visualised suggesting that proteins and biomolecules do not alter the peak 
intensity.

Time (hours)

Figure 3.4: G band intensity in PC3 and HeLa cells exposed to CNTs. (A) Area under the 
curve (AUC) of G band intensity at the various time points. (*** indicates p < 0.0001 and * p < 

0.05 relative to point 0-hours, one-way A N O VA ). Demonstrating uptake with maximum at 3- 
hour and subsequent release. Results presented as Mean±SEM (n=6).

Concentration pg/mL Time (hours)

Figure 3.5: Effects of proteins and biomolecules on the G band intensity over time. (A)
G band intensity of cell lysates incubated with different concentrations of DW NTs (p value 
non significant for data set (p > 0.4 relative to point 0-hours, one-way A N O VA ). (B) G band 
intensity of different time point lysates, incubated with 5 ¡.ig/mL of DW NTs (p > 0.2 relative to 
point 0-hours, one-way A N N O V A ). Results presented as Mean±SEM (n=6).

- 8 0 -
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3.3.2.4 Concentration of C N T s  per cell

The G band intensity was calibrated by reference to quantify samples of pure RNA- 
wrapped oxidised DWNTs and used to provide an estimate of CNT concentration 
within the cell iysates, Figure 3.6.

Concentration (jig/mL)

Figure 3.6: G band Calibration curve. Correlation between G band intensity and CNT  
concentrations (p,g/mL).

To determine the concentration of CNTs in whole ceil lysates and also on a per cell 
basis, the relation between G band and concentration was used. Using the G band 
intensity at each time point and an approximate cell volume of 5.75x 10'9{.il_, the 
concentration of DWNTs inside cells was estimated in pg per cell, Table 3.2. Taking 
the maximum intensity, 3-hours, and given that the initial concentration of CNTs in the 
media was 30 ¡.ig/mL, approximately 20 % of the initial dose was internalised by cells 
(5.85 ¡.ig/mL). This maximum with 33.63x 10'6 pg per cell was then gradually released 
over a period of 24-hour (due to a decrease in the noise to aspect ratio the 24-hour 
time point was excluded from the data set).



Chapter 3: Uptake and release of CNTs in mammalian cells

Table 3.2: Concentration of CNTs in cells. Correlation between G band intensity and 
concentration of CNTs was used to determine the concentration of internalised CNTs per cell 
(Cell volume = 5.75x1 O'9 jxL [299]).

Time 
points (h)

G band area 
peak (a.u.)

Concentration per 
lysate (pg/mL)

Concentration per 
cell (pg/cell)

0.5 1.11 0.55 3.1X10-6
3 9.324 5.85 33.6x1 O'6
6 6.255 4.23 24.3x1 O'6
9 1.891 1.25 7.2x1 O'6
12 1.414 0.83 4.8x1 O'6
18 0.8723 0.31 1.8x1 O'6

3.3.2.5 Defects/degradation of D W N T  walls.

An additional finding was obtained from the ratio of the intensity of the D band 
intensity by the intensity of G band (Id/Ig)- The D band has been related with the 
defects intensity in a sample, for example during the process of oxidation (see Figure 
3.1, after oxidation peak is more intense). While G band has been related to vibration 
along the C-C bonds. Therefore, the ratio of lD/lG can be used to monitor the integrity 
of DWNTs [305]. This ratio is plotted in Figure 3.7A, where it was apparent that the 
intensity of the D band increases roughly linearly relative to the G band with 
increasing incubation periods suggesting that more defects were added to the 
nanotubes. As shown only lD/lG ratio after 3-hour was considered, as this was the 
point where cells were washed to remove extracellular DWNTs. Due to a increase in 
the signal/ noise ratio at 24-hour time point was excluded from the data set. These 
results suggest that the nanotubes are being modified or degraded during their 
incubation inside cells. However, the D peak is relatively weak and therefore difficult 
to quantify. So, to investigate this phenomenon further the RBM obtained from single 
cell mapping was analysed. First, only diameters of 0.9 and 1.58 nm were considered, 
as those were acquired in larger numbers. Besides, the diameters of 1.1 and 1.2 nm 
are believed to be part of a population of single walled or even inner walls of larger 
nanotubes. DWNT used in these experiments have been fully characterised [247] and
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Chapter 3: Uptake and release of CNTs in mammalian cells

it was shown that 20 % of the nanotubes are single walled. In addition, as shown by 
TEM (section 2.2), the pristine DWNT contain nanotubes with larger diameters. 
However, Raman cannot acquire the diameter of these nanotubes as they are away 
from Raman spectral resolution. Secondly, we propose that the 1.58 nm diameter 
consists on the outer wall of a 0.9 nm inner wall (Figure 3.7B). This assumption 
accurately matches the interlayer spacing of CNTs, which is 0.344 nm [306J. For the 
different diameters, a sample collection of 10 spectra were taken into account. The 
percentage of distribution of the diameters over time is displayed in Figure 3.7C and 
3.7D. For the diameter of 1.58 nm the distribution linearly decreases, suggesting that 
fewer nanotubes with 1.58 nm diameter were found in cells after 6-hours when 
compared with the initial time point. Contrasting with this, the 0.9 diameter distribution 
shows uniformity until 12-hours and only decreases after this point, which couid be 
associated with possible disintegration of the outer wall after the 6-hour time point but 
the preservation of the inner wall up to 12-hours. The subsequent sharp decrease in 
the inner wail signal at 24-hours couid be due to loss of nanotubes from the ceil or 
defects accumulating in the inner tube. However, even at this time-point the peak 
corresponding to the outer wall is still apparent in 30 % of samples so we consider it is 
more likely that the tubes are being lost from the cell at this time-point. Additionally, in 

vitro studies by Allen et al. 2008 [307] found significant degradation of SWNTs but 
only after 12-weeks incubation at 4 °C with low concentrations of H20 2 and 
peroxidase. Also, Liu et ai. 2010 [308] incubated SWNTs with a chemical mixture 
simulating the phagolysosomal compartment and found that only oxidised but not 
pristine SWNT were significantly degraded after 90-days. Together, these results 
suggest that besides the defects on the DWNTs during 24-hour incubation, the DWNT 
are probably being lost from the cells, rather than being entirely degraded.
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Figure 3.7: Increase in defects on DWNT walls. A) Raman D/G intensity ratio for CNTs in 
PC3 ceils at different time points from 6 to 18-hours (3-hour was the point where absorption 
finished and from then on only excretion occurred. Due to the increase in the signal-to-noise 
ratio at 24-hours, this time point was excluded from the data set). Error bars were calculated 
using the standard mean error (n=6). B) Conformation of a DW NT (matching interiayer 
spacing of CNTs of 0.344 nm). C) 1.58 nm diameter distribution over time inside cells. D) 0.9 
nm diameter distribution over time inside cells (lines in C and D represent the trend 
visualised for diameter distribution of the different nanotube walls).

3.3.3 Cell b iochem istry analysis by Raman over a 24-hour time frame 
on cells exposed to  DWNTs and controls

Raman spectroscopy has been previously used as a biological tool to assay and study 
cells and present several advantages when compared with conventional methods. It is 
fast; non-invasive and no labels are required, and no damage is induced to the cell if 
suitable laser wavelength and intensities are used [303, 309]. During the analysis of 
Raman spectra of cell lysates other peaks could be perceived which were not related 
to CNTs (Figure 3.3). Bands were essentially detected at: -1090 cm'1; 1450 cm'1; 
1660 cm'1; and 2900 cm"1. In the literature, these bands are related to cellular 
constituents such as DNA/RNA, proteins and lipids [302-304]. For instance, the band
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at 1090 is the most closely related to the process of cell death; this peak corresponds 
to DNA O-P-O backbone stretching. If a decrease of the intensity of the peak occurs 
then this indicates that breaks of phophodiester bonds are taking place leading to 
disintegration of the nucleic acids [310].

Figure 3.8 shows a spectrum that illustrates the behaviour of the different cellular 
component bands on PC3 cells exposed to CNTs and the PC3 controls overtime. As 
demonstrated, no significant variation is visualised for the DNA O-P-O backbone 
stretching (at 1090 cm'1). Moreover, similarly behaviour was perceived at -1660 cm-1; 
this peak corresponds to amide l vibrations in proteins and C=C in lipids according to 
the work of Puppies et al. [309]. In addition protein and lipid concentrations are 
indirectly revealed by spectra profiles of C-H stretch vibration bands in the interval 
from 2800 to 3100 cm'1. Symmetric and antisymmetric CH3 stretch vibrations are 
located near 2930 and 2950 cm'1, respectively. Similar CH deformation bands have 
been shown to occur in lipids near 1440 cm'1 and proteins near 1450 cm'1 [304]. Once 
more, no significant changes were detected with the exception of a slight increase for 
-2900 cm'1. This increase was observed for both cells exposed to CNTs and in 
controls and as demonstrated by both cell count and protein quantification can be 
correlated with normal cell proliferation. Additionally, overall protein levels were 
monitored by gel electrophoresis, which confirmed that no significant changes in 
protein levels occurred during the incubation (Figure 3.9). Together, these results 
indicate that the uptake of DWNTs did not induce any detectable biochemical 
alterations in the cell.
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Figure 3.8: Temporal evaluation of cellular constituents on PC3 prostate cancer whole 

cell lysates. Intensity of Raman bands associated cellular components, such as DNA/RNA, 
proteins and lipids, cell count and total protein over time on cells exposed to CNTs and 
controls. Spectra are normalized such that in each data set 100% represents the sum of all 
values in the data set. Results presented as Mean±SEM (n=6).
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Figure 3.9: Protein electrophoresis gel of PC3 cell lysates treated (+) and untreated (-) 

with CNTs. No gross changes in the protein pattern were observed throughout experiment, 
from 0 to 24-hour.

3.3.4 Evaluation of stress response over 24-hour time frame on cells 
exposed to DWNT and controls

As previously stated, cell viability w as unchanged during the course of the  experim ent, 

indicating no direct effect of D W N T s  on cell mortality. H ow ever, w e  also exam ined  

cells for any sign of cellu lar stress response to D W N T  uptake. Initially two m arkers, 

com m only em ployed to m easu re  levels of cellular stress, w ere  considered, p53 and  

m itogen-activated protein kinase (M A P  kinase). p53 is a tum our suppressor gene and  

its protein is hardly detectab le  [311]. H ow ever, on cellular stress, particularly induced 

by D N A  d am age , p53 can arrest cell cycle progression, thus allow ing D N A  to be 

repaired [312], which can lead to apoptosis [313]. In cancer cell lines that possess a 

m utant p53 allele, the protein is no longer able to control cell proliferation, which  

results in inefficient D N A  repair and the em erg en ce  of genetically unstable cells [314 - 

S I 7]. P C 3  prostate cancer cell line possess m utated p53 [318], as  suggested by 

w estern blot data  (F igure 3 .1 0 ) w hereby a lack of induction (i.e. in crease) is apparent 

from the flat response in p53 protein levels, for both C N T -expo sed  cells and untreated  

controls.
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Cells recognise and respond to extracellu lar stimuli by engaging specific intracellular 

pathw ays, such as the signaling cascade that leads to activation of m itogen-activated  

protein kinases (M A P K s) [319]. P art of the M A P K  family, are  the extracellu lar-s ignal- 

related kinase 1 (Erk 1, 4 4  kD a protein - p 44) and 2 (Erk 2, 4 2  kD a protein - p 42) and 

their activation requires phosphorylation by upstream  kinases. In Figure 6 both 

phosphorylated (E rk 1 /2 ) and non-phosphorylated (Erk 2 ) form s w e re  detected. No  

change in the expression levels of native protein for Erk p44 /p 42  w as perceived. In 

contrast the phosphorylated activated form w as only observable in the positive control 

sam ple and with negligible am ounts seen for P C 3  cells exposed to C N T s  over a 24h  

period.

a
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(E rk1/2)
GAPDH

44 kDa 

< - 4 2  kDa

37 kDa

44 kDa 
42 kDa

< -  37 kDa

ErK ♦
12-hours 18-hours 24-hours

Figure 3.10: Stress response of PC3 cells exposed to DWNTs (+). p53 (A), MAPK (Erk 2) 
and phosphorylated MAPK (Erk 1/2) (B) expression on cells exposed to CNTs. Negative 
control without CNTs (-) was also considered.
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3.4 Conclusions

The application of CNTs for biomedical purposes, including drug and gene delivery 
has been intensively study in the recent years. The key aspect, however, is to 
understand their interaction with cells. Controversy has arisen as to how CNTs are 
taken up by cells, their final fate and especially their safety. For any study, it is 
extremely important to consider the purity of CNT preparation, their size and 
concentration. The results presented in this chapter show evidence that the prepared 
biofunctional DWNT (by oxidation and RNA-wrapping) can be taken up in vitro and 
subsequently released by cells over a 24-hour time period. The fate of CNT visualised 
in our studies is certainly dependent on the modification of CNTs and methodology, 
RNA-wrapping and incubation conditions, 3-hour exposure to DWNT and consequent 
release over a 24-hour time course. Jin et al. 2008 reported the first evidence for 
exocytosis of CNTs by using single particle tracking (SPT). In their report it was 
demonstrated that the rate of exocytosis closely matches the rate for endocytosis 
[142]. The time frame of this study was shorter then the one presented here, cells 
where exposed to DNA wrapped single-walled CNTs for approximately 16-minutes 
after which media was perfused for a period of approximately 2-hours. In addition, 
that particularly study reported aggregation of SWNT that remained internalised 
through the duration of the experiment [142].

Although these results can be correlated with previous studies, in the work presented 
here it was demonstrated that nearly all CNTs were eventually released from the cells. 
This was shown with both studies of individual ceils, but also with lysates from cell 
populations. Furthermore, strong evidence was presented of non-toxicity at a cellular 
level from both Raman analysis of DNA/RNA; proteins; and lipids; and activation of 
stress responses by immunobloting. There was no evidence of any detectable effect 
following the DWNT uptake and release.

A novel feature of these studies was that changes in Id /1g  ratios and RBM modes were 
observed during the course of incubation of cells with DWNTs. The source of these 
changes is currently uncertain, but suggests that the outer walls of DWNTs are being 
modified during their passage through the cells.

in conclusion, our results demonstrate that DWNTs prepared appropriately and 
administered in reasonable quantities are non-toxic for human cells and potentially 
suitable for medical applications.
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4.1 Introduction

The mechanisms that control the cellular uptake of CNTs are currently poorly 
understood. So far, besides the demonstration of the ability of CNTs to enter and 
penetrate cell membranes [126, 128, 131], the uptake mechanism is still debated and 
may concern more than one process. Hence, Kam et al. and Jin et al. reported that 
protein or single-stranded oligonucleotide-modified CNTs could enter cells by means 
of endocytosis [115]. In contrast, Kostarelos et al. suggested an energy-independent 
non-endocytic mechanism involving the insertion and diffusion of CNTs through 
different cellular barriers [128].

Endocytosis is a frequent cellular event that transfers extracellular or membrane- 
bound cargoes, such as nutrients, from the plasma membrane into the cell interior via 
vesicular transport. In this process, endocytic vesicles form invaginations of the 
plasma membrane that subsequently pinch off, move internally, and fuse with other 
endocytic vesicles to form an early endosomai compartment (Figure 4.1). The 
endocytic process may involve so-called clathrin coated pits (I.e. be clathrin- 
dependent). Clathrin forms a complex network in the form of a lattice that is built up to 
form a coat. Alternatively, there may be clathrin-independent endocytic processes 
involved in cellular trafficking. The early endosome is the major sorting station in the 
endocytic pathway. From this organelle, material can be directed toward the pathway 
of recycling to the plasma membrane, to subsequent endocytic compartments and to 
regulated secretory vesicles [320]. The example of transferrin, a monomeric iron 
transporting serum glycoprotein is processed in the late-endosome, after which the 
transferrin receptors are recycled by a recycling endosome [318]. The recycling 
endosome is typically less acidic (pH 6.4-6.5) than the sorting endosome (pH 6.0) and 
exhibits a pericentriolar localisation [321]. Late endosomes contain active degradative 
enzymes. However, these are more concentrated in the lysosomes. The transfer of 
material between late endosomes and lysosomes appears to be a direct fusion event 
that results in a transient hybrid organelle [320].
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As illustrated in Figure 4.1 each of these steps is independently regulated by the  

interaction of multiple proteins. Am ong the proteins present are  several small G T P -  

binding proteins of the R ab  fam ily. T h ese  proteins have been particularly exam ined  

b ecause of their effectiveness as m olecular m arkers for various types of endosom es. 

R ab5, an exam p le  of such G T P a s e , regulates the rate of C lathrin -dependent 

endocytosis at the plasm a m em brane [322] and can be used as a m arker for early  

sorting endosom es in addition or in conjunction with the transferrin receptor. Rab11  

localises to a pericentriolar subpopulation of recycling endosom es [323]. It is pertinent 

to point out that the process of endocytosis is a com plex process that has yet to be  

com pletely defined despite the significant progress in understanding its various  

com ponents.

Figure 4.1: Mechanism of endocytosis. After internalisation by endocytosis, the cargo can 
undertake different routes post-sorting in the early endosome (EE). It can be recycled back 
to the plasma membrane either directly or via a perinuclear recycling endosome (RE) 
compartment, or transported to late endosomes (LE) and lysosomes. The biosynthetic and 
endocytic circuits (arrows) exchange material at the level of the Golgi apparatus and the 
endosomal elements. The localisation of selected mammalian Rab proteins in the membrane 
compartments participating in these transport are indicated. (ER, endoplasmic reticulum; 
TGN, trans-golgi network; CV, constitutive secretory vesicles; RV, regulated secretory 
vesicles) (adapted from Stanmark et al. [324],

-91 -
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Identification of the mode by which CNTs move between cellular compartments after 
their internalisation, and the sites in which they localise has been thus far mainly 
accomplished by simple staining of lysosomes by pH-dependent markers (e.g. 
Lysotracker red) [132, 142] by TEM [127, 142, 324], or by pharmacological inhibition 
of the endocytic pathway [128, 132]. For example, Kam et a!, first described an 
energy dependent mechanism. In their studies clathrin mediated endocytosis was 
proven by experiments carried out at inhibitory conditions (Chapter 1, section 1.3.1). 
Using TEM, Yehia et al. 2007 observed that SWNTs dispersed in media were 
endocytised and localised in the plasma membrane, cytoplasm, endosome, lysosome 
and golgi bodies [140]. Similar methodology was used by Mu et al. 2009, who 
proposed a working model for cell uptake of MWNTs modified by carboxilatlon or 
amidation, using TEM imaging [325]. In their model CNTs were not only internalised 
via endocytic pathways but also through membrane penetration, depending on the 
CNT bundles or highly dispersed single CNTs, respectively. After internalisation, 
through endocytosis or membrane penetration, CNTs were both found in lysosomes 
followed by excretion. However, no data was presented on the mechanism of 
exocytosis [325]. Jin et al. 2009 presented the first evidence of exocytosis of CNTs, 
which was found to closely match the endocytic rate [142].

In contrast to the endocytic pathway, Lacerda et al. reported for the first time that 
membrane penetrating CNTs (SWNTs modified via cycloaddition) can lead to their 
accumulation in the perinuclear region of mammalian cells. Besides, another study 
performed by Zhou et al. in 2010, also showed an endocytosis-independent 
mechanism for non-covalently modified SWNTs [326]. In their studies, incubations at 
4 °C and with NaN3 were carried out, which did not prevent CNTs from being 
internalised. In addition, HeLa cells were transfected with plasmids encoding fusion 
proteins, such as DsRed-golgi (to label goigi apparatus), DsRed-ER (to label ER), 
and CFP-lamp (to label lysosome). MitoTracker marker was also employed for 
staining of mitochondria. Their results show that functionalised SWNTs co-localise 
exclusively in mitochondria of both tumour and normal cells, but CNTs were also 
found in lysosomes of macrophages due to phagocytosis [326].

Besides the great effort to elucidate the uptake mechanism of CNTs and their 
intracellular localisation, an appreciation of global intracellular trafficking is yet 
missing. Herein, we attempt to complete this study using organelle specific markers to 
describe and to identify the mechanisms through which CNTs transport itself as they 
enter and eventually effluxes from cultured human prostate cancer cells.
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4.2 Experimental section

In the experimental section a description of the methodology is presented. Firstly, the 
labelling of CNTs with a fluorophore is introduced that permits the visualisation of 
these complexes inside cells. Secondly, different immunofluorescent methods were 
applied to identify cellular structures involved in endocytic pathways. Consequently, 
the co-localisation or overlapping of these colours, observed by confocai microscopy, 
of both stainings (CNT-fluorophore and stained cellular compartment) determines the 
intracellular localisation of CNTs.

4.2.1 Preparation of fluorescently labelled oxidised DWNTs

DWNTs synthesised by the CCVD technique [247] were purified in concentrated nitric 
acid and oxidised in a mixture of nitric and sulphuric acid (detailed information is 
given Methods -  Chapter 2) [185]. After oxidation, nanotubes were sterilized by 
autoclaving at 121 °C for 1-hour and were maintained under sterile conditions for the 
duration of the experiment, in a second step, the oxidised DWNTs (oxDWNT) were 
coated with fluorescently labelled molecules: RNA and Poly(Lys:Phe) as described 
bellow.

4.2.1.1 RNA-fluorescein wrapped oxidised DWNT

Coating of oxDWNT with RNA was achieved using ready-made fluorescently labelled 
RNA (Eurofins -  MWG Operon), with the oligonucleotide sequence (5’) 
CAUUCCGAGUGUCCACAUUCCGAGUGUCCA-FLU (3’) (RNA-FS). Synthesis 
reports oligonucleotide with molecular weight of 10052 g/mol, Tm of 69.5 C, GC- 
content of 53.3 % and purification by High-Performance Liquid Chromatography 
(HPLC). A solution of 1.0 mg/mL (prepared in sterile water) was diluted 1 to 5 in a 
solution of oxDWNT at a concentration of 200 p.g/mL (Ratio CNT/RNA 1:1). After that, 
the complexes were allowed to form by stirring for 2-hours at room temperature (± 21
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°C), in the dark. To remove the unbound RNA-FS, the solution was filtered and 
washed several times using 100 kDa centrifugal filters (Millipore). Finally the RNA- 
Fluorescein wrapped oxidised DWNT (oxDWNT-RNA-FS) were resuspended in 
sterile water to a final concentration of 200 ng/mL.

4.2.1.2 PoIy(Lys:Phe)-Fluorescein wrapped oxidised DWNT

To prepare fluorescently labelled Poly(Lys:Phe), a solution of NHS-Fluorescein (0.2 
mg/mL) was diluted 1:4 in a solution of Poly(LysPhe) (0.2 mg/mL), prepared in 
carbonate buffer 20 mM, pH 8.5 (ail sterilised by filtration). Followed by incubation for 
2-hours in the dark, at room temperature, while stirring. Next, the complexes were 
conjugated with oxidised DWNT (final concentration 500 jig/mL) and once more 
incubated for 2-hours in darkness at room temperature (± 21 °C), while stirring. The 
unreacted fluorescein and Poly(Lys:Phe) was filtered and washed several times using 
100 kDa centrifugal filters (Millipore). Finally the Poly(Lys:Phe)-Fluorescein wrapped 
oxidised DWNT (oxDWNT-RNA-FS) were resuspended in sterile water to a final 
concentration of 200 }xg/mL.

4.2.2 Cellular incubation with CNTs-complexes

PC3 cells were cultured in RPMI-1640 medium supplemented with 10 % FBS, 2mM 
Glutamax™ and 1 % penicillin-streptomycin (all obtained from Invitrogen, Paisley, 
UK). Cells were cultured in 24-well (13 mm-well) sterile plates (Nunc, Thermo 
Scientific) containing glass coverslips (VWR) for 24-hours so they were 50 % 
confluent at the time of exposure to CNT-complexes.
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4.2.2.1 Incubation with inhibitory drugs

For adenosine triphosphate (ATP) depletion studies, a PBS buffer solution, 
supplemented with 10 mM sodium azide (NaN3) and 50 mM D-glucose was diluted 1 
to 2 in complete RPMI media and incubated with cells for 2-hours at 37 °C, followed 
by incubation in a solution of CNT-complexes. For inhibitory conditions with Ly294002 
(phosphoinositide 3-kinase inhibitor) and 3-methyladenine (inhibitor of autophagic 
sequestration), cells were incubated overnight with 10 pM of drug before adding the 
CNT-complexes.

4.2.2.2 Incubation with CNT-complexes

PC3 cells growing in 24-weli plates were incubated with 30 |xg/mL CNT-complexes 
diluted in complete RPMI media. After incubation for 2-hours, cells were washed twice 
with sterile PBS (Invitrogen, Paisley, UK) and fresh media containing FBS was added 
for 5- and 20-minutes. Cells were again washed with sterile PBS and treated for 10- 
minutes with cellscrub (Genlantis, San Diego, USA) washing buffer, to remove all 
extracellular CNT-complexes. Finally, cells were washed twice more with sterile PBS.

4.2.3 Cell fixation

To prevent morphological changes, cells were fixed with 4 % (w/v) paraformaldehyde 
(Sigma Aldrich, Poole, UK) solution in PBS, for 1-hour at room temperature. Then 
cells were washed once more with sterile PBS and treated with 0.1 % Triton X100 
(Sigma Aldrich, Poole, UK) in PBS, to allow permeabilisation of cell membranes.
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4.2.4 Compartment staining (using phalloidin, ToProS, lysotracker red 
& transferrin)

Cell membranes associated actin filaments were stained using phallotoxins (Alexa 
fluor 555 phalloidin -  emission 565 nm) with a final concentration of 0.044 ¡iM. 
Transferrin conjugates (Alexa Fluor® 546 - emission 573 nm) at a concentration of 20 
[xg/mL were applied to stain endosomes from clathrin-dependent endocytosis, and 
acidic ceil compartments (lysosomes) were stained using LysoTracker® Red DND-99 
(emission 590 nm) at a final concentration of 1 p,M. All agents were diluted from 
freshly made stock solutions in 0.5 % bovine serum albumin (BSA) in sterile PBS and 
given to cells after fixation, for a period of 15-minutes. Then cells were washed 3- 
times with PBS and finally, To-Pro®-3 (emission 661 nm), monomeric cyanine nucleic 
acid stain was applied in order to visualise the ceil nucleus in all samples. It was 
employed at a final step with a concentration of 0.1 ¡.iM in PBS (all reagents from 
Invitrogen- Molecular Probes Corp).

4.2.5 Immunostaining

Subsequent to cell fixation and permeabilisation, cells were incubated for 90-minutes 
with primary antibodies (Santa Cruz Biotechnology, Inc; supplied by insight 
biotechnology; Harrow, UK) diluted in PBS containing 0.5 % BSA, as described in 
Table 4.1. Cells were then washed three times with PBS and incubated for 1-hour 
with fluorescent secondary antibody (Aiexa fluor® 546 from Invitrogen) diluted 1:100 in 
0.5 % BSA in PBS, followed by three, 5-minutes washes in PBS. After 
immunostaining cells were also stained with To-Pro®-3 as described (above), followed 
by mounting on glass slides.
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Table 4.1: Immunostaining. Primary antibodies employed and respective secondary 
antibodies

Primary antibody Dilution factor for 
primary antibody

Secondary antibody

Clathrin HC (H-300): sc-9069 1:100 Anti-Rabbit

Caveolin-1 (N20): sc-894 1:200 Anti-Rabbit

Early endosome antigen (EEA1) (C15): sc-6414 1:500 Anti-Goat

Lysosome-associated membrane proteins (Lamp 2) 
(H4B4): sc-18822 1:2000 Anti-Mouse

Ras-related superfamily - Rab 4/14 (FL-213): sc28569 1:200 Anti-Rabbit

Ras-related superfamily - Rab 11 (H87): sc-9020 1:80 Anti-Rabbit

4.2.6 Mounting glass-slides and microscopy

Following the final step for all samples, in which nucleic acids are stained with To- 
Pro®-3, coverslips were removed from the 24-well plate using fine forceps and were 
then held vertically against tissue to remove excess liquid. A small drop of 
Vectashield fluid (Vector Laboratories, UK) was placed in a glass slide and the 
coverslip, cells facing down and was positioned on top of the Vectashield drop. After 
removing the excess liquid, coverslips were sealed using a standard commercial nail 
lacquer and allowed to dry.

Images were captured using 63 x lenses of using a Zeiss LSM 510 inverted confocal 
microscope and analysed using LSM 510 META software (Zeiss).



Chapter 4: Intracellular localisation of CNTs

4.3 Results and Discussion

In the previous chapter, cellular uptake and release of CNTs was demonstrated by 
Raman microscopy. In addition, to the importance of the fate of CNTs, it is also 
imperative to understand their intracellular route via trafficking and subcellular 
localisation during their transit through ceils. Hence, in this chapter we present a 
detailed study using confocal microscopy in combination with organelie-specific 
markers to examine the intracellular distribution of CNTs. In addition, pathway 
inhibitory drugs were employed to identify major processes through which CNTs 
traffic as they enter and eventually efflux from cells. For this purpose, two coating 
approaches were considered. For both approaches, DWNTs were previously 
oxidised, however in the first method RNA was used to wrap DWNT, whereas in the 
second approach oxidised DWNT were wrapped with a polypeptide -  Poiy(Lys:Phe). 
As demonstrated in chapter 3, RNA-coated CNTs is a successful method to visualise 
CNT inside cells. However, the method does not permit further attachment of 
functional molecules, i.e. fluorescent moeties. On the other hand, Poly(Lys:Phe) is a 
polypeptide that contains several free amino groups, which by wrapping around 
CNTs, Poly(Lys:Phe) gives not only a positive charge but also the possibility of 
covalent attachment of active molecules.

4.3.1 Characterisation of CNT-complexes

CNT-complexes were characterised using microscopic techniques in particular AFM 
and TEM. Coating of oxDWNT with RNA was already demonstrated in chapter 3 and 
it is resumed here in Figure 4.2 A. In addition, wrapping with Poly(Lys:Phe) was also 
applied to allow the binding of molecules, such as fluorescein. In this case, 
fluorescein was used as a cargo however that could be substituted with a different 
molecule (i.e. DNA or siRNA). Figure 4.2 B exhibits the AFM scan over a surface of a 
single carbon nanotube, in which it is possible to see the wrapping with Po!y(Lys:Phe) 
throughout the nanotube. Furthermore, the TEM imaging exhibits an individualised 
CNT with noticeable two wall characteristic of DWNT and once more the wrapping 
with Poiy(Lys:Phe).
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a

Figure 4.2: Characterisation by AFM and TEM of different CNT preparations. RNA- 
wrapped oxidised DW NT (A) and Poly(Lys:Phe)-FS wrapped oxidised DW NT (B) surface 
analysis by AFM and TEM, respectively. Image shows that wrapping of CNTs is not 
complete, by AFM it is possible to visualise parts of the CNT not covered by the RNA or 
polypeptide.

4.3.2 Cellular uptake by Raman

Raman spectroscopy was further used to demonstrate that-PC3 human prostate 
cancer cells internalised the fluorescein-CNT complexes. Figure 4.3 exhibits the G- 
band intensity of a single cell after exposure to RNA-Fluorescein wrapped oxidised 
DWNT (oxDWNT-RNA-FS) Figure 4.4 shows the temporal relationship of uptake of 
Poly(Lys:Phe)-fluorescein wrapped oxidised DWNT (oxDWNT-Poly(Lys:Phe)) in 
whole cell lysates. This data correlates with data presented for RNA-wrapped 
oxidised DWNT (oxDWNT-RNA, Chapter 3) suggesting that the pattern of uptake and
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release is preserved for both wrapping methods. The Raman experiments (to 
demonstrate CNT physical properties) in combination with positive fluorescence by 
microscopy (involving CNT labelling with a fluorophore) demonstrate that CNTs 
localise inside cells, and accompany transport of a cargo, in this particular instance - 
fluorescein.

Figure 4.3: Raman spectra of PC3 cells exposed to oxDWNT-RNA-FS. G-band intensity 
of a single cell after incubation with 30 ng/mL of oxDW NT-RNA-FS for 2-hours. Inset shows 

selected cell and approximate site of Raman acquisition. Data acquired using Renishaw 
InVia Raman microscope, Elaser=1.59 eV (785 nm wavelength).

P C 3  treated w / oxD W N T-P o ly(Lys:P he)-FS

0.5 3 6 9 12

Time (hours)

Figure 4.4: Temporal evaluation of oxDWNT-Poly(Lys:Phe)-FS uptake in PC3 cells.

Area under the curve (AUC) of G band intensity at various time points, demonstrating uptake 
with maximum at 3-hour and consequent release. Results presented as Mean±SEM (n=6).
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4.3.3 Cellular internalisation of CNT-complexes

As previously described internalisation of CNT-complexes was proven by Raman 
spectroscopy. Confocal microscopy was used to demonstrate the internalisation of 
fluorescently labelled CNTs Figure 4.5 reveals that cellular incubation with 30 [xg/mL 
of RNA-wrapped oxidised DWNT labelled with fluorescein (oxDWNT-RNA-FS) 
produced readily detectable fluorescence in the cytoplasm (in green), which is absent 
from the nucleus (nuclear stain only (blue)). After 2-hours exposure to CNT- 
complexes, cells were washed and fresh media was added. One set of cells that 
were incubated for further 5-minutes (Figure 4.5A), while another set was incubated 
for 20-minutes (Figure 4.5B). This different time-incubation gave rise to a substantial 
variability in the intensity of oxDWNT-RNA-FS inside cells. After incubation in parallel 
for 2-hours cells were washed and fresh media was added. Followed by incubation 
for 5 and 20-minutes. Figure 4.5 A, shows that fluorescence after 5-minutes is 
restricted to intracellular compartments (possible endosomes). In contrast after 20- 
minutes the fluorescence is spread throughout the cytoplasm (Figure 4.5 A). This 
evidence was a result of several time point incubations and testing of several 
conditions. In addition, when cells were incubated continuously with CNTs (i.e. media 
containing CNTs was not removed) then fluorescence at cell surface was observed 
(Appendix 3). However, if CNT exposure was halted by supplementation with fresh 
media, then CNTs were more equally spread in the cytoplasm and less attached to 
the membrane (See appendix 3 for more information on experimental optimisation). 
Therefore, 5 and 20-minutes incubations with fresh media, post-exposure to CNTs 
was selected to follow the intracellular localisation of oxDWNT.

To facilitate the visualisation and confirm the internalisation of CNTs in cells, actin 
filaments were stained with Alexa 546 phalloidin (red) and the nucleus with ToPro3 
(blue). As displayed in Figure 4.5, CNT-complexes (green) were in the same plane as 
the nucleus of the cells (blue). In addition, CNTs could be visualised within actin 
filaments of cell membranes. Besides multiple staining, internalisation was also 
evident on z-scan of cells incubated with CNT-complexes and revealed different 
levels of fluorescence intensity observed for different cell slices (Figure 4.6A). As 
mentioned previously, oxidised DWNTs were wrapped with both RNA-FS or 
Poly(Lys:Phe)-FS (Figure 4.6B). In our study, it was found that both coating methods 
reveal the same trend, leading to the same pattern of internalisation and co­
localisation. We therefore, presented our results as CNT-complexes modified via both 
methods: oxidised DWNTs wrapped with RNA-FS and Poly(Lys:Phe)-FS.
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Figure 4.5: Distribution of CNT-complexes in PC3 cells. Cells were incubated with 30 
pg/mL of oxDW NT-RNA-FS for 2-hours. After incubation first panel (A) was washed and 
incubated for 5-minutes with fresh media, in contrast bottom panel (B) was incubated for 20- 
minutes. Both panels were fixed and stained for presence of actin filaments (red) with Alexa 
546 phalloidin and with ToPro3 for nuclei (blue) prior to being imaged for CNT-complexes 
accumulation (green). (A) Fluorescence restricted to intracellular compartments (dots); (B) 
Fluorescence spread in the cytoplasm.
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Figure 4.6: Variation in distribution of CNT-complexes as a function of the Z-stack.

Cells were exposed to 30 pg/mL of CNT-complexes. (A ) o x D W N T -R N A -F S  and (B) 

o xD W N T -P o ly (L ys:P h e )-F S .
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4.3.3.1 Subcellular distribution of CNT-complexes

To determine the cellular compartments in which CNT-complexes localise and traffic, 
organelle-specific antibodies were employed. For these studies, cells were exposed 
to CNT-complexes and then fixed. After fixation to prevent morphological changes, 
cells were incubated with a primary antibody specific to a protein (e.g. clathrin) and 
then a fluorescentiy labelled secondary antibody was employed specific to the source 
of the primary antibody (e.g. rabbit).

As shown in Figure 4.1, the internalisation via the endocytic route involves a cascade 
of intracellular events, with different vesicles and regulators. The observation of CNT- 
complexes in intracellular endosome-like structures (Figure 4.5) led us to believe that 
an endocytic pathway was involved in the internalisation of the complexes. Therefore, 
it was decided to use markers such as clathrin and caveolin involved in the first step 
of endocytosis, invagination of the cell membrane. Clathrin mediated endocytosis is 
characterised by membrane-bounded vesicles inside a coat composed primarily of 
the fibrous protein -  clathrin. In contrast, caveolae, are plasma membrane 
invaginations that are enriched in cholesterol and sphingolipids. In addition, these 
invaginations also accumulate special cholesteroi-binding proteins, termed caveolins, 
on the cytosolic face of vesicles [327-330]. Certain ligands, which are internalised via 
caveolae, are likely to be delivered to a special endosomal compartment referred to 
as a “caveosome" [331]. Caveosomes containing caveolins do not localise transferrin, 
lack EEA1 and other early endosomal markers, have normal pH, and can act as 
sorting stations [327]. Figure 4.7B shows co-localisation of CNT-complexes (green) 
with clathrin (red); whereas CNTs did not co-locaiise with caveolin (Figure 4.7A). 
These results are in agreement with the work reported by Kam et al. [132] who 
proposed a clathrin mediated endocytosis. In their work they demonstrated a clathrin- 
dependent mechanism which was inhibited by low temperature (4 °C); NaN3 (ATP 
depletion); and in sucrose and potassium depleted environments (which lead to 
disruption of formation of clathrin-coated vesicles) [132]. Furthermore, the SWNT- 
compiexes they described (which had been acid functionalised and wrapped with 
BSA and streptavidin or; DNA) were not internalised via caveolae or lipid-rafts 
pathways [132]. As caveoiae-dependent cell entry relies on the presence of 
cholesterol domains, they pre-treated cells with the drugs filipin and nystatin, which 
are known to disrupt the cholesterol distribution within the celi membrane [132].
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Figure 4.7: Co-localisation of CNT-complexes (green) with antibody-specific 

compartmental markers (red) in PC3 cells. Cells exposed to 30 ¡xg/mL of CNT-complexes 
for 2 h. (A) conterstaining of CNTs with caveolin, showing no co-localisation; (B), specific co­
localisation with clathrin-positive vesicles; (C), co-localisation with EEA1 -positive early 
endosomal vesicles; (D), co-localisation of CNT-complexes with Lamp2-positive lysosomes,
(E) conterstaining of CNTs with Rab4, showing no co-localisation; (F), co-localisation of 
CNT-complexes with Rab11-positive recycling endosomes. In yellow (arrows), cell 
compartment positive for both CNT-complexes and organelle markers. Nuclei are stained 
with ToPro3 (blue).
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Generally, newly formed plasma membrane derived endocytic vesicles lose their 
clathrin coat, and fuse with each other or with pre-existing compartments known as 
sorting endosomes [332, 333]. The first endosomal compartment, the sorting or early 
endosome, has a role in sorting the cargo for further transport. The early endosome 
can be identified using an early endosome antigen (EEA1) in combination with a 
fluorescence secondary antibody. Our data show that CNT-compiexes are closely 
associated with this location, as seen via co-localisation studies of CNT-complexes 
(green) with EEA1 (red) (Figure 4.7C).

The drop in the pH (for more acidic environment) within the sorting endosome 
dissociates many ligands from their receptor, allowing the receptors to be recycled 
back to the plasma membrane. As described in section 4.1, small GTPases have 
emerged as central regulators of vesicle budding, motility and fusion (Figure 4.1, 
highlighted in green). One of these proteins is Rab 4, involved in the recycling back to 
the plasma membrane from the early endosome. However, from our results Rab 4 
does not seem to have a function in CNT-complexes traffic through the ceil, as it was 
not visualised via overlapping of staining (Figure 4.7E).

Maturation of sorting endosomes into late endosomes or muitivesicular bodies is 
coincident with a fall in the pH. The endosome becomes incapable in committing to 
further fusion with vesicles from the cell surfaces, or other sorting endosomes [328], 
thus preventing new cargo and receptors from being inadvertently degraded by 
‘joining’ a late endosome as it matures into/fuses with a lysosome [329]. The 
lysosome can be identified using antibodies for lysosome membrane proteins (LMP). 
LMPs reside mainly in the lysosomal limiting membrane and have diverse functions, 
including acidification of the lysosomal lumen, protein import from the cytosol, 
membrane fusion and transport of degradation products to the cytoplasm. The most 
abundant LMPs are the lysosome-associated membrane protein 1 (LAMP1), LAMP2, 
lysosomal integral membrane protein 2 (LIMP2) and the tetraspanin CD63 [330]. As 
demonstrated in Figure 4.7D, a high level of co-localisation was observed with 
LAMP2 (selected for our co-localisation studies), thus indicating that CNT-complexes 
end up in the lysosomes after being endocytised.

The recycling endosome not only allows the recycling of plasma membrane 
components (a branch of the pathway that might need to be avoided in the context of 
drug delivery) but also enables the cel! to traffic molecules back to the trans-golgi 
network (TGN)/Golgi [331]. Again, Rab proteins were found to regulate this
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transport, the Rab 11 GTPase complex. A role for recycling vesicle expressing Rab 
11 cannot be completely ruled out from our results because co-localisation was 
visualised for CNT-complexes and antibodies to Rab11 (Figure 4.7F). The Rab11 
GTPase has been localised in recycling endosomes from the trans-golgi network and 
is required for transport of recycling endosomes back to the plasma membrane. It is 
feasible that CNT-complexes that reach the vesicles from the secretory pathway are 
delivered by Rab11 -positive vesicles. The trans-golgi trafficking could be validated 
using antibodies for golgi97. Golgi97 localises the trans side of the golgi apparatus 
and it is believed to participate in the trafficking of vesicles between the golgi stacks 
and the frans-golgi network [338].

4.3.3.2 Co-localisation of CNT-complexes with endosomal/Lysosomal 
markers

in addition to co-localisation with ciathrin antibody (determined by antibody-staining), 
CNT-complexes also co-localised with transferrin. Transferrin is a monomeric serum 
glycoprotein that binds iron. After its recognition at the cell surface via transferrin 
receptors, transferrin is internalised via clathrin dependent endocytosis. Once inside 
endosomes, the acidic environment favours dissociation of iron from the transferrin. 
Additionally, after sorting in late endosomes the transferrin reach the golgi apparatus 
as is subsequently recycled back to the plasma membrane. The co-localisation of 
CNTs with this protein confirms that they are internalised via clathrin dependent 
endocytosis and that they undergo sorting in late endosomes. In Figure 4.8A, 
fluorescently labelled transferrin (Red - Alexa Fluor 546) co-localises with CNT- 
complexes (green).

Furthermore, fluorescent microscopy can be used as a measure or at least an 
estimate of the pH in endocytic structures in cel! culture models, through a wide range 
of pH-sensitive molecules as free entities, such as Lysotracker dye. This dye is red- 
fluorescent that stains acidic compartments in live cells, in particular lysosomes. 
Thus, Lysotracker can be used together with antibody staining (with LAMP2) to 
confirm the sequestration of CNT-complexes in lysosomes. As demonstrated in 
Figure 4.8 B there is an overlap between Lysotracker (red) and CNT-complexes 
(green), indicating that the CNT-complexes are probably in an acidic compartment.
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Figure 4.8: Co-localisation of CNT-complexes (green) with endosomal/Lysosomal 

markers (red) in PC3 cells. Cells exposed to 30 pg/mL of CNT-complexes for 2-hours. (A) 
co-localisation with transferring-positive endosomes; (B), co-localisation with acidic 
compartment-lysosomes. In yellow (arrows), cell compartment positive for both CNT- 
complexes and organelle markers. Nuclei are stained with ToPro3 (blue). Nuclei are stained 
with ToPro3 (blue).

4.3.3.3 Effect of pathway inhibitory drugs on CNT-complexes 
localisation

A systematic analysis of intracellular transport pathways is readily achieved by 
analysing the effects of inhibiting one or more transport processes. A widely used 
mean for inhibiting transport is to apply a temperature block to cells [332]. Most 
transport processes, including clathrin-dependent internalisation, will be blocked at 4 
°C. Endocytosis is an energy dependent mechanism that is also hindered when 
incubations are carried out at ATP depleted environments, such as incubation with 
sodium azide (NaN3). In our experiments (Figure 4.9 B and C), both incubations at 4 
°C and with NaN3, resulted in inhibition of CNT-complexes uptake in PC3 cells, 
suggesting an energy dependent mechanism for CNT-complexes internalisation.
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Figure 4.9: Effect of inhibitory conditions for endocytic uptake. Cells exposed to 30 
pg/mL of CNT-complexes for 2-hours (A). Effect of incubation at 4 °C on CNT-complexes 

internalisation (B); effect of pre-incubation with sodium azide (NaN3) on CNT-complexes 
internalisation (C); effect of pre-incubation with phosphoinositide 3-kinase inhibitor 
(Ly214002) on CNT-complexes internalisation (D); effect of pre-incubation with 3 
methyadenine on CNT-complexes internalisation (E). Actin filaments (red) stained with Alexa 
546 phalloidin and nucleus (blue) stained with ToPro3.
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Good examples of pharmacological inhibition of traffic include the use of LY-294002, 
which is an inhibitor of PI-3 kinase. Phosphoinositide 3-kinases (Pi-3 kinase) are a 
family of enzymes involved in membrane trafficking as well as other molecular 
processes. Trafficking processes include transiocation to the plasma membrane [340, 
341], endocytosis [342, 343], endosome fusion [333], lysosomal protein sorting [345, 
346] and transcytosis [334].

Another process involving membrane traffic is autophagy. Autophagy is responsible 
for accelerated degradation of cell protein during starvation. The process comprises 
sequestration of cytoplasmic material into large double-membrane vesicles named 
autophagosomes followed by fusion of these vesicles with lysosomes, and 
degradation of the sequestered material [335]. It has been shown that LY294002 at 
concentrations that inhibit PI-3 kinase activity also prevents autophagic sequestration 
[349]. In addition, 3-methyladenine is a specific inhibitor of autophagic sequestration
[336] that also inhibits PI-3 kinase. When LY294002 and 3-methyladenine were 
employed in our study, we observed a blockage of membrane traffic and endosome 
fusion preventing CNT-complexes being internalised by PC3 cells (Figure 4.9 D and 
E). Again, to facilitate the visualisation and confirm lack of CNTs uptake, actin 
filaments were stained with Alexa 546 phalloidin (red) and the nucleus with ToPro3 
(blue), demonstrating that no CNT-complexes were internalised (Figure 4.9).

To summarise the results presented in this chapter Figure 4.10 schematically 
represents the movement of CNT-compiexes during their passage through PC3 celis.

Previous reports, have also found a role for clathrin in CNT endocytosis [132, 140, 
144]. Others describe an energy-independent mechanism [126-128, 326] or a 
combination of the two systems [325]. The results presented here demonstrate an 
endocytic mechanism for uptake of CNT-complexes. However, the type of 
mechanism proposed by Mu et al. in 2009 [325] cannot be completely ruled out by 
our study, since confocal microscopy does not have the resolution to observe single 
nanotubes, instead bundles were visualised. In addition, our study did not consider 
mitochondrial accumulation, which was observed by Zhou et al. 2010 [326]. In their 
study CNTs were found to cross the cell membranes by direct penetration, therefore it 
would be interesting to detect if endocytic internalised CNTs would also localise in 
mitochondria. Nevertheless, our study brings novel findings on the uptake and traffic 
of CNTs in mammalian cells, allowing identifying cellular organelles in which CNTs 
localise. Additionally, exocytosis was once again confirmed, with identification of the 
key organelle responsible for CNTs efflux. For first time recycling endosomes from



Chapter 4: Intracellular localisation of CNTs

the trans-golgi network (Rab11 positive vesicles) were indentified to be responsible 
for CNTs excretion.

Figure 4.10: Proposed CNT-complexes intracellular trafficking. The internalisation of 
CNT-complexes was proved to be an energy dependent mechanism, confirmed by 
incubation at 4 °C and pre-incubation with NaN3 (Figure 4.9 B and C). Additionally incubation 
with PI-3 kinase inhibitors, known to interfere with vesicular trafficking, led to reduced 
internalisation of CNTs (Figure 4.9 D and E). Thus, co-localisation with both Clathrin and 
transferrin provides evidence for Clathrin mediated endocytosis (Figure 4.7 A and Figure 4.8 
A, respectively), after which CNT-complexes undergo sorting in the early endosomes (co­
localisation with EEA1 - Figure 4.7 B). CNT-complexes are sequestrated in the lysosomes, 
which was confirmed by Lamp2 and Lysotracker staining (Figure 4.7 C and Figure 4.8 B, 
respectively). Finally, it seems that CNT-complexes reach the secretory pathway and are 
recycled back to the plasma membrane by Rab11-positive vesicles (Figure 4.7 D).
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4.4 Conclusions

The objectives of these experiments were to elucidate the mechanism of uptake of 
CNTs, as well as to determine the intracellular compartments in which they localise. 
Furthermore, in the previous chapter it was demonstrated that CNTs were lost from 
cells so investigation the mechanisms of CNTs efflux from cultured cells is further 
required.

The cytoskeleton is involved in coordinating the organization and dynamics of 
intracellular architecture, being relevant to understand membrane traffic. Cellular 
membranes stained with phalloidin (Figures 4.5 and 4.9) showed evidence of regular 
cell morphology after exposure to CNTs and inhibitory drugs.

From the results presented here we propose an endocytic route for uptake and 
trafficking of CNT-complexes (functionalised by means of oxidation and wrapping with 
RNA and polypeptides, Figure 4.2). Evidence of their intracellular localisation was 
demonstrated by Raman spectroscopy of cells exposed to CNT-complexes (Figure
4.3 and 4.4) and fluorescence (Figure 4.5 and 4.6). The CNT-complexes were 
endocytosed by capture in clathrin-coated vesicles, revealed by clear co-localisation 
with both clathrin and transferrin (Figure 4.7 A and Figure 4.8 A, respectively).

Molecules entering cells on endocytic pathways will rapidly experience a drop in pH 
from neutral to pH 5.9-6.0 in the lumen of early/recycling vesicles, with further 
reduction from pH 6.0 to 5.0 during progression from late endosomes to lysosomes
[337]. In our studies, CNT-complexes were found in early endosomes, which was 
confirmed by co-localisation with early endosome antigen (EEA) (Figure 4.7 B). CNT- 
complexes were not sorted for recycling back to the cell membrane (via fast recycling 
endosomes), as co-localisation with Rab 4 was not observed. Furthermore, the 
overlapping of CNT-complexes with both LAMP2 antibody and Lysotracker marker 
(Figure 4.7 C and Figure 4.8 B, respectively) indicates that CNT-complexes becomes 
sequestrated in lysosomes. In addition, the results indicate that CNT-complexes were 
also found within vesicles of the secretory pathway, which are delivered by Rab11- 
positive vesicles (Figure 4.7 D). As a result, it appears that intracellular traffic of CNTs 
involves both sequestration in lysosomes and recycling back to the plasma 
membrane via endosomes from the trans-golgi network.
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5.1 Introduction

One of the most important challenges in gene therapy is to correct genetic defects or 
alter/adjust ceiluiar genetic functions. The main goal is to efficiently, specifically and 
safely introduce nucleic acid molecules into cells. Since the unravelling and 
elucidation of the human genome, this provided a major drive to identify human genes 
implicated in diseases and consequent development of DNA-based drugs for 
replacement or potential targets for gene silencing. DNA-based drugs present a 
significant advantage over the currently available low molecular weight drugs; they 
present selective recognition of molecular targets and pathways, which implies 
significant efficiency gains and tremendous specificity. These DNA-based 
therapeutics include plasmids containing transgenes for gene therapy, 
oligonucleotides for antisense and antigen applications, ribozymes, aptamers, and 
small interfering RNAs (siRNAs), as described in the general introduction (section 
1.1.2).

Plasmids are high molecular weight; double stranded DNA constructs containing 
transgenes, which encode specific proteins [338], On a molecular level, plasmid DNA 
(pDNA) molecules can be considered pro-drugs that, after internalisation, utilise the 
DNA transcription and translation apparatus in the cell to biosynthesise the 
therapeutic entity, a protein. Gene therapy involves the use of pDNA to introduce 
transgenes into cells that inherently lack the ability to produce the protein that the 
transgene is programmed to generate. The mechanism of action of pDNA requires 
that plasmid molecules gain access into the nucleus after entering the cytoplasm. The 
entry of plasmid molecules into the nucleus through the nuclear pores is an extremely 
challenging and difficult process [338]. The nuclear access or lack of entry eventually 
controls the efficiency of gene expression [338]. While lack of specific immune 
response favours the use of pDNA complexes, the limited efficacy and short duration 
of transgene expression impose major obstacles in the application of non-virai gene 
delivery techniques. Therefore, a significant advantage of viral DNA vectors is their 
extremely high transfection efficiency in a variety of human tissues. In viral gene
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delivery, the transgene of interest is assembled in the viral genome and the virus 
uses its innate mechanism of infection to enter the cell and release the expression 
cassette. The gene then enters the nucleus, integrates into the host gene pool, and is 
eventually expressed [339].

Despite their high transfection efficiency, there are several concerns over the use of 
viruses to deliver DNA therapeutics in humans. The major concerns are related to 
toxicity of the viruses and their potential to generate a strong immune response due 
to their proteinaceous capsid. In 1999, a death of a patient participating in FDA- 
approved gene therapy clinical trial from respiratory and multiple organ failure, 
attributed to lethal immune response to the adenovirus vector used to deliver the 
gene, led to temporary suspension of all gene therapy trials in the US. Additionally, 
the integration of therapeutic genes into the host genome by the virus takes place in a 
random fashion, resulting in no control over the exact location of insertion of the gene. 
Random gene transfer can generate insertional mutagenesis that may inhibit 
expression of normal cellular genes or activate oncogenes, with dangerous 
consequences.

Gene therapy can also be achieved using siRNA technology. As mentioned in the 
introduction (Section 1.1.1), siRNAs are short double-stranded RNA segments with 
typical 21- to 23-nucleotide bases that are complementary to the mRNA sequence of 
the protein whose transcription is to be silenced/blocked [354-356]. Since RNAs do 
not integrate into the genome, they offer greater safety than plasmid molecules. 
Furthermore, siRNAs do not have to transfer through the nuclear membrane for their 
activity and therefore require less sophisticated delivery systems, promising faster 
development and higher efficiencies compared with plasmid DNA [357].

Successful delivery of siRNA and plasmid DNA into mammalian model organisms has 
been achieved using a variety of methods, including liposomes, cationic lipids, 
polymers and nanoparticles. However, despite the appreciable success of, for 
example, cationic lipids in gene transfer, toxicity is of great concern. Thus, there is an 
ever-growing need to enhance the available tools that can lead to effective and safe 
gene delivery and expression. CNTs have recently been developed as gene delivery 
vectors (more information in section 1.3.4) as a consequence of their ability to 
efficiently enter mammalian cells, as well as their exceptional electronic and 
physicochemical properties.

The objective of this chapter is to study the feasibility of applying CNTs to deliver 
nucleic acids. In order to do so, GFP will be employed as an in vitro model. First, the
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GFP will be delivered by means of plasmid DNA, using a pAcGFP1-N1 vector that is 
a mammalian expression vector that encodes GFP from Aequorea coerulescens. 

Additionally, the vector allows further cloning, which could be used in the future, to 
insert other therapeutic genes, such as p53 (tumour suppressor protein), permitting 
observation and selection of cells expressing both GFP and p53. Moreover, a cell line 
that stabiy expresses GFP was generated using the same GFP expressing vector. 
Finally, silencing of the GFP gene was evaluated to study CNT-mediated siRNA.

5.2 Experimental section

in this section, an itemized description of the methodology for preparation of CNTs for 
gene delivery and targeting is described. Details of DNA purification and preparation 
are presented, as well as CNTs modification and attachment of nucleic acids. Finally, 
methods for measuring and analysing gene expression and knockdown are 
described.

5.2.1 Plasmid DNA -  pAcGFP-C

pAcGFP1-N1 Vector is a mammaiian expression vector that encodes GFP from 
Aequorea coerulescens (Clontech, TaKaRa Bio, USA). The fluorescent protein coding 
sequence in this construct was human-codon-optimized for efficient expression and 
enhanced brightness. AcGFPI protein has an excitation maximum at 475 nm and an 
emission maximum at 505 nm. The multiple cioning site (MCS) in pAcGFP1-N1 is 
between the immediate early promoter of CMV(P CMV IE) and the AcGFPI coding 
sequences. Genes cloned into the MCS wifi be expressed as fusions to the N- 
terminus of AcGFPI if they are in the same reading frame as AcGFPI and no 
intervening stop codons. SV40 polyadenyiation signals downstream of the AcGFPI 
gene direct proper processing of the 3' end of the AcGFPI mRNA. The vector 
backbone also contains an SV40 origin for replication in mammalian cells expressing 
the SV40 T antigen. A neomycin-resistance cassette (Neor), consisting of the SV40 
early promoter, the neomycin/kanamycin resistance gene of Tn5, and polyadenyiation 
signals from the Herpes simplex virus thymidine kinase (HSV TK) gene, allows stably
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transfected eukaryotic cells to be selected using G418. A bacterial promoter upstream 
of the gene expresses kanamycin resistance in E. coli. The pAcGFP1-N1 backbone 
also provides a pUC origin of replication for propagation in E. coli and an f1 origin for 
single-stranded DNA production.
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Figure 5.1: Map and multiple cloning site (MCS) of pAcGFP1-N1 Vector. Unique 
restriction sites and MCS are in bold.

5.2.1.1 Purification of ultrapure supercoild plasmid DNA

Plasmid DNA was purified according to manufacturers instructions (in the manual 
from Qiagen Tip 100 Sample and Assay Technologies, UK). A modified alkaline lysis 
procedure followed by binding of plasmid DNA to Qiagen Anion-Exchange Resin 
under appropriate low-salt and pH conditions. RNA, proteins, dyes, and low- 
molecular-weight impurities were removed by a medium-salt wash. Plasmid DNA was 
eluted in a high-salt buffer and then concentrated and desalted by isopropanol 
precipitation.
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5.2.2 Coating of CNTs for binding of nucleic acids

In this chapter different CNT modifications were tested to deliver nucleic acids to 
mammalian cells. Mainly two wrapping molecules were employed to both modify 
CNTs, Poly(Lys:Phe) (1:1) (Sigma Aldrich, Poole, UK) and PL-PEG-NH2 (Avanti Polar 
Lipids, USA). Both molecules were wrapped around pristine DWNT (DWNT- 
Poly(Lys:Phe and DWNT-PL-PEG-NH2, respectively) and oxidised SWNT and DWNT 
(oxDWNT-Poly(Lys:Phe), oxSWNT-PL-PEG-NH2, oxDWNT-Poly(Lys:Phe, oxDWNT- 
PL-PEG-NH2 respectively) for further binding with negatively charged nucleic acids 
(pDNA and siRNA). In addition, the binding of polypeptide with nucleic acids prior to 
CNT binding (Poly(Lys:Phe)-siRNA-oxDWNT and PL-PEG-NH2-siRNA-oxDWNT, 
respectively) was tested.

5.2.2.1 Wrapping of pristine DWNT

Solution of PL-PEG-NH2 and Poly(Lys:Phe) of 2 mg/mL was prepared in sterile 
sodium bicarbonate buffer (40 mM, pH 9). DWNTs, synthesised by the CCVD 
technique and with mild acid treatment purification as described by Flahaut et al. 

[247], were then mixed with PL-PEG-NH2 and Poly(Lys:Phe): 10 mg of DWNT were 
mixed with 2.5 mL of PL-PEG-NH2 or Poly (Lys:Phe). Tip sonication of the mixture 
was carried out 6-times at intervals of 10 seconds, followed by extensive sonication in 
a water bath for 1 to 2-hours. To remove excess PL-PEG-NH2 and Poly (Lys:Phe), 
the suspension was filtered using a 100 kDa filter device (Amicon Ultra-4 centrifugal 
filter devices from Millipore) and resuspended in sterile water. Subsequently, the 
suspension was centrifuged (90-minutes, at 13500 g, room temperature (± 21 °C)) to 
remove impurities and large nanotube bundles and the supernatant was collected for 
further attachment of nucleic acids (pDNA and siRNA).
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5.2.2.2 Wrapping of oxidised CNT

SWNTs and DWNTs were purified in concentrated nitric acid and oxidised in a 
mixture of nitric and sulphuric acid [185] (Chapter 2, Section 2.3.1). After oxidation, 
nanotubes were sterilised by autoclaving at 121 °C for 1 hour and maintained under 
sterile conditions for the duration of the experiment.

In the same manner as for pristine CNTs, oxidised SWNTs and DWNTs with 
concentration of 100 pg/mL were mixed with 50 pg/mL of PL-PEG-NH2 and Poly 
(Lys:Phe) in sodium bicarbonate buffer, as above), through continuous stirring for 2- 
hour at room temperature. To remove excess of unbound wrapping molecules, the 
solution was filtered using a 100 kDa filter device (Amicon Ultra-4 centrifugal filter 
devices from Millipore). Subsequently, CNT-preparations were resuspended in 
DNase /RNase free water (Sigma Aldrich, Poole, UK) to a final concentration of 100 
pg/mL of CNTs.

In another approach, Poly(Lys:Phe) was conjugated first with nucleic acids (1:1), and 
prepared in a solution of 0.5 mg/mL in sodium bicarbonate buffer (40 mM, pH 9). 
While stirring the polypeptide solution, the nucleic acid solution was slowly added 
according to concentrations described below (Section 5.2.2.3). The reaction was 
allowed to proceed for 2-hours at room temperature (± 21 °C), with continuous 
stirring. Finally, oxidised DWNT were added to each vial with a final concentration of 
50 pg/mL and the reaction took place via continuous stirring for 2-hours at room 
temperature (±21 °C). To remove excess of polypeptide-nucleic acid not bound to 
CNTs, the suspension of oxidised DWNTs wrapped with Poly(Lys:Phe) (oxDWNT- 
Poly(Lys:Phe) was filtered using a 100 kDa filter devices' (Amicon Ultra-4 centrifugal 
filter devices from Millipore) and then resuspended in DNase /RNase free water 
(Sigma Aldrich, Poole, UK).

' C NT-pDN A  com plexes were not filtered after conjugation due to size o f the complex, which 
exceeded the size o f the filter pore in 100 kD a filter devices
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5.2.2.3 Plasmid DNA and siRNA binding to CNTs

pDNA was added to CNT coated with PL-PEG-NH2 or Poly (Lys:Phe) (50 pg/ml_) at 
final concentration of 5 pg/mL. siRNA was conjugated at a concentration of 0.2 to 1 
pM and added to CNTs coated with PL-PEG-NH2 or Poly (Lys:Phe) (50 pg/mL). The 
reaction was allowed to proceed for 2-hours at room temperature (±21 °C), with 
continuous stirring. The solutions were again filtered using a 100 kDa filter devices 
(Amicon Ultra-4 centrifugal filter devices from Millipore) to remove the excess of 
nucleic acids and then resuspended in DNase /RNase free water (Sigma Aldrich, 
Poole, UK), with a final concentration 100 pg/mL of CNTs.

5.2.3 Analysis of nucleic acid binding to CNT by electrophoresis

Prepared samples (10 pi) of CNT-nucleic acid complexes and controls (oxDWNT- 
Poly(LysPhe)-pDNA, oxDWNT-PL-PEG-NH2-pDNA, the free DNA and siRNA) were 
loaded onto an agarose gel (1 %, w/v) for electrophoresis with visualisation by 
ethidium bromide staining (5 pg/mL).

5.2.4 Creating stable cell lines expressing GFP

PC-3 cells were cultured in RPMI-1640 medium supplemented with 2mM 
Glutamax™; and HeLa cells were cultured in MEM medium supplemented with 2mM 
non-essential aminoacids. Additionally, 10 % heat-inactivated FBS, and 1 % 
penicillin-streptomycin was added to both mediums (invitrogen, Paisley, UK). Cells 
were transfected with pAcGFP-N1 plasmid (Clontech, Saint-Germain-en-Laye, 
France) using Lipofectamine reagent, according to instructions in the manual, and as 
summarised in section 5.2.5 (Invitrogen, Paisley, UK). GFP expressing cells were 
selected using 600 pg/mL of geneticin (G418) (Gibco/lnvitrogen, Paisley, UK). After 4 
weeks of selection cells were sorted for 80-90 % GFP expressing cells, using 
Fluorescence-activated cell sorting (FACS). Cells were allowed to recover for 8
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weeks and re-sorted once more. Excitation was observed using an argon laser at 488 
nm at 400 mW with power emission being detected using band pass FITC filter of 535 
nm ± 15 nm.

5.2.5 GFP expression and knockdown In mammalian ceils

One day before transfection cells were seeded so that they were approximately 50 % 
confluent, at the time of transfection (either in 24-well plates containing coverslips (13 
mm) for fluorescent microscopy or 35 mm sterile petri dishes for flow cytometry).

pDNA transfection in PC3 cells: CNT-pDNA complexes, previously prepared
samples (Section 5.2.2), were diluted 1:2 in Opti-MEM media (Invitrogen, Paisley, 
UK). These complexes were then added to each corresponding well. While, pDNA- 
Lipofectamine® complexes were prepared according to the instructions in the 
manual, 1 or 6 pi Lipofectamine®, for 24-well or 35 mm plate, respectively, were 
combined with 5 pg/mL pDNA and added to each corresponding well. After 4-hours, 
the media was replaced with fresh completed media containing serum. Then cells 
were incubated for further 12 to 24-hours at 37 °C in a C02 incubator until assaying 
for gene expression.

siRNA transfection in PC3-GFP and HeLa-GFP cells: For CNT-siRNA transfection 
previously prepared complexes (Section 5.2.2), were diluted 1:2 in Opti-MEM media 
(Invitrogen, Paisley, UK). These complexes were then added to each corresponding 
well. siRNA-Lipofectamine RNAiMAX complexes were prepared according to the 
instructions in the manual: 1 or 6 pi Lipofectamine RNAiMAX, for 24-well or 35 mm 
plate, respectively, were combined with 0.2 to 1 pM siRNA and added to each 
corresponding well. After 4-hours the media was replaced with fresh completed media 
containing serum. The cells were then incubated for further 24-hours to 1 week at 37 
°C in a C02 incubator until assaying for gene knockdown.
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5.2.6 Sample preparation for fluorescence microscopy

To prevent morphological changes, cells were fixed with 4 % paraformaldehyde 
(Sigma Aldrich, Poole, UK) solution in PBS, for 1-hour at room temperature, followed 
by washing cells with sterile PBS and treatment with 0.1% Triton X100 (Sigma 
Aldrich, Poole, UK) in PBS, for 15 minutes to allow permeabilisation of cell 
membranes. Cells were then washed 3-times with PBS and finally, To-Pro®-3 
(invitrogen-Molecular Probes, emission 661 nm), monomeric cyanine nucleic acid 
stain was utilised to visualise the cell nucleus in all samples (concentration of 0.1 ¡iM 
in PBS). Finally, coverslips were removed from the 24-well plate using fine forceps 
and were then held vertically against Kleenex tissue to remove excess liquid. A small 
drop of Vectashield fluid (Vector Laboratories, UK) was placed in a glass slide and 
the coverslip, cells facing down was positioned on top of the Vectashield drop. After 
removing the excess of liquid coverslips were sealed using standard commercially 
available nail lacquer and allowed to air dry.

Images were captured using 63 x lenses of using a Zeiss LSM 510 inverted confocal 
microscope and analysed using LSM 510 META software (Zeiss). To determine the 
percentage of GFP expression (after pDNA delivery) and GFP knockdown (after 
siRNA delivery) cells were counted in 5 different fields. GFP expressing cells will 
appear green (GFP, emission 505 nm) with nucleus in blue (To-Pro®-3, emission 661 
nm), while non-expressing cells will present with only the nucleus stained in blue (To- 
Pro®-3, emission 661 nm).

5.2.7 Sample preparation for flow cytometry

Suspended cells were obtained by trypsinizing the monolayer of adherent cells and 
washed twice with ice cold, sterile PBS. Then, cells were washed twice with 0.1% 
BSA in PBS, and centrifuged (5-minutes, at 300 g, 4 °C). After discarding the 
supernatant, 500 mL of ice cold PBS were added to cell pellet and mixing gently with 
500 mL of cold-buffered 2 % formaldehyde solution, followed by incubation at 4 °C for 
1-hour. After fixation, cells were washed once with ice cold PBS, and 1 mL of 70 %
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ethanol (previously stored at -20 °C) was added drop-wise to the cell pellet. The 
suspension was incubated overnight at 4 °C.

Before assaying for gene knockdown, cells were centrifuged and resuspended in the 
desired volume of PBS.

Dr. Alexandra Bermudez-Fajardo assisted with the flow cytometry measurements, at 
the flow cytometry and bioimaging facilities at the University of Surrey, using Becton 
Dickinson FACS Canto flow cytometer analyzer. The measurements permit not only 
the determination of the percentage of GFP expressing cells in a plot of cell count vs 

FITC intensity but also the mean fluorescence intensity of the population. Data 
analysis was performed with Flowjo software.

5.3 Results and Discussion

As previously stated, the coating of CNT with polypeptides and polyliposomes allows 
the further attachment of molecules, such as DNA and siRNA. The polypeptides 
strongly bind to the DWNTs via van der Waals forces and hydrophobic interactions 
between aromatic rings of polypeptide and the carbon nanotube sidewalls. 
Furthermore, the positive charge of the amino group in the polypeptide allows the 
DWNT-polypeptide complexes to bind the anionic pDNA and siRNA through 
electrostatic interactions.

5.3.1 DNA purification

pAcGFP1-N1 was transformed into E. coli cells and purified using a Qiagen midiQ kit 
system according to manufacturer instructions. After purification the size of the DNA 
was examined by digestion with the restriction enzymes Dra III and Pvu II. Figure 5.2 
displays the obtained fragments after digestion, demonstrating that the plasmid was 
successfully purified and suitable for further attachment to CNTs and expression of 
GFP in mammalian cells.

- 1 2 2 -
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Figure 5.2: Agarose-gel electrophoresis of digested pDNA with restriction enzymes.

Lane 1 -  Ladder; Lane 2 - undigested DNA; Lane 3 - DNA digested with Dra III (fragments: 
3982, 744); and Lane 4 - DNA digested with Pvu II (fragments: 3076, 1042, 608).

5.3.2 Nucleic acid binding to CNTs: gel retardation assay

To test the ability of nucleic acids to bind to CNTs a simple gel retardation method can 
be used, where the mixtures are analysed by agarose-gel electrophoresis. If a 
complex of CNT-nucleic acid forms it will be too big to run in the gel and no band will 
appear. However, if the nucleic acid does not bind to the CNTs to form the complex, 
the band will appear on the agarose-gel. In our studies different coatings methods 
were tested, such as pristine DWNTs that were wrapped either with PL-PEG-NH2 or 
Poly(Lys:Phe) (DWNT-Poly(Lys:Phe)-pDNA and DWNT-PL-PEG-NH2-pDNA) oxidised 
DWNTs and SWNTs wrapped with the same PL-PEG-NH2 or Poly(Lys:Phe) 
(oxDWNT-Poly(Lys:Phe)-pDNA, oxDWNT-PL-PEG-NH2-pDNA; oxSWNT- 
Poly(Lys:Phe)-pDNA and oxSWNT-PL-PEG-NH2-pDNA); and PL-PEG-NH2 or 
Poly(Lys:Phe) conjugated with pDNA or siRNA and then wrapped around oxidised 
DWNTs (Poly(Lys:Phe)-pDNA-DWNT and PL-PEG-NH2-pDNA-DWNT), as described 
in the methodology.
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Figure 5.3 and 5.4 presents the behaviour of different coatings in agarose-gel 
electrophoresis for pDNA and siRNA, respectively.

Figure 5.3: Agarose-gel electrophoresis of pDNA binding to CNT. Lane 1 -  1 Kb Ladder; 
Lane 2 and 3 -  Poly(Lys:Phe) or PL-PEG-NH2 respectively, conjugated with DNA wrapped 
around oxidised DWNTs (Lane 2 -  Poly(Lys:Phe)-pDNA-oxDWNT; Lane 3 -  PL-PEG-NH2- 
pDNA-oxDWNT); Lane 4 - pristine DW NT wrapped with Poly(Lys:Phe) (Lane 4 - DW NT- 
Poly(Lys:Phe)-pDNA); Lane 5 and 6 - oxidised DW NT wrapped with Poly(Lys:Phe) or PL- 
PEG-NH2) respectively and conjugated with pDNA (Lane 5 -  oxDWNT-Poly(Lys:Phe)- 
pDNA; Lane 6 -  oxDW NT-PL-PEG-NH2-pDNA); Lane 7 and 8 -  similar to 5 and 6 but using 
single-walled CNTs (Lane 7 -  oxSWNT-Poly(Lys:Phe)-pDNA; Lane 8 -  oxSW NT-PL-PEG- 
NH2-pDNA); Lane 9 and 10 -  controls Poly(Lys:Phe)-pDNA and PL-PEG-NH2-pDNA, 
respectively; Lane 10 -  pDNA control.

pDNA binding to CNTs was evident for Poly(Lys:Phe) coated, pristine or oxidised 
CNTs. Complete binding occurred as no band of free DNA could be visualised (Figure 
5.3; lane 5 and 7). Coating with PL-PEG-NH2 resulted in a less intense band when 
compared with control of pDNA only, indicating that binding had occurred but a 
significant quantity of unbound free DNA was still present in the solution (Figure 5.3; 
lane 6 and 8).

Hence, it is pertinent to note that pristine DWNTs wrapped with PL-PEG-NH2 led to 
precipitation when conjugated with pDNA and was therefore discarded from the
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results presented here. In addition, when PL-PEG-NH2 or Poly(Lys:Phe) were first 
bound to pDNA, followed by binding to CNTs, the complexes were found to be 
unsuitable for gene delivery. This was because these complexes could not be filtered 
(Section 5.2.2.2), which could lead to free polypeptide-pDNA in solution. Furthermore, 
as shown in Figure 5.3, lane 9 and 10, control samples of Poly(Lys:Phe)-pDNA and 
PL-PEG-NH2-pDNA presented no band for free pDNA. Therefore, it was impossible to 
assure that delivery of pDNA to cells would be mediated through CNT-delivery and 
not via polypeptide on its own.

Similar results were obtained for siRNA, in which PL-PEG-NH2 resulted in a band in 
the agarose-gel, but the band was less intense than control samples with siRNA only. 
However, binding was enhanced when Poly(Lys:Phe)-siRNA was employed, as 
demonstrated in Figure 5.4, lanes 4 and 5.

 I
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Figure 5.4: Agarose-gel electrophoresis of siRNA binding to CNT. Lane 1 -  1 Kb 
Ladder; Lane 2 -  PL-PEG-NH2 conjugated with siRNA wrapped around oxidised DW NTs  
(Lane 2 -  PL-PEG-NH2-siRNA-oxDWNT); Lane 3 - pristine DW NT wrapped with PL-PEG- 
NH2 and conjugated with siRNA (Lane 3 - DW NT-PL-PEG-NH2-siRNA); Lane 4 -  
Poly(Lys:Phe) conjugated with siRNA wrapped around oxidised DW NTs (Lane 4 -  
Poly(Lys:Phe)-siRNA-oxDWNT); Lane 5 - pristine DW NT wrapped with Poly(Lys:Phe) and 
conjugated with siRNA (Lane 4 - DWNT-Poly(Lys:Phe)-siRNA); Lane 6 -  siRNA control; 
Lane 7 -  100 bp Ladder.

5.3.3 Cellular uptake of CNT-nucleic acid complexes by Raman 
spectroscopy
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In previous chapters, Raman spectroscopy was applied to confirm cellular 
internalisation of CNT-complexes. In the present chapter this technique was use to 
demonstrate the ability of CNT-nucleic acids to enter into the cells (Figure 5.5 and 
5.6, respectively). Figure 5.5 A, exhibits the G-band peak area for different coatings 
for delivery of pDNA. As it is clear from the figure oxDWNT-Poly(Lys:Phe)-pDNA had 
the highest G band intensity suggesting that higher number of CNTs were 
internalised, in contrast to oxDWNT-PL-PEG-NH2-pDNA. Pristine DWNTs appeared 
to have a higher error associated with the measurements (Figure 5.5 A), which could 
be related to the dispersibility and higher length of the constructs. In contrast to 
oxidised CNTs, pristine nanotubes have a higher variation in length, which can lead to 
a lower concentration of CNTs inside some cells in comparison with others. Figure
5.5 B displays the normalised intensity of the G band of oxDWNT-Poly(Lys:Phe)- 
pDNA obtained for a single cell (inset).
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Figure 5.5: Raman spectroscopy of PC3 single cells transfected with pDNA via CNTs.

(A) G band peak area for different DWNT-preparatlons for pDNA delivery into PC3 cells. (B) 
G band intensity of internalised oxDWNT-Poly(Lys:Phe)-pDNA in PC3 cells. The inset (B) 
shows cell and region of the measurement. Results presented as Mean±SEM (n=6).

Cellular internalisation of CNT-siRNA complexes was also confirmed by Raman 
spectroscopy for CNTs, coated with PL-PEG-NH2, which resulted in a higher intensity 
of G band (Figure 5.6 A). However, gel retardation assays demonstrated that these 
complexes bound siRNA less efficiently. It was therefore decided to use 
Poly(Lys:Phe)-siRNA-oxDWNTs for siRNA delivery. Figure 5.6 B displays the 
normalised intensity of G band of Poly(Lys:Phe)-siRNA-oxDWNT obtained for a single 
cell (inset).
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Figure 5.6: Raman spectroscopy of PC3 single cells transfected with siRNA via CNTs.

(A) G band peak area for different DWNT-preparations for siRNA delivery into PC3 cells. (B) 
G band intensity of internalised Poly(Lys:Phe)-siRNA-oxDWNT in PC3 cells. The inset (B) 
shows cell and region of the measurement. Results presented as Mean±SEM (n=6).

5.3.3.1 Concentration of CNTs-nucleic acid complexes inside ceils

CNTs concentration can be determined through G band intensity as demonstrated in 
Chapter 3. Table 5.1 displays the values of G band obtained for different coatings for 
pDNA and siRNA delivery. A new calibration curve was determined, with the equation 
y= 3.096ln(x) -  2.256 (Section 3.3.2.4), since a different wavenumber was selected 
(785 nm). Comparing concentrations obtained here with the ones obtained for cell 
lysates (Chapter 3, section 3.3.2.4) there is an evident increase, which can be related 
to the technique employed. In contrast to cell lysates where only nanotubes in the
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cytoplasm were considered, for this study single cells that also detect CNTs at cell 
surface were analysed by Raman spectroscopy. Nevertheless, the method allows an 
estimation of CNTs per cell.

Table 5.1: Concentration of CNTs in cells. Correlation between G band intensity and 
concentration of CNTs was used to determine the concentration of internalised CNTs. (Cell 
volume = 5.75x1 O'9 pL [299])

Samples
G band area 

peak (a.u.)

Concentration ® 
(pg/mL)

Concentration per 

cell (pg/cell)

oxDW-Poly-pDNA 10.466 2.027 1.2x1 O'05
Poly-pDNA-oxDW 8.496 1.864 1.1x1 O'05
oxDW-PEG-pDNA 6.242 1.657 9.5x10‘06
DW-Poly-pDNA 8.59 1.872 1.1x1 O'05
oxDW-PEG-siRNA 10.122 2.000 1.1x10‘05
DW-PEG-siRNA 5.25 1.557 8.9x10 06
oxDW-Poly-siRNA 6.782 1.709 9.8x1006
DW-Poly-siRNA 4.192 1.443 8.3x1006

5.3.4 GFP expression in mammalian cells via CNTs

CNT-pDNA complexes were employed for transfection of PC3 cells and GFP gene 
expression was evaluated by means of confocal microscopy and flow cytometry. 
Different concentrations of plasmid DNA were tested. Optimal transfection efficiencies 
were obtained for concentrations of ~5 ng/pL pDNA.
Figure 5.7, illustrates fluorescent microscopy images of PC3 cells expressing GFP (in 
green), and cells without transfected genes where the nucleus is stained (blue). 
Different delivery agents were used for transfection of pDNA: Lipofectamine; oxidised

(i) Concentration o f C N Ts in the cell was calculated using a logarithmic correlation between  

G band intensity and C N T  concentration (y= 3.096ln (x) -  2 .256; where y  is the G-band peak  

area; and x is concentration in pgAnL, R 2 = 0.945)
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DWNT wrapped with Poly(Lys:Phe) and PL-PEG-NH2; and pristine DWNT wrapped 
with Poly(Lys:Phe). Results revealed that 40 % of cells were expressing GFP when 
cationic agent, Lipofectamine, was employed. However, CNTs transfection yield 
dropped significantly. Only a small percentage of GFP expressing cells could be 
visualised under microscopy for oxDWNT-Poly(Lys:Phe)-pDNA. The remaining CNT- 
pDNA complexes resulted in inefficient plasmid DNA transfection, in which cells 
expressing GFP could not be found.

In addition to fluorescence microscopy, samples were also analysed by flow 
cytometry, Figure 5.8, which exhibits the fluorescence (FITC) vs the number of cells 
for different delivery methods. Furthermore, the inset in each chart represents the 
results obtained for confocal microscopy, as shown in figure 5.7. Similar to results 
observed for fluorescent confocal microscopy, Lipofectamine transfection resulted in 
approximately 40 % GFP expressing cells (Figure 5.8 C). Plasmid transfected via 
oxDWNT-Poly(Lys:Phe)-pDNA achieved, at best, a maximum of 1 % of GFP 
expressing cells (Figure 5.8 E). Furthermore, fluorescence was also determined by 
means of mean fluorescence intensity (MFi) and was found to be 254 for 
Lipofectamine, 12.8 for oxDWNT-Poly(Lys:Phe)-pDNA, and 5.42 for cells only, 
revealing that fluorescence increase due to GFP delivery using CNTs is much lower 
than with Lipofectamine.

The inconsistency between the results of fluorescence microscopy vs flow cytometry 
may be related to the sample size. In confocal microscopy no more than 200 ceils 
were counted, whereas by flow cytometry 10 000 events (i.e., ceiis) were measured.
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Figure 5.7: Fluorescent microscopy of PC3 cells transfected with pDNA(GFP). GFP
expression in PC3 cells transfected with Lipofectamine (A^ after 24-hours; GFP expression 
in PC3 cells after incubation with oxDWNT-Poly(Lys:Phe)-pDNA and Poly(Lys:Phe)-pDNA- 
oxDW NT (A2 and A3, respectively). (B) GFP expression by mean of number of expressing 
cells (%) using different coatings (percentages calculated from number of green cell in 5 
different fields).

To obtain efficient gene delivery, not only does the complex has to transverse the 
plasma membrane, but also must also escape lysosomal degradation, and overcome 
the nuclear envelope. As a result, the low transfection efficiency of CNT-pDNA might 
be related to the uptake pathway of the complex, two main critical steps have to be 
taken into account. Firstly, pDNA could be degraded in the lysosomes after CNT 
sequestration in these compartments; and secondly CNT-pDNA complexes may be 
unable to reach the nucleus where replication of plasmid DNA would occur. Thus, the 
lack of availability at the target site -  nucleus, prevents the effective delivery of pDNA 
by CNTs.
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Figure 5.8: Flow cytometry and fluorescent microscopy of PC3 cells transfected with 

pDNA(GFP). Flow cytometry by measurement of fluorescent cells (%) and mean 
fluorescence intensity after 24-hours post-transfection. (A) GFP expression, using 
Lipofectamine and CNTs to deliver pDNA in comparison with PC3 cells only. Control with 
cells only (B). GFP expression in PC3 cells transfected with Lipofectamine (C); PL-PEG- 
NH2-pDNA-oxDW NT(D); Poly(Lys:Phe)-pDNA-oxDWNT(E); oxDWNT-Poly(Lys:Phe)-pDNA
(F).
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5.3.5 Gene silencing in mammalian cells via CNTs

Small interfering RNAs (siRNAs) are the effector molecules of the RNA interference 
(RNAi) pathway [358, 359]. They are active in the cytoplasm where the mRNA is 
translated to a protein and therefore do not have to transfer through the nuclear 
membrane, which could be advantageous when comparing with pDNA; particularly as 
the studies above have indicated that transport to the nucleus could be limited for 
plasmids delivered by CNTs. Herein, investigation of the feasibility of DWNTs to 
deliver siRNA to mammalian cells was studied. In order to detect gene silencing we 
developed a HeLa and PC3 cell lines that stably expressed GFP, so that delivery and 
efficacy of an siRNA silencing the GFP gene could be optimised.

5.3.5.1 Stable cell lines expressing GFP

To ensure rapid reductions in protein levels in response to decreases in mRNA levels, 
ceils were transfected with an enhanced GFP protein, from Aequorea coerulescens. 

Cells were transfected with the GFP-encoding plasmid and the efficiency of 
transfection was determined by confocal microscopy and flow cytometry (Figure 5.9). 
Selection of a GFP-expressing clone was achieved by supplementing the media with 
Geneticin, which killed cells that had not taken up the plasmid. In a final step of 
selection, GFP-expressing cells were separated from non-expressing ones via FACS 
(Figure 5.9). As shown in Figure 5.9, cells stably expressing the GFP gene in 80-90 
% of cells, after selection via cell sorting by FACS.
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Pre-selection: HeLa-GFP Post-selectlon: HeLa-GFP

Figure 5.9: Fluorescence microscopy and flow cytometry GFP expressing cells. PC3

(A) and HeLa (B) cells transfected with GFP (pre-selection), and post-sorting of stable cell 

lines expressing GFP (post-selection).

5.3.5.2 GFP silencing

siRNAs can be introduced directly by transfection or by electroporation, or generated 
within the cell from a short hairpin RNA expressed from a DNA construct. For our 
purposes of using CNTs for gene silencing, the expression of siRNA as hairpin 
structures from plasmid or viral vectors was not considered, as it was revealed in the 
previous section that CNTs did not efficiently deliver pDNA. Furthermore a study 
carried out by Gao et al. shows that transfection efficiency of CNTs is only 5 %, 
contrasting with 30 % obtained for Lipofectamine [340]. For this reason, in our studies 
the synthesised siRNAs were delivered into mammalian cells.

To examine the efficiency of DWNT-delivery of siRNA-based knockdown, HeLa-GFP 
and PC3-GFP cell lines were transfected with siRNA sequences against GFP and a 
negative control siRNA sequence. The two functional siRNAs to the same target were 
used independently to ensure that any biological effect was due to silencing of the 
target gene and not due to an off-target effect. DWNTs were oxidised and wrapped 
with PL-PEG-NH2 or Poly(Lys:Phe) as described in the methodology (Section 5.2.2).
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In parallel, a cationic transfection agent, Lipofectamine RNAiMAX, was employed as 
a control for high transfection efficiencies.

The transfection efficiency and gene knockdown were evaluated by calculating the 
percentage of cells expressing GFP by fluorescence microscopy and flow cytometry. 
Cells stably expressing GFP were prepared for both HeLa and PC3, however results 
obtained were in line with previous results. Thus to simplify the data, only present 
data relative to PC3 is presented. However, is important to note the significance of 
using two cell lines to obtain reliable results. Different concentrations of siRNA were 
tested, from 0.2 to 1 jaM, however lower concentrations resulted in 20 % less efficient 

knockdown; therefore a higher concentration of 1 fiM was employed to obtain the 

data presented here.

Figure 5.10 depicts the silencing effect produced using Lipofectamine. In the first 
panel (A) the controls can be visualised with above 90 % GFP expressing cells. This 
is followed by panels B to D showing different time points of incubation post­
transfection with Lipofectamine are presented. A maximum silencing effect of 80 % 
after 72-hours was measured by both confocai microscopy and flow cytometry (Figure 
5.10 C). In addition, the mean fluorescence intensity (MFI) for control with Negative- 
siRNA (NegsiRNA) was 71 units and dropped to 23.3 units when GFP-siRNA was 
employed.

In contrast, post-transfection with Poly(Lys:Phe)-siRNA-oxDWNT is displayed in 
Figure 5.11 A to D, and reveals only minor GFP knockdown. Similar to pDNA- 
delivery, it was apparent that there were certain discrepancies between results 
obtained for confocai microscopy in comparison with flow cytometry. Higher 
percentages of knockdown were visualised by confocai microscopy, for example, 
after one-week of incubation, post-transfection using CNT-complexes, the percentage 
of knockdown by confocai microscopy was of 17 %, while the knockdown evaluated 
by flow cytometry was of only 3 %.

Analysing GFP knockdown through flow cytometry -  MFI, it was observed that MFI 
dropped from 121 for Negative-siRNA (control, NegsiRNA) to 115 for GFP-siRNA, 
after 1-week, demonstrating that CNT complexes did not efficiently deliver siRNA.
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PC3-GFP (controll
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Figure 5.10: Fluorescent microscopy and flow cytometry of PC3-GFP cells transfected 

with siRNA(GFP) using Lipofectamine. Knockdown of GFP gene evaluated by fluorescent 

microscopy (left panel) and flow cytom etry (right panel) using Lipofectamine at different 

incubation points: 48 h (B), 72 h (C), and 1 week (D), post-transfection. Control with PC3 

stably expressing GFP (A).
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Figure 5.11: Fluorescent microscopy and flow cytometry of PC3-GFP cells transfected 

with siRNA (GFP) using CNTs. Knockdown o f GFP gene evaluated by fluorescent 

microscopy (left panel) and flow cytometry (right panel) using Poly (Lys: Phe)-siRNA- 

oxDW NT at different incubation points post-transfection: 48 h (A); 72 h (B); 96 (C); and 1 

week (D).
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Besides testing different incubation periods, different coatings of DWNT were also 
examined. Figure 5.12 depicts fluorescent microscopy and flow cytometry data 
obtained for the different coating methods: Lipofectamine (A: Lipof-GFPsiRNA); 
pristine DWNT-PL-PEG-NH2-siRNA (B: DW-PEG-GFPsiRNA); oxidised DWNT 
wrapped with either PL-PEG-NH2 or Poly(Lys:Phe) (C and D: oxDW-PEG-GFPsiRNA 
and oxDW-Poly-GFPsiRNA, respectively).

Flow cytometry of Lipofectamine transfection (Figure 5.12 A) revealed 40 % 
knockdown of GFP gene, with a drop of MFI from 146 for Neg-siRNA to 73.5 units for 
GFP-siRNA. A comparable effect was not visualised for any of the CNT preparations 
(less than 5 %). Pristine DWNT wrapped with PL-PEG-NH2 (Figure 5.12 B) the MFI 
dropped from 151 to 136 units, Neg-siRNA and GFP-siRNA respectively. In addition, 
oxidised DWNT wrapped with Poly(Lys:Phe) or PL-PEG-NH2 led to insignificant GFP 
silencing (Figure 5.12 C and D).

Under the experimental conditions employed in these studies, siRNA and pDNA- 
delivery indicate that CNTs do not efficiently deliver nucleic acids into PC3 and HeLa 
cell lines. It appears, from Raman spectroscopy of cells exposed to CNT-complexes, 
that CNTs are being internalised; however the nucleic acids once delivered were not 
functional, either in the cytoplasm, siRNA; or nucleus demonstrated by pDNA-delivery. 
This observation might be related with the preparation of the complexes. pDNA and 
siRNA may be degraded before reaching their target sites; either being degraded 
before reaching the cells or already inside cells, in endosomes.
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Figure 5.12: Fluorescent microscopy and flow cytometry of PC3-GFP cells transfected 

with siRNA(GFP) using different CNTs coating. Knockdown of GFP gene evaluated by 

fluorescent m icroscopy (left panel) and flow cytometry (right panel), 72-hours post- 

transfectlon, using different delivery agents: Lipofectamine (A); DW NT-PL-PEG-NH2-siRNA

(B); PL-PEG-NH2-siRNA-oxDW NT(C); and Poly(Lys:Phe)-siRNA-oxDW NT(D). siRNA-CNT 

complexes led to less then 10 % gene knockdown in comparison with 40 % obtained for 

positive control (Lipofectamine).
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5.4 Conclusions

GFP pDNA (pAcGFP1-C from Clontech) was used to study gene delivery and 
silencing via CNTs. In order to be expressed, it is necessary for the pDNA to enter the 
cell and to be processed by the cellular machinery. As plasmid DNA alone penetrates 
into the cells and reaches the nucleus with considerable difficulty, CNTs could be 
used to enhance gene transfer and expression.

In the literature efficient delivery of nucleic acids has been reported. Pantarotto et al. 
describe efficient delivery of pDNA [127], however in their study different conditions 
and parameters were applied, such as CNT modification (covalently modification 
using 1,3-dipolar clycoaddition). In addition, in their study expression of CNTs-pDNA 
Is compared with pDNA alone, a positive control, such as Lipofectamine was not 
applied. Furthermore different cell lines were employed (CHO cell line).

Similar to what we report In this chapter, Gao et al., uses multi-walled CNTs to deliver 
plasmid DNA encoding GFP. In their work two cell lines were used (HUVEC and 
A375) and Lipofectamine was employed as a positive control. They reported 5 % of 
cells expressing GFP when CNTs are used, compared with 30 % of GFP expressing 
cells obtained with Lipofectamine [340]. However, evaluation of GFP expression was 
measured through counting fluorescent cells under the fluorescent microscope. Our 
experiments revealed that fluorescent microscopy is insufficiently discriminatory to 
determine GFP expression in a population.

in addition, others groups have studied siRNA delivery in a larger extent. For 
example, Kam et al. reported potent gene silencing by means of siRNA delivery using 
CNTs. They observed a silencing effect of over 2 fold using SWNTs in comparison 
with Lipofectamine [174]. Through similar CNT preparation, a later study carried by 
the same group, Liu et al., showed siRNA delivery into Human T cells and primary 
cells [175]. In vitro, certain T cells and primary cells are still difficult to transfect by 
non-viral agents, such as liposomes, as in the case of siRNA delivery to T cells [341]. 
90 % gene knockdown of CXCR4 and CD4 genes was demonstrated; 3 day post­
transfection using SWNTs for siRNA delivery. In contrast, Lipofectamine-delivered 
siRNA had no silencing effect on these T cells. To demonstrate that this effect was 

only observed for T cells the authors used Magi cells (which are derived from HeLa 
cells with high level of expression of CD4 receptors and CXCR4 co-receptors). The 
results show that both Lipofectamine and SWNT-siRNA caused downregulation of the 
genes. Conversely, they observed a 90 % knockdown in T cells using SWNT, but this
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effect was decreased in Magi cells where the silencing effect was of the order of 40- 
50 %. Moreover, Lipofectamine presented a knockdown effect of around 60-80% 
[175], The study indicates that the choice of the cell type affects the results observed. 
Additionally, in their studies modification of CNTs consisted of adsorption to SWNT of 
phospholipid molecules of poly(ethylene glycol) (PL-PEG) chains with a terminal 
amine or maieinide was employed. Similar to the methodology employed in this 
chapter. However, in their study, the siRNA was not bound through electrostatic 
interactions, but through a cleavable scheme, where amine or maleimide terminal on 
the PL-PEG immobilized on SWNT was conjugated with thiol-modified siRNA. It is 
possible that this modification provided a more efficient gene delivery system.

Furthermore, a recent study from Al-Jamal et al. (2010) reported efficient knockdown 
of GFP gene through siRNA delivery using a synthesised polycationic Dendron- 
MWNT [362]. In their study, delivery of siRNA was carried out after transient 

transfection with GFP-pDNA in A549 cells. GFP knockdown was evaluated by 
immunoblotting, revealing a decrease of protein levels in comparison with a negative 
control. Therefore, in their study the siRNA possibly will be protected against 
degradation by the Dendron-CNT and it is therefore available at the target site, 
resulting in gene knockdown.

Hence, our results demonstrate nucleic acids become complexed to CNTs, confirmed 
via gel retardation assays (Figure 5.3 and 5.4). Furthermore, cellular uptake of CNT- 
complexes was demonstrated by Raman spectroscopy (Figure 5.5 and 5.6). However, 
nucleic acid molecules did not reach their target sites. Thus, pDNA did not cross the 

nuclear envelope and thus there was no translation of the GFP protein. In addition, 
the siRNA was unavailable in the cytoplasm to efficiently block stable transcripted of 
GFP gene (integrated into the chromosome). The apparent inefficiency of the CNTs 
for delivery of pDNA and siRNA in our study can mainly be attributed to the 
methodology by which nucleic acids were bound to CNTs. Leading to a possible 
degradation of nucleic acids in the media or inside lysosomes.

In the next chapter siRNA will be conjugated onto CNT-complexes using a cleavable 
disulfide bond, for stronger attachment of the cargo. Followed by the study of the 
ability to knockdown a gene.
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6.1 Introduction

Evasion of apoptosis, and the ability to proliferate uncontrollably are two molecular 
traits found in all human cancers [342]. Therefore, anti-apoptotic proteins involved in 
signalling through specific apoptosis pathways provide targets for possible drug 
discovery and new anticancer interventions. As described in more detail below, 
survivin is highly expressed in a number of human tumours and it is also involved in 
tumour ceil resistance to anticancer drugs and ionizing radiation. For these reasons it 

has been proposed as an attractive target for anticancer therapies -  particularly gene 
silencing- based therapies

Two major pathways of apoptosis have been identified in mammalian cells (Figure 
6.1). The extrinsic pathway is triggered by the binding of ligands to the cell surface 
trimeric membrane death receptors and leads to caspase-8 activation [343]. The 
intrinsic pathway is mediated by mitochondria, which respond to pro-apoptotic signals 
by releasing cytochrome c, which in turn binds and activates the apoptotic protease- 
activating factor-1, causing assembly of a multi-protein caspase-actlvating complex 
(apoptosome). This leads to activation of caspase-9 and initiation of a protease 

cascade [344]. The intrinsic and extrinsic pathways converge on downstream effector 
caspases. Some of these, such as caspase-3 and caspase-7, are targets for 
suppression by an endogenous family of anti-apoptotic proteins called inhibitor of 
apoptosis proteins (iAPs), which also interfere with caspase-9 processing, the 
upstream initiation of mitochondrial pathway of apoptosis [345]. The human genome 
encodes eight IAP family members (Figure 6.1) including survivin. Survivin is a 16.5 
kDa protein of 142 amino acids and it is composed of a single baculovirus IAP repeat 
domain (BIR) and an extended C-terminal a-helix coiled domain; it does not contain 

the RING-finger domain found in other IAPs [367]. The BIR domain is involved in the 
anti-apoptotic function, in contrast to the coiled domain, which interacts with tubulin 
structures. Survivin, unlike other IAP proteins, is essential for correct completion of 
mitosis and ceil division [346].
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Figure 6.1: IAP proteins inhibit apoptosis by binding to activated caspases. They 

inhibit signals generated through both the two major pathways of apoptosis: the extrinsic 

(death receptor mediated) and the intrinsic (m itochondrial mediated) pathways [347].
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One of the most significant features of survivin it is their differential expression in 
cancer versus normal tissues [348]. In normal tissues, the protein expression is 
regulated and it is often absent or low in most terminally differentiated tissues [348]. 
Thus, survivin is expressed in normal tissues characterised by self-renewal and 
proliferation, though in significantly lower levels than in tumour tissue. Importantly, 
several studies have demonstrated high survivin expression in most human solid 
tumour types and haematologic malignancies, emphasising its status as potential new 
target for cancer therapies [349]. Expression of survivin has also been detected in a 
variety of benign and preneoplastic lesions including melanocytic nevi, polyps of the 
colon, breast adenomas, Bowen’s disease and hypertrophic actinic keratosis [349], 
suggesting that re-expression of survivin may occur early during malignant 
transformation or following disturbance in the balance between cell proliferation and 
cell death [350].

Increasing evidence suggests that survivin expression in cancer cells is associated 
with clinicopathologic variable of aggressive disease and therefore might represent an 
important prognostic marker for patient outcome. In fact, several studies into different 
types of solid tumours and haematologic malignancies showed that high levels of 
survivin protein were predictive of tumour progression in terms of either disease free 
or overall survival [349].

Elimination of the survivin pathway should result in the lowering of the anti-apoptotic 
threshold in cancer cells. Consequently, tumour cells undergo apoptosis directly, or 

can be used in combination with chemotherapy or radiation therapy. Carvalho et al. 
(2003) were the first to use RNAi approaches to suppress survivin in HeLa cells. 
Following transfection with RNAi for 60-hours they demonstrated depletion of survivin 
in cells with further demonstration of delayed mitosis [351]. A number of other studies 
using different siRNA have shown that RNAi mediated knockdown of survivin was 
capable of reducing tumour cell proliferation and induced caspase-dependent 
apoptosis in a variety of human tumour cell line models -  in addition to decreasing the 
growth of established lesions in nude mice [352]. The work described in the following 
sections has considered the use of siRNA-CNT complexes directed against survivin, 
as an approach to demonstrate in vitro cytotoxicity in survivin expressing colon and 
prostate cancer cells.
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6.2 Experimental section

In this section, a detailed description of the methodology employed is presented. 
Firstly, siRNA sequences targeting survivin were tested, to select those with highest 
knockdown effect. Secondly, CNTs were prepared for conjugation with siRNA and 
thiol-modified siRNA targeting survivin gene. Then, the complexes were exposed to 
cancer cells that overexpress the gene and knockdown was assessed following 
uptake by western immunoblotting. Finally, the effect of silencing was evaluated by 
detecting apoptosis using dual staining with annexin for early stage apoptosis 
(externalisation of phosphatidyl-serine) and propidium iodide for late stage apoptosis 
(nuclear stain).

6.2.1 Test different survivin siRNA sequences using DharmFECT 
transfection reagent

For the synthetic siRNA employed in the present study it was recommended that 
DharmaFECT transfection reagent be used (from Dharmacon RNAi technologies, 
Thermo Fisher Scientific, UK). DharmaFECT-siRNA complexes were prepared 
according to the manufacture instructions: 3 pL DharmaFECT reagent was 
combined with 400 pL of serum free culture media and incubated for 5 minutes at 
room temperature. Next the siRNA was diluted in 400 pL of media to a final 
concentration of 0.8 pM per 35 mm plate. The solutions were then combined and 

incubated at room temperature for a further 20 minutes, followed by incubation with 
cells as described in Section 6.2.3.

siRNA targeting survivin gene (BlRC-5 gene, ON-TARGETplus from Dharmacon 
RNAi technologies, Thermo Fisher Scientific, UK) with following sequences (below) 
were tested to assess the knockdown efficiency:
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Table 6.1: siRNA targeting sequences. Survivin target sequences for silencing using 
siRNA

Molecular weight 
(g/mol)

Extinction coefficient nM 
(L moMcnr1)

i^g

13 399.9

Target sequence: GCAAAGGAAACCAACAAUA (J-003459-08) 

376737 5.0 66.9

13 399.9

Target sequence: GGAAAGGAGAUCAACAUUÜ (J-003459-09) 

379852 5.0 66.9

13 429.9

Target sequence: CACCGCAUCUCUACAUUCA (J-003459-10) 

371130 5.0 67.1

13 459.9

Target sequence: CCACUGAGAACGAGCCAGA (J-003459-11) 

359916 5.0 67.2

6.2.2 CNT-coating for siRNA binding

As stated in the previous chapter siRNA sequences can be bound to CNTs through 
cleavable disulfide bonds, similar to the approach described by Kam et al. [174]. In 
this chapter the same methodology was apply increase the efficiency of knockdown of 
the gene survivin. Therefore, oxidised DWNT were wrapped with Poly(Lys:Phe) (1:1) 
(Sigma Aldrich, UK), as this was the methodology that led to higher binding and 
delivery of siRNA (as shown in Section 5.3.2). Then, both siRNA and thiol modified 
siRNA (siRNA-SH) were bound, either by electrostatic interactions or through a cross­
linker between amine on the Poly(Lys:Phe) and the thiol modified siRNA.
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6.2.3 Wrapping of oxidised CNT

DWNTs were purified in concentrated nitric acid and oxidised in a mixture of nitric and 
sulphuric acid [185] (Chapter 2). After oxidation, nanotubes were sterilised by 
autoclaving at 121 °C for 1 hour and maintained under sterile conditions for the 

duration of the experiment.

DWNT at a concentration of 100 pg/mL were mixed with 50 pg/mL of Poly (Lys:Phe) 
in phosphate buffer (20 mM, pH 7.5), by continuous stirring for 2-hours at room 
temperature (± 21 °C). To remove excess of unbound molecules, the solution was 

filtered using a 100 kDa filter devices (Amicon Ultra-4 centrifugal filter devices from 
Millipore). Next, the CNTs wrapped with Poly (Lys:Phe), (oxDWNT-Poly(Lys:Phe)) 
were resuspended in DNase /RNase free water (Sigma Aldrich, Poole, UK) to a final 
concentration of 100 pg/mL of CNTs.

6.2.4 Conjugation with survivin siRNA

Survivin siR N A : For siRNA bound through electrostatic interactions, a concentration 

of 0.8 pM of siRNA was allowed to react with oxDWNT-Poly(Lys:Phe) for 2 hours at 

room temperature, with continuous stirring. The solutions were again filtered using a 
100 kDa filter devices (Amicon Ultra-4 centrifugal filter devices from Millipore) to 
remove the excess of survivin siRNA and then resuspended in DNase /RNase free 
water (Sigma Aldrich, Poole, UK), with a final concentration 100 pg/mL of CNTs.

Thiol m odified Survivin siR N A : First a disulfide bond was incorporated; a 
heterobiofunctional cross-linker (Succinimidyl 6-(3-{2-pyridyldithio}-propionamido) 
hexanoate) (Sulfo-LC-SPDP, obtained from Pierce/Thermo Fisher Scientific, UK) was 
employed, for binding to any thiol-containing biomolecule, such as thiol-modified 
siRNA. 25 pL of Sulfo-LC-SPDP (20 mM) were combined with prepared oxDWNT- 

Poly(Lys:Phe) diluted 1:1 in PBS (20 mM, pH 7.5) and incubated for 1 hour at room 
temperature (± 21 °C), with continuous stirring. Excess of cross-linker was removed 

by filtration using a 100 kDa filter devices (Amicon Ultra-4 centrifugal filter device from 
Millipore). Next, the thiol modified siRNA (thiol-siRNA) with sequence: 5’-Th 
CCACU G AG AACG AG CC AG AU U (J-003459-11 ) was mixed with oxDWNT-
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Poly(Lys:Phe)-cross linker and allowed to react for 1 hour at room temperature, with 
continuous stirring. The solutions were again filtered using a 100 kDa filter device 
(Amicon Ultra-4 centrifugal filter devices from Millipore) to remove the excess of 
survivin siRNA and then resuspended in DNase /RNase free water (Sigma Aldrich, 
Poole, UK), with a final concentration 100 pg/mL of CNTs.

6.2.5 Survivin knockdown in PC3 cells

To analyse overexpression of survivin the following cell lines were employed. As 
Human prostate cancer models, PC3 (ECACC, Porton Down, Salisbury, UK) and 
DU145 (ATCC, distributed by LGC Promochem, Teddington, UK) were used. As 
colon cancer models SW948 and WiDr (ATCC, distributed by LGC Promochem, 
Teddington, UK) were also used.

24-hours before transfection cells were seeded to allow them to reach 50 % 
confluency at the time of transfection in 35 mm sterile petri dishes.
CNT-siRNA complexes prepared as previously described (section 6.2.1), were diluted 
1:2 in Opti-MEM media (Invitrogen, Paisley, UK). These complexes were then added 
to each corresponding well, whilst, DharmaFECT-siRNA complexes were prepared 
according to section 6.2.1 and then pipetted to each well. After 4-hours the media 
was replaced with fresh completed media (containing serum to give a final 
concentration of 10 %). The ceils were then incubated for a further 72-hours at 37 °C 

in a C02 in order to have a silencing effect. After 72-hours incubation cells were 
trypsinized and split for either western blotting assay (see section 6.2.4) or for further 
incubation up to 120-hours. Cells stained with Trypan Blue and counted using an 
haemocytometer.

6.2.6 Western blotting to confirm survivin knockdown

Whole-cell lysates were obtained by trypsinizing the monolayer of adherent cells and 
washing with PBS at 4°C. Cell pellets were then subjected to osmotic rupture in 
hypotonic detergent-based buffer (1 mM PMSF, 1 mM NaV04, 2 pg/mL aprotinin, and 
2 pg/mL leupeptin as protease inhibitors, 150 mM NaCi in 50 mM Tris buffer, 0.2 %
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SDS, 1% Nonidet P-40, pH 7.5) and 50 pg of protein/sample were then 
electrophoresed on SDS-polyacryiamide gel electrophoresis gels (Novex system, 
Invitrogen, UK) with subsequent transfer blotting. Membranes were incubated 
overnight at 4°C with a primary antibody to survivin (Santa Cruz, obtained from Insight 
Biotechnology, Middlesex, UK). After washing, membranes were incubated with a 
secondary horseradish peroxidase-linked appropriate species antibody preparation at 

room temperature (± 21 °C) for 1-hour with chemiluminescence used for visualisation. 

After the probing of each membrane with the primary antibody of choice, the 
membrane was stripped and re-probed using a Glyceraldehyde 3-Phosphate 
Dehydrogenase GAPDH antibody (Sigma Aldrich, Poole, UK) to act as a loading 
control.

6.2.7 Apoptosis detection in PC3 cells treated with siRNA

Cells floating in media and ceils in monolayer were recovered and combined for 
apoptosis assay. Annexin V Biotin Apoptosis Detection Kit (CalBioChem®) was 

employed according to manufacture. Combined cells were spun down and 

resuspended in 500 pL of media, then 10 pL media binding reagent was added, 

followed by 2 ¡iL of Annexin V-FITC and incubated for 30-minutes at room 

temperature in the dark. Following incubation cells were spun down and resuspended 
in 500 \xL of a cold one time binding buffer. After that, 10 p,L propidium iodide was 

added and samples were placed on ice and away from light, before analysing by flow 
cytometry. This assay can only be performed on live cells and it is unsuitable for fixed 
material.

Dr. Helen Coley performed flow cytometry measurements, at the Flow Cytometry and 
Bioimaging Facilities at University of Surrey, using the Beckman Coulter Epics XL 
flow cytometer analyser. The measurement permits the determination of the 
percentage of viable cells, cells in early apoptotic stage, late apoptotic stage and 
death cells. Data analysis was performed utilizing flowjo software.
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6.3 Results and Discussion

In this section the application of CNTs to target tumour cells was studied via delivery 
of siRNA delivery to target the gene survivin. The survivin gene was employed owing 
the differential expression in normal versus tumour cells. In contrast to what was 
presented in the previous chapter, CNTs-siRNA complexes were prepared via 
cieavable disulfide bonds, as previously described by Kam et al. [174]. This strategy 
was employed to overcome the possible degradation or loss of siRNA molecules 
proposed in the previous chapter.

6.3.1 Survivin overexpression in different cancer cell lines

Prior to siRNA gene silencing, survivin overexpression was examined in different cell 
lines. Figure 6.2 exhibits western blotting of whole cells lysates from: PC3, WiDr, 
SW948 and DU 145 human cancer cells lines. Survivin and GAPDH were detected 
using antibodies specific to the target protein. GAPDH is. one of the key enzymes 
involved in glycolysis; it catalyses the reversible oxidative phosphorylation of 
glyceraldehydes-3-phosphate. The GAPDH gene is constitutively and stably 
expressed at high levels in almost all tissues and cells, and as such is considered to 
be a “housekeeping” gene. Housekeeping proteins like GAPDH are useful as loading 
controls for western blots. In Figure 6.2, it is demonstrated that both PC3 and SW948 
cell lines present higher levels of survivin then other two cell lines.

6.3.2 Survivin silencing with different siRNA sequences

Various sequences targeting survivin gene are available commercially, therefore we 
decided to examine their silencing effect (Figure 6.3). These siRNA sequences 
specifically target the baculovirus IAP repeat-containing (BiRC) domain of the survivin 
protein. As presented in Figure 6.3 A, an application of the sequence 8 resulted in 
poor knockdown effect in PC3 using DarmaFECT as trasfection agent. However, 
using SW948 cells the silencing effect was efficient with no expression of survivin 
gene protein product evident, after siRNA induced silencing. Silencing effect of 

sequences 9, 10 and 11 in PC3 are presented in Figure 6.3 B, demonstrating that only 
sequence 10 and 11 induced knockdown of the survivin gene. Thus, sequence 11
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(Figure 6.3 C) was selected for further experiments using PC3, with a functional thiol 
group.

Figure 6.2: Western blotting analysis of Survivin overexpression in different cell lines.

Expression of s u r v i v in  protein (top) and G A P D H  (loading control) (bottom) in four different 

human cancer cells lines: PC3, WiDr, SW 948 and DU 145. Higher expression of s u r v iv in  

protein was obtained for PC3, followed by SW 948 cell line with a clear band at 16.5 kDa 

( S u r v iv in  molecular weight).

su rv iv in •16 kDa

GAPDH

su rviv in

GAPDH

PC3 cells SW948 cells

37 kDa
Loading control

Figure 6.3: Survivin siRNAs knockdown effect. Knockdown effect (72-hours after siRN A  

delivery) of different siRN A s against s u r v iv in , sequences 8 (A) for PC3  and SW948; and 9, 

10 and 11 for PC3 (B) utilising Dharm aFECT a transfection reagent. Silencing was evident 

for sequences 10 and 11. For all samples controls were run in parallel: a control without 

siRNA; and transfection reagent (Dharm aFECT) without siRN A  (Mock control). In addition to 

the primary antibody against s u r v i v in  (16 KDa) but also G A P D H  (37 KDa) was used as 

loading control.
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6.3.3 Survivin silencing using CNTs

An equivalent number of PC3 cells were plated and treated with survivin siRNA either 
delivered through a commercial transfection reagent (DharmaFECT) or CNTs. In the 
experiments presented, the survivin siRNA was attached to CNTs via electrostatic 
interactions (oxDW-Poly-siRNA) or cleavable disulfide bond (oxDW-Poly-ThiolsiRNA), 
as described in the methodology.

Table 6.2 presents the number of viable cells after treatment with survivin siRNA. It 
suggests that the transfection reagent was cytotoxic in its own right, since we 
observed a 4-fold drop in the number of viable cells in the mock control. However 
when the siRNA was conjugated with the DharmaFECT transfection reagent, there 
was a decrease of viable cells of 2.3-fold relative to the mock control, suggesting that 
cells might be dying due to silencing of survivin gene, which is entirely plausible given 
its biological function. siRNA delivered using CNT either via electrostatic interactions 
or disulfide bond revealed no significant decrease in cell viability (same order of 
magnitude).

Table 6.2: Viable cells after treatment with survivin siRNA. Dead cells were differentiated 
by staining with trypan blue.

Samples Viable cells

PC3 control 3.50x105

Mock control 0.90x105

Survivins\RHA
(DharmaFECT)

0.40x105

oxDW-Poly-siRNA 3.30x105

oxDW-Poly-ThiolsiRNA 2.80x105

Western blotting of whole cell lysates presented in Figure 6.4 reveals the silencing 
effect when CNTs were employed. The knockdown effect was very noticeable when 
DharmaFECT was used to transfect survivin siRNA, which lead to complete 
knockdown of survivin gene after only 72 hours. However, for siRNA-CNT complexes 
little or no silencing effect was apparent. Yet, the GAPDH loading controls reveals
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that for CNT samples more protein was loaded into the gel in comparison with PC3 
control. In addition the band for oxDW-Poly-ThiolsiRNA is weaker than the one 
observed for oxDW-Poly-siRNA, which suggests that the approach of cleavable 
disulfide bond increases the efficiency of knockdown. Overall, a low efficiency of 
silencing was observed when cells were transfected with siRNA-CNT complexes.

Figure 6.4: Survivin knockdown using CNTs. oxDWNT wrapped with Poly(Lys:Phe), and 
siRNA bound through electrostatic interaction (oxDW-Poly-siRNA) or via disulfide bond 
(oxDW-Poly-ThiolsiRNA) were employed to evaluate silencing effect of these complexes (72- 
hours after siRNA delivery). Controls without siRNA, mock control and positive control 
(DharmaFECT) were also employed. Membranes were re-probed with GAPDH (37 KDa) 
serving as loading control.

6.3.4 Apoptosis detection in PC3 cells treated with Survivin siRNA

Apoptosis is a fundamental mode of cell death in health and pathological states and 
has a regulatory function during normal development, in tissue homeostasis, and in 
some disease processes. Certain morphologic features are part of the apoptotic 
pathway, including loss of plasma membrane asymmetry and attachment, 
condensation of the cytoplasm and nucleus, and internucleosomal cleavage of DNA. 

Loss of plasma membrane is one of the earliest features. In apoptotic cells, the 
membrane phospholipid phosphatidylserine (PS) translocates from the inner to the
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outer leaflet of the plasma membrane, thereby exposing PS to the external cellular 
environment. Annexin V is a 35-36 kDa Ca2+ dependent phospholipid-binding 
protein that has a high affinity for PS, and binds to cells with exposed PS. Annexin V 
may be conjugated to fluorochromes including FITC. This format retains its high 
affinity for PS and thus serves as a sensitive probe for flow cytometric analysis of 
cells that are undergoing apoptosis. FITC Annexin V staining precedes the loss of 
membrane integrity that accompanies the latest stages of cell death resulting from 
either apoptotic or necrotic processes. Thus, staining with FITC Annexin V is 
typically used in conjunction with a vital dye such as propidium iodide (PI) allowing 
identification of early apoptotic ceils (PI negative, FITC Annexin V positive). Viable 
cells with intact membranes exclude PI. In contrast the membranes of dead and 
damaged cells are permeable to PI. As a result, cells that are considered viable are 
FITC Annexin V and PI negative; cells that are in early apoptosis are FITC Annexin 
V positive and PI negative; and cells that are in late apoptosis or already dead are 
both FITC Annexin V and PI positive. This assay does not distinguish between cells 
that have undergone late stage apoptotic death versus those that have died as a 
result of a necrotic pathway because in either case, the dead cells will stain with Pi. 
Figure 6.5 presents different distribution of cell populations in the flow cytometry 
chart, which differs for each sample.
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Figure 6.5: Therapeutics of Survivin knockdown. Apoptosis measured using an annexin 
V-FITC apoptosis detection kit, which allows detection of apoptosis by flow cytometry. As 
displayed in (A) viable cells are FITC negative (bottom left corner), while early apoptotic are 
FITC positive (bottom right corner). Propidium iodide (PI) was used to distinguish between: 
death cells, PI positive (top left corner); and late apoptotic or necrotic cells, PI and FITC 
positive (top right comer). PC3 control (A), transfection reagent without siRNA (Mock 
siRNA) (B), survivin siRNA transfected using Dharmafect (DharmaFECTsiRNA) (C), survivin 
thiol-modified siRNA transfected using oxDWNT-Poly(Lys:Phe) (oxDW-Poly-thiolsiRNA) (D).

To summarise, Figure 6.6 represents a graph showing the percentage of cells vs 
cell samples, at different apoptotic stages. The results obtained demonstrated that 
control with cells alone (not transfected) presents a high level of viable cells, above 
90 %. It could also be seen that oxDW-Poly-siRNA behave very similar to the Mock 
control suggesting, that the siRNA did not reach their target site and therefore does 
not cause cells to undergo apoptosis. Similar results were found in the previous 
chapter (Chapter 5) in which siRNA-CNT complexes were unable to knock down the 
GFP gene. However, delivery of siRNA attached to CNTs via cleavable disulfide
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bond, oxDW-Poly-thiolsiRNA, revealed a decrease in viable cells (64.1% compared 
to 94.8 in controls) suggesting that siRNA-CNT complexes are capable of silencing 
the survivin gene and thus can cause inhibition of caspases and promote apoptosis 
in cells.
As illustrated in Figure 6.6 there was an increase in the percentage of cells that 
were dead or at apoptotic stage: with PC3 control, 5.22 % < oxDW-Poly-siRNA 
18.24 % < Mock control 18.64 % < oxDW-Poly-thiolsiRNA 35.89 % < 
DharmaFECTsiRNA 44.92 %. Therefore, it appears that siRNA-CNT complexes are 
capable of delivering siRNA to cells and thereby inducing apoptosis. The apparent 
increase in survivin silencing and consequent apoptosis or death, compared to 
western blot analysis, may be associated with an increase in incubation time. Cells 
were incubated for 72-hour prior to knockdown evaluation by western blotting, 
whereas for the apoptosis assay, the incubation lasted 120-hours. Therefore, in 

order to produce a silencing effect, cells may require longer incubation periods with 
siRNA-CNTs complexes.

Figure 6.6: Flow cytometry analysis of apoptosis in cells treated with survivin siRNA.

Percentage of cells vs cell samples: PC3 cells; transfection reagent without siRN A  

(Mock siRNA); s u r v i v in  s iRN A  transfected using Dharmafect (Dharm aFECTsiRNA); s u r v iv in  

siRN A  transfected using oxDWNT-Poly(Lys:Phe) (oxDW-Poly-siRNA); s u r v i v in  thiol-modified 

siRN A  transfected using oxDWNT-Poly(Lys:Phe) (oxDW-Poly-thiolsiRNA), at different 
apoptotic stages. Similar apoptotic effect was obtained for thiol modified siRNA-CNT 
complexes in comparison to positive control (DharmaFECT).
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6.4 Conclusions

Survivin function is at the interface between the regulation of apoptosis and the 
control of cell proliferation. Moreover survivin has been described as a molecule that 
is overexpressed in most human cancers but not in normal tissues. In Figure 6.2 it Is 
evident of the high level of survivin expression in prostate and colon cancer cell lines 
(PC3 and SW948, respectively). Thus, by restoring apoptosis via siRNA targeting with 
this key anti-apoptotic protein (survivin) could have important therapeutic implications. 
siRNAs are effector molecules that block the synthesis of a protein. These molecules 
are complementary to sequence on the target mRNA, which drives the assembly of an 
RNA-protein complex on the target mRNA, preventing it from being translated into a 
protein. The outcome of silencing by a siRNA targeting survivin was illustrated in 
Figure 6.3, in which a DharmaFECT was employed to deliver different sequences of 
siRNA. Complete knockdown was obtained for sequence 5’- 
CCACUGAGAACGAGCCAGAUU -3’, which was selected for modification (thiol- 
group) and attachment to CNTs in the work described.

Recently, CNTs have been tested for siRNA delivery as an alternative to common 
cationic lipids, known to cause a certain degree of toxicity. Here, we report a CNT- 
preparation method to improve the efficiency of delivery of siRNA that in comparison 
with the method employed in the previous chapter differs in the strategy of attachment 
of siRNA molecule. Therefore, a cleavable disulfide bond approach was adopted to 
study the ability of CNTs to target cancer. The methodology includes the application of 
oxidised DWNT wrapped Poly(Lys:phe), followed by siRNA conjugation via a 
crosslinker to bind thiol-containing siRNA.
The number of viable cells (Table 6.2) indicated that incubation with CNT induced no 
significant cell death (PC3 control was 3.5x105 cell/mL whereas, CNTs had 2.8 to 
3.3x105cell/mL viable cells).

Survivin knockdown using siRNA-CNT complexes was evaluated using an 
immunobloting assay; Figure 6.4 showing western immunoblotting data indicates a 
poor silencing effect of these complexes post 72-hours incubation. This time frame 
was considered sufficient to stop the synthesis of survivin gene when siRNA 
transfection was prepared using DharmaFECT transfection reagent. In addition, 
following this 72-hours period cells were subcultured and incubated for a further 48-
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hours. Subsequently, cells were subjected to assessment of apoptosis using an 
Annexin V-FITC kit and analysed by flow cytometry. The results revealed that in fact, 
thiol modified siRNA-CNT complexes cause cells to die, possibly through apoptosis. 
As illustrated oxDW-Poly-thiolsiRNA complexes Figure 6.5 and 6.6 led to 4.84 % of 
cells at an early apoptotic stage, 5.75 % of cells at late apoptosis and 25.3 % of cells 
were assessed as in late stage of cell death. However since the percentage of death 
cells in PC3 control is 3.54 % it may be assume that cells are dying due to an external 
event, in particular the delivery of siRNA and targeting of survivin.
As described in the previous chapter as well as introductory part (section 1.3.3 and 
5.4) the delivery of siRNA using carbon nanotubes has been extensively study in the 
recent years. Apart from the siRNA target, such as the employed in this study the 
gene survivin, another important factor is the CNT preparation. A variety of methods 
have been employed consisting of non-covalent and covalent modifications of CNT, 
such as wrapping with phospholipid PEG[174] or amino functionalisation via dipolar 
cycloaddition [171]. In addition the binding of siRNA can also be perform through 
electrostatic interactions^71, 353] or via disulfide bonds[174, 175]. The results 
presented here, revealed an improvement when siRNA was bound through disulfide 
bonds to oxidised CNT wrapped with a polypeptide. The polypeptide applied 
(Poly(Lys:Phe)) contains several amino groups and therefore it is able to condensate 
high number of siRNA molecules. As a result, this new methodology may improve the 
blood circulation time when used in an in vivo system and it would be important to 
evaluate the efficacy in, i.e., animal model. Survivin is a protein that inhibits apoptosis, 
resulting in uncontrollable proliferation. Survivin is highly expressed in many tumours 
but in normal tissues the protein expression is regulated being often absent or 
low[348J. Thus, the silencing of survivin using CNTs could be used to equilibrate and 
balance, cell proliferation and apoptosis. By these means cancer cells were able to 
recognise and undergo programmed cell death.
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This thesis provides valuable contribution towards the elucidation of the use CNTs 
(DWNT) as nano-vehicles to treat cancer. The primary aim of this research was to 
investigate the feasibility of the use of these nanocarries (DWNT) to deliver different 
nucleic acids inside specific cellular compartments. Thus, the following is a summary 
of the major findings that were relevant to fulfil this aim.

For the design of a nanotube to treat cancer, it is important to control the size range 
of the biomolecular entity -  CNTs. In the present study, pristine DWNTs were 
prepared and oxidised in order to obtain an uniform size range, length 200 -  2000 nm 
and diameter of 0.7 - 2.13 nm. Furthermore, dispersibility and biocompatibility of this 
nanomaterial is also of particular importance. Herein, CNTs prepared by oxidation 
were sterilised and wrapped with biomolecules, such as RNA, polyliposome (PL- 

PEG-NH2), and polypeptide (Poly(Lys:Phe)), which led to stable solutions (CNTs 
disperse in aqueous solution for several months).

Findings obtained in the work performed in Chapter 3 revealed that CNTs are taken 
up and eventually loss by the cells. An earlier report by Jin et al. had described 
exocytosis of CNTs; however, this study established a more innovative description of 
in vitro uptake and release of the CNTs. The results show that CNTs are inside the 
cells and not at the cell surface, once only cytoplasm was considered in the cell lysate 
analysis. Furthermore, non-toxicity was observed at a cellular level from both Raman 
analyses and western blot techniques. The evaluation of DNA/RNA; proteins; and 
lipids by Raman spectroscopy studies, revealed no differences In these cell 
components. Moreover, results obtained by western blotting indicated that CNTs do 
not induce cellular stress (via activation of phosphorylated MAPK). Evidences from 
these studies highlighted that the CNTs outer walls are being modified during their 
passage through the cells and that nearly all CNTs are eventually released. Although, 
degradation of CNTs has already been reported by others [307, 308], additional 
investigation on the mechanism by which CNTs are being degraded and the process 
involved would be relevant.

The intracellular localisation of the CNTs after uptake and their trafficking inside the 
cell was elucidated in Chapter 4. Mechanistically CNT-complexes understudied were
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internalised via an energy dependent mechanism. CNTs were sorted in early 
endosomes (EE), followed by sequestration into lysosomes. Ultimately, CNT- 
complexes reached the secretory pathway and are recycled back to the plasma 
membrane.

Results obtained in Chapter 5, demonstrated the ability of CNTs to deliver a cargo 
inside the cells. Results have shown that binding the cargo (pDNA or siRNA) through 
electrostatic interactions resulted in inefficient GFP expression as well as knockdown. 
However, if a disulfide cleavable bond was employed to attach siRNA (Chapter 6), it 
was possible to perceive an effect, caused by the delivery of siRNA through CNT- 
complexes.

Chapter 6 further describes the effects of silencing of the survivin gene. Current 
cancer therapy involves high-level toxicity and is relatively poorly targeted. Yet, much 
has been done to identify new tumour-specific targets, as well as innovative drug 
delivery systems. An example of a tumour-specific target is the interference with 
cancer (causing) genes; such as survivin gene. The overall the results obtain in our 
studies show an increase in apoptotic cells. Even though, these results were unable 
to confirm a decrease in protein levels by immunoblotting. We found subsequently 
that siRNA-CNT complexes required longer incubation periods in order to be efficient, 
compared with conventional transfection agents. These promising results reveal that 
CNTs are indeed able to deliver cargoes into cancer cells. Thus, these findings 
suggested the potential capabilities of these nanomaterials to various biomedical 
applications.

It has been particular evident that additional studies may be required in order to 
further identify the therapeutic efficiency of these nanomaterials. The following 
paragraphs elaborate on some of the main suggestions that can be considered.

Future work, would involve the translation from the in vitro model to an in vivo system. 
It would be certainly imperative to understand how the same system, i.e. degradation 
of CNT, has the same behave in vivo, alongside with their biodistribution.

In our studies we employed DWNT, this nanomaterial owns advantages in 
comparison to SWNT and MWNT. Specifically, DWNT have smaller diameters than 
MWNT, and in contrast to SWNT their outer wall can be modified without loosing the 
physical and mechanical properties of CNTs that are maintained by the inner wall. In 
addition, DWNT benefits from their Raman spectroscopic features, by which it is
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possible to determine changes in the outer wall by analysis of diameters via RBM 
modes.

Besides due to CNT preparations (that contain free carboxylic acid groups) further 
modification is possible through covalent attachment of cargoes. For example anti­
cancer agents, targeting moieties and imaging molecules could be inserted. 
Therefore, the synergistic effect of combining siRNA silencing with an anti-cancer 
drug could be examined, in addition to specific targeting of cell receptors via 
application of antibodies/peptides onto the surface of CNTs.

Finally, for an intensive analysis of the uptake mechanism of CNTs, the study should 
be carried out in live cells. By GFP-tagging resident components of a compartment 
would allow imaging of the morphology and dynamics of these compartments in real­
time. Additionally complementary studies using TEM would be relevant to identify 
other pathways of internalisation, as described by Mu et al. [325], in which not only it 

was observed that an endocytic pathway but also that CNTs can pierce cell 
membranes to gain direct access to the cytoplasm.
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Appendix 1: CNT preparations for gene delivery3

In order to use carbon nanotubes as delivery agent it is necessary to render them 
dispersible in water. This can be achieved by the non-specific absorption of polypeptides, 

such as po!y(lys:Phe), polylyposomes as PL-PEG-NH3 and RNA onto the CNT sidewalls. 
These molecules were also used to wrap around soluble CNT produced by oxidation 
processes. Poly(lys:Phe) and PL-PEG-NH3 were selected for CNT wrapping because they 
permit the linkage of other molecules, such as DNA, since they carry cationic groups that 
can bind to negatively charged DNA,
Initially SWNTs, DWNTs and MWNTs were employed for extensive analyses of CNT 
dispersions after coating with several surfactants (Figure A-1.1): benzalkonium chloride, 
polyethyleneimine (PEI), 1-pyrenemethylamide hydrochloride (PMA), 1,2-distearoyi-sn- 
glycero-3-phosphoethanolamine-N-[amino(polyethylene g!ycol)2000 (PL-PEG-NH2), 1- 
stearoyl-2-hydroxy-sn-glycero-3-phosphocho!ine (Lyso-PC), 1,2,dipalmitoyl-sn-glycero-3- 
phosphoethanolamine (DPPE), Po!y(Lys:Phe, 1:1) hydrobromide and Poly(Lys:Tyr, 1:9) 
hydrobromide. With the final aim of using CNT for gene delivery surfactants were selected 
for their ability bind negatively charged plasmid DNA since these compounds carry 
cationic groups such as amine and choline. The methods to obtain stable dispersion 
consisted of mixing pristine CNTs with surfactants solution. The adsorption of the 
surfactants onto CNT sidewalls was then promoted by sonication (Methodology: CNT 
(0.15 mg to 2 mg) was mixed with 1 mL of surfactant (0.3 mg.mL'1). The mixture was 
ultrasonicated in a Soniprep for 40 s, followed by sonication for 2 h in water bath (3 W) at 
room temperature. Centrifugation at 13200 rpm for 10 minutes was performed to sediment 
large bundles and uncoated CNT, obtaining in the supernatant a stable dispersion of 
CNTs). The dispersion yields were measured by VIS-NIR spectroscopy. Absorption at 730 
nm was selected as the working wavelength to estimate the amount of dispersed CNTs. 
CNTs present strong absorbance at this region of the spectra, while surfactants do not 
absorb, therefore the signal for CNTs is free of background absorption and can be used as 
an estimate of CNT concentration.

3 Work was performed in collaboration with Dr. Vanesa Sanz-Beltran at university of surrey
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Figure A-1.1: Surfactant chemical structures. Surfactant structures: (1) benzalkonium 

chloride, (2) pyrenemethylamine (PMA), (3) polyethylenimine (PEI), (4) 1,2-distearoyl-sn- 

glycero-3-phosphoethanolamine-N-[amino(polyethylene glycosl)2000] (PL-PEG -N H 2), (5) 1- 

stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso PC), (6) 1,2-dipalmitoyl-sn-glycero-3- 

phosphoethanolamine (DPPE), (7) Poly(Lys:Phe, 1:1), 8) Poly(Lys:Tyr, 1:9).

- 179-



Appendix 3

Figure A-1.2 exhibits dispersion yields for SWNTs, DWNTs and MWNTs coated with 
different surfactants (non-covalent adsorption of Benzalkonium, PEI, PMA, PL-PEG-NH2) 
Lyso-PC, DPPE, Poly(Lys:Phe) and Poly(Lys:Tyr). Higher dispersion was obtained with 
PL-PEG-NH2 for SWNTs, Poly(Lys:Phe) for DWNT and LysoPC for MWNTs. Furthermore; 
the dispersion yields are higher for MWNTs and SWNTs than for DWNTs.

The ability of CNTs to complex DNA was also studied by gel retardation assay (Figure A- 

1.3). As presented PEI was more efficient (Figure A-1.3 A), followed by Poly(Lys:Phe) 
(Figure A-1.3 C) and then PL-PEG-NH2 (Figure A-1.3 B). Besides better efficiency for DNA 
complexation, PEI is cytotoxic and therefore Poly(Lys:Phe) appears to be a better 
candidate for DNA delivery. In addition concentrations of surfactants can be reduced if the 
CNTs were first modified by oxidation.

CNT dispersion yield

Figure A-1.2: C N T  d ispersion yield. Absorbance of CN T  suspension at 730 nm plotted for 

each surfactant and type of C N T  (SW NTs, D W N Ts and MWNTs). Different degree dispersion 

was achieved depending on the surfactant was well as nanotube type. SW N T  and DW NT  

appear to be more difficult to disperse than MWNT. SW N T  present higher dispersion when 

coated with PL-PEG -N H 2, while DW N T are better dispersed with Poly(Lys:Phe).
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NH2 and (C) poly(Lys:Phe, 1:1). Lane 1: ladder, lane 2: pGL3 plasmid alone 6.8 ng.mL"1, lanes 

3-8: CNT:plasmid DNA complexes with plasmid 6.8 ng.mL'1 and different dilutions of CN Ts  

from 1/1 to 1/105 (1/1 refers to the best conditions found for solubilisation of CNTs: 51 mg.mL'1 

for PEI, 56 mg.mL'1 for PL-PEG -N H 2 and 37 mg.mL'1 for poly(Lys:Phe, 1:1).
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Appendix 2: CNT uptake by fluorescence

Time dependent uptake of CNTs was studied by confocal microscopy, between 5 
minutes and 4 hours as shown in Figure A.1. In these experiments HeLa cells were 
cultured in 24 well plates containing poly-L-lysine-coated coverslips, using MEM 
medium. When the cells reached 80 % confluence, they were incubated with oxidized 
DWNT wrapped with Poly(Lys:Phe) and Fluorescein (oxDW-Poly-FS) at a 
concentration of -30 pg/ml (CNT preparation: Poly(Lys:Phe) for final concentration 0.5 
mg/ml was added to oxidised DWNT, 0.5 mg/ml. Bath sonication of the mixture was 
carried out for 1-2 h. The suspension was then centrifuged at 4000 g for 30 min to 
remove impurities and large nanotubes bundles that aggregate as the sediment, and 
the supernatant was subsequently collected. Fluorescein was attached to amino 
groups of the polypeptide by incubation for 2 h at room temperature under stirring. To 
remove excess of phospholipids/fluorescein the suspension was filtered and then 
resuspended in water). The cells were subsequently trypsonised and cytospun, 
following fixation in with 4% paraformaldehyde. Finally, fixed cells where incubated 
with nuclear staining (TO-PRO®-3) for 10 min, washed several times with PBS and slide 
was mounted for further analysis on confocal microscope Zeiss LSM 510.

Figure A.1 exhibits carbon nanotube uptake by ceils, where in the first plan it is shown 
the internalised oxidised DWNT wrapped with Poly(Lys:Phe) and Fluorescein in green, 
second plan show the nuclei stained in blue and finally in the third plan both 
internalised carbon nanotubes and nuclear staining. Similar to the results obtained to 
Raman, there is a confirmation of internalisation of carbon nanotubes after 30 min 
incubation by confocal microscopy. Additionally to those results there is evidence that, 
after 5 min incubation with the complexes, these complexes are attaching to the cell 
membrane (Figure A.1). Cells were also incubated with carbon nanotubes at 4 C, 
which resulted in no internalisation, suggesting that endocytosis is the mechanism of 
cell entry.
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5 min

30 min

2 h

Figure A-2.1: Time dependent uptake of fluorescent CNTs. Fluorescent microscopy of HeLa 

cells transfected with Fluorescein labelled C N T s and nuclei were stained with blue fluorescent 

TO-PRO®-3.
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Appendix 3: Study and optimisation of endocytosis of CNTs

The study of the mechanism of entry presented in chapter 4 was carried out in both 
HeLa and PC3 cells. HeLa cells were used at an initial stage and as shown in Figure 
A-3.1 co-localisation with transferrin and Lysotracker was evident. However, it was 
observed a certain degree of accumulation of CNTs in cell membranes. In order to 
optimise the methodology and assure co-localisation is occurring within the specific 
cellular compartments (avoid binding of stainings to CNTs), different conditions to 
minimise CNT accumulation in cell membranes were tested (Figure A-3.2).

Si
■

4, .
Lysotracker Transferrin

Figure A-3.1: Co-localisation of CNTs with specific cellular compartments. HeLa cells 

incubated with oxDW NT-Poly-FS for 30-minutes, were stained with Lysotracker red (A) and 

Transferrin (B), nuclei were stained with blue fluorescent TO-PRO®-3. In yellow (arrows), cell 

compartment positive for both C N T s and organelle markers.

In Figure A-3.2 A and B cells were incubated with CNT for 5 to 30-minutes, it is shown 
the CNT accumulate in the membranes. Moreover it was possible to visualize CNTs 
outside cells (Figure A-3.2 B), in the slide, to which Lysotracker dye was then able to 

bind, resulting in a false positive. In a first attempt cells were washed with a mixture of 
acids (0.1 M glycine with 0.1 M NaCI, pH = 3). However, this treatment was not 
sufficient to remove all accumulated CNT and as shown in Figure A-3.2 C it was 
possible to see dark spots in and out of the cells. Another treatment employed was a 
quick wash with trypsin (by adding trypsin and removing (1-5-seconds) followed by 
wash with PBS, Figure A-3.2 E), which resulted in loss of number of cells, shrinking 
and cell aggregation. Consequently, cells exposed to CNTs were also trypsonised and 
cell suspension was centrifuged onto a glass slide by cytospin (Figure A-3.2 E). This 
treatment allowed to remove CNT accumulated at cell membranes, but the 
morphology of the adherent cells was greatly altered and their round shape was not
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ideal for our co-localisation studies. Finally, cellscrub buffer was employed (as 
described in section 4.2.2.2) revealing characteristic cell morphology of adherent cells, 
with nanotubes within the cell membranes and in plan with the nucleus (Figure A-3.2 

F).

D

Hc.Uc.nr-,

c |

Acid wash

B

Cytospin

Figure A-3.2: Different treatment conditions to remove non-internalised CNTs. In, A  and B

is shown controls of cells without any treatment. A, CN T  were found in cell membrane and dark 

spots can be visualised due to CN T  accumulation. In B is shown that CN Ts on the slide (out of 

cell) co-localise with Lysotracker. In C, cells were washed with a mixture of glycine with NaCI, 

which was not enough to remove C N T s accumulation. In D cells were quickly washed with 

trypsin (D). In addition, suspension cells (trypsonised cells) were centrifuged onto glass slides 

by cytospin (E). Finally, washing of cells with cellscrub buffer (F). Nucleus were stained with 

blue fluorescent TO-PRO®-3.

No treatm ent

Trypsin wash

Cellscrub buffer
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