International Symposium on Information Theory and its Applications, ISITA2008

Auckland, New Zealand, 7-10, December, 2008

Improvement of the Davey-MacKay Construction

Johann A. Briffa and Hans Georg Schaathun

University of Surrey, Dept. of Computing
GU2 7XH Guildford, England
E-mail: j.briffa@surrey.ac.uk and h.schaathun@surrey.ac.uk

Abstract

The Davey-MacKay construction is a Deletion-Insertion
Correcting Code scheme consisting of an inner code
that functions as a pilot sequence to which the receiver
seeks to synchronize, and an outer code that provides
error protection. We analyse the performance of the in-
ner code in isolation, arguing that these codes provide
unequal protection, and demonstrate empirically that
the error rate is dependent on the data symbol values.
We also propose modifications to the code construction
that alleviate this asymmetry. Simulation results show
that these codes have an improved performance with
no penalty.

1. Introduction

In [1], Davey and MacKay (DM) proposed a Deletion-
Insertion Correcting Code (DICC) and applied it to a
Binary Substitution, Insertion, and Deletion (BSID)
channel that extends the Binary Symmetric Channel
(BSC) with the possibility of deletion or unbounded
insertions at every timestep. Our initial interest in the
DM construction is in applying DICC for image water-
marking, as suggested in [2]. This may prove a suitable
counter-measure against local geometrical distortion,
as in the jitter and StirMark attacks [3].

The DM construction consists of an inner code that
functions as a pilot sequence to which the receiver seeks
to synchronize, and an outer code that provides error
protection. In prior work, we have already improved
performance by replacing the LDPC outer code with a
g-ary turbo code, while keeping the same inner code [4].
We extend that work here by considering the design of
the inner code.

Davey did not address codebook selection for the
inner code. In this paper we show that for a sequential
codeword selection, the DM inner codes provide un-
equal protection; simulation results confirm that the
error rate is dependent on the data symbol values.
We also propose modifications to the code construction
that alleviate this asymmetry, and show experimentally

that this reduces the error rate of the concatenated
code. Tt is worth clarifying that this improvement is
achieved with no penalty.

2. Background

Three different kinds of errors may occur on the
BSID channel, namely deletions, insertions, and sub-
stitions. The errors occur with probability Py, P;, and
P, respectively. The channel is memory-less, so errors
are independent. Substitutions are the kind of error
most frequently studied in coding theory, where a single
symbol is replaced by a wrong one. Deletions and in-
sertions are known as desynchronisation errors, as they
will cause a displacement of the following sequence.

The Davey-MacKay inner code [1] uses a binary
sequence of length n called the watermark. The wa-
termark is drawn (independently) at random for each
n-bit block. A g-ary data symbol, where ¢ = 2*, is
encoded as a sparse binary vector of length n, which is
added to the watermark. We define a code as optimally-
spread if it uses all available sequences up to some
weight w. The inner code is decoded using a modi-
fied Forward-Backward (FB) algorithm, which deter-
mines at every block the likelihoods P(d) of each pos-
sible transmitted symbol d. The P(d) are then used as
soft input for the outer decoder.

It can be shown experimentally that the inner de-
coder is very effective in maintaining synchronisation
over long sequences of blocks, in spite of the ‘errors’
caused by adding the sparse vector. However, consid-
ering the output from the inner decoder, there will be
a number of substitution errors which will have to be
corrected by another coding layer. Davey and MacKay
used a g-ary LDPC code as the outer code.

3. Results

We consider the BSID channel with P; = P; =: p
and P, = 0. Davey has shown empirically how per-
formance degrades smoothly as P; is increased, and is
not significantly affected when P, is much less than the

Authorized licensed use limited to: University of Surrey. Downloaded on June 03,2010 at 14:21:59 UTC from IEEE Xplore. Restrictions apply.



Table 1: Performance of unprotected DM inner codes

k/n N «

4/5 3840 | 13.94
4/6 3200 | 8.18
4/8 2400 | 6.29

4/10 1920 | 5.49
4/12° 1600 | 5.08
4/15 1280 | 4.60

3/6 3200 | 4.64
3/7 2743 | 4.24
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Figure 1: Error performance of DM inner codes

density of the sparse code. While that claim may need
to be revisited in light of the changes introduced here,
the performance for Py = 0 still provides a useful base
reference.

3.1. Simulation of Unprotected DM Inner Codes

For hard-decision decoding, one may describe the
operation of the DM inner codes as a translation of
channel insertions and deletions at the bit level into
substitutions at the symbol level. We seek to under-
stand this performance by simulating DM inner codes
without any channel code. For block sizes of 19200
bits, we simulate the inner codes used by Davey [1]
for k/n = 4/5 to 3/7, and lower rate codes down to
k/n=4/15.

Through most of its range, the empirical symbol
error rate (SER) performance ¢; is proportional to the
channel parameter p: ; = ap. The effect of k/n on
the empirically-determined « is tabulated in Table 1.
Corresponding SER results are shown in Figure 1.
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Figure 2: Error profile of k/n = 4/15 DM inner code

As expected, higher-rate codes perform worse, in
that for the same p, ¢; is higher. Clearly, outer-layer
protection is essential for obtaining the performance re-
ported by Davey. Observe also that in terms of SER,
the k/n = 3/7 DM inner code has the best performance
within the simulated set. Surprisingly, it is as good
as (or better than) other optimally-spread codes with
lower rate and higher sparse-symbol length n, such as
the k/n = 4/15 code. Within the set of codes with
a given value of k, performance improves as expected
by increasing n. However, the gain in performance
quickly becomes negligible. There is little gain going
from k/n = 4/8 through 4/15, and an even smaller dif-
ference between that set and the k/n = 3/6 and 3/7
codes used by Davey.

3.2. Error Profile of DM Inner Codes

The isolated performance of the outer turbo codes
was considered in [4] for the g-ary symmetric channel
(QSC). The QSC is the discrete memoryless channel
with g-ary input and output alphabets; for a substitu-
tion rate P, the probability that an input symbol will
be unchanged is (1 — Py); otherwise each of the other
q — 1 symbols is and equally likely substitution.

We have already shown [4] that the performance
of the DM-Turbo codes is not accurately predicted by
mapping the turbo code performance on a QSC channel
to the DM inner code performance on a BSID channel.
A first attempt at understanding this discrepancy is
to determine the error profile for DM inner codes as
dependent on the message symbol. For uniform ran-
dom messages in GF(16), we simulate the SER per-
formance, keeping separate error counts according to
the corresponding message symbol. Simulations are
performed over a range of channel error rates p. Re-
sults for the k/n = 4/15 code is shown in Figure 2, for
0.05 <p<0.2.

The k/n = 4/15 DM inner code is an optimally-
spread code, consisting of the zero codeword and all
codewords of weight 1. This means that the zero code-
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Figure 3: Error profile of DM inner codes with different
codebooks

word is at unit Hamming distance from all 15 remaining
codewords, while each of the non-zero codewords is at
unit Hamming distance from the zero codeword and at
a Hamming distance of two from other weight-one code-
words. It is then to be expected that message symbols
corresponding to the zero codeword will have a higher
probability of error, while all other codewords will have
approximately equal error rates. This is verified by the
simulation results of Figure 2.

Also observe from the figure how the difference in
performance is reduced as the channel error rate is in-
creased. This is also to be expected, since increasing p
reduces the difference between p and p?, that is between
the likelihoods of a single- or a double-bit error.

3.3. Effect of Codebook Design on Error Profile

When an optimally-spread codebook cannot be found,
it is not clear which codewords were used in [1]. Con-
sider, for instance k/n = 4/8. We compare three dif-
ferent codebooks.

The straight code uses the zero codeword, all eight
weight-one codewords, and the first seven weight-two
codewords (in lexicographical order). Let ¢;(c) be the
number of codewords at distance i from c. There are
two groups of codewords: 0 and 1 have ¢; = 8, while the
remaining codewords only have ¢1(c) = 2. In this case
one expects the error probability to be approximately
the same for the 0 and 1 codewords, and lower for the
remaining codewords. Simulation results for this code,
shown in Figure 3, confirm this prediction.

To some extent ¢; depends on the column-weight
distribution for the codebook. It is usually desirable
in a code that the columns have equal weights. In the
k/n = 4/8 DM inner code we replace codewords 9 <
d < 15 so that the column weights are as balanced
as possible. Several codebooks achieve this, with six
columns of weight 3, and two columns of weight 2. One
such codebook is called the quasi-balanced codebook in
the figure. All the codewords have ¢; = 2 or ¢; = 3,
except zero with ¢; = 8. Figure 3 confirms the expected
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Figure 4: Performance of DM-Turbo code for different
codebooks

behavour, where the error probability when word 1 is
submitted drops significantly.

Given that turbo codes in general assume a sym-
metric channel error distribution, one would expect
better performance for the concatenated code with a
flat error profile. By replacing the zero word by a word
of weight 2, we can get ¢; = 3 for all columns. Half
the words have ¢co = 2 and the other half has ¢; = 7.
The result is the balanced codebook with an almost
flat error profile in Figure 3. A slight difference can
be observed between the two groups of words, but a
simulation with tighter tolerance limits is necessary to
make a confident statement about this.

3.4. Codebook Design and Error Rates

More interesting than the error profile from the in-
ner decoder, is the error rates of the different code-
books. We have simulated the three different k/n =
4/8 inner codebooks with no outer code, with an 80%
confidence interval within £2%. Under the same chan-
nel conditions, the quasi-balanced codebook reduces
SER by 4.2%, and the balanced codebook by 13.7%,
both compared to the straight one. Although the dif-
ference is relatively small, it is consistent.

More importantly, we want to know how the code-
book design affects the error rate of the concatenated
code. Figure 4 shows this comparison, using a rate 1/5
outer code and the 4/8 inner codes. Again we can see
that both the balanced and quasi-balanced codebooks
outperform the straight one in the waterfall region. It is
particularly interesting to note that the balanced code-
book is the most efficient one in some cases, as it devi-
ates from [1] by not using the lowest weight codeword.
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Figure 5: Performance of DM-Turbo codes for a 6 000-
bit block size

3.5. Overall Design Choices

Finally we discuss the complete system, and com-
pare it to the results claimed by Davey and MacKay.
We have restricted ourselves to turbo codes without
puncturing. Let R be the outer code rate, R. = %R the
rate of the concatenated code, and N, = %Nn. The
simulation results are shown in Figure 5 for a frame
size of approximately 6 000 channel bits.

Davey’s code ‘T" has R, = 1/20. We can see that our
codes have a steeper waterfall and apparently a lower
error floor than code ‘T". The R. = 1/10 has better
error rates at twice the information rate of ‘I’. The
R. =3/35~ 1/12 and R. = 4/75 ~ 1/19 codes give
successively better performance at a cost of information
rate.

There is little to distinguish the two R. = 1/10
codes, with ¢ = 8, 16 respectively. However, it is rather
surprising that using k/n = 3/7 is a massive improve-
ment over 3/6 at a slight loss of information rate. This
partly confirms the results in Table 1, that the k/n =
3/7 code is remarkably good.

4. Conclusions

All other things being equal, it appears that the
most important performance contributor is the outer
code rate. A secondary but significant effect is due to
the optimality of the inner code, its codebook design,
the overall block size (determined by outer code inter-

leaver size), and the outer code alphabet size. It is
difficult to decouple these effects in order to analyse
them separately, and further investigation is required
to establish a recommended design practice.

The significant effect of the inner code performance
suggests that a better explanation of its workings would
be useful. There is still no explanation for the improved
performance of the k/n = 3/7 over the k/n = 4/15
inner code (when simulated separately). Given that
both codes are optimally-spread, and that the k£ = 4
code has the lower rate, one would rather expect the
opposite.

We have shown that the DM inner codes provide un-
equal protection, and verified by simulation that the er-
ror rate is dependent on the data symbol values. Mod-
ifications to the code construction have also been pro-
posed to alleviate this asymmetry without any increase
in complexity. The improved performance for the mod-
ified construction has been verified by simulation.

Acknowledgment

This work was funded by the Engineering and Physical
Sciences Research Council UK, grant EP/E056407/1.
The first author also expresses his gratitude for funding
under the EUMedGrid FP6 project, contract Ne 026024.

References

[1] M. C. Davey and D. J. C. MacKay, “Reliable com-
munication over channels with insertions, deletions,
and substitutions,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 687698, 2001.

[2] G. Sharma and D. J. Coumou, “Watermark syn-
chronization: Perspectives and a new paradigm,’
Information Sciences and Systems, 2006 40th An-
nual Conference on, pp. 1182-1187, 22-24 March
2006.

[3] F. A. P. Petitcolas, R. J. Anderson, and M. G.
Kuhn, “Attacks on copyright marking systems,”
in Second Workshop on Information Hiding, ser.
Lecture Notes in Computer Science, D. Aucsmith,
Ed., vol. 1525. Portland, Oregon, USA: Springer-
Verlag, Apr. 14-17th, 1998, pp. 218-238.

[4] J. A. Briffa and H. G. Schaathun, “Non-binary
turbo codes and applications,” in Proc. IEEE In-
tern. Symp. on Turbo Codes & related topics, Lau-
sanne, Switzerland, Sep. 1 5, 2008, pp. 294 298.

Authorized licensed use limited to: University of Surrey. Downloaded on June 03,2010 at 14:21:59 UTC from IEEE Xplore. Restrictions apply.



