
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Mutual Information for Lucas-Kanade tracking

(MILK): An inverse compositional formulation

Nicholas Dowson Member, IEEE and Richard Bowden Senior Member, IEEE

Abstract

Mutual Information (MI) is popular for registration via function optimisation. This work proposes an

inverse compositional formulation of MI for Levenberg-Marquardt optimisation. This yields a constant

Hessian, which may be precomputed. Speed improvements of 15% were obtained, with convergence

accuracies similar those of the standard formulation.

I. INTRODUCTION

An inverse compositional formulation for aligning a template and a reference image using

mutual information is derived in this paper. The alignment or registration of a pair of images is

an operation required in many applications such as image mosaicking [16], simultaneous local-

isation and tracking [6] and multi-modal image alignment [13]. In many applications numerous

registration operations are required. So any improvements in the speed have a large effect on

application performance as a whole.

Lucas and Kanade made one of the earliest practical attempts to efficiently align a template

image to a reference image [9], minimising the Sum of Squared Difference similarity function.

Processing was limited by using a Newton-Raphson method to traverse the space of warp pa-

rameters. In Newton-Raphson optimisation, iterative parameter updates to alignment parameters

are obtained by multiplying the Jacobian by the inverse Hessian of the similarity function. Lucas

and Kanade mainly considered translations, but they demonstrated that any linear transformation

could be used.
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Later research considered more complex transforms and attempted to reformulate the similar-

ity function allowing pre-computation of some terms. In particular, Hager and Belhumeur [8]

proposed inverting the roles of the reference and template at a strategic point in the derivation,

and Shum and Szeliski [16] constructed the warp as a composition of two nested warps. In

a general treatise on Lucas-Kanade (LK) techniques [1], Baker and Matthews combined these

methods to formulate the inverse-compositional method.

Sum of Squared Differences (SSD) has several advantages as a similarly function: it is fast, it

simple to implement, it has a wide basin of convergence (making convergence easy), its gradient

is simple to derive and it is well understood. SSD’s disadvantages include limited robustness

to noise and variations in lighting conditions. Its wide basin of convergence can also make the

result ambiguous. However, tracking multiple features and the use of models of appearance and

structure can significantly improve robustness [5].

Mutual Information (MI) is only slightly more expensive than SSD to compute and has several

advantages. MI tolerates non-linear relationships between the intensities in images and is robust

to noise. MI has a sharp peak, giving a precise result. However a starting point near to the

solution is required. In the medical image registration field MI is now widely used after its

concurrent introduction and popularisation by Viola and Wells [20], Studholme et al. [17] and

Collignon et al. [4].

Numerous MI implementations exist [13], but few use an analytic derivative, limiting the

optimisation methods that may be used. The analytic derivative is difficult to obtain because of

the non-linear flooring functions implicit to the histogramming process using in calculating MI.

Notable exceptions are an analytic derivative of MI using Partial Volume Interpolation by Maes

et al. [10]; and a derivative for MI using B-spline Parzen windowing by Thevenaz & Unser

[18]. More recently, a general derivation for the four common types of MI was published by

Dowson and Bowden [7]. The availability of a general analytic derivative for MI allows its use

in the so called Lucas-Kanade (LK) framework. This has implications to applications in both

the computer vision and medical imaging communities.

The contribution of this work is to develop an inverse compositional formulation for MI.

This uses two techniques: first, the alignment function is recomposed as function of a base

warp and a warp variation; and second, the roles of template and reference image are inverted

or exchanged. This is difficult in the case of MI because the template and reference values
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are not separable into two terms. But with some limited assumptions of constancy, speed-ups

are still obtainable, while maintaining the same accuracy as the conventional forwards-additive

approach. Brooks and Arbel have also explored reformulating functions [3]. However, they use a

BFGS optimiser, a bracketing and line-minimisation method. BFGS only requires a Jacobian to

be supplied, and iteratively constructs a Hessian during optimisation. In contrast, our approach

evaluates a Hessian directly and uses this in a Levenberg-Marquardt (LM) algorithm, a Newton-

type method. A direct comparison would really be considering two optimisation philosophies

rather than two formulations, and is hence beyond the scope of this work.

The remainder of the paper is arranged as follows. After a background to image alignment in

Section II the inverse compositional formulation of MI is presented in Section III. The derivation

obtained is compared to existing methods in terms of convergence and speed Section IV before

the conclusions are given in Section V.

II. BACKGROUND

To begin with a brief formalisation of the registration process is required. Let Ir represent a

reference image, and let It represent a template image. The images are functions of 2D coordinate

x ∈ R2. Some trivial changes to the formalisation allow volumetric data R3 to be represented as

well. Since Ir and It are represented as lattices of values at integral positions for x, interpolation

is used to obtain values at non-integral x values.

The registration process aims to locate the region in Ir that most resembles It, by minimising

a distance function, f , which measures the similarity of the two regions. The position of It

relative to Ir is specified by a warp function w with parameters v.

vreg = argv min f [Ir(w(x,v)), It(x)] (1)

The position of greatest similarity is found using an optimisation method. f can be any similarity

measure e.g. SSD or MI. MI increases with greater similarity, so to maintain convention we

minimise negative MI. For convenience and computational efficiency Ir is treated as infinite in

extent, and sampling to measure f is always performed within bounds of the defined region of

It. Regions outside the defined region of Ir are defined as 0. Hence It is constant with respect

to the warp parameters, and computationally expensive boundary checking is avoided.

Many optimisation algorithms exist, but LK methods use a particular group of these: the so

called Newton-type methods i.e. methods, which assume locally parabolic topology and “jump”
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Name Update

(Full) Newton Descent v(k+1) ← v(k) −H−1G

Quasi-Newton Descent v(k+1) ← v(k) − H̃−1G

Steepest Descent v(k+1) ← v(k) − λG

Levenberg Marquardt v(k+1) ← v(k) − ((1 + λI)H̃)−1G

Fig. 1. Updates for four Newton-type optimisation Methods. (1 is a matrix of ones). Although not explicitly indicated, several

λ values may be tested.

to the minimum using gradient information: v(k+1) ← v(k) −H−1(v(k))G(v(k)). Here H is the

Hessian of f , ∂f
∂v

, G is the Jacobian of f , ∂2f
∂v2 , and k indexes the iteration number. Newton

methods should be contrasted with methods that choose a direction, bracket the minimum, and

minimise along the line using Brent’s algorithm [2], e.g. Powell’s Method or Variable Metric

Methods [14]. Bracketing methods are more stable than Newton methods, but somewhat slower,

since more function evaluations are performed.

Minima in tracking and registration problems are frequently numerous and closely spaced,

so the robustness of bracketing yields little advantage. Speed improvements on the other hand,

make multiple initialisations practical, which can improve performance.

Generally LK type methods apply Quasi-Newton optimisation, i.e. an approximate Hessian,

H̃ , is used. In general, Newton and Quasi-Newton only perform well when near to the minimum.

Steepest Descent methods, which ignore local curvature and instead multiply G by a scalar step-

size value λ, perform better when further from the minimum. The Levenberg-Marquardt [11]

method combines these two methods for optimal performance. A summary of these methods is

supplied in Fig. 1.

A. Lucas-Kanade Framework

The Lucas-Kanade (LK) framework uses the sum of squared differences function, in a forwards-

additive formulation, to use the terminology of [1]. In this formulation, a base warp, v, and a

warp variation, ∆v, are used together to parameterise the relative positions of Ir and It:

fSSD(v + ∆v) =
∑
x

[Ir(w(x,v + ∆v))− It(x)]2 (2)
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A first order Taylor expansion is applied to the function within the brackets (not to the function

as a whole):

fSSD(v + ∆v) =
∑
x

[Ir(w(x,v)) +∇Ir
∂w

∂v
∆v − It(x)]2 (3)

where ∇Ir is the gradient of the image Ir with respect to its coordinates. A partial derivative

with respect to ∆v is then obtained:

∂fSSD

∂∆v
= 2

∑
x

[∇Ir
∂w

∂v
]T [Ir(w(x)) +∇Ir

∂w

∂v
∆v − It(x)] (4)

Assuming a locally parabolic shape and setting the gradient to zero gives a closed form solution

for updating v, which takes the form: ∆v = H̃−1G, where:

G =
∑
x

(
∇Ir

∂w

∂v

)T

(It(x)− Ir(w(x,v))) (5)

H̃ =
∑
x

(
∇Ir

∂w

∂v

)T (
∇Ir

∂w

∂v

)
(6)

Of course a true parabolic surface seldom occurs, so the warp parameter must be iteratively

computed and updated until the variation in parameters or function values becomes sufficiently

small. The computational cost of each update is O(NxNv) for G and O(NxN
2
v) for H , where

Nx is the number of pixels and Nv is the number of warp components.

The Hessian is denoted with a tilde because of an early hidden approximation made in the

Taylor expansion, which neglects some of the second order information. A full second order

expansion applied to the the entire fSSD function yields the full Hessian:

H =
∑
x

{
[∇Ir

∂w

∂x
]T [∇Ir

∂w

∂x
] + (Ir − It)

[
[
∂w

∂v
]T (∇ · ∇Ir)[

∂w

∂v
] +∇Ir

∂2w

∂v2

]}
(7)

In a full Newton derivation (7) would replace (5). Apart from the second term in H being

computationally expensive to compute O(4NxN
2
v) it is often marginal compared to the first term,

especially near the minimum and has little effect on convergence.

B. The Inverse-Compositional Method

Baker and Matthews presented a reformulation of the SSD distance function and update method

called the inverse compositional method in [1]. The warp function was re-composed as a function

of two warps w(x,v) and w(x,∆v) with the roles of Ir and It inverted:

fSSD(v,∆v) =
∑
x

(It(w(x,∆v))− Ir(w(x,v)))2 (8)
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Following the steps in Section II-A using this formulation yields the following approximation

of the Hessian: H̃ = (∇It ∂w
∂v

)T (∇It ∂w
∂v

). This depends solely on the template and is therefore

constant with respect to v. In other words the Hessian may be precomputed, decreasing the

overall complexity of each iterative update to v from O(NxN
2
v) to O(NxNv), reducing the time

to register Ir and It.

III. MUTUAL INFORMATION IN AN LK FRAMEWORK (MILK)

Mutual Information was originally presented by Shannon [15] as a measure of the information

shared between two signals. This is calculated using the joint probability distribution function

(PDF) of the intensities (amplitudes) of the two images (signals):

fMI =
∑
r,t

prt(r, t,v) log

(
prt(r, t,v)

pr(r,v)pt(t,v)

)
(9)

where r ∈ [0;Nr − 1] ∈ Z and t ∈ [0;Nt − 1] ∈ Z are respectively the range of allowed

intensity values in Ir and It. The joint PDF is estimated from the joint histogram prt = N−1
x hrt.

The marginal probabilities are simply obtained by summing along one axis of the PDF, i.e.

pr =
∑

t prt and pt =
∑

r prt. As discussed in [7], several methods to measure MI exist, with

the primary variation being how the image is sampled and the histogram populated. But in all

cases (9) is used.

The membership function of the histogram, ψ, illustrates the relationship between p and v

more clearly than (9):

prt(r, t,v) =
1

Nx

∑
x

ψ[r − Ir(w(x,v))] · ψ[t− It(x)] (10)

For this work, the in-Parzen windowing formulation of MI was used, where the window function

is a B-spline: ψ = βn(·). This formulation, originally proposed by Thevenaz and Unser [18],

individually convolves each intensity sample with the Parzen window before the information

loss associated with binning occurs. This is important, because interpolated intensities can take

non-integer values, the fractional part of which is usually thrown away. The result is a piecewise

constant function as v varies, for which many bracketing and Newton-type optimisation methods

do not perform well.

Unlike the standard-sampling approach, where ψ(ε) is top-hat function, where ψ is 1 for

0 ≤ ε < 1 and 0 otherwise, or the Post-Parzen windowing approach where the histogram is
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convolved with a Parzen window after construction, the cost function for in-Parzen windowing

is smooth. This improves convergence, especially at positions close to the global maximum. In

this work, a third order B-spline window was used.

The Jacobian of MI is found by applying the product and chain rules and some simplifications

[7] to obtain a Jacobian and a Hessian:

G =
∑
r,t

∂prt

∂v
log

(
prt

pr

)
(11)

H =
∑
r,t

{
∂prt

∂v

T ∂prt

∂v

(
1

prt

− 1

pr

)
+
∂2prt

∂v2
log

(
prt

pr

)}
(12)

The derivatives of ψ are easily calculated from the calculus of B-splines [19], since ∂εBn(ε) =

Bn−1(ε+ 1
2
)−Bn−1(ε− 1

2
). The second derivative is obtained in a similar manner.

The last term in (12) is usually neglected because it is expensive to obtain and does not affect

convergence overly once the solution is near the local minimum. This is the analog of neglecting

the second order terms for SSD in (7).

A. Inverse-Compositional MILK

The inverse compositional derivation for MI may now be obtained in the same manner as for

SSD, by splitting the warp into a function of two parameters:

fMI(v,∆v) =
∑
r,t

prt(v,∆v) log

(
prt(v,∆v)

pr(v)pt(∆v)

)
(13)

Hereafter to save space the function parameters are not shown. Using the same approach as

Section II-B for MI, the following gradient function is obtained.

G =
∑
r,t

{
−prt

pt

∂pt

∂∆v
+ log

(
prt

pt

)
∂prt

∂∆v

}
=

∑
r,t

∂prt

∂∆v
log

(
prt

pt

)
(14)

Note how the first term in (14) cancels out, using reasoning similar to that used in [7] to

obtain (11). In
∑

r,t
prt

pt

∂pt

∂∆v
, because pt is independent of r, the summations may be separated

to form
∑

t
1
pt

∂pt

∂∆v
·
∑

r prt. But
∑

r prt = pt, which cancels with 1
pt

, so the whole term becomes∑
t

∂pt

∂∆v
. This summation is zero because of the choice of window function:

∑
∀ε∈Z ∂εψ(ε) =∑

∀ε∈Z ∂ε(B2(ε+ 1
2
)−B2(ε− 1

2
)) = 0. The same reasoning was also used to eliminate pr in the

log function parameter, although this is not shown in (14).
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The Hessian is obtained using chain and product rules, before applying some simplification:

H =
∑
r,t

{
− ∂pt

∂∆v

T ∂prt

∂∆v

1

pt

+
∂prt

∂∆v

T ∂prt

∂∆v

1

prt

+
∂2prt

∂∆v2
log

(
prt

pt

)}
(15)

In the first term of (15), only one factor is dependent on r so it may be separated out to form:∑
t

1
pt

∂pt

∂∆v

T ∑
r

∂prt

∂∆v
=

∑
t

1
pt

∂pt

∂∆v

T ∂pt

∂∆v
. Hence the first term becomes dependent on t only.

H = −
∑

t

∂pt

∂∆v

T ∂pt

∂∆v

1

pt

+
∑
r,t

∂prt

∂∆v

T ∂prt

∂∆v

1

prt

+
∑
r,t

∂2prt

∂∆v2
log

(
prt

pt

)
(16)

In (16) there are three summations, the first of which is first order and independent of Ir. The

second sum is first order but dependent on Ir and the third is second order.

The expensive second order summation (O(NxN
2
v + N2

vN
2
t N

2
r )) can be neglected as was

done for SSD and forwards-additive MI, since it is marginal at positions close to the minimum.

However, the second summation presents more of a problem, since its dependence on Ir requires

it to be recomputed every time v is updated. Its computational cost of O(NxNv +N2
vN

2
t N

2
r ) is

significant relative to that of the first sum (O(NxNv +N2
vN

2
t )), but this sum cannot simply be

neglected, since of summation one and summation two, it forms a larger proportion of H .

Unlike SSD, in MI the influence of Ir and It cannot be wholly split into separate terms that

are combined additively, however the MI function is formulated. Hence for MI, H is always

at least partially dependent on v. MI is not the only such function. Normalised Correlation

(NC) suffers from the same disadvantage, since one of the components of NC is a sum of IrIt

products, which is not separable either.

This cost of re-evaluating second term in (16) every iteration is overcome by assuming its

constancy anyway. This assumption is reasonable so long as the changes to v are small. Although

under large changes this assumption becomes inaccurate, so does the assumption of local linearity

made by the use of a first order Taylor expansion. Hence H̃ may be treated as a pre-computable

constant, which yielded good results.

IV. EXPERIMENTS

Several experiments were undertaken to demonstrate the following:

• Inverse-compositional MI converges as frequently and in the same number of iterations as

forwards-compositional MI.
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• Due the pre-computation of the Hessian, the computational cost of registration is lower for

Inverse-compositional MI than forwards-additive MI.

Experiments were performed using three image pairs for typical applications. These are shown

in the first column of Fig. 2. The first pair of images are two slices taken from a simulated MRI

of a human brain using T1 and PD modes. Because the brain was simulated, the ground truth is

known exactly. The different modalities also present difficulties for similarity that assume a linear

intensity relationship between image pairs. In the second image pair, the template was extracted

directly from the reference image of a natural scene. Although this is somewhat artificial, it

allows the ground truth to be exactly known. The third example is of an indoor scene where the

lighting conditions have changed substantially. The images were hand registered using key-points

at a high resolution (2560x1920) before being cropped and subsampled by five times. Hence the

ground truth is known to within less than a pixel.

Simulated registrations using a six degree of freedom (DoF) affine warp from multiple initial

starting points were performed. The initial positions were generated by randomly offsetting

three of the corner points of the template, and computing the parameters yielding the affine

transformation between the ground truth and offset positions. This is similar to the test framework

used by Baker and Matthews in [1]. In total, six hundred tests per image were performed. These

consisted of six groups of one hundred tests, where a different standard deviation was associated

with each group, and a normal distribution was used for the random offsets. Standard deviations

of 2, 4, 6, 8, 10, and 12 pixels were used. The results over 50 outer-loop iterations of a Levenberg-

Marquardt (LM) algorithm are plotted for each image in the second column of Fig 2. LM rather

than Newton optimisation was used, since it’s use of multiple function evaluations makes it more

robust to tracking failure. The number of iterations was not fixed, two termination criteria were

also used: when the change in function value was too low, i.e. |f (k)− f (k−1)| < 10−4) and when

the maximum change in any one warp parameter was too low, i.e. maxn |∆v
(k)
n | < 10−4, where

n indexes the component of ∆v.

The number of outer-loop iterations is not directly related to the number of function evalua-

tions, since the number of inner-loop iterations may vary. In LM optimisation, G and H are only

re-calculated from the images once per outer-loop iteration. For inverse-compositional formula-

tions H̃ is re-used. Only f is re-evaluated every inner loop iteration. Since LM optimisation may

terminate early, the number of inner and outer loop iterations is displayed, along with the mean
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(a)

(b)

(c)

Fig. 2. Convergence rate for three typical examples of registration problems dealing with: (a) multiple modalities in medical

images, (b) clutter in natural images and (c) specularities in images. In all cases the template used is displayed as a shaded

green template in the upper left hand corner. The size of the template is displayed. The error over 30 outer loop iterations of

the Levenberg-Marquardt algorithm is shown for MI and SSD in both cases for forwards additive and inverse compositional

formulations.

time per optimisation, in Fig. 3. Additional optimisations were made, by re-using computational

constructs utilised to calculate f for calculating G and again for calculating H̃ . This partially

obscures the advantages of using a precomputed H̃ , since the cost of evaluating H̃ in addition to

G is low. A larger increase in cost occurs when H is calculated using second order information.

This is clearly shown in Fig. 4, where the mean cost per evaluation per pixel for each method

tested was measured over 20 tests.

In the first image, inverse-compositional MI managed to converge faster than forwards-additive

MI. The difference arose because inverse-compositional MI utilises an approximate Hessian as

discussed in Section III-A. The initially faster convergence was a surprising result, which is
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Mean Time / Std. Dev.(s) Evaluations of f / f ,G & H̃

Image MI fwds MI inv. SSD fwds SSD inv. MI fwds MI inv. SSD fwds SSD inv.

Image 1: Brain 2.6/1.2 2.2/0.78 2.4/1.2 2.5/1.1 36/18 35/16 39/34 38/36

Image 2: Palace 1.4/0.66 1.3/0.61 0.36/0.18 0.21/0.14 64/37 63/37 31/32 19/20

Image 3: Economist 3.6/1.5 3.6/1.6 5.1/2.3 4.3/2.4 32/13 33/14 39/33 38/27

Fig. 3. Time (mean and standard deviation) and no. evaluations (of inner loop evaluations where only f is measured, and

outer loop evaluations where f , G & H̃ are calculated) required to converge for the three images (across all tests). Note that

the inverse-compositional methods do not re-calculate the Hessian, but re-use the pre-calculated one.

Values Time / pixel (µs)

Evaluated MI fwds MI inv. SSD fwds SSD inv.

f .41 .42 .18 .15

f & G 2.5 2.3 .88 .77

f , G & H̃ 2.4 2.4 1.6 1.6

f , G & H 28. 15. 11. 11.

Fig. 4. Cumulative cost of evaluating a function, its Jacobian, Hessian, and full second order Hessian. Results for both

SSD and MI, for forwards-additive and inverse-compositional approaches are shown as a time cost per pixel averaged over

20 evaluations. A 188x252 template was used, which was sufficient that the overhead of function initialisation was negligible.

Affine transformations were used.

believed to occur because the forwards-additive approach updates the Hessian to model local

conditions leading it to take more conservative steps than the inverse-compositional algorithm.

However the constant histogram also has the side effect of a larger final error than the forwards-

additive approach. The final error also increased with initial offset, because the region in Ir

overlapped initially had less in common with the overlapped region when the algorithm finally

converged. This implies that once convergence is reached, optimisation should be restarted with

an updated Hessian that accounts for local conditions. An experiment to verify if restarting

the algorithm would improve the final error for the inverse-compositional formulation was

undertaken. One hundred random offsets with a standard deviation of 12 pixels were used used

to initialise optimisation for the medical image pair shown in Fig. 2a. The results of these

tests, given in Fig. 5, show that restarting the algorithm reduced the final error of the inverse-

compositional method to that of the forwards-additive method. The re-evaluation of the Hessian

caused by the restart came at an increased time cost of 2.9s, versus 2.7s without the restart (3.3s
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Fig. 5. Experiment showing the improvement in final accuracy for the inverse-compositional formulation when restarting

optimisation. Only the last 25 iterations are shown to make the improvement visible.

for the forwards-additive approach). The SSD tests are for interest only in this case, since the

non-linear relationships of multi-modal medical images are well known to confound SSD.

In the second image pair SSD converged faster than MI in every case. This is due to the direct

match of the template and reference intensities (in the correct position) and the large basin of

convergence typical of SSD. MI an the other hand appeared to become trapped or slowed by

the local topology of function surface. Although MI is perhaps not the ideal distance function

for the a problem like image 2, note how the inverse-compositional approach for MI performs

as well as the forwards additive approach.

Image 3 is a difficult problem due to the radical changes to intensity induced by specularities

on the object as lighting conditions change. MI’s tolerance of non-linear intensity relationships

allows slightly better performance than SSD in that convergence is always towards ground truth,

but convergence failure occurs in most cases. Inverse-compositional MI performs comparably to

forwards-additive MI, although it too becomes trapped in local minima in many cases.

For MI, the mean time to convergence was faster for the inverse-compositional formulation

in most cases, despite the thriftiness of the LM method with Hessian evaluations. Time savings

up to 15% were made. Approximately the same number of iterations were performed in both

cases. For SSD, the inverse-compositional approach was almost twice the speed of the forwards-

additive approach for image 2, agreeing with previous work [1]. The speed improvement was

due partly to the efficiency of the inverse-compositional formulation and partly to the fewer

iterations required to converge on average. This pattern was not repeated for images 1 and 3,

for two reasons. Firstly, LM’s thriftiness with Hessian evaluations. Secondly, the cost of Hessian

DRAFT April 28, 2007



DOWSON AND BOWDEN: MUTUAL INFORMATION FOR LUCAS-KANADE TRACKING (MILK) 13

evaluation was reduced by re-using parts of the function and Jacobian evaluations.

The speed of SSD relative to MI indicated that for many applications it is still the method of

choice. Standard sampled MI can compete with SSD in speed [7], but due to its noisy function

surface does not perform well for Newton-type optimisation methods. It does perform well for

random sampling optimisation methods and with the simplex algorithm, but these algorithms do

not use the Hessian, so an inverse-compositional approach holds no advantages.

In addition to the tests above, a tracking algorithm was implemented using the strategic update

approach of Matthews and Baker [12]. In it, the tracking performance of forwards-additive

MI and inverse-compositional MI were compared on a video sequence. For comparable real-

time performance to SSD, standard sampled MI was used rather than the in-Parzen windowing

approach used in the tests above. The results are shown in Fig. 6. As shown the inverse-

compositional approach performed just as well as forwards additive. Results using SSD are

also shown for interest. SSD also tracked quite well but a large occlusion by the hand pulled

the tracker off target.

V. CONCLUSION

In this paper, an inverse compositional formulation for Mutual Information was introduced.

This reformulates the MI function to yield an approximate Hessian that is dependent only upon

the template image values and is therefore constant. The Hessian is approximate because, cross

terms between the reference and template intensities exist, which cannot be separated and vary

with the warp parameter. These can be assumed to be constant too because the variation warp

parameter is small. Inverse Compositional SSD on the other hand has an exact Hessian (to first

order), because the effects of the two images are entirely separable.

The result of several experiments showed that inverse-compositional MI could compete with

forwards-additive MI in terms of registration accuracy, and demonstrated computational savings

of up to 15%. This improvement occurred despite two confounding factors. Firstly, Levenberg-

Marquardt optimisation does not require a Hessian to be evaluated every time a function is

calculated. Secondly, the Hessian computation was optimised by re-using components utilised

to calculate the function value. For methods where the Hessian is required every iteration, like

the Newton method the computational improvement would be greater. In testing, SSD and MI

each performed best in different applications suggesting that neither function is ideal in all

April 28, 2007 DRAFT



14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

(a)

(b)

(c)

(d)

MI fwds MI inv. SSD fwds SSD inv.

Fig. 6. Tracking a face over a video sequence using various algorithms at (a) Frame 24 (b) Frame 37 (c) Frame 100 (d) Frame

200. Four algorithms were used, namely: forwards-additive and inverse-compositional formulations for MI and SSD. All the

methods performed comparably, except in the case of SSD on occlusion halfway through the sequence pulled the SSD trackers

of target. MI supposedly deals with occlusions better. In our experience this is not always the case.

circumstances.

The source code and test harness of this work have been made available at the authors’ website.

In future work, the effect of using more accurate joint-histogram approximations estimated from

the marginal histograms will be investigated. Testing with non-rigid 3D data transformations will

also be examined, as will reformulations of other functions like Normalised Correlation.
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