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R-matrix and dynamical model calculations of three-body resonance decay widths
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Calculations of the decay widths of three-body resonances are considered using both R-matrix and dynamical
three-body theoretical models. The R-matrix approach, which treats the three-body decay as two, ordered
two-body decays, has both simultaneous and sequential particle emission pathways, each with an associated
decay width. The question of how these two widths should be combined to determine the total resonance width
is considered using comparisons with the width deduced from fully dynamical three-body model calculations.
We use the decay of the well-understood 6He(2+, 1.8 MeV) resonance (into 4He + n + n) as a benchmark case.
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I. INTRODUCTION

An understanding of the formation and decay of three-body
resonance states is of increasing importance as radioactive
beam experiments push the boundaries of the detection of
bound and resonant states to increasingly exotic nuclei. Two-
neutron halo states and two-proton radioactivity are examples
of novel three-body phenomena exhibited by such systems.

Traditional R-matrix theory [1] assumes that three-body
channels make a negligible contribution to decay widths,
in comparison with two-body channels, and is not imme-
diately applicable to three-body resonances. However, Lane
and Thomas [1] proposed that three-body reactions could
be discussed within an R-matrix framework if treated as
two, ordered two-body reactions. Barker has developed this
approach with several applications to two-proton and two-
neutron radioactivity [2–5].

Three-body nuclei, composed of A,B, and C, are thus
assumed to decay by one of three distinct paths, through
intermediate states of the {AB}, {AC}, and {BC} two-body
systems, e.g.,

{ABC} → {AB} + C → A + B + C,

with associated decay widths �{AB}C , etc. If these decays
are independent then the associated widths should simply be
summed to obtain the total three-body decay width of the state
{ABC}. However, as discussed by Barker [5], the decays may
not be independent, in which case an estimate of the maximum
total width is given by the maximally coherent sum of these
partial widths. Barker’s analyses found that, in general, the
calculated maximally coherent width is less than or equal to
the measured widths of the states [5]. Of the nuclei studied by
Barker, only one example, the rather broad 5H system, decays
by two-neutron emission. In that example it was found that
the incoherent sum was in better agreement with experiment,
contrary to the findings for the other nuclei. In an attempt
to clarify this situation we consider the better understood
2+(1.8 MeV) three-body resonance in 6He, where the interac-
tions of the two-body subsystems have been studied in some
detail. We use a modified version of the approach of Barker [5].

The decay widths obtained are compared with the predictions
of full, three-body dynamical calculations, using as nearly
as possible the same underlying inputs and interactions. The
latter calculations make no assumptions about specific paths
of decay.

In the following section the important characteristics of
the 6He 2+ resonance example are discussed. In Sec. III the
R-matrix approach is introduced very briefly, as it relates to
both the two- and three-body systems under discussion. The
spectroscopic factors used for the different two-body configu-
rations are also clarified. The parameters and interactions used
in the calculations are discussed in Sec. IV. The R-matrix
model results are then discussed in Sec. V and the three-body
model and its results in Sec. VI.

II. THE 6He CASE

The width of the 6He, 2+(1.8 MeV) resonance was mea-
sured [6] to be �exp = 113 ± 20 keV. There have also been
several theoretical calculations for this system. The results
of some of these are summarized in Table I. As is evident
from Table I, none of these calculations produce a width
consistent with the experiment. Detailed comparisons of the
different theoretical predictions are, however, difficult to make.
Differences between the various model calculations result
from, among other things, the use of different model-space
truncations and of different interactions for the system. Further,
the latter may or may not have been tuned to position the
resonance energy at the measured value. For example, the large
width in the case of the algebraic model of Ref. [7] is the result
of a 2+ resonance position at 1.49 MeV (rather than 824 keV)
above threshold. In the present work the R-matrix description
will be compared with three-body calculations based on a
hyperspherical harmonics (HH) decomposition of the wave
function. Use of the HH method avoids the coherent versus
incoherent concerns of the R-matrix method, producing the
total width of the state directly. The same interactions are used
in both calculations, as far as this is possible, to enable fair
comparisons.
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TABLE I. Previous theoretical calculations of the width of the
6He, 2+(1.8 MeV) resonance, calculated using the complex scaling
(CSM), analytical continuation in the coupling constant (ACCCM),
algebraic model (AM) and hyperspherical harmonic (HH) methods.
The measured value is also shown.

� (keV) Method Reference

113 ± 20 Experiment [6]
60 CSM [8]
70 ACCCM [9]
168 AM [7]
40 HH [10]
∼60 HH [11]

In the R-matrix method, the 6He, 2+(1.8 MeV) decay is via
the following ordered two-body routes:

I: 6He(2+) → 5He(3/2−) + n → 4He + n + n,

II: 6He(2+) → 4He + 2n(0+) → 4He + n + n.

Path I decays are referred to as sequential, the two neutrons
being emitted one after the other. Path II decays are referred to
as simultaneous, the neutrons being emitted together. Clearly
the sequential route requires a knowledge of the 5He + n

and 5He = (4He + n) subsystems and their interactions. The
simultaneous route requires consideration of the 4He + 2n and
the n + n interactions. Similarly, the three-body HH calcula-
tions require, in common, the 4He + n and n + n interactions.
The models used for these interactions are discussed later.

The two decay paths, their associated resonant and virtual
state energies, and reaction-relevant decay energies are now
defined in Figs. 1 and 2. Here Q2n and Q1n denote the energies
of the three-body, 6He(2+), initial state, and the two-body
intermediate resonance/virtual states, respectively, measured
relative to the 4He + n + n threshold. The energies E and U

are used to refer to arbitrary energies of the initial (three-body)
and intermediate (two-body) systems, respectively. These
energies are also measured with respect to threshold.

The R-matrix methodology applied to these two decay
pathways is discussed in the following section.

FIG. 1. (Color online) Sequential decay paths from the 6He 2+

resonance through the unbound intermediate states in 5He. Q2n and
Q1n, the energies of the 6He(2+) and 5He(3/2−) resonances relative to
threshold, are shown in MeV. The energies E and U refer to arbitrary
energies in the initial (6He) and intermediate (5He) systems.

FIG. 2. (Color online) Simultaneous decay paths from the 6He 2+

resonance through the intermediate, unbound 2n two-body channels.
Q2n and Q1n, the energies of the 6He(2+) and 2n(0+) virtual state
relative to threshold, are shown in MeV. The energies E and U refer
to arbitrary energies in the initial (6He) and intermediate (2n) systems.

III. THE R-MATRIX METHODOLOGY

A. Two-body systems

In two-body R-matrix theory a matching radius, a, marks
the boundary between the internal (r � a) and external (r > a)
regions of radial separation of the two bodies. In the internal
region the exact scattering wave function, ψ(U, r), for a two-
body Hamiltonian H at an energy U , is expanded in terms of
a complete set of orthonormal R-matrix eigenstates ψ̃p(r) as

ψ(U, r) =
∑

p

Cpψ̃p(r), r � a, (1)

with expansion coefficients Cp. Here, the appropriate orbital
and total angular momentum labels of the channel of interest
are assumed but are not shown explicitly. The ψ̃p(r), with
energy eigenvalues εp, are the solutions of the eigenvalue
problem for the same two-body Hamiltonian as calculates
ψ(U, r) but subject to the (R-matrix) boundary conditions
of (a) regularity at r = 0 and (b) the logarithmic derivative
condition at r = a,[

1

ψ̃p(r)

dψ̃p

dr

]
r=a

= β (2)

for a fixed β. Fixing β renders the kinetic energy operator
Hermitian on the interval 0 � r � a and ensures the orthogo-
nality of the states ψ̃p(r) in this range. It is usual and convenient
to introduce a dimensionless constant b = aβ. This b (with a)
determines and will be referred to as the boundary condition.

In the single-term (one-pole) approximation, the scattering
wave function is approximated by just the lowest (p = 1)
normalized R-matrix eigenstate. In this case an optimum
choice for b is

b =
[

a

ψ(ER, r)

dψ(ER, r)

dr

]
r=a

, (3)

the logarithmic derivative (at r = a) of the exact ψ evaluated
at the two-body resonance (or virtual state) energy ER . In the
single term limit, we can then drop any reference to p and the
R-matrix, R(U ), is

R(U ) = γ 2

ε − U
, (4)
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ε being the single R-matrix (pole) energy. Here γ 2, the reduced
width, is given by [5]

γ 2 = h̄2

2µa
S|ψ̃(a)|2, (5)

where µ is the reduced mass and S is the spectroscopic factor
for the given two-body partition.

B. Spectroscopic factors

In Sec. VI we will discuss dynamical calculations, full con-
tinuum solutions of the three-body Schrödinger equation for
the 4He + n + n system, based on use of an HH decomposition
of the wave function. Here, to enable best comparisons with
the R-matrix analyses, these HH calculations were used to
determine the spectroscopic factors, S, for each decay step
in the R-matrix calculations—as required for the associated
reduced widths in Eq. (5). These HH calculations determine
(a) an 84% probability for the [[4He ⊗ p3/2]3/2− ⊗ p3/2]2+

component of the 6He(2+) state. Thus, when multiplied by
2 (the number of valence neutrons), this gives a value S =
1.64 for the 6He → 5He + n step, relevant to the sequential
decay pathway. Similarly, the [[2n(0+) ⊗ (� = 2)]2+ ⊗4 He]2+

probability is 39% and S = 0.39 for the simultaneous, 6He →
4He + 2n step. The second, implied decay steps, 2n → n + n

and 5He → 4He + n, are taken to have spectroscopic factors
of unity. These spectroscopic factors are collected in Table II.

C. Three-body systems

The three-body decay pathways proceed through an inter-
mediate state, being the 5He(3/2−) and 2n(0+) channels, which
include the 5He(g.s.) resonance and the n + n virtual states,
respectively. These states are rather broad in their strength with
respect to the two-body relative energy variable U (of Figs. 1
and 2). This strength distribution is described by a probability
density function, ρ(U ). Following Lane and Thomas [1], one
can define ρ(U ) as the interior norm (IN) of the exact scattering
wave function ψ(U, r) at each energy U , i.e.,

ρIN (U ) =
∫ a

r=0
|ψ(U, r)|2dr, (6)

where, to maintain consistency with Lane and Thomas, we
adopt the asymptotic normalizations

ψ(U, r) = i

v1/2
[H−

� (kr) − Sj�H
+
� (kr)]. (7)

TABLE II. Spectroscopic factors S, from the HH calculations, as
used for the sequential and simultaneous decay pathways from the
2+(1.8 MeV) resonance in 6He.

Sequential Simultaneous

6He → 5He + n 5He → 4He + n 6He → 4He + 2n 2n → n + n

1.64 1.00 0.39 1.00

Because, for 6He, the decays involve only neutrons, the H±
� are

Hankel functions. v and k are the velocity and wave number
corresponding to relative energy U and the Sj� are the partial
wave S-matrix elements. For a single channel, and in the single
term approximation, ρ(U ) can be written in the Lane and
Thomas (LT), resonance-like form [1]

ρLT(U ) = c
�2(U )

[U − Q1n − �2(U )]2 + [�2(U )]2/4
. (8)

Here the subscripts 2 refer to the second step of the decay,
which for the simultaneous case is 2n → n + n and for the
sequential case is 5He → 4He + n. The overall multiplicative
constant c is chosen such that, when integrated over all U, ρ(U )
is normalized to unit strength. This normalization implies
that the intermediate state decays proceed with certainty
subsequent to their production in the first step. In the following,
integrals over U are evaluated on the range 0–10 MeV for the
sequential pathway and on 0–20 MeV for the simultaneous
pathway. The formal width, �2(U ), of the second step at energy
U is

�2(U ) = 2γ 2
2 P2(U ), (9)

where P2(U ) is the penetrability,

P2(U ) = ka

G�(ka)2 + F�(ka)2
. (10)

Also present in Eq. (8) is the shift term �2(U ), involving the
reduced widths. Explicitly,

�2(U ) = −γ 2
2 [S2(U ) − b] , (11)

where the shift function S2(U ), like the penetrability, is defined
in terms of the regular and irregular free-particle scattering
functions F� and G�, as

S2(U ) = ka
G′

�(ka)G�(ka) + F ′
�(ka)F�(ka)

G�(ka)2 + F�(ka)2
. (12)

Here the primes denote derivatives with respect to the
arguments of the functions (kr).

D. R-matrix boundary conditions

A consequence of the energy dependencies of the pene-
trability and shift terms in Eq. (8) is that ρLT(U ) is not a
Lorentzian and hence the formal width �2(U ) does not trivially
determine the width of ρLT(U ). However, if one approximates
the shift function to be linear over the range of U relevant to
the resonance strength and uses the first two terms of its Taylor
expansion about the resonance position U = Q1n one obtains
a form we call the linear approximation (LA) for ρ(U ) that
more closely approximates a Lorentzian. Explicitly,

ρLA(U ) = c′ �0
2(U )[

U − Q1n − �0
2

]2 + [
�0

2(U )
]2/

4
, (13)

which now contains an energy independent shift term

�0
2 = −γ 2

2 [S2(Q1n) − b]

1 + γ 2
2

dS2
dU

∣∣
U=Q1n

, (14)
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together with an observed width, �0
2(U ), given by

�0
2(U ) = �2(U )

1 + γ 2
2

dS2
dU

∣∣
U=Q1n

. (15)

The observed width provides a better approximation to the
actual width of the ρ(U ) distribution.

In previous works by Barker, the R-matrix boundary
condition was fixed at the value b = S2(Q1n). As is clear from
Eq. (14), this choice simplifies ρLA(U ), removing the �0

2 shift
term. Specifically, one obtains what we will refer to as the
Barker form ρB(U ),

ρB(U ) = c′ �0
2(U )

[U − Q1n]2 + [
�0

2(U )
]2/

4
, (16)

with �0
2(U ) the observed width, as given above.

As was discussed in subsection III A, an optimum choice of
the derivative boundary condition in the case of the single-pole
approximation to the R-matrix is given by Eq. (3). To calculate
these b it is first necessary to specify the two-body interactions
for the different subsystems. These are introduced in the next
subsection. The consistency or otherwise of the b = S2(Q1n)
assignment, and the adequacy of the Barker approximation
above can then be assessed.

IV. TWO-BODY INTERACTIONS

With the exception of the n + n interaction, the central
potentials in all two-body subsystems are taken to have Woods-
Saxon [12] forms,

Vws(r) = −V0/[1 + e(r−R0)/a0 ], (17)

where V0 is the depth, R0 is the radius, and a0 the diffuseness.
The spin-orbit potential is defined by

Vso(r) = −Vso

asor

e(r−Rso)/aso

[1 + e(r−Rso)/aso ]2
. (18)

We use the following two-body potential parameters. For the
sequential paths we need 4He + n and 5He + n interactions.
For the 4He + n system, we use the analysis of Bang and
Gignoux [13]. There, earlier p3/2, p1/2, and s1/2

4He + n

phase-shift data were fitted using a Woods-Saxon plus spin-
orbit potential. Taking as fixed the geometry of the Bang and
Gignoux potential, the program SFRESCO [14] was used to
search the depths, V0 and Vso, to fit the more extensive recent
phase-shift data [15]. Our improved potential depths are shown
in Table III. For the 5He + n interaction the depth of our
4He + n potential, described above, was adjusted to place the
p1/2

5He + n S-matrix pole at 0.06 MeV above the 5He(g.s.)
energy [16]; see Table III.

For the simultaneous decay paths we need n + n and 4He +
2n interactions. For the n + n interaction we use a simple
Gaussian form, namely

Vnn(r) = −V0 exp[−(r/R0)2]. (19)

The depth and range, given in Table III, parametrize the
low-energy scattering, and the virtual state at −0.12 MeV,
of two neutrons in a relative s state [17]. Using this or the
more complicated Gogny, Pires, and Tourriel (GPT) n + n

TABLE III. The potential parameters used in the R-matrix and
HH calculations. The deduced R-matrix boundary conditions, b, for
the two steps of each decay pathway are also tabulated.

System V0 (MeV) R0(fm) Vso (MeV) Rso(fm) b

[a0 (fm)] [aso (fm)]

n + 4He 44.21 2.00 38.91 1.50 −0.2
[0.70] [0.35]

n + 5He 46.60 2.00 40.00 1.50 −0.9
[0.70] [0.35]

n + na 31.00 1.80 0.27
2n + 4He

Dineutron 71.26 2.00 −1.0
[0.70]

d + 4He 80.25 1.90 −1.1
[0.65]

Bin 39.75 2.38 −0.9
[1.14]

aNote that the n + n potential is of Gaussian form.

interaction [18] made only very minor differences to the
results of the three-body (HH) calculation. Thus, the Gaussian
parametrization of Eq. (19) was used throughout. To specify
the 4He + 2n two-body interaction is clearly a source of greater
ambiguity in the simultaneous path of the R-matrix method.
We have taken three physical limits for this interaction:

(i) We assume a point 2n(0+), or dineutron, in which case
the interaction is twice the central part of the 4He + n

interaction of Table III.
(ii) We take the central part of the phenomenological

4He + deuteron cluster model potential, as required to
bind 6Li, e.g., Refs. [19,20].
In fact both potentials (i) and (ii) were found to
be of the wrong depth, in the sense that they did
not generate a 6He (2+) resonance, for the 4He + 2n

system in a relative d wave, at the resonance energy of
0.824 MeV above threshold. The dineutron potential
was too deep and the deuteron potential too shallow.
The two potential depths were thus tuned to put
the resonance in the right position. The resulting
parameters are shown in Table III.

(iii) We describe the 4He + 2n interaction based on the
folding of the n + 4He interactions with an extended,
normalized continuum bin relative motion wave func-
tion for the two neutrons interacting via the Gaussian
n + n potential described above. The relative s-wave
bin state wave function, φnn(r), was constructed with
n + n relative energies from 0 to 2 MeV. Thus, Vbin is

Vbin(r) = 〈φnn|Vnα(r1) + Vnα(r2)|φnn〉, (20)

where r1 and r2, are the two n + 4He separations. For
convenience this bin potential was fitted with a Woods-Saxon
form, Table III, and its depth was adjusted as discussed
above to position the 4He + 2n resonance in relative d waves.
As is evident from Table III these three potentials give a
range of potential geometries and will allow an assessment
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FIG. 3. (Color online) Calculated 5He(3/2−) channel resonance
energy ER (closed circles), from the S-matrix pole position, and width
� (closed squares) as a function of the assumed R-matrix matching
radius a. The horizontal lines show the values of ER (solid line) and
� (dashed line) of the analysis of Ref. [16].

of the sensitivity to this R-matrix input. Clear also is that the
dineutron interaction is the limiting potential for a maximally
spatially correlated n + n pair, with |φnn|2 = δ(r) in Eq. (20).

V. R-MATRIX MODEL RESULTS

We first return to our discussion of the R-matrix boundary
conditions of subsection III D. As was discussed there, in the
one-term approximation the choice of the derivative boundary
condition b affects the form of the ρ(U ). The optimum choice
of b in this case was stated in Eq. (3).

We used the value a = 7 fm for all two-body systems,
except n + n for which a = 5 fm. These values were chosen
such that we obtained converged (with a) S-matrix pole
positions in the complex energy plane for the 5He(3/2−)
channel resonance and for the n + n virtual state. For example,
Fig. 3 shows the convergence of the calculated resonance
energy ER (closed circles) and width � of the 5He(3/2−)
ground state as a function of the assumed channel radius. The
optimal b were determined (for each two-body interaction)
from ψ(ER, r), with ER the (real part of the) energy of the
appropriate S-matrix pole, located precisely through scans
of the complex energy (and/or k) plane. For the 4He + n

interaction ER = 0.77 MeV above threshold and b = −0.2.
The s-wave virtual state pole of the n + n interaction had
ER = −0.121 MeV and b = 0.27. Table IV shows that, for
both our sequential and simultaneous decays, this optimal b

is significantly different from the b = S2(Q1n) Barker choice.

TABLE IV. Comparison of the boundary conditions b for the
4He + n and the n + n systems calculated from the exact wave
functions using Eq. (3) with the values of S2(Q1n), as required
for calculations of the probability density functions ρ(U ) for the
sequential and simultaneous decays, respectively.

Decay route First step S2(Q1n) b

Sequential 4He + n −0.4 −0.2
Simultaneous n + n −0.3 0.27

This choice should be a good approximation to the optimum
b in cases where the hard-sphere phase shifts are effectively
constant for the U values across the resonances of interest.
The values of Table IV show clearly that the values of b and
S2(Q1n) need to be maintained independently and hence that
the use of ρB(U ) is inappropriate in the present case.

The 5He + n potential, tuned for the 6He (2+) resonance
pole at ER = 0.059 MeV above the 5He(g.s.), had b = −0.9.
The three model 4He + 2n interactions, all tuned to place the
6He 2+ resonant S-matrix pole at ER = 0.944 MeV above the
n + n virtual state, gave boundary conditions b = −1.0,−1.1,
and −0.9 for the point dineutron, 4He + d, and the bin
potentials, respectively. All b are collected in Table III.

A. Probability density functions

Figure 4 shows the 5He probability density functions ρ(U )
calculated directly from the interior norm of the scattering
wave function (IN), Eq. (6), the Lane and Thomas form (LT),
Eq. (8), and the linear approximation (LA), Eq. (13). The
IN curve exhibits a high-energy tail, absent from the LT and
LA approximations, attributable to the use of the single-pole
approximation in the formulation of the latter. Having omitted
the p > 1 poles and normalized ρ(U ) to unity, we have forced
the decay through the resonance without the higher-energy
pole contributions.

Figure 5 shows the calculated n + n probability density
functions for the simultaneous decay route. The figure shows
the failure of the linear approximation (LA), Eq. (13), in this
case compared to the ρIN calculated directly from the scattering
wave functions, Eq. (6). This is not unexpected. Because for
relative s waves the shift function is negative for negative U

and vanishes for positive U , the linear (Taylor) approximation
about Q1n = −0.121 MeV is a poor representation for all
positive U . In the s-wave n + n case, a better approximation
is to set the shift function to zero, which we denote ρZS(U ). In
this case

ρZS(U ) = c
�2(U )(

U − Q1n − γ 2
2 b

)2 + [�2(U )]2/4
. (21)

This is also shown in Fig. 5.
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FIG. 4. The calculated 5He probability density functions for the
sequential decay route using the interior norm (IN), Lane and Thomas
(LT) and linear approximation (LA) schemes for ρ(U ). All functions
are normalized to unity on the U interval from 0 to 10 MeV.
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FIG. 5. The calculated n + n probability density functions for
the simultaneous decay route using the interior norm (IN), the linear
approximation (LA) and the zero-shift function approximation (ZS),
Eq. (21), schemes for ρ(U ). All functions are normalized to unity on
the U interval from 0 to 20 MeV.

B. Sequential, simultaneous, and total widths

The total observed widths, �0
tot, of each of the decay

pathways taken individually, from an initial state with three-
body energy E above threshold, is given (see, e.g., Ref. [5])
by the weighted integral over intermediate state energies

�0
tot(E) =

∫ E

0
�0

1(E,U )ρ(U )dU. (22)

Here, subscript 1 now indicates quantities associated with the
first step of the decay that is 6He → 5He + n (sequential) and
6He → 4He + 2n (simultaneous) and the observed width of
the first step, �0

1, having made the linear approximation, is

�0
1(E,U ) = �1(E,U )

1 + γ 2
1

∫ ∞
0 [dS1(E − U )/dE]E=Q2n

ρ(U )dU
.

(23)

The formal width of the first step, �1, is

�1(E,U ) = 2γ 2
1 P1(E − U ). (24)

All elements of these formulas have been defined previously.
We calculate the widths �0

tot(Q2n) where the three-body energy
is that of the 6He(2+) resonance, 0.824 MeV. The calculations
presented below used ρLA(U ) and ρZS(U ) for the sequential
and simultaneous paths, respectively.

Table V shows the total R-matrix widths for the sequen-
tial and simultaneous paths. The sequential width, �0

seq =
34.8 keV, is more than a factor of 3 greater than our largest
estimate of the simultaneous width. Thus, we can already
conclude that the sequential route is the dominant decay

TABLE V. Sequential and simultaneous widths (in keV) for the
decay of the 6He(2+) resonance. These widths were calculated using
ρLA(U ) for the sequential path and ρZS(U ) for the simultaneous path.

Sequential Simultaneous

Dineutron 4He + d Bin

�0
tot (keV) 34.8 4.29 3.54 11.2

TABLE VI. Coherent and incoherent sums of the sequential and
simultaneous decay widths, Eq. (25), for the 6He, 2+(1.8 MeV)
resonance. Results are shown for the three 4He + 2n potential models
discussed.

Potential �inc (keV) �coh (keV)

Dineutron 39.1 63.5
4He + d 38.4 60.6
Bin 46.0 85.4

mechanism. For the simultaneous path, the point dineutron and
4He + d potentials give smaller widths than the bin potential.
We observe a significant correlation between the simultaneous
widths and the depth and diffuseness of the assumed 4He + 2n

interaction. Neither of the two separate widths is comparable
to the �exp = 113 ± 20 keV value. Their combination, and
possible coherence, is therefore an important issue.

In the conventional two-body R-matrix theory [1], partial
widths of different decay channels, c, are simply summed
(incoherently) to �inc. However, as was discussed by Barker
[5], combining partial widths of three-body decay paths is
less clear. Allowing for interference between the channels, the
maximum possible (coherent) total width �coh is the maximally
coherent sum. These are:

�inc =
∑

c

�0
c , �coh =

[∑
c

(�0
c )1/2

]2

. (25)

Table VI shows the �inc and �coh resulting from the 6He decay
paths, calculated using the three model 4He + 2n potentials.
The maximally coherent sum is in better agreement with �exp.
This result is in agreement with the findings of Barker in the
majority of cases studied, e.g., Ref. [5].

VI. THREE-BODY DYNAMICAL CALCULATIONS

Only the most pertinent points and parameters of these
three-body calculations are discussed here. The details of
the HH technique for the solution of the three-body problem
can be found in Refs. [21–23]. The model calculations were
performed using the programs EFADDY [24] and STURMXX [25]
developed by Thompson et al. The three-body HH calculations
use the same fixed n + n and 4He + n potentials as in the
R-matrix calculations. In addition, however, the HH model
also includes a small, central hyperradial three-body potential,
V3B , of the form [21],

V3B(ρr ) = V 0
3B/[1 + (ρr/ρ0)3]. (26)

This potential, a function only of the hyperradius, ρr , has a
range determined by ρ0. This value is typically of order 5 fm.
This range having been fixed, the depth, V 0

3B was tuned to place
the 6He(2+) state at 0.824 MeV to ensure fair comparison with
the R-matrix results. Pauli blocking of occupied core states
was taken into account using (i) a repulsive potential in the
s-wave 4He + n subsystem and (ii) Pauli projection operators
[23], which project the forbidden states to a large positive
energy. The results using the two methods agreed within 1%.
Using the HH terminology [25], a maximum hypermomentum
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of Kmax = 30, a maximum hyperradius ρmax = 30 fm and a
maximum number of basis functions of Q = 25 were sufficient
to obtain converged HH calculations in the 6He(2+) case. For
these converged calculations the value of V 0

3B is −0.34 MeV.
The three-body decay width, �3B , was extracted here from

the HH calculations through the sum of the eigenphases,
δk(E). These were calculated from the eigenvalues Sk(E) =
exp[2iδk(E)] of the unitary, multichannel S-matrix. Following
Hazi [26], the width is then extracted from the sum of the
eigenphases, �(E) = ∑

k δk(E) by use of the usual resonance
relationship,

2

�3B

= d�(E)

dE

∣∣∣∣
Q2n

. (27)

The total three-body width calculated this way is �3B =
71.6 keV; however this value is rather robust when obtained
from different prescriptions. The 2+ channel strength distribu-
tions in the region of the 2+ resonance, calculated using three
methods, are shown in Fig. 6 as a function of the three-body
energy E of the 4He + n + n system. The curves show the
distributions calculated using (a) the derivatives of the sum
of the eigenphases, of Eq. (27) above, with the solid points
and dashed curve, (b) the interior norms (for radii less than
10 fm) of the three-body wave functions with the dot-dashed
curve, and (c) the B(E2) strength distribution (per MeV) for
electromagnetic excitations of the 2+ continuum from the 6He
ground-state with the solid curve. As is clear, the deduced
widths from these three approaches are in good agreement.

A. Comparison with the R-matrix sequential width

As a further comparison to the R-matrix calculations,
the HH method was used to obtain an estimate of the
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FIG. 6. (Color online) Peaks describing the 2+ resonance in 6He,
from the three-body dynamical calculations. Strength distributions
are shown as a function of the three-body energy, E, calculated
using (a) the derivatives of the sum of the eigenphases, as given by
Eq. (27) (solid points and dashed curve), (b) the interior norms (for
radii less than 10 fm) of the three-body dynamical model wave
functions (dot-dashed curve), and (c) the B(E2) strength distribution
(per MeV) for electromagnetic excitations of the 2+ continuum from
the 6He ground-state (solid curve). All curves have been scaled to the
same peak height.

sequential width. To suppress the simultaneous path the n + n

potential was removed from the calculation. To maintain the
2+ resonance at the correct energy, and to exclude n + n

correlations at large distance, the three-body interaction was
also adjusted. Specifically, its radius was reduced to ρ0 =
2.0 fm and the strength required was now V 0

3B = −15.1 MeV.
This returned an estimate for the sequential width of �seq =
46.5 keV that compares reasonably with the R-matrix se-
quential width of �0

seq = 34.8 keV, given that one cannot
fully remove the two-neutron correlations in the three-body
framework.

VII. DISCUSSION AND CONCLUSIONS

A summary of the calculated 6He, 2+(1.8 MeV) three-body
resonance widths from the R-matrix and dynamical models is
presented in Fig. 7. The experimental value, �exp = 113 ±
20 keV is indicated by the solid line and the associated
errors by the dashed horizontal lines. As has been made clear,
all calculations have had their interactions tuned so as to
position the resonance, allowing a direct comparison of the
resulting widths. All of the theoretical calculations fall short
of the experimental value. The maximally coherent sum of
the R-matrix partial widths is in better agreement with the
dynamical three-body width. Our R-matrix and dynamical
calculation results for the widths agree reasonably well with
those examples from the literature that predict the position of
the 2+ resonance appropriately, as are given in Table I. The
large width from the algebraic model was discussed already in
Sec. II.

In summary, R-matrix and dynamical three-body calcu-
lations of the width of the 6He, 2+(1.8 MeV) three-body
resonance were performed. The R-matrix approach treated
both the sequential neutron emission and the simultaneous

  Dineutron Bin 4He+d HH
0

25

50

75

100

125

Γ 
(k

eV
)

Γ0
seq

Γ0
sim

Γinc

Γcoh

Γseq

Γ3B

2
n + 

4
He Potential

FIG. 7. Comparison of calculated R-matrix and three-body
model widths for 6He(2+). �0

seq and �0
sim are the sequential and

simultaneous R-matrix widths. �inc and �coh are the incoherent and
maximally coherent sums of these partial widths. These are shown
for the three model 4He + 2n potentials. �seq is the estimate of the
sequential width from the three-body calculations and �3B is the full
decay width of the three-body calculations. The measured width is
indicated by the solid horizontal line, with its error bars shown by the
dashed horizontal lines.
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two-neutron emission decay pathways. The sequential decay
was found to be dominant with a width in excess of three
times that for the simultaneous process for all of the model
two-body interactions used. Agreement between the two sets of
calculations is reasonable if one assumes maximal coherence
between the R-matrix partial widths for the sequential and
simultaneous decay paths. Like earlier theoretical approaches,
the decay widths resulting from both sets of calculations fall
short of the experimentally measured width.
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