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fhe extinction o f uccend order m bhz'm m ic vibration 
swapoase of a single degree '•©£ freedom systest is Investigated
for the case of dammed cestrlfaial, excitation* The degree of • 
the restoring force ©symctxg- rscultisg fesis the effect of 
gravity is expressed is terra of the parameter of static 
daflection*

The resonance under gravity affects is analysed 
' theoretically for a ??Me rerane of physical condition© t o  

determine the •behavioural characteristics of the .stthhar~salc 
components* T m  inherently ccmplei algebraic eotr*t*<m are 
obtained fey the approximate energy ©ctood of Kite A~XerMn 
and by the method of harŝ alc balance# These tim  methods are 
rot bounded to ssny degree of non-linearity*

As there is no exact solution for this lover taction 
and because of the dissipative forces Infr&tsblf £$trocmc$rr
the frohicss of stability* the actual existence. of the 
appradisgte solution ov©r the J^cuency bandwidth is. 
ascertains!* There are no 3?®&X roots In the instability region • 
The algebraic polynomial expressions cannot ho satisfied 
air̂ ltaiioaiialy because of the accumulative effect In. an



accompanying harmonic of the vlbrstosy motion. The build-up- 
oscillation occurs In the second order region® having a 
frequency the same as that of the main component of stffito&otkie' 
motion* The stability criterion Is derived from comparing the 
characteristic exponent of solution to the variational equation 
tilth damping coefficient of the system*

The response characteristics are then Investigated 
where the polynomial, equations -rre simplified through justifying 
the opproxtetian of the furh? <ntsl harmonic m the effective 
amplitude .of the disturbing to ce* fh© results are. of 
comparable ccc®acy for cases In which fpwitv effects do not 
increase the affective m o rlin m ity with rescr-rce* .The 
spproxlmatloBs however# I© applicable whatever the physical 
characteristic behaviour of the non-XInearity- in the region 
of the critical state of subharscnic extinction*

The motion In the process of analysis Is
shown, to exist to two opposite $hases» differing, by ir -radians* 
The resulting phase of period to vibration depends upon, initial, 
conditions* The toacltoo graphical method In used to. depict, 
the transient m tim *

Tm effective aaa-lSncarity Is detrained to fee
governed by the influence of gravity effects m  the equilibrium 
of taetta. The pronounced stfehsrsontcs era of the order one- 
half# and the extinction conditions fbr the resonance 
predominant over the higher orders are investigated through'' 
expressing the limiting inequalities in terms of the system 
pgeamtors*. In the critical state* complete suppression of the



et&barjgoaics is achieved. The limiting condition is .then 
«3&3ftls*e& where im p in g is £foe& at a convenient ssiniisut: value
end the corresponding opticas* Xissit of gravity effect tolerable 
can he evaluated fox* tdtfeh the is3nlitude of excitation his no 
iMzlximm on the effective sois-lineatity as to editing
the resonance* An Inequality is also nresontf Cron t?bidh the 
limiting feofuensnes of the* sthhasnsonle vibmtion can he 
predicted with reasonable accuBScy* In these invest! rations 
the litdtinr iceouslftics are sot dependent on the rasultinr 
tsriables in the r.*m-X£r*ear j&es&ftmau

At! eifperfeoatal iest-rig. ls/dosienod to iloronsttate 
the siibharroaic response.' The values recorded Crc t it compare 
favourably tfith the epprasstested theoretical results with 
the euperiaontal results obtained frsm the electronic analogue
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>** #*■ ~r '~' Ifon-jSî sssloisisI frequency ratio*
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Intmductlon

That this exists in m&t rseehaalcaX systems where the 
restoring inaction to displacement is not directly proportional 
is well fc&cnm* As the coefficient of the restoring forces is 
virtually always non-linear* the differential equation of motion
o f

§jf + y|f **y +!i«7) s F{t) .....

is repeated encountered. The parameter |* may usually be' 
small and the above equation is often linearises. In these 
Instances linear aiislysfa tins been usually successful i n  the 
region of the harssonic i^senanoe* For jaoot practical purposes 
such m  approsdm sit ion often produces satis rectory results. 
However the phenomena of non-linear resonance constitute not 
only the h&rmmiix but also u ©eparste now -component* the 
-siMisraoBlcss which is as essential property of Nr on-linear 
system. The m&tosaoaies can be resdix? excited .irrespective



©f the degree of tion-1 inearliy if tfc© mLatlcrê Ip between tlm 
fade on la s t  param eters o f  th e  d e sc rib in g . e q u a tio n  ' l ie s  w i th in  

the do **ia for the existence of motion-, . •

1*2*_ Subh a r im l c .v i b r e t l ^ s

In essence with tmfc mechanical. vibrating systems the 
experimental .istural frequency contains nmse-reus tiarreais 
components. Shea the citersa! ftoeftg: frequency Is the 
m  mm of the coŝ onents# the strength of other hareonlc 
displacements diminish progressively away fftoa the resulting 
tmresrnic resonance* Suhhareosie vibration  ̂-elated through 
exciting ©M sustaining components of lower o'vĉ  V  the 
fnndasseatel harmsmie, Ehsreas with © linearised system during 
©toady state the body can only vibrate at the sama frequency as 
the externa! force#

The vibration resonance occurs at frequencies hither than 
the fmteenta! and Is at a sttemtiplB- of the forei- function 
values* Is the resonance being a direct consequence the 
existence of the harmonies* the respective intensity d^nnds upon 
Its preslelty to- the fereinr frequency* The prenousccd crrdlltuies 
exist within centals, frequency «r»r** ond ure correuly owrericsscod 
when cner^r dissipation of a system is. only adequately considered 
fss* l is r m n lc  resonance* Shore in  p re v io u s  a p p lic a t io n s  

si&bareonic vibrations are to he avoided and not sssorely classified 
as spurious resonances ŵ cn they are encountered, a mere complete 
©nalysis hecancs necessary* linearise! theory would fail to



mp$Mm tmeh phenomena*

1*3, Ŝ eonC order c«Kn£tcoplcc

The ̂ storing force alone a? sa e n t i t y  f® often as odd 
function of & i s p l m ? r m t  and crass he cssMPrrsed m  a oo^or serte. 
Iren ̂ uat&s <1*3U1) tfc® ron~Hncir sectoring fimction 
frecently tCAea the Isr̂

kf 4 iifCy) * 'kf t |îyf 4 t «,* *«*.* Cl»S5l>

.Kith most cases terss higher than the ctihtc pmmr ar*: scfrligifclf 
m&Xl. m& the function Is adegustely described by the first txm 
t««, Sovran in  many- practical system the cwrra #f the nsm~ 
linear restoring force chsracteristSc is asymmetrical, The 

In cases- ef «rj e*vsien results ffcoa the effect of 
gravity m  the e^uilibrte of asottea ana the actual rartcwlng 
fere© Is in the form

h j 4* |!f(y) « 1:(k 4 * ) * *i fit 4 &>* **.** (1,3

w i m m  tz is the vibratory- Ifeplaesmont amd A is the' etatfc 
Reflect Son tea to the gravitational force, St&sagoe&tl? the 
nosî Xlacar fraction* t#on sstisfactorily ag^resS sated in the 
t*c;citeei for® of a series ejqp&nstet, contains a second order 
fete, then the solution to the periodic displacement w h i c h  m m



be represented consisting of I at st!c cm orients Is asprsssod 
m a Fourier ©erics# it is -eviaent that ta© prmiimnt 
mMmsmmiQ vibration imxM be the sr©eon<i ©risr* The order 
sequence of stgsham̂ nics Is defined by the raeipxocal of Its 
frequency*

t-ffoots from the- wnlgiits of the vibrating rarces are 
generally neglected durltg the fta&ratical analysis* The sob- 
linearity In often regsreba os h:*Co£. symmetrical characteristic 
•and'as-It is not possible to eliminate. the ototic deflect ion 
tost is produced* the restoring fore® ̂ characteristic of a 
■hardening non-linear suspension I© not satisfactorily represented 
by the aim of a linear and «aMe tors of the vibratory ■ 
dlsplacaB̂ mt. the static equilibrium position -docs not coincide 
*?lth the point of oywwsfcry* and. additional tevm .-mexfXft in- the. 
describing equation, for such eases the . actual deviation frois 
linearity in the oyster. Is larger than.-it is. considered, The • 
error often only becomes obvious..when .the vibration: encountered 
Is a doislmmt second order stibhttMRlc resonance* The vibration 
is usually tolerated if possible over the frequency .range or 
else it is eli&in&ted by. a costly and tire consuming' trial 
procedure*

an a ly s is  o f  t h e : in v e s tig a t io n  - ‘

.The influence .of ̂ ravltationel .force ©a the equilibrium 
of .ssotlon eorplicatcn the .problem -of overcoming the'pronounced
vibration amplitudes without undue costs and inefficiency* The



resonance consists of s msmhoi? of coupled dependent varisbl.es 
at -any particular speed of the vibrating mss and often tiie 
analysis bocores curbersoro ond corpX©?. to yield solutions 
for suppression * It ooeM arcid rvch uaste l» toms .of energy 
and costs If the tinting reXo-ticnsblpn for the extinction of 
second order* sub!isrr̂ rlcs were not Ituctlons of there parameters. 
Tbs rain objects arc then to achieve the limiting expressions 
-cnntclniti“ independent variables uter? t! t values are .either 
canst-nt oar ha controlled or dstr.rmitie-5 rc&dllr,

Mb C:* realties of static osuillbrltit does not'coincide 
frith the point of ** try I® the restoring force characteristic, 
the resulting effect vlll hats considerable Influence on the 
stSsharaoiiIc response ©wing to the additional terms in the 
equation of 'motion* The degree of im»~l£8Qsrity* adequately 
expressed by iseens of the static deflection parameter, is 
©hesrved to have Increased,, A me bar leal- test-rig designed to- 
demonstrate the effect of this independent pErareter Kill help . 
to explain ulth .greater clarity the inflm nm  of gravitational 
force mi thê eqaUibrism of t&tiexw ■

Tlio presence of dissipative. £oro©s in vlt rating system 
Is generally inevitable for reasons obvious* 1 Jtfc mngXinear 
vibrations this introduces the problem of stability as the 
distinctive ©harseterlsaticm of the dadatioa ftoa linearity 
is- the possibility that various types- of periodic solutions can 
exist for a, describing equation. The amplitudes ©f the component 
other than the fmufe octal and the pronounced ©i&harmonics*, 
however* generally ere ssssll and often cannot to •measured 
accvmiely in a hiwaemXc ̂ rolysio. ' ' nevertheless* if •& assail



variation I® the displacement caused by a ullgfet perturbation
AnSt^-S

f m m  a corresponding periodic state â emtfrfees with a lapse of 
tim e * th e  p o lyn o m ia l a lg e b ra ic  m m m m i m m  o f  1ha d i f f e r e n t ia l  

mmtimi wilt evidently not be satisfied* the stability 
analysis to he carried out iflll twlfy the actual 'existence of 
the approximate solution asmmcL

There arc several, appaxndmte ssnthods of asalysis. 
a lre a d y  developed and i s  usage f o r  ■-sa lv ing  n o : i^ l!n o s r  d i f f e r e n t ia l  

equations of ssotion* The methods considered appropriate for this 
investigation yield solutions free which overall results can be 
cssasincd and where associated accuracy Is una&tected by the 
extent of the noâ -liaearlty sod %  tbs maipaitcde of the 
Independent parameters* the accuracy of the methods employed 
is estivated cm the basis of oo&p&rison with ©xperfcaentsl results 
obtained from an analogue cojsmter#

. It is observed In practice through traces Of angular 
dlsyincoaeBt by the system that resonance can occur In either one 
of two pbasas3 differing h $  f? radians for- every tvo cycles of the 
aas© disturbing force* . A clearer understanding of the vibration 
characteristic is achieved If the transient motion cf the 
approximate soltstien Is depicted by an isocline graphical method* 
T m  phase In which the periodic vibration occurs can be shows h y  

till© analysis * Also as the motion is- non-linear there-are various 
possible ftenss of periodic coefficients In the overall vibration 
shape and the relationship between initial conditions and the 
rcS'iiltli«“ behaviour Is m m  readily seen if the transient state 
of the phcaemaim is examlned*



Survey and .scope of

liimsa? concepts of practical vibratory sjsteras mil 
merely provide atiperficf&t understanding of thnir -response* A 
-m m cospreheasive insight'into the isotion is achieved If the 
restoring force characteristic In not idealised as directly 
proportional to displacement. Kith m & t realisable • mechanical 
systems the function often'lias ncB-llnear coefficients and 
dissipative forces are pmnmt* The resulting describing 
equations usually cannot Bo ©olved exactly* The vibratory cation 
Is not pure h u t contains higher and ether harmonics and when 
subjected to external dinturMng force Buhhsmcmlo vibrations arc • 
readily generated over certain frequencies.

Sahhermonic resonances also occur in certain physical 
systems described hy linear differential equations. This Is a 
separate field of e&txdy where parameters. of the equations vary 
periodically with tls*e» A cyst cm governed by Katfcleu'c equation 
Is an cxrr-ie# The eqnctl.cn of motion Is linear but the periodic 
parameters arc appropriately chosen. The tors,? * parametric 
©imitation* Is applied -to such motion (IB). The equations however



m y  meed t© contain, a momrXlnecp t&m if the physical systems 
are t© htt.$a?otected £$m -ctsrsulatlve effects whore the input 
energy ©iiiss to the periodic variation ©£ the parameters- is 
greater than the dissipated energy.

2«1«. The jh.enp̂ i!a syrociatcî trith r̂ Bylinsarity

ir&n-Xin&ar ««st©rfng ■ £mmm mm eemronXy encountered In 
practice end in  such systitm© the prcasnmeed deviation £zm linear 
response la well Xmm ft) * The tsatural frefusisey is? often met 
mire- hut contains other hsm m im * • As it varies with the 
ampHteies of vibration • the restoring function in eorco&ly . - 
referred as of *harderfrg type when the natural frequency 
Increases with the vibration, amplitude* The rsqrJtude 'of -the 
restoring stiffness becomes Increasingly larger vitfc displace*act* 
Conversely the function is raid to have "softrnliif:* characteristic 
when the frequency is decreased with im rm n-its?: amplitude» The 
curves of tfes- jsatural f^aqueacy are known as the bscMoae curvet 
s&oufc vhieh. harssosic rm m m oa curves for various raguf.tales c£ 
ohoStation are getnrat-ti*

The -order ©fr^hhammle rmonmmn is usually defined by 
the reciprocal of Its frequency and the correspondteg backbone curves 
are obtained tteoisqh nultlrXoIfsg the m trn ra t frequency -cmves by the 
respective order nm&ers* The vibrations occur at frequencies 
beyond the Imriamls rcsosa®«e and exist within certain';frequencies, 
at which the fundamental is noft-ftssonant* It is generated through 
•exciting one of the Icuar coisponentc of the natural, frequency by 
disturbing force .(XI)»



fiS th£: strength of the harmonies diminish progressively 
from. the fundamental* the intensity of vibration sequence will 
depend upon its proximity to- the forcing function (8) * ¥,lth 
spssetrlc&X restoring force characteristics the motion contains 
only .odd components In the displacement and as the men-linear 
.phenomena 1b a direct co&seguesc© of them the preimimnt 
Bvfohmtmlc resonance would he of third order. Lumke {$) 
obtained results to demonstrate this trend.

2.2. Various nonplinearlty Inducements

The causes of these non-‘linearity effects are numerous. 
They can ho encountered through imperfect elasticity or 
•©verstrainlng of the. materials. The. mdulus of elasticity for 
isaterlals ouch m  cast ■ iron, or concrete decreases -when deformation 
gets larger and la consequesc© the restoring force characteristics 
are of a softening nature. Another ciMlsr case exhibiting a 
softening type non-linear function is £om& in the. vibration of & 
pendulum in which large -oscillations are executed* The restoring 
function i® well known to he satisfactorily represented by the 
difference of a linear and cubic term* the -nea-Hnesr stiffness 
yielding to large lend characteristic Is often- cisployed for 
protection ©gainst severe .©hock®# It would limit relative peek 
dicplecmmt® end the absolute acceleration* whoa the datums are 
suddenly displaced? to specified values* Toting (26) ibmslatod 
expressions to assist design of such non-linearity effects for 
protection sgairat strong ©hocks.

The hardening response Is ©oircaanly found in the isolation



of -dedicate equipment* The loss stiffness of the system for assail 
displacement increasing rapidly men the displacement Becomes 
larger offers effective protection Ires choclc loads and forced 
vibrations vhere the limit of tr&tihl&cose vibration asplitude &om 
set crceeci the range of do?? stiffness * HcXyaem: £3*0 utilises • 
frets a cordiimtien- of systeas of toggle« vertical tension and 
cojŝ ressien sprfsgs the rssultisd non-linear restoring forces for 
vibration isol&tiom of a mss in all six- d--reea of freedom* 
Detailed analytical expression!! for the stiffness of the spring 
cosifigmation ere dctcmSscd to obtain the range of ser© stiffness*

Otter causes of the non-linear function arc fey the 
configuration of linear components ssudh as sine springs* 
cantilevers in *d - shooed* cad barrel shaped sprlrjjs,* iitfe the 
cawabinatien of X* 'sr springs fox'1 system uhere the?® are itorc than 
tiro discontinuities In the spring constant {2S)s ©errllaesr 
hardening restoring force characteristics &m produced t&sii they 
successively come into contact with -the vibrating mass* u&mj 
mabtxmy eoontifî s often hove such non-Xinsarlty which arc also 
«ncotmter&6 in journal hear it g* having. larger clearances* Billet 
{28) showed for hardening ebcre cteristio of a eyogsetricaX function 
the effects of a hearing on abaft whirl.

The presences of rafeaer Bushes fa. flexible couplings has 
faany advert-*- amongst t?M.eh a greater load fluctuation 5s 
f5C~*ff le* T e syatc®* liotiever* has © hardening non-linear 
stiffness*- Practical results for pln-typa- couplings f̂ 2) efetaired 
vsri%  the e&lstencc of non-linear response. The deviation £j?om 
a linear ter̂ e~de£Xcct£o» fmotion is due to the- appreciable 
increase of stiffness i&an the n&ber rmss is under compression at



high load whilst, the value is practically constant for moderate 
loading*

r.on 'linear vtlratiomt are hm m  also to exist in four bar 
Mifege mechaslsm bsnvrg m  elastic ĉ apxesŝ le-â -eutensible
mmpTm* Crossley ($fl assertaimed the b^Wleur depended upon 
dfsplaceseBt, la large amplitudes of %i? *"ati©a the restoring 
ftmeticn has cy^netrical hardening characteristics sad in smaller 
displacements it consists of the dlffercaet between a linear and 
cubic tern* Tim msrT inoar ©otioB inevitably results ? as tiss 
dtsonstmtai on an electronic system* in pronotmcod ©tibhavsKsnSc 
vibrations being generated*

A representative bibliography in the field of son-linear
vibrations are given in paper® (a) * (21) * £*1-0} * ®n& pil)* Tim 
•pimmtmm. associated with tstm-linear response Is demonstrated M  

a number of experiments by budebe* The general survey by KXottsr 
offers a good guide to articles on usm~Xinesr ©sciXXfVtions and 
the ©etttods available for- finding approximate solutions* Clauses* 
gives n contrast account of the various possible forms of soar 
linear ays toss. Ecsenbnrg summarises thogjedvzmeeo mad© in the 
study of nea-lincar motion ana the results that haw bees achieved*

fon-linear^mction^ dlmglacĉ snt

It la comsaa to Had the non-linear displacement function 
caressed m a, caries expansion* For systems where there ere tm



discontinuities in the spring constant Jacobson and Jo&pcpz&i.
£2̂ 3 fhwssd ©i^rimntsl results wesse in .good ayrecsent with the 
enpro^imtion* 'Hncrs the point of .sere deflection often in the 
fmnt of symmetry os the elisraetoristic curve* the stiffness 
represented as a series would e©BsIst ©sly of odd terms ancl with 
wmt: applications adequately feseribei by the first two ferss 
oiuos those higher than the cubic pomes* am nsgllftSMy sisall. The 
resulting diM m m tim X #fsatl<m is usually referred ts is Duffing *s 
mmzi&&*

The differential equation ©£ motion containing the cum of 
a, linear and cubic tens in the apjroxitsated restoring function ha® 
attracted much attention* Kith only odd horoonics existing in 
the displacements and Because of a cube ©cm-linoarity the strongest 
possible sttbharmonic resousmce is shown (m) to he the third, order* 
lion-linear oscillation of Staffing*& equation have hem studied 
extensively hf Burgess {!«$ * fcevensoa (S)» Ludeke £5}* itudeke and 
Pong (*0 , Caughoy (II) and Hsyashi (22).

In ©any mechanical applications, the effect of 
gravitational force- Influences the equilibrium of is&tUm for It. 
is not completely balanced by the static deflection force. 
Consequently? the characteristic curve of the restoring function 
is often asymmetrical* The static equilibrium:, position does not 
.coincide with the point of eytssotry and the ragiiitudo of non- 
X itm tity is lnr~•*->̂"‘1* .Kith the static deflection force rot 
balanced by the c"'% ~t of gravity end as it is net possible 
to olisissate the static & flection parameter, the resulting 
differential equation of taction contains additional terms, in the 
approximated ras-toring force, This consists of the $m of the



first three terms in the series expansion of a non-odd type. •
Although the analysis will become cumbersome it is in more
complete agreement with practical results for the subharssoaic
vibrations'? induced * 1 * enounced vibration amplitude in
experienced .before tin Id 3 order subhartr?onlc resonance* It is oecewxt of the •SErwer-order jsgKr*half»

2*̂ . Investipations x* /erteVn’

The g&isclA knowledge of s*. and'ord«r> resonances so far 
investigated malt 1/ Is eonilrad to clectron-tulm circuits (IB) 
and to oscillatory circuits consisting of the combined 
unidirectional and alternating voltages (22) * The approach and 
procedures developed a re difficult at times to aptly in &̂ chanieal 
engineering* In the analysis by Memdelstsss and Tart-lcod the non-* 
linear.function was restricted and was considered In systems where 
the possibility of self--excitation existed# The Investigation of 
stability was restricted likewise by the perturbation method 
osroXoyed*

la the study of oscillatory circuits? {7,22) * sul>hrxuonic 
resonances of the equations were not hound by tM  degree of non- 
lincaritv* The even order i&cnouena is found in sy&tcrn having 
an. odd x* ayi'xcfwictJ. function. The effective quadratic term 
is produced from the equivalence of a non-sinusoidal -c&teraal 
force introduced Into tlx oyster. The fundamental component war 
approximated folloulr randelstam and Papsleni over the complete 
region of sub’ nrssonic response* however* the rain purpose of the



i&i-t dv. Zo
prtseist inwutlgstlen ngfr-essgldsr&d in establishing the 
Uniting relationships consisting of independent parameters 
influenced by gravitational force for the extinction of the 
cubhftTftOftle vibrations* i>-&u\. 'Cs'\̂&Zc&iA-e~cl A*j 'MUl ^^-^ssu^ o

J xi-voco

The shift in the dynamic equilibrium position away froa 
has received relatively no attention other than tr < if*

&.£) * The static deflection fxor, de*»d weight of the eŷ t- 
trancKatted to suppose- introduces o ousdmtle in the restoring
fore# and it is ehoun that this coefficient Is the effective tern 
of the nan~linearify.* The. frequency position of the fcanRoaic 
resonance is Increased frets the location calculated when the 
effect of gravity Is neglected. Hit e* ̂Xitnies of vibration 
beyond the Instability region ere also shown to he much larger 
with cn additional region ©f imstfitble amplitudes below the 
natural frequency when disturbing forces arc email. In essence 
the severity of second order subh&rmonic vibrations generated 
tiotiXd ale© 1c heevlly influenced by the displacement (§3 *

The Xfeitlng relationships between the extent of 
asyrsmstsy represented by static deflection Is the restoring fore© 
and the other independent variables of the vibratory system in the 
extinction of second crier m&fcartaoBle vibration constitutes the 
tsain bads- of this Investigation, the vibrating system considered 
is excited by a centrifugalf type sinusoidal varying force* as It 
Is cmmrn. in practice to encounter external' excitation through 
©at~0£~baXsnee isasc. The damping cf tbs system is viscous and the 
coefficient Is positive and linear. Dissipative forces generally 
for intended purposes are satisfactorily approximated when 
caressed as equivalent linear damping*' The criterion of 
equivalence Is that the eaomt of energy per cycle dissipated Is



the

lion “linear damping is usually associated vlth self- 
exested systems (10*20)» If the dating component is negative 
it is readily seem that onsrjcy Is Introduced into the system 
and the vibration disp&nceaeat will fpw boundlessly with time* 
la practice for the. vibrations- #f this nature*. not destructive, 
it occur In Unit eyelet. The ©elutienc of the nation
c * om the ttivan-ster of the ftest-ordar differential and the 
vibrations fe&im e frsqusmey vary ©loss to the aateral frequency 
of the- stratum* At tints sue to weather condition self-unclted 
vibrations ©Iso ©cos? In deetrlcel transmission line wires*

7b© presence of' viscous damping Inevitably leads to a 
£#©hleft of stability ’ for' there In mre than a single: eeuilibrlue 
condition since various types of periodic solution isa* exist In 
a non-linear system# Uith linear vibration thin difficulty 
w a M  m t  arise* The forced vibration is unaffected by the 
I,sit la,I conditions at the- start of the* motion. The second order 
phenomena exist# only so long an all the periodic points ara in 
aoetXlferiuv imd the different possibilities of periodic solution. 
to the describing equation t&ah®s it necessary to confirm the 
actual cidstcnco of an actraxlmst® eolstlo© in the testability 1 - 
region* The problem is determined throng considering the 
varlatloBal equation that characterises »XX dteptecomaut feom ■ - ■ 
the cquiHhrte state and which Is reduced to •
IIill1 s type, equation vfcere the ceeffiete~r ©jpc periodic functions 
-and are aapructed Into a Courier series. ** *s will allow the 
stability ■ conditions feu the ayr-oprifito nv of component regions 
chosen'to* fee examined and if tv solution h** the Investigation is



to be valid they must bo satisfied sieuXtanoounly* The stability 
criterion, stating Whether the ©light variation attenuates
boimdleosXy with time* Is derived by comparing the characteristic, 
exponent of the solution- with the iaopiog -coofficiest (20.22)*

In many applications -Where St Is Important to avoid 
working the mechanical. systers I© the protsouaetd vibration 
frequency ar c session is derived to astir,ate the boundary
values over «**lch thw resonance right be generated* The aquation
snefeXos the fmgucaelos to bo doteralnol with reasonable accuracy 
without bein': dependent «« the values of coupled-variables of the 

It Is- oEprtssea as ftmctioss of the' independent 
j,‘5rc"eten whoso cm the response Era also deiswistratsd
on ®b oggwrivantal test-rig.

2»5» Thec^tical. t̂ tliods..

• There ere several approximate methods In existence for 
solving non-ilmsar differential eqimtions* #r *rv the mre 
satisfactory methods for imaXyris of sWbhsrs»r*c resonance Iti 
terns of convergence and obtaining quantitative results am the- 
rits-Celerkin averaging method*. the prtectele of bsmeiiie 
balsme®* tbs ̂ ryloff-Bogollubov first a^ivr imt&m method sod 
th© perturbation **S v-d.

Csraphtel methods are well fcnovm to produce singular 
point results ant are ssort ofteu applied in tbe study of 
autcmomus S3rt**,**v The isocXi.cc graphical method, however* la



. conjunction with digital - computers is - very useful and the 
procedure is given in {17*22). In application to nca-eutoaesous 
system the transient state of t'm rcsoasasca under? investigation 
can he examined through the Integral curves &rmm for the 
cauations obtained fross @n approximate solution In which the, 
coefficient# arc function# of a time variable* %en the equations 
ultimately hceomc sera with layre of time singular folfits that 
satisfy the ayranoxlnate. periodic sfolutloa arc produced. The 
phase 1st Which the subharaonic vibration would occur for ©very 
two cycle# -of disturhifig force, depend® on the conditions fro© 
Which It I© gene?rated and is shown. %  the positions of 
.sir daeltlos. The method is also :uscd to determine the phase 
€|w itahich the si&liamoriics css exist.

The- perturbation method Is regarded as unsatisfactory 
fop this investigation. St is only applicable to ©mil non- 
linearity for convergence .of the solution (IS) * through. solving 
tbs s&queaee of second order linear -equations produced from
equating the coefficients of -like powers of the’ mnrXinmi? 
parameter cnproscod In a series* Although the problem of 
secular tenss* where the displscescnt tomes contain irlsae variable 
outside the trigonometric function, docs not arise -In. tUO 1 i,0u 
for̂  of the frothed * It is difficult ©ad emh&^som to apply to 
noc-i nrlcal restoring force systems. For mmXX son-linearity 
Lever- * (9) used this procedure to m&mitm the types .of .htoneooSe 
md sifAnmani© tmpmmt® possible In Xhtff£&£*&• equation*

The .Itryloff-Bopoliubov method. (19) Is also restricted 
to quasi .-linear differential equation. The 'approximate solution 
®s in ±fe© prevlov*' roll c& is developed in the neighbourhood of 
linear vibration and cannot he applied to systems not containing.



a linear term In the restoring stiffness Imctlos, fov small 
altitudes of non-linear vibration the method In Its first 
:q-~r©xltmtiea is ©ctlsfceterj' and easy to ?~ * Ismt Xiterls©
It /■mê imters difficulty When applied to nonhead typo 
functions#

The- principle of the harmonic balance csethm. is 
rnslletible to both linear and ms-lintsr differential- equations 
o'" rotien and the tethed Is sot confined to qusni-XInear function# 
for convergence of the solution, fm & first ̂ gpmdfoat&m the 
jrccedure (22) if mathematically simple Whilst for closer* 
approximations. Irrgr tray«me®atrle factions are encountered s 
requiring mth tedious eg&cuXations* St Is essentl&lly, iti the 
•analysis of non.’-ISnear systems * the solving of the oahnoim 
coefficients of the solution that it exprassed into
a Fourier series. The polynomial eXycdrsiIe expressions containing 
the w&mom t®mz are obtained tftrouch equating the respective 
harmonic eoŝ onents to sser© separately tdnm having' instituted 
into tli© describing: equation.

Luslefce (5) end Heyashl (7) in their r m p m tlvr 
lm*estig&ti-©ns employed the te&saie balance method to problem 
lit which the non-linear function Ims m restriction. The 
difficulty from the absence of linear exponent or fror'hthe extent 
of 80&~liaearity Is mot encountered, and they have a. negligible 
effect on conveyance of the solution. The accuracy of the method 
Is very satisfactory* Analysis ©f the motion by this method will 
also- produce txmpled-aigehralc expressions and hence It axioms 
an overall assessment on the Influences of the various parameters 
of the system*



The K£ts~Salcr)c£& averaging method Is tilm not limited 
in Its application to non-linear differential equations and the 
fcethod appears just as. suitable for this investignfclen since 
in spplfc&tleu only the fevcr'nlrr- differential equation meedb to 
be 'known with an ensured oppronlr&to. solution that satisfies the 
physical boundary comdotlô o. The degree e-f ot-yrmetry In the 
restoring £ m m  characteristic# does not reduce the effectiveness 
©£ the method* The rsoui*-̂  error function that virlor -from 
instant.'to instant when Irtelated with each function of the 
solution amir an crhltnry period is son® r̂ ejrecfclvaly, giving s 
set a!? m§jm£Xtmmm  ̂polynomial elpohmlm expressions. The 
■general procedure I© evlaltusd In (Cv,&3)* and St ic based on the 
variational- iiethod* 3t is- of interest to rot® that under certain 
conditions a? tbs particular ppdfoXm* Bitx% ©Imlslslny mud the 
averaging wthods ora identical. Hlth the femen. the variational 
.function containing energy expressions has to be derived and then 
ûhsoGuently ciatalscd by differentiating with re “p* ct to each 
cc "**5 cleat of the series expansion Resent in the quadratic 
fixncticns* liovover when the generalised procedure Is applied to 
men-Xiuear p*x&lem the two methods become Identical for Lagramges 
aquations are considered, ffe© describing equations for the *ieo~ 
linear behaviour of pendulum*# ms vihietlos absorbers (3S) aro 
so ohtmfnod. Tim proof of a goner&llsed vm\>Xm Is given by 
Kewland (29).

hotter (6) developed the 7ftm~0alerkiii averaging ssthod 
in srplicatios to men-lfntiir cyasesical pro:\Sxr'. For vnriotts- 
cystcsr. considered tlm Mlgehm1c esuttica** ^educed r*xv in r- 
concise fori, allowing the Influence of vmlm® psraeetsrs involved 
to bo easily exfteind. Viter© peir IMe* as in casus for undsaped 
vibration® In Which the. restoring force depended upon a 'rm?m of



the 'dlsrl&eeisent, the results were m m m s i i i with exact;solutions 
end shorn to me very satisfactory*:

Surges# {1*0 a; plied the Eits-0aler5dc msthea to m  
eutORomoas sys-tas having syimelrlcal rostorittg forces» The ace r* ** ? 
•of the t’otkod "ibca merpared with existing exact solutions Improves
as siore odd t&ra&;*lc components were considered* fills suit®#. is . 
shows to he preferable to th«§ -r.orturhatics method in application 
to- his investigation of third order cuhbsrrcr4e vibrations*

EJef (1*2) slso found the •averaging- rrtt’ i to produce very 
satisfactory without' 3c**r In accurac- •'**•* applied .to an
asymmetrical Jr® S'SOS?A-Xi 5̂ £■ itiff i-**- vlbratin ‘*oC % The choice of 
tfec aus&er -of periodic tcmc In the - ppraxismte solution depended 
upon -the desired accuracy -and .'it ‘ ~wl I contain, the t-vsc -snd odd 
harranics existi«s in the 2&&r-li&£8r ftotieru Jr. satisfying all- 
the physical requiressisto ■& 'constant term - would also he Included 
with' the periodicity-, f he -superiority of the method was 
ds&oastrsied (27) * within tbs accuracy of the an&X©£a£ .ceaspnfcer* 
over the ether apjsroxi&itte ixthods--capable.of producing the. 
algebraic -oqustions. In an ■■analytical fern.

Clearly then, the Stltx-Salerkln worthed and the prlncir-le 
of haroexnic balance *?ouX* c -"Sa? spjwtrlrt® fey tMs.fevcrtRation, 
into'-'the -cytiSKitxan of sc * * order f^fcVwonie .vihratimu The 
influence^ cf the Independent variables in the closed /feris of the 
poXynordaT clphraic essppsssicms produced car, easily he examined 
In relation- to overall arm*lt»» and the inherently coupled 
coefficients tflll prcr^t wo -difficulty in- computing* ifitb the 
accuracy of the two rctbodu hardly affected By the gftgnitude of



the degree of non-linearity are of the disturbing force, there 
tm«M appear m undue lltsitation itsjposed on the analysis*

The stability analysis to ascertain the actual. existence 
of the ajjpr-oE'itate solution ornr the limited frcfiieacy band~*?idth 
is by determining the behavioto? of a srsll displacement variation 
f r m the couiHhrlsEs states* The oompjrlssn of the characteristic 
closest of the solution to the vsni&tismaX eguatSor sdth the 
drying coefficient of tbs system » & X  illustrate whether the 
slight variation fnews unbounded tilth the lapse of tlsacu This 
procedure enables the taccusulatiw offset from the build-up of - 
@» tsstsfele oscillation £0 no accompanying harmonic of the 
¥lbrstoi^r tssstioo to be readily <tet&r&f&ed«

$jb* y^iH^tioo

Hit!? the number of parameters involved in the nmgfe of 
values considered* the thOT@tl.cnl results are pm iozZam lly  
verifies by means of an electtonic aoalepta eorputor* The rot loti 
£e simulated f© the describing equation or the -computer circuits 
and the resulting trace recorded rill contain all the physical 
characteristics of actual sastism*

il &eehaalc®l ssodel is also eoslpisd to dcssnstratc the 
nork cMtrtsteu budelee (SaJX-BS) is the €®ly outstaadisg 
costributor la this field of ©edisaical vibration. from rational 
desfjp cssisMeratte the 11sm-Huesa? eliaracterletic is achieved

mailto:thOT@tl.cnl


through the comb Inst Ion of linear stiffnesses, similar to that by 
X&deke# This arrangement allots a vide flexibility in varying 
the describing conditions of the motion* liathenatical exprassfcn 
are formulated in tvc design of the son-linear smsfienakm* and 
sines the pere^t  ̂ of ncn~l£$@&rlty itself is heterogeneous* a 
criterion to the perries!!?!© limits ©£ the gravitational effects 
mi the snbhsrronic resonance is also derived to prevent the 
•vibrational phencB3s& to be .generated, readiing a dimgvrous 
amplitude* A detailed $*i)ce&ur& is developed to determine the 
ussism-s vibration amplitudes whilst confining the rodel to a 
mnagei&lec physical s$m for sst&IeiteBt accuracy such that' 
comparison with theoretical results is possible* This involves 
forsaulating « concept to relate the design mquiwmmt® of the 
s5oa**llnesrity to- the allowable displacement.



Chapter XXX

theoretical tealysls

3«1. lunation % jg

the single degree -of freedom systeB, sliom i& flg»C8«X~l)?
Is xustricted to vibrate cader the excitation of an out-of'dsalaneo 
centrifugal forcas tie# cossst* In the vertical direction -only*•O
the resolved force at right angle that would introduce hoyisontal 
ratios is prevented*

The vibrating ssass st le supported on a soar linear suspension 
of negligible ssass, having an odd inaction characteristic« the 
noa-llnear restoring force everted %  the suspension on the mass 
when s p p m K tested to the first two tersas in the aeries expansion is

P a (fcy + CQT*> (3*1,1.)
where i; and a are constants of tbs suspension and y is the total 
deflection* Term of powers higher than the cubic cm negligibly 
sisall and are omitted. BewrltSng the egression*

P a K(y * }.ys) ...... (3.1,5)

vbeps ,ii s i; and has dissensions Cl)

The corresponding noa-llnear stiffness is then*
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The positive sign before the rosr-llnear re*v Smplim & hardening 
du&pcrasion*:

Vndcrf the effect of gravity the spring Is 'compress&d 
vertically giving a static deflection £+ Iteins? the vibration and 
for* a particular Instant when tli« total dafieatlon of the spring'
In <je t A)- Whex* >: Is the iynatfc displacement fissured frets static 
equilibrium position snd the pmitim $im taken according to 
convention, the restoring fores ererfcei by 'the suspension in

&.( ix t t p{% t 0,5*1' ♦*»*#•**

For this arbiter* instant9 the total forces acting on the
isacs are ghotm In fig* Since the restoring -.function of ■
the gynteei !& non-linear* the neight of tan vibrating sacs vould 
not S><r equal at every instant to the static force in the suspension* 
and h m m  It is Included in the equation of saetloiu

The equation c scribing the actual mtlon of the aystoia 
is then given by

d& o the# costae * Kg ~ C& - K{<x t f |s(oe * &)*} o i
(3*1.5)

The equilibrium of fomm for the static position gives

1*̂1 s iv(& t !?&*) «»*♦*+«*

Substituting equation <3#1*8> Into CS*1 Ŝ) earl dividing 
throughout by Mould result In •

x + SEpt «* p* Ik * life* * 8£xa * S&ftx)} - &aa cosat « 0 

C 1* oPbere E e*1 and £ e "Jo * the amplitude of the disturbing force, 
e S



Introducing a now independent usriabXts B ts iat® to mvoict 
-tiogfctsg with functions of mkmmn fw iod* equation (3*X»?3 becomes

* SKn** 4*' {(X * u3&®) & f |i {at* # C.W2}} ~ css® - 0
* * *-* * * * €

isfmm r\ » ^ is the diKcnsionXese fî nueney*

The appsmlfsate solution to efuation CS*X^il that depicts 
the actual motion ©£ the body depends upon the physic si eteto o f 
the system and also ©»■ the ©ecerscy required* The degree o f the 
restoring force esy?Mtryy resulting fro© the effect ©f gravity s 
is  expressed. in  the equation fey reanc of the static deflection 
p&VRmtm?*

3*2* Analysis b y  Kitz-GslerXin averaging method.

The influence of gravitations! force or the vibratory system 
ha® increased the magnitude of non-linearity as stem in equation 
C$,1.8), The difficulty in providing correction terms having a 
constant to isprova m the initial solution end to eecauat for 
the effect- of gravity Is one of the reasons for methods its the 
Iĉ loff-Boipiiubov and the perturbation method not feeing, considered* 
Similar to the successive iteration procedures the first sppKoadaat&tt 
methods proceed to build the sufficiently accurate solutions? tmm 
the fundamental harmonic component* This Invariably means the 
deviation of © restoring function from linearity is assumed to fee 
camparStluely BtsaXX* Hence the coefficients' of xron~lism£*£ty for 
convergence ©f the methods ie restricted is magnitude.

In applying the Elts-GalerJds method only the d ifferen tial
squattiest needs to be fcuosm with a properly chosen approximate 
solution. The solution is  expressed in the form of a series and 
.is coasistemt with the physical restraints as well as satisfying 
the boundary rc^uifw m ts. The development of this method is shorn 
in  &ppmMn t  for reference., and in escerce m  s. variational problem 
the energy expression of the vibrating system is  tainisalsed over the



cycles for a conservative- system according to Hatnxltons principles 
t*ith respect to each coeifHclent; in the aeries*

3*2*(f) The approximate solution ■

the choice of solution to the describing equation is determined 
by the fcouhdmqr' 'conditions, in respect of • the •. periodicity requirements 
and the physical restraints of the system. Tt>o® equation (3*1,8) 
it is evident that the characteristic'of the 'restoring' force is not 
sysssetrlcal about the static equilibrium' position* the approximate 
solution would thus need to consist of odd arid even harmonic • 
terms* Since there is-dissipative forces acting on the mass* the 
even'and odd harmonics of displacement' exist as both sine'and 
cosine functions* , Baring vibratory motion* a shift in the mean 
dynamic displacement, from static equilibrium also occurs, for the 
point of symmetry does not. coincide with the latter position and 
to ellow for this a constant.term II must be present in the
approximation.

Th© accuracy of the approximate- solution will depend 'upon 
the. number of terms used in the aeries* With a proper choice ' 
satisfying. the requirements, the' approximation' consisting a*minimum 
of -tenas is shown (6) to 'yield sufficiently good resuits.

.Thus - the simplest form-of the .solution-for this investigation 
la '

it a H. f  h cos I” + B sin I* t C cos 8 t B sia 8
(3*2,1)

Is a result of the presence in positive damping the amplitudes 
of higher harmonics generally are much smaller than those of the 
fundamental, and cannot be measured with any accuracy In a harmonic 
analysis. Hence* they are omitted, from equation (3*2,1). The 
slight Improvement in accuracy of the approximation to equation 
(3*1*8) with their inclusion does not justify the considerable



increase of Xabourious (calculation, the third order stibharmenfe 
component is generally also smaller because of the magnitude of 
the quadratic term in relation to the.cubic.in the equation̂ '3*

Since »-'j is rot an exact solution » the equation <3.X*t) esimot 
fes satisfied and the ©nbsitutlon of .aquation (3.2*1) *&X£ not equal 
to sero but to mm mmop function E(x).

£*e# ECS) « n^ 51 t SBrjI5 + .{<£ t 8d*p.) 8 * Cx* * 3&xS)ji} - Sq̂ cosS
«*******«<*• (8*2,3)

h’ith'E(x). denoting the right-hand side of equation (3*2,2) 
to simplify tho notation the follmiing I&tsHSalerkln conditions' 
then result fro® the application-of the method to -equation (3*2,2) 
and the solution {3.2,1)* that is

.f%irj0 .E(x)d<6) « 0 .***.***..* (3.2,3)

'f** *.£(x) cos -| d (©} « 0 *••»«••*«* <8*2Jt)
r%1T
. E (x ) Bln I  a  (8 )  S 0  (3 ,2 ,5 )o «,

l»̂TF
iA E(x) cos 6 d (0) c 0 **.,,*.,** (3*2,6)

G

sm  0 o (0 )  ® 0 * * • * * » • * * •  . (3*857)

■ The frequency o f  subhamxaic ̂ fbmtiens being 0 snfemultlple 
of the excitation, the upper limit of integration In this case is - 
hir for the -cycle of each period i n  8.

3.2*{S1> The nea-Xinoar' algebraic solutions

Pro® equations (3*2*3) to 3.2,7) on integration yields} 
after el̂ dllfication* the following non-linear the algebraic equations. 
The bar above a eysisoX denotes the eorraspondinr/HOB-dlaenslonal



stitgr resulting from tb© ssisXtSpilcatioti of .it© d&secgritaf&al 
jby i4*

site *■ S *  + 3CS *§• 5)} ■* s d  V  8 )  CiSg -4* S 1 ■* S 1 4* I s ) *  |  5
Cl2 - £*>.* r*C » o .... (3.2.6)

2S<1 - § ‘) ♦ 2FSJB * •" If£ft* ♦ §*) * 2(CS * S*|) * 6ft 

£A * g>* * 6£l * i) l m  ♦ §5) s O ... (3.2,9)

2B(i - |") - ssnl * 18CCRB ♦ §*) ♦ 2(6® ♦ 6*)} * ea(& * 8)* 

* S(E * 8) (X5 - SC) S 0 ........... £3,2.10}

25 -  S?}®£2 *  2 )  <5< 9W #  *  6C£2 *  i ) *  . *  S C I 8 )  (A ®  -  5* )

*• | 5 ( 2 ( S *  +  § * ) .  ♦  (C® *  B*)) e  0  ... C3.2,a)

SD(1 -  tj®) -  ‘ffiriS *  6fj£l ♦  8)« f  6(2 *  8 ) AB *  | * Is)
+ (C* * 6®}} S 0

Ga-fizrthep slBpHficstio^ irith too nmMableJi end es

D

C

FIG. ( 3.2- 2) .  THE PHASES OF THE SUBHARMONIC COMPONENTS.



gives a set of algebraic ejqgfe&slons i n  tas fora that lias t z o m  

obvious connotation. Besides the equations (3*2*8) to (0»2$12) 
tM ch *?ere too usvieldly./to isaaipuiato^beoose more ;tr&eteble#

2BC1 *  8* *  aw> *  3ICQf; +.Q|) f  fo ^ f  009.( f t  - -Sfj) »'0-

« « * Sr * % H  :

ST Q^i% miM U % - J%) - Q|.m - ©

(3.2,1*0

3? QjQj: cos {#J - m>) * Cl - !'> Q* ♦ § CQj ♦ 2Q|) Q?; *

3144 0* ts 0 *»•»»••»•*«>>« »* (3*2§*tS)S

??<hqf *Q§> - 2 r m % sin ̂  « 0 «««*»«*,'(3*2*16)

2Q|CC1 - #} * 3Y® - r-§>.-.* 3?*...

♦ | CQ| «• 23®)} - aqPs^ cos $, b 0 ...... (3.2,2.7)

(&' + ??)*■

The hm? above the respective •ceeffieifentif ere'-chitted' convenience* 
Tbs analytical process for attaining equations (3*2»1S) to (3.2*17) 
era shown In Appendix IX for reference*

3*2*(ill) ̂ fji® phaseurs^tionsMps

As tli© characteristics of the predominant sifthansonlc
c a s m m m t  of the vibratory motion represented by equation (3*1*3)
are defined by equations <S.2*lh) and (3*2,15)* then for the
existence of the enharmonic vibration the simultaneous algebraic
expressions must be satisfied lor vhieh <b is not equal- to sere*4tu>C<ck-i s
fh® solution of %  * 0 is th© equations (3.2pX*f}
and (3*2*15) can be to



*£h® p t & .define tfm. p h m ®  sgXatioBgbip $ m p t m n  ;the,
cowpmmt and th© h$gmt&cP ©ad it can fee mipmnmil 

bw Pig* {3*2-1) (a)* They css fee reduced to e single ti&ggb&afe 
©^resste* that dofiae the region ©£ m c m &  order sidsta^ont©
trlfer̂tton*

Tha phase, of the liammic ccî oatnt during the suhbOTonic
t m m m m  is detatrained'fî m equations C3*2»X§) and''($*2*17) for 
if Qj_ » 0 the equations % m  rsduot** to the following expressions •

froa which tx single equation can fee obtained that' is' 'Meatleal 
to tii© equation of the harmonic j w t o  tihos© solution consists 
of tti© first three tersis. Equations' <$*2*XS) and {$*2*1?) can 
fee represented fey Pig, (3.SHI) ,{b) where*

*«#*•*««*##* (3*2,20)
and

0. U  ~ J)8* 0Vf 4- I Q|)
n*z • ■

*■****#**#*#•* (3.2,23.)
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FIG.(3.2-1)(a). .THE RELATIVE PHASE RELATIONSHIP

'Rn'Ĉ Q?' + Q?)J- o

FIG.(3.2-1)(b). DIAGRAM FOR EQUATIONS (3.3,10)
AND (3.3,11).



Analysis by the mtfcqi,of. the, principle of harmonic balance

Thin ssetfcodl as in the previous does not require the 
ssagnitude. of the coefficient of non~liaem?ity to be- &s&il for 
convergence of solution* The periodicity in vibratory lotion
enables the displacoisent of - equation (3*1,8) to be approximated 
to & for® of solution expressed in a fourier series. The principle 
of this procedure is the rotplreiiaBts that equilibrium of forces ie 
satisfied s and i& with the Eifz-Uz&mkiii toothed the solution is 
consistent with the- physical restraints and satisfies th© boundary 
i?eQUireB©nts of fti© ©ystesu %kikmmm. coefficients of the scries 
are dct^ nod when the optimisation ih-substituted into the- 
describing equation fsom miMk sin©-end -cosine terms- of respective' 
frequencies ara set to soroi giving the simultaneous polynomial 
'algebraic equations from' which tb® • wkmm& are flKod*

Fes* iwpzming on an initial approximation the procedure is 
described in reference (22).* - 'Vhss® there are already a number of..:. 
ten?® in the ©erica on first approximation;* the resulting avail 
increase of itoour&cy will not Justify 'the ccmsiderablo amount of ' 
calculations Involved*

pm3»Ci)*,t 'The ̂ >pxtmhm tk:_solution:

As a first'eppm^mtiea the solution to equation- (3»-X»S)
its

Si c i! *?• A cos §-t B sin 4* € eoa 8 *§* B sin 0 *#•*♦*

The approximate solution is consistent with the physical 
requirements of the system* The constant !«Y its mgnitud© 
varying with frequorcy. accounts for- the shift of dynamic 
equilibrium point fro a the' point Of symmetry and as 5b the previous 
sethed the higher Issrsonic terms arc neglected. Because of 
dssping in  equation their aŝ lltudcs are considerably
smiles* end would not improve to any effect the accuracy other



than {Teatly Increase the laborlotisnoss of mtutSm and the 
difficulty in cOTputattosl £gx>oeta*«'

Substituting: equation ($•$»!) into (3*1&G> gives

css § * § j * C cos I t s  sis S| 4- 2HnC<| cos |

- i ©In §1 * CD cm B - C ©in ©II * Cl V 8#|i)Cll * A ess §tSC? £*< $w»

❖ B sin § ❖ c ces © * u ©is 6} f SAffCi? t & tees' § * 8 sSa 1<6* «?#

❖ € eon I t D  els 0}* # uCll il cos § * B ©in | f  C cos 0

❖ 15 tsie O}* *~ S5?|̂ cos 0 © 0 ******* »» . C.3u3fŜ

The son*lines? oimultsneous algebraic aquations

flic felteing sonniiijcar ©imiltasjeeus flgebraie enjsMtosioni 
®s?e «&t&&md ffcois equating the respective fjroqueacics of sins end 
cosln© tern® separately to m m *  The equations ere produced in 
a closed Bern as In the previous analysis* This still imbi© *m 
overall interpretation of the Influence ©f the independent 
variables on the resonance charaeterlstte. ?h© bars above each 
Sufficient are omitted after having- oonvertei the coefficient 
into oorroapoî difig m n ^ m m $ m $ l  quantities by mXtipXfit^ the 
respective £ m &  by |i|#

2JICX * B® <• SA® * 3®) * D(A 4- !!}<A® 4. 55* * C* * 55s) 1- 3AB1)
4 gC(A* - B8) S O  (3.3.3)

M l  - §  I *R09 * t*C& 4- 8>* 4- 3(A ♦ H)r(AC 4- EC)

•S- I- AfStA* * Bs) *(C® * 33®)} s 0 ...... (3.3,4)«£ *■



2 ■

B(1 “ f  > ' »lft -t- 3BCA + 20s +:S£& * H> CAB - EC) * |-

B{ H*8 * Bs) * (C8 •»• B*))' = 0 ......  (3.3,5)

C -• t|*(C «• Z> 4- 2P.n13 ♦ 30(& 4- II)8 «• | (A * K) <A* - Bs)

* | C {{//* -I- 3 s) -2- JCC® 4- D®)} e 0 (3 .5 ,6 )

D(1 •• n8) - 2fc?C * 3Q(& * H)8 4- 3AB(£ * 10 ♦ I 0{(S6 ♦ S8)

the m t p s s m i m . of squared m &  ei&ed of the ©ppros&mtioa in 
equation <3.3*2) is-ehmm is Appendix 111 together* «fith detail 
simplification of restating tri$©BOffi®ts?£c identities to attain 
aquations to 3*3,7)«

On further simplification. of the equations f *?lth reference 
to the previous definitions for tariablos ̂  artd#^ to giiro mre 
othvious physical Interpretation produces -

TiqO? ♦ 3Y0* B i n C2#t - <& e 0 (3.3,9)

F-C»fQf * q?> - 2nZQ.1 fe *
(3.3,11)

2Q?{1 - n8 4- 3?8 ♦ !  cac? *•«!>} - QfCi - r 4- a?8l ** g 1 i *
♦ | to! * 2Q®)} “ En̂ ZQ̂  COS $x B 0 ...... (3.3,12)



The above equations are identical- to the ran 'linear 
clipbmlc expressions C3*2SX3> to C'3«2*X?) obtsicvd fro® the 
Hits-SaXerkin- averaging Esefched. Thus these two ©sttiocls are 
©qulmleat when their respective ajf̂ mtisatSous contain the
sase terns of harsscnics*

3»*i« , Incline pliese-pXem analysis

Us the mgim of second order vibration is
defined either by donations- and C3*$»X$) or by equations
(8«3*§) and {$»8*X0)« mibte«nico having the ease magnitude ear 
exist Is two phases* differing by t radians* Analysis' of the 
appm&ns^e eoXut&m for the vlbratc&y mtim of the aystss in the 
transient state by im&iim umphicaX tsetbod will Illustrate that 
the vibrstiess can occur is either ptee* defending, upon initial 
additions fesit which the phenomena, is generated*

3»<M1)» „«ha.fTFJS^r*transient jstate solution

To shew the resulting second order mMmmoic vibration 
ma also the relative phase relationship between two different 
stable es^Mttls-s of a ftrequcney depend upon the initial state of 
the system preceding the excitation of the si&toKo&ic* an
approximate transient solution of ©auction Cs.X$8} Is assumed In
the £©m of equation <3«t*l).s that is

k e II ̂  A(̂ ) cos' || f* B{D) sin -t 0{6) cos 0 t Bf©) sin 0
13*.̂

in which coefficients and B are slowly varying functions
of © that nit h^txm constant, values when steady state Is
reached* Under this assumption and that the coefficient of damping 
Is relatively small# second order differential terms together with 
those of first differentia! multiplied by R are neglected on 
siihstitating equation <S***,X) into equation (3. !».£)»

Henee the following equations arc obtained*



rrf-. ||, sin |: - *| cos %̂} o> f ~  ©In- 0 - S.|̂ |'©in 0

-  C coo H  5 |\J cos § -  Q ©in £)} *  2Er*{“" g sio •

t  >" COS ■■£ ~'€ 'Slf! 0 COS- '0} «fr |{X'.^ 3 

. *  ,01s *..&&*). .if). |55n?. COS 0 S. 0 . . . . . . . . . . .  .<3*HS2.)

If the above expression is to yield the periodic ©oluticn* It mat
uXtlfaately with the lapse of time hm satisfied*

3»U»(i£). nolynotsiai cxp^ssibna of 'the; Intô al ..curve

Equating thfe' coefficient©' containing the aen^scilXctory 
I  and ©In. -|

{$***»£) raspecfciveXy to  ssero giv
tor® II* and those o f cos •& and ©In. >i in  too above equation

?Ci *  3#p) *  sine# *  <>§ *  qp *  it or5 * 1 ha* * 1 hbs
. If 5“

f  |  A®C -  I  8% ❖ I  tic® *  I  «B* f  I  ABB) « 0 . .  (3.***3>

nft( -  §■* |§> t  EriB *  (A ♦ T?(| A® *  ®l*A ♦ §  BSA *  §  AQ® 

t ' 3KAC + 3HBB) t  8Au{2??& •>• ACS-V:B8) *  3A%4!> s :0' • "

cs.*m > .

-  H%|§ *  | )  -  RqA *  {S (X *  3A*ti) t  pc| Bf 4- 311%

t  |  A*B * 1  B0| *  »  -  3SBC) ♦ a$x(2HB t  AB -  BC» a 0

The ©pension of I s end xs and the resulting sim plification  
o f trigonometric Identities ©re' shown In Appendix I I I  fo r 
reference.. The coefficients of con .and sine terms arc not 
considered as the analysis Is  intended on the transient state 
©£ second order subhammie vibration. Besides as i t 'w i l l  be



st,sb in the results of the previous analysis that there Is no 
actual soltxticn as to the ©xlstenco of the 'vibratory motion during 
the z m m m e ®  of the. f^da&ontal hMxwmim* It is aloo pert of 
the. investigation to ascertain at a later ©tag© that when the 
predominant ©i&hersaonics occur the fundamental harmonic 
Is of non**resonaat typo and that it can ha raasoaahXy atproxlrsatcd 
independent of the periodicity for a certain physical characteristic 
of nonrlinesrity*

Ob farther simplification and after converting equations 
C3.ht3) to (3*** *5} into nm~MMrnmim^ quantities fives

IIs -4* 31i!£ 4* ilfl # SAs * |(A* * lft) * I'CC® * »*)} * i|--»- ^  $/#& .x ,n2

(A* * B* + C® + »*) f “ C (A* - 8*} + -I ABE* ~ “ ' ’ 2 “— ' u
..... (3.8,0

•|| b  I* {n* | - KntB - M l * sa8} - |.a(A* * s*) - si;8/.

- | ftQ® - 31!AC - m »  - 8M2BA * AC + B8)} ... (3.8,7)

II = ~a f •- 8* | ~ K*l& * 80 * 36*) * I 8C&* + 8*) * 33*3

* | BQ* + 33AB - 3IBC * 34(2® * AB - 80} ... (3.8,8)

Hence, together with equation <8**£-,6>* the integral curves of

II B ©  *1* |  “ Fjr<a * 80 * 3&*) + | 8{A8 * .E*) * 3SsB * SKAi

* | EQ* - 3SJ8C * 36(281 * A3> - EC)}

fn* f- - ftgB - S O  ♦ 34*) ~ | h {A2 * B*> - 3£l"li - 3SAC 

- -| f.Q® - 38BB - 3M2BA * AC * 8»)1 ..... (3.8,S)

can he plotted In, A* B p%m®* Hh«n steady state Is reached K(6)s



HC0) s C(0}’ and m y  a m  constants* and the periodic solutions a m
satisfied by the conditions

| k | # V *  0 **.....  (3.*MQ)CO dC? * ‘j *

Thus fen? the gco&odie eoltition of ©suation (3*1*8)* (%*%*$) Is ©gual to mm & M  the coefficients satdefying 
e&m&ta&eoueXy the coijdltioas. o f equation {$*4* *3,0} .give singular 
pefats -on the T»lan@# The periodic solutions am detominod 
h y  and CS*^»0) both equal to Hie
resulting equations ms&& 3̂ -identical to-equations end
<3.3*$h



Stability &mXsm is of tcriodic colution

The. beteflota? o” iis c epstess wMs euhjeeted to perIodic 
©Eternal fore© trfill have m l  Ion that eonsiots In addition to the 
forced' vibration of the «b' frequency as the disturbing fores 
fh© tmmimt state e^mriout of the -natural frtKpie&figr* If th© 
tectism of «lls#Mcr-ert Is ■ t3©n~X£xi©&? this principle of 
mpQXposltfm vH3t m  longer be applicable* For la ouch ©ystesas 
there mm a immbtr of urrcr̂ fc© $&piodlG Orations as %&& as 
those feavSog the nerse period as the' external force* Kith 
raalissdsla'î iysioal isystess evidently' always include enarcy 
dissipation It Is readily seen that for the etdstene©- of the 
various types of vibration. the problem .of stability analysis Is 
unavoidable#

Tbs. instability of © vlbmtimi© not ntmsmviXy dm  to
its.otm cosmonaut of the eormspondlsu-ha^seiric In. the vibratory 
fsotlosi* The fcuiltl'up of an oscHlatie® ami- tmcta? in a region In 
which the Is of orte* a taUItipX© of .the vibration
freqaeaey. This ssesns that the asctmiMtlv® effect can. be of the • 
sane gtogpsaesr as tbs vibration Sfeegtsenqy m t  It «£Xl us longer 
permit the of the original vibration* thrn stability
coalition for ©sly the first hars&aie region of the ©t&harnoniG 
freqaeney lo not sufficient# The regions for adequate 'cmmM&mtion 
oust than too deterrlrcf fro? the order of dit̂ iacesrant in the 
variational equation end from -the .Busier of tests necessary in. Use 
^amteto solution*



t The vaglatioisaX equation

The analysis of sts& llity is. invest!ftted fgamgb
considering a eissXX variation fix fros the periosle state of 
equilibrium* and x„ (t) m the periodic solution. of equationV' . ,-'H •
<8.X*T) for t?hiCh its stability sad regions of existence are ;to 
lie investigated* t %  s $9a~disaens£onal time* that is

T ® t # p

Equation' C 3* i»? I then becomes

JMr *  2E %*• V Css t  pCss® t  3£x?' .*■ sA c)} v Sty1 cos nr.«  0
C.U ■ Ci i

Substituting (x0.*"&k) in place: of x and neglecting ;■ ■ 
higher orders of 5k than the - first.g a linear variational equation- 
ibr fix - is -obtained (2033).*

+ 21; + Cl + 3ft2 + Ss® •{• 0/i.Kj 5s: b 0 i... (ti.ls2>Vi 4 Ct «. .O ■ ©

Equation (*f.l*2) is in nen-dimnsionaX form through 
imXtipXyisig the respective component by The equation 
characterises © small variation fix from the periodic solution*

The behaviour of fix with tine determines the stability of 
the solution to'equation (3.1,6)* The solution is defined as . 
©table if all solutions of fix are bounded ee T tends to infinity*.
The solution sir Or) is unstable if fix grows unbounded as T ̂ cf*O ' .  . : . . '

. . .  , ' :-0PrV'Yi%lng the trsmfbrsaation '6:-: ‘e ©** £ *•»•••*. (**•&»$)-

to eliminate the first derivative tcro gives



This is a linear equation,in £ *fhere;the coefficient Is a periodic 
function of t and can be enveloped into 'a Fourier • series. Thus 
substituting sc (t) isi the foim of equation.(8*23l)"tho;variational 
equation (***XSH) is than transitoped’ to’ a Hill*® typo equations, 
that is

,gr H
. §~l +:{co *•2tJiicu *»*" r-.ô W.-B- o *..... ■■(4.1*5)

lih®ra O0 » Cl - fc* * $CA * I?)8 # | (Q It q|)K' ****** ' (4.1*6)

..C* S-.C®. ♦ C** * and cr ©.tan ~*<2«su • • • isc • uc ■ u ''-yr̂  tûc

Clc c § t A * V *  r.tn, ♦. 2A%5, , f  C S %  t.AjBj.

’•*' bt A,̂ t 2&hg ) $ . * .*j (iijHiij; f. $ .■ (At ** Isrjj) i* *

c2s ~ f ..^i^;-‘C3c q (%% ~ tbdjJ * . '

%r ~ 3̂% * -v C4c s ¥:^r " ^ ' ^ g c  f %r:

4*2*. Thu conditions of stability.

If the simultaneous aX^ebraic egressions of aquation 
(3.1*8). w .  fiot satisfied 5 the actual existence of the 
approsclî ticn'j, ®qm t i m .(3*2*l),£©r only so long as the 
coefficients are stable is examined for the conditions whore the 
©ppf^prlstc msbet of region of the vibratory motion at'to bo 
satisfied simultaneously*



4.2.CiK . The Characteristic .datcrr^nant .of the stability criteria; .

By Floquct*.© theory .(15) a particular solution of equation. 
£s . given in the £om

C © . e A  .* $ (t)  . . . . . . . . . .  to .:*.,!) . ...

where y  1® the characteristic.exponent, real or imginary. determined 
by the coefficients of the Fourier series in equation (3.2*1)*
'and $Cf> is  the .periodic function of time ( t )  in  which the period 
in  the ease or twice the fisntasesstal hsgtsmic period o f the 
series* Tm mmmm  o f ter"** fo r #Ct) in  the Fourier series.,,, 
deffcdcpneat .depends on t lx  describing equation (S#2,i5 and the 
accuracy required*

Thus, fros previews'consideration 5 

4>(t) * a * coss Cg‘* ~ $2) * &2 c m  ^  ~ ^  .̂ 4*2*2)

where. end^^er© new pargaetera -to be,determined* .

- Fjm:‘equations (4.1»3) 'and -(4 •'£»&) the fcofiditioos '
defining 'tlx-stability -of(t) that is' the approximate periodic 
solution of equation (3JU?)» is readily seen to be given by

the real part of <y *-.&) < 0 ******* (4*2*3)

m &  at the bmmdaspy of stability by

the real part of Cy - E> « 0 «**.**# (4*2*4)

Since y can either he real or i maginarVj. the equation 
(4.2.3) is  esulwaiest to  •

E & 0 end R* * Vs ...... <4.2,5>



If equation 0*.2, 3) • is positive*.tbs ©raH•variation• 
diverges boundlessly with increase of • t- and . consequently- the 
approximate solution (3,2.1) does not actually exist.

h .particular solution .of equation: C**.X*5> is then , ■

g - e^{a + e1. cos- {§-. - > 4- s0 cos Cut ' tl^}} ■■**» (4*2*6)

Substituting into equation (4*1*6) gives

,C| + 2r || * {(-/ + co) * 2 I Ca cos (S® - 0

With. $(T> as defined by aquation (4.2*2), fliers a the 
constant torsi is to sHow for a s&ero fraquency teres contained in 
the non-odd type displacement, the substitution into equation 
(4.2*7) and equating the coefficients of the constant and of 
those of th© respective satse frequencies through applying the 
principle.of hansonic balance,gives a set of linear homogenous 
equations £rot$i which the parameters of equation (4.2*2) can fee 
detersalned.

(r* * c0* a0 * Clc %  cos %  * CIs el sin °i

* C2c *2 003 %  * c2s e2 %  K 0 '

2C,AC

* ̂  * C2ŝ  E1 Bin °1 + CClc * CZc)

er, cos 5̂  4- <C' * Cv,) s. cin £« = 0jd. -L*-> *£

Scis Ro * (C2s “ V15 °1 co= h  •• * c,



" 1“ " C2c5 °X 8l® C‘l + tC38 “ Cls5 
i2 ces 5g * (Cj - Cg > a? sin S? * 0

Ot,2,8>
202c ®o *  ?Clo *  C3c5 °l 008 °1 * tc3s " Clf’.5

■ â .sfn 6, * Ct* * C - tla * C||c,) %  cos 6̂

* <2y4 * CL' ) a- sin ln ss 0**«» *& •*»

2C2a ao * Ccls * CSs* %  603 %  * '«* ~ c$e* 
ein 6̂  * <y* * C0 - n2 - Citc) n2 sin

*  (%ffv ** 2yn) %  cos %  «' o

the equations of (4.2.8) smst satisfy for all values
of a * «mi 8̂  t?hl£h do not vanish, thus the
cimraeteristlo deters£nant of the coefficients ssust fee equal. 
to aero* Alao Binm the dotmmlmafc is dependent on y, honca

IVosj the condition of <4.2*4), at the fceucdery between 
stable and unstable region* equation (4*2,9) hecos&o

 ̂ ** 0 **.#■**« <4*2,10)

and from the conditions of equations (4*2,3) and <4.2,5) load 
to

%et*^ > 0 ....... <4.2*11)

for the ets&llity of tfoe periodic solution.



lienee, the characteristic determinant leading to a 
criteria of the stability limit takes the form

lU . (R) » cat*

R*+C

1c

20,

2C.'2C

2C'2a

'lc 'Is '2c '2s

R * « - C  ' p'*C '.'.c Cic*C3c <W°3s
*c2c

C2s*“En C3s~C1s

“2c
Clc"‘C3c

V CSc C8S~Cls
tohe

Cl**C8s Clc-C3c Cte-2Rr*
'he

o  .. (

where C,. and arc as defined by the equations (h»l,6),

and i » 1, 2, 3, h*

The expansion of the above determinant end from 
substituting the equations of into it* a relation
giving the boundary of any unstable regions on the resonance 
curves can be obtained* The stability criteria derived will 
locate the region of the accumulative effect of an unstable 
component in the non-linear motion*

The direct differentiation of the expression describing 
the suhharmonic resonance to obtain the vertical gradients at the 
stability limits is not the most appropriate nay to determine the 
instability region. The prodecure* besides* is complicated end

*2,12)



very l&horious* To use ̂  Ktiiblllty criterion will not<vtv;̂
«v:readily illustrate that the ̂ pvorSmt^ solution dees not exist 

in t!i© imtahility region on the cans© of the instability that
is due to a feuli<S~up effect In one of the Ijarsonic oscillation of 
the vlferstory m tim *

vertical tair:cnĉ ?

ffie us© of an equivalences between the criteria of equation 
<*I*2»12> and the BeufM!ur»lfs criterion of stability will aseertsi 
that the eb&mc&erSatie curve of displaeeiaent amplitude against 
frequency has a vertical taagencry '• at :'the • stability Xlsait#

Froa the non-linear algebraic expressions, that my he 
satisfied for eĉ e than one set of values of the dependent variable
that if

S £ 'equation (3,25S) » 0

Yt s : equation (3*2,9) •• *-:o- 

^  s. .- equation (3*2*10) » ■ •© . .♦.****'-

¥0 s -equation <S*2ffll>. ».• '0 .

>tA £ equation (3*2 *12) «s 0

the aft&llitjr condition* derived from the South* Hurvlts criterion 
(22JI-5) for'the describing equation (3*lsS>* at the' boundary ’ is‘
given by- ■ -



. . 0a differentiating equations <0,2*0) to (3,2*12) with 
respect to the frequency n of sixsultenemis
equations. is obtained.

Solving these resulting expressions will yield

&  d& _ . dB t% , dC V . d!>
drT^-'5 dn'” -̂'* drj " ~~ * dn ~ 9 dq y.

<h,2s15)

fdior® ?* (£ * ly 2f. .3, j 5) is. the characteristic determinant 
of equation C*t-,2*1H> in which the ith column ie replaced by the 
following coXum of tenw#

c£ ; - dX̂  5- ~ :. *♦ aXg ■; - G?2 ; <h.2s16)
c * dn ’ drj' dn ■ dr{

Sine® q| » &s t 0s* and q| « C® * 13s* the gradient of-the 
characteristic curve displaying the- vibration amplitude against 
frequency is given by



The substitution of equation <*** 2*3.3) into equation (ii;'2,l?) will 
give

Thus with the1 inability limits- at' the boundary securing 
when V » O it' is rcndUy '©sen from the equations of <**»2*XB) 
that

H  « e ^ l e s  ........... (4.2.19)
0(1 3f m

Equation 04,2*19} shows that a vortical fangemey of the reson&acs 
ourvas occurs at the stability limit which ic determined £»©© the 
equations of <i**2ft8> for the first and saeoad eoopo&ent region©*



~ TO -

>Cha^sr

jCorputan̂

Itdk̂ !L 2 Instoimeats#

■ The analogue computer lias been regarded not only to help 
fcrlcĝ  the fserHa between intuitions sod exact analysis* hut it is 
also up*.! as a rworking1 rodol. (1* 'H# 10® 22® lh) If the equation 
of tsotlon* to fee simulated® adequately describe® the actual motion. 
In this investigation such difficulty docs not * rl®e.

As S.C.q© System. Computer analogue* £is*(S«l~X>» 1© used • 
to obtain the expeMraotal results- to equation (3*1*7) for the
wid© range of independent parameters# The machine comprises in 
addition to the computing elements housed Is e temperature 
contrc^led oven a digital voltmeter and relay ©witching circuits 
from which Individual parts of the program can ho monitored ©t 
ony, Instant* The necessity of calibrations* voltage measurements 
and potentiometer settings are carried out through this address 
system to the respective outputs*

The- non-linear function of/displacement Is generated fey 
means of transistorised nark space multipliers. These are 
slightly lass accurate than the servo-type but they have a much 
wider bandwidth* whilst the servo multipliers are restricted is 
ta&euge to lower frequencies* ' • Computing outputs are observed fey 
fsonitcrdng th© corresponding traces on an Alrstec type 279 display 
oscilloscope*.Item B In fig.CS*!-!)# The results are recorded
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via a. resistor eireuit# item. C* by- a Southern Snstrn w .ultra- 
violet recorder.type !£L25QP iten B*. The resistor ©Imsit sIiomji In 
Fig*<S«l~2) ©Xlows sufficient. .deflection rsafpiitade off Hie 
galvanoseter when needed, to maintain tha lonst h w  frea 
et&secuent teeamsrement of the teices*

S»g«f: rrejyg.toolnr_«

. The. fundar̂ ntal circuSt programs for the second order 
©ubbarsjoale.solutions to..equation <0.14?>. are- shown in Fig* 
<$*2~£)* . The difficulties *Mch may he .©aeottntesed whan setting 
up the. pro/ran are- frsr the f rohltar * 'of scaling as it is necessary 
to ve&&to. the eorpttfcer irrx;dcfeXeo directly to those of the 
inuastigctioB* The Independent parî tors: of the describing 
equation and the coefficients of the solution ere ©stressed In 
voltages and t&m of the computer*, -eesssity for scaling is 
net only to relate ffet behaviour of *. c physical system to the 
two .variables,s hut as td;*. nil «os&£» ~edels there ore reel 
limitations. on possible «<v>itudes and rate* of change with 
respect to tfee* Often $ amplitude and tire scaling ere reeossary 
if the equations are. to ba aisuXatad efficiently for a wide 
. selection'©f the independent psraisieters*

The problem of ©solitude sealing feeecscs less si it 
when counting for solutions to- non-linear notion* In a co isfces? 
study ©f linear differential eqmti&m. all amplitude ©calc 'I etore 
can fee ©hanged fey rarely altering the ©agnitiide of the
forcing function input m d  ©f the initial conditions* It is not 
possible to apply cmsh.a procedure to equation ($.1*7) ©imply 
because the principle of superposition do as not hold* Amplitude 
coaling to each output nay fee necessary either to avoid exceeding 
the operating specification or to prevent large errors being 
*^mducei to the results on a percentage basis*



• Because of design lltdtaticns the built-in om>i? of the 
Oospster is lowest at t^dmts loading' of the outputs * • Tfcuo to . 
onsum good accuracy of the solution- tb© amplitude scaling is 
calculated ■ to attain high loading ■ of the amplifiers and • 
mItipliers* Generally* this involves oeversl scaling sequences 
for ©aeb sot of independent pamaeters* The machine locos its 
linearity if the Mniting voltages ver© exceeded. However the. 
outputs of tee various eomputiag olcseats are appropriately . 
detected; to .achieve not lower than itin©ty per oast of the 
ctabUteed voltage* The orror that is intsoduced during the 
salutation owing to drift of‘tbe- reference level of. operational 
aî plifiorep multipliers and'̂ t̂erstjee;'.©applies Is then loss than ■
S1 per-ĉ it*

.The solution of .equation C3 *!.»?> requires the-**©© of 
the to assise- the power-, of the ■displaeesent*: -Often; it
hm&zm: mstmmx*?; to time- scale/the- differential equation -©specially 
t?hg»' -the .esrvĉ EajltipHtsps aro ,t*3©& to.-gonopste the- nm-linmx? •;; 
lection* fh© sealing of. actual it-tas- to, one suitable on the machine 
is by. s^lng-th© $iibstitu£i«m':

. T  ̂ S K t .„**»»*«*•* {6*2*1}

where;T:‘is. the computer ti&e and.- S. is; the.-tiee scale* ■

Since,.the1 mebitse cor^utatrfbr only.,©’period of three to.fpur , .,' 
frlrsutcs. without loss, in.©ceuwsr ;t o f  m v % ro - m a l f i ~ l $ ® v B r . , .  

will, not necessarily ..increase the' .accuracy of the ,solution for a ,; 
tongas® rate le r ® q x i i m d  to .attain the-.steady strata frc^ transient 
notion* ,

A®, tbO'equation C3;*.lfB), describee .a contpifugally excited
eystem* rant, tl®o. cas be used by, rnsldnfl p: n J* Because of the 
scaling .rê iiraacnts %%, id,Xt .give a higher frequency response. - . 
Otherwise* at low operating speedy -the drift in, the computing



elements tdlX can so deterioration of the accuracy* This xrcanfc the 
u m  of transistorised mark space multipliers is ssore suitable end 
there Is also little difficulty then »ith the recording facilities 
for the respective outputs. fiance the problem of frequency 
limitation does not arise for the uMi range of values necessary 
for a thorough iavegtlfatlen.

If the assplituse scaling is carried out as previously 
discussed there is no concern as to v&cfher* the outputs of • 
the aultipliors exceeds the mmitm sexStwni. The actual operation 
of the, smiitipltos products an output aeual to the product of the 
tar© inputs divided %  the computer reference with a complete 
reversal In phase to the resulting variable. Thus two inputs cot 
overloaded' la their respective circuits Kill give sti output %*ithin 
limits.

S.2.Cil)«rii .The...equation

By' fsaklug p equal to taity the dependent variables of 
the vibration have aon̂ ditasmsional values* As the fequeacy of 
the output by previous consideration Is converted to actual tiis® 
of equation (3.XS?)» the turn-linear response of the systesi to 
v&riono' pcmzfc&tlon of independent parameters Kill he as? depicted 
fey the cutout tsaccs* fhm the behaviour itom&tiqg frsr. 
Invitational influence oa the magnitude of noiv-linearity Is 
monitored directly on the oscilloscope.

fiit desorfbiug equation is reduced to the fons
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fIm cirerlts pwjgmaaed for the systesi ere shmm in
fig* CS.2-D* to start circuit Fig* C5*2-I){b) it is meesasry 
to hnya ais iftitle! tm&tt&m* Since the &&6tu&lius force is a
m$tm function the initial ooaiitioa is aeccrdisgly fed. into 
. tii© ©ecesd integrator*

S«3» COTfetltatiOfi 

g«3«.(f).» jfeft groeadtsre*

The coefficients ©f ths potentiometers are sot only after • 
the ©osplots interconnectloss' of the ©imiit cosmonauts have been - 
isadê  and the patch panel h&m b&m Inserted into tb© rachlne.
This will then thfce into account the loading effects of the 
potentiometer settings on the various integrators * arplifiers 
and multipliers* the accuracy of the- settings hj mm® of control 
clreuitiy in the console to the cfeglta! *ol$$et«r is at. least 
0*QS per cent full scale*

tsmmms of inherent teeing the duration of co&puting 
pt̂ fcraaly is not longer than three to four- sdmstos* Suds 
■precaution idll prevent errors’ of some magnitude otherwise being 
introduced, into the results* However the problem is jaoro difficult 
idien eosfiputStig fbr nĉ uttos- to uoawlinear systems. In cases where 
the coefficients- of damping arc relatively 3&aUs severe amplitudes



•mm ercited during the transient ration. Since they require, 
sufficient tis» to 3s® suppressed* the effects £fcera the need to 
attain a steady. state within $ period are felt in both circuits*

J&thotigh theoretically a periodic force can only do work 
im a ̂ tion having the *x~c frequency* with a m m - t i n m v  gystaa 
the predominant' co^cmest of ouohcrmonic vibration, is eaintained 
by toe periodic force at a ssfeultipX® of its tmvgy
is supplied to sustain this non-linear p t m n m m m . via the 
fundamental h m m u is* Thus* .if the eemputstion S5?eeeds-.th.© ' ... 
reasonable period* tbe magnitude of tbs oHcitation is _ reduced on 
both counts. end .the accuracy of the results deteriorates rapidly.

The potestieiceter -coefficients are cheeked frequently 
to avoid loss in accuracy through small variations -In the.- ■ 
supply 'reference voltage.,. This problem arises particularly 
when the analogue computer is operated before-:it is .allowed © 
sufficient tire period to attain the working temperature 
condition of mMbmm- efficiency, if the relative potentiometer 
settings limit one of the coefficients to small values* the loss 
In accuracy can bo of a significant degree*

S.S«<£i)« The EinlBlnatioa of etmy* .

fo ©Inltsise such error is both the joaia and forcing 
function circuits feih-ei? generating the pronounced vibrations* 
initial conditions ©re introduced to the input of the first 
differential la circuit- *ig-.<5*2**lX©) during the trial runs.



The wines are w e t according to the theoretical r e m i t s *  This 
will produce at the outsat of computing the. displacement voltage 
which varies from m  amplitude and frequency near the r e g i o n  

of the experimental results* «ken steady-state conditions a r e  

achieved the small decrease. in magnitudes of the vibration 
as&Htude snd of the disturbing force ©re recorded* On tho 
basis that t h e  e m r m t m s  circuits describing the subharmonic 
motion- ©f equation C3*is?) ere from equation (5*2 2) the 
©©responding outputs a m  ronitored efficiently* one * when these
values are used as initial conditions in the actual mi* steady- 
state sifthammic vibration Is produced half-way through the 
period of ©©imputation*

The exnerlmsmtal results obtained !>y this procedure are 
i n  g e n e r a l  i n  good agreement with the theoretical analysis* The 
ewpgrlcental value of s particular frequency Is located without 
difficulty for either the lower or the upper branch of the %  
frequency response through the voltage not to the input of the 
first differential* As expected from the consideration -of chapter 
l?s section the location of the mmerimmtel points In the 
Instability region Is not possible duo to the build-"up of m  
oscillation which has the sate frequency as tho subharmonie 
frequency* Thus there In no actual solution In that region' if 
the -determinant of equation <*f#2*12} In smaller than sere# The 
?Jump* phenomena where it exists can be observed on cither 
Increasing or reducing, the potentiometer value in the forcing 
function circuit#

S.5*. fAnalysis of̂.e3g>feritsgantal wave-forms*

Esperisgesit&X solutions for each selected frequency value to



m m z t i o n  {3*1,7) '.are obtained fox* various perssutstlQno of 
independent parameters and are recorded in t lm  wawHTonss* a
trace *Mc!i display the st©a% state dtihharooaic resonance of 
mcmd ©Mar is atom in F!g*.<5**Ht)(a)*

jKas jm̂ ~£cffss _ m prczcM:r l_agt rougher , series *

the. periodic curve representing the vibration displacement 
it naaiyged into femonie m%pcnmt® by -dividing for each cycle of 
vifcnatloa* «hich is tm for every period is ,Bf into - twelve. aqn&XXy 
spaced ordinates* The y-ordlnates of the i*ave~£©r$& arc sseasnrad 
If* igsens of a fherol chart- reader equipped sdth vernier scales» 
and the valuas subsemientSy are reduced to a diteenslealess state 
through anltiplying and diirMissg by the app’opri&te factors*

thus * Kith the tStne traviHforo expressed at s Fourier 
series* that is

?-:ca
f(C4 x •-©. 4. s (& cos ic6 ♦ h;# sin tc6> *****

2" K=1 * *

the eewpessRte a«s deterained fey
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% mere

» C I * Cj - 1) . I J

Sice® 6'{©> hew* £e a constant, that is fif©> e then

1 **3„ « ? * I f« .COS? f?0. t».** {§•**,*£>
k 6 JaJL "«* 3

Similarly,

b 4  K 6 ^  J J
1 **A r *. sin ice. *•.** <s^?s>

M  the coefficients of the series can he caressed in 
the fens

£(0} ~ K * Q, cos CS - #?) * Q* cos {20 - $.) * .«.s ‘ £ * *
. • * *  <5»<t»6)

1
inhere 0, « <a£ * h£)s *K £* Iv

end » t m  * *
\  ■

them- with the aid of digital counting* equations (-5*4,2), 
and <$*%§§} will give for the w&vo-fbnss of equation 

i$*2*2} the w s  dyaaialc displacaisant and the respective 
lismmic mmtpsmmt& of the non-linear motion#



T m  non-distonsSoaal ̂ frequency of the recorded trace Is? 
determined from knowing the tiso. scale o f the fcrave~fcHE* that

11=|S.| .... (C.>;,”/)

ttbere

S £® the tiies gradient of the «av©**I«rsi in ca. pur eee* * 
II the length of «a£h cycle of vibration In ssta*, m& 
p Is the linear natural frequency in tmdlaat per sec.

The sensitivity of the as^Xitudc~frequen^ traces can 
be maxntained rhea needed by mraly Increasing the paper .-speed 
and adjusting the resistor -circuit* This will prevent wide 
fluctuation In the accuracy of the coefficients and of the 
frequencies determined*

The control of the paper speed of the U*Y* recorder 
regulates the x~4ud& of the wave-forias* Hence 9 it allows the 
suitable nnnber of equally spaced divisions £m the length of 
each cycle of vibration to be laadc accurately* and thus 
reducing the percentage error that is Introduced In the 
approximation of the actual v&r&~£am in the harmnic analytic* 
The appropriate adjustment of the resistor circuit enables- a 
greater deflection off the g&lwinoseter of the 0*?* recorder 
to bo obtained. ■ The accuracy of the results Is then readily 
misstated, for the masurcucmts of the large -amplitudes of 
the i?ave~£ors$$ arc taben %  scans of the Fharol chert reader 
which gives pmMn%n up to the second decimal place.



The raeasureabl© siibharaonlc ĉ ŝ csieats*

The results for* a. particular set of parss&terst are presented 
In Table CS***~2}. ftlthoujgfe the egressions ©re approximates*
geaerally the twelve ordinates give eefHelantly good results. If 
higher ©course-is m q u i v & X  the smnber of ordinates ear? he Increased.

/is observed from tit© table* the third order of ©van
sttMiasssmio coE^cmeats m  vr/ oeall* In fact the third order . 
m m p m s m ts canmt he offoctiv̂ ltr ensured t?iih the Usarol chart 
resilftf u p  to the second doe’̂ X  place* The error introdtaced- fees 
the of the tec© do as hi# ss 200 per east* With the
captation r a w  estimated to be less than 3 par cent it is 
reasonable to say that ©sly the first tbs?®© essplitude© of th© 
euhhaxmmio components ass© lasasurcahXe* Thus the inclusion of the 
third and higher order ccssposeats to the a p p p c m l m t a  solution will 
have negligible issprotetaeat upon the accuracy of the theoretical 
results. Energy supplied by the disturbing tec© principally is 
absorbed to sustain the resonance erudition*

A @?®ph of the hawses'i© components that arc tseasureable 
In t h e  ©ŝ erlsseat in stoss in Fig*{S.tHL)(b)* The vectorial addition 
of esdh succeeding component ifill give © trace ifestlcul t© the mm~ 
fem recorded if a sufficiently close number of ordinates ere 
considered* The effect of the shift Is jfcase for the respective 
components is readily seen in -the results illustrated*
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n -Qi2 V •53
2 1 N

3.15 0.073 0.588 0.001 - 0.12

3.2 0.196 0.569 0.005 - 0.15

3.22 0.41 0.558 0.014 - 0.17

3.28 0.68 0.51 0.02 - 0.21

3 . 34 0.88 0.496 0.03 - 0.28

3.41 0.94 0.49 0.03 HCO01

3.45 1.04 0.495 0.03 ; - 0.36

3.51 1.1 0.508 0.03 - 0.395

3.6 1.07 0.52 0.03 - 0.422

3.71 0.93 0.53 0.03 CDCO01

3.78 0.86 0.516 0.03 - 0.35

3.85 0.76 0.505 0.03 - 0.31

3.98 0.61 0.49 0.02 - 0.23

4.09 0.48 0.49 0.02 - 0.18

4.24 0.23 0.47 0.01 - 0.11

TABLE. (5.4-2) . EXPERIMENTAL RESULTS OF EQUATION (3.1,7) 

FOR A - 1.0, Z = 0.4, R = 0.25,

p2 = 1.0 and y r- 1.0.



fihagfcer M

Second order s^feronfc 

J§JU _bucsrlcal ^elustlgn*

From the consideration of chapter XXX* section CS«1) 'md 
i£8*2>» it is evident from the 'respective corresponding aquations 
which' define the steals of eutohsrroonlc resonance that one solution 
is Cb e 0* If this cosqjoneat is rot equal to sera then the 
resulting clmltaseous equations mist 'fee satisfied for the periodic 
solution of equation (3,2SX). this gives

3YĈ  $in 1 “* Rq c 0 .»»•*.«.••*

and
SYQ,.cos - 2<>,}.* <3. --.gjj * S?2 *-^<0f * 2Q*).. = 0. .

(6.1*2)

gir>iiltene;ô  poljmpîisl' esqsressions

'*■"• Since equations (6*1,1) end (6.1*2) can fee represented fey 
rig*(S.2-X)Ca)* a single aquation for the subhat̂ onlc response in 
tersas of the variables and parameters is obtained. Trie equation 
which' is a polynomial expression of Q? to the fourth power is 
presented is the tom that has greater physical meaning to th© 
equation in describing the vibration resonance. Thus, after 
laborious simplification gives



It is readily seen the important component %  of the motion 
exists only in a limited frequency range* Equation (6.193) will
he further discussed in. a following section.*

flie elimination of verifies <h and from the remaining 
simultaneous equations will reduce the original five equations to 
three# the resulting polynomial expressions are still very complex 
hut they are rearranged into m m  suitable forms whereby the 
remaining variables are determined with less difficulty*

Using the trigonometric definition of Fig* (3*2-X)(a)*
equation (3*2*13) after simpllficatioa gives*

H s - { 9Ae(Q? -5- Q|) - 1,SQ| ( 3 

68* ♦ 8,8* + b,» * c,

where. a 1 c  P M \ ,
L  c (St 86# tiS Q? t 9Q? *X £ X

and cx s (6 * 18# * SAX)*

The roots of IT can now fee more conveniently determined by 
applying as iteration method* It gives for a selected value cf 
Q? and Its corresponding • frequency a single real root of H*

Finally, with eqaatloias (3.2,16) end (3.2,17) represented 
by Fig. (3.2-l)(b) ■$ a. single’ equation describing the behaviour 
of the accompanying fundamental harmonic component during the
subharmonlc1 vibration can also be obtained.' Since the expression

2. - g + 0.75X * 3Ae) }
  _   ... (6.1,‘i)



is a polynomial to the eighth popst? anti is inherently coupled to 
equations and the eosgHmeat Q, is m m  suitably
dstsrsilne& by the iteration method* fiance after sit̂ Xifleatioa
the complicated algebraic equation is presented in the lorn

Q. * - I <3? { R*i}8 ♦ (X *• jf ) <1 - |“ * 6Xa + l.SQ?) }4. £ ** # £
♦ 9Q? T* £tS |  C H£ r A& ,

•; -.■«**.  ̂ ^

2.25 Qj * «gQ| * lyi| - C2QX
  (6.1,5)

W C £Q

«2 = { GO. -  ns) + XPA'S *  ft.5 c? } •

b2 * C xbrV  ♦ ftCx - n8) Ci - n* >  6?*) + ssj £i * ax*>
- — • QJ tj* * 3SY* }

c» = { «H1* (nszs - 2RZQ§) 4 Q§ (ft - na> (X - i}S) *■ Q|s*(2ft■ ™ it 2 g, s*
- ISn* ♦ 36J8) + «QJ(8X* * 1 - -|b + 2.25 Q| }

Ms w ith the roots of K* equation ($»1»5) is presented in 
the fora such that quick comverip-nce of its roots ara possibleJ&though 
the three simultaneous egressions' are still very ©oî Ick, the 
coefficients» 0t» and H* can im readily detersdned by the following
procedure*

6*i*jC&i)«. Iteration procedure .%r sqlylng the three polynomial
algebraic. m p m & s  Ions »

It is ~<vllly seen from the three simultaneous equations 
(6il»3) to C$.i»S> that there are four resulting imknomss namely, 
fh Q?* 1 and CL* llith the equations as presented in the above for&s*



e guitefcle method for solving -the variables Is  - developed -and is  
chow in -Figs*- <S*X~X) and <$.X~2)«

Because of the three expressions for Q̂ ., H end being 
potfnml&l algebraic equations» the procedure of oaXculatiic ©12.
the roots of one equation at a tliirwilX Introduce considerable: -. 
.difficulty at a later ^tag&* For an. oxsitpjto, -In ■ determining- Cp : 
from the- eKpsnsion of equation ($*1*3) * :-the .prescribing of a 
frequency value together with the initiei approxiratot of !1 and 
0, will, give -in certain regions two -real root®, as t?©XI ,as two • 
eosjplew values of Q̂ * these root® when- .wtfamqumtXy used to 
evaluate closer Mppro%$.mtm of'the other two variables will produce 
co^Hcation on solving the .aquation’of .0̂ * . This egression is to 
the -ei$hth-power and the roots'obtained will not necessarily he in 
the corresponding order of two real -vaXmw and three pairs of . 
eoenloK ̂ ô ults as' the .coeffleionta' of- aquation <6vX95). initially
©re/determined from - poor approxlmatles® of O. and H, '*?

•• I t  i t  mob r« ->itr to evaluate the. results. of solution 
(3.2*1) fros the equations- presented in the above forms* By
filing the value: of Q'j and denlgnstlng initial approximates for H 
end * it will tbm always give for n on® set of roots for which 
corresponding closer values of t! ©ad are subsequently determined#

In .the.Initial stage -of the -calculation when the amplitude 
of - the QT co?spo»ent is -small* ..the -nagsitudes for I!-and Q. are 
easily estimated from equations (S.2,13) and-{6#X»5) with c 0. 
Then fm? & fined value of CV * the frequencies are calculated ©ad 
tii© result® are used to determine closer approximates of the
corresponding var’&Mca by means of the Iteration method described 
In (us).- tilth aid of . a high speed, degltal co&Tarter* the whole
process Is repeated until;the roots of n? :b snc eatisjy tu© 
equations.af (f.1,3), (S*l^> fmd (6*1,5) sit̂ ltanaeusly. For the 
next - value -of Q3 ref* the -laagnitudc-s of !i end frois the praceaiug 
step ero-'tatam Its initial values .and the whole process is repeated.



12■11

FIX THE VALUE OF Q

SET THE VALUES OF A, Z, R

• TEST n WITH THE RESPECTIVE VALUES 
CALCULATED IN ONE SEQUENCE BEFORE 

LAST.

READ INITIAL VALUES OF Q1 AND N FOR 
EACH ROOT OF U RESPECTIVELY.

SOLVE FOR THE ROOTS OF EQUATION (6.1,3) 
CONSIDER ONLY ONE ROOT AT A TIME.

FOR CORRESPONDING U , DETERMINE N FROM 
EQUATION (6.1,4) WITH THE CLOSER VALUES 
OF Q. CALCULATED.

DETERMINE Q FROM EQUATION (6.1,5) BY 
THE ITERATION METHOD FOR EACH 
CORRESPONDING VALUE OF

FIG.(6.1-1). GENERAL FLOW-DIAGRAM FOR DETERMINING

THE NON-LINEAR ALGEBRAIC EQUATIONS.



READ A, Z, R, PV1N, PV2N 
PV1Q1, PV2Q1.

YES

NO

NO.

.YES
YES PV1N = N(I) 

PV1Q1 = Q(A)
NO

1ST = 1 **YES—

NO

NO

YES

N O

YES YES
NO

jYES
TEST: IS ABS (N (I) - N(I - 1))< O.OOOOOOl. 9 

f YES
Q_(0) = Q, (A), N(0) = N(I).

STOP

Q(0) = PV2Q1 
N(0) = PV2N

CALCULATE'n(J) FROM EQUATION (6.1,3)

TEST: IS ABS(n(J) - u(J“l) ) < 0.00001?

5 (0) = PV1Q1, N(0) = PV1N

DETERMINE N(I) FROM EQUATION (6.1,4)

DETERMINE Q (A) FROM EQUATION (6.1,5)

TEST: IS ABS.(Q(A) - Q(A-l)) 
< 0.000001 ?

TEST: IS(9Q2Y2- R2(4+3X+12Y2

TEST: IS (9Q2Y2-R2(4+3Xtl2Y2-4R2) ) < 0 ?

FIG.(6.1-2). FLOW DIAGRAM FOR DETERMINING THE SUBHARMONICS.



#4 mm complete procedure is described in the flow diagram* Fig.* 
(6*1*£) that follows..'

6»g«T-j ™h& effects of cu ,

The influence of gravitational fores on the system defined 
by equation C3vl*?> is readily mm $vm E£g8«(£«9~l)» (6,8-4) and 
(6*3~&)« Its effects are aipiIHcant ant esmtot b© 4£©p®gar&edl 
©specially uhm there is darplng* which wmMM hm the case for mot 
reaH«es£bl© physical syste-c* It £© evident the frequency beeosses 
a function of static deflection • whatever the ssa<p£tudes of the 
vibrating diaplacansnt* Otherwise during Xspge amplitudes the 
ftasing frequency Is practically independent of gravity effect as 
illustrated in Fig* CS*8~4) «her© all the curves virtually coalesce*
It will fee m m  B$mmmt la section <6*3> that with the presence of 
d~'w**ing the effective non-linearity is governed principally by th® 
c ’■'litudc .of 1 and the magnitude of the disturbing force* Because 
of the gravity effects on the equilibrium of motion the response 
frequency and the cuhhamonic amplitudes &r© determined by the 
relationship between these two parameters* however small th© value 
of E is in relation to the other parameter*.

Fmii previous consideration of chapter V it is shown within 
the accuracy of the analogue computer solutions that only the first 
thro® components era mssircabX©. This indicates the smallness of 
the other subharssonles is the presence of the positive coefficient 
of the first, differential* Since the effective tern of non-linearity 
£0 the M#er order of cubtawtic vibration cannot bo
generated £f the dashing mte of the dashpot is fiwod at the critical 
value In which real root of the predominant enharmonic component 
cannot exist* Bene©* the accuracy of the approximate five term 
solution of the equation CS*2*1) will b$ sufficient under the existing 
eoMition for the investigation.



Jgho nm~vaXMlty of the,; periodic...solution

Xt its readily seats during the ̂ rDldtrstloa of chapter IV- - 
that there is w c  than one possible periodic mtufcion to equation - - 
CS,X?7)*- . the presence of dor pin;; in the forced- z m p m s ®  & n t v c & m ® 5 ' ' 

a tusl possibility that equation {S#f »?*} m m certain Smz&m of 
the auldisrccnfcs is not valid* th© -solution will ccsspXoK roots. : 
through the vhsce variation of the -Q- *mplltud«s end it is readily : 
shown %  the for© of oouation Cs*ls,S). The actual cause-of the. 
son-cKistsmeo of th© go&ution In the region Is duo to e?s unstable 
ht&Mrvg in  mm of th© hucemle oscillation of the ruction- thus* 
if the egression for the o„ cô oaerit gives irayluaiy values, it 
is obvious the other two si*- uXtaseotts equations ($*X9*») .imd (&•!»$) 
will taediotalar oeas© to he viable*

A© the condition of stability. for the system is defined 
by the equation (9«2tll)»..a& e^proKiimte- . of the datmvsltmnt, 
^det an Indication to.the unstable region of the .
hammio of the m&h&aaoaic vibration,* • then, if .the vantable build- 
up oscillation - dees not occur in the .harmnic, it will- &$ly.th&t 
for the. particular frequency * equations (0*1*3} a-*d f0#lt*l} .*shieh ... .• 
define the tntrioide.behaviour can bo .satisfies in the ■unstable- 
frequency althot&h equation C3*29X) 1c not valid*

In determining the oof of mote*. Qlt- H ana that will
satisfy equations <6*ls3) „and <6-l**0 a single procedure
is used* It merely consists.of calculating tho. vaiu.es cf the -
egressions to. each'Instant of-altering In $ sequence th® -
variables, whereby CL Is repeated for ell values, of %  as waea ther blatter is fismd* Qj, is varied for various tsagnitudss of N* fbe
remainder values for a particular frequency are- then plotted with
respect to «sa© of the ooofflcieate of the solution* At the instant -
%*here the two curves intersect nt eero datum, the coefficients*
%«.. II and satisfy two of the three equations*



The ■ sets of roots 'ehosm in Fig. (6.2-1) are fro© a random • ' 
selection of independent par̂ bters.' ■ -Their. cyhstitut'io-a into' the - 
three eiisuXteneous algebraic'' expressions abbr crpXieltly thfe* mm*- •' 
existence of the solution: {3.2 *i)- In'this doraln of-.cecond-order 
aubharssenics* Although II and satisfy the equations (5.X»3) . 
and (6.X»*0» these valuer idioii used-in' equation :(6«X*S) -exhibit'"' ' 
the build-dp of an' unstable harr/mfc.' ■ -Since • the• component •• is; in■ • 
the ropion of the'fuadametrfcil Imrmmle of the1 aiibhatisoTiic ,: vibration* 
the region: of Instability 'is of the -second order. ' This ■'iu-evident;- 
from equation Oi.X.5).' It has':thevo   ̂'r&quency •*s‘ the;*VhhfMd&lc 
vibration and consequently tha-cfcaorl r̂ der '̂ hen««na; is 'excited- . 
tilth negative dating. ■ 'Thus-'-it ' to readiXy'̂ een that; over certain 
region* the eubh&$Kffl£c resonance cannot he sustained in the steady- 
state is because of-'the mccnimilativo ,;effdot':of an-oscillation in •• 
fchich ;tbe -|Mnelpal: frequency ■ io half :thst-©£- the; disturbing -fareo.

5 u^r'V^X cnal ô Jnstahility

Fron having determined the coefficients of the solution•in•
equations- (3.2 *13) to - (3.2*17)* the parsiaeters of - C and <x cun'"■ - rc its
readily be calculated.-u 'The- stability limit®'for the various 
independent -parameters' of the '•©ystesr-'cah-bn obtained-through the 
consideration of section Ch.2) in'which equation (**.2*12} is
derived. The fact that the physical system a periodic ■solution 
ether then ■ equation :{3»2.sl);over:'ihe; instability £&• #h©*is;by./ the - - 
expansion. -of- this ■'determinant'

■ Since it is spperent--that. ;thfc'build sup of the • harmonic • is 
is, the'-mcdn&order r^'on uhf>re:.itn ■ oscillation•• has .the .sasie. ■. ■ 
frequency the'su^f^oDlcct it'will be sufficeit to•agproxirsate 
the equation Oi.2f2) to the first three variables. The expansion 
of the resulting determinant then gives after simplification for the 
criterion of stability*



Qi2 n N :5i"
EQUATION
(6.1,3)

EQUATION
(6.1,4)

EQUATION
(6.1,5)

0.4 3.028 - 0.1699 0.6138 0.0018 0.0001 - 8.875

1.0 3.259 - 0.3054 0.4956 0.0015 - 0.0002 - 8.196

1.607 3.96 - 0.68 0.622 0.005 - 0.018 -15.06

1.655 4.0 - 0.674 0.62 -0.005 - 0.004 -15.28

1.136 3.4 - 0.469 0.54 . - 0.003 - 0.004 - 9.34

1.248 3.44 - 0.472 0.541 - 0.016 - 0.003 - 9.54

0.5 2.536 - 0.156 0.562 0.0002 0.0015 - 5.67

TABLE. (6. 2-1.). NUMERICAL VALUES IN THE UNSTABLE REGION.

(a) FOR A = 1.0 , Z = 0.4 , R = 0.15.

(b) FOR A ■ = . 0.8 , Z = 0.4 , R = 0.15

(c) FOR A - 0.6 , Z = 0.4, R = 0.15.



• Us the above critenion accounts for the stability condition
In the- region ©f the second -order .mrtsharmenie vibration* then any 
unstable oscillation in those frequencies will not satisfy the above • 
expression*- • The equation also • readily • provides' m effective' way of 
determining whether the coefficient values of the ppproximcta solution 
for a particular' ©ubharmonlc frequency arc real roots* If the roots 
that are determined in the preceding -.section (6*2#<i)) -arc substituted 
.Into .equation <6*2*1) the resulting value should bt'less than. sere*

Using the criterion of equation (5.2*1) as to the. validity 
of the'-vaolutlon (0*2*1)* the following sample calculation is ahoim 
to test 'the stability condition for a particular set of parameters* 
torn Fig. <6,S-1) for the pamiaetoro & a JUO* S  fc 0«h& R e 0*16* 
tv «• 3*6 and for the response of ■% » 1*38 gives

Ol.EXS) (1,203* * 0,325 - 3,132} - Ofl.28 (1.203) 4 1.S7* C*f.7«
+ 2..78S (2.22) X.G1 < 0

Since the resulting value is negative-s the suhbssr onlc 
vibration-? as. expected* cannot exist* The continuation-of the 
•vibration Is destroyed by the accumulative effects in the • ' 
fmsdamcmtal banaonic of the eubhmtaonic notion*' Hence the 
ciibhnmmie solution docs not-actually exist,

- -For ©easpSeteness-* the criterion is applied to the calculated 
response of Q* * 0*8 for the-paramtcrs X e 1*0* 8 » o.t$9 r e 0.25 
and n 83 3.31*
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( t U Q 2 )  (1.28s * 0.68? - 0,789)''~XI.5<1.28} * 3L.2H-C2.79>,
* fe.B?SC2.OS0>. <0*58J*5 >; .. Q* ' '

&' solution .is .shown te.eidst for-the , .....
corresponding results of tlie tog  ̂ tii>lir*rrosie: respORse. MaltfedXyy 
the equation Is .not. sufficiently,; precise to pinpoint. this. limits -of , 
instability because of. th&.■%£h®&l®mnmn.-of - expanding a five: by five . 
determinant* Rut for most pratctleal purposes tbe show. criterion 
elicits the region of instability -and the esdstenee of solution. to, a 
eenirffiigallly emsited sy-i--* to be satisfactorily ascertained 
without vssx&i difficultyv-

■6.3. ̂ Msoussto of results

In the theoretical analysis of chapter 111^ it is readily 
scan that • provided the respective ®ppva%$>mt& solutions -of -the -two- •• 
analytical retools satisfy the boundary and are
consistent with the physical restraints ©f the system* th© two - 
Eothods a?® equivalent* the resulting con&spon&lng polynomial 
expressions 'are identical 'when the solutions contain the earn® nuober 
of' harmonic 'terms. $m. observed from Fige* (6#3-1) end '<6*3-2) the 
iscthods -are'-neither* restricted 'to'email ®sgnllude§ of ' non-linearity 
nor 'to# small 'values of the other independent parameters of the . 
system' for convergence of' the Solution* 'From the several %ppmy£wfc& 
methods in existence the Rits-K&lerkin and the harmonic balance 
fsathods are'thus' tine' most appropriate 'in application to' this 
Investigation* do the basis of comparison with the experimental 
results''of-the analogue* the theoretical results are satisfactory 
even for cases of severe gravitational influence on the restoring 
force.



The tlm-wav© tmcas £pm the oru&oguo cogitations
depict the actual wotien of the non-lSaesa? ©ystesr that is described 
by ©quaticm (3.1,6)* Although® es already diseuBSod* the analogue 
empvs%in$ tee&siqus is not a straight f < w d  gaocedura th© possible 
omwm em likely prevented op tsinSsaised. The cmrpat&tim e m ?  on 
a p?«ta|@ basis as a whole Is estimated to be lower* than three 
pm cast*

Since tbs dependent variables and tit© fro v*aey are
calculated for selected mffihsnaooie sspxltudes or * it is then12appropriate to define the attorney of the results fapoa either one 
of the toms. Boi«mr» as the variation la the behaviour of the
coefficients of tl end of ̂  £© mre perpte* It is ppafepablo that 
the ommm&um of the results Is ©ado with the corresponding 
&g$tiftncy* In general* the worst frequency error between the 
theoretical and experimental results of %  is ©stilted to be not 
greater tban five po? cast* Tm. analogue cosaputer solutions 
practically coincide with the theoretical curves* the emu? might 
$ptb&ly fee higher Is the early stages of tits subharroilc respoase 
but for ©ost applications the accuracy should bo satisfactory*

It is Inevitable that with the solitudes of the ftsidassental 
hars&cmic ©sailer*, the error would he Increased* t t £© Introduce 
tegely through the «a6tuRxr0G&at& of the traces* The discrepsacte
between the experimental, and the tbessratleaX results are toXersbl© 
im  the Fharol chert only erasure© up to the ©ecosd iecfaat piaca* '

Since the tsagaitud© of the third order ecqpousat Is vmsy 
68*11 It cannot bo measured effectively. The error can be as high 
as S00 per ©ant* although in the resonance state the component 
might bcomss sufficiently pronounced to be iseasured. The frequency 
error would ©till b© a© .large as fifty per cent; giving m Indication



of the ©tnallness of the subharssonic components of the third and ■ 
higher orders.

ft Is readily seen that the respesfe characteristics within 
the fregueneY ranges arc functions of the parameters governing the 
physical system* Bffaets from-the variation In the physical sass * 
or fror the dagrao of asy^n^try* -©a the ru harmonic vibriitlos fir© 
ably; Illustrated Is the vc' s.vi©ur of the catpt-nent r>.« This, 
©oc.yonent j-redonlnatas owr higher cdd and r.vm rrfV*rrosics that 
mist Itt'the vibratory untZoa * ©nd that Its frceucTicy range Is 
increased with* the ragnitndo of the rion̂ lincarltj' toms* The- 
vibration- response Is also much heavier over the greater hand of 
the vorMni? speed* tkmmgmntly 5 ©Xthoogb the third order ■ 
nihliaraoaics 1?otiM mist It is obvious that %  Is far' the ror© 
iiwrtant component of the si&barrorie rotion under 'the Influence 
of gravitational forces*

' The vibration has gescral similarity with the htmsmic 
resonance but In other -aspects the subharsonle resonance is mmh 
stronger* It Is readily evident that bysaMny ft ~ 0 In equations 
(6*1,.3) and (6*13) the hawscm!© msoaaaca occurs over, a smaller 
bund-wldth*

T5 «- slgnZ&c?; t Influence of the. effects of static 
deflection on the oudharf ©trie vibration. If readily men iron Figs. 
(6.3-1) ani (CUtM!)* TIth tba other two governing parameters of - 
the system flssd end the rerainlBg vorfahte? in th© neighfcour&sod* 
fxori which u harmonic ©esaponent would ©tart* being, practically 
indiffcrant t t c changes as shown by .Figg*(6.3-f>)4 <E<,3-9K 
(6.3-11) ana ($*2dPi)S; the variation in the ■magnitudes of A must 
h m m  bn the principal Influence at to the position of the frequency* 
The ©fftects on the. rcsonaisee cmylitudeo are isere clearly denctdbed



by toe'Q, response Illustrated in Fig.(6*3-1). The .severe •
Increuse is the amplitudes ©£•.% corresponding to the change in 
the dcgrso of mptmetvy demonstrates- its significance, and that 
the effective term of the Bon-Hn.earl.ty is Sllpt*. It is apparent 
that a limiting relationship governing the st&heKaonic vibration 
assists between 6 and the other describing parameters*' «nd’«s the 
effective degree -of the sm-lsnearity • is the second order then 
mihhar&ojiie is not likely to h# if tbs state of the
physical sfstaa lie® outside the region fatoutebla to generating 
toe motion* Since it is essential to avoid introducing the 
’pnmmmz o** working within the fr*eguescies? it will he useful 
kaowXel * to have In the deslga stages if the critical egressions 
is tern of these isdepesdsijt variables -are known* This is 
further euaidsed at a Xster stage end the limiting equations for 
such purposes ere derived.

Fig.* (6.3-3) frustrates the vibration for •
increasing values of viscous damping. Because of the isevemess 
of the i&xHUt&e&vit? it .is necessary that the damping is, 
sufficiently large to suppress the rn̂ l*tudss. llith such 
magnitudes* the hsnaonlc resonance Is practically linearised 
whilst the otMmmmio ySJbratl.au .still Ms displacement sears-than 
twice .the hsrwsmie. mfcim*. th is Is readily sacs by the vectorial, 
addition of the coefficients! .as shown in Hg*C5**Kl>. .It .trill - 
indeed sees mscosmsle-sl to extinct the second order ©s£hbarsaoa&c 
solely intents of viscous dcrpin> Besides the mugsitude «f the 
viscous force is- promotional to the linear stiffness rate that 
in isot permitted to lie low If the coefficient of 3m~l£&earlty* 
governed fpmi turn change in' the •gradient' ©F the pasturing stiffness 
Is to he kept to a. mininus*" Houeverv -the' effective non-linearity

A .•of the systems' can he reduced • through A*. • since in the early 'stages; 
©f C* the constant If ithlch accounts for the influence of 
IvavxtatiosaX force is mainly 'dependent upon the tsagnitude ef Z»
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m  In fi<i*«{€U3‘'-?}* Urns® it in' odiously Xms as
the euhharmnle vibration in m t afrnlflcentty  m m ltlv® to 
dmplng if XlK-dting relatlcmshfes *<r* derived to allow Cor any 
fjorsBut&tloa of the values fcetsmea the pgggmtm?®*

E£g*(£#$M*> shows that* is the ife-msee of clasping* the 
influence of p*â itatioiai force i® projp̂ salvely reduces until 
at vexy large the cubic tas?®* fi£s* Is the e&rectfrre
nsm~21s©srlty* In this region the < « s  virtually ooaltsee for 
all %mlum of I @ni the freqsesef £$ Impendent of the paraaetor*
The i-oijht being cupposfted at the fcoso Is pttportieastolsr reduced 
as. tl̂  vZsmtim increases- esc! ,th® cmw& ©f the staring force 
eppvoactaoii asymptotically the position of syisatfrloitl ohm̂ actwistics* 
tei?w.s such © situation is unlikely to m lm  is practise because 
of the aecesaity for the presence of damning*

the increasingly heavy atfchanseaic vibration far ccrraspondlttg
tallies of E is cheracterlsei by the behaviour of Q, Sa ?%.C&*§~2>*sTheoretical m& ejaperiseatal moults ere also shmns again for the 
case of I e lo Is tMcb the affects of non-linearity mm strongest. 
The general effects of increasing the disturbing fierce m m  the 
uidming of the two hmmhm o f the response eni of the fba^esey 
range of resonance.

The vibratory oatlcm for the w t e  mpiitmAm of i are 
observed not necessarily to ham the * finallyf of c m m m  
©fiss?aet«?? sties t StiCh is the case tilth the state of the response 
is the region: of immmio resonance. Because of the m$ssftud© of 
the disturbing Corea* the townie ccnpcmeat 1© practically 
indif£ea*snt to the Iretweasy chssges over the lower branch of 

as illustrated in flg*CS.$~I2>* i*Ith the m m dynesict >;#*■



dieplacciaontc also presort ion&tcly • increased 4 the values of the 
rrjwr tsimi on the ■ right of-the v&xm sign of equation •(6 *1»3} as 
I* rrsult ■ are - tainr* Bases the • vibration mnpms® of the lower 
pi w o  of* th©:E«e©sjenoo-occurs at higher frequencies. The tipper 
sign ©f the. equation corpecpondc to the other branch of the Q« 
response.. Fith twixer owX5tv3V'* ©f § the resonance condition 
is cneperiencsd more cuddcsily during the early stages.

•-. -.It- le appargnt tbm -im n Fig.<15.2-2) und ffcom the. .
.discussion ,©f en .©as&ier par©f.iaph that ch# strength ©£ the .
■dispiacerrwsts- .the resonance frequencies- ctrs. rovomed ralnly .
by h m d  z iMist E determine© .the finite.limits to.the.%5? ratios* 
emplituios. .Tm heavier.viscous.although virtually 
linearise the tosonf© ;s«©nsnee* ..the .otibhnxmtic vibm tim  rent rated 
.wider, the. same oonditios ,©£. static deflection results in asqsMtudes 
twice ©o severe.

Because of the .influence..of .csravitetional $onee.en th©
.©yetes there Is a shift in the mass dynasic displeceaest ffcoro the 
.position of static otpf Xfferiusu, flie position of dynamic ©quilibritia 
-.does not. ©oimlde with .either the .©rCr *n of eymtrieftl restoring 
.force characteristics or..the static ̂  t' Lihrium position* The 
dieplsc^sent as will be aeon Is not negligible sad to allow fa? it 
theoretically« the constant tern. II, £& Included la the eppwsiiaat© 
solution. The significant variations &  the characteristics of the 
mean dynamic deflect!os with frequency oiran $ the vibratory @oilon 
are shows in Figs # < C • 3*8 ) to" ( 6. 3* 10 } © ■

,. From Fig*<t*3~T> it Is readily observed .In&Che neighbourhood 
.fpm which th© suhfcarstoaic vibration will ©tart* that the n®m 
.dynamic.dinplm m m t. is incased whenever the system is subjected ' 
t© a larger disturbing force*. Since the values of II ©re always



negative , the direction of the ©asn of the vibratory notion is  
in-opposite tense to the static dafXeetioa smd hence it Is towards 
the point of ©yBisetriceX restoring forces, Tta* as tbo disturbing, 
forces become Isrgm* the proportion of the dead weight transmitted 
to the supports prior to the ©ubharBsonie vibration being excited 
will! diminish*' This means that the r-rgnitede of. the. off active non- 
linearity. 1®. correspondingly reduced before the phenexarcn Its. 
generated* and that the effective .non-linearity In ctrc^^st when 
A is large and tbs system I* ĉlted %  sr til errlitadc of. disturbing 
forces- Fsrtliers0re?! in tic r̂ cceding par- wfh* flg.{©.3~2> 
Illustrates -that ê tinotion of the vibration can be achieved tfcrot ** 
lowering the magnitude of. the disturbing force. Hence9 fOr fixed 
values' of A «r4 E* there must I it two probable limits of Z for Which 
no st&bar®ofcic motion can exist. . it would facilitate in the design 
•stages to avoid «dq*e?lene$i»£ snob vibrational phsse&ena. if an 
equation» defining the boundary locus in terns of tbs kaenm parameters 
of a system* in derived*

Since In general there a m  t m  Halting values of £, the 
gradient of the loom? defining the boundary will hm® m t that 
instant of fixed vaXu.ee of A and ?: both positive sad negative values. 
It can be readily smn frm  the cerrespondln? gvarhr for tbs two 
physical, conditions that- w h & m  the gradient Is positive' m  reducing 
the magnitude -of the disturbing forces* the neat* of the vibratory 
tsetien moves mmy £$m the position of static ecuIXlhrim as the 
vibration increases* This, means* that the effective acyxsetry of the 
restoring forces is progressively, reduced and it is. a. sdstfsoa in. the 
region, of sextox vUbratios. Consequently- *&tbo»gh the influence 
o f  g r a v i t a t i o n a l  f o r c e  i s  x o s t  x r c x i n a n t  d u r i n g  t h e  e a r l y  s t a g e s  •

©£ the resonance response the. degree of & determines the magnitude of 
the response- fbe at ouirt ef weight resting on the supports 
eventually in reduced by sore than, fifty per cent* mid the percentage



is increased with the magnitude of either & or 2,

For changes of the physical -condition® in which the gradient 
of the locus is negative 9--the effective? aê iirearlty of the system 
Is found to here the opposite characteristics * ' The weight 
transmitted to the supports Is- Increased with the vibration and 
consequently the magnitude of the- restoring .forces is raised 
proportionately over the. resonance region* This is clearly 
Illustrated in fig.<0.3-5) sad <6.2-It)* The eyrten can vibrate 
to conrldcva&le aayllttidcs and over a X-rgc, frequency range*. The 
resonance will essiet until the energy tû plled to sustain the 
motion Ic insufficient that is when

ax t -* » mp*

Th m f unless the physical conditions that are defined, by the 
governing parameters of the systea lie outside the locus, the 
effects of gravitational force on the mn~Xim$r suspension. cannot 
he neglected. The effective- term of-non-linearity, is- S£px*» 
however' smll & is in relation to ttw mplita&& of ercitatlon.,

fIg.C6.3~S-) sterg the variation- la the positions -of the ' • 
tmm d y n a m i c  d i s p l a c e m e n t  . w i t h  f r e q u e n c y  f o r  d i f f e r e n t  ' V ^ u e s '  o f  •' 

viscous damping 5U' /IXtheugh'the• feeasy daspirg: nr-prcsffw the' ■ 
amplitudes*.it is readily■ -observed "that .a considcr«-.lc asaunt 'of ':' 
the-weight is ctliltraasferod'.to', the airports*, and the •
decree of -.non-linearity rexaias '.practically unchanged - over "the ' 
Iraqutscy bnni-aldth. Xt 'Is .than‘sot -sucprltis with such 
.magnitude of the restoring force sad with the m in ©opponent Qt 
absorbing proportionately less energy by having only half the 
frequency of the disturbing force- that tbs n i & h & m m i c  vibration 
In twice as severe as the hsrs&mic notion. If In practise the



amplitude of Z is larger* tho position of the n&m dynmdc 
ddeptacasent is towards that of static equilibrium and such 
characteristic effectively increases the nsgnituda of non-linearity 
with the increase of resonance* Clearly* when the system in under 
the influence of gravitational effects* the resonance that Is 
generated within the ©ubhariacmlc frequencies is sot ©iguiflcesitly 
affected by cnsHfor and it is tusec'emslcal to extinct the 
vibration fey msmm alone*

Fi£5*C6*3~iX) to. <§.3~XS> IXtetrate the characteristics
of the harmonic eosjpcsent in the vibratory ratios#. In'general* the.
eslstoaco of $, will rot sfgnlfleamtXy alter the response of Q, *2 *** this can he c&served froa the oasparison of colu&io&s where the
curves of the harmonic resonance are also plotted for the ’various
physical conditions* the increase in the main composest of
motion does not necessarily mean proporticsiatc rise in.<̂  unless
the Increase In vibration Is contained through greater weight
transfers! to the supports* The coefficient Q, is the component
fey which energy is supplied to the system. The values are
correspondingly increased with 2* as chows in F%*(S*3-X2}*.' £os* It
Is the effective amplitude of the disturbing force is the •••
ttt&lhtowfttood before the vibration Is generated* The
Insignificant change of over -the stable branches of the
subhsmoaic response • is duo mainly to the vzpvituM of § relative
to tfea damping present $ also# the component having a higher
oscillation than Qt Is m m affected fey the mtm of «as*3SP
dlsslpatfcr** However * In the predominant region of %  thase Is no
slgsifiosst difference in the values* whatever the degree of
toeing m m  fee rar*lly observed frets I%*<6*3~X$K

Ersm- the oocparicon of !lgs,{£and (8.3-10) It Is
evident* If the effective, noa-Knesrlty is not reduced over the



period of resonance, the amount of weight transmitted to the 
supports is through an increasing influence of the disturbing 
force* This is •shov'n by the p^rth of the harmonic component it 
Fig, CF-* 3-15), 71th. the restoring -foresee continually larger, the 
vibration fcac<n«* stronger with Jreswsncy« until the eagssltude 
of £ is insufficient to supply the. necessary oaergf for the. 
c«5stirs sahhaxRanie motion*. The. response of mder such 
circumstances differs fros the waMm of the hammie resonance.

Ifowms since the behaviour- of. Q. Is dcsendtnt- itgcm, the
rcrrittade of the disturbing fores*-it wlD ho on
f*ir,pllficntion of .the csls&laticn of. %  in the process to- derive& ' *the equations for .the critical relationship#? if n reasonable 
ansr©%iimtio3 is isMe for the Mrsoale «j^esgst of notion, Sven 
t&en the system. I© st&jected to the ..above physical conditions*. the 
equation nubsscuontly derived is not a poor inequality since- for 
the Uniting conditions to ,the critical rdationshit* there is .no 
practical difference in the values within the respective

Thus, with .the vibration .not stable, during the 
resonance oscillation of tliis component, and as it -is also shown - 
that the subham^iics cannot actually exist along with the 
resonant condition* such an app&oxirstticra appears gutta. I.cgltisaate* 
fh© possibility is inrther esaisiiioil in. the. following section*

rigs. <6*3-1©) to {6*HHL§> show .-the pharos of. the ssain 
©opponent- .of frohharaolc action with' frequency fo r ■ thetsto* fcnui£hes
©£• the response. It Is readily- $eo& that;the turves of '
values hztzmm 0 -sad j. ;The magnitude ©f the .-ph&sa relationship 
is midmt.:fvo?A rifn,{3U5Hi)Ca) and (b) * 'for. £f. daspisg is absent
#, will cither to set©- or w* and similarly with C$. - 2#?}«x, x %.
Since the ts©ssih*I*trr is that C$,.- 2#,) is. either 0, ©r-sr, then1 >- ■



for-the tonditicn. ir the? coroespondfaE.. phase .of the two.
branches ©f td ll  tmm values either: £ m? .zero*. lliis. resits the

' * r  *response of is in the narn phase .m the dltHnirhirg
■fence. However*- 'the:.consideration of section the phase
.response depends upon the. initial physical conditions a-s Cs can

&
®%m bm .generated in .the. .phase .qmatemt lagging by.1? red lass*

-The itrHinmee «f iTavitatiotsal fierce oirtfce yhssc #3 Is
a»readily cŝ XafBci by the errros in the &b©va figures Rectienei*

For csost ;Css«ss, the usstirm amplitudes of vibration is reached 'for
?*5p.iawer-tban |-» If the **f£cctfye non--linearity relative to' *£ ‘ 1 ■

viscous- dmmXmg in srsaU* the gradient of the w § s  is always, 
.positive with i»erca*jit& frerwncy. . Otherwise, the rerctite 
gradients correspond to the regions of instability and vertical 
tangercy characteristics, cslst **t the positions in which the 
♦jump1 yhenomsns ©©curs* . For « fiKod value of the fmqticmy 
.increases with ?.* end with fmmt? toying the chsr̂ c in the signs 
of the gradient is eliminated .as expected with Instability* ITha 
relationship hetwoan #| end. 11. is then basically eimlar to those, 
of linear etirtes charaetaristlon.

that: in the mMmmmfjc bfm̂ vmwŝ . mg,!©»». the -pbss-e of the-
coBr-cacnt I© in the seconi Quadrant* As the Absence of the
•cccpencni* will elirinate the existence of Q% 5 it is not surprising

■ . • - ' ■ ■ *.'that tr-o increase in the amplitudes of vibration. lowers tl*© phase
ls£, dp* fii<& r&te. of the phase reduction with fmqumcy is lass
pronounced i f  the' effective non-linearity of tha syntm h&mm®
larger-witii the vibration* , Otherwise .a loner phase lag .of the
eesponeat thrmsgfe which energy is .supplied t© oaiotaii* the
nuhhnrsenie wBimtim is no&sssaty. In .the region of ssusta®



resonance*-trvibratory state is: reached'tduira the'out of phase - 
between the cmspsmsmt -end' .excitation' is.' lowest * -This ’condition
c&Ints for'whatetor values of the parameters* Umcn Irrespective
of-the physical condition of the- «ystiss#- this -is readily 
evident from fIgs4:S.3-20> toiS*i-23}* "
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FIG.(6.3-2). SUBHARMQNIC SOLUTION OF S-TERM APPROXIMATION

RESPONSE CURVES FOR Qlt A - 1,0, R - 0,252
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FIG.(6.3-3). SUBHARMONIC SOLUTION CF 5-TERM APPROXIMATION •

RESPONSE CURVES FOR Q1. A = 1.0, Z. = O.H
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FIG.(6.3-4). SUBHARMQNIC SOLUTION OF 5-TERM APPROXIMATION, -

RESPONSE CURVES FOR Q1# Z = 0.4, R = 0.5
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FIG.(6.3-6). SUBHARMONIC SOLUTION OF 5-TERM APPROXIMATION

RESPONSE CURVES FOR N. Z = 0.4, R =0,15.

 — . — ---- HARMONIC RESONANCE .

 —   ------ THEORETICAL RESULTS..

° ° A EXPERIMENTAL RESULTS.
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FIG.(6.3-8). SUBHARMONIC SOLUTION OF 5-TERM APPROXIMATION.

RESPONSE CURVES FOR N. A = 1.0, Z = 0.4.

— — :-- * — --- - HARMONIC RESONANCE,

 ---------- —  THEORETICAL RESULTS.

o a EXPERIMENTAL RESULTS.
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FIG.(6.3-12). SUBHARMONIC SOLUTION OF 5-TERM APPROXIMATION

RESPONSE CURVES FOR Q .. A. = 1.0, R. = 0.25.

— -—  ■ HARMONIC RESONANCE.

-------------- THEORETICAL RESULTS.

□  o  a  EXPERIMENTAL RESULTS.
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FIG.(6.3-13). SUBHARMONIC SOLUTION OF 5-TERM APPROXIMATION

RESPONSE CURVES FOR Q1- A = 1.0, Z = 0.4.

 ---- — ----- HARMONIC RESONANCE.

 — ---- -  THEORETICAL RESULTS.
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FIG.(6.3-17). SUBHARMONIC SOLUTION PF 5-TERM APPROXIMATION.

RESPONSE CURVES FOR <$>, . A = 1.0, R = 0.25.5

 :  — - THEORETICAL RESULTS.
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FIG.(6.3-18). SUBHARMONIC SOLUTION OF 5-TERM APPROXIMATION.

RESPONSE CURVES FOR $■,. A = 1.0, Z = 0.4.2
    —  THEORETICAL RESULTS.
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giibbaponic mspms® in  *ptehmthc acpappmxi^ hayga^c 
P^<r^pt ,1s eî î sdfsstt̂d in&rcn tet o f ftoqtteaffi*

^ff^fsatioa, of pm

0,

ffee cmsteratte of the f£talcus® eo&sfcica to
equation «£s gees to produce coŝ IlLcatai al&ehr&le
m®¥m&t&m that the characteristics of the

m t$m * It would sim plif? the calctilEttes for 
the rare liiporfEst <»rr-s&e8t9 of th% fwt£o& if tmscmablo • 
ftppxsJlrEttes tm nsdc to the fundamental tsmm&Si ms suggested 
la the preceding dteusste*

•Since* in general* there is no sipiifleant alteration 
during the predomifimico of to the m&pmm of the aooospissf itt$  
harmonic component -Q̂* and m  its tapiitad© is pdta&$aU.y 
influenced h f that of the disturbing force# it is not an 
*88?eason8&Xe appro^mtte if the harmonic vm gm m t is img-sfded 
■its the effectsto asgslitude of Sr̂ * this tieraly ispite that in
«* «fe5j8Woatc «*»«ear‘ a*ia* °8cmatto of %  16 a®’
resonant * Besides* firosr the snai* sis of the ̂ ibmtioaai 
characteristics of the preceding sections ©ash an apprcaslsgtica 
is unite legitim®* It is shes®* that the huil&-«n of sa msta&X©
osoiHatSon occurs is the same rente m  th e  harmonic eoB$e&afxt: 
e a i th e re  Is  no a c tu a l so lu tio n  to  th e  ©£ th e  n so tte  u i i f e

the rcc^a&t csonditte of the liarrsonlo

ficalljr „ is the region of th& nt&Mrmonic freqû ticles*. 
FJg*<C*3-X3> «w-~ that the-harmonic rososEsce curve t?ill
practical^ to Jteilffterest to the changing conditions of damping* 
ttm vo%m o f a tareoate csotc £«? m particular frequency of d ating



iM  m t differ f tm  the cQprnsponiins v&lms of
different <t&api&£ ©©efficients*

i f  .the ̂ psmlsate solution £&& .the IjswuIc 
. smsmmce csmditim Is givm .by

i fe II: #.Qt ©as tit •***•«* (€>*, 1} .

the suhstlttitlosi ©f ©cuatlon f6«tpj.l i-atc €$*!*§>* Is s&Ich 
E * 8* ®uisciuiL.atiy yi©X4 m  m q * m t i ® n  M  the ffcr©

2Qt 1 1 - tj* ♦ si* * | q| > - an*z « o .... ce.*is2>

Equation .£©*%*2) e®& ©&s© he ftditan*£ .Ifcest e$uat$o& C&.X*5) %
snaking Oj E both ©fuel to &ero*

Sl&e© the solution for the natural ffceqtteacgr of a sjrstesi 
si&te* the Influence of ̂ m^itmtimmX £m?m is -also &de?pafsXf 
©impressed fcy the ©qtmtlos* .<6**MD* the «*&3t£tixtUm of the'
aquation .Into equation t3.X»0>* fa which both I and E ©nr? aero, 
gives efts* epf&yitr: the p^lBe&le of Itarssaalc huXsssss the 
ffeXIos&tJ® equation*

,n* e 3. ♦ SCIs * 3}® + ? 0? ....... CS.«.3)© ** 'X '

Scpatfea ($•<$«$) j^ssets the fh®ek~b©ne1 ©sssnm of the system 
■ ® h y  ©§uatto C3*X»S>* Since the approximate solution 
0c c$X* on the tasttsn ffcr* sMeh Qt is the pmSmitimt ©opponent*



equation ($***• *-2> then heeosses*

20, C nz *~ nf- } » 2nsSo

$hleh Xmim to

o

fhus* mith tfee tmaoaic com^mmt of the st©hsmisii£e 
•cotion to  mmmtim $n$ nine© fo r

m m m &  m & m  sufetmnsenies the vlbr&tioa ©ccurs 
i» the .frequency m g io n  uker®

n ■*» *n©   (£.!*»£}

the ■ amplitudes of the transonic Cft over* the frequency band̂ dudth 
is ipuen by tlie ©ppftndmation *

*■ *■ m  •■ * #

The r^itlv® sign iseraly atgalfias ;fhs j&ase qmlrimt of the 
•oocspoiflBt during the existence o f si&hirasmle vibration*

fhe fmm the mhem ■'relationship' gat* t! m  tar ions
gagnito&os of 2 are a seasonable approximation In the prefeiinnnt 
taglfio of % *  fills. Is v m M X y  seen by .the ■ tmpmtlsm «?it!i tbs • •



cams* that sro plotted for the cov^mmt* in Tiirs.(S*3-ll) 
to {€*3~Xh>,

St&harigoxsic aoffa tieas independent o f the  f^ io d le fty  
of/the ha ffro ie.

^  feaRS® te %  te tte X a ^ t  cesffieient *  «» 
meccr*'9*Jiv * ©seilleticms in tbe mstfebarEmie sotton and it is 

as «. direct Sm&tlm of $* the eoumti*m.CS.3L*S>- 
describier the Mlss^Iour of this cetspOBe&t dtndtag the essistesee
of 0t oeu tm fitted and ths five jdtet&taaeous esprtssl.©s#- that 
we' to© simrfiildf to ftsmifsa&ete era then redueed -to two m&mtim& 
oomteifdtig three mt&simmt*

thxice* the substitution of «seatitn. <6**K.$) into -($«lt3) 
gives os siispMfic&tta*.

ns « -~ f <12 ♦ S6S® * SC§ ♦ 323® - 3*R*} ♦ # { ® s ¥  - li2

<3S * 27Q| ♦ glfZ* * lOiY* -ass*))1 > ..... .(«.*•,7)

aM  |! s '  f  SUA*8* ♦  Q§ <18# -  6 ♦  l.Sn® ~ lS Z *i -  » ! ! !

■ - '| £*&!* 4 4 l?Jf 4 €U 1 ‘
* * * * . »  Cfi‘Ŝ #8)

%ties® â  *
hg '* •{ 1*&5S « |  4 m%* }

■ cu » ' | 7 2 1 ? ♦ 3*6 ♦ asaTof 4 128 «2* J
3  2r.



Although equations end (6.*1*8) are still
coŝ Xicated* the results from the tm  expressions provide a moans 
of assessing the ju strf «Lca tiers in the use of the approximation to 
achieve the limiting inequality of the second and higher orders 
of s^harwiic notion. If the results of the two importsnt 
co&g&aent© of the notion do not vary significantly from the 
previous values * the conditions for the critical rolatiossMps* 
obtained through the simplification of the polynomial expressions 
by equation <€•*«**§> * arc derived with acceptable accuracy.

From an initial appraisal' it is evident that the above 
equations (0,^7) to would produce similar response
characteristics# For by assuming viscous damping to he small,
In view that the Investigation is ©si predominant subhsrsoaic 
vibration, equation (6 *#.*7) i© reduced t©

n6 « «i C 1 ♦ I of 4- 3TfS } * 5 { 83® + 123 Cfi + S) K.{C.‘I.S>

If we regard the natural frequency of the subbamonic mot ion s 
relative to the amplitude of %* represented as

T5? « ( i  *  |  o f *  s?s)    (e .n .io )t

it in • then evident fr©B that the vibration response end
the frequency range are heavily influenced* ©s before9 by the 
magnitudes of i and £• Also as the plus or minus sign in 
equations <S*%?7> ©ad CO*1*##) corresponds for © fixed value of 
o,. th© frequency that In either higher* or lower than its natural 
frccueney* then with the effective non-linearity of the system



large. the -two branches of tfm r m p m s o ^ o  crrratcd about the 
cum of 2n̂ * • The condition- .for* .this..la .that-the solitude* of 
the disturbing force* rust be smaller. .than the mgtiifude. of the 
static'4afMctte*'-sinee8 if vulways;segatlve In the praseac© ... 
of clasping and es seen from the previous results the displacement 
fxxm origin of ̂ metrical rastoring fore® characteristics in the 
early stages are influenced by 3* For the-cas©;Of ;E;'«-0, the. '• 
condition is giron by

Cl t H) > • ̂ 'Z ...... (B.hyll) •

I!a»ee*" if i S.s large* it is obvious 'that, both branches of. Q* ."ft©tart at frequencies greater than 2a, *o

.: The-.theoretical results of conations <S*4s7> and. < 6 . 4 * 8 }  

era obtained through c cirdlar pros®dure to' that nhicb . is 
described'In section {$.«X)Cli>t whereby the v&Xuss of %  m m  
proscribed: with, corresponding initial-&.ppvorSm^tm of I!, for* 
selected fsagnitudes of the iniopmdmt parameters of the system* 
The Iteration sequence I®'Identical to Plg5u<0*l'4> and <6* 1-2) 
and the method for mmo&gmc® of the 'root© is explained in (48} . 
In the Instability region where it Is a£s$088lbie 'to achieve the' 
convergence of solution, the numerical 'procedure which 4s as '•" 
described in section (6.2)<i) is used*

6.4«(111K ' x discussion of results '

Trm- the compariscm of the important components of the 
motion, It appears in general that there is no reason why the



#&pms$3s&tlm represented hf e§uc.t*o-' mrmot bo applied
with rra?ff&bXe aceurscy-t© derive the-limit £»g ineqisslltlas to 
the r-ecortd and higher orders of. stfchainBoale t̂ bratlon* The. 
justification is the-'use* of ■ the- gnprossitsrnt© Is-by examining the 
rcejwmoo .that i w :pn^ucad through the. simplified
cata&atleus* .. -

Since thersi&hsroonic vibration Is shorn to h© heavily 
influenced by the effects of p?avitational force on the 
equilibrium of action. It my be appropriate to consider first 
tit© case Jfa which the effective fisn-llsearity’ of the system Is 
tho strongest* It is readily seen, from the curves of F£g«{f>»3~l) 
and. (£*fe«X) that* .although when the harmonic Is f’T^sdimted 
.the vibration of.the lexer branch ,©£ It occurs for the small 
displacements at 'higher frequencies* the general results urs 
practically Identical* In arriving at equation {$«<»»£)» the 
approKleation is considered for the' region where the si&har&oiiie 
"component Q* predominates, " Consequently * It Is expected that & 
certain discrepancy esdUsts' at the start &f tfm MUhhmmnic 
vibratory ssotion. In this neighbourhood * often the ccfcual'value 
of the accompanying ft&nsd&ic oscillation is higher for a 
particular amplitude -of £#•' The'values for the expression os the 
right of the' plus or "®$Mm '«sl gti are then meti smaller ami lienee • 
the higher frsqueticy Is'obtained initially* Bm&ver*; the 
'relatlw error of the frequenccr* detemimd fox* a flsed 'value of 
%« I® about fits nor cant «&£<& 'for tajst practical purposes is 
gmerolty eatlsSactcxy* If the insgaittt&e of 1 If reduced* this 
discrepancy In the early stages is eliminated as shcnm by the 
: graphs Mlth the' prevalent regions of the si&harnonle
v£hr&t£<m* the €ppro:«Is!ation tabes Into consideration the 
gravitational infXmncsz ■$&%&&$ on the system ancl.tho .results of 
the- iixpertanf ■ components. arc virtually- Identical to those of. the



preceding section

■ It la • interesting to c©rapare th® sstliod of approximating 
C)̂ tilth case of the tmczmi 'order - jn&harnonica investigated
hy Bmmhi* ' lit' th® of the mmmzpmgiMg hummic

to-the disfmAir^ force* tho hsrraome amplitude for the 
second order fro?pefiey rĉ *©o is epf̂ oHlnsttc! to the eorrcsponding 
value of Its linearised response* ■- -If * the,ears Tmcmi&r, is
t*$p3J©d here* the equivalent isspiitisde-.of -a ecntrlfunslly ©xeited

*5v*S
BfBtm iM -givm top « ̂ Mrv®̂ * ; Iho-probloB arises when tho 
fundamental hmtsoalc amplitude" is approidteted' Independent of the 
ftogtoancy# ■ • Although hy assuming the subharsjcnlcs' eddet in the ' 
fmqumcy "region of order t'will give 'th© sart v&tu® as equation 
{$*4i»6) 8 • tho-stat̂ cnt -under 'the Influence &f p̂ mtetioiial fore© 
on :the • equilibrium of-isotion-Is :theoreticelly insc&mt** . it i© • • 
r©adily,>.--observed that - the response frequencies ere significantly 
higher: and. this î sher the linearised harsnonic cmgmmt smaller 
for■■s-ivaltte'of S than1- equation ’■(©;*$*$). Thus, if the • 
©orrospcn&ins • procedure' Is • adopted here*/the substitution of the 
approKiButo -Into equation $&ves'throughout a toih: redhead
vibration ’response* I’ith ?m :approniiaatloii tot giving a close- 
indication- -of the'vibration characteristic*: an Obvious difficulty 
is’crested: at a'-later stag© ttiim Striving' the M M tM g eauatlmm of 
reasonable -accuracyi ;

lit© results of the various. physical states of dating from 
the simplified c&lcul«tions ere not significantly different to . 
those of Figs*(6*3“3> and <6.S-8).' Ac mentioned earlier, tho 
condition'in which equation <6 •*$*$) was derived would give a msaller 
tomaaie' aeiplitudc Q̂ ' is the' early stages -of the lower frequency . 
fcrsaoW Whilst with the approKlimtion tho shift of the position of



dynamic equilibrium from static equilibrium 1® unaltered by 
Viscous doping as ®hmm by Figs *($*̂ 2) and (£*^11) * it is not 
surprising then higher frequency errors arc obtained for the 
initial values of CK* However the percentage error is reduced 
whan the coefficients are raised# because the difference between 
the actual values of is decreased* If E is relatively large* 
the effect of approximating Is reversed* Sines Q, is larger than 
the true smplittttle at the other branch of the response, higher 
frequencies arc obtained at the other end* Nevertheless* In both 
tnstaricos* the sl^llfiod esleulutSons also produce* for whatever 
the values of viscous teping* virtiis&ly identical _ results In 
the region of protesinaBt %* this is readily seen gftam figs* 
CB*3-3> and (S*̂ "S>*

With the harmonic independent of the frequency, the 
s »  s&agnitude of tlie comment influences both ends of the 
response* For the- physical conditions of Figa#(B»*i~7)*
<m& (6***~12}» It has no practical affect ©a the effective -non- 
linearity of the system* But if the amplitude of 1 is large*>&CCaOthe annroxisation win result In the mn̂ linearlty,raised or'Alowered at the respective start£ng~poict of the mot Ion* The 
reason Is -because if the harmonic assplltud© jkf mppsoxtmtod to-
bo smaller It theoretically means a larger amount of the weight 
Is tmnsfered to the ©imports* as shown $vm the comparison of 
F%s*CS*3~?| end' {6*$-8>* Consequently for the case of H « 0*8, 
the use of equation (6»cts6) produces result© to suggest the 
subharssonle vibration of the smaller response occurs at 
lower frequencies than It actually is*

¥h& dlocrapaney in the results disappears* when the 
difference In the values of is.reduced, hence with the 
magnitude ©f the disturbing force* If at the -end the disturbing



fore©:is? too sraXI* & higher fipequaĥ y-'is determined for a fixed 
veXm.of . in the branch of the response* because & srsaXXer 
a^litud© of Op is attributed by the aryroximtien trhlXet -the 
dô T̂  of. non̂ linesrity rebate um&snFcd* Karover* up with all 
previous results examined > there is practice!!? little difference 
over the r* **icns of the predominant sahhoroionle. fQ&mmtm botueoa 
the curves illustrate hj.flrjrt*(%.&?%}# {&&*$) C§*3~2>* .
{6.3~7>*

Frer* the M m uinlm of'Beef loir <£.3>'it- is evident-that >••' 
if.- the ‘behsviour • ©tf:the«Storing forces differs frss the general 
characteristics -by- the effective' degree of-the fiondllaearit? : • 
increasing ?-iitl:i'the .vibration̂  the argument for the use of ogustfen 
(£.t*v6) to simplify the ctXcuXstloas of the mMmrmmic response£LOferanko dotm# Otherwise it ip seen a reasonable indication of theZ'stfttamonic response and the Uniting values of the inequeXities 
are given, In the above State, the accuracy rapidly deteriorates 
for the approximation hm&m^ progressively mmtlm? than the 
actual harmonic co&ptmenfc of solution <3*25!}» Consequently, the 
substitution restricts the magnitude of the prodoeinast tu! * <v&oa£a 
Op and the resonance fmiueneies so illustrated by the oo nirlsos of 
rift,(6.S«S3 and <6.«Ĥ h

*
Since- the tern U ■ I©-comsspsmdingly--- lowered ..with static 

deflection -cmd vrMlst virtually unaltered --uSth a eaallor fscgnituda 
of ..the: disturbing' :£©rcc*: tb$a :ac ohmsrvsed ln the preocdinr: section 
that -for m fined, value -of -S- tliĉ ,,ou!,ets -two -critical r-^ltuies 
efr.'ti w trsturbiny force for-the. phyaical state of Xsî e
imflftudc? of §» the saifit value of critical 7L can be ascertained 
through the inotpslitjr derived by considering the situation in t*h£cb 
the amplitude of z changes*.. the, uso of equation (0.«*i,6) in the 
mifjhhour«&>od of the llisitatlon then does, not affect significantly



the state -of the response* . the difference in values is 
practically Insignificant* Hence, there is no reason tihy the 
®p|?f»oEiration cannot be used with satisfactory accuracy for the 
boundary relationship of the. subharamic vibration which result 
tmdfer the influence of gravitational force os the eeuiXihrius of 
mtloa*

+
Hith the restoring fores characteristics ̂ hero the 

«ffestive aoa-Maearity increases tilth resonance* it ttSXl see® 
that the use of a graphical laethod to- attain the tractable 
-reprc'SCRtation of the results I© net the most appropriate 
procedure.- to apply for an Indication of the vibratoŝ  behaviour 
in reducing the effect of static deflection, This is because 
the effective non-linearity is not proportionately ©o-ftifiel m  
readily seen from the curves of ftg»(£*3"'X0)» Besides* an overall 
illustration of the vibration response by graphical method is 
very laborious* The situation of diBsisishiag response fros tbs 
reduction of gravity effect on. the egulllbrima of mtion Kill not 
be evident in practise -for such restoring force characteristics 
and the heavy vibration ceases abruptly at the limiting jL
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FIG.(6.4-2), SUBHARMONIC SOLUTION WITH Q„ APPROXIMATED.— ---      I- ,    — l— ------------

RESPONSE CURVES FOR Qn.2
A = 1.0, R = 0.25,

THEORETICAL RESULTS.

© d A EXPERIMENTAL RESULTS.
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FIG.(6.4-3). SUBHARMONIC SOLUTION WITH Q APPROXIMATED.

RESPONSE CURVES FOR Q1. A = 1.0, Z = 0.
2

.  --- -— —  THEORETICAL RESULTS.

- O A EXPERIMENTAL RESULTS.
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FIG.(6.H-4). SUBHARMONIC SOLUTION WITH .Q ■•APPROXIMATED.

RESPONSE CURVES FOR Qt . Z = 0.8, R = 0.15.

  --    THEORETICAL RESULTS.

A 2*0-6 EXPERIMENTAL RESULTS.
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FIG.(6.4-5). SUBHARMONIC SOLUTION WITH (^APPROXIMATED.

RESPONSE CURVES FOR Q,'. A .= 1.0, Z = 0.8.
5

— -- >---—  THEORETICAL RESULTS.

o EXPERIMENTAL RESULTS.
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FIG.(6.H-6). SUBHARMONIC SOLUTION WITH Q± APPROXIMATED.

RESPONSE CURVES FOR Q-, . Z = 0.6, R = 0.25.
2

—  -- ---- THEORETICAL RESULTS.

: o EXPERIMENTAL RESULTS.
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NON-DIMENSIONAL FREQUENCY r).

■FIG.(6.4-7). SUBHARMONIC SOLUTION WITH Q APPROXIMATED.

RESPONSE CURVES FOR N. Z = 0.4S R =0.15.

'----------- THEORETICAL RESULTS.

o 2̂ *0, o A*o-8, * EXPERIMENTAL RESULTS.
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NON-DIMENSIONAL FREQUENCY r).

RIG.(6. M--8 ) . SUBHARMONIC SOLUTION WITH ^  APPROXIMATED.

RESPONSE CURVES FOR N. A = 1.0, R = 0.25.

— ---   ,--------.THEORETICAL RESULTS.

1 z b o 4 ; o  5E«o -6j o  Z s 0-8. EXFERII'ENTAL RESULTS.
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FIG.(6.H-9). SUBHARMONIC SOLUTION WITH Q1 APPROXIMATED.

RESPONSE CURVES FOR N. A = 1.0, Z = 0.4.

  ---—  THEORETICAL RESULTS.

o a EXPERIMENTAL RESULTS.
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FIG.(6.4-10). SUBHARMONIC SOLUTION WITH Q1 APPROXIMATED.

RESPONSE CURVES FOR N. ~ Z = 0.8, R = 0.15.

-— ---- -—  THEORETICAL RESULTS.

A EXPERIMENTAL RESULTS.
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FIG. (6.*+-11). SUBHARMONIC SOLUTION WITH Q --APPROXIMATED.

RESPONSE CURVES FOR N. Z = 1.0, Z = 0.8

  — ----  THEORETICAL RESULTS.

o R=o-as\ EXPERIMENTAL RESULTS.
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FIG.(6.n-12). SUBHARMONIC SOLUTION WITH Q APPROXIMATED.

RESPONSE CURVES FOR N. Z =0.6, R =0.25.

— -------- — =—  --- —  THEORETICAL RESULTS.

a EXPERIMENTAL RESULTS.
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FIG.(6.4-13). SUBHARMONIC SOLUTION WITH Q APPROXIMATED.

RESPONSE CURVES FOR (f)1. . Z = 0.4, R = 0.15.
2.

 ---  THEORETICAL RESULTS.

A 0*4j o A«0-8.J n Z=/-o. EXPERIMENTAL RESULTS.
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FIG. (6.H-IM-) . 'SUBHARMONIC SOLUTION WITH APPROXIMATED.

RESPONSE CURVES FOR . A - 1.0, R = 0.25.5
 ---    THEORETICAL RESULTS.

i zeo-f, a z=o«6, o z«o-S. EXPERIMENTAL RESULTS.



SU
BH
AR
MO
NI
C 

PH
AS
E 

AN
GL
E 

<j>

-  159

6 0

Q>Q

QO

sa

NON-DIMENSIONAL FREQUENCY X]..

FIG. (6.̂ -15).. SUBHARMONIC SOLUTION WITH ^  APPROXIMATED.

RESPONSE CURVES FOR (j).,. A = 1.0, Z = 0.2 '
 ----------— —  THEORETICAL RESULTS.

A 'R .O tjj& ’j a R=o.i5. EXPERIMENTAL RESULTS.
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FIG. (6.M--16). SUBHARMONIC SOLUTION WITH APPROXIMATED.

RESPONSE CURVES FOR <J>2. Z = 0.8, R = 0.15.
2

 —  THEORETICAL RESULTS.

4 EXPERIMENTAL RESULTS.
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FIG.(6.4-18). SUBHARMONIC SOLUTION WITH (^APPROXIMATED.

RESPONSE CURVES FOR . Z =0.6, R = 0.25.2
 THEORETICAL RESULTS.

o EXPERIMENTAL RESULTS.
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6*j5* Tĥ ĵ cm£ient. ̂Xution

6* S. Ci|*w ̂

tli© consideration of «tmpt©r III* section (3Ji}$ 
the characteristic behaviour of toe Euhharsemit <5ooff£c|ctits 
daring the transisiit ©fate of sotion can too dattrslmei from 
equ&tiras <3*^6} aM <S n ), Sine© the time nhicb is 
expressed in  Q docs sot n  © ylieltly in the* .latter equation* 
the integral corves of tV c prc\i* at© transient m tntim are 
ccmvtmicntly $&©tt©d-.ea the AB plane* Mtfeateiys, with the lapse 
of tiss®r couatlcm ($**&*$} iKK&d toacona to field singular 
.points which correXate with the coefficients of the steady state 
periodic solution and hence to give th® amplitude of 'the 
*i&h&r«KKtlc cĉ onants f/5*

It in stem toy the results of the vibrational 
characteristics of section <6*3) that the vibration cannot actually 
exist a3.ony with the resonant condition of tbs aceoops&yicg 
hansosico* im accumulative affect would result over this period 
from an oscillation that subs©fuostly destroys the eoticm* Since 
the accompanying hamoBic components arc. restricted to -oseillatlons 
of a eoaresoosBt nature» it is not out of order t© A© a roasouetole 
eyî oicimatioit-. for Q1 independent of periodicity as to^'Uy scan toy 
the results' of the piracedisg. section. Although this apjsm̂ u&tien 
Is restricted to systems in *?Meh.t!ie effective non-linearity does 
•sot i$terea&e with resonance, it is beslaver quite adequate for the 
Intended' puxpose of this section* Thus* with the substitution of 
equation ($*£tt6)» ©tuatloug {3****0) to <3.*f *9} yield

8* ♦ Sis* ♦ C J, ♦ 3# + |..<A* + B*> ♦ *| Z* } 8 * X.SA



for the clngular points* the integral cams of

dA  ̂ L^ntlon CS*S»3) /r _ ,

m ~ *<u3fi5KT6T?*7 ******** ib.saj

oust ultimately with the lapse of tise yield singularities in 
*?Meh equation (6«5»*l) is equated to scro*

Whm steady-stat© Is readied, equation <0*5**r} Is
am! the ijsgnitude of the singular point'em the IS plane 
corresponds to the amplitude of the suMmtsosIc component C* *

. It is evident the shove ecustioas that If Initial 
values of H and B are prescribed s the value of & is readily ’ 
determined from caustics tS*S,.l}* . Subsequently the integral 
curves of equation C6«5*%> that depict the transient state of the 

solution c m  be dravn for any Initial condition 
given to the ctibhBsmiic coefficients. • Is the Calculations



READ A, Z, R, rj,
A , B .o’ o

SET EPS, EDB.

Ai = V  Bi V  K

DETERMINE THE ROOTS OF N
FROM EQUATION (6.5,1) BY 

ITERATION METHOD.

CALCULATE EQUATIONS (6.5,2) 
AND (Q.5,3).

DETERMINE THE VALUE OF EQUATION (6.5,4); 
PRINT Av  B1# N.

TEST: IS EQUATION (6.5,2) ^  0 9

. YES NO

B = B - E M .
Aj - %  . EDB)

§1 = g + EDB.

\ - A  +(i •.EDB)

TEST: IS (ab(dA) - EPS) < 0 ?

YES

TEST: IS Cab(dB) - EPS) < 0 9
Yrs

STOP

NO

NO

FIG.(6.5-1). FLOW DIAGRAM FOR THE INTEGRAL CURVES

OF EQUATION (6.5,4).
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invofamg'cafe .r&tte? XtiherXoos a ceâ i’tir \ in deroelopeft '
ami the general £1©*; disgms in shosm tn £%*<$*5«X>* 

£3« <££)«;• Jlfc^5jI©K

gigs *<6 3-2) CS.S-S) ©hew for & ect of parasrefer
valuta :tfce singular efs selected Staequcmey* ;*̂ r
slrmsltimcsmis algahr&ie sssmtien* Mtieli describes the sif baimmic 
vihmtim. -m a ̂ tisiratie 'ijfuapfii im Q1# gina tbs .ftogp ©table ; 
foci 3 as illustrated in Figs*<$*$-“3> by the points ir 2ts. S ani 
© .  T h e  distance Batsmen t h e  s l n g t t l e r i t i e c  s a d  t h e  origin 
determines the esapXittttie ef the response m& it is.resdiljr 
s e e n  t h e  r a s p t o t i v a  a r c  i d e n t i c a l  t o  t h e  Q |  coE^poseats?«ddefceralsed firm the eqiiatiass <£**&*?} rnd

Era® the results o f the previous analysis* the tm> roots
■ of a ' s e l e c t e d  f r e q u e n c y  t£g»tm-:$6 « a d $ t  within t h e  f i r s t  • 
'quadrant.- ■ Bei«osr©r7 it was n^ntiomd £min$ the analysis of the ' 
algebraic expressions (3»2«X$> m& {3»3*3>* t$*$»£0)
tfcat the pretoslnafit teospsment of ©ttshsresonic vlhmti-m om also 
osdst in a phase *pr arant 'differing; Jby-ir.radians* This £s •;
• iltetoatol'by *S~3>* ■Sine®-the tiugaXar point© X and 2
t&iob-tisrte the aase aisjditedo are of-■ the crppoaite phases it, 
ieplics that the taotion em eidst 'in either the first, or the 
third *§\is?tar*t *- and that the resulting second order st&haroonie 

depends the t o i t l i l :o fe iitio ae  o f the coefficients
A sad B. The afifplsr distance between the. singular points of 
the safe© maplittsd® corresponds • to one cycle -of the disturbing 
fferee, ‘
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Again with reference to. equations. <3 *2,1*1) and C3#2*X$}
one possible, solution is for Q, sero* Although, sash s soXutSon 
Sr wesalngloss it is represented ly ilia siry:uXsr point 7, et 
the origin*. 3Soee the .singularity la unstable this all
the iritlul coalitions of A*. 3 load, to a response- of suhharDcaio
vibration# 2hc phase of the resultIng motion i t  given by the 
relationship? that in illustrated is Tip* <6.3-31*

In either phase of the response thera is, € .•'!*»'* clarity of
a saddle point * and its. amplitude eoryosponls to the v**luc in the 
unstable gv Sen* Tim tlngulm*. points U and S art jtahc&a&tly . 
unstable £br reasons? already discussed in  mcticm Co.3) -and 
.(&•**)» end the ir4.o~rrl curves vfcich peso though thee divide the 
plane into- stable m i unstable r&gions* ffrr* the arylitudo and 
phase of the response it, deterrIncd iy the *©n in iihleh the 
initial conditions are*

Since the constant term Ilalso varies? with <h the - 
•integral curves can l>s represented -In a throe, dimensional plm& 
£M*: IJOxmver* the carves of n.£S*(&*$~2): and Cf ,5-1} dc unsfcp&te 
adequately the intm&m pmmm®  of Investigating the tr-ans lent 
solution and. there is. little Justification in applying the m m  
laborious procedure* the values of the singularities ere shosm -in 
Fig.Ce.5**)*

It Is evident the f>forv plane tsethod is. m t the isost 
suitable to employ in terms ©£ t^^clng continuous results*
Bes Men there ore limitations? to the tsetbod* It is rot applicable 
if there are a n\?shcr of steady 'State responses and the initial 
conditions mint re x* "cribed in the region of steady state .for the 
asstrytioB that the cr Htude and phase of the' oscillation vary 
slouly to- be valid. I**" addition to the osousption that the second



differential of the pradcssisiant asplftuie eospone&ts ar© 
insignificant, the use of the p&ase-plsse analysis in the 
investigation- of the f&tiblen restricts the tesplng coefficient 
to eaaU mgnitixie. la the application of this method, there 
1© also the difficulty of CK&sdaittg the Influences of the 
in&opm&mt parameters. in f̂ Xatta f© the overall results.
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FIG.(6,5-2), INTEGRAL CURVES OF EQUATION (6.5,4)
IN THE AB PLANE.

SUBHARMONIG SOLUTION WITH Q APPROXIMATED 
FOR SYSTEM PARAMETERS A = 1.0, Z = 0.4,
R = 0.15 AND n = 3.84.

SINGULAR POINT 2. Q, = 0.97, N = - 0.453.
SINGULAR POINT 4, Q1 = 1.53, N = - 0.63._2 « .

SINGULAR POINT 6. Q-, = 1.65, N = - 0.53.5
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SINGULAR POINT 1. Q. 0.96

- 0.45

SINGULAR POINT 5. Q, = 1.64

SINGULAR POINT 2 0.96

SINGULAR POINT 6

B
FIG.(6.5-3). INTEGRAL CURVES OF EQUATION (6.5,4) IN THE AB PLANE.

SUBHARMONIC SOLUTION WITH Q APPROXIMATED FOR SYSTEM 
PARAMETERS A = 1.0, Z = 0.4, R = 0.15 AND n = 3.84.
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SINGULAR
POINTS

U . A B QV7 2 ■■ N

1 3.84 0.34 0.904 0.965 - 0.449

2 3.84 - 0.344 - 0.9035 0.966 - 0.4503

3 3.84 1.018 1.13 1.52 - 0.615

4 3.84 - 1.0 - 1.13 1.51 -0.62

5 3.84 1.48 0.685 1.64 - 0.538

6 3.84 - 1.502 - 0.704 1.66 - 0.522

TABLE. (6.5-4)., THE SINGULAR POINTS OF FIG.(6.5-3), 
FOR A = 1.05 Z = 0.4, R = 0.15.
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7»1« r Initial consider. t ’on

tn the early stages of considering the for® of as actual 
Bedel that represents equation {3«X,8} with nufficioat accuracy* it 
Is decid'd that this la attained with"the least difficulty through 
limiting the aventeX physical sslssc* Besides* often in practise the 
..out-of-lalancc force cicperiencad I& relatively small*

The initial notion Is for a system of vertical displacement 
and in particular the design of nosHLineap spring supports by 
Molynenx (£%) appears to give the requirements of the restoring 
forces characteristics* However*. the concept appears not practical 
for there is the prohlm of mintalning only a singlcrda^ec-of*" 
freadoss system- If the mmu it not to he guided is aorsa way* The 
Inevitable restriction will likely create serious doubts at a later 
stage as to the condition of viscous damping and hence the tolerable 
allowance is the epproKlmtlos of the restrictive force®*

From the seed of avoiding the use.of such restraint, the 
physical eodel of the required accuracy becomes a mre feasible 
proposition by having an Inertia body executing angular vibration 
about a pivot# The mgv&mp displacement results are readily 
transformd to Its equivalent ration*

Tli© general consideration of the next stage Is the form of



the non-linear restoring forces cmd the frequency mage e£ •the . 
system The idea of using a etf&SneticR of linear springs to 
Introduce the ©sys^trical characteristic© soeias best. I t  readily 
allots a mtheraetScal expression to be obtained for* toe non-linearity. 
At the ssmr tiss©* since the stiffness also influences the linear 
natural frequency » this gives © larger latitude in vaj^ring the 
frequency range.

There ©re other, adr-antagc© in the use of linear springs. One 
of thm is that th© coeffieient of nan-linearity can he -altered with 
case* by inarely either disnging toe in it ia l etiffness rate. os? .-.the 
pronounced hardening spring* the various fmtt Itadee of .th© effects 
.restating fr*os the influence of jOTvitationJL force on the system*
. if  .required* cssn be In nay explications wham the.
in itia l stiffness of a suspension increases .rapidly when the 
displacement becostes larger* the relationship between the' tm 
stiffness rates principally defines the coefficient.' of non-linearity 
11 ?, and hence i t  also detenaines the ..mgnitude of h .

Its additf .on j, as the impressed viorstxon eo oy an out-ox'-
balance- centrifugal force* toe ssagnitude of the .excitation which Is  
proportional to the square of th© forcing .frequency is  m m  lik e ly  - 
to be- constant in the higher speed range and the eonibinafiott of 
linear springs enables th© natural frequency to bo changed without 
d ifficu lty  to a suitable value, i f  i t  over becomes necessary on 
account of small fluctuations of the' disturbing force* '

A fractional horsc-power isotor driving an cut^ofbalane© 
ssss scajas perfectly- adequate for generating the centrifugal 
disturbing force* I f  th© design speed is  sufficiently high* the 
problem of the n©ir*uhifcrsity in speed control w ill probably not- 
©rise* The driving, torque in comparison to th© small variable 
friction  forces Is considerably- greater, However, necessary 
precautions w ill m&d to he considered to ensure the resolved
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PHOTO-E LECTRIC PROBE R

SIMPLE COUPLING Q

■SECURING ARMS Q

LLIOT A.C.PICK-UP P>

ELECTRIC MOTOR A

PRECISION DASHPOT jJ

BEARING-BLOCKS E>

FIG . ( 7 .1 - 1  IfbL THE DESIGNED EXPERIMENTAL SYSTEM.
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force at right angle in.not allowed to .destroy tb© bin^le-d©!^©-©#- 
fTeedos* .Hlth sucb i m «  taken i n t o .eonsideation a sinusoidal 
trace ®*muM then bo obtained» depicting the tmiforsity of the 
disturbing fores eating on a truoly elnglo-degree-of-freed̂ -a oyster*

The oscillating £D©rtt& la e m m n i m f l y , realised by an 
arrangement where the factor is suitably.counted on a, beam.; , T h p -  u h o M  

system is to be pivoted on an. anl© at -on© -end with the nonpXiticar
stiffnesses ©t the other.

The finalised fhn& of the srsodol which isuct have an equation 
of eotion that in identical ..to, the .des.eribing eguatlcra of., rig*
(3.1-1) is shown In Figs* (?*lrl)(a) ..t© (e)-.

Ti2. • iton-Xrinear restoring forces 'JiW» « —  '»■ . V*-. . /*«,..* ' •'••<. . •- - .-.1 ■■•••• ■ • - -■•.»•*.:. .. /v • # :«--*• ,* l»iVi . -,.W.

, The mtlwmtic&l expression of

The • combination; of 'iiee&r springs is illustrated'-In- Fig, 
(7.2-l)(a). • By logical design 'ĉ iislderatlcm* the ar̂ angcasnt of 
the' springs '• in that;order Is' ©Isnilea?'to -one used by fcudeie? • (32) *

The vertical springs have ©cmal stiffnesses of K1 and each
n  ' • .

■ »••. 

has an independent tension adjustment.; This aĵ angemsnt' facllates
the levelling'of the. transverse spring* ' The transvsra© spring has
a stiffness and a length JU Both. its ends are mounted on plain ,
light-weight hearings and an allowance for the attanteent of .the
spring ©a to the lea©, gives a larger tecMrit arts than the 'vertical
springs# as seen fees Hg.(7.2~!>(b}»

If the vfcol© system is deflected vertically fro® I* .to E. .
through a distune© d thou the tension in the transverse, tyring ic 
given %



vrhere' F is the Initial tension for <* »• 8«. o

Expanding the above equation gives .

i> s i= ■+ K„ I  (1 r |  51* *  . . . . .>  £ - £ } . . ' (7 .2 ,2 )
O  <i *£ &  .o. W.'

From the trigonomtrlo identity-of the configuration .shown 
in Fig. <7*2-X>,

. I3B « &*•*'£} tan «••«»•* (7*2*3)

Subsequently, the design requirement is.that the angle,of. 
displacement9. is restricted to

A 2
tan $«.($* *1 ) ....... <7.2«h>4

Hence, ••• on - substituting equations (7.2.3) and (7.2 #*0* the values 
of the.ratio j: to the .fourth power cmct.higher orders*.being very 
rtns&Xl, lire neglected. Equation (7*2*2) then'bceosacs

P «-p ,•*■.*„ { a  * |*« <!.•«• C>* lb * - £ }o <2 ii
»p„ts,{ -it.- (I* *.-e)* Is > ... (7.3.5)O £ «suw if

In view of the condition of equation <7#2*H)* the'angle •*1. 1 Tj *j|fc ^6 i© lim ited to sin 6 « tan 0 that is the ratio  of jg
and higher powers are small end they can. be neglected* The 
oscillating angle of the transverse spring at the instant of 
diepXccassent is eppradtsately given by



and* fmt& the design of the attachment for the transverse spring &
the Initial tension I5 can be adjusted appropriately* Thus if
P is reduced conveniently to sasre* the vertical component of the cs
restoring force exerted by tin© transverse spring Is the sence Bt>
is thm given by

* tĉ C Ct t c)** *■ I Ct t s) ,* jr **«#♦ (7*8*7#
The allowances a* for the attachment of the horizontal 

spring gives a bigger torque «&out the exit of oscillation* 
Consequently, the equivalent non-linear restoring fore© of the 
stiffness tc0* acting is lino with the vortical springs* is greater
and it is expressed by

?E? * *2 * §#* ti!~|»-}* «* 1 ..... (7,2,8)

At that instant of the deflection* d* the corresponding 
affective force of the vertical springs is tĉe* Thus* the full 
expression for the restoring forces exerted by- the combination of 
- springs in the vertical seace is

S? # k, { 6  + fs ||-a 6» } ' ..... (7.8,8)
KX

Hence* the non-linear stiffness for the arraBgemant of the sprang® 
1s

{ k , ♦ %  (*L±jf 6s ) ..... (7.2,10)
fit’®

Having determined the taatheeasticsl expression for the : 
restoring fore® of the system* an equation of tsotion cm now be
obtained»
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AXIS OF 
Rotation

FIG. f7.2-1 V  T H E  NION-I.TMETAR R E S T O R I N G
F O R C E  C O N F I G U R A T I O N .
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a QQtHtlon of tho. designed system

If m $. fg . am. the Initial tensions of the ttpper and 
lower. vertical springs when the angle of deflection d about the 
®3ds of rotation la iserc, the torque, acting on the systee when 
it is .stoically. deflected (assuring. the principal axis of the 
©otor end other ssasses of the cradle lie. in Mum with the m,ie 
of m tatim ) is

(Pjr - I, * li .V e.v

'Where* M,. -is- the*.ciass tser unit length.of the beais, It. in the- -. b - ■ b
•length: c£ the beam find ay ie the,rorsnt -arr of the beam. This 
•torque is then ,approjdmtely; ê ttaX .end'. opposite to the . torque* 
^©suiting from the -twrn-Xfittear ; stiffnesses» that is . .

where & I© the static deflection.

Hence, for* a particular■ instant when the total deflection in- 
5 - Cx t A},, where x is the dyaaiaie'displacement oeas'ured fropr.' 
static equilibrium, the equation of mstion describing the oyster 
of Fig, (7.1-1) is of the for® .

X̂  i t' t K|b { & ♦ ̂ 2 |g?t • (fg® 4 4 3&*»)' }
,C1

* # cos tut ...... (7*2,12)

share X̂  in the total inertia of the system*

■ ■ . Ĉ 'is the‘coefficient ef.tdscous dating*

CP h ■ W K, V *.



m Ic the ©ttt-ef~feala.nce mss#
■ o
' 3? is t?io distance of the mss centroid to th© shaft -centre : 

and '|j:-,is'the moment mm of the.centrifugal.force. :....

' the jraietionship feeteeoa the sisgl.e-dogi^e-of■ ■ • ■ 
extern executing aagtilm? osciHstto 'and the system described'fey 
equation is ©letter/. If and C 113?© the te® refei?3?S3tg
to the pamsaters of the ocmlmXent systes shorns in Fig*<3* 1-1) 
such that with reference to Fl£;(7«2~2)» ' '

& Tr vx

' cisfê  end C, '* Cfê '* the physical equation then become



*?hlob. on simplification reduces to

X t 2EpX 4* P2 { K f  4  ||;t Cxf 4* 8fer 4- Sl̂ xJ }
Kx

®* ̂ o' j' cos (tit •#*«#**»* (7»2}j^)!2rtilS tfe
"

S3

if 2 e jo |®- s the above equation lc  identical to  the describing
25-

emmtim of Fig* (3.1~£). ' Cellaring the expression of (7tt2$l<*) 
with equation (3..X*7) it is evident that In equation. <7*2 *12) thi 
designed, system has identical restoring ffcrce chsmcterlntlcs la 
■which the coefficient n of the aoamXinear displacetssnt is given-.
fey

» ° §i2 f* <— £•*•>* ’ ....... |t.2»is>;
”  I:1

«>v

This lias dimensions of length A mhich makes the displacement* If
equation (?*2*X«$) Is RsXtipXied throughout fey |s*f dimsnolonleso*

It is readily sees fs?om equation (7*2alSJ that various 
degrees of non-linearity cam fee obtained fey changing the length 
of the tmnsverse spring* '" "'Hene©# find# the vibration response is 
a function of. the spring length* i t fsf^e oenvenient' to use the 
sains spring rate after hairing dirtemlnef tfe© upper licit of stiffs© 
tc* 'whilst varying Its length. to achieve the various isagnitudec ofad '
im-Xineerlty then to construct m set of spring© eitsiXsr in length
:fe«t '.differing Irrevepy. other respect* ■=



for m indication of the design mqv&vmmt®* It 1c 
helr.fuX t©'adopt a promrhxm of accessing the magnitude of non- 
linearity. M the definition for this Iw arbitrary* since the 
dtagpee of tton~Xinesirity itself Is heterorsncoas men -With the 
loam fixed st the optimum length for* tssxita&s deflectiont It is 
rot■unreasonable to m ^ r m s  ttm. sectoring fores of .the non~Mmear 
toms ■ as- &  percentage- of the fores isy linear displacement- that' '

i of non-linearity »■ g J';2 p  C  * c)̂  C3# t 31k *■ ss*> "
%  ' ...... .

be^v’M  £
■ Xu general„ as siioun by the sfeove equation, the ioegs&Q or 

non-linearity for a fixed spring ratio increases ulth -the- ; 
displacement. Hovever* it. ie deslraable that the aianXf tilde Is 
limited hy design -considerations to a maximum value. This -will 
then tak© Into consideration the approximations -Wade in arriving 
at the' matbas&tieaX expression for the coefficient p within .the' 
rang© of non-linearity* Thus* -with the roment arm h approximately 
cot through the use of m ..cptiKUfa length of .the fear end for-a
suitable-- transverse ©taring length'&-;tmch that the ratio o£.--€yl®

■ - fcand .of higher powers' are .snail9 the " spring ratio J'S-. and hence
*.•*1 .

the upper Ilsslt of k2 are deterssI.ncd.for the designed allowable 
pagnltude of displacement uhlch gives about a hundred pm cent 
non-linearity*



** 2,®$

3,. tteaipn procedure

/it) estimation of. tho. fsgndimrg displacasopt

For the ̂ rmsigmmt of the system illustrated in Fig*
C 7# 1-1 ■>* to demonstrate the aut̂ ariOTic vibration of the second 
©rdor* it n il 1 appear that the at the position of
the springs isereases in proportion to the hmm length. The 
fcessa* however, constitutes a significant magnitude of the systems 
Inertia* This neass a larger displacement is not necessarily 
obtained through having a greater length on whidh the tsoter I© 
donated hat that an opticus length ©jdsts for which the vibrating 
aisplitai© is a mxitmis.

To achieve the cost suitable design condition for the 
vertical amplitude? the difficulty in foresuXating a mthessatical 
egression to. relate the tolerable ellovahl© displacement to the 
inertia of the system m& the hen© length is overcome if linear 
oscillation is considered initially ©3 to fom s useful guide, 
Although fey applying the linear theory to the system envisaged 
will considerably simplify the problem, it is not unreasonable with 
reference to. Fig* (?*3~X) to say that at a ©at hundred par cant 
non̂ linesrity

where r is the appropriate constant* •

Fith the standard linear solution of $ « # cos («t * 0}
where



A

a a

(a) Linear characteristic. ’Yh) Non-lxnear characteristic. 

FIG. f7.3-Q. Response characteristics for a
c e n t r i f u g a l  e x c i t a t i o n .
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 ̂ pjl ,

^ f {  ip* -  *?)* *  ( |  «3>* }“

* * * * * * * (7.3,2)

tliea £u tlse of the imxwjrs m&fearssoaic resonasce ft'eausscye
is which m i t  greater than the natural sueh that ~g Is
nraXXs the eŝ Xitwde f© gractlcalSy k constant with change la 
frapmdj ;aaa it . ess fee approsdtsated with the substitution of

C| a> e (§ '.2j>.b >t " '' c ■
j*. *?■t© ^ K «^r «•**»** * C?* 3*3̂

Henee* for the length s I*» of asilo-tô spring the above egression 
gives the linear.end deflection. ..as

**^  «* (| *1) ....... (7.3**0
• ’ . t

Thus* with reference to conation (?.3*£>* an approximate 
cMptteseion of the- Hsalt of stibhmenie displacement for « given ■ 
tgagnitude of the disturbing, fores .is obtained in terns of the.. 
Inertia and the length f*. this rc&eftics&sbip

« « if *L)r (7.3»S)
t \

gives the condition of © hundred per cost tson-llnearlty at the
frequency' of the allowahl© masdsnss displacement* end' it is -
Independent of any linear spring feros* The displacement can

ft **tako any value within th© &ppz®edmt5xm that the ratio of <£>* 
and of higher pcrors sr® cisall* end the equation (7.3,5) Jo



ec&plemsntary to equation (7.2,16) in determining the transverse 
spring rate#

It Is readily seen that the .increase in the length of 
,tb® beam .and hence £«'£» will not give In proportion a larger
displacement. Since the inertia of tfc& system I® also a functionvof b* It la evident that for the condition of <t) a minimum* ©o
.length of the hoars can be found which isakes the allowable 
displacement a ssadrarsu The optima beam' length Is determined 
at a later ct£*c, after the ©valuation of the principal, 
oscillating Srertia-of'thc* system. ” r

-?*3»(ii). ' The centrifugal ©citation

The inertia of the excitation constitutes- a- major 
proportion of the systems total Inertia. .This take® into 
consideration the out-of-balance mss* the flywheel* a. fractional 
horse-power meter* and a cradle on 'which the equipments generating 
the disturbing forces are mounted.

/i® the magnitude of the disturbing fores Is proportional 
to the square of the frequency* the factor of variable speed, 
characteristics which drive the «mt~o£~balance smse must have an 
effective' control system to maintain the constant excitation* It 
in decided that by punning the whole system in the high spaed range 
together siith & good ope®I regulating circuit* the problem of 
frequency ’ instability from driving against the variable friction 
item®® £s uaHhely to be any real concern. Hence* a linear natural 
frequency of about 6Hs Is used to determine the working band­
width that Is required from the motor,' This'approximate' value is 
'considered to be in the region of the .laws? limit possible.



Otherwise tlima, is the of .achieving the $^eer£tad
«50gr©s of static deflection with too Xgk a rate of iĉ *

fho rotor4 which £e selected r-.uot then have a. range of 
between 700 to 2S00 r*p*r. if the imKisrronic vibration Ib to 
he deî nctr&tcd for the various degress of en̂ tnstry* in which •. 
the influence of gravity effects on the response is cignSfleant*
& higher linear mAmal Scummy in .sot considered because it 
is apparent from the cfnaticas'CT-2,i6.)7̂ C7.,3eS> ©ftd fro® the. 
rcXationship

ic* * ̂  xt ****** <¥*3»6)X p -

that etherise there is: difHculty to; keen the system to a 
reasonable sics that in in imopertion to the aspXituic of, 
vibration cprorated when the cpriny rates arc in the . 
neighbemrhood of about one hundred-.per*' .cent non-linearity*

. .-.-In of ocuatlca {?*'3sS) if la evident that to obtain : 
a satisfactory aon-llnoaf' dofXcetlon for a reasonable vagnltude 
of the distufbing fores the total inerti& im kept t * ninimsas 
value* Since the . inertia of the oxoitaintontaking tnfo 
cqnsMcmtior.the* flywheel* .the attaolmeat of the out̂ of4?rdaneo 
u&if̂ t,and■ tho.cradle* constitutes.© rajor-:proportion of I ttVa . 
fractional h&r̂ e-power. isotar of' thc-aboy© frequency .range £s usedt*

The ŝ st ■ suitable, rotor available is' 'a twentieth borao~ 
rowcr::4*c* series wound lector of: weight* three pounds* 'Togaldicr‘:: 
witdi■m'clrglo yet effective- rofulatihg cstrcuit 'shown in Fig* ' 
Cf*§~2>k,gc©d control of the stability of the disturbing force is 
ettslued*'flic -ismtare £s:excited by a 110 volt d>c. supply and :



the required speed of the siator -can be obtained to within 
satisfactory accuracy through the coarse and fine rotation of 
the ©stature supply voltage# The variable resistance I© also 
connected Is parallel t© the field circuit* this reens the 
aXtcrlnf of the fieM strength irprovas further the attaining of 
the usotor .speed* If the speed decreases# the hack e.ta.Iv drops 
and this i&iovg m  increase o* the. • armature current which also 
will Issfluancs the 0cM strength. Ce&eaquantly* from an increase 
in t!i© tormie produced and with thezdhmgm in the flux* the 
roqulred ©peed Is mimtBlmo rnrs efficiently.

Since the tueter is a mn~ml£om body* it is necessary 
to' evaluate the'position of the principal axis* This will 
facilate the determining of Its inertia* Also it allows the 
motor to bo suitably Rousted at a later stag© on a cradle such 
that the principal axis £s m near eeSseidoBt with the axis of 
vibration as possible* In this • manner the inertia value of the 
motor In kept to a istttissusi in coacurreuce with the criterion of 
equation C7*3»£)«

If the1 motor rests on s knife-edge* the force at a tetmm 
distance from It due to Its ©im weight distribution is- easily 
recorded* • then from knowing the weight of the tsetor* the position 
of the required axis about cm© direction £8@eelegl&t8&» Hence#
If the procedure Is repeated with -the factor resting on its 
adjsceafc side* the principal axis Is readily located*

It i® apparent that since the mss distribution is »©n~ 
ml$em m  eccurate calculation of the &o©smt of Inertia for the 
mass of the - tastes? is difficult. However# an experimental 
determination of the value Is found to fee satisfactory, the,
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f i e l d

a r m a t u r e

FIG.(7.3-2). MOTOR SPEED REGULATING 
CIRCUIT.
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ascertaliicd to &© ices "ihun three per emt* Hence, 
t!i© inertia of the soter &ct#winc4 cspertecntelXy' from applying 
directly the eX&jfentevy rrircip?'* or the titlfllar g^pes&icn hm 
a value'of 0*01£ &£*£&»?**

Fig*(7*3-$) shows a ecihessstic «tIagr®!B of the apparatus 
Illustrated its Fi3*<?«X~X>Cb>. the sotdr A in suitably r’vnted
■ob the cradle h which hm siae-extenslons C* They are uttlgned 
end jsaehlned to giw ft fine fit into the bearings 15 * that are 
housed in the respective heering-Mocho E. The bearing which 
are subsequently locked I© position 'by mmm of the washersc; ... . .and nuts,- having m I In,- "thread* onabios the whole 'mitem
to oscillate: freely about the nsdc of- the bearings* Since th® 
cradle Is'-part of tli©' vibrating &trdefsir©, duralumin is used 
for the -cc^tructiim.^fho te-retc;:©f Mss distribution m  the 
miterdal together ' with -a ‘ high tensile strength serves adequately 
the. purpose of’ eais?ying the •Ector*"- ' flu*' inertia fains of the’ 
cradle'B isrthea reduce tO'*0*007X;3&lr*:itt*s;*. about the rads : 
of'Vibration# '

tlso flytdsoeX f that'in-shem'-fc'fi|5#0 *lt*-X)Cb}; is also' ;
mada-feci duralualn am! It: is ■ attEohai to the shaft, of the notor
@t - itr ■ sloavo By tiesss'of ’gtiib-sorews*:: The forcing-' energy that
causes the' vlbraticiu of-ibo-ayates lo jpstrutcd when-tt® flywheel
is eursted later to ttifea: m. • ©ut^£*%aXaac®' issass ts • * together©
%f£th-tae cradle ©f the'. precddinji; f sxagrapli» the Qyuhocil eai » 
art a part of the vibrating structure and their respective Inertias 
will influence the tsagnltud© of S whicli I© governed by the 
^latloneMp ' :

^ s *— •• <7..3»7)
• • Y
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tahereh* is .the mdim rnt-m ,to -the > shaft centre*.o ■
and ; -h is:.tee distance of the fXytihesl to the asds of oscillation*

It is apparent ffccs* the ’above .equation. ..that -ttmincrease in value 
of rh. in 'the dieswter. !&f" th©:.-£LywheeX do -aot' necessarily ‘give . 
a slpiificantly larges?; .' Also' in ;conformity -with tbs .earlier •.
discussion; of -.the need to keep/the.■.total ’inertia low* their retreats 
of .inertia' about - the .axis .©£ .vibration* are restricted1 to -within 
the design roqulroments, of:the nonlinear suspension*. .-five • : 
dSsmmSmn .of the flywheel F are" thus -.dcterslncta in relation to 
th@:Sis@:of the whoXe - system and-to the ©ut~©£‘*balanee tsass for 
b reasonable saaggnitu&e of Z*

frosi the'assumption that: the ''inertia of the boas is is 
the region of half the total value of the excitation components# 
is is evaluated .-for m * appiroxiu&to: Z«. .It.is-prob able .that the 
actual • value. of 3̂  is greater • but1 the ■ difference trill not... be 
sign If leant in vie*? of aquation;. ■ For* î .e,O«O0 lb** the •
mmmt of • inertia .of the flywheel* ..allowiRg for. the .attachment-. • 
of .the- outfofrbalanco• ress is -effectively reduced to 0«0XX*i 
IMTin.s2*

The -isotor A Is run. through its speed ranges with and 
without- the. flyuheal, when-th&mthoXe syster in assembled* - .This 
is -ter ascertain that the tsotor has no inhoront.oiit-of-balsBee 
force*, -.The .flywheel is thc&.'Cidapted to take the' mass- $s pfc, a:'. 
ccavured.distance fern its- centre-. * The. required value; of. the 
outrOf-balance mass: which. Is determined- for an epproKirato.. Z. - -. 
is .found Ires comparing .the. weights. of. the flywheel before .and ■ 
after, t h e . ..The .difference Is effectively the -out-cf- 
balance.mss*. ’



■7»3*jC 511) * . vibrating beam

A ©lanificsnt proportion of tb© total inertle of too
system IiJ ̂ocmtrlbutcd by -the. beam' -K- .<see..£i.g.7*3~3) * As’.the.- • 
systems inertia, value Increases: corretĵ n&Ingly- with the beam ■ . 
iĉ -tb that..--also determines the limit allowable for -the ■ 
.displacement* sit optimum length;-of the -beam t&y exist which -t&kas. 
,the deflection a -rs&xZ* u • Because. there,..is .no undue- loading at 
.either, of. the .en4,c©r*i~t*cns». It ’Is assumed. flemtraX deflection 
:of the- beam, does. act arise*- A, r&themtia&l expression for .the. 
..moment .of "inertia about the vibration, axis is■ then developed,fos? 
the.state In which the ratio of any given % value to the amplitude 
Is a function of the'beam-' lengths 'Renee,. the design -of the system,, 
can be examined to ascertain whether there 1® a boass length which 
wakm the permissible deflection a maximum*

Tho bear H extends beyond the axis in one direction, as 
illustrated in Fig.<7.3-**).' - In thin manner, with the mtor A • 
suitably positioned such that one of its diametral. principle : 
axis Is in line with , the .axis of ■ oscillation* the isagnltud® of 
the systems total inertia is-'reduced• correspondingly. -Then* if ■ 
A.'is the sectional area of the'beam md-B the second 
area of'the cross-section' about the- neutral axis which pacceo 
through • the centroid* mn 'approximate' expression for the roncnt of. 
inertia about the'centre Of'gravity of any considered beam length 

is given hy

X_sML {>-. * L h )    C7.3.8)E b Ax 3 . 2

where M Is the evsss per unit length1of the beats.
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M O T O R  Aosc x  l l a t i n g  
b e a m  H

FIG. (7.3-^1. S c h e m a t i c  c o n f i g u r a t i o n  of t h e  m a i n
inertia body.



Since the distance <1 , from the cmfipirstlosi of Fig. 
(7*$~U}9 in fined by the need to ellga the centroid of tlie motor 
with the aids of vibration end also n i m m  the centre of gravity 
of the fcossi is displaced from the csxls, the resent of inertia of 
the oscillating bees i© effectively

*• hl3L c S f ******* <7.3,9}b ■ g > ||

ffhiOh on m&stltu&ion of equation C?«3»8) for gives after
« *eissplificatic®

If the inertias, arising Iros tlie components of the system 
that generates the distuping f w  enalyssd in the preceding 
section, about the ©kIs of the bearings 02?© represented fey Xs the
©pprosdisat® agression for the total inertia of the vibrating 
system tbm becomes,

0*3*10}

and J 9 and fi era fixed dimensions of the system,

(7*3,2U>

tfcsve- it Is evident that the only variable contained in the equation 
is the length of the tmm. Hence on substituting the above equation 
into equation 0*3*8} end «£th



f m m  ubieb tb© c m & i t i m  i o ®  fh© o p t l m m  h m m .  length* that m k m  . 
th» alXouable dafteetion at its largest value» cm be esassiued 
fey differentiating with aspect to Thus* it c m  be readily 
©bom that the rat£© of tiny E value to the deflection f® a 
r n k k i m m * and -hence the pOTiisssifel© displacement is at a m s & m ®  

when the beam length satisfies the following countioa»

i.s rag * KL?a® - i£̂  * m?%* b o . . . . . . .  £7.3sis>

This condition will yitld two .real roots of identical 
values but of opposite signs* The plus or talmas cssroly signifies 
the difference in direction fates for the beesu

Because of the low mmm rate 'per* unit length of duralumin ̂—̂  **H o 0*059 .sc 10 v ibf.e* «/£&*» a uniform tee**beam of the tseteriel
■m®mm adequately for the intended pin̂ ose* Jfcois its sectional

1 'dimensions of 1 in* by 1 In* tsy ̂  in** the radlu®. of ̂ m tim  of 
fee beam section Is readily evaluated sbcrat the neutral ©k!@ that 
passes through its cesttold asi-tiMch is %ppmz$mt®ly 0*295 in* 
ftas the top* Subsequently with £ flawed# Css© •&*&)% ■
relative to the position of the vibration- ©%£&» the value of f8 
Is calculated* Beae©® the o p k i m m  length of the bear.* detcnained 
in relation to the sice of the whole system from equation (7«3»X$)t 
Is t*i? in* end this value wlH give for liny ©solitude of S an 
approniratc vmimm displacement &* The length is taken as



%k la* and although the actual length of the hens is slightly 
longer for the attachment of the cradle* the variation of & £res 
its râ iisua valva fey the ©pprosdrntien of the feeaia from its 
optimum is inoigaifleant. Its &o®ent of inertia about the ends 
of oscillation is 0*020̂  3bf*2iw&*«

7«S>Ciy)» iEvaluation of the•vartical'.siii .tgansy^se ©î ing gates

It is apparent from the equation {7*3*1$) that if the 
limit of a tolerable dltipiaeasent is given for about one hundred 
per coat non-linearity* the spring ratio of JSfc is readily

rz
evaluated for a suitable transverse spring length £* the total 
isomant of inertia is non known* for having determined the 
appropriate hem length to bo used, the valut is easily ea&culrte''1 
fjpos equation <7»0tilX>* Thun £wb ea indication of the required 
vertical stiffness through equation' (¥«39&)* the actual spring 
rate of Is deterMned from Which tt̂ can be flsced.

Ca),., Vortical jk,

lor reason* mentioned during th# design of the centrifugal 
disturbing force, the natural f^queney p is taken as
approEimately Etls* With the actual length of the horn in a region 
close to  the value detemifsed Itcs  equation (7*391£}* the ssoisest 
arm of the linear torque is ftei at. f» » 0*78 In* and the total 
mmmm of inertias aliening for the weight of the hearing in flie 
attscbî nt of the transverse spring to the beam, i© effectively 
0«0&tf 2b£«im*©s* about the mdn o f vibr&ti<m« lieneet a suitable 
spring rate of iĉ. for the designed components is readily evaluated 
ffco© equation C?*3#6> and it yields for m  assumed p a Slls a



The vertica l stiffness Is  cosvenimitXj XvTwScnted In t&e
fta» of •tw&.linmt' spring v&tm.oi H*. ■ Tb<m hf csll&,ilng th* '

A
tension o f each Bering to-be adjusted Is&fmtaxtXy »' th is  iflU  
fa c ilita te  the allgnixent o f the ln?ansver«© ■ spriag and the desired 
nagnitiy*© o f the c ta tic  deflection- can ©loo 'be introduced with 
reasonable accuracy* Tht®;' t w ' swings each' having a stiffness  
of about O.S Xbf* per fe# are'Used* '"

■. The rsasuresent o f ; the &fldbia&A ’effects - of the '..vertical 
springs is host adaie^d-i&rongh. direct calibration trben.fhc • • • -
%ihoXe system is ssBembled't-dthotit. tlie tOTisverse stlf&utss ic0#
Since. It is «ot possible to.. I m d  'the ̂springs tdimt ■ ttasy are ' 
attached-to the, heem* the v e rtic a l’ stiffness o f the .system is  
det®rs&cd for an appropriate «gSH£i&-'iira and the value is then 
corrected for th© position of the loading. ’

the loading o f the! system ■ iff by trails o f a sea Ie~pen 
suspended from the flange of ■ the to*, ' r  ta t  a foment ars of 
8 la* £fce» the axis o f oscillation* Editable wiights in increments < 
-of 0*1. lb. are added and the deflection at each Instant' is recorded 
a t the position-of the springs* The graph of £Sg*(7«3*S)- Illu s tra te s  
the m lf& m lty  of the spring rates: owr ssegaitade o f the
deflection --by the direct relationship between the displacement at' 
aiaomnt arss of 9.78' In* radius. and the load applied at' the • above 
matlm®&' distance* Tim stiffness obtained f&cis th© plot lu 
l**W‘lb£;;p©a? In* and f^ni ecvxecttag this value for'the position of
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the.load this real sprIng rat® *Mdh is. present in the s^etm io
give® by

Ki c *•» «*• *** te*

Since the actual Ximm* torque Iiitreduead by the vertical 
spring® wUl have Increased it is apparent that the ©ssu&sed linear 
natural fipequeney tdll net yield the true dteasloaless frequmscies 
of the auhhartssaie v$£mtim* Fcsr the vertical stiffness of the 
oystcts equation C7«3*0> produces* a linaar natural frequency of

p K 6,0 tls

which allows a tnore accurate forcing speed to fee located in the 
eKforle&nt for a given theoretical dtensioaless frequency.

tb) Tmnsverse siting stlfffhass

In arrivfBg at equation (7.2,1s) a reasonable esaessisent 
cm be «»2* for the related e tim w s k£ in elation to the other 
designed components* Since the characteristic of the vortical 
springs is Halted fey the consideration for good wmkixk?? speed 
control and far attaining the desired gravity effect with reasonable 
accumcy* it is now possible to determine tea transverse spring rate 
lor about a «ss© hundred per cent f»u~Hnearlty at a realisable 
displacement*

If the spring rut© is evaluated for the case of & s 1*0* 
in which the effects of non-linearity ere strongest B it will take
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into account the resulting mmmms of the vibration* as' 
observed previously from the vibrational characteristics in 
chapter <&>$ sections -C6.0) m§ (0##)* .This scans that the .
• appreciations rsdc in the .process of deriving equation. (7*2*13) 
in general are applicable to aost conditions of tha subharronic 
vibration* , Hence# the transverse stiffness necessasy to produce.5the nonlinear effect® Is determined for ird ® 1.0* where p is 
as described by equation (7*2 *35}# by 'using cquatloa (7*2,10) 
as the defining criterion* .

This yields for a one hundred per cent non-linearity the 
following- equation

1.0 4 3pA* + SM% ,K2 J I {fej_£)8* * f k2 Is <L±-£)* k*
• . * • h ■ .45 ;r~ &*H1

..**•* (7.3*1**)

Bearing in mind the approximations of section (7#2){£)s. 
the allowable displacement .5 is taken m

3 S - x + i e 0*32 in.

and with a convenient length of the transverse spring £ « 2*0 in*£such that the ratios of high®? powers of y  are insignificant# it 
is evident that the spring rate fcg is readily obtained*. Is order 
to ens'are attaining the gssymsatrical characteristics fresa the 
effectiveness of the transverse stiffness over the whole of the 
•®u!iha:f?̂ n*e responses it is considered in the selection of I that 
the ltn t rust not be less than this value# Otherwise - the error 
introduces; ray exceed# during the predominance of Q, , the • 
tolerable Unit* Hence on substituting for the displacement into

i



mqmtion ,<7-« 3*1*0

1,0 C 3;jA* * Sjfif, (fr y* | (S-|£)s 0.30 - Slid* *§*2.§S.
"''l ’’ ' . *"1 ■

(•“ * e)*. O.S2* -- 0.&, g  j * | (LlJ.)* j, f * ?1#

(7.3.15)

t&lcfti a fte r ric g lific e tio n  givas

r , aa.r -..a /fe1, ■ (7 ,** 2' X 1* t £ *«****#. \ #-w-

. .Thus* tbs transverse stiffness for a one bunttred per­
cent'non-Kns&rltjr-at the altofs&lc .• Iftsit of disylaccRssnt ’!fs 
•obtained far the fallowing designed values of the cystea?

£ e 2.0 in., ,fC,.st 1.1? Ibf* per Sa.* e r 0*85 te.,1,5 0.7®"fn,

Tmu equation' (7.3*16) the nppm? iiisit of the transverse.spring 
rate 'is ;in the region.

& 79' Ifof. ■ Per 'in.2

■ A knotm uniform spring • r&te-cf iipyroKimtely 80. ,lbf. .per in. 
■is tsndi- • The actual stiffness tĉ •• is • calibrated - by suspending the 
tPmBmvm. uprlag, vertically, at' one end/tibilet loads -are, applied . 
at' the;-other.' -:The.linear-;ralat£on̂ hip between loading and the... 
aorresponding deflection. Is.' readily- .obtained. To reduce the error
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in the Beasureaent-of the deflection; f» Bitch. is tsado at the centre 
of. the lower, sick* of the scale pan through which.the weights are 
introduced* flic psnge probe is then effectively io. contact with 
the pan when the did gauge is carefully aligned vertically below#' 
The dial gauge *ecord«s effectively the actual deflection of the 
trassverse sprint?' fta? each instant'"of 'the 'increment of the loading* 
The loading of the spring is In incrotsents of 0.2-Xtu with 'the 
alignment i^^entiy checked during’ the e ^nljsst* ' flic readings ■ 
are recorded at' each instant and likewise c unloading* " The 
discrepancy between .the corresponding values Is c&nasft negligible 
end It arise® probably because of the stricture effects* Bence& ' 
&s® 'the graph of F£g#(7*3"S) the actual stiffness calculated for 
the transverse spring for' an sgprouimta condition of equation ' 
(7#'3t2ft)’ has a value

*= S6v8 IMV per in*. .'■...

It is reasonable to essusss that with light weight hearings fitted 
at either ends of this spring., ©sly tension In line with the 
spring ckxs is transmitted*

7«3« (y)» Subsidiary cosslderatios

■ In having determined: the parameters of the mein exponents * 
it is'logical to investigate at ■this stage of the design whether ■ 
other resonance effects-.cKist. that, will destroy the vibratory nation 
■under eonsidemtion*• If such, extraneous effects ore to arise*. the 
wain trouble is likely to fee £ff®:n the bean* The beam natural 
frequency of lateral vibration is Investigated and as the desipi 
iraKitaum speed of the excitation Is about 3SMs the analysis io



lim ite d  to  th e  fundam enta l m m *

hitli a single degree of freedom is the vertical direction s 
the is eoBsAdcred :m  a :cantltamr« For the lateral
motion the effective length of the'beam is taken in* and
the-' mrmBpondijxg fin: lore,ntal node is easily evaluated by applying 
the'energy is$tho& • in rhich the f;ode'curve cetisfic^ both' cad**- ■ 
conditions* fm  appropriate Batumi fm l t for the beam £© 
thea giten by

q  r 3.SXS6 { r!̂  g }~ ....... {7.3,17)

where EX is tlo fltxtutX' rigidity in the direction of the vibration* 
and too fundamental ssode is in radians per second,.

The inertia X of the boa® in the appropriate piano is 0.01056 la,* 
and from the above equation the value obtained is 2?2Es* It is 
evident therefore that the cl f* erne between the Ion of the 
excitation frequency and the lateral vibration modes le sufficiently 
large and the us© of the determined parameters Is. oat> - :ory»

Us for the natural &&$»&$? of the beam in the direction 
of the forced isotlon* & reasonable Indication of the large 
difference between its value end the operating ©peed of the mtor 
is obtained by considering the dynamic Reflection curve to tiaim 
'the jsodal-shape produced by the combination of the loads duo to 
•the vsrtlgfiX spring forcse. and' the - soss- of the beam at the end. 
The error :of apprsKlmtte- is known to be loss than one per cant. 
The equivalent mss to bo' added to the end mss to allow, for the •

•SOtasn of the beam it ayprê matoly The fundamental rods
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evaluated ;©b th© j&ova essumpticm is 7$»SHs for a linear spring 
fore© of 1.2 pounds* It is m M m t *  f ter th© approKinEte optimum 
bean length • used *' that th#' w&$&® are sufficiently ■
'epart from tlja ©̂ citation • freemen#'*' •

2*3, *,. Tk© dcepinr system 

de?qyiny ;

' 'Having:designed the tsala cowpmmt& of th© 'vlbmtiag' 
system* it is appropriate .'to give due oonsideratios to the viscous 
damping feres* Since the relationship, between the asyplItude and 
the angular displacement of the-cradle is a 'directly Xiosar function» 
:th&. system can he damped though tJ*©9ftsgulei? motion of the eaadlea 
pide-oxtemiions* F£g*(?*3~$5 iXlustnatcs that one of the ars -is 
longer to- 'facilitate this rind the euhnfê iiint tmsurts^nte'of the ' 
amplitudes* : 1 ■

viscous daaping i& introduced* em mhmm in rig«C7«X~X)C&}* • 
b y  a t t a c h i n g '  t h e  o s c i l l a t i n g  am  - t o : t h e * 8 h & £ t  ' o f 'a  K l i i e t r o l ' p t e e i s i o n  

dashpot J“ in which, th©: duisspin̂  ‘ttsto 'rsmins. constant id&tcnrep -tfe© ■'• 
oscillating .;fraqusncy when fUeî {ps£re& 'tslu© 'is'set*’,: -Ifiction 1c:
negligible . as th©• shaft•.Is;:m  'hall̂ raccc m &  :tho tsbaft iseei-is a- 1 
flssdblo. synthetic -rubber Is beaded :tc both ;tlw: cover :
end th© Ms&ft»: ; **?itb' th©' sir excluded' '£ca& the silicciie; fluid *v the 
of&ct of Msklash is'Cllminsted*- •

©fiewsaqy aligning tkef dash-pot ©haft with the redo of
CXCCô tvkAj

to achieve the desired damping condition* th© problem of 
applying the viscous farce' without increasing the load cm the too-



bean is cw&voo&e* Alms eiros fro© the ts of tho lever*
m m  to obtala the correct damping mt® will not arise* For the 
srcvmfA’w t  used* m  Indication of tbs •critical. darping rate is 
jracdily erjessed fros§ the equation

* *■ # * **■<.*-** C*? * b $ ll

Xt is evident that the critical value* m  shmm to be a function
•of both the linear spring stiffness ana the womntn of inertia* 
is fixed by the design of the system* • fits agpmtisite range of 
the dashpot ©©efficients mcm&mp is then fcneim from the limit 
eat to the value of E,

Shagliglfele friction exists i n the siisple a»*Xf*tai© 
tmdhmiBm for* ball-race hoardings are used at each, of the linkage- 
*S©!ot3« Hie lover arm b8 (sea FJg»{7*3Hl)(&)) aro ©qua! ina,
.length and they are spllncd at the appropriate ends to Just fit . 
on to the• corresponding shafts. Hie attaehssBte &m held in 
position through the tightening of the respective fittings as 
shown in Figs*(7. 1-1) s (&) and (b>* Duralumin in; used for the 
l e w  arm to reluee the unnecessary osciHsting taas©*

7«fr»Cji)» Sstlimtlcm of the dsa^%t Fj£££

An affective nethod of dotemlfjlng the amount of dating 
present during the second order sUbbarmnie vibration in to iseasijre 
the rate of decay of the oscillation. For linear system lightly 
tetped* the t«o ©seplcs rente to the auxiliary equation yield two 
particular golutions in the standard elementary expression* Since 
the $m m? the difference' of any two solutions ssultiplied by a



constant is alto a solufcte** the. solution of the natural • oscillation 
•can • thm b® expressed also • in the: for® •'• •

| { c?C® * J0>t ̂  e<« - 50)t | «, Â t at ... (7.̂ ,7)

tiling A is m  ms&itzmf m m tm t dotmmim& from initial conditloss
cad the tarss 'S and ; mm ,- defined -as

cc « «% and 0 « p(fi* - l)s

Hence* 'the dteemlonless ■ coefficient''' of the-resistance t© the ' ■
velocity-Is conveniently ascertained' by ’ailmficg the hysteis-to
execute t he-free vibratioh* -in’which the 'rat© of decay la govamsd 

ot*by the term c “'% without the transverse spring attached*

- • -As -'the oscillating aĉ l£tu<icf"£c presort ional’ ‘to;"tha " 
jaagaltude of the shaft angular dlsplaeeseut* the vibration' is • 
described; by- the ;charOctaristte‘that -em' recorded' £&oa' the' -shaft' 
behaviour* The -successive */- ljs.tudac'''bf -tlie' free vibration 'are - 
depicted on a trace* arid by fseasur&tg any two ©solitudes ŷ  and 
y0 ©t exactly the corresponding tim and mmm?
tho ̂ irnmiimleuB coefficient H is readily evaluated ffcom th© 
egression

*R ’* i- {-1 . ) leg %  '" (7*4,3)
P f  -*■ t  • . c> • .

*2 X

obtained fmm the solution (7.** »*)*
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• The trees of .the relationship wem fb© vortical 
dispiaeemsnt. ©t the position of the ~ veigs asc! the angular 
motion of the shaft is recorded by mmm of as Elliot A«C« Pick­
up* P* (m e Fi|r*<7*X-lKa) J which Is a data tmnsislssloB mlment 
energiced £$>&& m a.e* supply* Tti® unit ■ of mto^' ■
bearing® and ©haft and it I© directly coupXod cr te tha ars of 
the cjrniH®*- SzthrnqmBtly* thrmvh the use of I ,&*&*U2£ - 
amplifier ®«d fractioncy detsodiiXater illustrated in Pig.(7*STt>s 
a linear output voitag© directly prĉ cfticiBsl to the 
shaft t is ohtsiJiasl* There is »© phase lag Introduced
la th® fseclmnlcal to olectrlosl; conversion of the signals* In 
this oaaner* priiiaifoXXy %  oXiisinatlag slip rinjp and brashes * 
the frictional forces ere reduced to a islnlsus* t&st inherent 
friction ■ that'' ajdsts is ©sell and dim ho considered ’daring the 
forced' notion •• m ’ scon •• in' (32) 'to he' viscous *'

The ovaluation of the dashing rate by this sse&ns is 
sufficiently accurate since the oĵ rissental results co&p&re 
favourably'idth the'curves obtafeted îr the theoretical ':&ealysie. 
The accuracy io' -mintaiaed to '-cent -Cor the-verst:
possible condition* as the eehoitlvity of the- trace is :gotremei': 
front thc-use of a resistor oirouifas"illustrated In 
to obtain e-.satisfactory deflcct&cfo-’curtfis fros the' u,f*!
The error 'introduced Ir* the- ceasureoants is further reduced by - 
regulEtinis the: ©peeing ©f't&e'sueesssfva 'c /Htcdea*'’ Thrcugh the 
rurber of - ©soillatioso executed in each' It stent of is deesylng 
curve recorded* the corresponding coefficient H ietersstuid fro© 
tech cot of ,:isess«reis©33t cta?c good ccmsicteacsf# •

For a stiffness rat© tc1 » l*X7 Xh£* per in* and a linear 
notural Ir̂ cucncy p -■/$■*£'Hagequation <7**H3> yields* for the 
eKp©ri»!3tal condition In wMdi the amplitude of the disturbing
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force Z  ~ 0.021*2 and the m$nitttdo..o£ the •nonMAnearity a. « 0.8» 
a dSsmnslonless damping ratio-

P, ts- 0*008̂  . - ■.'.■■

73, ,;Ths f AnMi sod psyrtan

In having designed the governing parameters of the system^ 
the other salient points ure briefly discussed together with the 
selected ê ul** -rts fbr tsonitoring the respective variables* figs* 
(7*XM>(a) to (c) rhow photo,graphs of the designed system*

A heavy steel plat© S which is finely meMned on both 
sides is used to for® a platform''for the bearing blocks E on me 
side and the spring tovrer 7 at the other end* »Thd platfom As 
firmly clamped on to a coner&telb&se* The two identical pillars 
house the bearings D between which the cradle B is suitably crusted. 
The pillars are welded on to the respective steel plates and When 
the vibration axis Is accurately defined by their positioning* the 
plates and the platform are sachined to form a eliding fit* In this 
way* the bearing Mocks can be adjusted individually as seen Sfrosa 
llg«{7MM)Cb) and the system is assembled without the difficulty 
of realigning the axis on each occasion.

/i© described in section (7.3),. one cradles am is longer 
than the other m i to avoid mem loading of the shaft m extra 
bearing is boused in the block* It Is secured In position by a 
pressed fit into the retaining cap as illustrated in FAg.C7.3~3)* 
With the mtcp i  suitably counted on the cradle» the tm^hem K 
of the determined length As attached below to for® an oscillating



syetea.

the linear md festering fmmm are introduced
separately as shorn £b fig *C?»X-X)Ca>» Xn this arraog^smt 
different v&g&ttudes of the cosff£ei©nt of noB̂ IImsrity is 
achieved by raraly changing mm stiffness rate with respect to 
the other* Otherwise the linear and son-linear restoring torques 
etdstfsg mmt fee analysed separately*

fs?o light springs era used to product the required vertical 
stiffness* This will facilitate the levelling of the transverse 
spring md time® i t  m&VXm the desired, tmsgoltude of the 
gravltaticmsX effect to fee obtained with a degree of accuracy* the 
springs are attached above am! beta# the tee-feessa and the other 
respective ends sue attached to adjustable holders k* which are 
also secured in position by nesns of gnjfe-screus*

■fhThe ■ spring tmm* also consists of two *|- in. bolts of half 
inch B*S*F* thread to provide for the lateral mvessat of the 
horisseatal spring bolder 0# Tbs transverse spring can then bo 
adjusted in length until the eô ansrtt responsible for Introducing 
the asm-linear ̂ storing torque has coco initial -tension* the 
design of the spring holder G also elXoirs the tramsverse spring to 
be positioned vertically and when It is accurately aligned with 
tbs vifersttoi asds* the bolder Is bolted In position* Xu the 
attachment of the transverse springs light weight bearings ©ro used 
at both ends to reduce friction losses to a tsfnfesss*

It Is evident frcsj the preceding chapter that with the 
mmMtM® of the m&barssonlc mtlon consisting of non-hGnconlc and 
hareoaie eoBgraneots* the vibration can only fee measured effectively 
through obtaining an cnporlucntal wav©--for® of the (iozHUcqst
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displacement. Harmonic analysis of the curve is then possible to 
determine the response characteristics under the physical condition 
described by equation <7*2»X<*>. This mms the periodic curves of 
the resulting motion ere meovdsd independently of the forcing 
£reqmmc&»

The vibratory motion is recorded from the angular 
displacement of the cradle ©haft through the use of an Elliot /WC. 
pick-tf P. The unit is a data transmission element which is 
energised from an a.©. supply* and the output voltage varies with 
Its rotor position. . Hence it produces an instantaneous output 
voltage proportion©! to tlm ceiTCSponding sngular shaft displacement. 
The linearity of the operating range is limited t© within plus or 
rinus thirty degrees which win more then satisfy the design 
requirement© in view of the nppradEmation for the non-linear ©tiffhesa 
rate. The unit Is accurately mounted on a platform as shown in  
Fig.(7.I~X)Ce}t and to operate the pick-up within the linear 
characteristics it say be necessary to adjust the position of the 
rotor when the respective ©haft© are attached. Figs.CT. 1-1)Ca) and 
(b) she® the two asm 0 which secure the unit in position ere easily 
slackened when required for this purpose. The neutral position of 
tfeo output voltage to angular displacement Is determined by observing 
the output tme® monitored on an oscilloscope.' Us© attachment of the 
rotor ©haft to tfea osciHating cradle is through a single coaling 
Q which alleys for ©ay small s^saMgnsmt of the two ©hafts.

The output ©lamest from the pick-up unit is connected to a 
Sable S.E.h29 carrier-system H to £cm a balanced bridge network 
with the circuit elements in the amplifier and demodulator units.
Ths instantaneous change from the transducer unbalances the bridge 
end correspondingly produces in proportion e rodul&ted-csrrier 
signal. The modulated signal is amplified to m adequate level 9



suitable for mmstmt fEonitoring purposes* before being rectified 
to produea a voltage proportional to the original
instantaneous input signal, tn the whole ©onvarstoi process s no 
phase £s introduced in the effect ©f ssŝ hasical to electrical 
output.

For insuring the excitation frequency* the established 
method of !a?\ it»i the factor shaft to work as a synotamous switch 
1c not suited© *.f mlntosdad resistive forces aro to be avoided.
The speed of the footer is measured m. effectively through the use 
of a miniature photoelectric probe & Which £© suitably timmtod 
os It* There Is no m€hmi<c®d, contact botweou the'testing abaft 
and the transducer for the probe operates on the basis, of varying 
•intensity of the reflected light into a photo-diodq. Hence* if 
the flywheel is divided into a reasonable number of black end white 
tsttrkings* the changes in intensity of the reflected light as the 
shaft rotates produce corresponding variations. In the output voltage, 
Hith the frequency of the output signal proportional to the isurher 
of white strips and the motor creed* the signal pulse Is readily 
indicated on a frequency counter# The variation In the rotational 
speed does not affect the output amplitude for the voltage level 
Is not a function of velocity* Houever* although there Is no fall 
in output level over the speed range * a resistor circuit is used 
to cfet&in a satisfactory deflection fxcm the II#?. raeorder I 
whenever necessary to natsftsin the high djsgre© of accuracy in the 
measuraisent of the traces.

F£g.C?#8~X) Illustrates the schematic circuit diegpsa for 
treasuring the vibration amplitudes and th@ frequency of the 
disturbing force* l̂ poriŝ ntaX vave-fonss recorded for different 
particular Irequcsclcs of the second order cubhansonic notion &m 
stem in f%*C7*S~2>* The traces of the esperimsmtal results are
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analysed as described in section C t h e  ©oastsat of 
Importionality between. the actual vertical diBpiaeasent and the 
eoĵ cpandtng recorded dtfXeetlm.%ism ffntltlpifed by the square 
root of the coefficient yt giwe the conversion factor for reducing 
the sisplitiides into a dimeaslonless,.quantity#

2*®jL ptncmnsxm'

I t  is evident from 'the rasiiXtlhg''mtlou that is':|resaratod 
within certain’' fŝ uency-limits»'--tho'-maiytiokl' pvmkdwm' developed 
lor the systets in which the ejects-'•-©£• grsvitatlonil1 forces'on the 
non-linear' suspension -cm'cbi&iddreilyields BdsMmonic-'restiOBecs ••' 
Im-ier'than the order ona^tMrd*!,'lâ ner&X' 'the physical-:systos io 
observed ‘to' execute the •vlhi?a.t6ry; isotion- of predominantj m&gnltud©' • 
for ovary•’ two cycles of-the disturbing.fores'- over a' wide' 'frequency • 
range ♦■• If. the. off active'degree'of non-linearity ls: -largo in' . 
relation to'.the sssXX■ mgnltude- of'oweitation the- fmhhammie - 
vibration'ciiists,. .in precedence»i-over the-frequency region.of the ' 
odd order*

' The ’ designed spring’ systes of the non-linearity defined : 
by the'oKpr’ession of equation <7*2*14) 'glvatf satisfactory' 'results : 
when1 'in'comparison with the thoo2?atIcai curves In Vfcidh the 
har&onic cetspossmt Is appronisiatcd ;to :a function of the disturbing- - 
fore© .no ;given by equation' :?&.** -; it is readily :nmn .fron.tĥ  ■■
discussion.of section• .(&*H)(111) that.the ..analysis by thi©:' •• 
approElisiiticB;is sufficiently accurate -for‘all- r&grdtudcs'of. the• • 
ficn-ltearlty- if the effective :asymctry.©£ the non-linear- •. 
restoring forces is not increased with.the vibration. ■ As such . 
characteristics-in which the weight of the system transmitted to.-, 
the .supports is. incrossed with rosenance does not arise- for the



i l l  ditseusionless amplitude o f the excitation that is designed* 
i t  la  not f ins to eosparo the c^eriKantaX results w ith
the vaMm from the c* XlHed cnleiilatioBs. resides, fbs? the ©aaJJL 
©splitede o f I  the harmonic cnant o f the subhasoalc vibration  
has a i  engoase its dose sim xlarity to the resonance curve o f the 
blghor phi se i#iara the esplltti4e is virtually Independent of the 
forcing frequency* The sesamcy of the analytical ccfhod In the 
prevalsat rcgnoB o f the siMmmmie Ct Is est&Hsfced to fee 
practically Monties! to that- o f a flvo -tin s  eolation* whilst in  
the mi$d^urbe©tl o f taltior vibration toe frequency error
is  estimated fes* fised value o f % to he Xes@ than five  per cent, 
the use o f the ©ppimteited results fo r coispsriccia Is  thus apparent*

The isaix* source of ô scrltsesstal « ?  is introduced fren 
measuring the v&vo~fexm of the vibratory lotion* . Although the 
pick*-up aignaX. is emulated* it is that from the
ŝ semieBt largo ĉ plificatioB other fcsrsaonics appear la the traces' 
es'fsinor IrreipiXaritiee. Because of the difficulty la detemSsiIss 
accurately the eitdisrsmlc emge&eat** the ewer is reduced by 
regulating the speed of the trace and fcmse© the K«ox£e of the curve* 
This ©Ileus a greater inssber of divisions in a cyel© for the 
hsmaonXc analysis* Im M itlm i fey ensuritsg that a stifflciesttXy large 
dofXoetien fron the 1UV« recorder is obtained for the slgsaXt the 
©csursey Is mtataSoeft «ith the us©- of the fliard <&art *Mcb gives 
readings to the eeccnd £m im l piece* It is readily sorts that In 
gaiî al the design yields esparlsseB-tsX results of sufficient 
accuracy.* fim relative frequency error of the prodosisast 
sufetê assie component for the early stsros of the vibration is lower 
tfass throe per cost* This Keans that the accuracy is ©till limited 
t© wit In sn error of eight per cent for the worst condition possible 
end which 'for mat applications is reasonable.

tb© eU bhm tm lc respo nse to  th e  vary ing  degree in th e



effects resulting fros the itsflumcm of th* »* ovitatlcmaX .force 
■on.® .system are d«acmstxttted empcriror tally c « be corresponding 
results ©re recorded* %  mnzm&pltt?; the state of relatively 
large £ thie ioas mot mgeessar-iXy signify the analysis is restricted 
In accordance to ho&vy rigid bodies for achieving the - sufficiently 
largo defXerticiu It Is because 5n practise these physical 

■ conditions err. Ill cl* to 'fee onc<nsatercd in restoring force . 
©hamotcristics In which the oertsal stltimero rate for rcasorishlo 
cfefStoettei- Increases- rapidly whsa. the-. doflrctltm -heeames p^dominaut* 
. Often& the. sraaeuaeed hardening -©tlftess rate is ô orteseed 
©uddenly and hence the ©oerflclent. ii is .correspondingly tego* This 
in readily seen fmm equation {7*2*1$)* . $m in the preceding chapter 
the vibration. Is illustrated fey the, behaviour of. the rore limortant 
euhhaŝ ionlc. <K«sponessts. .

Figs.<7*6-X}-to <7*6~3!) ■ toustrate the rcscmasec 
' characteristics that era’Influenced by the existence of static 
deflection for email mg&itudes of the disturbing force* The 
. pm®pal similarity of the physics! rasjswise® with the previous 
results of chap ter VX are obvious' ml the significant effects due to 
, the various Influences or® .discotsed lit tioctiom ;<$*3>.,; '.Sine©-the. 
of foetid non-linearity. is do terodoad mlnly by. the relationship 
between & and the e^litudo of 2?»; it ,Is apparent* if this lies.;In 
the regies ©£ the 8!&b8mm£c 'that whatever the nsguitude
of .excitation the oirm£fica»ct of gravity affects on the .response 
Is mot reduced* The .vibratory lotion ̂observed for essel! sifpllthde 
of emeltatioa.* Is generated .without difficulty if the uorHtvg 
-region of the. displacement ê erloncec the pronounced ehenge in 
•; the i rate* ..and as X becosros larfor the eĵ ara&t concern
r̂ gar̂ lng the -severity of the phgsleal response and its f̂ lstencs 
o w  © •greater frequency range Is readily ovitot frosi fig*
<7*6*1)*



An- additional ares of instability is introduced in the 
resonance of the msbUzszmnic isotl.oa for ta© sssll a&plitude of 
the disturbins force. It Is experienced oa the lower frequency 
side of the response. In the analysis of chapter 1? and the 
discussion of section (£»2)* it in seen that there is real 
possibility of the non-existence of a periodic sublarmosic solution 
in the pres cnee of dashing* is unstable oscillation occurs 1st the 
second order region of the snhhar̂ onie. vibration 8 md the stability 
of the phenomena is effectively described by the value -of the 
parameter Is. relation to the criterion, expressed by equation 
(£«2»1}« if the psresctcr of the variational equation enters the 
unstable dccmla the vibratory mtios cannot he sustained for the 
unstable barsonic has as oscillation of the order one-half and the 
system is effectively excited with r.egotiw dashing*

For the designed physical condition * the extent of the 
instability increases with A* The reason is principally because 
of the insignificant -shift for the stall amplitude of 2 in the 
reai- dynamic displacement fror the position of static equilibrium* 
Ibis is readily seen f r o m  figs. <?*S-Sl to (?.£~0). The existing 
periodic solution of that domain, is for the higher frequency side 
of the harronic resonance in which the amplitude for the positions 
of the frequency response that ere influenced by i \ dees not vary 
nignificantly. T h i s  m m $  that although the frequency t & r m  of 
equation <C?.2S1) is effectively Increased with £, It is not raised 
J» proportion to th« C2 for M  «®ll«ides of Z.

As -*#5— V nffetj? common when out-of-balance force is experienced the 
mgnitudo of excitation is often relatively sralX* Fig. (7.6-2} 
illustrates the response chsractcrint5cs for such conditions of 
varying amplitude -of 2U If the non-linearity* which is apparently
governed %  the relationship between A and the degree of excitation
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bMcb viscous damping principally limits the finite. ©tRpXitude.P. 
only p&rxitB mhharmmlcs. to exist in the .higher ftvsquancy side 
of the respondj& curr̂ . t̂e* .vibration. is usually introdticod on 
srduelrp tro Horkia; er.sJL The resulting looticm its often: 
prenotrcod cs the rate of energy dissipation is too .lew to 
forestall effectively th© .eorrtCnwel gosHth of the vibration with .
1he ? o vring of the forcing I^egvanoy. . St is also ovitet if the . 
eub^nrnonics are .gensmfcet! ©a. the loner £ta<guesie? side of the 
response9 siral&sr .tindesiŝ ahlf effects are sh&t-m to ..exist. «h©n 
the isfluatice of gravitational fcocs on n system i© eons£d©rad. 
the vibration Is Icsnedlately pronounced* but .os reducing the 
esscitatto frequency, the vibratory motion readies a stage in which 
t!;e large ©spHtudas cannot be effectively ̂ strained by the 
lowering of the excitation. Mtbouph the fraeusncy has moved aiiay 
£tan the region# the prevailing motion rairains until the inherent 
energy is dissipated.

Often the above characteristics are Tsnown to ©xfei In: ' ' . ' . ■ .:■■■' practise, However trie disagreeable result due to this region of
imstab£lity» in view of the results, from the preceding chapter
can he avoided other than through o^^^orable increase of ~'!ng
m d  hence the cost? or througli the h — iig of the amplitude of ,
S' «h£c& in'practise is not a positive- solution for obvious reasons.
It' is apparent fv m  that diseussion that' s' domain which describes
conditions favourable to the euistenee of suhhars^nic motion e@a ha
defined 'by the terns of the independent system parameters*. If the
critical os^rss^ions are'derived'for the boundary curves* it allows
an effective and econniaical mans of suppressing the phenosama hp
illustrating.-•■the- relative position’of the-••existing condition-;ef e '
particular The state of aotf~2£aea?£t3r -cm then-he chaigcl
appropriately whenever it becomes -necobsary -to achieve- tha physical
condition th&fc Is outcid© the region.' ' This' possibility' is 'investigi
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in the* following chapter*

Hn also readily men- fro® .the previous discussion. that in 
'general the* in&fcan&anlc vibration. is: not ©itpaifieantXy sensitive to 
damping. For the sissll amislitiide of • excitation* this .is just as 
apparent since the tesrsDiaic co -'onoat. In. the f&equency region of 
the suhhsr©onle is practical!;; irlopenteit of the feeing frequency 
end the • fe&amantal hanaonic is the ewgmmt fey which energy is ’' 
supplied to the- ©ystrn. If the appropriate Figs»<&•3-16} and 
(7,0-11) arc tibsenrad, It Is-evident . that the phase at the 
optiî Ki amplitude for the letter, .condition occurs, at m higher value# 
Since; the coefficient of the viscous, fore© is fined and with the 
; amplitude -of' tlie fedamenteX hermonic praoticaXXy indifferent to 
changes in frequency* the.higher, phase values must h& principally
cue to the increased ©igniflcase© fras the - greater values of Qi

• *!•'

attained# ■ Moreover* the finite Ximts of the vibrating amplitude 
are also dependent upon the initial stiffness, rata .of the non-linear 
suspension. ' da it is necessary to heap this stiffnscs value • 
sufficiently high to lesm the • coefficient of non-Hnearlty* -the 
; ̂ economical. cost of suppressing. the ©ubfearscmic phenomena' thrmĵ h 
viscous damping alone Is obvious, ■ Fig.(7.6*3) illustrates 'the 
lasgpitude of the response In relation 'to the increase of the damping 
coefficient#

Since-heavy damping is.cowsnly kmimtos unpras© any 
vibratory *aottai» it is of -Interest..to mention that in the raising 
of I to omeegste the Instability experienced a significant shift 
■: occur© ■ to the position of the mean dynamic displacement in- the 
'nsl̂ hbota&ood tdierc the suHiarmaie begins*. The characteristic 
. applies , for whatever the degree of asynsetvy9 end the pnmmztm?
Cg- Is-reduced mrrospondiugly auay fro® the region of Instability# 
71ms' the■ instability of the lUror. phase response in due course ceases



to exist*. The condition for the existence of the siihharssoaics is 
readily cscertaiaed from the stability criterion defined by equation 
(e*2,l)*

Is the absence of any effeetivg viscous damping* tfee 
ssvsrity of the resonance is the lower phase is evident. The 
fcnsortsnc© of consider: **. *. e -effects fro&- the influence of
gravitational i&mm on t equilibrim - of motion Is desenstratod 
for the physical state c£ •* * eligible iis$®Iisg5. eM it Is apparent 
fros the results of Hg*C7*6~*r) that consideration. is necessary 
ant must not inadvertently Isc neglected la the analysis however 
snail the amplitude of Prtncnncol &mmd order si&h&gt&alc 
vibration exists in the .frequency region of tlie order cme~tbi$d»
Tbs reason heccmu m m  eppsrent in-the following paragraph* 
Experimentally md m In most agitations * the Musp1 ybenomans 
occurs at a fraqtisncy value hi'Nsr than, the theoretical. The 
difficulty to locate accurately the vertical gradient probably 
arises- from the positions of the preceding si&harssoalc coefficient© 
that prescribe the initial condition©* Oftea at these frequency 
conditions, -the preceding stable coefficients are In close proidmity. 
to the sepsmtrlx which defines the two regions of stability. Im 
It’is common In practise for stall variation In the phase shift • 
this Is sufficient to- cause the Instability to occur earlier than 
predicted for the theoretical case* He&ce* as fig*C8.S~-2} mmAily 
illustrates* the resulting visitation Is uppurest,

The? characteristic© of the shift ■ & n the utaa %uaitde 
dlsplcccrcnt from the position ef static egttlXihriim; with frequency 
pra sbasi ?y Fa s {7*8-5} to (7»$~8}« For the siesll irgftitudet of 5Ss 
the deflection ̂ur'rjj. the early stages of Cb Is eces fcr uoth branches' 
of the response to la© Insignificant and the non-linearity is. effectively 
©t a rasfnwm, Consequently* as the pvedadtoant tors is the second



order* the vSbrsttn̂  ■ taptlon of the .order, one~htif I© readily .
pelted If the condition which describes the reletl©nsbip of the ■,
fsyjste*!* !>ars®at-ers md frequency lies within tlie domain favourable
for mMmmmi® rot to, tot as cfcserved in the above paragî spti It
Is the Eora important order of motion. Since the harmonic
component which I© the effective guapliiisSe of the disturbtag force
is'limited6 the response of 'the lower phase will depend'•upon
whether the non-linearity Increases 'the value of the prnmrnt®? C„

***
in overall eigoifleande# this fees hem discussed Is an earlier
parepvipli and the vibration will exist In © pronounced state over 
the tmstshls ’ domain If the" eeuilihriua state of the second region 
can he mlntained* Is ell other aspects® the significant 
charaeterlstiois of the mean dynamic position are similar* for' 
whatever the degree of esseit&tloB* to the' results of the preceding 
chapter and have accordingly boon discussed.

The- changes In the phase of the-.principal stfehansonie 
component with frequency are Illustrated by Figs*(7,6-9) to 
(7*6-11), As tlie vibratory motion is not significantly sensitive 
to - viscous force and in vim  of the degree of excitation» the phase 
#1 of the finite amplitude.Holts. occurs at .higher values .duo 
principally to the relatively linger ©Hinting .Q̂ In relation .to 
the other variables* Otherwise the general behaviour Ichsioiler 
to the. result s for larger .amplitudes of I* Khere viscous damping •

. Is the phase Is either aero or ̂  for the lower and higher 
fesqueacy olds of the response respectively*
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The extirtctI rrg of rv & io t in m tlv  rn h h tm m ic yj&ratlpn, anger the 
offsets of ̂ fcyity.

w ̂  HrsStiin condition? described by the roletlonshir*
-»t rcn the independent̂  sysrfcrsn ypcametorsu

From the analysis of th© behavionr of th© important 
vmpmmtB of ©ubhartnoajLc vibration* the significance of 
considering the of foots of gravity on th© equilibria® of ration 
in evident. A® they are not completely balanced by' the static 
deflection force the predominant ®ubbat®3nic component Is of 
the second order* It is noon that the taagnitude of non- 
linearity in increased and that the affective decree is 
det&mlned by the relationship between the system psrarsettrs 
in iMcii the principal factor influencing the isagBltUfls of the 
vibration response are the ©nplitudes of & erJ B whilst the 
coefficient of d? **1 Xlr*tis the c tires resontstict ©solitude.

Sine® In the region of pronounced m&hfttiaofi£e&« the 
frequency visltiss ere dependent on the effective non-linearity 
and the v ib ra tio n  characteristics o f the suMisroonlo 

coEftoncnt© clearly indicate the critical state o f  non-linearity 
In which mMmmxmim cannot ha generated is determined by the
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relative values of the independent parameters, it is within 
possibility them to attain the ê perisismtal conditions for vhicb 
the phenomenon is effectually destroyed by defining the limiting 
inequalities independent of the frequency tors ®ad of the
dependent variables. Consequently* at' the inequality describes 
t!je boundary regions for the assistance of the subharssmic solution*
it -alUms for suitable pextmtatioas of the independent variables • 
■possible in the early t!®sl,ga stages,.

6441). The Inequality-

Although the vibratory motion is not significantly
sensitive to viscous cashing* © ISMting relationship for the 
degree of osynstetsy doe® exist between the coefficient of the 
viscous force and the ©solitude of 2* Bos?ever it is considered 
that because of the resonance cmgttitude being principally 
dependent on the latter and o n  the solitude ©f <!> the efficacy 
of the inequality bocor&s rcrc apparent by representing the locus 
of the expression betsreen these two parameters for ■fisted values of 
R* Besides*, the illustration Is In a tsore tractable fom for an 
assessment of the overall importance of ths non-linear co* ~fIciest 
p and of the degree of asyssastty resulting from the cffectr * ' 
gravity since both parameters c m  b e  Interpreted through the- tern 
static deflection.

Under the effects ■©! n »i Lty?. significant changes In the 
p̂ *I4cn. c?f the resn dynamic displacement exint over the resonance 
and the state of the effective restoring force ©f the system Is 
characterised by its behaviour. As this is illustrated by the 
response ©f the cm stent tom *?* then on using equation <3.2. IS)



*?£th the definition expressed fey Flg4$.2-lMc> .yields after 
sijspXifie&t ion

l&TU ♦ "® * s m  *  BY* «J§ ♦ Q®5 ~ %  { 1 - I' ♦ I 

t(§ ♦  25)*) *  3?* } « 0 ..... (0.1,4)ii *"*

For the resonant state of predominancy largo %<f} the 
frequency response is reasonably approxtatted without limiting 
the generality ©f the condition for the existence of tits 
cospoacnt If it is regarded «i.thitt the region as given by

n* = { *t +■ 3 (of + 2C*!) ♦ 12Y* + 12YC. }   {8.1,2}£ JL X

The plus sign corresponds to the 1-oxer phase of the response 
and the negative sign to the higher frequency side- of the curve.

thm-i vita the appi'oprlate sign for the predafidi&at 
region of subhamonic vibration equation (8*14) 1® reduced 
on «sisg the substitution ($*1.92) to

mis * mi 4- 124HY * 6YQ| s - 3Q| C2Y t Q?> „♦*. (S*X*3>

Altbougli the tors H in the pxssanca of viscous damping is always 
negative; «$»teroer' the physical state of -the system* it is 
apparent fres the t o  expression that rani roots of Q, exist 
ffer
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2(2HS + 2H + mi? *'31fQ£) ■$ 0 {8.1^}

m  the value of the torn on tbs right equation (S.1,3) can 
wittier 1© positive or negative* Sino© T the effective ftsmtetry 
of the restoring force cnir m ly he positive» m& mitt the ; 
eccox.ranyinr bsrronie- Qt, in the second phase quadrant principally 
‘irflticBcad by th? solitude .of 2 and having-an upproxitBStc valtis 
defined by equation the- resulting value whether higher
or icrwfer 'then sero £©' Cc^^deht on 'i&etbet* tbe arplitud© of I 
■or the.,r~̂ *"tude of. the disturbing force has t V  greater • 
.influence *»• dst̂ ivelrlng the characteristic behaviour of. the 
.position of - dynr,?;ic egultSbriics* and hence the effective non- 
linearity* This cô oborates the earlier cdscnssica (see section 
(6.3)5 that generally there .arc tuo Halting values of % Sot? a 
fixed ■ amplitude of -A since eniy.a single- real root of 11, exists 
at a given tire. .The'subharscrlce can ouist over a largo- . 
difference in the value of the decree of excitation* Thus* for 
■ a given csgnltusle of &y the • suhhm^nic . vibration cannot he .. 
.generated when aquation -(8*1,z*-} equals to.soro,

i’ith the constant coefficient !£«(?-&>* equation 
(8*ls%5- is reused in the state *?\9t&ta»mB£c resonance not_
Ming - sustained' in ecuilihriuB to ,

2y*'*y(SQ* * 2) ~ . 2 U *  *  A) = 0 .. . .  C8.1,s)

. This ..gives the ■• condition - of, non--linearity, that results from 
-of gravity influencing the* equilibrium of eetien* 

lor which &fth£*maic vibration cannot be generated.

- from equation (6*1,3)* it Is evident that real roots of



%  ®lm osm&t M  obtained

' - *!**) < 2£*(-2 € sq| - SB?}' .... (a.1,6)

The inequality indicates the esperlsasntal..conditions under tbs 
effects of viscous denying. As the ffce$a«sugr regie’s is In the . 
neighborhood of optima resonance errditude* then on 
substituting for toe effective asyns.atry the upper limit on the 
asouat of den; iug a syate® cay hate and still he able to ' 
gemersta a cabhô eiiie 'solution;ie givau by

3 1'
(afog ...so! - z n * ) )2 :#, {s^ +.x> {s3fil2.: ' J 

scqJ - sr*> 21 s(q? - »*•*)-.I, J, -

< (A* ♦ A) .... (8.1.7)

In which ’Ct 6 the'accompanying henconic of the 68hfcar*c 1c 
vibration,' 'is the only dependent variable.

. Generally t • If-the'.decree of s&n-lisearity'' does not 
increase with:.the.vibration-, .the us© of the aypr-eaimtioa'of 
the harsmie' eespeuaiit eapresae-d■ by ■ equation; Co *6) •Olthin 
the. frequency -bsnd-siridth/is seen to ’induce'IfeitlOal;Vibration 
oharacterinticn and-.in. the.region• of -preteinisnt f«, Jesuits

4*of compatible accuracy*' Tlie appxosdoatcd value ct1 c s v i s *  is 
lower than the- harmonic coefficient’ of solution. (3.2..*1)¥ and 
if it is substituted to simplify the equations describing the 
behaviour of the other corsponents it *?ill licit considerably 
the ©agaltsde of the -subharaon.ic response. However* if it



in applied in the neighbourhood of the physical condition that 
is described by tlie inequality*, It-is evident, ftaa earlier 
discussions of the preceding chapters C©ee section <6.<05 that 
the api^o^imatioB of the fundamental harmonic* Independent of 
frequency mid m the effective amplitude of Z9 is perfectly 
ra&soaablcu Besides tae optimum solitude of imder the
"critical estinctio» conSition occurs in th© frequency ragioa 
widen has a value ©ppro&tetely twice the natural frequency* 
irrespective of the magnitude of the ncxr-linearlty* This is 
readily apparent from equation (G»t*»3) in which th© variables 
take the corresponding equivalent values of the std>hsrmnic 
region.

T n m s substituting for the dependent variable as the. 
effective amplitude of 2* the inequality (8.1S?) is reduced to

3
2R(— --™b)2 (2Z* _ Re) < (A5 * A) .... (8.1,8)

!2ZS~0F.C

The above inequality enables the locus of the critical
relationship between the independent describing parameters of 
a system to be readily illustrated,,

Us it is estppeseed completely in terns of the parameters 
defined in equation (8,1*5), this mam the critical condition 
for which m&fcnraonle vibration is destroyed I© obtained 
through any me of the limiting values In relation to whatever 
th© quantity ©^ the other parameters. The above inequality also 
'allows if it becomes necessary for the value of each parameter to 
be.changed appropriately to satisfy the particular requirements*



- am

The physical significance is mre readily apparent By 
IXIaistratisg the Inequality as shews. In FIg*(itX~I)*
for reasons rse&tion&d in an earlier paragraph, the locus 
defining tbs Borodaî  ©f tbs limiting relatisnsfeip Is considered 
between the of & m &  of S fbr fixed coeffictatt of
viscous damping« M is evident from th© corpiuKteos with tits 
expsrtoufcal. results that the Xlmitfeg relationship hs$M®m the 
respective extinction values is applicable whatever the tuagsii.tnde. 
of gravity effects Softening the -equtllhrlua of ©otte.

$.»1«CI1)> ;î o _ offilnn | specifying the mlninr- ̂ tim t p m  valis© 
of ; vi scons darning ?**■

The cosmos practise of eliminating: the • st&harmeic 
resonance by the. increase of damping is obviously t»t satisfactory 
since the vibratory Tsotien is mot eî Ificamtly sensitive to 
viscous force * and in such cases of vibration Isoiatlon where the 
prlsary function Is also to reduce the femes transmitted this 
will he tmdeslrcable for It raises the toansnissJMlity* In 
.regard to reducing the aspiitude of i* the relative oest of 
balancing the «pge.tsse to the stage of achieving the extinction 
Is usually bight am! often It aay not he the isost &p®mppint% 
step to tabs for correcting: the preolrn,. fhe meed is for n 
suitable csssprô ise*

Although the critical magnitude of I for which there Is 
no cdhhsrsenlc solution is evidently dependent on the values of 
tlie other- governing parameters* it Is however apparent that there 
exist® -m epttaia state In which .mibhaitsonlc resonance cannot b©
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ipticrated irreopective of tea oogroc of -excitation under the 
effects of gravity* 7 M &  p h y & & c & %  -condition is obtained < m  

d e t e r m i n i n g frcet e q m t i m  (8*I?8) the critical amplitude of 
the disturbing force for o convenient dsspIrg ret© of the dachpot*

Heace,, the maluatim of the -tuft of the disturbing 
force ftost which m&bspxxzte wSmnticn mot h& gmmsmxo&: 
h&mme of th& mitimcticn condition of I ft given ajsyroxlsately 
for a, ffted of viscous dating* after sftpitHcatics, by '

2* ♦ <0.1077 - 1.877 R*> 2* - (O.W» ♦ 0.70«ma>
* 0 .... (8.1,5)

It is readily sees fftoss the shove expression that the 
extinction cS the pronounced.niMmmonlc the
Xmmzlity (B*XS) need sot €®pm& on the amnlitndt and 
ftomieocy of the disturbftg force* for a suitable viscous 
dawping rate ? tbs value of oKeftatftn which suhsequeatiy' mtfbtm 
tbs critics! amplitude of X to h o  dotcraiacS ft fixed fros 
equation C3.XS9)« The Ifcdtiuif l< ft the optimum valco persftsible 
if eubbarsoaic vibration ft to be avoided* • With this value of S 
the cfticetion condition ft achieved irrespective of the degree 
■of csscStatfta.

The critical -Sogm® of the gravity effects Xiifivmthm 
%% ° ©cuilfbrte of isotlou ;-cpeei£i©s the aftfttn oxtftction̂ elâ  
of %ftcmis damping. Thus* for as agreeable coefficient of 
extinction ts the vibratory ssetlos ft destroyed through either 
reducing the differsB.ee between the two stiffness rates of a



hardening suspension or lowering the wmtitud© of static 
defX&cf £<&* If the systo© is run ft the £rscn®HQr region of 
the st&fcaraonics* the latter method of destroying the resonance 
h f raising the initial wt&ffm m rat® maims the response doissft 
is sis© shifted fro© the region-,

TSmXX t̂ since the inilwmc® of grsvttatftiml fore© 03. 
tie ecnillbrfts of ration results, ft a pmtimltmt mMmtwmio 
cotpomnt of the second order* the sahhar&oBies -of higher ©rear 
tbns ontr-half are efftctftsly mm^mintmt ft the presence of 
the critical dcmftg for th© limiting value of 1 cetercfted 
ftos emistlou {£*£»$} and inequality <S*X*i>* The effects of 
gravity in the ofstftsm state permissible for 1 cannot isiuca ' 
nvMitit-mmic resonance and the reduction ft the solitude of Z 
m ei only reach & suitable stage of balancing*

The u?m®r.HElt of .vSscoys doping for,a glvsn 
frer uc acgr Ĵ tio*

Is general the siagnltitda of the. vibration respoasc 
to the effects of visions damning is oat significantly reduced*
X£ the need arises, in vhtch the cysts® isust operate at © 
constant sjsaM ft th© ration of prone* n**sl subhgrffioslc rososaBC©*-' 
tbs mppp&mlm of the vibration by ft ̂ ftg only Is shorn ft 
the following paragraph » to regalr© relatively largo moffioimtm  
vhm the ©fftotft® non-linearity is  m t in the selgliboiirheod ©f 
the bmmdary described by the ftcqmlity (8*1..$)* fhe Iftitftf 
mlofctmgihip is derived as a function of frequency to indicate that



alosy tfc© considered frequency m jdm  the mp®p limit -of viscous
aaspisg the system my have mid still h&m a. st&har&esde solution 
can Be g re a te r than tid e s  th® value fmn. the procedure o f  th e

previous section*

Xt is apparent in reference to equation C£*X?S) that for 
the m istm s® of suhbsrsosic m t im  during this predominance of the
siibharmafc cosmonaut

*•

90??* > «*<!»'+ SQ? * CO? + J2t* - *«*> .... • <8.i,!0>’X t ‘X

Bor the state of the response is "it is not 
unreasonable to apply the ©pyrosisatlos as defined by equation • 
(B»l/i)* ' Hence os substituting tilth the appropriate sign the 
abovo inequality is reduced to •

' “(n®. •- CX2i's + WE1) )s < 3Q Y   {8.1,11/

If the effective of the system is in the m&ghhe i
of the inequality C8*1^)$ the mpmmlmx for the upper lifetit of 
viscous damping ,*W further Be induced to

R <  , . . . . .  <8.i»12)
cr-iam.)5

the dependent variables in both inequalities'(&*lj,ll) 
and £8*1*12} vill have to Be expressed completely in terms of 
the system parameters if the limiting coefficient of ft is to have



@ny practical sl&oificaaee* It is shown that for the state of 
the response under consideration* the harmonic component can
bw approximated satisfactorily and the effective mysm^trf of the 
restoring fbrccn in the critical region is given fey

y* * (iiCi 4 I as*> - t$? * a) # o •».** (b»x3w )<0

in which mty a single real root is obtained with a pair of 
conjugate >v •~***'*ry values.

Thus* with equations and {8.1*13}* the extinction
coefficient of viscous toping is readily mzHmted ircm tim 
Inequality (0,1*11) for any particular disasnsioaXsss frequency 
rati© in the region of predominant mjbharsoaic vibration* For 
snail deviation frets linearity In the characteristics of the 
restoring forces* the inequality can take the form

<   {e.l5l<0
(ift-issr)*

Table (8-,l-*3) shows that the ■osperimentaX rcaulta im 
general are in good agreement with the critical values ©f the 
inequality (8.1*X1)« As it is readily illustrated b y  t h e  f o m  

©£ the inequality* the critical dari ing rate, for subhtrsienic 
extinction is increased with the effective degree '©£ non*4' 
linearity. The limiting ©cefHeients specified By the inequality 
are slightly lower for cases in which the effective asymatry 
of the restoring forces is large. The reason is principally 
because the actual value of Qy is susller than that which is gives
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EFFECTIVE NON-LINEARITY 
REPRESENTED THROUGH 
THE AMPLITUDES OF

DIMENSIONLESS
FREQUENCY
RATIO

n

THE MINIMUM 
EXTINCTION 
VALUE FROM THE 
INEQUALITY 
(8.1,11)

EXPERIMENTAL
COEFFICIENT

R
A Z

1.0 0.1+ 3.6 0.36 0.41
1.0 0.4 3.8 0.34 0.414,
0.8 . 0.4 2.9 0.32 0.335
0.8 0.1+ 3.1 0.305 0.36
0.8 0.1+ 3.2 0.3 0.355
0.8 0.4 3.44 0.295 0.35
0.6 0.1+ 2.6 0.26 0.3
0.6 0.1+ 2.5 0.27 0.29
0.6 0.1+ 2.9 0.25 0.305
0.6 0.4 3.2 0.235 0.255
0.4 0.4 2.4 0.176 0.2
0.4 0.1+ 2.6 0.17 0.2
0.1+ 0.4 2.7 0.166 0.19
1.0 0.8 3.2 0.51 0.53
1.0 0.8 3.6 0.49 0.55
1.0 0.8 3.8 0.47 0.57
1.0 0.8 4.5 0.455 0.45
1.0 0.6 3.4 0.46 0.5
1.0 0.6 3.6 - 0.435 0.51
1.0 0.6 3.8 0.43 0.515

TABLE(8.1-g). THE COMPARISON BETWEEN THE EXPERIMENTAL UPPER 
LIMITS OF VISCOUS DAMPING AND THE VALUES OF 
THE INEQUALITY (8.1,11) FOR THE VARIOUS
MAGNITUDES OF NON-LINEARITY.



hj ta® approsdfaatloa (8*XS'2)* The effective 
substituted Into ffe© inequality Is correspondingly reduced*
IfLIs Is evMsst %?m the characteristic behaviour of the variable, 
concerned* Although, tko dffference* vhich M Insijpificent 
wk&m the deviation fro® l& m m itg  in « U j  is geiMirsXXy mlthis 
the gecoad decimal piMms- it is sufficient sins© .It Incnaascs 
idtfc to csmsiTtho. ©ppareat limitation of th© Inequality
m m  €m  fmqwms^ of v3hvm im -mgSltad©* H&vevsr* fh®
upper* Msits of lissom damping gives. by tlx© inequality ara in the 
clo?s© vicinity of t!i© ©ŝ eriiaeatal results* m& the Xlsiti*ig 
relationship Is applicable for all jg$g©lttvl«& of I ̂ wMisg to© 
frequency Is la the s?eglm that gattofias the rcfufmcis&Jitii in the 
approKî atioB ($»Xt2),

It Is readily tstea fro© Table- (S.X-S) that for the 
respective sets of parameter©' the critical coefficients of viscous 
dasplng do sot differ Its ant degree over the optlmiis arplltuie 
region of the values necessary for the extinction of the resoime®* 
This r̂ ans that the upper limit of t, ones determined for a 
particular freoumey is applicable 1st practise over the sfttol* 
range of the fromu&eed ©ubharsRonl© vibn&tloru . Sine© the relative 
cost of balancl.Bg the system to the mtage of ©©Mevissg the 
extinction Is often high* the apparent advantage from tbs Inequality 
(8*1»8>* in determining the degree In the effects of .
gravity for t?Meh a system may c * ̂iescsct and vet ©uhbaxtiortlc 
resonance is not generated* is evioent by taa arwe ragnitcles of 
the %*imms damping retpired Is suppressing the vibratory notion,
In cases mere the effects of gravitational force on 'tie 
equilibrium of action ©re large * this can be more tfcan'4twi&e the 
agreeable ca&prcstlsed value;., for apart from the problem of 
uneconomical coat the large damping factor css also be asides ircable



-

I?! view of the difficulty that is eBcaimtered through, high 
ratio.

8.2._ Tim &c£lvJLnz the to^njcf &&hsr^mic
ration*

Since the aahhssgscmic fditnomims exist ©sly fa a limited 
f r m q m n c y  r m g ®  that i z  g m ^ H m a  h y  the system dteseribitm, 
parameters, tbs c m r m i m m  «f realising the extisettoh ©f the 
resonance By determining the ts?e critics! boiBsdary frequencies 
ftom& the limiting î XatloBshif? between these 'variables tz 
apparent* As the rasonanac con&lttoo eaa fhea be predicted 
with reasonshie accuracy and without undue speculation on the. 
values the dependent coefficients ©£■ the solution tales in the 
region* the problem of u&ta&wingly working the z y s t m  within 
the £ramsm&y S?sa&-width need not ©rise*.

fjtS*S$X^/Js$L !c\mr ̂ t r a n c h e s  of the response*

If t!»: ssbhassxasic domain'©f the freiouiinaat cô poacmt 
in described hy the %mm*< 'and upper limits of ?n the frequency 
range -In uhich tbs ssiB-sftttfmle CTplltufie oaaset he generated 
is expressed by the inequality In the form

Jl* | 6(C-| + 2Ss) - 8Ra } f >i { 9Q*S* - Ka{* ♦ 6(C;|

* 2?2) - HR* }*   (8,2,1)



the plm and ©isrjs signs signify the upper .m& lews* critical 
frequencies of the eehharsronic fcaad'̂ dth respectively. At tlia 
critical point 311st before real roots of‘%. OKist* the hnmonic 
response is trie pre&nsinaBt component of action* Mment for the 
fre<vaeney rang© -its -vhleh %  catssot Be obtained* the dependent 
walabXos of inequality (8.2,1) arc ejsprtssed By equations 
{8.1*1} and <6*1»$> mtti C* sr 0 . The respiting equations are 
©iiallsr to ming *» «ppror.irate S-trem solution in the e&alydto 
of the :fearamic resonance* •

8»2*jCi|)*M A-ngiyrl̂ ation of the

From the. results of the preceding chapters sihidi readily 
illustrate the characteristics of the effective aeyss&etry* i t  £& 
evident that the mines of K ar® relatively smell in the 
iieljd&cmr'hood of the frequency region imte cô idersticsu Tins 
terns of IIs sad of It15 can M  discarded rithout istt̂ duclng errors- 
of serious -proportion, and the considerable simplification in the 
«scpressio&9 describing the Behaviour of the non-linear- restoring 
force under the effects of gravitŷ  and hence Is the resulting 
Inequality is sufficient justification for the reduction In 
fhû s. after amplification equation Cs.l?;3> tafees the font

1 a 1 J.
y ss £ C— -*'™-'***:-l>- ***** -(8*2,2)

1 * 36* 1- JUSQf

On using the above substitution* the inequality im aou- 
c to. an cKpratslon In ??hich the anXy dependent variable is 

the fcammSc caî osent It -Is sb©aa for the. asmtsfticms -sade 
la the tedvstto of equation (S that -genereily tdioro the



effective noRrlincarlty does not increase *dfh resonance the 
stfroxlsirfcion of ̂  yields results of ©oi^arahle accuracy* 

it is .apparent far the intended response that the 
sg|4£t«4e f|̂ is ss justifiably defined by equation (6 ***-£) as 
the jrocedmpc ©dvoeated in (20 *22}* where the mcmmmyIttg. 
fcsmsonic ccî oaest of the suhhamonle vibration in approxlmted 
either for n linear case or from the consideration of sen- 
limsrity being crall* Sine# then# ass shows to he ttsti with 
aso^ptsMa aecuraoj? then frog ccmMmlnr. the frtcpieney position 
of tm  eempcment f» relation to the st&barsonie festpesey region* 
the epprsxirctica of equation to satiation if It
does m t give a closer value nil! easily ho of comparable 
accuracy* If the appxmlmgrfcions of the respective variables are 
net ŝ sondble, it trill become apparent £tm the limitation of 
the inequality %zhm the critical frequencies ora corpsrcd with 
the experimental results*

hc-tnfps the dlnonraoglass; 
frê ufn̂ r ratio..jend Jg^sypteno f-irpmtem*

Os substituting•oonatioss (6*2.,2} and (£ •***&}« an 
npproximte expression for attaining the extinction of st&harsemle 
resonance through either raising or lowering the fremieiiey is. 
thm given in terns of tlie systems parameters by

u* f  -a + sciez*** - i?a)s . . . . .  ce.2,3)

where a * {12 *■ $22* ♦ 8GY* -■ Si!?.*) .,



fable (8*2-3.) Illustrates that ipsemlXy the experfeeistaX 
results of the limiting frequencies are Is agree?; erf with the 
inequality (8*2*8).. Sine#* is the egga«xir.atioa9 issde* flit 
generality of the expression wmmizm* the im cm litg I® aĵ llcshle 
for sll ■mŝ nlttsies of aosHLIt crpit$f» Hosfigver* it oust bo 
m m tiered that the Hsitlaj relationship ices sot Indicate* for 
case® Where the decree of ©cyr-retry becomes larger with resonance, 
the higher lialt of the extinction frequency in the 4o?c£& of 
the Qgthrnm st&teramie ar-lltude*

M  discusses In section ($*§)* the limiting frequency 
positions are influenced principally for fixed amplitudes of 
% by the extent of the gravitational effects on the equilibrium 
of mtion* This Is readily illustrated hf the above inequality 
In the significance of the ter® X t© the quantity of the first 
expression* The frequency band-xMth being the difference. of 
the two critical values it governed by the quantity following 
the plus or- sinus sign. He the coefficient of viscous damping 
is relative^ asm!!* the dossals of aubharmonlc vibration Its 
dependent on the aumlitudcs of d and of S which -comtbmmtes 
the results of the preceding chanters*
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SYSTEM PARAMETERS THE LIMITING 
FREQUENCIES FROM 
INEQUALITY (8.2,3)

EXPERIMENTAL
RESULTS

A R Z ni VV n2

0.8 0.15 0.8 2.8 4.19 2.88 4.2

0.6 0.15 0.4 2.4 3.3 2.4 3.27

1.0 0.25 0.8 2.84 4.7 2.97 4.68

1.0 0.25 0.6 2.85 4.59 2.81 4.53

0.8 0.15 0.4 2.7 3.88 2.61 3.85

0.4 0.15 0.4 2.34 2.77 2.32 2.75

1.0 0.25 0.4 3.25 4.36 3.12 4.32

1.0 0.15 0.4 3.14 4.5 2.98 4.46

TABLE(8.2-1). THE COMPARISON OF THE LIMITING FREQUENCIES,
. BETWEEN THE CRITICAL VALUES FROM THE INEQUALITY
(8.2,3).AND.THE EXPERIMENTAL RESULTS.
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Chapter, XX 

Contusion

In ItSVlTir to support the weight of the vthmtmr system* 
static deflection i® produced and the position of .the ncen 
dynamic displacement daring tlie snbtiammic vibration dees not 
coincide either with the static equilibrium position -or with the 
origin.-of the symetric restoring force characteristics* 
Appreciable changes in the ©inharmonic response of the system 
e*ist» The affect of gravity in not completely balanced by 
static deflection- force and its influence on the equilibrium! of 
motion is significant# The shift in the position of the sean 
dynamic displacement varies, over the frequency bsncH«ldth and 
the effective î n-lisesrlty is rot necessarily reduced m the 
resonance progresses* This depends cm the relationship bst̂ esr 
the initial value of the displacement fsmrotcr froT, the origin 
and the amplitude of 2* In either case, the coefficient of 
non-Hncsrlty is 1c *̂ r end pronounced second order subharmonic 
vibration is readil, gcnaratocL

with the existence of damping In the system, the 
effective ton;? of mn^ilrsmrity is 35yx® and the frequency of



"tlit - s a h h ^ m a n ie -  r m p t m m  i© dependent on the asoimt of t?eigh& 
initially transmitted to- the supports * However small & is In 
relation to the amplitude of the disttsrfelng force* the predominant 
©abharronic vibration it of the order one-half if the physical 
condition described fey the independent parameters lies within 
the domain for Vfcioh there arc real roots of the 
©olutioa* Although wen end odd cufehsMonic co^^enrnta oloo 
e«ist in the vibratoŝ * isotloâ  the second order resonance- is 
the strongest and It predc-isinstos over the higher orders. Only 
the first three components of the vibration can fee unassured - 
effectively, end complete cupproasiosi of the subhargsanie responses 
is achieved for the critics! ctogspistg coefficient.

For a small degree of crat-af~bale&ce ®%,cit$tims- the 
effective nor-linearity is determined expressively by'the 
parameter A, the shift of the moan dynamic displacement from 
static equilibrium is • insignificant. An additions! area of 
instability exists on the lower frequency branch of the forced 
response, the extent of the unstable region is reduced whan the 
pronounced Influence of the gravitational force on the non- 
linearity is lowered by the 'increase in the amplitude of the 
disturbing force. The instability is readily ascertained frost 
the relative significant Increase in the value of the parameter 

is the analysis of the variational equation.

In the tmstahle 2*aj?,lon of the.subbariaonic resonance, 
real roots of the ©uhbarssoTsie components do not exist in the 
presence of dumping* The polynomial slmltsncmts equations from 
the application of the tm  theoretical methods cannot be solved. 
The vibration is not sustained In an esulllbrto state because of



the. accumulative effect in the accompanying hartsonic .of' the 
sx&hars»uic vibration* -The hniM~vp oscillation occurs in the 
second erder region and it has. the ssno frequency as the 
predominant gt&hsrme&ic ccrsonent %« The vihmtô r. motion 
cannot exist along with the harmonic resonant .oscillation* and 
the system Is effectively encitad with negative dating*. -The 
procedure of fixing the- points of the resulting unstable 
ccjrpOReats, O, sal I?,. Is-by tic mimsrlcaX method described in 
sectlea (6.2).

-The Hotting frefuoiisi.es .of the Mnd~width .are 
significantly effected by -the •in.Flufnce of gravity effects on 
the equilibrium of notion* find are determls-sd principally by- 
the .magnitude ©£ the effective »eyrme*x̂ * The suMnrifiosic 
response is not appreciably sensitive to . viscous damping. 
Considerable rate of damping is necessary In the suppression of 
the-resonance* Ztt sssst applications the uss of a large viscous, 
force is- not practical* and the limiting inequality that is 
expressed in terns of the response governing parameters readily 
illustrates the host nmns of destroying effectively the 
resonance by altering conveniently the appropriate parameters*
For cas^ is which a Isrgc coefficient ©f the dash-pot rate is 
not desirable* the extinction, is through reducing either the 
amplitude of the tmbdanced force or the degree ©f gravity effect 
■on the- equilibrium of motion. The latter means is the isosrt* 
convenient In vie? of the high cost of balancing a ■system* The 
extinction condition is achieved by raising the initial stiffness 
rate or by lowering the pronounced difference of the two 
stiffnesses -of the suspension. Equations {£•!>&} 'and (0#l5i) 
enable the dash-pot to be fixed at an acceptable rate and the 
corresponding optimum limit of gravity effect tolerable to be -



dtterelced. In this jihyziml state of asyrajetrjr the amplitude 
©f Z has si® significant Influence or, the effective non~liB<&rity 
m  mgw*& to exciting the etF'hsrwsie phenomena* Otherwise 
m  ®r.praci8&Xs Increase of cr~plnp is repaired* especially itt 
the state of nm^Zinmvitv that Increases rith sa*A«?rmouI© 
rosonsrtoa* The Sftceahle rate sot to t* e darVrot ffet? the 
rrtirus lvalue of ?» is the * **̂ 1 " “clcmt c-f dmping f &
oofplcte ms|mressslcffi ©f tbr ~t er*xmic responses. The 
nrplltu&e .of tbe disturbing force Is, reduced only to a convenient 
stere of h€Lme%n%+

The phase difference of the ps^doMmamt subhntraseslcs
ceaponeat is less than *|* and 0* exists either- witbis the s£sie 
phase miairattire ©f the disturbing force or in the opposite 
third quadrant# The rmvUtlng remonm depends m the initial 
conditions*

The accuracy of the tttc theoretical, methods e^loyed 
in the analysis of a system filth ©syissetricsX restoring, force 
cliaractet-istles is generally good* The investigation £c not 
restricted in the aagnftmde of non-linearity* T,tn theoretical, 
results are Is .goof coipreletion with the ossperisseptet rallies 
that ©re obtained fro© am actual sltauiatios ©£ the differential 
equation. end fr#m the crpariacnt&l isoicl* The five-tcra 
approKicjate solution dots sot i&tsodtiee any ssppraeidbl© increase 
of error with the iserense in the tiegm® of itf
fh&eugh the valtsa of the parameter this is because in the 
tmonmee state the predominant stfdmreosic. is considerably 1sx.g&r 
than the higher carder ©ifcharscmics.



The subharusmic vibration cannot exist alonrr.tdlth thm 
resonant state of and the fcsvconic eorspemeat la reasonably • 
epprmstotocl as the effective at̂ Xitude’ ef the -disturbing•• 
force. The mss of the approKiratioa i?hich- is independent of 
fropiitnoy allows "tie critical state for ©ubfcorssonie ar:tiactSon 
to be determined readily. The - substitution iott- tto simltaseottB 
agnations to calculate the aubhansonic response generally-yields 
results -of mw$mt3h%® accuracy when the of feet of gravity 4®m 
m t crae the effective soii-litieerity to increase vith vQ$0fe8hce«
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The gitc-CalerpIr

Tli®' reasons for ©sleeting this m  the principal met sod 
In the analysis of subbarsmie sjctlnctioa mm discussed In chapter 
IX* The equivalence of Eits. idniMsimg wiled m d r r.lt*vkirt wmtmi 

Is %xmx®£& in (20)* m&- the. ossobcc of the tlicoiy that iir applied 
in the investigation Ss derived from co&sld*rliig the variational 
equation of a conservative cjlt 1c ree~of-fre©cta 3yste».

According to Hamilton principle., the notion of the 
dynamical system exists is such a tanner that

tr 2
€1 « 6 lit « 0 ....... (AZ»X-)

$±"1

where for toe absolute displacement eo-oMIstate x  and tics© t* the
Igmgrmgim function 1 © CT ~ ?)*
T is the kinetic energy function* T « i } ^

and ¥ is the potent!®! energy function» ¥ » ¥(ss>*

On applying the calculus of variation and integration by parts* the 
above expression fives fcgqgra&ge’a equation of notion for the
systas* wbicli is



Tor em state solution is the fens

& » t a^Ct) t t t ... • •»■{&»$)' .

a. Ci *.0* X, 2'.g ****u)'Is ftso tand«fters£ne& 'coefficient.'5-

the Hits tdaiiadsisg ssctbod proves that* -if ton functions:- #*(t}
*Sw •

arc froparly chosen t h m  .functions. consistent *rifh the physical
restraints and sati&î  the boussdsry e©nditienss the app?ô i?srCe 
solution. £ converges into m true &©X«t£»m x by increasing: the 
mwber1 of toms*. Since equation (AX*3) la met an 4Mgt solutions 
the substitution into the resulting aquation -of Cftf *2) will 
produce an m w  function. The extant of the errar is obviously 
dependent on the accuracy of the apym^i^tlon saw! It is often 
possible to have reasonable- accuracy £m® merely using the ffcst 
few terms of equation <AXV9) if the choice of these teKas are. 
isado appropriately* The mnJtdsdng procedure dctorsinea for the 
choice of ajpsmtete solution the values of flic coefficients 
for tMeh the crrw £# m absolute minim®*

Thus 9 with the approxteate solution of (6X*3) the
conditions for the expression 1 to to n ainiiaua over cads cyslo 
of vibration are that
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iithep®. « 0 and - T- atid T its the periodic time for one
complete cyolo*

On Is e* siting by parts? too second toitg of equation (AXJ-i}* 
tbs abotn condition ear» be reduced to the for®

Z  - T { S  '■ 1  < %  5 ♦» f5t + * %  *.t Jo = 0 • • • * CAIt5)<o c" “'• as •* us "■ °

Sine© in  periodic vibration <».io) ** *fyCT) « O* t̂ e crjrvoslon 
within the first bracket ©£ r a t io n  (AX«$) i® larrraugts? for® 
of the equation of motion* the rearrangement of the ter&s Into 
the standard forts of the differential equation for the approximate 
solution x yields the error function EC it)* Thus, the conditions 
of the Eits-Salerkln method enable the values of the mhnoiiii . 
coefficients to be determined by Integrating the deficit function 
for each of the n torrs In i and subsequently solving: tho 
resulting r. simultaneous algebraic equations*

the. ossene© of th© method Is that the deficiency» which 
is introduced on substituting tb ĉ teate solution of the
for®- CHI58) Into the clescribing i wtitm of t-sOtto5 mmt fee sser© 
when it is Integrated ever cue complete cycle of the vibration 
for each of the » terms* Tm $jmmmlim$. conditions tmy fc© 
expressed In the form

(Hv
BCD «(©) » 0

lo



vfccre the ixiMpmmst- variable t is chasgoi to the equivalent 
•corresponding parameter 'of - the' systea dO.

'The upper limit of integration is *nr ©inee.oae cccsplet© 
cycle of second order su&harDonic/vibration occurs, is every 
tvro cycles of the disturbing force*

Because the error function is often readily derived* it 
is comss pmctise that tfco procedure of the shove expressions is
applied directly * It is ssore eonroftleot ftttsi having to carry out 
th© uhoXa ssixtlmlsing process.



f  he nIrailtasemis ̂cil̂ cVrcSe jp̂ ustioup

7,n solving the diffeî nticl equation CS.X̂ S) fey inoams of 
the Bits-Oalerkin methodf tho choice of the a$$rCKl&&t6 solution 
determines the ee&sitivlty of thlsm procedure# •

' The appxmimte ©elution ibis. the fora of equation 
(3.2,X) satisfies the 1boundary* eomlitien and the ttsio functions 
are consistent with the rhys|cal; restraints* Kenceu *#lth

■0 ■ , ' '„, a 0 &  &  k  c o s  -  * b - a sis f.2 2

c « C cos 3 end d « £ sin Cb

the substitution of is into tbs dascribing eou&tioB of motion 
produces the. resulting eî ror function

£(&} e iffx' + 2Rrt3r t fl f 3#p) I t p(3iis * ?:s)
- sn* cos e .... (iTts.x) ■

which varies from instant to instant.

By supplying the conditions of Eita-CalorJdn method* the five
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siKoXtaneous. algebraic equations <3.*2S8) to (3.2,1.2) are 
obtained fros* the following integration for* #sc!i corresponding 
tens' in’the conation (3,2*1),

For the non-periodicity coefficient* the condition yields 

f*sir . 1
. ■ *:{$> m  s f - n?c? .ts + w  + <c + a ) ) + m  (iJ„ ' J, ■■■«.. 2•o

(B cos -,A sis |-> * CD css f - C sin i}>

* (3. t 0't 'b -4- c *?• -d)' -B Sufi-

<t!2* b2+ c2+ d2) * 8A|i(!J (a f H  c I d)
s

*j- e(h -I- c ❖ d) t li(c * d) 4* cc!) - Sn,2 cos 6

* |i(hf4ast b8* e$t d*> * 3$I2 (stbf ctd) 

t Sjb2 (IB 4 b * c * cl) * 2|*b2 'Of * a 4 c f d)

. . 4 • 3pc? Cl? * ;a *,h f. 0  *. Slid2 '(H.* a f H  e)

■ t ;Sp!? ia -(b- f c - *4) :* h t '& y ?  .4). t -cd) -dB 6u 

Cab Cc *?* d>'t cd ( .a t fc) ) } 43

5 ( 1 4  3£$P> w  * 6Z\|KT (21Ir  * a2 t B* t C* * S4)

,*.pr£!?m?; + -.3&4,<2t? f C) 4 3B2 (2H c) t m

CCS f D8) + 6ABD } r 0 (A2,2)



The above equation it isultlplled by pr to- reduce the coefficients 
to oon-dixseiislonsl quantities* md on rearranging yields

>H Cl * 84 * 3& (2 t  I )  ) f  3(£ * S) (X2 4 I2 4 ?  4 P> 

C (A® - i f ) + s ll5 * 0 ***** (A2*3>,£

The above equation is the ©aao as equation (3*2*8),

ftSimilarly for the periodic function cos ^ *

■ ftE(k) cos 48

♦ - ns § * * 2$nB*r t 2(1 * 3Asu) Air * G&pr&r (2KA

♦ AC ♦ ED) ♦ its <§ A* + 6H*A * § B*A + SCafi + 69AC

♦ 3B*A * 6BBB) = 0  ..... (A2,«f)

The resrrangersant of the teres of the above equation glims

A(1 - g) + &!§ t 2 A <A* + B*) -I- | A (Cs * B®) * 3A

(A * S>* * 3(1 * H> (AC + 85) a 0 ..... (A2,5)

*Mth Is identical to equation (3,2*8)*

GFor the periodic function sin i: * the condition of Fits*' 
CalerZdn yields



fBi
fo

n* | 1T - SHnAir * 2(1 * 3#p) m  4 6B|iir C2HB 4 HQ

- EC) 4 lit c| Bf 4 fiS*B 4 | A% 4 3C% 4 3£% 4* SMS
- 6EEC) « 0 ■*.»*. CKt)

vhicfc. ob converting Into the dis^nslosless £ @ m  the slmultmeous 
algebraic egression CA2#$) becomes

i <1 - |*) - Enl 4 | I CP ♦ Is) + | b Ccs * §*) * $1(1 4 S>4 

4- 3(2 4* i )  (m -  12) SS o ,*♦» . C&2*7}

'Equation (&?*?) is the sass as equation (3*2a9)»

SlfaSler&y for the periodic Emotion c m  ©5

E(i) cos 8 df?

*  -  2n%  (C 4* 2 )  4* tfFnDt 4* 2 (1  4* M sp ) Cif 4 3&gf!t Ctf

-  E4 4 me)  4 inr < |  4 sksc 4 sa%  4 $a*c -  eb%

4 33®C 4 I  BSC) 2 0  * * * ,  t m s%)

mbich ulco stive* from the rearrangement of the terms of the 
mmnltmmvz algebraic ospresstcm (AS*®),,

- iis cc 4 §> 4 mm 4 6 4 | c c 2 (2s 4 S£) 4 (cs 4 5s) >
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5 (A s- §)* «• I (A * B> I A* - 8*5 *-0 ..... {AS ,8)

Finally s tfm periodic ■ function $&'$* the application of the
Mt^G&lmnhin R&thod. gî as .*

fUrr
£{i> eiii 6 cl© 

k - 2ti%b - '^cir + $(i hx * 3him (mn.+.Q.

* M l  !>f 4- m 2n * 2 Cs!5 * StllS) e 0 .«<A£*10)
*  / -

The egression become# in the? dlmonsionXesss fom

D '(l - n*) ~ 2FTJC *. si) cl.-r ii)f,.+ Z(b * f?) AB * £ g..<Ss ■*..<*AJ
^ | l ( F i B 2) 2 0 .. -CJV2,11)

In the eieipllfieatien of the ̂ irnultaneoiis rd** chral.fi: 
equations'*/ the following identities nsod:

q? ~ A* >■ ?A :, ■■ c| ■ a - ĉ: * g* ,

. .& :» •• r. re %' :.. •• c. ■; s\ CL ■ cos *•■ ■ * *• *V ' ' C&29I,2>g .L J.

B » Q, sin * I) s Q1 sin 4̂  *

•.Tb*.• si&ntitutiea of:these: identities.-..into cqu&tiom. (3*2*8> to
:C3,2^3);|riveiS,̂.. . ■ ■

2H { Jl + H*. + :+ I?) } i- 3CA * Vi {Of + :<}?)."«■ I Q,0?1 .'A 2. ;■



The bars cbove the respective. are emitted for- ttmv-m itmm*

Ttxm CA2,X̂ ) and <&2,X5) it- is evltest that for the
©uMtsraoni© solution, ri # 0* Ttai% os snlt£$iXfing eqpffttea 
(&2sXt*) by ©is #! and cqa-'ticm (A£.*i5) by m s #j ©si. ca.stme.tisg

aBgives

. SCI t 3} §, sin - 2f‘i> - 3*n * © ,*** <A2,X&)

Ikpafics <12*181 £s identical to equation <3.2 *!»}*.

Upo© cmltiplyisg m im t im  C&2el*0 %  css ^  and equation <A2.A$)
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by sin and then adding also gives

3{1 * fi) Q. cos U . - 2#,} * Cl* jf} * I (Q® *• 2Q?)J, i, £ % % g? «L

* 8C& ♦ i ' f  # © ***** <&2«1S)

if hie ©25|srd©sion Is the m  equation <3*2S!3>*

Si&ilsrXy* in obfcaisirig equation <3*2* 16} equation <A2*!6) is
tsultlpXied by sis and 'equation <&2»X7} hy cm #« and than m

«i?V

©instituting yields.

HCttQ® * q|) - snSq sin 4-x = o ....  {62,20)

Finally* for i -vtlon {3*2*!?}* this in obtained by tn&tiplylsg
equation {AS ,,lt) by cos and equation <&2*17) by sis
Subsequently on adding yields

*■ *« •#  ■<* <A2*2!}

Equation (A2*2X) is Identical to equation (3*2*17) of section 
<3*2)*



- 270 ~

111

th® g&lsdpie of the analytics! ttefhod that Is 
la section- CO*05 Is the emdlibxd® of the fOress, mad the

in the vlhrato2?y aotloxi aisles the 4i$pl&c®zmt to 
he sLpppoaritated to the foam of solution

^  0 03? « I! * A cos -|: ♦ B sfa 5* * C cos 0 * I) sic 0 *«. <A3».£)

which is consistent with the physical restraints and which 
satisfies the hoand&xy aaqslteiontŝ

Thus, for the substitution of the epptojdssa&o solution 
Into the differsctisl equation of motion to- equate the cos m&
sin functions of the vmpmtstim to sem* the sguasred
end cufeos of I ana as fOllosos

©let a a A cos

h a £ sin f-
* ..... (&3»2)

« a € cos 0

D sic 0
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m

I8.« Cllg * a* * b2 f cf * a2) * 21 (a 11 t e f fi) f 2a 
Cl) f  c  ̂ d) 4 2b(c f  <1) 4 Sod »**•** <A$#3)

ana

ms «'K ■ Ctlf 4* &$ * 1.5s ■* c* f- 4?) 4 H 2(a * h f c t 4 )  4 srf 
. Cfl * fc -❖ e * 4) * -3bsC« t s U H l f  aê Cl * 1 
f fe t ci) f sdicii f ® -f i f d  t EiiaCi t o t a)
4 6ffl>(e 4- 4) * EabCc * 4) 4 fcdCs * b? #■ fitteft

im -M4k- # ■* *  m

The abmre resulting periodic ftmctio&s are sfeyXtfted with the 
following trigonometric identities:

.*» A®' .at - -jr - CX t cat2
£/* , H js&£ac * g  (cos ~  * cos “™) ,

*.* *fs;a. ■»« ,
, $« - f; ■•• g.q 'ad » Colm -|'- -4 sir* J“->

* r* •c2 « ̂  <1 4* coo 285 * -

^ BC f * . 28 • ©%oc a *c~ fen - sxn
4iS ■ ,&. r d*

a* * |$ (1 - cos 28) *

.« _  ** f g • § 3D*?q - n {mm ̂  - cos ̂  ■}& d *i
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ib ss ££ sin ©

/ <3 v* j  X(..■ COS ̂  4 :■:• H ..2 %
*5 r?&*&' « Cain 4 ssln ̂  }

5̂ j. w?3 #3 *  S _  1 ^  .:%-*•■■ V  «, iov?-4.fc* /. .* *■*£- •** ,

e «/™.-<l. •* ;2-cos *3 ■•+ eos; 20)

C* c| -cos 0 4 | cos 38} * ..... ,.<A3S5)

a^c ss.C™ (2 sin 6 -4 sin .25)

C ^ sin '6'~ ~~ rSn 38) >

•*> tîA . £> 38*b*a;« ̂ -te&s £ ~ -cos ̂-*->

b*c = ™  (2 cos e - I - cos 20)
• • • . * $ •  .

■ , ABC *,*,®hC.« BX3J 20
_ u2f,h2d.a ~  <2 sin © •- sin 23)

f ̂ 'T}
Bbs! a (3. -  cos 20)

_ /«,» as -na eftc*a « (2 cos 4 eon |p 4 con *,h) if
ftCS r;r; <3 ft* f , *. ^ x* A m 'VV*ca&.c v~~ 4-sir

* ft -tan «;fte*b - 12 sin - sin ™  4 sits !— )
•t- ’ jfc #»• *C
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CUB , 38 S@*cab Ceos   cm  ̂5 s
: 2

'{sift 0 4 sis 30}..* ■

^  C2 eos *| ~ cos m r *
m r&vs ■ p ■■' *s~ wot<£**» & *̂ r' -C2 "sin 4 cis £ sin J 5 *

g*c jg $ - ceg- '33}' ;.

On re ta in in g  o n ly  th e  constant* th e  f i r s t  and 

mMisrsenle : components* S* and Ss Iimmmz

a « ft ” ' n® c*- tr* aJC* « Cn 4 ~J 4 ̂  4-x 4.̂:. ) 4 {2HA 4 AC 4 BB) COS §- 4

♦ W  - EC) Bin -| ♦ c| (A* - B*) ♦ 28C) cos «

* (283 ♦ SB) sin 8    £63,6)

x *  «  S’ <!!* ♦  |  (A *  *  8 * )  4- |  (C *  *  Bs )  )  ♦  |  C (A 8 -  B*J

♦ I ABB ♦ (A <| (A* ♦ B*) ♦ | CC* ♦ Ba) ♦ 88*) ♦ 2i2 2

(AC + BO) ) cos !'* £8 t | u* * 8*) 4- | CC* + B*)
.* ®i* 5 * ssm - ec) ) sin |  ♦ (c £ -|: £c* ♦  o*>
♦ I {A * 4 B * )  ♦ 33# ). 4- SBC A* - 3s) ) cos e * £ S

£ | CC* ♦ !>*)♦ | Cft* * B*) + 8»* ) * 3HAB ) sin 8

* * » ■* (&3 j.7)
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The procedure of equating the coefficients of the 
respective periodic functions separately to Ke.ro 5 xrnen the 
®ppro*dmte solution is substituted into- the non-linear 
differential equation * gives identical sisiitajstous sslgebraic 
oqmtioas that are obtained 2sy the FdLtz-Galerfcin tsathod.
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