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Abstract. This paper presents a novel model-based framework for rapid
transformation of captured surface shape into a structured representation
suitable for efficient storage, transmission, manipulated, visualization and
animation. Captured surface shape can be derived from either active 3D sensors
or passive reconstruction from multiple view images and video. Results are
presented for archiving of historical artifacts and production of animated
models of real people in a multiple camera studio.

1   Introduction

Over the past decade commercial systems for static 3D shape capture have become
widely available.  Computer vision research has also achieved automatic visual
reconstruction of 3D surface shape from multiple view images using passive
techniques such as shape-from-silhouette, stereo and structure from motion. Research
has principally focused on the problem of reconstruction of surface models as
polygonal meshes [1-4] and optimization for efficient shape representation [5-6].
However, only limited research has been conducted on the problem of transforming
surface measurements into `functional models’  [7] which are optimized with respect
to the requirements of a particular application such as animation or visualization. In
this paper we present model-based techniques developed to bridge-the-gap between
3D shape capture and the functional requirements of particular applications. Figure 1
shows our approach applied to  Michelangelo’s David[1] for efficient transmission.

(a) Original scan (b) Model-based representation (c) Reconstruction
Fig.1: Michelangelo’s David reduced from 100Mb to <1Mb
(Original Courtesy Stanford Computer Graphics Lab. [1])



2 Model-based Representation of 3D Shape

In this section we present a model-based framework for reconstruction of structured
functional models from capture data. The model-based approach utilises a priori
knowledge of the functional requirements of a particular model such as the internal
articulation structure for purposes of animation. Captured 3D surface measurements
of natural organic objects using either passive or active sensors may have a wide
variation in shape and  pose and do not contain any information on the underlying
non-rigid structure. Prior knowledge in the form of a generic model or user input can
be utilized to explicitly identify the object pose and deviation from a generic class of
objects. This leads to both efficient representation of highly detailed surface
measurements and functional models suitable for computer animation. In this section
we first give an overview of the model-based reconstruction framework then present
each stage, further details can be found in [8,9].

2.1 Overview

The model-based framework for reconstruction of a functional representation given a
generic model of the object comprises the following stages:

1. Manual Registration: The pose of the generic model is aligned with the
captured 3D surface measurements.

2. Shape Fitting: Shape constrained least-squares minimization is used to
conform the generic model to approximate the captured data.

3. Displacement Mapping: High-resolution surface detail is mapped onto the
generic model to preserve the original surface detail.

Generic models for a wide variety of objects which have been optimized for efficient
representation of shape and/or efficient animation are available from public  model
repositories on the web and companies such as ViewPoint DataLabs
(www.viewpoint.com). For novel  unknown objects a structured model can be derived
directly from the the captured data subject to user specified constraints.

2.1 Manual Registration

Initially the generic model is manually aligned with the captured surface data by
manually identifying key feature correspondences. The pose of the model is then
optimized using least-square minimization of the distance between model and data
features. For a static rigid model this recovers the six degrees-of-freedom defining
translation and orientation of the model. In the case of articulated models (such as the
human skeleton) or non-rigid surface models defined by key-features (such as the
human face) optimization is also performed with respect to the additional parameters.



2.2 Shape Fitting

A novel shape-constrained fitting algorithm for arbitrary meshes was introduced in
[9,10]. This algorithm is used to non-rigidly deform the generic model surface to
approximate the shape of the captured surface data. A requirement for efficient
representation and natural animation of the captured object  is to preserve the generic
model structure during fitting. Shape constraints in the fitting process ensure that  the
generic mesh parameterisation is preserved throughout the fitting process. The
novelty of this approach lies in a unique parameterisation for arbitrary triangular
meshes. Parameterisation of arbitrary triangular meshes [10] is achieved by defining
the vertex location in terms of the faces surrounding a particular triangle.

A standard deformable surface energy minimization framework is used which
balances the external energy, P,associated with fitting the data with an internal
energy, S, of the shape constraints.
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The mesh parameterisation is used to define an internal energy constraint on the local
surface shape and internal structure.
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where (α,β) are the barycentric coordinates and h the height offset in the fth face based
frame for the ith vertex. This local shape constraint ensures that the local mesh
parameterisation is preserved. The external energy is defined from the distance
between model vertices x and the data points y  using all-neighbour assignment [9].
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 All-neighbour assignment ensures robust point matching where weights m are
determined iteratively. This approach offers advantages over widely used nearest
point matching metrics [9].

2.3 Displacement mapping of surface detail

Shape constrained fitting gives a good approximation to the object shape as illustrated
in Figure 1(b). However, due to the relatively low-resolution nature of the generic
model the resulting model only provides a smooth approximation. For natural organic



objects such as people there is a large shape variation, therefore deviations will occur
between the generic model either parametric or polygonal due to inability to directly
represent surface detail. In previous work [8,9] displacement mapping techniques
were introduced to represent the high-resolution surface detail as offsets from the
low-resolution model.

The normal-volume [8] enables injective mapping of the captured data onto the
generic model for a triangulated mesh. To form the normal volume each triangle
vertex is offset along the vertex normal creating a continuous volumetric envelope
surrounding the mesh. Any point from the triangle surface can then be mapped onto a
corresponding control model point. Captured data points can then be represented in
terms of their barycentric coordinates on a control model triangle and the offset from
the surface.

A displacement map image is produced by computing the mapping for the verticies of
each triangle and mapping to a 2D image space as in texture mapping. The distance to
the surface is then resampled at image pixels. Figure 2 illustrates this process for a
head model which is mapped to a simple cube. Figure 2(c) shows the resulting
displacement map image where distance is psuedo-colour mapped. The original
surface is reconstructed by re-sampling the image to offset point on the generic
control model. Figure 1(c) shows the reconstructed model  for Michelangelo’ s David
which is visually indistinguishable from the original. The displacement map
representation is highly efficient as the high-resolution mesh topology is represented
implicitly in the image structure and the high-resolution geometry (offset distance)
can be quantised to the desired accuracy.

a) Captured Shape b) Mapping to Cube c) Displacement map image
Fig. 2: Displacement map of head-to-cube using normal-volume mapping



3.  Example Applications

The framework presented in section 2 has been used to derive model-based object
representations from both active and passive 3D shape capture. Figure 1 demonstrates
the representation of historical artifacts captured using high accuracy 3D surface
measurement devices[1]. The application of a model-based framework enables an
efficient structured representation to be reconstructed. The gross surface shape and
topology are represented by the generic model surface, high-resolution surface detail
is then efficiently represented by a displacement images as shown in Figure 1(b).
Typically this reduces the storage required by two order of magnitude.  The structured
representation provides a straight forward mechanism for reconstruction at multiple
level-of-detail by re-sampling the displacement map image at the desired
resolution[9]. Adaptive sampling can be used to control level-of-detail non-uniformly
across the surface. The displacement map image representation also facilitates editing
of the surface by manipulation of the distance levels in the displacement map image
in a process analogous to painting of texture maps. In addition, efficient progressive
transmission can be achieved by  transmitting the displacement map image as a series
of mip-maps of increasing resolution. Standard image compression algorithm can also
be applied to the displacement map image.

Figure 3 illustrates the application of the framework to a Cyberware whole-body 3D
scan data to create an animated model. A generic articulated human model consisting
of approximately 2K polygons is initially manually aligned with the data.  Shape
constrained fitting followed by displacement mapping is then applied to reconstruct a
representation of the high-resolution surface detail which can  be animated efficiently.

Fig.3: Animation of a whole-body scan Fig.4: Multi-view reconstruction from images



Figure 4 shows the model-based reconstruction of a dancer model from multiple view
images. The visual hull is initially reconstructed by intersecting the silhouette images
from multiple calibrated cameras resulting in a discrete volumetric set of occupied
voxels. A generic humanoid model is then manually aligned with the voxel set as
shown. The resulting shape constrained fitting of the generic model to the voxel set is
shown in the middle row. This illustrates that the model-based approach using shape
constrained fitting is able to reconstruct a reasonable approximation in the area of the
chest despite the significant error in the voxel set due to visual ambiguity. Finally the
reconstructed model can be texture mapped and animated in a virtual scene.

4. Conclusions

This paper has presented a model-based framework for reconstruction of structured
models from captured 3D surface shape. Results of applying the approach have been
demonstrated for both active and passive 3D surface measurement.  Algorithms have
been developed to enable robust fitting of a generic structured model to the captured
3D shape. Displacement mapping is then applied for accurate representation of high-
resolution surface detail. This approach results in a structured model which achieves
efficient representation of captured data for visualization and transmission. The
approach can also be used to reconstruct animated models given a known articulation
or non-rigid surface structure for the object. Further research is developing the
application of this framework to dynamic 3D sequences of surface shape.
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