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Abstract

We consider parametrically forced Hamiltonian systems with one-and-a-half
degrees of freedom and study the stability of the dynamics when the frequency of the
forcing is relatively high or low. We show that, provided the frequency is sufficiently
high, KAM theorem may be applied even when the forcing amplitude is far away from
the perturbation regime. A similar result is obtained for sufficiently low frequency,
but in that case we need the amplitude of the forcing to be not too large; however we
are still able to consider amplitudes which are outside of the perturbation regime. In
addition, we find numerically that the dynamics may be stable even when the forcing
amplitude is very large, well beyond the range of validity of the analytical results,
provided the frequency of the forcing is taken correspondingly low.

Keywords: Nonlinear oscillators, high driving frequency, low driving frequency,
perturbation theory, KAM theorem, averaging.

It is well known that periodically forced Hamiltonian systems far away from
the perturbation regime can still exhibit a behaviour typical of nearly inte-
grable systems, provided the forcing term is fast enough. Analogous results
occur in the opposite case in which the forcing is very slow. Heuristically,
such a behaviour is explained by arguments based on the averaging method.
However, a rigorous implementation of the method is quite non-trivial, and
ultimately relies on KAM-type arguments. Here we show how apply rigor-
ously the averaging method to the case of one-dimensional systems subject to
periodic forcing, which, as much as it is obviously of physical relevance, so far
has not been explicitly considered in the literature.

1 Introduction

Forced systems can display unexpected behaviour in the extreme cases in which the oscilla-
tion of the forcing is either very slow or very fast. It is well known that, in such situations,
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the dynamics can be strikingly different with respect to the case in which the forcing pe-
riod is comparable with that of the unperturbed motions [10, 30, 15, 1, 12, 13]. A classical
example is provided by the pendulum with oscillating support [32, 9, 18, 10, 2, 6, 7, 8].
The standard technique used to attack the problem is the averaging method; however,
a rigorous implementation is quite not trivial, as it involves dealing with small divisor
problems. Indeed, the main idea underlying the averaging is that the forced system, in
suitable coordinates, can be considered as a perturbation of an integrable system, so that
KAM-like arguments apply [29, 1].

For a periodically forced system, if the amplitude of the forcing is small, then the
KAM theorem yields that most of the unperturbed tori persist. On the basis of heuristic
arguments, ultimately based on averaging, one expects that something of the same kind
still occurs even when the amplitude of the forcing is not small, provided its frequency
is large or small enough. In this paper we provide a rigorous analysis which proves the
heuristic results available in the literature.

The case of large frequency can be reduced to Neishtadt’s averaging theorem. How-
ever, at a certain point, we shall need an additional close-to-identity transformation which
strongly relies one the one-dimensionality of the system (more precisely on its integrabil-
ity). The case of low frequency is related to the problem of boundedness of the solutions
of forced systems in phase space [17, 23, 20, 24, 25, 5]. However, to prove boundedness
one has to prove the existence of confining KAM tori far away from the origin. Hence
only the asymptotic behaviour of the potential really counts, and in general one needs a
condition on the growth of the potential at infinity – besides smoothness conditions, see
[26, 24]. On the contrary, to study the existence of KAM tori in a fixed region of phase
space of a forced system, one needs information about the potential in that region: this
explains why the assumptions we shall require on the potential are stronger, as they are
not just asymptotic properties.

For clarity purposes, in this paper we focus on a case study, the forced cubic oscillator,
which has been extensively investigated in the literature as a paradigmatic model [27, 3,
4, 15]. We shall prove that most of the phase space is filled by KAM invariant tori when
the period of the forcing is sufficiently large or sufficiently small. In particular we find
that this happens for values of the forcing amplitude far beyond the perturbation regime.
Furthermore, we provide numerical results which strongly suggest that the amplitude can
be allowed to be still larger than the analytical bounds. We leave as an open problem how
to improve the analytical bounds, so as to give full explanation of the numerical findings.
We briefly discuss at the end how to relax the assumptions on the potential and extend
the results to more general systems.

A cubic oscillator subject to a periodic driving force is described by the Hamiltonian

H(y, x, t) =
y2

2
+ (1 + µf(ωt))

x4

4
, (1.1)

where (y, x) ∈ R2, t denotes the time, the driving force f is a 2π-periodic analytic function
of its argument, with zero average and ‖f‖∞ = 1; µ ∈ R and ω ∈ R are, respectively,
the amplitude and the frequency of the driving force. The phase space for the system is
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R2 ×Tω, with Tω = R/(2π/ω)Z and the corresponding equations of motion are
ẋ = y,

ẏ = − (1 + µf(ωt))x3,

ṫ = 1,

(1.2)

where the dot denotes derivative with respect to t.
For µ = 0 the system is integrable, so that the full phase space is filled by invariant

tori, with t increasing linearly in time with frequency 1 and (x, y) moving on a closed orbit
C in the plane with frequency Ω depending on the initial data.

Fix arbitrarily Ω2 > Ω1 > 0 and consider, for the unperturbed cubic oscillator, the
closed, concentric orbits C1 and C2 which run with frequencies Ω1 and Ω2, respectively.
Call D0 ⊂ R2 the bounded region enclosed between C1 and C2, and set D = D0×Tω. The
reasons behind the choice of the domain D are the following: we want to fix a bounded
region in phase space so as to estimate the relative measure of the persisting tori (the
curve C2 is a natural boundary for such a region) and at any rate one is forced to exclude
a small region around the origin, where chaotic dynamics may become dominant (the role
of the internal curve C1 is just to cut off such a small region since the beginning).

For µ small enough, we can apply KAM theorem [1], so as to obtain the persistence of
most of the invariant tori inside D, independently of the value of the frequency ω (and of
the value of Ω1 as well: Ω1 can be taken arbitrarily small).

Theorem 1. For µ small enough the set of persisting invariant tori in D for the system
with Hamiltonian (1.1) leaves out a set with relative measure O(

√
µ).

In this note we want to show that the similar results still hold when removing the
condition of smallness on µ, provided the frequency ω is either large enough or small
enough. This will be discussed, respectively, in Section 2 and Section 3. In particular, by
increasing ω from 0 to infinity, a double transition regularity-chaos-regularity is expected to
occur. We support such an expectation by providing in Section 4 numerical results, which
also give evidence that the regularity regime extends to wider ranges of the parameters for
which the analytical results do not apply. Finally in Section 5 we discuss how to extend
our analysis to more general systems.

2 High frequency regime

We consider first the case of ω large and we set ω = 1/ε, with ε small. We can formulate our
result for such a case in a more general context. In action-angle variables, the Hamiltonian
(1.1) becomes

H(A,α, t) = H0(A) + µH1(A,α, ωt), (2.1)

where

H0(A) =
1
4

(
3A
T

)4/3

, H1(A,α, t) =
1
4

(
3A
T

)4/3

cn4(Tα) f(t), (2.2)
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with cnα := cn(α, 1/
√

2) and T := 4K(1/
√

2)/2π, where cn(α, k) and K(k) denote re-
spectively the cosine-amplitude function and the complete elliptic integral of the first kind
with elliptic modulus k.

The corresponding Hamilton equations are{
α̇ = Ω0(A) + µ∂AH1(A,α, ωt),
Ȧ = −µ∂αH1(A,α, ωt),

(2.3)

where Ω0(A) := ∂AH0(A) = (3A/T 4)1/3. In terms of the variables (A,α, t) the domain D
defined in Section 1 becomes D = A0 ×T×Tω, where T = T1 and A0 = {A ∈ R+ : A1 ≤
|A| ≤ A2}, with A1 = Ω3

1T
4/3 and A2 = Ω3

2T
4/3.

More generally we shall consider Hamiltonians of the form (2.1) and make the following
assumptions on H0 and H1 — trivially satisfied in the case (2.2).

Hypothesis 1. Assume the Hamiltonian function (2.1) to be real-analytic in a domain
D := A0 ×T×Tω, where A0 is an open subset of R.

Hypothesis 2. Assume A 7→ Ω0(A) := ∂AH0(A) to be a local diffeomorphism on A0.

Hypothesis 3. Assume 〈H1(A,α, ·)〉 :=
∫
T

dt
2π

H1(A,α, t) = 0, ∀(A,α) ∈ A0 ×T.

In (2.1) rescale time t→ τ = ωt. Then the equations of motion (2.3) become{
α̇ = εΩ0(A) + εµ∂AH1(A,α, τ),
Ȧ = −εµ∂αH1(A,α, τ),

(2.4)

where now the dot denotes derivative with respect to time τ .
We can apply Neishtadt’s averaging theorem [28, 29] to cast the system into the form{

α̇ = ε (Ω0(A) + µ∂AVε(A,α) + µ∂ARε(A,α, τ)) ,
Ȧ = −ε (µ∂αVε(A,α) + µ∂αRε(A,α, τ)) ,

(2.5)

where Vε and Rε are suitable analytic functions, with Vε(A,α) = 〈H1(A,α, ·)〉 + O(ε)
and Rε an exponentially small remainder, that is |Rε| ≤ C exp(−c/ε) for some positive
constants c and C. The change of coordinates is canonical and ε-close to the identity. In
order not to overwhelm the notations, we denote the new variables with the same letters
as the old ones.

By Hypothesis 3 the average of H1 vanishes, hence Vε is a correction of order ε to H0.
So one can perform a further close-to-identity change of coordinates which leads to the
equations {

α̇ = εΩε(A) + εµ∂ARε(A,α, τ),
Ȧ = −εµ∂αRε(A,α, τ),

(2.6)
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where Ωε(A) = Ω0(A) +O(ε) and R is still exponentially small (and again we still denote
by (A,α) the transformed coordinates). The corresponding Hamiltonian is

H(A,α, ε) = ε
(
Hε(A) + µRε(A,α, τ)

)
. (2.7)

The overall change of coordinates leading to (2.7) is close to the identity within O(ε)
and hence, up to a region with measure O(ε), the domain D is transformed into a region
enclosed between two KAM invariant tori. By studying the Hamiltonian H(A,α, ε)/ε we
see that we can apply once more KAM theorem and conclude that most of the unperturbed
tori for the Hamiltonian Hε(A) persist when the perturbation Rε(A,α, τ) is switched on.
Since now the perturbation is exponentially small, the relative measure of the tori which
are destroyed is exponentially small in ε. To go back to the original coordinates, we have
to scale back time. So we obtain the following result.

Theorem 2. Consider the system with Hamiltonian (2.1) and assume Hypotheses 1 to
3. For any value of µ, for ω large enough the domain D is filled by KAM invariant tori,
up to a region whose relative measure is O(1/ω). Apart from a thin region close to the
boundary, the invariant tori leave out a region with measure exponentially small in 1/ω.

Note that Hypothesis 3 is needed here, contrary to Theorem 1, to ensure that the
averaged system is integrable (such a condition is automatically satisfied for µ small,
without any assumption on H1).

3 Low frequency regime

Now consider (1.1) with ω = ε. We can reason as in [20] (see also [16, 17, 24, 14]). Fix
|µ| < 1, so that 1 + µf(ωt) > 0. We rewrite the equations of motion (1.2) as{

ẋ = y,

ẏ = −a(εt)x3, a(t) := 1 + µf(t).
(3.1)

Then the argument proceeds through the following steps.
First, through a time-dependent canonical change of coordinates (x, y) 7→ (A,α), with

x =
(

3A
T

)1/3

(a(εt))−1/6cn (Tα), y = −
(

3A
T

)2/3

(a(εt))1/6sn (Tα) dn (Tα), (3.2)

where sn(α) and dn(α) are the sine-amplitude and delta-amplitude functions with modulus
k = 1/

√
2, respectively, one writes (3.1) as the Hamilton equations corresponding to the

Hamiltonian

H(A,α, t) = H0(A,α, t) +
ε

6
3A
T

cn (Tα) sn (Tα) dn (Tα)
b(εt)
a(εt)

, (3.3a)

H0(A,α, t) =
1
4

(
3A
T

)4/3

(a(εt))1/3 . (3.3b)
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where b(t) = ȧ(t) and T := 4K(1/
√

2)/2π. Next, in order to eliminate the dependence on
time in the leading term one makes the change of coordinates (A,α, t) 7→ (p, q, s), with

p = H(A,α, t), q = t, s = α, (3.4)

which leads to the Hamiltonian

A(p, q, s) = A0(p, εq) + εA1(p, εq, s), (3.5a)

A0(p, q) =
T

3
(4p)3/4

(a(q))1/4
, (3.5b)

for some function A1 of order 1 in ε. Then one may perform a further change of variables
(p, q, s) 7→ (J, ϕ, s) into action-angle variables for A0, so yielding the Hamiltonian

B(J, ϕ, s) = B0(J) + εB1(J, εϕ, s), (3.6a)

B0(J) = (κJ)3/4 ,
1
κ

:=
1
4

(
3
T

)4/3 ∫ 2π

0
(a(q))1/3

dq
2π
, (3.6b)

for a suitable function B1 of order 1 in ε.
Finally we integrate the Hamiltonian equations corresponding to (3.6) between s = 0

and s = 2π. Denote by (J(s), ϕ(s)) the solution; then, defining ψ(s) = εϕ(s) and setting
(J ′, ψ′) = (J(2π), ψ(2π)) and (J, ψ) = (J(0), ψ(0)), we obtain the twist mapJ

′ = J + ε2F (J, ψ),

ψ′ = ψ + εΩ0(J) + ε2G(J, ψ), Ω0(J) =
3π
2
κ3/4J−1/4,

(3.7)

for suitable analytic functions F and G.
Therefore we can apply Moser’s twist theorem and conclude that any invariant curve

with Diophantine rotation number persists for ε small enough. For fixed ε, the relative
measure of the persisting curves in a given region of the cylinder is O(

√
ε) [21, 33]. Note

that, in order to prove just boundedness of the solutions, it would be enough to prove
the existence of an invariant circle of constant type (as sometimes done in the literature,
see for instance [14]; see also the comments in [20]). On the contrary, to prove that the
persisting tori have large measure for ε small, a milder Diophantine condition is required;
one could even allow a Bryuno condition on the rotation number [11], as done in [19], but
this would not increase appreciably the measure of the invariant curves.

Coming back to the original coordinates we obtain the existence of a large measure set
of invariant tori for the continuous flow which has the twist map (3.7) as Poincaré section
at times multiples of 2π. We can summarise the discussion by the following statement.

Theorem 3. Consider the system with Hamiltonian (1.1) and fix µ ∈ (−1, 1). For ω
small enough the domain D is filled by KAM invariant tori, up to a region whose relative
measure is O(

√
ω).
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4 Numerical results

In this section we illustrate the scenarios considered above with the aim to provide some
insight into cases which are not covered by the analysis. We study the system (1.1) with
f(t) = cos t. In particular we consider three situations, |µ| < 1, |µ| > 1 and |µ| = 1,
with both high and low frequency forcing. We note that here we are mainly interested in
numerically investigating what happens for µ ≥ 1, in the case of small ω; thus, we do not
study in detail the boundaries between stable, bounded and unbounded dynamics.

To check the stability of the dynamics we take 10 000 pseudo-random initial conditions
within a square [−2, 2] × [−2, 2] from the phase plane (x, y). The chosen numerical inte-
gration method is a Störmer-Verlet scheme with variable step size. The Störmer-Verlet
method is a second order symplectic scheme, details of which may be found in [22].

After an initial transient period, the trajectories are checked to ascertain how their
asymptotic behaviour has changed with respect to the trajectories of the unperturbed
system with the same initial conditions. If most of the orbits have remained close to the
corresponding orbits of the unperturbed system, then we say that the system is “stable”.
This is expected to occur when the system is well within the KAM regime: the majority
of the unperturbed tori persist slightly deformed, so that every orbit either lies on a torus
or is trapped between two surviving tori. However it is possible that the trajectories of
the perturbed system do not remain close, but are still bounded. This can happen as
we are moving out of the KAM regime: most of the tori are destroyed, with a few of
them still existing and undergoing much larger deformations. We refer to such a case by
saying that the system is “bounded”. Numerically it is difficult to classify trajectories
as unbounded, as a trajectory which appears unbounded may be bounded within a very
large region. Therefore, pragmatically, we class the trajectories as unbounded once their
amplitude exceeds 30 in either the x or y direction, and class the system as “unbounded”
if any trajectory is found to be so. When this happens, nearly all (if not all) KAM tori
are expected to be destroyed, at least in the region investigated, otherwise any of them
would confine the orbits inside. We note, however, that, even though KAM theory no
longer applies in this case, one can still have invariant curves of a different kind, such as
cantori – see for instance [31] and references therein –, so that it may happen that some
trajectories are unbounded whilst others remain bounded, and even not too far from those
of the unperturbed system.

First we consider the scenario where |µ| < 1, in particular we choose µ = 0.8, 0.9
and 0.95; some numerical results are shown in Table 1. For ω sufficiently large or small,
as proved in the previous sections, the dynamics are stable, whilst between these two
extremes the system loses stability.

In Figure 1 we show some example orbits corresponding to the initial conditions
(x, y) = (1, 1) with µ = 0 in Figure 1(a) and µ = 0.8 in (b), (c) and (d). It may be
seen that the perturbed orbits remain close to the unperturbed system for suitable ω.
With µ getting close to 1, one has to take ω increasingly small or increasingly large for
the system to be stable.
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ω µ = 0.8 µ = 0.9 µ = 0.95
0.05 Stable Stable Stable
0.1 Stable Stable Bounded
0.2 Stable Bounded Bounded
0.3 Bounded Bounded Unbounded
0.4 Bounded Unbounded Unbounded
0.5 Bounded Unbounded Unbounded
0.7 Bounded Unbounded Unbounded
0.8 Unbounded Unbounded Unbounded
12.0 Unbounded Unbounded Unbounded
13.0 Stable Unbounded Unbounded
14.0 Stable Stable Stable

Table 1: Stability and boundedness for some values of |µ| < 1 and various values of ω. We class the
system as “stable” if most of the orbits remain close to those of the unperturbed system, “bounded”
if none of the orbits exceed 30 in either direction and “unbounded” if it is not bounded, i.e. at
least one orbit is unbounded; see text for details.

(a) (b)

(c) (d)

Figure 1: Orbits for the system (1.2) with initial conditions (x, y) = (1, 1). In Figure (a) µ = 0.
In Figures (b), (c) and (d) µ = 0.8 and ω = 0.0001, 0.2 and 14, respectively.

The results in Table 1 show that for µ = 0.8 the system becomes unstable when
ω > 0.2. We see in Figure 2(b) and (c) that as ω increases from 0.2 to 0.4, many of the
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tori are broken and cantori appear, separating the few persisting KAM tori and creating
larger and larger gaps. However, as quite a few tori still persist in the region investigated,
the orbits remain bounded. Increasing ω further causes more of the KAM tori to break
up and for ω = 0.8 the orbits are no longer bounded in the region [−30, 30] × [−30, 30].
Analogous considerations apply to the other values of µ: the closer the amplitude µ is to
1, the more extreme ω must be for the system to be stable.

(a) (b)

Figure 2: Poincaré maps for the system (1.1) with µ = 0.8 and various initial conditions, showing
the break up of the KAM tori. The frequency is ω = 0.2 and 0.4 in (a) and (b), respectively.

ω µ = 1 µ = 1.2 µ = 2 µ = 5
0.0001 Stable Stable Stable Stable
0.0002 Stable Stable Bounded Unbounded
0.0003 Bounded Unbounded Unbounded Unbounded
0.0004 Bounded Unbounded Unbounded Unbounded
0.0005 Bounded Unbounded Unbounded Unbounded
0.0010 Unbounded Unbounded Unbounded Unbounded

13 Unbounded Unbounded Unbounded Unbounded
14 Stable Stable Unbounded Unbounded
16 Stable Stable Unbounded Unbounded
18 Stable Stable Stable Unbounded
20 Stable Stable Stable Stable

Table 2: Stability and boundedness for some values of |µ| ≥ 1 and various values of ω. The system
is classed as either “stable” or “bounded” or “unbounded” as explained in the caption of Figure 1.

For |µ| ≥ 1 the analysis in the previous sections can only be applied when the system
undergoes high frequency forcing. Numerically we find that the system is also stable with
low frequency forcing, however ω must be taken considerably smaller than the cases where
|µ| < 1. This is not true for high frequency forcing, where similar orders of ω (compared
with the cases where |µ| < 1) are sufficient for the dynamics to become stable. Some
numerical results are presented in Table 2. In Figure 3 we show some example orbits with
µ ≥ 1.
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Similarly to the case where |µ| < 1 it is evident that the perturbed orbits remain close
to that of the unperturbed system provided ω is suitably chosen. In Figure 3(f) we see
that, although the system is classed as unbounded for ω = 14 and µ = 5, it is still possible
to find initial conditions for which the orbit remains close to the unperturbed system.

(a) (b) (c)

(d) (e) (f)

Figure 3: Orbits for the system (1.2) with initial conditions (x, y) = (1, 1). In Figures (a),(b) and
(c) ω = 0.0001 and in Figures (d), (e) and (f) ω = 14. The amplitude is µ = 1, 2 and 5 in Figures
(a, d), (b, e) and (c, f), respectively.

5 Conclusions

More generally the Hamiltonian of a forced cubic oscillator is

H(y, x, t) =
1
2
my2 + (a+ µf(ωt))

x4

4
. (5.1)

However the writing (1.1) is not restrictive, since we can reduce (5.1) to that form by
rescaling both variables x and y and redefining the parameter µ.

Other generalisations can be easily envisaged. For instance any potential V (x) yielding
closed orbits in a region encircling the origin can be considered. In particular one can take
a potential x2n/2n instead of x4/4: the unperturbed system is still integrable, so that
the analysis of Section 2 applies immediately. Also the discussion in Section 3 can be
easily adapted to cover such a case; we refer to [17, 20] for details. Also, less regularity
can be required for the driving force. Finally, one could consider quasi-periodically forced
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systems, as in [25], in the case in which all components of the frequency vectors are small
or large.

Coming back to our system (1.1), the condition that f has zero average could be
relaxed. In fact, for Theorem 2 to hold, what we really need is that 1+µ〈f(·)〉 > 0, so that
the averaged system is integrable. On the other hand, Theorem 3 requires 1 + µf(·) > 0.
Thus, if 〈f(·)〉 = 0 and ‖f‖∞ = 1, this excludes the case µ = 1. However, if the average of
1 + µf(ωt) is positive, one can argue that the potential remains positive for most of time,
so one can conjecture that the condition 1 + µ〈f(·)〉 > 0 might be sufficient in the low
frequency regime as well. As discussed in Section 4, we have found numerically that also
in such a case the orbits are stable if the forcing frequency is sufficiently low. It would be
interesting to investigate the issue in more detail by means of analysis.
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