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ABSTRACT	

The	body	is	in	a	constant	battle	to	achieve	homeostasis;	indeed	the	robustness	to	which	

it	can	respond	to	moves	away	from	homeostasis	is	a	vital	part	in	the	survival	of	the	

organism	as	a	whole	(Kitano	2004).	There	thus	exists	a	need	for	a	network	of	sensors	

that	are	able	to	capture,	interpret	and	respond	to	alterations	in	chemical	levels	that	

move	the	body	away	from	homeostasis	and	this	applies	to	both	endogenous	and	

exogenous	chemicals.	With	respect	to	external	chemicals	(xenobiotics),	this	xenosensing	

is	often	carried	out	through	specific	interactions	with	cellular	receptors.		The	

phenomenon	of	“xenosensing”	has	attracted	much	interest	of	late,	whereby	xenobiotics	

interact	with	receptors	resulting	in	the	activation	of	a	battery	of	genes	mediating	

oxidative	drug	metabolism,	conjugation	and	transport,	thereby	enhancing	the	

elimination	of	the	xenobiotic	by	the	organism	(Gibson	et	al.	2006).		However,	this	

beneficial	response	is	counterbalanced	by	the	increasingly‐recognised	role	of	nuclear	

receptors	in	mediating	drug‐drug	interactions	via	enzyme	induction	(El‐Sankary	et	al.	

2001)	or	the	production	of	toxicity	through	interaction	with	endogenous	pathways	

(Dussault	et	al.	2003;	Krasowski	et	al.	2005;	Saini	et	al.	2005).		This	review	will	focus	on	

the	role	of	nuclear	receptors	in	mediating	these	effects,	and	how	such	knowledge	will	

contribute	to	a	mechanism‐based	risk	assessment	for	xenobiotics.	
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THE	NUCLEAR	RECEPTOR	SUPERFAMILY	

The	nuclear	receptors	form	a	sub‐family	of	the	ligand‐activated	transcription	factors	

(LATFs),	with	48	members	being	present	in	humans	(Zhang	et	al.	2004).	This	number	

remains	relatively	constant	in	higher	organisms,	with	mice	and	rats	having	49	and	47	

respectively	(Zhang	et	al.	2004),	but	outside	of	the	animals	this	number	differs	

significantly.	For	example,	the	telosts	(bony	fish)	have	68	nuclear	receptors	(Maglich	et	

al.	2003a),	a	result	of	a	part‐genome	duplication	event	that	occurred	in	the	

actinopterygii	lineage	approximately	320	million	years	ago;	during	this	part‐genome	

duplication,	approximately	29	%	of	all	Takifugu	genes	underwent	duplication	

(Vandepoele	et	al.	2004).				

Organism‐wide	tissue	profiling	suggests	that	the	nuclear	receptors	play	important	roles	

in	a	number	of	biological	functions,	including	development,	steroidogenesis,	energy	

homeostasis	and	lipid/drug	metabolism	(Bookout	et	al.	2006).	In	this	review	we	will	

focus	on	the	role	of	the	major	nuclear	receptors	in	the	liver	and	how	they	control	levels	

of	both	endogenous	chemicals	and	xenobiotics.		

	

GENERAL	STRUCTURE	OF	NUCLEAR	RECEPTORS	

As	can	be	seen	from	Figure	1,	the	general	structure	of	a	nuclear	receptor	is	relatively	

simple,	being	comprised	of	only	five	sub‐regions.	The	amino	terminus	is	known	as	the	

modulatory	A/B	domain,	where	the	transcriptional	activation	function	(AF‐1)	is	located.	

This	AF‐1	domain,	along	with	the	AF‐2	domain	at	the	carboxyl	terminus,	is	responsible	

for	receptor	dimerisation,	nuclear	localisation	and	co‐activator	and	co‐repressor	

binding	(Leo	and	Chen	2000;	McInerney	et	al.	1996).		
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The	C‐domain,	also	known	as	the	DNA‐binding	domain	(DBD),	is	a	highly	conserved	

region	that	has	the	ability	to	recognise	specific	response	elements	and,	hence,	initiate	

transcription	of	targeted	gene	sets	(Bourguet	et	al.	2000;	Watkins	et	al.	2003).	This	DBD	

consists	of	two	zinc	fingers	within	60‐70	amino	acids,	plus	a	carboxyl	terminus	

extension	that	contains	T&A	boxes,	which	are	essential	for	functioning	of	monomeric	

nuclear	receptors.	The	first	zinc	finger	contains	a	highly	conserved	sequence,	the	P‐box,	

which	is	involved	in	binding	between	the	receptor	and	the	DNA	helix.	In	contrast	the	D‐

box	region	of	the	second	zinc	finger	is	involved	in	protein‐protein	interactions	and	is	

responsible	for	binding	to	response	elements	within	DNA	(Aranda	and	Pascual	2001;	

Francis	et	al.	2003).	The	consensus	binding	site	for	the	nuclear	receptor	family	

members	is	AGGTCA,	with	receptors	binding	to	this	as	either	monomers	or	dimers,	the	

latter	being	either	heterodimers	(e.g.	PXR/RXR)	or	homodimers	(e.g.	GR).	Specificity	in	

receptor	binding	is	achieved	through	both	the	orientation	of	the	binding	sites,	which	

may	exist	as	inverted,	everted	or	direct	repeats,	and	their	separation,	which	varies	from	

1	to	8	nucleotides.	Whereas	some	nuclear	receptors	show	high	stringency	towards	a	

single	configuration,	with	the	oestrogen	receptor	binding	only	to	a	response	element	

(Metivier	et	al.	2003),	other	receptors	show	more	flexibility;	the	PXR/RXR	heterodimer,	

for	example,	can	bind	to	DR3,	DR4,	ER6	or	ER8	motifs	(Gibson	et	al.	2006).		

Separating	the	DBD	and	the	ligand	binding	domain	(LBD)	is	the	D‐region,	which	acts	as	

a	hinge	and	allows	the	receptor	to	bend	and	undergo	conformational	changes	in	

response	to	ligand	binding.	Finally,	the	E	region	contains	the	LBD,	which	is	comprised	of	

ten	α‐helical	segments	that	flex	upon	ligand	binding	and	cause	alterations	in	co‐

regulator	binding	within	the	AF‐1	and	AF‐2	domains	(Ekins	and	Schuetz	2002;	Shao	et	

al.	2004;	Watkins	et	al.	2003).		
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LIVER‐ENRICHED	NUCLEAR	RECEPTORS	

Whereas	the	majority	of	tissues	within	the	body	express	a	sub‐set	of	the	nuclear	

receptors,	it	is	in	the	liver	that	the	majority	of	nuclear	receptors	targeted	towards	

xenosensing	are	located	(Bookout	et	al.	2006).	This	is	a	consequence	of	the	unique	

location	of	the	liver,	being	the	first	major	organ	that	orally	absorbed	compounds	

encounter,	plus	the	high	systemic	blood	flow	through	the	organ.	

These	metabolic	NRs	can	be	generally	categorised	into	those	that	mediate	transcription	

of	genes	whose	products	that	are	generally	associated	with	drug	metabolism,	such	as	

the	pregnane	X	receptor	(PXR,	NR1I2)	and	the	constitutive	androstane	receptor	(CAR,	

NR1I3)	and	those	that	are	important	in	the	metabolic	regulation	of	endogenous	

compounds.	This	latter	group	includes	chemicals	such	as	glucocorticoids	

(Glucocorticoid	receptor,	GR,	NR3C1),	lipid	oxysteroids	(liver	X	receptor,	LXR,	with	

LXRα,	NR1H3	being	the	liver‐predominant	form),	bile	acids	(farnesoid	X	receptor,	FXR,	

NR1H4)	and	lipid	metabolism	(PPARα,	NR1C1).	Finally,	the	hepatocyte	nuclear	factor	

nuclear	receptors	(HNF1,	3	and	4;	NR2A21)	are	fundamental	to	the	functioning	of	the	

liver,	controlling	many	basic	processes	as	well	as	the	expression	of	several	other	nuclear	

receptors.		

CONSTITUTIVE	ANDROSTANE	RECEPTOR	(CAR,	NR1I3)	

The	constitutive	androstane	receptor	is	a	LATF	that	can	be	termed	an	orphan	receptor,	

in	that	no	endogenous	ligand	has	been	identified	to	date	(Honkakoski	and	Negishi	

2000).	However,	in	contrast	to	almost	every	other	LATF,	CAR	is	constitutively	active	

unless	silenced	by	the	presence	of	androstane,	and	is	therefore	alternatively	known	as	

the	Constitutive	Active	Receptor	(Sueyoshi	et	al.	1999).	In	the	absence	of	activating	

ligand,	CAR	appears	to	be	predominantly	located	in	the	cytoplasm	(Kawamoto	et	al.	
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1999),	where	it	is	sequestered	by	the	CAR	cytoplasmic	retention	protein,	CCRP	(Squires	

et	al.	2004).		Upon	activation,	CAR	localisation	switches	to	predominantly	nuclear	and	

activates	target	genes	as	a	heterodimer	with	RXRα	(Baes	et	al.	1994;	Kawamoto	et	al.	

1999).	CAR	is	activated	by	a	diverse	range	of	xenobiotics,	including	1,4‐bis	(2‐(3,5‐

dichloropyridoxyloxy))	benzene	(TCPOBOP)	and	phenobarbital,	as	well	as	endogenous	

chemicals	such	as	bilirubin	(Saini	et	al.	2004).	Interestingly,	whereas	TCPOBOP	

activates	CAR	via	a	traditional	binding	mechanism,	both	phenobarbital	and	bilirubin	

have	been	shown	to	not	physically	bind	to	CAR,	but	can	still	activate	the	receptors	and	

cause	nuclear	translocation	(Kawamoto	et	al.	1999;	Saini	et	al.	2004).	CAR	has	also	been	

shown	to	share	some	ligands	with	PXR.	Both	phenobarbital	and	clotrimazole	are	ligands	

for	both	PXR	and	CAR	(Moore	et	al.	2000),	although	as	noted	previously	there	is	some	

specificity	with	TCPOBOP	being	murine	CAR‐specific	(Wei	et	al.	2000),	whereas	CITCO	

is	human	CAR‐specific	(Maglich	et	al.	2003b).	

	

CAR	binding	to	regulatory	regions	of	target	genes	appears	to	occur	at	a	number	of	

different	response	elements:	Activation	of	CYP2B	genes	occurs	through	binding	to	an	

imperfect	DR‐4	site	within	the	phenobarbital	response	element	(PBRE)	(Honkakoski	et	

al.	1998).	However,	CAR	has	also	been	shown	to	be	capable	of	binding	to	the	ER6	

normally	bound	by	PXR	within	the	proximal	promoter	of	CYP3A4	(Sueyoshi	et	al.	1999;	

Xie	et	al.	2000).	This	is	presumably	due	t	the	similarity	of	DNA	binding	domains,	with	

CAR	sharing	66%	identity	with	the	DBD	of	the	PXR(Blumberg	et	al.	1998).	

FARNESOID	X	RECEPTOR	(NR1H4)	

The	farnesoid	X	receptor	(FXR)	is	a	nuclear	receptor	known	to	be	a	bile	acid	sensor	

(Makishima	et	al.	1999).	It	is	most	highly	expressed	in	the	liver,	intestine	and	kidney	
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(Bookout	et	al.	2006)	and	forms	a	heterodimer	with	the	RXRα	upon	activation	by	bile	

acids	(Makishima	et	al.	1999).	This	heterodimer	binds	to	an	inverted	repeat	with	one	

separating	nucleotide	(IR1)	within	the	regulatory	regions	of	target	genes	(Pineda	Torra	

et	al.	2003).	

As	stated	above,	FXR	is	involved	in	the	regulation	of	the	bile	salt	homeostasis,	and	in	

particular	the	regulation	of	their	biosynthesis.	FXR	is	able	to	down	regulate	the	

expression	of	the	central	enzyme	involved	in	the	bile	salt	biosynthesis,	namely	

cholesterol	7α	hydroxylase	(CYP7A1),	although	this	action	appears	to	be	indirect;	FXR	

induces	the	expression	of	the	small	heterodimer	partner	(SHP),	an	unusual	nuclear	

receptor	that	lacks	a	DBD.	SHP	forms	a	heterodimer	with	the	orphan	nuclear	receptor	

the	liver	receptor	homolog	1	(LRH‐1),	which	then	inhibits	the	transcriptional	activation	

of	LRH‐1	towards	CYP7A1	and	CYP8B1	(Bavner	et	al.	2005;	Eloranta	et	al.	2005).	In	

addition	to	directly	impacting	on	bile	salt	biosynthesis,	FXR	also	regulates	genes	whose	

products	affect	bile	salt	disposition,	generally	acting	to	concentrate	bile	salts	within	the	

liver,	ready	for	excretion.	These	genes	include	OATP8,	an	SLCO	uptake	transporter	with	

specificity	towards	organic	anions,	xenobiotics,	and	peptides(Jung	et	al.	2002)	and	the	

hepatic	canalicular	bile	salt	export	pump	(BSEP)	(Plass	et	al.	2002).	FXR	also	induces	

the	human	MDR‐3	mediating	the	phospholipids	secretion	into	bile	(Huang	et	al.	2003)	

and	ileal	bile	acid	binding	protein,	a	protein	for	the	transport	of	the	bile	salt	in	the	

intestine	back	to	the	liver	(Grober	et	al.	1999).	Finally,	activation	of	FXR	not	only	

impacts	on	bile	salt	biosynthesis,	but	also	lowers	triglyceride	levels	in	both	the	liver	and	

serum,	again	through	activation	of	SHP	(Watanabe	et	al.	2004).	

It	should	be	noted	that	FXR	does	not	only	regulate	genes	whose	products	are	involved	in	

the	biosynthesis	of	bile	salts,	but	also	genes	metabolic	genes	such	as	UGT2B4	(Barbier	et	
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al.	2003a)	and	SULT2A1	(Song	et	al.	2001)	as	well	as	the	drug	transport	protein	ABCC2	

(Kast	et	al.	2002).	

Overall,	the	FXR	plays	an	important	role	in	maintaining	bile	acid	homeostasis	in	the	

body,	by	repressing	their	biosynthesis,	inducing	their	conjugation,	and	their	elimination.	

GLUCOCORTICOID	RECEPTOR	(GR,	NR3C1)	

The	glucocorticoid	receptor	(GR)	is	one	of	the	most	characterised	nuclear	receptors,	

having	been	studied	for	over	fifty	years.	In	a	similar	fashion	to	CAR,	when	not	activated	

by	ligand	the	majority	of	GR	protein	is	sequestered	in	the	cytoplasm	in	a	complex	with	

heat‐shock	protein	90	(Tago	et	al.	2004).	Upon	binding	of	a	ligand,	heat‐shock	protein	

dissociates	from	the	receptor	and	GR	translocates	to	the	nucleus	(Freedman	and	

Yamamoto	2004).	However,	in	contrast	to	CAR,	GR	functions	as	a	monomer,	with	no	

equivalent	of	RXRα	binding	to	the	activated	receptor	(Freedman	and	Luisi	1993).		

Interest	in	GR	with	respect	to	target	genes	involved	in	drug	metabolism	has	existed	

because	of	a	seeming	paradox:	No	consensus	binding	site	for	GR	was	identified	in	the	

CYP3A4	regulatory	regions,	despite	the	fact	that	treatment	of	hepatic	cells	with	

dexamethasone	induces	the	expression	of	CYP3A4	in	a	GR‐dependent	manner	(El‐

Sankary	et	al.	2000).	In	addition,	several	lines	of	evidence	showed	that	the	CYP3A	

enzymes	were	induced	in	vivo	by	glucocorticoids,	including	the	assessment	of	the	ratio	

of	urinary	6‐β‐hydroxycortisol	to	cortisol		and	the	increase	in	metabolic	ratio	observed	

in	the	presence	of	rifampicin	(Pascussi	et	al.	2003b).	In	addition,	it	was	observed	that	

the	classical	anti‐glucocorticoid	PCN	was	also	able	to	activate	CYP3A	gene	transcription	

(Plant	2007),	and	that	the	activation	of	CYP3A	transcription	by	glucocorticoids	was	

maintained	in	GR	null	mice	(Schuetz	et	al.	2000).	These	two	latter	pieces	of	evidence	

suggested	that	there	existed	a	non‐GR	mediated	activation	of	CYP3A	genes	by	
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glucocorticoids,	and	this	was	confirmed	through	the	identification	of	PXR	as	a	low	

affinity	glucocorticoid	sensor	(El‐Sankary	et	al.	2001;	Pascussi	et	al.	2000a;	Pascussi	et	

al.	2003a).	A	role	for	GR	in	the	transcriptional	activation	of	CYP3A	genes	still	exists	

however,	although	through	an	indirect	mechanism.	Glucocorticoids	have	been	

demonstrated	to	activate	the	expression	of	a	number	of	genes	encoding	LATFs,	

including	PXR,	RXRα	and	CAR,	through	the	sub‐micromolar	activation	of	GR	(Pascussi	et	

al.	2000a;	Pascussi	et	al.	2000b;	Pascussi	et	al.	2003a);	the	net	effect	of	this	is	a	feed‐

forward	loop	that	ultimately	increases	the	expression	of	target	genes	for	these	

receptors,	including	CYP3A4,	CYP2B6	and	CYP2C8/9.	Hence,	at	low	concentrations	of	

glucocorticoids,	body	responses	are	mediated	through	GR	interactions	with	other	

nuclear	receptors,	whereas	higher	concentrations	of	glucocorticoids	activate	these	

nuclear	receptors	directly.	Such	a	two‐tier	response	system	provides	the	most	efficient	

response	to	stimuli.	

In	summary,	the	GR	acts	as	a	central	hub	for	nuclear	receptors,	not	only	controlling	the	

expression	of	a	number	of	genes	whose	protein	products	are	central	to	metabolism,	but	

also	regulating	the	expression	of	a	number	of	other	NRs,	and,	hence,	indirectly	the	

expression	of	their	target	genes.	

HEPATOCYTE	NUCLEAR	FACTOR	1	(HNF1)	

The	hepatocyte	nuclear	factor	1	family	(HNF1)	are	expressed	mainly	in	the	liver,	kidney,	

intestine	and	pancreas	(Cereghini	1996),	with	HNF1α	being	the	predominant	isoforms.	

HNF1α	has	been	shown	to	be	a	positive	regulator	for	a	number	of	cytochrome	P450	

enzymes,	such	as	CYP1A2	and	CYP2E1	(Akiyama	and	Gonzalez	2003),	and	a	negative	

regulator	of	CYP4A,	CYP7A1	and	CYP27	hydroxylase	enzymes	(Cheung	et	al.	2003).	This	

regulation	of	cytochrome	P450s	involved	in	fatty	acid	metabolism	could,	in	part,	explain	
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the	phenotype	of	patients	with	MODY	3	diabetes,	which	results	from	a	mutation	in	the	

HNF1α	gene	(Elbein	et	al.	1998).	These	patients	suffer	from	high	levels	of	fatty	acids	and	

increased	resistance	to	anti‐diabetic	drugs	(Elbein	et	al.	1998).		

Taken	together,	it	can	be	seen	that	HNF1α	plays	an	important	role	in	the	regulation	of	

CYPs	involved	in	drug	metabolism	and	toxicity,	as	well	as	bile	acid	and	fatty	acid	

metabolism.	

HEPATOCYTE	NUCLEAR	FACTOR	3	(HNF3)	

HNF3	exists	in	three	isoforms,		HNF3α,	HNF3β	and	HNF3γ,	which	have	90%	identity	in	

their	DNA	binding	domains,	and	indeed	bind	to	the	same	response	element	in	target	

genes	(Cereghini	1996).	In	HNF3β	null	mouse	embryonic	cells,	the	expression	of	HNF4α	

and	HNF1α	are	both	reduced,	and	HNF3α	expression	was	undetectable,		suggesting	that	

HNF3β	is	an	important	regulator	of	the	expression	of	other	liver‐enriched	transcription	

factors,	including	HNF1α,	HNF3α	and	HNF4α	(Duncan	et	al.	1998).		

HNF3	has	been	linked	to	the	regulation	of	a	number	of	cytochrome	P450	enzymes,	

including	CYP2C	(Bort	et	al.	2004)	and	CYP3A4.	Interestingly,	in	the	latter	case	there	are	

two	response	sites	that	appear	to	function	differently;	disruption	of	one	HNF3/CEBPα	

binding	site	within	the	CYP3A4	proximal	promoter	reduced	the	xenobiotic‐mediated	

expression	of	CYP3A4	by	glucocorticoids	but	not	the	macrolide	antibiotic	rifampicin,	

(El‐Sankary	et	al.	2002),	whereas	disruption	of	a	second	binding	site	for	HNF3	within	

the	CYP3A4	proximal	promoter	led	to	a	diminished	activation	of	CYP3A4	expression	in	

response	to	phenobarbital	and	clotrimazole,	and	an	increase	in	response	to	metyrapone	

(Bombail	et	al.	2004).		
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Taken	collectively,	these	data	suggest	that	HNF3s	play	an	important	role	in	

regulating/refining	the	activation	of	cytochrome	P450	gene	expression	in	both	basal	

and	in	response	to	different	xenobiotic	exposure.	

HEPATOCYTE	NUCLEAR	FACTOR	4	ALPHA	(HNF4,	NR2A2)	

HNF4	is	a	liver‐enriched	transcription	factor	that	is	classified	as	an	orphan	nuclear	

receptor	due	to	its	lack	of	known	endogenous	ligand	(Cereghini	1996);	however,	the	

elucidation	of	the	HNF4	crystal	structure	complexed	with	a	fatty	acid	suggests	that	this	

class	of	chemicals	may	act	as	endogenous	ligands,	consistent	with	the	known	role	of		

HNF4	in	fatty	acid	sensing	(Dhe‐Paganon	et	al.	2002).	The	LBD	of	HNF4α	contains	two	

binding	sites,	an	acyl	binding	site	and	a	site	conferring	thioesterase	activity,	with	both	of	

these	sites	able	to	modulate	the	transcriptional	activity	of	the	HNF4α	(Hertz	et	al.	2005).	

In	addition	to	a	potential	role	in	fatty	acid	homeostasis,	HNF4	has	also	been	reported	to	

be	involved	in	cholesterol	and	glucose	metabolism	(Gold	et	al.	1999;	Spath	and	Weiss	

1997),	foetal	development	(Kamiya	et	al.	2003)	and	liver	maturation	(Watt	et	al.	2003).		

With	respect	to	drug	metabolism,	HNF4α	has	been	associated	with	the	expression	of	a	

number	of	cytochrome	P450	expression,	including	CYP3A4,	CYP3A5,	CYP2A6	and	to	a	

lesser	extent	CYP2B6,	CYP2C9	and	CYP2D6	(Jover	et	al.	2001).		Control	of	cytochrome	

P450	expression	may	occur	at	two	levels:	First,	direct	activation	of	cytochrome	P450	

promoters,	such	as	occurs	within	the	CYP3A4	promoter	(Ogino	et	al.	1999).	Second,	

HNF4α	can	activate	other	nuclear	receptors,	which	in	turn	regulate	cytochrome	P450	

target	genes;	examples	of	this	latter	scenario	include	activation	of	the	nuclear	receptors	

CAR	and	PXR	(Tirona	et	al.	2003).	With	respect	to	activation	of	CYP3A4	transcription,	

this	occurs	through	an	HNF4α	response	element	within	the	CYP3A4	distal	promoter,	

where	HNF4α	enhanced	the	PXR‐mediated	transactivation	of	CYP3A4	in	both	basal	
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conditions	and	in	presence	of	the	PXR	ligand,	rifampicin	(Tirona	et	al.	2003).	In	a	similar	

fashion,	HNF4α	can	impact	upon	expression	of	PXR	and	CAR,	in	foetal	and	adult	liver	

mouse	respectively.	The	molecular	mechanism	for	this	induction	by	HNF4α	is	via	an	

interaction	with	response	elements	within	the	proximal	promoters	of	both	PXR	and	CAR	

(Ding	et	al.	2006;	Kamiya	et	al.	2003).		

Taken	together,	these	data	show	that	the	HNF4α	is	involved	in	the	regulation	of	the	

transcription	of	several	cytochrome	P450	genes	by	direct	binding	to	its	promoter,	but	

also	through	regulating	expression	of	nuclear	receptors;	these,	in	turn,	regulate	their	

target	gene	sets,	which	include	many	drug	metabolising	enzymes	and	cytochrome	

P450s.	

PEROXISOME	PROLIFERATOR	ACTIVATED	RECEPTOR	ΑLPHA	(NR1C1)	

The	peroxisome	proliferator‐activated	receptors	(PPARs)	are	involved	in	regulating	the	

expression	of	genes	involved	in	lipid	metabolism	(Francis	et	al.	2003).	Peroxisomes	are	

small	cytoplasmic	organelles	that	perform	both	β‐oxidation	of	fatty	acids	and	

cholesterol	metabolism.	There	are	three	PPAR	isoforms:	PPAR	α,	PPARβ	or	δ	and	

PPARγ,	which	have	been	shown	to	activate	distinct,	but	overlapping,	target	gene	sets	

(Lee	et	al.	2003).	PPARα	is	the	major	family	member	in	the	liver,	but	plays	a	role	in	fatty	

acid	metabolism	in	several	other	organs,	including	the	kidney	and	intestine,	where	it	is	

also	highly	expressed	(Bookout	et	al.	2006).	PPARs	forms	a	heterodimer	with	RXRα	

when	activated,	with	the	resultant	complex	binding	to	an	imperfect	direct	repeat	of	

AGGTCA	separated	by	one	nucleotide	(DR1),		and	this	was	the	first	demonstration	that	

the	5’	flanking	region	of	the	binding	site	also	influenced	nuclear	receptor	binding	(Juge‐

Aubry	et	al.	1997).	
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PPARα	is	activated	by	endogenous	ligands,	fatty	acids,	both	saturated	and	unsaturated	

fatty	acids,	with	a	preference	for	higher	acyl	chain	length	species.	Xenobiotic	ligands	for	

PPARα	include	hypolipidemic	drugs	such	as	the	fibrates,	as	well	as	some	herbicides,	

plasticizers	and	food	flavourings	(Francis	et	al.	2003).	Classic	target	genes	for	PPARα	

include	CYP4A	and	acyl	CoA	oxidase	(Bell	et	al.	1991).	However,	in	addition	to	

stimulation	of	β‐oxidation,	PPARα	has	also	been	implicated	in	the	regulation	of	the	

human	SULT2A1	gene	(Fang	et	al.	2005),	human	UGT2B4,	murine	UGT2B	(Barbier	et	al.	

2003b),	and	cholesterol	7α‐hydroxylase	(CYP7A1)	and	sterol	27‐hydroxylase	(CYP27)	

(Post	et	al.	2001).		

PPARγ	shows	a	much	more	restricted	expression	profile,	being	expressed	

predominantly	in	adipose	tissues,	intestine	and	spleen	(Bookout	et	al.	2006).	Its	major	

physiological	role	is	in	regulating	adipocyte	differentiation,	with	polyunsaturated	fatty	

acids	as	its	major	endogenous	ligands	(Lee	et	al.	2003).		

The	final	member	of	the	PPAR	sub‐family	is	PPARβ/δ,	which	is	expressed	nearly	

ubiquitously	(Bookout	et	al.	2006).	The	exact	role	of	PPARβ/δ	is	still	a	matter	of	debate,	

although	a	role	in	differentiation	has	been	postulated	(Werling	et	al.	2001).	

PPARα	has	been	of	considerable	interest	due	to	a	striking	species	difference	that	occurs	

upon	activation	of	the	receptor.	In	rodents	exposed	to	peroxisome	proliferators	in	long	

term	studies,	hepatocarcinogensis	is	evident,	primarily	due	to	an	increase	in	cell	

division	and	decrease	in	apoptosis,	leading	to	hepatocyte	hyperplasia	and	fixation	of	

spontaneous	mutations	(Plant	et	al.	1998a;	Plant	et	al.	1998b).	However,	peroxisome	

proliferating	chemicals	are	still	used	today,	and	in	fact	human	exposure	is	relatively	

frequent:	How	can	this	be	reconciled	with	the	known	carcinogenic	effects	observed	in	

rodents?	The	use	of	PPARα	null	mice	demonstrated	that	the	hyperplasia	was	PPARα‐
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dependent	(Lee	et	al.	1995),	although	there	is	some	evident	to	suggest	that	PPARα‐

independent	mechanisms	may	also	exist	(Crunkhorn	et	al.	2004),	and	hence	the	higher	

levels	of	PPARα	in	rodents	compared	to	humans	may	be	responsible	for	species	

differences	in	peroxisome	proliferation	and	cancer	(Peters	et	al.	2005),	with	humans	

expressing	much	lower	levels	(Palmer	et	al.	1998).	There	has	also	been	shown	to	be	

species	difference	in	the	effect	of	PPARα‐activation,	with	increased	fatty	acid	oxidation	

but	not	peroxisome	proliferation	occurring	in	humans	(Choudhury	et	al.	2000).	

Recently,	several	potent	PPARα/γ	agonists	have	been	developed	that	are	capable	of	

eliciting	peroxisome	proliferation	in	higher	primates	(Cariello	et	al.	2005),	and	this	has	

again	opened	the	debate	on	the	correct	risk	assessment	for	this	class	of	chemicals.	

Taken	together,	it	is	clear	that	PPARα	regulates	several	endogenous	processes,	

including	bile	and	cholesterol	metabolism,	and	in	doing	so	its	functions	overlap	with	

those	of	the	pregnane	X	receptor.	

PREGNANE	X	RECEPTOR	PXR	(NR1I2)	

The	Pregnane	X	receptor	(PXR)	also	termed	the	pregnane	activated	receptor	(PAR)	and	

steroid	X	receptor	(SXR),	is	a	LATF	activated	by	naturally	occurring	pregnanes	and	was	

initially	identified	in	mouse	liver	(Kliewer	et	al.	1998).	PXR	is	initially	expressed	at	very	

low	levels	in	the	mid‐foetal	liver,	and	this	expression	increases	postnatal	and	

throughout	adult	life	(Masuyama	et	al.	2001).	In	addition	to	the	liver,	PXR	is	also	highly	

expressed	in	the	intestine	as	well,	mirroring	the	expression	of	its	target	genes,	such	as	

the	CYP3A	family	members	(Bookout	et	al.	2006).	

PXR	has	been	shown	to	interact	with	CCRP,	and	HSP90,	which	tend	toward	cytoplasmic	

retention	of	the	protein	in	HepG2	cells	(Squires	et	al.	2004).	Localization	of	PXR	is,	as	

with	CAR,	equivocal	with	differing	results	seen	in	mouse	liver,	mouse	primary	
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hepatocytes	and	cell	lines	(Squires	et	al.	2004).	What	is	clear	however	the	requirement	

for	PXR	to	interact	with	the	nuclear	import	machinery	via	a	nuclear	localisation	signal,	

as	is	seen	for	CAR	(Kawana	et	al.	2003).	

As	detailed	previously,	both	GR	and	HNF4α	have	been	demonstrated	to	regulate	the	

expression	of	a	number	of	different	nuclear	receptors,	including	PXR,	and	hence	may	be	

seen	as	master	regulators.	In	comparison,	analysis	of	the	PXR	regulatory	regions	

suggests	that	it	is	able	to	be	regulated	by	a	wide	range	of	nuclear	receptors	itself,	rather	

than	impact	on	the	expression	of	other	NRs	(Aouabdi	et	al.	2006;	Gibson	et	al.	2006).		In	

particular,	PPARα	has	been	shown	to	be	able	to	activate	PXR	gene	expression	(Aouabdi	

et	al.	2006),	as	well	as	GR	(Pascussi	et	al.	2000a)	and	HNF3(Gibson	et	al.	2006).	Further	

analysis	of	the	PXR	regulatory	regions	also	suggests	regulation	by	CAR,	VDR	and	ERα	

(Gibson	et	al.	2006).	Taken	together,	this	would	suggest	that	PXR	is	able	to	integrate	

signals	from	a	great	many	nuclear	receptors,	potentially	placing	it	at	an	important	node	

in	the	biological	response	network	to	xenobiotics.	

PXR	is	a	central	mediator	of	CYP3A	gene	expression,	being	activated	by	many	of	the	

xenobiotics	that	induce	CYP3A	expression,	and	which	are	substrates	for	CYP3A	(El‐

Sankary	et	al.	2002;	El‐Sankary	et	al.	2000).	This	role	as	a	central	mediator	of	CYP3A	

activity	is	further	confirmed	by	studies	in	the	PXR	knock	out	mouse,	which	is	non‐

responsive	to	the	CYP3A	inducers	dexamethasone	and	PCN	(Staudinger	et	al.	2001).	In	

addition	to	the	activation	of	CYP3A	gene	expression,	PXR	also	activates	gene	expression	

of	a	range	of	other	drub	metabolising	enzymes	and	transporters,	including	CYP2B6	

(Wang	et	al.	2003),	UGT1A1	(Hartley	et	al.	2004),	ABCB1	(Geick	et	al.	2001),	ABCC2	

(Kast	et	al.	2002)	and	OATP2	(Hartley	et	al.	2004):	Indeed,	there	is	a	large	overlap	in	the	

target	gene	set	between	PXR	and	CAR,	reflecting	their	roles	in	acting	as	a	‘metabolic	
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safety	net’	for	the	removal	of	potentially	toxic	levels	of	xenobiotics	(Plant	2004;	Xie	et	al.	

2000).		

INTERACTION	BETWEEN	NUCLEAR	RECEPTORS	

As	detailed	above,	the	nuclear	receptor	superfamily	is	a	complex	set	of	interacting	

proteins	that	allow	the	body	to	co‐ordinate	responses	to	fluctuations	in	chemical	levels.	

As	such,	it	is	vital	that	the	nuclear	receptors	undergo	‘cross‐talk’;	this	has	the	twin	

advantages	of	ensuring	the	most	efficient	response	to	a	given	stimuli,	and		in	providing	a	

safety	net	to	ensure	that	there	is	always	an	active	capture	system	for	a	stimulus,	even	

should	the	cognate	receptor	be	deficient	for	some	reason.		It	is	becoming	increasingly	

clear	that	all	nuclear	receptors	interact	together,	and	one	of	the	great	challenges	is	to	

ascertain	how	this	interaction	network	fully	functions	and	to	be	able	to	predict	what	the	

biological	response	will	be	for	any	given	stimuli.	Such	information	will	become	

particularly	relevant	in	the	case	of	multiple	stimuli	within	the	system,	for	example	

during	polypharmacy,	when	the	ability	to	identify	potential	drug‐drug	interactions	

would	be	highly	beneficial	

Interactions	between	nuclear	receptors	may	occur	at	the	level	of	sharing	ligands,	

sharing	co‐regulator,	sharing	heterodimer	partners	or	sharing	DNA	binding	elements.	

Perhaps	the	best	studied	of	these	interactions	is	at	the	level	of	the	target	gene	sets	

activated	by	nuclear	receptors:	For	example,	CAR	and	PXR	co‐ordinately	regulate	a	

battery	of	genes	involved	in	all	aspects	of	drug	metabolism	including	oxidative	

metabolism,	conjugation	and	transport,	as	previously	described.	Recent	studies		have	

identified	approximately	69	genes	that	are	under	CAR	regulation	(Ueda	et	al.	2002)	and	

40	genes	under	PXR	regulation	(Maglich	et	al.	2002),	with	many	of	these	genes	being	co‐

regulated	by	both	PXR	and	CAR.			In	reality,	this	number	of	genes	is	likely	to	be	
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considerably	higher,	with	different	ligands	potentially	activating	specific	subsets	of	the	

target	genes.	It	should	also	be	noted	that	this	overlap	does	not	only	extend	to	those	gene	

targets	traditionally	associated	with	the	‘core	function’	of	a	particular	nuclear	receptors.	

For	example,	whereas	it	is	perhaps	intuitive	that	both	CAR	and	PXR	are	able	to	influence	

the	expression	of	an	overlapping	set	of	drug	metabolising	enzymes	and	drug	

transporters	(Maglich	et	al.	2002),	as	this	is	a	common	feature	of	their	biology,	it	has	

also	been	shown	that	many	nuclear	receptors,	including	CAR	and	PXR	may	have	shared	

effects	on	other	biological	processes,	such	as	nuclear	import	via	the	karyopherin	family	

of	transport	proteins	(Plant	et	al.	2006).	An	important	question	now	is	to	decipher	the	

biological	impact	of	such	a	co‐ordination	and	how	it	may	impact	body	responses	to	

chemical	stimuli	

CONCLUSIONS	

Research	over	the	past	decade	has	demonstrated	that	the	nuclear	receptor	superfamily	

is	intrinsic	to	the	body’s	response	to	fluctuations	in	the	levels	of	many	chemicals	within	

the	body.		These	chemical	levels	may	relate	to	endogenous	processes,	xenobiotics,	or	the	

interaction	of	these	two	chemical	spheres,	and	it	is	perhaps	at	this	interaction	that	our	

greatest	challenge	lies.	To	produce	safer,	more	effective	drugs	and	prescribe	them	in	a	

manner	that	means	they	have	the	best	chance	of	reaching	efficacy	it	is	imperative	that	

we	understand	the	pharmacokinetics	and	pharmacodynamics	of	these	drugs.		

Understanding	nuclear	receptor	biology,	and	how	the	network	of	nuclear	receptors	can	

act	to	respond	to	xenobiotics,	will	help	us	to	better	predict	biological	response	to	a	

single	chemical.	Perhaps	more	importantly,	it	should	provide	important	insights	into	

how	the	body	responds	to	the	multiple	stimuli	of	polypharmacy,	and	how	such	stimuli	

can	impact	on	endogenous	processes,	potentially	leading	to	adverse	events.		
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