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Abstract
Trace element levels (B, V, Cr, Mn, Fe, Cu, Zn, As, Sr and Cd) in environmental 
(water and cigarette tobacco) and biological (tear drop, saliva, scalp hair and 
fingernail) samples collected from Iraqi individuals resident in Karbala (Iraq) and 
London (UK) were determined by inductively coupled plasma mass spectrometry 
(ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP- 
AES). Multi-element analysis was carried out on drinking (commercial, domestic 
bottled and tap) and irrigation (river, artesian and well) water samples. It was 
found that most trace element levels (pg/1) were lower than the permissible 
guidelines for drinking water recommended by the World Health Organisation 
(WHO) and Iraqi government. The only exceptions were for B in artesian and 
well waters; and Cd in river, artesian and well waters. The highest levels in 
drinking and irrigation waters were found for Sr when compared with other trace 
elements. Trace element levels in tap water from Karbala were higher than those 
from London. The levels of trace elements in cigarette tobacco were found to be at 
higher to lower levels through the following sequence: Fe > Mn > Sr > Zn > Cu > 
As > Cd > Cr > V. Moreover, multi-element analysis was undertaken for tear 
drop, saliva, washed scalp hair and fingernail samples for Iraqi individuals from 
Karbala (Iraq) and London (UK). Discriminant analysis suggested that Sr, Mn, B, 
V, As, Cd and Zn levels could be used to discriminate between healthy and 
diabetic populations (83% of cases correctly classified). Higher trace element 
levels were found in the tear drop, saliva, scalp hair and fingernail samples from 
Karbala than those from London. The influence of various factors (health status, 
gender and smoking activity) and covariates (individual’s age and drinking water) 
on elemental levels in tear drops was investigated using the analysis of covariance 
(ANCOVA). Significant differences (at P < 0.05) were found between the healthy 
and diabetic individuals for B, Mn and Sr; males and females in terms of the 
levels of Fe; and smokers and non-smokers for Cd. Trace element levels in 
drinking water were found to have significant effects on the levels of V, Mn and 
Sr, whilst an individual’s age has a significant effect in terms of Zn and As. Inter
element interactions were evaluated for each pair of trace elements in tear drops, 
and between tear drops and saliva, washed scalp hair and fingernails. There were 
32 and 27 statistically significant correlations of the total 45 tested using tear 
drops from healthy and diabetic individuals, respectively. Similar results were 
observed for saliva, washed scalp hair and fingernails in terms of residential 
location, health status and inter-element interactions. The use of tear drops as a 
potential biomarker for assessing human health status has been evaluated using 
several studies in this research, namely; drinking water analysis, smoking activity 
and type 2 diabetes.
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1.0 Introduction

The effect of inorganic elements on human health has long been recognised, 

particularly when in the 17̂  ̂century it was discovered that iron (Fe) was essential 

for human health (Iyengar, 1989). In nature, there are 90 elements that exist 

between environmental, geological, biological or marine systems (Ward, 2000). 

On the other hand, 23 elements are recognised to relate to specific physiological 

activities in human and animal life (Fraga, 2005; Patriarea et ai, 1998). There are 

many studies that have discussed the essentiality of some of these elements in 

animal and human systems (Manso et al, 2007; Villanueva & Bustamante, 2006). 

Values outside of "normal" levels can lead to a number of health disorders (Fido 

& Al-Saad, 2005). It is well known that these elements enter the human body via 

different ways: namely the respiratory tract, the digestive system (G1 tract) and in 

some cases through the skin from different media (air, water, foods and drugs). 

They are then transported and distributed through blood into the organs, such as 

the liver and kidney, and are removed from the organism through different 

pathways: sweat, hair, nails, urine, saliva, tear drops and faeces, as shown in 

Figure 1.1 (Chojnacka et al, 2005; Apostoli, 2002). Trace element transportation, 

storage and regulation in the human body are controlled by homeostasis. This is 

an important biological process which maintains a relatively constant 

concentration of ions and other constituents in the various body fluids and tissues 

(Adair, 2002).

Human and other living organisms are exposed to "toxic" elements that are 

introduced into the environment from natural sources, as well as a result of 

anthropogenic (or man-made) activities. In order to monitor human exposure to 

essential, non-essential and toxic elements, an invasive (blood) or non-invasive 

matrixes (such as hair, nails, saliva, urine, and semen) have been used (Esteban & 

Castano, 2009).

In recent years, an increasing need to determine trace elements (mg/1 or part per 

million, ppm) and ultra-trace elements (pg/1 or part per billion, ppb) in human 

tissues and fluids has resulted in the development of sensitive analytical 

techniques with multi-element capability, such as inductively coupled plasma 

mass spectrometry (ICP-MS) (Millos et al, 2008). However, before considering 

any analytical requirements for the measurement of elements, it is necessary to
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understand the classification (based on concentration levels in tissues and fluids) 

and the possible relationship of each element in terms of human health 

(essentiality and toxicity).

Air, water Air Food, water, 
drugs

Exposure
media

Major uptake 
pathways GI tractSkin

Other
organ

LiverTransport and 
distribution

Blood

Kidney

M ajor excretory^ 
pathways

Hair
Urine

Nail

Figure 1.1: Exposure and metabolic pathways for elements in the human body 
(after Apostoli, 2002), (GI = Gastrointestinal).

1.1 Classification of Elements

The classification of elements in biological systems can be grouped into three 

categories: major elements (95%) consisting of C, H, N, O; minor elements 

(3.6%) including Ca, Cl, Mg, P, K, Na; and trace or ultra-trace elements (1%) 

(Ward, 2000). This classification depends upon the elemental levels in tissues and 

fluids of “normal”, control or healthy individuals. The actual elemental levels 

vary throughout the human body, such that some are classified as minor in human 

tissues and trace or ultra-trace in fluids (Parsons & Barbosa, 2007). In fact, there 

is no acceptable range of what the concentration intervals should be, although 

major levels are mainly > 1000 mg/kg; minor levels < 1000 mg/kg; trace levels < 

100 to 0.01 mg/kg; and ultra-trace levels < 0.01 mg/kg (Ward, 2000). Elemental 

abundance varies for the different categories of environmental or human media, 

for example, the abundance of Ca in the earth’s crust is 3.6% (or 36000 mg/kg) 

whilst in the human body it is 1.4% (or 14000 mg/kg).
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1.1.1 Essentiality and Toxicity of Elements

The classification of elements as major, minor, trace or ultra-trace provides a 

broad picture of the total concentrations that are expected to be inside the body, 

but it is fairly inexact and gives no real indication of the role or activity of a 

specific element. As a result, there is the need for further classification in relation 

to a biological system. In this classification, elements can be grouped as being 

essential, non-essential or toxic in terms of human health, as shown in Figure 1.2. 

Human and other living organisms require essential elements to maintain their 

normal physiological functions. Furthermore, it is difficult for an organism to 

maintain the normal life cycle, or achieve healthy growth, without the presence of 

essential elements (Parsons & Barbosa, 2007). Moreover, an element can be 

considered essential to an organism if it is present in living matter, interacts with a 

living system and is present in the human diet to maintain a normal physiological 

function (Goldhaber, 2003). There are many studies that have discussed the 

potential essentiality of some of these elements in animal and human systems 

(Manso et al, 2007; Villanueva & Bustamante, 2006; Goldhaber, 2003; Patriarea 

eta l, 1998).

Therapeutic elements have been used as medical treatment for different diseases, 

for example, platinum is used in anti-cancer drugs; gold is used for the treatment 

of rheumatoid arthritis; lithium is used for the treatment of manic depression; and 

zinc and molybdenum are used to treat Wilson’s disease (Partriarca et al, 1998). 

Trace elements are considered to be risk elements to an organism if they are (i) 

associated with intakes that are too high, resulting in toxic levels or effects; and 

(ii) associated with intakes that are too low that are linked with nutritional 

problems (Goldhaber, 2003). For example, selenium is essential and found at 

typical levels of 0.1 pg/1 in urine and 40 pg/1 in serum, but it is toxic if in excess 

(Akl el al, 2006). All elements, including those considered essential, can become 

toxic if the concentration in the human body is higher than the optimal 

concentration threshold. Furthermore, others are quite toxic even at low 

concentrations, such as Cd, Hg and Pb (Savory & Wills, 1992). Any deficiency in 

the concentration of an essential element below that required for normal growth 

will lead to a number of health disorders (Parsons & Barbosa, 2007). Medical 

treatments can contribute to an increase in the levels of elements inside the human
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body such as: dental fillings (Hg) (Drexler & Schaller, 1998); and implantation of 

orthopedic and orthodontic prostheses (Co, Cr, Ni, and others). In general, the rate 

of toxicity for any element depends on its concentration, duration, route of 

exposure, and the chemical form (Parsons & Barbosa, 2007): As an example, 

chromium is essential in its Cr(lII) form and toxic if found as Cr(VI) (Hosseini & 

Belador, 2009). In addition, toxicity can include those considered to be non- 

essential elements if they are present above a critical concentration (Fraga, 2005).

P

d

B

Na Mg

Ca ! V Cr Mn Fe ' Cu ! Zn As

Sr Cd

1 2 ] Essential -  major [^ E sse n tia l -  trace | |Non-essential K lN on -essen tia l toxic
elements elements elements elements

Figure 1.2: Modified periodic table showing selected elements in this study. 
Essential elements are subdivided into major and trace based on the NCCLS 
classification (Parsons & Barbosa, 2007).

1.1.2 Dose Response Curve

Many elements can be considered essential to life when their concentrations are 

highly variable and in some cases are extremely small (i.e. below O.I pg/1). The 

level of an essential trace element in a human follows a dose response curve 

(Figure 1.3). In this curve, there are three parts. Firstly, the deficiency range, in 

which the concentration of the trace element is below the optimal level for normal 

physiological requirements. In this situation, an individual will survive but they 

will have a heavily impaired physiological response. The concentration of a trace 

element in human tissues and fluids can gradually increase, but may not be at the 

level required to produce normal biological functions. Secondly, the normal range 

where biological functions are optimal, usually results in the individual having
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"normal" health. Finally, the toxicity range, which arises through the further 

increase in the concentration of an element, can lead to inhibited metabolic 

functions. This may lead to the death of the individual (Stone, 2006).

B enetlî

O ptim um  
level I

Hanii

I I Ï

Survive* Deficieticv^ N orm al  ̂ T oxic  ̂ Lethal
I - - - - - - - - - ^  I I

C’oitcentm tion (or dose)

Figure 1.3: Typical dose-response relationship for essential trace elements in the 
human body (after Underwood & Mertz, 1987).

1.1.3 Role of Trace Elements in Human Health

The optimum balance of essential trace elements in the human body may be a 

prominent key to maintaining a healthy existence. The role of essential elements 

in the human body is continually being investigated. As such, it has been found 

that their main physiological function is associated with enzymes (Stovell, 1999). 

For example, metalloenzymes (metal-enzyme complexes) exist through the strong 

bond between a metal and an enzyme molecule (Schutte, 1964). There are many 

biological processes in the human body that depend on the action of these 

enzymes such as respiration, muscle contraction, digestion, growth, the oxidation- 

reduction reaction, transport processes and the synthesis and stabilisation of 

proteins and nucleic acids (Versieck & Cornelis, 1989).

The significance of trace elements in human health and disease has been discussed 

by several reviewers, such as Thomson (2004) and Patriarca et al. (1998).
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Although many of these elements are found or used in very small quantities 

within the human body, they can have significant roles in terms of essential body 

processes. Specific elements are found to be bioconcentrated in human scalp hair 

and nails, thus it is advantageous to use these media in population monitoring 

studies. Some of these elements are more essential for the human body than 

others, such as, V, Cr, Mn, Fe, Co, Cu, Zn, Se and Mo (Fraga, 2005). In addition 

to these officially recognised trace elements, there are other elements which are 

not essential, but they are needed by the body to successfully process or 

metabolise essential elements successfully. For example, there are many positive 

correlations between the essential and non-essential elements in different human 

tissues and fluids (Manso et al, 2007; Chojnacka et al, 2005). In addition, the 

determination of trace elements is important in assessing environmental 

(including contaminated water and food) or occupational exposure (Hussein et al, 

2008; Bjorkman et al, 2007). The following sections review the trace and ultra

trace elements that were selected for this research.

1.1.3.1 Boron

Boron is a non-essential element and required by the human body in very small 

amounts for good health (Nielsen, 1997), Boron can enter the human body in a 

variety of ways. It is naturally present in many foods and drinking water. Boron 

compounds can be used in different industrial processes, such as the production of 

fibreglass, borosilicate glass and detergents (Power & Woods, 1997). One study in 

the USA has reported a link between boron levels, fertility in males and exposure 

to inorganic boron from the environment (Woods, 1994). It was found that high 

boron levels in ground waters and soil were to blame. Therefore, the 

contamination of ground water (including drinking water supplies) with boric acid 

has become a serious environmental problem, especially in regions of low rainfall 

such as Turkey and Iraq (U.S. EPA, 2003; Nable et al, 1997). The World Health 

Organisation (WHO) recommends a maximum drinking water level of 0.3 mg/L B 

(WHO, 2006). A recent study in Japan has developed a new method to remove 

boron from ground water by using bacteria that can absorb high levels of the 

element (Miwa & Fujiwara, 2009).
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In terms of human health, boron is important in the metabolism and utilisation of 

calcium and magnesium (Hill, 2009; Usuda et al, 2007). Boron is also necessary 

to allow the brain to function properly; a low boron intake by humans causes 

decreased brain activity (Nielsen, 1994).

Despite the fact that calcium builds strong bones, there is evidence that boron also 

plays a significant role in healthy bones and joints (Newnham, 1994). The bones 

become brittle and easy to break without small amounts of boron. Many studies 

have also mentioned that boron can be used to treat and prevent various forms of 

arthritis (Havercroft & Ward, 1991; Shah & Vohora, 1990; Travers et al, 1990).

1.1.3.2 Vanadium

Vanadium is an essential trace element for humans (Fernandes et al, 2007). It was 

found that high levels of vanadium in the human tissues and fluids may be due to 

an occupational and/or environmental exposure, especially near steelmaking or 

oil-burning power production plants. As a result, the determination of vanadium 

levels in environmental and biological samples becomes very important (Romero 

& Granadillo, 1993). It is believed that diabetics may benefit from vanadium as it 

can improve insulin status in healthy people and stabilise blood sugar levels in a 

diabetic patient (Seko et al, 2006; Srivastava & Mahdi, 2005; Wang et al, 2001). 

In healthy individuals, the accepted reference interval for vanadium in plasma or 

serum is 0.016 -  1.3 pg/l (Versieck & Cornelis, 1989) and for whole blood 2 - 5  

pg/1 (Ekmekcloglu et al, 2001; Hamilton et al, 1994).

1.1.3.3 Chromium

Chromium is an essential element and is a component of the low molecular 

weight protein chromodulin, otherwise known as the glucose tolerance factor. 

This important factor is known to potentiate the effect of insulin, presumably by 

allowing it to bind to cell receptor sites (Devlin, 2002). Individuals who are 

chromium deficient are known to have impaired glucose tolerance and decreased 

insulin effectiveness (Skalnaya & Demidov, 2007; Wrobel et al., 1999; Anderson 

et al., 1990). Many researchers have reported lower chromium levels in type 2
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diabetic patients compared with healthy individuals (Rukgauer et al, 2002; 

Ravina 1995).

Toxicity of Cr is mainly due to Cr̂ "*” that can be absorbed by the respiratory tract, 

and also to a certain extent by skin. In serum Cr occurs as Cr̂ "̂  and is bound to 

serum proteins, especially transferrin and albumin (Lauwerys & Hoet, 1993). The 

levels of chromium in air and drinking water are usually low, but contaminated 

well water may contain dangerous levels of the chromium (VI) ion (Kumar & 

Riyazuddin, 2009). Human fluid (blood, urine and saliva) and tissue (scalp hair 

and nail) samples have been used as biomarkers for chromium levels in the human 

body (Olmedo et al, 2010; Sukmar & Subramanian, 2007; Stone, 2006).

1.1.3.4 Manganese

Manganese is an extremely important element that the human body uses for a 

variety of vital processes. For instance, it is involved in different enzymes and 

plays a significant role in normal metabolic processes, for example, carbohydrate 

metabolism (Devlin, 2002). On the other hand, exposure to high levels of Mn 

from industrial sources, such as Mn alloy production, iron and steel production 

plants, ferromanganese refineries, battery production and welding, can cause a 

number of health problems. These include neurobehavioral dysfunction and 

changes in mood (Haynes et al, 2010). In addition, people exposed to manganese 

via contaminated drinking water may suffer from neurotoxic effects. Several 

materials, including hair, nail, blood, urine and saliva, have been used as 

biomarkers of manganese exposure to environmental and occupational sources 

(Olmedo et al, 2010; Wei et al, 2010; Heitland & Koster, et al, 2006).

1.1.3.5 Iron

Iron has been recognised as an integral part of haemoglobin and myoglobin which 

carry oxygen and carbon dioxide, respectively (Devlin, 2002). It also plays a key 

role in the regulation of many metabolic processes. Iron deficiency anaemia will 

arise if the human body has a lack of iron (Harris, 2007). This is probably the 

most common nutritional disease in the world, particularly in women due to blood 

losses during menstruation, and through the increased iron demands of pregnancy

9
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and blood loss during childbirth (Jian et al, 2010). In addition, iron deficiency can cause 

insulin deficiency. Some researchers have reported that high iron levels can cause 

insulin deficiency, but usually this is insufficient to result in diabetes (Cooksey et al, 

2010; Rajpathak et al, 2009).

1.1.3.6 Copper

Many studies have reported that copper is necessary for good human health, as it 

has many physiological functions, especially associated with enzymes. For 

example, ferroxidase uses copper to regulate the oxidation state of iron to absorb 

only Fe^% whilst Fe^^ will connect to the plasma protein transferrin (Devlin, 

2002). This important element also contributes to the development of diabetes 

(Tanaka et al, 2009). Higher levels of Cu have been reported in diabetic rather 

than non-diabetic individuals (Hussein et al, 2009). Copper deficiency has also 

been associated with reproductive failure (Davis & Mertz, 1987).

1.1.3.7 Zinc

Zinc is an essential part of more than 300 human enzymes participating, in various 

vital processes, such as digestion and metabolism (Devlin, 2002). High levels of 

zinc are associated with the onset of Parkinson’s disease, which leads to nervous 

system diseases. This causes the destruction of specific nerve cells inside the brain 

(Forte et al, 2005). Previous studies have reported a negative correlation between 

the levels of zinc in the human body and various disorders, such as obesity, 

insulin resistance and type 2 diabetes (Skalnaya & Demidov, 2007). For instance, 

a recent study found significantly low levels of zinc in a diabetic group when 

compared with a control group (Hussein et al, 2009). Zinc deficiency has also 

been reported to cause impaired glucose metabolism and taste bud development 

(Devlin, 2002).

1.1.3.8 Arsenic

Arsenic, similar to other elements, can become toxic if its concentration in the 

human body is too high. A level of 1 - 3 mg/kg As is enough to be lethal in a

1 0
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human adult (Ellenhom, 1996). The toxicity of arsenic is strongly related to its 

oxidation state and chemical form (B’Hymer & Caruso, 2004). It was found that 

inorganic arsenic is suggested to be more toxic than organic forms in terms of 

human health (Chen et al, 2009). Most cases of arsenic-induced toxicity in 

humans are due to natural exposure to inorganic arsenic via air, water, soil, dust 

and food (Brima et al., 2006; Mandai et al., 2004). In recent decades many studies 

have reported that arsenic plays a significant role in a number of diseases, such as 

cancer and diabetes (Wang et al, 2009). Chronic arsenic exposure has been 

suggested to have an etiologic role in diabetes development (Navas-Acien et al, 

2006) with more than one study in the USA reporting that arsenic in drinking 

water is associated with the onset of diabetes (Kile et al, 2008; Navas-Acien et 

al, 2008). Another study in Bangladesh has shown that the risk of diabetes is 

increasing among people exposed to high levels (more than 100 pg/1) of arsenic 

through drinking water (Rahman et al. 1998).

1.1.3.9 Strontium

Strontium has been reported in the literature as a non-essential element (Parsons 

& Barbosa, 2007). It has the same properties as calcium and accumulates at high 

levels in bones, thereby displacing calcium in hard tissue metabolic processes. 

Therefore, strontium interferes with normal bone development at high 

concentrations (Verberckmoes et al, 2007; Krefting et al, 1993). A previous 

study has suggested that Sr can be used in new drugs to prevent postmenopausal 

osteoporosis (Malaise et al, 2007). Adults and children are both exposed to 

strontium via drinking water and food, but young children have more hand-to- 

mouth activity or may eat soil accidentally and thus consume more strontium. 

This may increase the prevalence of rickets in a Sr-rich soil area due to calcium 

displacement (Usuda et al, 2007).

1.1.3.10 Cadmium

Some trace elements are known to be toxic to humans and animals, even at very 

low concentrations, especially cadmium, lead and mercury (Ozden et al, 2007). 

In general, cadmium is considered a toxic element as it causes adverse effects in

11
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human biology (Bernard, 2008). It accumulates in the kidney cortex and the 

concentration increases with age (Skrzydlewska et al, 2003). Cadmium exposure 

is mainly from industrial sources. However, cigarette smoking can significantly 

increase body levels, for both active and passive (non-smoking) individuals 

(Vahter et al, 2002). Cadmium has been a serious health concern in recent years 

(Kazi et al, 2008). Children bom to mothers who smoked cigarettes whilst 

pregnant may be at an increased risk later in life from developing certain types of 

childhood cancers, asthma, type 2 diabetes, hypertension, obesity, and/or 

behavioral disorders (Ng & Zelikoff, 2007). Long-term exposure is linked to 

hypertension, kidney problems, infertility and possible birth defects (Ozden et al, 

2007; Goldhaber et al, 2003; Vahter et al, 2002).

The above section describes the different diseases that can arise as a result of both 

an excess and deficiency of the essential and non-essential elementals in the 

human body. Chronic exposures to some inorganic elements have been associated 

with the onset of different diseases, such as diabetes, anemia, cancer, asthma and 

heart disease. Diabetes is one of the most common chronic diseases in the world 

(Wang et al, 2009).

1.2 Diabetes Mellitus

Diabetes is a Greek word that means "excessive urine" and Mellitus is a Latin 

name for "honey". Normally, the amount of sugar in the blood is controlled by a 

hormone called insulin. Insulin is produced in sufficient quantities in the Beta (P) 

cells of the islets of Langerhans in the pancreas, a glandular organ located behind 

the stomach. Insulin helps to move glucose out of the blood into the cells in order 

to produce energy. In people with diabetes the level of glucose builds up in the 

blood stream because the body does not produce enough insulin, or the cells do 

not respond to the insulin that is produced (Raju et a l, 2006).

There are three types of diabetes: (i) insulin-dependent (type 1) which is caused 

by destruction of P-cells in the pancreas. In this case the body does not produce 

enough insulin to carry glucose from blood into cells throughout the body. This 

type can be treated only by daily insulin injections; (ii) insulin resistance (type 2) 

which usually results due to aging, obesity and other environmental factors. In this 

type, the body’s cells do not use insulin properly; therefore, type 2 can be treated

1 2
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by using several types of synthetic therapeutic substances together with a 

controlled diet and physical exercises; and (iii) gestational diabetes, which affects 

pregnant women who have never had diabetes before, this may develop into type 

2 diabetes. This study will focus upon type 2 diabetes as it is more widespread in 

the Middle East area, including the Iraqi population (Mansour et al, 2008).

1.2.1 Type 2 Diabetes

A study has reported that type 2 diabetes has become a major challenge to public 

health and affects more than 200 million individuals worldwide (Kamal et al, 

2009). The main risk factors for a "diabetic epidemic" include: population growth, 

older age, urbanisation, obesity and physical inactivity (Aspray, et al, 2000). In 

general, diabetes develops largely in people above 40 years of age (Wild et al, 

2004). A previous study has reported that type 2 diabetes can be diagnosed in 

people over 20 years old (Taormina et al, 2007). One study in the south of Iraq 

(Basra), has found that the prevalence of diabetes was 7.43 % of the population, 

and about 28.81% of 3176 subjects were previously undiagnosed (Mansour et al, 

2008). The prevalence of diabetes differs among ethnic groups, for example, some 

immigrant groups have a higher prevalence in European countries, such as south 

Asian immigrants in the UK (Wandell et al, 2008). Diabetes can be identified 

through the analysis of trace elements and glucose (Skalnaya & Demidov, 2007).

1.2.2 Trace Elements and Type 2 Diabetes

Many studies have observed that trace elements are associated with type 2 

diabetes through the relative deficiency of insulin and insulin resistance (Navas- 

Acien et al, 2006; Nurmohammadi et al, 2000; Anderson, 1997; Kimura, 1996). 

Some of the essential elements might have a significant role to develop and 

progress diabetes based on the metabolism of several trace elements in the human 

body (Hussein et al, 2009). Obesity has been associated with an increased risk for 

diabetes. Previous studies have shown that the trace element levels in the human 

fluids and tissues are associated with the symptoms of type 2 diabetes (Skalnaya 

& Demidov, 2007; Rajpathak et al, 2005; Rajpathak et al, 2004). For example, 

diabetes has been linked with elevated hair K, Na, and Hg and decreases in Ca,

13
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Mg, Zn, and Co (Skalnaya & Demidov, 2007). Table 1.1 show the level of trace 

elements for different human tissues and fluids in the literature.

Table 1.1: Elemental levels in human tissues and fluids for healthy individuals 
(controls) and diabetes mellitus patients.

Element Human sample Unit
Concentration

Healthy Diabetes

B
Hair mg/kg 5* nv

Fingernails mg/kg 15.2 nv

V
Serum Fg/1 5.91 ± 1.23" 1.94 ±1.05
Urine Fg/1 4.39 ±2.92 2.74 ±1.81

Cr

Scalp hair mg/kg 2.2 2.3
Fingernail mg/kg 1.0 0.7

Serum gg/1 1.44 ±0.7 0.66 ± 0.58
Urine gg/1 1.92 ± 1.37 2.09 ± 1.51

Mn
Serum gg/1 1.44 ±0.69 2.83 ± 1.25
Urine gg/1 1.52 1.39

Scalp hair mg/kg 3.05-4.55+ 1.82-3.67

Fe
Scalp hair mg/kg 30.5-33.3 35.7-41.3

Blood mg/1 705 655
Urine mg/1 2.4 1.83

Cu

Scalp hair mg/kg 10.5-13.3 10.9-14.5
Fingernail mg/kg 50.5 75.3

Serum gg/1 915± 194 1221 ±299
Urine gg/1 14.4 ± 12.9 15.2 ± 15.4

Zn

Serum gg/l 606 ± 87 612 ±148
Scalp hair mg/kg 183.7 124.8
Fingernail mg/kg 206 133.8

Urine gg/I 279± 167 455 ± 373

As
Serum gg/1 1.33 ±0.41 0.83 ± 0.59
Urine gg/I 21.2 ± 14.8 27.0 ± 12.6

Cd

Serum gg/1 0.04 ±0.01 0.13 ±0.48
Scalp hair mg/kg 0.5 0.8
Fingernail mg/kg 1.1 0.9

Urine gg/1 0.32 ±0.21 0.13 ±0.21
'  mean, ’"’mean ± standard deviation, range, nv = no value.
Source: Flores et al, 2011; Kazi et al, 2008; Sukumar & Subramanian, 2007; 
Batista et al, 2006; Nourmohammadi et al, 2005; Abou-Shakra et al, 1989; 
Bowen, 1979.
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1.3 Trace Element Measurements

Trace and ultra-trace element levels can be measured in different human tissues 

and fluids (Esteban & Castano, 2009). In general, the levels of these elements 

vary from one tissue or fluid to another due to multiple factors including lifestyle, 

age, gender, environmental exposure, diet, alcohol consumption and cigarette 

smoking (Chojnacka, 2005; Partriarca et al, 1998). The main reason for the 

selection of human tissues (scalp hair and fingernails) and fluids (tear drops and 

saliva) in this study is that they can be used to biomonitor human health (Madej, 

2010; Esteban & Castano, 2009). A long-term growth material, such as scalp hair 

and nails, may provide some useful data, especially if the subject's results are 

compared with a corresponding reference concentration range for a well defined 

"healthy or control" population (Sukumar & Subramanian, 2007).

In the case of tear drops, the main reason for inclusion in this study is that this 

media can be considered a new area of research, as there is no published data 

about the elemental levels of this fluid. This may be because it is difficult to 

collect enough tear drop volume for trace element analysis as analytical 

techniques, such as inductively coupled plasma mass spectrometry (ICP-MS) and 

atomic absorption spectrometry (AAS), usually need at least 3 ml of sample. 

Previous studies have determined the levels of some elements in saliva (Costa et 

al., 2010; Olmedo et al, 2010; Menegario et al, 2001). In addition, 

environmental samples (water and cigarette tobacco) were chosen in order to 

assess whether these media make any significant contribution to the specific 

elements in the human tissues and fluids under investigation.

1.4 Human Fluids

1.4.1 Tear Drops

This section describes the chemical composition, main functions and the 

relationship between tear drops and human diseases with respect to trace element 

levels.
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1.4.1.1 Types and Chemical Composition of Tear drops

Human tear fluid consists of three main layers, proposed by Zhao et al. (2010). 

Firstly, the lower layer, which has a mucous and hydrophilic coating, is produced 

by the conjunctiva goblet cells. It can increase the stability of the aqueous layer 

over the eyeball (Lemp & Wolfley, 1992). Secondly, the middle layer which is the 

aqueous layer is secreted by the lachrymal gland. Finally, the upper layer, also 

known as the oil or lipid layer is produced by the meibomian glands at the rim of 

the eyelid which is responsible for this layer (Zhao et al, 2010; Filik & Stone, 

2008; Davidson & Kuonen, 2004). This is shown in Figure 1.4.

There are three types of tear drops: (i) basal tear, (unstimulated tear), which 

occurs in healthy human eyes to keep the cornea continuously moistened. The 

secretion rate will significantly increase based on physical and emotional 

stimulation. The volume range is 6 -  7 pl/min with a maximum capacity 30 

pl/min and basic flow about 1.2 pl/min (Madej, 2010); (ii) reflex tear (stimulated 

tear), the secretion rate of this tear usually depends on different factors, such as 

foreign particles, onion vapour, tear gas, pepper spray, bright light and vomiting; 

and (iii) crying tear, in which the subject would be in a strong emotional state of 

stress suffering, mourning or physical pain.

The amount of tear drops can increase in specific situations, such as interpersonal 

relationships; such as loss, conflict, reunions, marriage and deaths. In other cases, 

it can result from social factors, such as culture, gender, age and socialisation. It is 

extremely useful to report that there is a significant difference between the 

composition of stimulated and unstimulated tear fluids. A previous study reported 

a significantly higher range of values of glucose (211 - 256 pM) in tears induced 

by onions of non-diabetic subjects when compared with glucose levels (1 3 -5 1  

pM) of unstimulated tears collected from the same non-diabetic subjects 

(Taormina, 2007). The main question one can ask is what the mechanism of tear 

drop formation in the human eye is? A possible explanation for this process is that 

tear drops are secreted on the surface of the cornea from different glands. It was 

found that a tear drop will break during 1 - 3 0  seconds due to the combined 

effects of evaporation and surface tension. When a drop is released, the formation 

of a new one will start immediately. The occurrence of dry spots is prevented by 

reforming tear drops through frequent blinking (Jossic et al, 2009).
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Human tear fluid has a complex structure including, water, proteins, electrolytes, 

metabolites and lipids (Filik & Stone, 2008). Previous studies have suggested that 

about 500 proteins (in low abundance) are present in tear fluid (Li et al, 2008; de 

Souza et al, 2006). The main proteins are lysozyme, tear lipocalin, secretory 

immunoglobulin A and laetoferrin (Zhao et al, 2010). This enables tear fluid to 

carry out various functions in terms of the ocular system (Ohashi et ai, 2006). 

Healthy functioning of the eyes is strongly associated with the formation of tear 

fluid (Filik & Stone, 2008). Therefore, any changes in the chemical composition 

of tear fluid can lead to more disorders such as ocular pathology (Davidson & 

Kuonent, 2004). Previous studies have reported that the transparency of the 

cornea will be fundamentally affected by quantitative or qualitative changes in the 

composition of tears (Ohashi et al, 2006; Grus et al, 2005).

Lachninal (tear)

Cornea

Conjunctiva

Meibomian glands

Mucus layer 
Water layer 
Oil laver

Tear drop

Figure 1.4: The human eye and tear drops (www ref.l)

1.4.1.2 Major Functions of Human Tear Fluid

Knowledge of the functions of tear fluid, and the specific interactions with human 

eyes, will lead to an improved understanding of tear fluid (Jossic et al, 2010; 

Filik & Stone, 2008; Ohashi et al, 2006; Albarran et al, 1997). There are many 

different functions that are provided by tear fluid, but the fundamental roles are:
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• keeping the surface of the cornea smooth in order to maintain clear vision. 

In this case, tear fluid will be the first refractive surface encountered by 

light in order to protect the surface of the cornea, which is the second 

refractive component (Lemp & Blackman, 1981);

• using the oil layer to lubricate the conjunctiva, cornea and the eyelids. This 

will protect the eye surface from any mechanical damage resulting from 

increased pressure caused by each blink (Lamberts, 1994);

• transporting oxygen and nutrients to the cornea (nutrition source) and 

regulating the electrolyte composition and pH (Lamberts, 1994);

• provides the cornea and conjunctiva with white blood cells (Lamberts,

1994);

• removes foreign materials from the surface of the cornea and conjunctiva 

(Lamberts, 1994);

• protects the ocular surface from pathogens and infection via defensive 

proteins and antibodies (Lemp & Blackman, 1981); and

• maintains the viscosity and prevents tear fluid evaporation (Zhao et al, 

2010; Lemp & Wolfley, 1992).

In addition, tear fluid can also protect the surface of the cornea from the effects of 

the external environment, such as desiccation, bright light, cold, mechanical 

stimulation, physical injury, noxious chemicals, bacteria, viral and parasitic 

infection (Ohashi et al, 2006). It was also found that protein components can play 

significant roles to provide continued health and protection of the cornea (Sariri & 

Ghafoori, 2008). A recent study has shown that various protein components 

perform an important role in tears (Zhao gr al, 2010). Another fundamental 

function of human tear fluid is the protection of the eye from different diseases, 

for example, dry eye disease (Flanagan & Willcox, 2009).

1.4.1.3 Human Tear Fluid in Health and Disease

There are two categories responsible for many ocular diseases: systemic and local 

(Seal, 1985). The first reason can arise from in-born disorders of metabolism. For 

instance, Tay-Sachs disease leads to high levels of glycosidase in the tear fluid
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and reduces the subject’s ability to produce sufficient tear fluid. The second 

reason results from infections or injuries which can lead to the accumulation of 

various materials in tears. In these conditions, some quantities of blood 

components can be transported into the tears and vice versa. This process will 

mean only a small volume of tears is available. As a result, the levels of toxic 

products will increase, which lead to "toxic tears" (Tiffany, 2003). Several studies 

have detected a series of changes in the composition of tear fluid during many 

health disorders and diseases, such as diabetes, renal disease (Ozdemir et al, 

2004; Grus et al, 2002) and Parkinson’s disease (Tamer et al, 2005/ Moreover, 

one study in Australia has found a number of differences between the composition 

of healthy dog tears and those with various cancers. The authors suggested that it 

is possible to use tear fluid as a non-invasive test in order to diagnose canine 

cancers (Campos et al, 2008).

The use of pharmaceuticals in the treatment of eye diseases may lead to more 

effects on tear fluid, for example, tarsorrhaphy, which is used for severe dry eye. 

This disease is a worldwide problem for elderly individuals (Gharaee et al, 2009). 

Furthermore, contact lenses may lead to decreases in the volume of tears, and the 

amount of lysozyme protein (Flanagan & Willcox, 2009).

Cigarette smoking provides a significant risk in terms of several eye diseases, for 

example, macular degeneration, glaucoma, and cataract formation. It was found 

that toxic and oxidative effects of tobacco lead to damage of the eye tissue, 

including the onset of dry eye disease (Grus et al, 2002).

Human tears can be used as a new non-invasive approach in the early diagnosis 

and analysis of the pathogenesis of diabetes, including ocular surface disease. A 

previous study reported a significant increase in the concentration of tear drop 

protein for diabetic patients who have dry eye disease compared with diabetic 

patients who do not suffer from this disease (Grus et al, 2002). However, trace 

elements in tear fluid may play a role in the conditions of these diseases, as many 

trace elements are reported to be an important biomarker for different diseases, as 

shown through using other biological samples, such as hair, nail and saliva 

(Skalnaya & Demidov, 2007; Rajpathak et al, 2004).
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1.4.1.4 Trace Elements in Tear Drops

In recent decades, the use of unconventional biological materials as biomarkers in 

trace element studies has increased in terms of published research studies, for 

example, scalp hair, fingernails and saliva (Esteban & Castano, 2009; Rodrigues 

et al., 2008). Human tear drops can also be used as a useful tool to evaluate the 

health status of an individual (Zhao et al, 2010). This fluid was used to assess the 

levels of glucose in diabetic individuals (Taormina et al, 2007; Jin et al, 2004). 

Several studies have reported that the concentration of glucose in blood can be 

correlated with the level in tear fluid (Baca et al, 2007). In contrast, the analysis 

of trace elements in tear fluid has not been established so far. The main challenge 

in analysing this fluid is insufficient amounts of sample available for multi

element determination using most analytical techniques (Madej, 2010). One study 

has reported the levels of Na^, K'*’, C f and total Ca in tear fluid for normal subjects 

(Lew et al, 2004).

In terms of considering tear fluid as a possible biomarker, a review of the use of 

other tissues or fluids is presented.

1.4.2 Saliva

1.4.2.1 Chemical Composition of Saliva

Human saliva is a complex fluid which is secreted into the mouth by the various 

salivary glands including: parotid glands located behind the jaw in front of the 

ear; submandibular and sublingual glands that lie under the jaw and tongue (Wang 

et al, 2008). These are illustrated in Figure 1.5. It was found that salivary fluid 

differs from one gland to another, for example, the parotid gland produces saliva 

with a watery (serous) consistency, whilst the sublingual glands produce a more 

viscous (mucous) fluid. A mixture of serous and mucous saliva can be produced 

by the submandibular glands (Wang et al, 2008; Whelton, 1996). Normally, 

human salivary fluid contains 98 % water, dissolved inorganic electrolytes, 

antibacterial constituents, protein, mucus, carbohydrate, and various enzymes 

(Shigemi et al, 2008; Reznick et al, 2006). The total daily secretion of saliva 

from all the glands ranges between 800 and 1500 ml/day (Wang et al, 2008). The
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salivary flow rate is lowest during sleep and highest when eating (5 ml/min). The 

main reason leading to a reduction in this flow rate is dehydration and after 

significant blood loss this can lead to the sensation of thirst (Whelton, 1996). In 

this case there are many oral functions which can be affected, such as chewing 

and swallowing, and speaking will become uncomfortable and sometimes difficult 

to perform. In addition, dental diseases (namely dental caries and periodontal 

disease) can result when salivary flow is significantly reduced. Saliva helps to 

dissolve food inside the human mouth (part of the digestive process) due to the 

many enzymes found in this fluid. Saliva also plays role in the tasting process.

Parotid gland

a
- Sublingual gland

Submandibular gland

Figure 1.5: Location of the major human salivary glands (after Lawler et al., 
2004; WWW ref.2).

1.4.2.2. Trace Elements in Saliva

Many studies in the literature use blood and urine for studying heavy metal 

exposure in occupational and environmental areas (Olivero-Verbel et al, 2007; 

Heitland, et al, 2006). Saliva has also been recognised to play a significant role in 

terms of providing a reliable index of environmental and occupational exposure 

(Costa et al, 2010; Olmedo, et al, 2010; Barbosa et al, 2006). The use of saliva 

as an alternative matrix for risk assessment is beneficial, as it is readily accessible 

and is a non-invasive sampling technique for the general population (Wang et al.
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2008). In this respect, manganese levels in saliva have been used as a biomarker 

for manganese exposure among career welders. Such exposure also leads to 

changes in the levels of some other trace elements, such as, Mn, Cu, Zn, Cd, and 

Pb in saliva. Recent studies have shown that the relationship between Pb-saliva 

and environmental contamination is significant. Therefore, saliva has been used as 

a biomarker of Pb exposure (Costa et al., 2010; Barbosa et al, 2006; Wilhelm et 

al, 2002).

As mentioned, there are three different types of saliva: whole;

submandibular/sublingual (sub) and parotid saliva. The elemental levels are found 

to be different between types of saliva, for example, the lead levels of the whole, 

sub, and parotid saliva were found to be 1.7, 1.4 and 1.3 pg/1 Pb, respectively for 

children exposed to lead in Brazil (Costa et al., 2010). The authors found a 

significant correlation between Pb-serum and Pb-parotid saliva, as the 

concentration of lead in saliva reflects the level in plasma. This may be because 

the active transport media is water, and the ions in saliva came from plasma fluid. 

Some trace elements in saliva have a significant positive correlation between each 

other, for example, manganese positively correlates with copper and zinc (Wang 

et al, 2008). Previous studies have shown that some of the trace elements, such as 

strontium, could play a significant role in the development of dental caries 

(Curzon, 1985; Athanassouli et al, 1983). Although there is little information 

about strontium in terms of human health, it was found that high strontium levels 

in saliva and human scalp hair is associated with skeletal problems and dental 

caries (Shigemi et al, 2008; Curzon, 1985). One study in Japan has shown that 

the strontium levels in saliva collected from school children were significantly 

increased in those with caries. In contrast, the concentration of fluoride in 

toothpaste inhibits strontium dissolution from teeth which leads to the protection 

of the teeth (Shigemi et al, 2008). Saliva may also be used to evaluate whether an 

orthodontic appliance releases any metal ions, such as nickel, into the oral cavity 

(Fors & Persson, 2006).

Trace element levels in saliva may change in relation to diseases, for example, 

copper levels in saliva increased in taste disorder patients compared to control 

subjects. However, the levels of other elements, such as zinc and manganese, also 

decreased (Watanabe et al, 2005). Another study has determined the levels of 

trace elements in saliva in order to assess whether factors like sample collection
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procedures, dental prostheses, and amalgam fillings may affect the elemental 

levels in saliva fluid (Monaci et al, 2002). Inductively coupled plasma mass 

spectrometry (ICP-MS) has been used to determine the elemental levels in 

unstimulated and stimulated saliva samples (Costa et al., 2010; Wang et al, 2008; 

Yuan et al, 2008; Watanabe et al, 2005). Table 1.2 reports the elemental levels in 

saliva.

Table 1.2: Control elemental concentrations (pg/1) of human saliva.

Element Concentration (pg/1)

B 0.6-20.5^
V nv
Cr 0.41-1.64
Mn 0.47-7.23
Fe 3 2 -2 7 0
Cu 19.6 ± 1 3 .6 ^
Zn 11 - 158
As 0 .19-3 .3
Sr 2.16 ±0.96
Cd 0.02-1.90

nv = no value, range, ̂ mean ± standard deviation.
Source: Gil et al, 2011; Y- Kim et al, 2010; Wang et al, 2008; Yuan et al, 
2008; Ward, 1993; Ward & Ward, 1991.

1.5 Human Tissues

1.5.1 Scalp H air

Scalp hair is a fibrous material derived from skin which has two main parts; the 

shaft, which protrudes out from the skin, and the root, which lies below the 

surface of the skin (de Antonio et al, 1982). The matrix cells grow in the root, 

and during their formation are exposed to circulating blood, lymph and 

extracellular fluids. When the hair grows, it hardens to form the shaft in the 

process called kératinisation (Valkovic, 2000; de Antonio et al, 1982). The hair 

root comprises three layers, namely the hair fibre, inner root sheath and outer root
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sheath. The hair shaft includs three main parts; the cuticle on the outside, the 

medulla in the centre and the cortex in between, as shown in Figure 1.6 (Dunnett, 

2001). The main constituents in human hair are protein, namely (keratin) (80 -  85 

%), water (< 15 %), lipids ( 1 - 9  %), melanins (0.3 -  1.5 %) and inorganic 

minerals (0.25 -  0.95 %) (Dunnett, 2001). The rate of growth of scalp hair is 

slower in males than females and is about 0.3 to 0.5 mm/day in a human adult and 

0.2 mm/day in a newborn (Valkovic, 2000).

Cuticle

^  C ort ex

Medulla
Hair shaft

Epidermis JT'

Dermis

Subcutaneous fat [

^ S e b a c e o u s  gland

^  Bulge region

Outer root sheath

dinner root sheath

Hair fiber

Dermal papilla

Figure 1.6: Hair structure (after Dunnett, 2001; www ref. 3).

1.5.2 Fingernails

Fingernails are a material formed by living skin cells. The structure of nails 

contains several parts; (i) matrix (nail root) which is located under the cuticle 

where new cells are produced and continually pushed towards the nail plate to 

produce the nail plate; (ii) cuticle, the tissue that is surrounding the nail plate and 

defends the matrix from attacking bacterial and physical damage (Freinkel & 

Woodley, 2001); (iii) lunula (half-moon), the base of the nail and meeting point

24



Chapter One: General Introduction

between the matrix and nail bed; and (iv) nail plate which represents visible nail 

that rests on the nail bed up to the free edge (Freinkel & Woodley, 2001). These 

components are shown in Figure 1.7.

As the new cells grow in the matrix the older cells are pushed out from the matrix. 

There are several factors that can influence the growth of nails such as, age, diet 

and health status. The rate of growth ranges from 0.03 to 0.05 mm/day in toenails 

to 0.1 mm/day in fingernails (Slotnick & Nriagu, 2006). This rate usually is faster 

in young people than older individuals, in the summer rather than winter and 

during pregnancy (Batista et al, 2008). If a fingernail is lost or injured, new nail 

will always grow. The only exception is if the matrix is damaged, then the nail 

will grow back deformed (Figure 1.7).

Matrix Stratum coraeum 
(Nail root) ^

E>ponychium
/  Nail plate

H\ponvchium
Free edse

Nail plate

Lunula

Cuticle

Nail root
Bone Nail bed

Figure 1.7: Fingernail structure (after Freinkel & Woodley, 2001).

Although there are a lack of studies discussing the use of nails, nail material is 

considered a suitable tissue to determine the levels of minor and trace elements in 

the human body (Silvera & Rohan, 2007).

1.5.3 Human Scalp Hair and Nails as a Biomarker

In the last few decades, human scalp hair and nails (finger & toe) have widely 

been used as a good biomarker in the assessment of exposure to various pollutants 

in an occupational and/or environmental setting, and in terms of assessing the
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metabolic state of humans, for essential and toxic trace elements (Olmedo et al, 

2010; Esteban & Castano, 2009; Li et al, 2008; Ohno et al, 2007; Ashraf et al,

1995). Hair and nail tissues have several advantages over blood and urine, 

including: non-invasive materials and easily sampled; potentially represent a long

term growth material; and several trace elements may accumulate in hair and nail 

tissues over a time frame of 2 to 18 months. These advantages may provide useful 

data in determining the health status of an individual over long periods, as the 

tissues remain isolated from other metabolic activities in the human body (Wang 

et al, 2009; Batista et al, 2008; Sukumar & Subramanian, 2007; Slotnick & 

Nriagu; 2006; Kales & Christiani, 2005; Bermejo-Barrera et al, 2002; Sera et al, 

2002; Bass, 2001; Chlopicka et al, 1995).

In contrast, the analysis of human fluids, such as blood and urine is accompanied 

by several problems, including the composition at the time of sampling and the 

fact that many trace element levels are regulated by homeostatic processes 

(Hannigan, 2005; Dong, 1998). In terms of these facts, the concentration of trace 

elements can be used to investigate: (1) the dietary intake of trace elements, 

especially for non-essential or "toxic" elements; (2) environmental exposure from 

anthropogenic sources, including chemical pollutants that are released into the 

environment (Esteban & Castano, 2009); (3) the relationship with smoking 

activity (non, passive and active); and (4) any possible link between specific trace 

elements and diseases, such as diabetes (type 2) (Sukumar & Subramanian, 2007; 

Senofonte et al, 2001).

Hair analysis also has some challenges associated with it, which include external 

contamination, differentiating between endogenous and exogenous deposition and 

the difficulties in establishing normal or reference ranges (Bass, 2001). In 

addition, there are various factors which have been found to affect the level of 

elements in hair and nails, such as age, gender, lifestyle, environmental exposure, 

smoking activity and general health status (Ozden et al, 2007; Sukumar & 

Subramanian, 2007; Chojnacka et al, 2006; Rodushkin & Axelsson, 2000; 

Garland ûf/., 1996).
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Table 1.3: Reported normal or control levels of trace elements in washed scalp hair 
and fingernail.

Element Country Concentration, Mean (range) (mg/kg)
n Scalp hair n Fingernail

B Sweden 114 0.13-3.30'" 96 0.12-3.33'"
Rio de Janeiro 83 1 .0-3 .0 nv

V Rio de Janeiro 83 0.35-0.80 nv
Sweden 114 0.005-0.134 96 0.018-0.476

Cr Rio de Janeiro 83 0 .78-1 .0 nv
India 113 2.2 ± 0.5^ 113 1.0 ±0.2""^

Sweden 114 0.046-0.527 96 0.224-3.20

Mn

Rio de Janeiro 83 0.26-0.75 nv
Sweden 114 0.08-2.41 96 0.19-3.30

Italy 18 0.28 ±0.19 nv
Bangladesh 44 1.85-43.56 33 3.51-91.33

Fe

Rio de Janeiro 83 6 .0 -1 5 nv
Sweden 114 4 .9 -2 3 96 12-189

Italy 18 13.1 ±7.1 nv
Bangladesh 44 16.53-304.49 33 39.76-1967.46

Cu

Rio de Janeiro 83 1 3 -3 5 nv
India 113 44.4 ± 6 113 50.5 ± 7

Sweden 114 8 .5 -9 6 96 4 .2 -1 7
Italy 18 7.49 ±3.41 nv

Bangladesh 44 4.2 -  55.29 33 4.6-28 .78
Pakistan 150 15-21.8 nv

Zn

Rio de Janeiro 83 125-165 nv
Sweden 114 68 -1 9 8 96 80-191

India 113 183.7 ±24 113 206 ± 27
Pakistan 150 227.2-262.8 nv

Italy 18 131 ±47 nv
Bangladesh 44 82.52-339.64 33 72.77-130.39

As
Kuwait 40 0.11-0 .16 nv
Sweden 114 0.034-0.319 96 0.065-1.09
Pakistan 150 0.73 -  0.94 nv

Sr Rio de Janeiro 83 1 .0 -7 .6 Nv
Sweden 114 (0.14-5.54) 96 0.17-1 .39

Cd

Rio de Janeiro 83 <1.0 nv
India 113 0.5 ± 0.08 113 1.1 ± 0.3

Bangladesh 44 0.008-2.14 33 0.017-1.93
Kuwait 40 0.13-0 .18 nv
Sweden 114 0.010-0.356 96 0.013-0.438
Pakistan 150 2.51-3.89 nv

 ̂range, mean ± standard c 
Source: Sukumar & Subrar 
Chojnacka et al, 2005; Fido 
2004; Rodushkin & Axelssoi

eviation, nv = no value, n = the number of sample, 
nanian, 2007; Bocca et al, 2006; Kazi et al, 2006; 
& Al- Saad, 2005; Forte et al, 2005; Samanta, et al, 

1, 2000; Miekeley et al, 1998.
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1.6 Environmental Sources of Trace Elements

The significant roles of trace elements in a living organism affect the direct 

interactions with surrounding systems, namely; environmental, geological, 

biological and marine (Ward, 2000). Therefore, the levels of elements in 

environmental (soil, sediment, water, etc), biological and foodstuff samples may 

be a potential risk factor in assessing the quality of human health (Arain et al,

2009). Trace elements are transported from aquatic media to the human body 

through food chain and drinking water, and then are stored in different tissues and 

fluids (Arain et al, 2009). The monitoring of trace elements, especially toxic 

elements in the environment, maintains the attention of many scientific 

researchers, who consider it is necessary to understand the long-term health 

effects of chronic exposure to low concentrations of toxic elements.

The assessment of human exposure to pollutants from an environmental media 

can be monitored by using non-invasive tissues and fluids, such as hair, nail, 

blood, urine and saliva samples (Button et al, 2011; Costa et a l, 2010; Olmedo et 

al, 2010; Kazi et al, 2008; Rodrigues et al, 2008). The high levels of trace 

elements in these tissues and fluids may be due to exposure from the consumption 

of drinking water and food. For example, the concentration of arsenic and other 

elements (Pb, Ni, Cd, Mn, Fe, Zn, Se and Hg) can be measured in scalp hair and 

nails of people who are drinking arsenic contaminated water (Sthiannopkao et al, 

2010; Samanta et al, 2004; Skrzydlewska et al, 2003).

1.6.1 Water

Normally, drinking water (DW) is taken from rivers, lakes, reservoirs, springs and 

wells. During the flow of water over the surface of land, some components of 

rocks and soil may dissolve and be carried to the final consumer (Mandai & 

Suzuki, 2002). Organic and inorganic contaminations can be released into 

drinking water from different industrial processes, such as petroleum production, 

chemical fertilizers, iron, leather, pharmaceutical and refining, as well as domestic 

activities (Majumder, 2009). In recent years, the chemical, biological and physical 

quality of the aquatic environment has been found to be a main factor controlling 

the state of health and disease for both humans and animals. Therefore, many 

studies have used water samples to assess the effect of trace elements on human
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health (Chen et al, 2009; Oymak et al, 2009; Navas-Acien et al, 2008; Karadede 

et al, 2004; Karadede & Unlu, 2000). As a result of these studies, the World 

Health Organisation (WHO) modified the permissible levels for some risk 

elements based on their findings; for example, the guideline level for arsenic in 

drinking water was reduced from 50 to 10 pg/1 As, as shown in Table 1.4 (WHO, 

2008). It is, therefore, necessary to establish the natural elemental levels of the 

different water types in order to evaluate the impact of trace element 

contamination. Typical values are reported in Table 1.5.

Table 1.4: Water quality guidelines for drinking, irrigation and livestock 
consumption.

Trace element
WHO 

Drinking water 
limits (pg/1)

FAO 
Irrigational water 

limits (pg/1)

FAO 
Livestock drinking 
water limits (pg/1)

B 500 nv 5000
V 15 nv 100
Cr 50 100 1000
Mn 400 200 50
Fe nv nv Nv
Cu 2000 200 500
Zn 3000 2000 24000
As 10 100 200
Sr nv nv Nv
Cd 3 nv 50

F AO -  Food and Agriculture Organisation of the United Nations, WHO - World 
Health Organisation, nv = no value.
Source: WHO, 2008; FAO, 1994.

Table 1.5: Typical natural trace element concentrations for fresh-, river- and 
seawater.

Trace elements Concentration (pg/1)
Fresh River Sea

B 10 10 5000
V 0.5 I 2.5
Cr 1 1 0.05
Mn 10 7 0.2
Fe 500 40 2
Cu 3 5 2
Zn 15 20 10
As 0.5 2 3
Sr 70 60 8000
Cd 0.03 0.02 O.I

Source: Ward, 2000.
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1.6.2 Cigarette Tobacco

Tobacco contains a complex mixture of more than 4000 components (Ng & 

Zelikoff, 2007). They include the stimulant nicotine; along with benzo-pyrene, 

benzene, lead, chlorinated dioxins and furans. In addition, cigarettes also contain 

hydrogen cyanide, arsenic, acrolein, acetaldehyde, 1,3-butadien, toluene and 

phenol which can cause adverse effects on vital human processes, such as the 

cardiovascular, respiratory, reproductive and nervous systems (IARC, 2004; 

Ward, 1993), Furthermore, high levels of heavy toxic elements have also been 

reported in tobacco (Verma et al, 2010). Therefore, cigarette tobacco becomes a 

high risk source for various diseases, such as mouth cancer (Kazi et al, 2010). In 

recent years cigarette smoking has become a major health issue, especially in 

terms of active and passive smoking linked exposure to chemicals released from 

the combustion of tobacco (WHO, 2008). The World Health Organisation 

reported the smoking rates for males, females and total population in different 

regions in the world: Africa (36.2, 9.4 and 22.9%); Americas (34.7, 23 and 

28.7%); Eastern Mediterranean (34.2, 8.7 and 21.8%); Europe (43.5, 23.4 and 

33%); South East Asia (48.2, 8.2 and 28.6%); and the Western Pacific (62.3, 5.8 

and 34.4%) (WHO, 2003). Although, there is no data for smokers in Karbala, 

Iraq, the majority of smokers are men, with more than 50% of them being heavy 

smokers (smoked >1 pack/day) (Figure 1.8). This finding is based on the 

questionnaire that was used during the collection of biological samples from 

Karbala (refer to Appendix A). Amongst pregnant, women in the USA between 

13 - 20% smoke during pregnancy (Ng & Zelikoff, 2007). Previous studies have 

shown that exposure to tobacco can lead to health disorders for children, such as 

childhood cancer (Stavrou et al, 2009).

The World Health Organization reported that many diseases can be caused by 

smoking, such as cancers (namely; larynx, oropharynx, lung, leukemia, stomach, 

pancreas, kidney, colon, cervix and bladder) and chronic diseases, for example, 

stroke, periodontitis, coronary heart disease, asthma, and reproductive effects in 

women (including reduced fertility). In addition, there are some diseases caused 

by second-hand smoke, especially in children, for example, brain tumours, 

asthma, lymphoma, leukemia and lower respiratory disease. Adults can also suffer 

from diseases caused by second-hand smoke, such as, stroke, breast cancer, lung
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cancer, asthma and reproductive effects in women (including reduced fertility) 

(WHO, 2008). Smoking has been recognised to be an important risk factor in 

diabetes (Ng & Zelikoff, 2007; Montgomery & Ekbom, 2002), with one study in 

the USA reporting a link between cigarette tobacco and the onset of this disease 

(Will et al, 2001 ; Meliker et al, 2007).

Area o f studv

00
Figure 1.8: Percentage of males smoking any tobacco product in the world 
(WHO, 2003).

1.6.2.1 Elemental Composition of Tobacco

Tobacco plants absorb many of the essential, non-essential and toxic elements 

from soils. Fertilizers and pesticide treatments can influence the elements of 

tobacco, including levels during cigarette harvesting, storage, processing and 

packing (Martinez et al, 2008). In addition to food sources, tobacco smoking is a 

major source of environmental trace element exposure to Cr, Fe, Co, Ni, Cu, Zn, 

As, Rb, Sr, Cd and Pb. (Kazi et al, 2010; Verma et al, 2010; Hamidatou et al, 

2009; Vahter et al, 2002). Many studies have reported the levels of trace elements 

in tobacco in different countries, including Brazil, India, Mexico, Turkey, Iran, 

Egypt and Japan. This data is summarised in Table 1.6 (Long-Moulin et al, 2006; 

Cevik g/ a/., 2003; Vega-Carrillo et al, 1995).
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Table 1.6: Reported trace element levels of commercial cigarette tobacco 
(mg/kg).

Element Mexican (n =9) Algeria range (n = 5) USA range (n = 4)
B nv nv nv
V nv nv nv
Cr nv 4.44-29.3 <0.1-3 .45
Mn 81 - 148 nd 155-400
Fe 359 - 564 656 - 823 325 -  520
Cu 9 -1 7 nv nv
Zn 38-48 42.80 -  68.06 16.8-30.5
As nv 4 .05-6 .4 <1
Sr 111-150 136.88-203.20 29.7-49 .5
Cd nv nv nv

nv = no value.
Source: Hamidatou et ai, 2009; Martinez et al, 2008; Oliveira et al, 2000.

1.7 Overview of the Study Area

The key region investigated in this study is the province of Karbala, Iraq. This 

country is in western Asia, as shown in Figure 1.9. The majority of the Iraqi 

population use the Tigris and Euphrates rivers for drinking water, domestic use 

and irrigation (Heyvaer & Baeteman, 2008; Spotts, 2003).

During the past few years, continued release of untreated waste from domestic, 

industrial and agricultural sources or other human activities into the rivers has 

lead to an increase in the concentration of many elements in the water (Al-Bedri 

& Al-Jobori, 1991). One of the most significant sources of pollution in Iraq is 

from military weapons that were used in the wars, along with oil spills and scrap 

metal from destroyed military vehicles. According to reports from the United 

Nations Environment Programme (UNEP), there are 300 sites in Iraq that are 

considered to be contaminated by various pollutants (UNEP, 2003). As a result, 

air, water and soil environments have been chemically contaminated. Eventually, 

these chemicals pass into vegetables, fruit, plants and livestock. The population of 

Iraq has suffered from many diseases, such as cancer, diabetes, asthma, heart 

disease, leukaemia and various unknown diseases (Phelps, 2005).
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MATERIAL REDACTED AT REQUEST OF UNIVERSITY

A major problem now in Iraq is extreme birth deformities, possibly caused by 

depleted uranium ammunition and other toxic elements. In addition, most children 

have been exposed to cigarette smoke, as there is no anti-smoking law. Smokers 

can light up wherever and whenever they choose, for example, 29.2% of students 

are exposed to second-hand smoke in public places (WHO, 2003). A recent study 

in northern Iraq has reported that the overall prevalence of current cigarette 

smoking was 15.3%, 25.1% and 2.7% in adults, boys and girls, respectively 

(Siziya et al, 2007).

1.7.1 Karbala

Karbala is a city in Iraq located about 60 miles south west of Baghdad at 32.61°N, 

44.08°E with approximately one million inhabitants, as shown in Figure 1.10. 

Unfortunately, in Karbala there is no information available regarding the reference 

levels of trace and ultra-trace elements in human scalp hair, nails, saliva and tear 

drops (see confirmation letters from different universities from Iraq in Appendix 

A). It is, therefore, necessary to establish a database of "normal" or non

contaminated levels of trace elements in this region. This can be used for 

comparison with other countries, and for the evaluation of future environmental 

pollution and possible human health disease studies in Iraq.
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Figure 1.10: Map of Karbala, Iraq (taken from the local Karbala government, 
WWW ref. 6).

1.8 Aim and Objectives

1.8.1 Aim

Recent studies have shown that trace and ultra-trace elements play an important 

role in terms of human health. In the last few decades, blood, urine, saliva, scalp 

hair and nails have been used as good biomarkers in the assessment of exposure to 

various pollutants in occupational and/or environmental settings, and in terms of 

assessing the metabolic state of essential and toxic trace elements in humans 

(Olmedo et al, 2010; Esteban & Castano, 2009). In recent decades many 

researchers have seen that the use of unconventional biological materials, such as 

human tear drops can be used as a tool in determining the health status of an 

individual (Zhao et al, 2010). So far, no studies have been published on the use of 

tear drops as a biomarker for trace and ultra-trace elements, as the main problem 

is the small amount of sample available. There is also a lack of reviews on the use 

of new analytical techniques for studies using tear drops. In Iraq, no studies have
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been published on the use of hair, nails, saliva or tear drops as biomarkers for 

trace elements and ultra-trace elements in the human body.

The main aim of this study is to develop and validate the use of tear drops as a 

new biomarker for determining trace element levels in the human body. Other 

biological samples (scalp hair, fingernails and saliva) were used in order to 

provide comparative data for evaluating the potential of using tear drops. This 

methodology was then applied to evaluate if any possible trace element 

relationships exist between healthy individuals and those with human health 

conditions, such as smoking activity and type 2 diabetes. Environmental samples 

(water and cigarette tobacco) were also collected in order to evaluate whether 

these media make any significant contribution to the elemental levels of the 

selected tissues and fluids in this study.

1.8.2 Objectives

The main objectives of this work were to:

• establish a new method for the sample collection and subsequent analysis 

of trace and ultra-trace elements in human tear drops;

• develop analytical methods for the determination of elemental levels in 

washed scalp hair, fingernail, saliva, various water sources (tap, river and 

ground) and cigarette tobacco;

• validate the developed methods through the use of certified reference 

materials in order to establish quality control (precision and accuracy) 

values;

• assess the elemental composition of human scalp hair, fingernail, saliva 

and tear drops as a useful tool in determining the health status of an 

individual;

• investigate whether human scalp hair, fingernail, saliva and teardrops can 

be used as biomarkers in the assessment of exposure to pollutants in an 

occupational and/or environmental setting in Iraq;

• investigate using above media whether there is any possible link between 

specific trace elements and the onset of type 2 diabetes;
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• investigate whether environmental samples (water and tobacco) make any 

significant contribution to the elemental levels of tissues and fluids under 

investigation;

• evaluate the levels of trace elements, especially ‘toxic' or non-essential 

elements in relation to smoking activity of an individual; and to

• investigate whether factors like gender, age and residential location may 

affect the elemental concentrations in tear drops of the individuals under 

study.

The next chapter describes the analytical methodology and the instrumentation 

that were used to achieve the aim and objectives of this work. Chapter 3 (water 

and tobacco). Chapter 4 (human tear drops). Chapter 5 (saliva, washed scalp hair 

and fingernails) report the results of the human health and environmental trace 

elements studies, with the conclusion reported in chapter 6.

36



 Chavter Two

Analytical Methodology, Instrumentation 
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2.0 Introduction

This Chapter describes the sampling, storage and preparation methods that were 

carried out on the environmental and biological matrices, as shown in Section 2.1. 

The fundamental theory for each method, along with any development procedures 

used for the determination of trace element levels are reported in Sections 2.1.1 -  

2.2.6. The main technique used for the determination of trace and ultra-trace 

elements was inductively coupled plasma mass spectrometry (ICP-MS), as 

outlined in Section 2.6. Further analysis was also performed using inductively 

coupled plasma atomic emission spectrometry (ICP-AES) and flame atomic 

absorption spectrometry (FAAS). The use of certified reference materials (CRMs) 

and replicate analysis ensured accuracy and precision throughout the analysis, as 

presented in Section 2.8.

2.1 Demographic Characteristics of Study Populations

Environmental (water and cigarette tobacco), biological fluids (tear drops and 

saliva) and tissues (scalp hair and fingernails) were collected from Iraqi 

individuals resident in Karbala (Iraq), as shown in Figure 2.1. As part of a 

comparative study, the same samples were also collected from Iraqi individuals 

who have lived for more than five years in London (UK). In this study, the 

biological samples were classified into various groups, namely healthy, diabetics, 

smoker and non-smoker individuals covering both genders and different ages.

2.1.1 Environmental Samples

Water samples (n = 190) (commercial bottled, domestic bottled, tap, river, spring 

and well water) were collected from Karbala, as reported in Table 2.1. 

Commercial bottled water is used for drinking purposes, whereas domestic bottled 

and tap waters are used for drinking and domestic purposes. Surface (river) and 

ground water (spring and well) are usually used for irrigation and domestic 

purposes. In order to evaluate the possible health effects associated with water 

samples in Karbala, comparative tap water samples were collected from the 

residences of Iraqi individuals in London (UK). Cigarette tobacco samples were
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purchased from various markets in Karbala, as outlined in Table 2.2. The 

codebook for environmental samples can be found in Appendix D.

Ground water
Scale: 1:2?000 ni 

1000 *50 500 1 5 0  0 River water

Tap water, hair, nails saliva and tear drop

Figure 2.1: Map highlighting the location of samples as collected from Karbala 
(taken from the local Karbala government, www ref. 6 ).

Table 2.1: Water samples collected from Karbala (n = 174) and London (n = 
16).

Water type Water samples
Tap Karbala (n = 50), London (n = 16)

Commercial Karbala (n = 3)
Domestic bottled Karbala (n = 33)

River Karbala (n = 33)
Well Karbala (n = 47)

Spring (artesian) Karbala (n = 8 )
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Table 2.2: Commercial cigarette tobacco samples used in this study (n = 16).
ID code Brand Manufacture (country)
KCT-1 Kent USA
GCT-2 Ghamdan Yemen
RCT-3 Royale France
RCT-4 Roseman United Arab Emirate
GCT-5 Gauloises European Union
BCT- 6 Brilliant European Union
GCT-7 Gold seal Germany
ECT- 8 Elegance Germany
CCT-9 Craven Switzerland
ICT-10 Ishtar Jordan
DCT-11 Dunhill London
ACT-12 Affair USA
FCT-13 Five stars Hong Kong
BCT-14 Bon USA
MCT-15 Miami Germany
PCT-I6 Pine South Korea

(KCT-1) where K corresponds to the Kent brand, and is replaced by (G) 
Ghamdan and so on; C corresponds to cigarette; T corresponds to tobacco; and I 
corresponds to the sample code number.

2.1.2 Biological Samples

This study was approved by the Ethics Committee of the University of Surrey 

under the University’s Ethical Guidelines for Teaching and Research (approval 

ref. EC/2009/15/FHMS), as shown in Appendix A. The participants were clearly 

informed of all the study procedures before signing the consent form. All subjects 

completed the Study Questionnaires so as to provide personal details and 

information about health, diet, smoking activity and lifestyle at the time of sample 

collection, as shown in Appendix A. The codebooks that were developed for these 

questionnaires can be found in Appendices E & F. All the questionnaires were 

labelled with the code - which was laid out in the following format K-SH-H- 

010209-1, where K corresponds to the province in Iraq (K) Karbala, and may be 

replaced by (L) London in the UK; SH corresponds to scalp hair and may be 

replaced by FN (fingernails), TD (tear drops) and S (saliva); H corresponds to 

healthy and may be replaced by D (diabetes); 010209 corresponds to the date 

(DDMMYY); and 1 corresponds to the participant code number.
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Generally, the study population followed a similar dietary programme comprising 

of rice, bread, cereals, vegetables, fruit, meat, oils, cheese, butter, cream and milk; 

and the main drinks being soft drinks, fruit juice and tea; prepared with household 

tap water.

The subjects were classified into two main groups, namely healthy and diabetic, 

as shown in Table 2.3 and Section 2.2.3. At the time of sample collection data on 

gender, age, smoking activity, residential location, factors relating to having type 

2  diabetes and consumption of drinking water were collected by questionnaire. 

The main reason to collect samples from London was to provide a database for 

comparative purposes with Karbala (Iraq) samples. In addition, some individuals 

provided either two or four types of samples, namely tear drops/saliva (n = 42); 

tear drops/scalp hair (n = 50); tear drops/fingemails (n = 51); and tear 

drops/saliva/hair/fingemails (n = 30). This then enabled an examination of any 

significant differences and whether a possible relationship between the levels of 

trace elements between these media existed.

Table 2.3: Study populations for different human samples collected from Karbala 
(Iraq) and London (UK).

Human sample
Number of samples

Healthy Diabetic
Karbala (Iraq) London (UK) Karbala (Iraq)

Tear drops 111 18 44
Saliva 43 25 29

Scalp hair 171 50 44
Fingernails 127 45 87

2.2 Sample Collection and Preparation

The environmental and biological material samples were either solid (cigarette, 

scalp hair and fingernails) or liquid (water, tear drops and saliva), and 

homogenous or heterogeneous in terms of physical and chemical composition. 

The accuracy of an analysis depends significantly on the conditions under which 

the sample is collected (Christian, 1994). For example, heterogeneous samples 

require further care during sampling and will need special pre-analysis treatment 

before storage and analysis (Ebdon et al., 1998). However, certain precautions
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should be taken in order to prevent or minimize contamination, loss, 

decomposition, or matrix change.

2.2.1 Water

Water samples, namely, commercial, domestic bottled, tap, surface (river), and 

ground (well and spring or artesian) were collected from Karbala (Iraq) using 50 

ml Sterilin® containers (Fisher Scientific UK Limited, Bishop Meadow Road, 

Loughborough, Leicestershire, UK), as shown in Table 2.1. All collection 

containers were rinsed three times with water from the site being sampled, to 

minimise potential elemental contamination from the surface of the container 

during storage. In order to prevent any possible oxidation of the sample by air 

being present in the filled container, all containers were filled with a sufficient 

amount of water, capped and kept tightly closed (Arain et al, 2008).

Tap water samples were collected from Karbala and London after allowing the tap 

to run for more than two minutes through the pipes, in order to obtain a "real" 

water sample from the main pipeline, and to minimise any possible contamination 

from the pipe and tap materials.

River and spring waters were sampled from Karbala at a range of depths ( 0 - 3 0  

cm below the water level). Surface water samples were collected using 50 ml 

Sterilin® containers (Fisher Scientific UK Limited, Bishop Meadow Road, 

Loughborough, Leicestershire, UK).

Ground waters (untreated well water) were taken from Karbala (approximately at 

a depth 10  -  12  m) which are located in the desert region (sandy soil) of west 

Karbala up to the international border with Syria and Saudi Arabia. This region is 

called Pliocene (Iraqi Ministry of Water Resources, 2010). Water fiow-rates were 

dependent on pumps that are used to draw up the groundwater into untreated 

open-air storage tanks.

The important water quality parameters (pH; total dissolved solid (TDS), mg/1; 

and electrical conductivity, (EC), pS/cm) were measured immediately at the time 

of sampling (Arain et al, 2008) using a fully calibrated Hanna HI 98129 Digital 

Combo Meter (Hanna Instruments Ltd, Bedfordshire, UK), as outlined in Table 

2.4.
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2.2.1.1 Sample Storage, Method of Transfer and Preparation

Water samples were stored in a cool environment of 4°C during field sampling 

using a Tropicool 14 litre Thermoelectric cool box TC-14 (Waeco®, Dorset, UK) 

to prevent vaporization and biodégradation, as described in Section 2.2.3.1 (Atta 

& Abdul Razzak, 2008). On return to the laboratory the samples were transferred 

to a refrigerator (4°C), and sub-samples were taken for analysis by inductively 

coupled plasma mass spectrometry (ICP-MS) (Section 2.6). Certified reference 

materials (CRMs), namely; NIST SRM® 1643e Trace Elements in Water 

(National Institute of Standards and Technology, Maryland, USA); and TMDA 

54.4 Trace Elements in Fortified Lake Ontario Water (National Water Research 

Institute, Ontario, Canada), reagent blanks (field blanks) and "pooled" samples 

were prepared in the same manner in order to undertake quality control 

measurements, as outlined in Section 2.8.3.

All water samples were removed from the fridge prior to any analysis and allowed 

to equilibrate to room temperature. Multi-elemental analysis was carried out for 

all water samples by ICP-MS within 2 weeks of sample collection.

2.2.1.2 pH, Conductivity and Total Dissolved Solid (TDS)

pH is a measure of the hydrogen ion activity (aH^ in a solution, expressed as its 

negative logarithm: pH = - log an^. Basically, pH values range from 0 to 14. 

Natural waters have a range of pH from 4 to 9, and usually are slightly basic 

because of the presence of naturally occurring carbonates and bicarbonates 

(Skoog et ah, 1998). The recommended pH range for potable water (drinking 

water) is set at 6.5 -  8.5 by the World Health Organisation (WHO, 2008). 

Electrical conductivity (EC) is a measure of the ability of an aqueous solution to 

carry an electrical current based on the concentration, mobility, and the valence 

state of the ionised species in a solution (Siosemarde et al, 2010). The 

conductivity value is increased when the concentrations of the ions increase. 

Some ions have a major effect on the conductivity of water, such as H \  Na"̂ , K'*', 

Câ "̂ , Mĝ "*", c r ,  s o / ' ,  and HCO3' (Radojevic & Bashkin, 2006). Conductivity is 

temperature-dependent, for example, an elevated temperature makes water less
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viscous and increases dissociation which leads to changes in the speed with which 

different size and charge ions move (Artiola, 2004).

The main ions found in most natural waters include Câ '*', Mĝ "*", C 0 ^ \  HCO3',

c r ,  s o / ' ,  and NO3', resulting from natural contact with rocks and soil (Jain & 

Singh, 2003). These species represent the solid residue that remains after water 

evaporates. Therefore, the total concentration of these species is commonly 

referred to as the total dissolved solid value in water. If these dissolved species 

exist as ions, this leads to an increase in the electrical conductivity of solutions 

(Atekwana et al, 2004). The conductivity of water varies depending on the 

concentration of such dissolved solids and the relationship between EC and TDS 

can be described in the following equation.

TDS =  Kg EC -----------------------------------Equation 2.1

where Kg, is a correlation factor (Atekwana et al, 2004). The value of Kg is often 

high for chloride-rich water and low for sulphate-rich water (Atekwana et al, 

2004). The total quantity of dissolved solids in water has been used as a common 

indicator to evaluate the quality and freshness of drinking, irrigation and domestic 

water (Pemitsky & Meucci, 2002). The World Health Organisation has reported a 

permissible TDS and EC limit for drinking water of 600 -  1000 (mg/1) and 250 

(pS/cm), respectively (WHO, 2008).

The Hanna HI 98129 Digital Combo Meter is limited to the measurement of 

specific detectable ranges, as shown in Table 2.4. Therefore, for any reading of 

conductivity and TDS outside these ranges (0 to 3999 pS/cm) and (0 to 2000 

mg/1) respectively, the water sample must be diluted (at the time of sample 

collection) with deionised water. However, this was not possible so values are 

reported to have been above the upper limit of the probe.

Table 2.4: Calibration and specification of the Hanna HI 98129 Digital Combo 
Meter.

Parameter Range at 20°C Calibration

pH 0.00-14.00 (±0.05) Buffer solution at pH 4.01, 
7.01 and 10.01

EC (pS/cm) 0 to 3999 (± 2%) 0.01 M of KCl (1413 pS/cm)
TDS (mg/1) 0  to 2 0 0 0  (± 2 %) Solution at 1382 mg/1

Source: Hanna, 2008
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2.2.2 Cigarette Tobacco

Sixteen of the most consumed cigarette brands sold in the Karbala market were 

randomly purchased from local grocery stores, as shown in Table 2.2. All 

cigarette brands have a filter. Tobacco material was extracted from 10 cigarettes 

of each brand after the wrapping paper was carefully separated (Martinez et al., 

2008). Tobacco was placed on filter paper and allowed to dry at ambient 

temperature (18°C) in the laboratory. Two digestion methods were used to digest 

cigarette tobacco samples, as described below.

2.2.2.1 Dry Ashing

Tobacco digestions for this study were carried out using dry ashing and wet 

digestion methods. In dry ashing, 0.500 ± 0.001 g of dried cigarette tobacco was 

weighed out into a clean/dried porcelain crucible (VWR, Leicestershire, UK). The 

crucible was then covered and placed into a Gallenhamp muffle furnace (Vindon 

Scientific, Oldham, UK) and set at 200°C for a minimum 2 hours. The 

temperature was then raised to 500°C and the samples were left at this 

temperature overnight. The crucibles were then placed in desiccators for cooling. 

One milliliter of concentrated nitric acid (Aristar® 65%) (Fisher Scientific UK 

Limited, Bishop Meadow Road, Loughborough, Leicestershire, UK) was added to 

each crucible, and the solutions were then diluted to 50 ml with distilled de

ionised water (DDW; 18.2 MO) using a polyethylene volumetric flask (Fisher 

Scientific UK Limited, Bishop Meadow Road, Loughborough, Leicestershire, 

UK). Solutions were centrifuged at 3000 rpm for 10 minutes and filtered through 

Millex filter units with MF-Millipore (0.45 pm). Then, the solutions were 

transferred to clean, labelled 50 ml Sterilin® centrifuge tubes (Fisher Scientific 

UK Limited, Bishop Meadow Road, Loughborough, Leicestershire, UK) and 

stored at 4°C in a fridge.

22.2.1 Wet Digestion - Kjeldahl™ Tube

The dried cigarette tobacco samples were accurately weighed to 0.500 ± 0.001 g 

(Hamidatou et al, 2009). Samples were transferred into Kjeldahl™ tubes in a
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fume cupboard and 1 ml of concentrated nitric acid (Aristar® 65%) was added to 

each tube. All tubes were covered with P.V.C. Clingfilm and placed on the 

digestor block at 165 ± 10°C (~ half hour). The digested solutions were 

transferred into a polyethylene volumetric flask (50 ml) and made up with de

ionised water (18.2 MQ) (Hamidatou et al, 2009). Sample solutions were 

centrifuged for 10 minutes at 3000 rpm (MSB Mistral 2000 Thermo Life 

Sciences) and filtered through a Millex filter, MF-Millipore (0.45 pm) (Millipore, 

Carrigtwohill, Co. Cork, Ireland). The samples were stored in the fridge at 4°C 

prior to ICP-MS analysis. Multi-elemental analysis was performed for cigarette 

tobacco samples by inductively coupled plasma atomic emission spectrometry 

(ICP-AES) within one month of sample collection, as shown in Section 2.7.

The reagent blanks and "pooled" samples were also prepared using the same two 

digestion methods. In addition, three sub samples of standard reference materials 

(SRM, NIST 1573a "Tomato leaves" and NIST 1572a "Citrus leaves"), were 

provided by the National Institute of Standards and Technology, Maryland, USA, 

and were subjected to acidic digestion and ICP-AES analysis for QC purposes, as 

outlined in Section 2.8.

2.2.3 Tear drops

The three main methods of sample collection reported in the literature for tear 

drops that have been used include: filter papers; capillary tubes (Baca et al, 

2007); and cotton swabs (Baeyens & Gumy, 1997), as shown in Table 2.5. In this 

study, tear drop samples were obtained from 155 subjects (healthy and those with 

diabetes) resident in Karbala (Iraq), as described in Table 2.3. The individuals 

ranged in age from 2 to 75 years. For comparative purposes, 18 samples were 

collected from healthy Iraqi individuals who have been living in London (UK) for 

more than five years. At least 300 pi of unstimulated tear drops (crying tear) were 

collected from the left and/or right eye using micro-centrifuge polypropylene 

tubes (1.5 ml) (Fisher Scientific UK Limited, Bishop Meadow Road, 

Loughborough, Leicestershire, UK). Samples were collected from the outer 

canthus, where the upper and lower eyelids meet. In this case, the micro

centrifuge tube was gently touched with any drops released from the eye and the 

tear fluid was drawn in by the micro-centrifuge tube. The tear volume ranged
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from 300 to 600 pi, which was collected over a 15 to 30 minutes period (Kuizenga 

et al., 1991). Ten ml of a "pooled" tear drop sample was also collected from six 

individuals who were living in the same family residence, for quality control 

measurement purposes.

Table 2.5: Sample collection, sample amount and analytical technique reported in 
the literature for tear drop analysis.

Study Sampling
technique

Sample
amount

(Hi)
n Analytical

technique

Effect of sample treatment 
on protein in tear drops

Glass 
capillary tube 2 5 -1 0 0 7 Electrophoresis

Determination of anions in 
human and animal tear fluid 
and blood serum by ion 
chromatography

Micropipette 1 0 - 1 0 0 10
Ion

chromatography

Changes in human tear 
protein levels with 
progressively increasing 
stimulus

Capillary
tube nf 10

SE-HPLC and 
ELISA

Analysis of human tear 
fluid by Raman 
spectroscopy

Capillary
tube 1.5 3 Raman

spectroscopy

Sialic acid in normal human 
tear fluid

Saline and 
micropipette 2 0 31 HPLC

n is the number of subjects, nf = not found, SE-HPLC is size exclusion high- 
performance liquid chromatography, ELISA is enzyme-linked immunosorbent 
assay.
Source: Filik & Stone, 2008; Nakamura et al, 2001; Salas-Auvert et al, 1995; 
Meijer & Van Haeringen, 1994; Kuizenga et al, 1991.

2.2.3.1 Sample Storage, Method of Transfer and Preparation

Tear drop samples were stored in a cool environment of 4°C during field sampling 

using a Tropicool 14 litre Thermoelectric cool box TC-14 (Waeco®, Dorset, UK), 

connected to a battery powered car cigarette lighter socket. Tear drop samples 

were then kept at -20°C. All samples were safely transferred from Karbala (Iraq) 

to Guildford (UK) in a fully charged Tropicool cool box (when fully charged the 

Tropicool cool box can maintain a temperature of 4°C for ~ 12 hours when 

unopened). Disposable ice packs were also added to the samples in storage to help
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maintain/prolong a temperature of 4°C. On return to the laboratory, tear drop 

samples were directly diluted with distilled de-ionised water (DDW), resulting in 

a dilution factor of 10 fold. Solutions were centrifuged at 3000 rpm for 10 minutes 

and filtered through Millex filter units with MF-Millipore (0.45 pm) to remove 

protein and cellular debris. Samples were then decanted off into a clean, labelled 

15 ml Sterilin® centrifuge tube (Fisher Scientific UK Limited, Bishop Meadow 

Road, Loughborough, Leicestershire, UK) and subsequently transferred to a 

refrigerator (4°C). Reagent blank (field blank) and "pooled" samples were also 

prepared using the same procedure. Certified reference materials (CRMs), 

namely; NIST SRM® 1643e Trace Elements in Water (National Institute of 

Standards and Technology, Maryland, USA); and TMDA 54.4 Trace Elements in 

Fortified Lake Ontario Water (National Water Research Institute, Ontario, 

Canada) were utilised for Quality Control (QC) measurements, as outlined in 

Section 2.8. Samples were removed from the fridge prior to any analysis and 

allowed to equilibrate at room temperature. All samples were analysed within two 

weeks of collection time by using an Agilent 7700 Series ICP-MS instrument 

(Section 2.6). A recovery test and regression time plot were used to check whether 

any analyte was lost between sample collection and analysis, as determined in 

Section 2.2.3.2. Figure 2.2 shows the methodology procedure that was used to 

prepare tear drop samples in this study.

0.500 ± 0.001 ml of tear drops was collected by micro-centrifuge 
polypropylene tubes (1.5 ml) during 25 minutes-

Samples were then decanted off into a dean, labelled 15 ml Sterilin® 
centrifuge tubes (Fisher Scientific UK Limited, Bishop Meadow Road, 

Loughborough, Leicestershire, UK), and 4.5 ml of DDW was added to eadi 
tube, resulting in a dilution factor of 10 fold -

^      -     ^I
_     [ ...........

Solutions were centrifuged for 10 minutes at 3000 rpm, and filt^ed through
membrane filter units (0.45 pm), then decanted off into a dean, labelled 15 ml

Sterilin® centrifuge tub, and stored in a fridge at 4*’C until ICP-MS analysis-

Figure 2.2: Methodology for the pre-analysis preparation of tear drops.
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1.232  Testing of Sample Pre-treatment Procedures

In the analysis of trace elements in biological matrices the following essential 

requirements should be performed: (i) the reduction of sample preparation time; 

(ii) the lowering of blank values; (iii) the control of the deposition of solids in the 

sample introduction devices of an instrument; (iv) the minimization of saline 

matrix influences on the analytical signals; (v) and the capability of detecting 

elements present at ultra-trace levels in the collected samples. In terms of the 

above, in this study, the subtraction of the blank signal and the use of internal 

standards (ISs) covering all of the mass range were sufficient for controlling the 

above problems, and for reducing reagent impurities, instrumental drifts and 

matrix effects (Bocca et al., 2006; Ward, 2000).

In addition, ultra-high-purity grade reagents were used for the digestion or 

dilution of samples so as to avoid contamination at trace element levels. Reagent 

blanks that test exposure to any contamination during the whole process 

(sampling, transport, preparation and analysis) were run for all analyses, even if 

high-purity reagents were used, in order to confirm that the instrument was clean 

and the reagent solvents were of good quality (Ebdon et al., 1998).

A major feature associated with analysis by inductively coupled plasma mass 

spectrometry is the possibility of detecting any sources of contamination during 

the analytical process. For example, collection and storage containers may 

increase the contamination or losses of the sample through (i) surface desorption 

or leaching and (ii) adsorption on surfaces, respectively (Ebdon et al., 1998). In 

order to minimize the contamination from collection devices, all containers were 

thoroughly soaked overnight with a mixture of 10% (v/v) of HNO3 (65% Aristar®) 

followed by final rinses with distilled de-ionised water (DDW) (Bocca et al., 

2006).

In order to test whether any analyte was lost between the sample collection and 

analysis, the variation of elemental levels was determined as a function of storage 

time for replicate analysis of a "pooled" tear drop sample, as shown in Table 2.6 

and Figure 2.3. A recovery value (%R) was calculated as 100 x measured 

concentration after four weeks/measured concentration after one week and an 

acceptance limit between 90 and 110% was considered as the desired range 

according to the criteria described by the Commission Decision 2002/657/EC
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(Olmedo et al, 2010). A stability study of 10 elements in a "pooled" tear drop 

sample over 4 weeks storage at 4°C revealed no significant differences for B, V, 

Cr, Fe, Mn, Cu, Zn, As, Sr and Cd (see Appendix E).

Table 2.6: Elemental levels (mean and standard deviation (pg/1)) and percentage 
recovery values for replicate analysis of a "pooled" tear drop sample stored in a 
fridge at 4°C and a repeatedly analysed (n = 6 ) over a 4 week period.

Element Mean value and standard deviation ((xg/1) % RW eek(l) Week (2) Week (3) Week (4)
B 509 ± 23 511±21 510±19 514±21 10 1
V 2.76 ± 0.05 2.69 ± 0.08 2 . 6 8  ± 0.08 2.60 ± 0.06 94
Cr 3.95 ±0.09 3.73 ±0.17 3.81 ±0.17 3.77 ±0.15 96
Mn 19.44 ± 1.80 19.38 ±1.10 18.14 ±0.94 18.72 ± 1.01 96
Fe 283 ± 13 284 ± 14 284± 11 286± 11 101
Cu 207 ± 7 204 ± 8 209 ± 6 208 ± 7 1 0 0

Zn 758 ±14 754 ± 13 751 ± 11 750 ± 12 99
As 0.48 ± 0.06 0.50 ±0.09 0.48 ±0.10 0.48 ± 0.09 98
Sr 598 ± 27 591 ±22 589 ±25 594 ± 25 99
Cd 0.28 ± 0 .0 1 0.26 ± 0 . 0 2 0.28 ± 0 . 0 2 0.27 ± 0.02 97

% Recovery is calculated for first and last mean values (%R = mean value for 
week (4) x 100/ mean value for week (1)), R = recovery.

1000

100  -

«

I
1 0 -

0.1

y  —  — — — — —  — — — — — — — — — f  — —  — — — — —  — f
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4*—' —a—
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Figure 2.3: Variation of elemental mean values (pg/1) of a "pooled" tear drop 
sample as a function of storage time.
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In general, for most of the trace elements investigated there was good agreement 

between the measured values throughout the storage period and the percentage 

(%) recovery values, which were found to be between 9 4 -1 0 1 % . The effect of 

storage time on the elemental levels in tear drops is presented in Figure 2.3.

Overall the various storage times produce consistent elemental mean values for 

the replicate analysis of a "pooled" tear drop sample over a four week storage 

period from the time of sample collection.

2.2.4 Saliva

Saliva samples were taken from the mouth after 15 hours of fasting, as shown in 

Table 2.3. All subjects were requested to rinse their mouth three times with 

distilled water (Gil et ai, 2011). After discarding the first 1 ml, 5 to 10 ml were 

collected in Sterilin® containers (25 ml) (Fisher Scientific UK Limited, Bishop 

Meadow Road, Loughborough, Leicestershire, UK) over a period of 10 to 20 

minutes (Kim et al, 2010). A pooled sample (30 ml) was collected from six 

individuals from the same family for analytical development purposes and quality 

control measurements (Section 2.8). The samples were stored and transported to 

the laboratory, as described in Section 2.2.3.1. Any sample that contained blood 

was directly discarded. All saliva samples were centrifuged for 10 minutes at 

3000 rpm, and filtered through Millex filter units with MF-Millipore (0.45 pm) in 

order to remove cellular debris, foam and protein. A 1 ml portion of saliva 

supernatant was transferred into a clean, labelled 15 ml Sterilin® centrifuge tube 

(Fisher Scientific UK Limited, Bishop Meadow Road, Loughborough, 

Leicestershire, UK), and 9 ml of DDW was added to each solution, resulting in a 

dilution factor of 10 fold. A reagent blank was prepared using the same procedure. 

Certified Reference Materials (SRM 1643e and TDMA 54.4) were also prepared 

for QC measurements, as outlined in Section 2.8.3. All samples were stored at 4°C 

in a fridge until ICP-MS analysis (Section 2.6). The preparation procedure for 

saliva is highlighted in Figure 2.4.
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Saliva sample 
( 5 - 10ml)

Reagent blank 
(DDW9

Centrifuge (3000 
ipm for 10 minutes)

Pooled saliva 
sample (30 ml)

1 ml of each
sample was diluted 

with 9 ml DDW

Filtration (0.45 urn)

CRM(SRAi 1643e 
and TMDA 54.4)

Saliva, reagent blank 
and CRM samples 

were stored in a ftidge 
(4^C) for ICP-MS 

anal\'sis

Figure 2.4: The development method for saliva analysis.

2.2.5 Scalp Hair

Scalp hair samples were collected from the same site of the head for all 

individuals, namely, from the back of the head, less than 1 cm from the scalp 

using acetone/distilled deionised water washed scissors. This pre-treatment was 

undertaken to prevent contamination introduced by the tool during sample 

collection. Generally, a sample (mass > 0.5 g) was collected and stored in a 

polyethylene bag at room temperature until the time of analysis (Rodrigues et al, 

2008; Hartman, 2006; Senofonte et al, 2001). Hair samples were cut into small 

pieces (~ 5 mm) using acetone/distilled deionised water washed scissors so as to 

make the sample more homogenous (Hartman, 2006). The cut hair samples were 

transferred into a labelled 50 ml Sterilin® centrifuge tube (Fisher Scientific UK 

Limited, Bishop Meadow Road, Loughborough, Leicestershire, UK) for the 

washing procedure.
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2.2.5.1 Effect of Sample Mass and Dilution Factor

The dilution factor (mean of sample and digest/dilution volume) used to prepare 

the sample for analysis is an important feature of the analysis procedure. If too 

little a sample is available, the resulting large dilution factor which is linked to the 

need to have a certain volume for solution uptake by the instrument, results in a 

possible over-estimate of the calculated concentration.

The trace element levels of a "pooled" scalp hair sample using different masses 

(0.15, 0.20, 0.25, 0.40 and 0.50 g) are summarised in Table 2.7 (for a constant 

dilution factor) and Table 2.8 (for a different dilution factor).

The results for the constant dilution factor method show a consistently low RSD 

of < 12%, (Table 2.7). In contrast, the data for variable dilution factor method 

produces high RSD’s ranging from 6  to 70% (Table 2.8). It is suggested that this is 

mainly due to the small analyte signal relative to the background which for small 

sample masses is over corrected using a large dilution factor (Stovell, 1999). 

Thus, the constant dilution factor method provides the best results for most of the 

elements under investigation, resulting in acceptable levels of precision.

Table 2.7: Elemental levels (mg/kg) for "pooled" scalp hair sample -  unwashed 
(n = 3) ranging from 0.15 to 0.50 g mass digested in different volumes (constant 
dilution factor, 1 0 0  fold).

Elementa lever (mg/kg)

E le m e n i" " ^ ^
1 0 0 10 0 1 0 0 1 0 0 1 0 0 %RSD

Na 159 154 156 154 150 2
Mg 39.5 43.6 42.2 42.6 44.6 4
Ca 241 245 246 242 246 1

V 0.35 0.33 0.32 0.33 0.35 4
Cr 0.40 0.35 0.38 0.36 0.39 5
Mn 3.74 3.05 3.39 3.33 3.13 8
Fe 2 2 . 6 22.9 22.3 22.9 23.3 2
Cu 19.82 20.28 18.68 21.18 19.63 5
Zn 172.56 149.03 149.03 169.66 196.79 12

As 0 . 6 8 0.63 0.74 0.73 0.76 7
Sr 7.71 6.97 7.19 7.60 7.18 4
Cd 0.07 0.08 0.09 0.07 0.08 11

DF = dilution factor, RSD is relative standard deviation, n = 3 replicates, ’ all 
the elements were determined by a Finnigan MAT Sola ICP-MS instrument 
except Na, Mg, Ca and Fe by FAAS.
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Table 2.8: Elemental levels (mg/kg) for "pooled" scalp hair sample -  
unwashed (n = 3) ranging from 0.15 to 0.50 g mass digested in a constant 
volume 50 ml (variable dilution factor ranging from 100 -  to 333 fold).

Elementa lev e r  (mg/kg)

^Elem enT^"^^^ 333 250 200 125 100 %RSD

Na 175 161 157 155 149 6
Mg 65.2 58.1 53.1 48.5 44.7 9
Ca 297 276 255 244 242 7
V 0.10 0.14 0.22 0.19 0.38 52
Cr 0.19 0.11 0.14 0.11 0.39 63
Mn 11.57 5.69 7.75 4.56 3.17 50
Fe 126 93 50 32 22.5 70
Cu 37.87 36.84 35.49 21.77 20.23 28
Zn 286.73 189.20 293.17 181.75 202.29 24
As 3.21 1.68 1.45 0.73 0.80 64
Sr 2.84 2.29 4.68 6.87 7.16 47
Cd 0.04 0.06 0.07 0.09 0.09 30

DF = dilution factor, RSD is relative standard deviation, n = 3 replicates, * all 
the elements were determined by a Finnigan M AT Sola ICP-MS instrument 
except Na, Mg, Ca and Fe by FAAS.

The effect o f using a variable and constant dilution factor on the elemental 

concentration can be demonstrated in Figures 2.5 & 2.6. In general, the constant 

dilution factor method produces a consistent calculated elemental level for the 

"pooled" scalp hair samples, whereas the variable dilution factor method provides 

typically variable estimates o f the final calculated concentration.

•Constant DF •Variable DF
350 

p  300 
M 250

200
150
100

0 0.2 0.4 0.6

Hair mass (g)

Figure 2.5: Effect o f the dilution factor (constant and variable) on the analysis o f 
calcium in "pooled" scalp hair (unwashed) sample.

54



Chapter Two: Analytical Methodology, Instrumentation and Statistical Methods

'Si)
&
"Ô)
I
c

‘Constant DF •Variable DF
14

12

10

8

6

4

2

0
0.20.15 0.25 0.4 0.5

Hair mass (g)

Figure 2.6: Effect o f the dilution factor (constant and variable) on the analysis o f 
manganese in "pooled" scalp hair (unwashed) sample.

This finding is very important as most researchers only use a "fixed" sample 

volume for digesting/diluting the sample during pre-analysis preparation, 

irrespective o f the available sample mass. Furthermore, the "best practice" would 

be to set a minimum sample mass o f 0.25 or 0.50 g, but this is not always possible 

practice for many study populations, for example, children or males that tend have 

a limited amount o f scalp hair available for sampling and analysis.

2.2.5.2 Washing Procedure

The main function o f a washing procedure is to remove exogenous contaminants 

from the surface o f the scalp hair in order to provide true levels for endogenous 

elements. Several washing procedures have been proposed in the literature for 

scalp hair samples. Many authors believe that an ideal washing procedure would 

remove only external contaminants and leave endogenous elements (Apostoli, 

2002). In this study, three washing procedures were undertaken to determine the 

effect o f washing human scalp hair relative to an unwashed portion, namely, for 

sequential washing in an ultrasonic bath with: (i) M ethod A: acetone - water-water- 

water-acetone; (ii) Method B: ether-Triton X-100-water-water; and (iii) M ethod 

C: ether-acetone-water-ether (Gault et al., 2008; Rodrigues et al, 2008). For the
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method development, a "pooled" scalp hair sample was washed using these 

methods to investigate which of the methods could be used as the appropriate 

method for scalp hair analysis. Method A [the International Atomic Energy 

Agency (IAEA) procedure, (IAEA, 1978)] was found to be preferred in this study 

based on the validation data, as reported in Section 2.3.2.1. In this method, a 

sufficient volume of acetone was added to each tube to cover the hair sample. All 

tubes were sonicated for 10 minutes (35 MHz) at room temperature and then 

separated by centrifugation (1000 rpm for 5 minutes). The same procedure was 

repeated three times with DDW, and finally with acetone. The washed samples 

were dried in an oven overnight at 60°C and subsequently stored in a labelled 

polyethylene bag until pre-analysis digestion.

2.2.S.3 Digestion Methods

In general, digestion methods are used to destroy the organic matter of a sample 

leaving behind only the inorganic residue. Three digestion methods were used in 

this study to digest a "pooled" scalp hair sample, namely: (i) Method X: dry 

ashing without nitric acid addition (muffle furnace); (ii) Method Y: dry ashing 

pre-nitric acid digestion in a water bath within the fume cupboard; and (iii) 

method Z: wet digestion using nitric acid in a Kjeldahl™ tube (Kazi e t  a l . ,  2008; 

Forte e t  a l . ,  2005). In dry ashing the sample is slowly decomposed in a muffle 

furnace over a ramped temperature range of 200 to 500°C, leaving behind an 

inorganic residue that is soluble in dilute acid. In the case of wet digestion the 

organic matter can be destroyed by heating with an oxidizing acid, such as nitric 

acid.

D r y  a s h i n g  ( M e t h o d X )

In this method, 0.500 ± 0.001 g of a "pooled" unwashed scalp hair was weighed 

out in a clean/dried 100 ml Pyrex™ beaker (n = 5 replicates), dry ashed for 2 hours 

at 200°C in a muffle furnace, before raising the temperature to 500°C overnight. 

The ash was dissolved in 1 ml of concentrated nitric acid (Aristar® 65%) and then 

diluted to 50 ml with de-ionised water in a polyethylene volumetric flask. Hair 

samples were centrifuged at 3000 rpm for 10 minutes and subsequently filtered
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through a Millex filter, MF-Millipore (0.45 pm)\. Then, samples were transferred 

into a labelled 50 ml Sterilin® centrifuge tube and stored in the fridge at 4°C prior 

to ICP-MS analysis (Dombovari & Papp, 1998).

D r y  a s h i n g  -  p r e - n i t r i c  a c i d  ( M e t h o d  Y )

The same mass of a "pooled" scalp hair was used in this method (0.500 ± 0.001 

g), then 1 ml of concentrated nitric acid (Aristar® 65%) was added to each hair 

sample (n = 5 replicates) using a Pyrex™ beaker in a fume cupboard and left 

overnight. The same steps (as described in Method X) were used to digest these 

samples using the muffle furnace. Method Z (Friel & Ngyuen, 1986).

W e t  d i g e s t i o n  ( M e t h o d  Z )

The same mass (0.500 ± 0.001 g) of a "pooled" scalp hair was utilised and 

transferred into a clean/dried Kjeldahl™ Tube for method development. 1 ml of 

nitric acid (Aristar® 65%) was added to each tube, then the digestion tubes were 

placed on a digestion block for heating at 165°C (± 10°C) until the hair sample 

was digested, namely ~ half hour. All digested samples were diluted with DDW 

using a polyethylene volumetric flask, resulting in a dilution factor of 1 0 0  fold. 

Sample solutions were centrifuged for 10 minutes at 3000 rpm (MSE Mistral 2000 

Thermo Life Sciences) and filtered through a Millex filter, MF-Millipore (0.45 

pm) (Millipore, Carrigtwohill, Co. Cork, Ireland). The digested hair solutions 

were stored in a labelled 50 ml Sterilin® centrifuge tube and stored in the fridge at 

4°C prior to ICP-MS analysis. Along with the scalp hair samples, a reagent blank 

and certified reference human hair materials (GBW09101 and GBW07601 

Human Hair), provided by the National Research Centre for Certified Reference 

Materials, China, and were treated in the same manner according to the 

procedures using dry and wet digestion in order to check the precision and 

accuracy for each method. The preparation procedure for hair and nail samples is 

highlighted in Figure 2.7.

57



Chapter Two: Analytical Methodology, Instrumentation and Statistical Methods

0 .500 Î 0.001 g of washed scalp hair or fingernail was weighed out into a 
plastic container and then transferred quantitatively into a long (30 cm) 

K jeldalil^ tube (Barloworld Scientific, Staffordshire, UK)

1 ml of concentrated nitric acid (Aristar® 65%) was added to 
each tube and subsequently covered with P.V.C. Clingfilm and 

placed in a dig est or at 165°C (± 10®C) (-  half houri

I
After digestion, solutions were transferred to a clean dried and 
labelled 50 ml polyethylene volumetric flask and diluted with 

de-ionised water (DDW; 18.2 MQ)

I
r  A

Solutions were centrifuged for 10 minutes at 3000 
rpm, and filtered through a Millex filler unit with 

membrane (0.45 urn)
^  ........ -....  - r- - ...*------- -------------- -T

Solutions w-ere then decanted off into a clean, 
labelled 50 ml Sterilin® centrifuge tube and kept at 
4®C in a fridge for 1 week before ICP-MS analysis

^

Figure 2.7: Digestion procedure using Kjeldahl™  tube for the pre-analysis 
preparation o f washed sealp hair and fingernails.

2.2.6 Fingernails

Fingernail samples were eollected from all 10 fingers using acetone distilled de

ionised water washed clippers (Slotniek et a i, 2006). The majority o f studies have 

used this method to obtain nail samples, but in some cases only thumb nails have 

been eolleeted (Helzlsouer et al., 2000). The main advantages to colleet all fingers 

rather than one big finger are: sufficient sample mass, and an estimate o f  the
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complete hand of exposure (Longnecker et al, 1993). Fingernail samples were 

cleaned manually of any visible dirt (e.g. soil) on the surface of nails prior to 

application of the washing procedure (Samanta et al, 2004).

The effect of sample mass and dilution factor; washing procedure and digestion 

method were determined and validated in similar manner as described in scalp 

hair, the results are reported in Appendix F. In brief, the cut fingernail samples 

were washed using a sufficient volume of acetone to cover the fingernails in a 25 

ml Sterilin® centrifuge tube (Fisher Scientific UK Limited, Bishop Meadow Road, 

Loughborough, Leicestershire, UK), sonicated for 10 minutes at 35 MHz at room 

temperature and subsequently separated by centrifugation (5 minutes, 1000 rpm). 

The fingernails were washed a further three times with DDW (~ 5 ml) then a final 

acetone wash. On each occasion the fingernails were sonicated (10 minutes, 35 

MHz) and centrifuged (5 minutes, 1000 rpm). Samples were dried in an oven 

overnight at 60°C then stored at room temperature in labelled polyethylene bags. 

Samples were digested using Kjeldahl™ tubes in the same manner as described in 

scalp hair (Section 22.53), as shown in Figure 2.7.

2.3 Validation of Analytical Methods

2.3.1 Cigarette Tobacco

In this study, two digestion methods were used to prepare cigarette tobacco 

samples for multi-element analysis by inductively coupled plasma atomic 

emission spectrometry (ICP-AES). Table 2.9 shows the results of determining 

trace element levels (mg/kg) by the two digestion methods. In order to evaluate 

whether there is any significant difference between the two methods for 

determining the levels of trace elements in cigarette tobacco, a paired t-test was 

used to determine the difference between each of the paired measurements on 

each sample. An average difference is calculated and the individual deviations of 

each from average difference are used to calculate the standard deviation (further 

information can be found in Appendix D for data and Appendix C for equations). 

If ̂ caic is greater than /crit for n-1 degrees of freedom, then a statistically significant 

difference is observed (Table 2.9). In general, there are no significant differences
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(at P < 0.05) between the levels of trace elements (mg/kg dry weight) measured 

by the dry ashing and Kjeldahl™ tube methods with the only exception being Sr.

Table 2.9: Comparison of the elemental levels (mg/kg) in commercial tobacco 
samples (n = 16) from Karbala, Iraq using two digestion methods along with a 
paired t-test results.
Element Kjeldahl™ tube Dry ashing tcaXc

B nd nd nd
V 0.42 ±0.12 0.45 ±0.12 0.52
Cr 0.62 ±0.17 0.69 ±0.18 0.74
Mn 99 ± 24 102 ±21 0.19
Fe 257 ± 52 264 ± 50 0.23
Cu 5.36 ±2.54 7.53 ± 1.66 0.81
Zn 26.8 ±5.2 23.2 ±4.1 1.09
As 1.7 ± 1.1 0.5 ± 0.2 1.03
Sr 75± 14 57±11 3.37"
Cd 0.90 ± 0.47 0.79 ± 0.38 0.56

ĉaic = calculated value, the critical value (̂ cnt) at the 95% confidence level for
15 degrees of freedom is 2.13, * indicate significant difference level at f  < 0.05
(i.e. ĉalc ^ tcrit), nd = not determined.

The accuracy for both digestion methods was evaluated by replicate analysis (n = 

3) of a certified reference material NIST SRM® 1573a Tomato leaves and 

reporting the results by determining the percentage (%) recovery, as shown in 

Table 2.10. The dry ashing method provides poorer levels of accuracy than the 

Kjeldahl™ tube method in terms of the % recovery data. The high temperature in 

dry ashing leads to loss of volatile elements, such as cadmium and zinc (Sardans 

et al, 2010: Kubova et al, 1997). The findings show that the %R measured by the 

Kjeldahl™ tube method are at an acceptable range between 90 and 110%. 

Moreover, the trend is observed for the CRM (NIST SRM® 1573 Tomato Leaves) 

analysis with the higher elemental levels being found using the Kjeldahl™ tube. 

As such, the Kjeldahl™ method was accepted as the preferred digestion procedure 

for cigarette tobacco. The precision of the Kjeldahl™ method was calculated by 

replicate analysis (n = 10) of a "pooled" tobacco brand, as outlined in Section 

2.8.3.
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Table 2.10: Accuracy levels as attained through the analysis of the certified 
reference material, NIST SRM® 1573 Tomato leaves using different digestion 
methods, presented as mean ± SD and %R for measured values and mean ± SD 
for certified values.

Element 
(n = 3)

Elemental level (mg/kg)
Digestion method

Certified
value

Dry ashing Kjeldahl™tube
Measured value 

mean ± SD %R Measured value 
mean ± SD %R

B nd nd nd nd nd
V 0.835 0.772 ±0.01 92 0.90 ± 0.03 108
Cr 1.99 1.90 ±0.02 96 1.84 ±0.01 93
Mn 246 204 ± 6 83 222.7 ± 0.7 91
Fe 368 247.19 ±1.25 67 332.7 ± 0.6 90
Cu 4.7 4.1 ±0.02 85 5.16 ±0.03 1 1 0
Zn" 29 ± 2 22.23 ±0.14 77 27.9 ± 0.2 96
As" 3.1 ± 0.3 2.82 ± 0.1 91 2.82 ± 0.05 91
Sr" 1 0 0  ± 2 89.9 ± 0.99 90 90 ±1 90
Cd 1.52 1.31 ±0.31 8 6 1.49 ±0.01 98

%R = percentage recovery = (measured value / certified value) x 1 GO, " Citrus 
leaves SRM 1572 has been used for Zn, As and Sr due to there are no certified 
values were found for these elements in NIST SRM® 1573 Tomato leaves, 
NIST is National Institute of Standards and Technology, nd = not determined.

2.3.2 Scalp Hair

2.3.2.1 Washed Procedure

Table 2.11 shows data reported using different washing procedures for “pooled" 

human scalp hair samples. The mean elemental values decreased as a result of the 

various washing procedures relative to an unwashed "pooled" scalp hair sample 

(Hawkins & Ragnarsdottir, 2009). The effectiveness of the various washing 

procedures was evaluated by determining the percentage analyte removal level, 

compared with the unwashed hair. The percentage removal for most elements was 

significantly higher for washing methods A and B than method C. However, 

method B was more problematic than method A as frothing from the detergent 

increased the washing time. Interestingly, the highest % levels of elemental 

removal was for Na > Ca ~ Mg ~ Sr ~ Cr > As ~ Cd > Mn > V ~ Fe ~ Cu > Zn. 

Therefore, these elements associated with "soil / dust" contribution and body
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secretion / sweat seem to produce the higher exogenous levels on the scalp hair 

surface (Forte et ai, 2005). As a result, based on these findings, the sequential 

washing procedure (method A: acetone-water-water-water-acetone) was adopted 

in this study (Rodrigues et ai, 2008).

Table 2.11: Elemental concentrations (mg/kg dry weight) and in brackets the 
percentage removal for "pooled" scalp hair sample (using a 0.50 g, constant 
dilution factor 100 fold dilution, volume of 50 ml) using different washing 
procedures* (n = 3).

Element
Elemental level (mg/kg) (% removed)

Unwashed Washing procedures*
A B C

Na 299 39 (87) 33 (89) 52 (83)
Mg 21.7 11.5 (47) 12.6 (42) 11.8(46)
Ca 793 401 (49) 413 (48) 373 (53)
V 0 .2 1 0.19(10) 0.19(10) 0 .2 1  (0 )
Cr 0.15 0.08 (46) 0.10(33) 0.11 (27)
Mn 2.51 2.14(15) 2.10(16) 2.33 (7)
Fe 25.6 23.1 (10) 16.7 (35) 18.1 (29)
Cu 26.00 23.59 (9) 25.58 (1.6) 24.49 (6 )
Zn 138.98 129.78 (7) 133.50(4) 126.34 (9)
As 0.26 0.20 (23) 0.15 (42) 0.24 (8 )
Sr 4.96 2.61 (47) 3.04 (39) 3.31 (33)
Cd 0.25 0 . 2 0  (2 0 ) 0.10(60) 0 .2 1  (16)

*A: sequential washing in ultrasonic bath with acetone-water-water-water- 
acetone, B: sequential washing in ultrasonic bath with ether-Triton x-100- 
water-water, C: sequential washing in ultrasonic bath with ether-acetone-water- 
ether, values in brackets were calculated using this equation. Removed % = 
{(unwashed value -  washed value)/unwashed value) x 1 0 0 .

2.3.2.2 Digestion Method

The accuracy of digestion procedures was tested by using Certified Reference 

Material GBW 09101 Human Scalp Hair (Bass, 2001). In the case of the 

Kjeldahl™ tube method, there is a good agreement between the measured and 

certified values, and the recovery values were between 90-109 % with exceptions 

being Ca, Cr and As (Table 2.12). The measured value for Ca was lower than the 

certified value due to the formation of a less volatile compound between Ca and 

phosphate in the flame at 422 nm. This compound is less volatile when compared
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with calcium chloride and then prevents the formation of Ca atoms (Ebdon et al., 

1998). Chromium can be lost during the wet digestion as volatile chloride 

(Stovell, 1999). The polyatomic interference "̂ ^Ar̂ ^Cl̂  can overlap with ^^As^and 

reduce the accuracy of As in ICP-MS analysis (Broekaert, 2005).

Table 2.12; Accuracy and precision assessment for human scalp hair CRM 
GBW 09101 using Kjeldahl™ tube method, presented as mean, %RSD and 
%R for measured values and mean for certified values.

Element 
(n = 3)

Elemental levels (mg/kg)
Accuracy Precision

Measured value Certified value (%R) %RSD
Na 289 266 109 4.6
Mg 96 105 92 5.8
Ca 859 1090 79 3.6
V 0.062 0.069 90 4.1
Cr 3.97 4.77 83 3.1
Mn 2.69 2.94 92 2.9
Fe 64.56 71.2 91 3.6
Cu 22.5 23 98 2.7
Zn 177 189 94 0.4
As 0.78 0.59 132 2.4
Sr 4.54 4.19 108 1.5
Cd 0.089 0.095 94 7.8

RSD is re 
elements v 
except Na,

ative standard deviation, %R is percentage recovery, all the 
/ere determined by a Finnigan MAT Sola ICP-MS instrument 
Mg, Ca and Fe by FAAS.

The precision of the digestion method, based on triplicate analysis of the GBW 

09101 material produced acceptable levels of relative standard deviation (RSD) 

between 0.4 -  7.8% for all elements (Table 2.12). The wet digestion method using 

a Kjeldahl™ tube provided the best data in this work, and as a result was employed 

for the complete digestion of washed human scalp hair in this research.

Overall, the washing and digestion methods validated above were used for scalp 

hair and fingernail preparation with respect to the available sample mass for each 

material. The results for fingernails are reported in Appendix F based on a similar 

procedure discussion as reported for scalp hair.
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2.4 Analytical Instrumentation

There are a wide range of analytical techniques that have been used for trace 

element analysis, such as flame atomic absorption spectrometry (FAAS), 

inductively coupled plasma atomic emission spectrometry (ICP-AES) and 

inductively coupled plasma mass spectrometry (ICP-MS) (Harris, 2007). The 

ideal analytical technique for measuring trace elements in environmental and 

human samples must offer: (i) very low detection limits; (ii) a wide linear 

dynamic range; (iii) simple interference-free data; (iv) qualitative and quantitative 

analysis; (v) simple sample preparation; and high throughput per determination 

(Ward, 2000). The following sub-sections describe in detail the analytical 

instrumentation employed throughout this work. The fundamentals, instrument 

configuration, interferences and methods of calibration are reported.

2.5 Flame Atomic Absorption Spectrometry

Flame atomic absorption spectrometry (often abbreviated FAAS) was used 

throughout this work to determine elemental concentrations in human scalp hair 

and was particularly suited for the analysis of concentrations at the mg/kg or ppm 

level, which would be unsuitable for ICP-MS determination without vast 

dilutions. This technique has been widely used for the determination of major, 

minor and trace elements in water and biological samples, including, tissues and 

fluids (Batista et al., 2008; Sukumar & Subramanian, 2007; Kazi et ai, 2006; 

Lorenzo et al., 2005; Das et al., 2004; Bustamante et al., 2000; Nowak & 

Chmielnicka, 2000).

2.5.1 Fundamentals

Flame AAS follows an exponential relationship between the intensity I  of 

transmitted light and the absorption path length b (Lambert’s law), as shown 

below:

I = Iq exp (—Kyb')--------------------- Equation 2.2

where Iq  is the intensity of the incident light beam and K, is the absorption 

coefficient at the frequency v.
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In quantitative spectroscopy, absorbance A is defined by

A = log(7o//)..................... ............Equation 2.3

Absorbance is so important because it is directly proportional to the concentration, 

c, of the light absorbing species in the sample (Beer-Lambert law):

A = e tc  ...................—...........Equation 2.4

The concentration of the sample, c, is usually given in units of moles per litre (M) 

or mg/1 (ppm) and pg/1 (ppb) (Ebdon et a i, 1998; Skoog et al., 1998). The 

quantity e (epsilon) is called the molar absorptivity (or extinction coefficient) and 

has the units M‘  ̂ cm'^ to make the product ebc dimensionless. The path length, b, 

is commonly expressed in centimetres. A simple schematic of a typical FAAS 

instrument is shown in Figure 2.8.

Chopper Flaine

Hollow cathode Fuel 
lamp Oxidant

Detector

Monochromator

/ Readout Amphfier
Nebuhser

□
Sample

Figure 2.8: Simple schematic diagram of flame atomic absorption instrument 
(adapted from Vandeeasteele & Block, 1993).

In flame AAS, the sample solution is typieally aspirated into a flame by a 

pneumatic nebuliser. The sample is drawn up through a capillary tube by 

deereased pressure, created by an expanding oxidant gas at the end of the 

capillary; when the liquid meets with the gas, fine droplets of the sample liquid 

are formed. These are then mixed turbulently with additional oxidant and fuel 

gases, before passing into the burner head and flame. Approximately 85 -  90% of 

the droplets are removed from the aerosol as they deposit in the burner head and
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drain away to waste. A flame is used as an atomisation source to produce free 

atoms. In the flame, the aerosol is desolvated, vaporised and finally atomised.

The energy transferred to the atoms is directly proportional to the flame 

temperature. If it is too low, the sample is not atomised and if it is too high, the 

atoms are excited further to a state of ionisation. In the latter situation, the atoms 

are no longer in the ground state and are unable to absorb energy from the light 

source. In this work an air/acetylene flame was used, which has a combustion 

temperature of approximately 1540 K. Light at a characteristic wavelength, which 

is dependent on the element of interest is passed through the flame and in the 

presence of the analyte atoms, a portion of this light is absorbed. The unabsorbed 

light passes through a monochromator and is detected. The absorption of light is 

directly proportional to the concentration of the element of interest, as described 

by the Beer-Lambert law (Equation 2.4) (Harris, 2007; Skoog et al., 1998; 

Vandeeasteele & Block, 1993). The light source used in this work was a hollow 

cathode lamp (HCL) which comprised of a glass container with a quartz window. 

The cathode is inside a hollow cylinder covered with the element of interest or an 

alloy of the elements and the container is filled with an inert gas, either argon or 

neon. When a potential of 300 V (1 -  50 mA) is applied, the inert gas ionises and 

the positive ions accelerate towards the cathode. Upon striking it, some of the 

atoms of the cathode material are transformed into the gaseous state. These are 

then excited by collisions with the electrons and ions, causing them to emit their 

characteristic atomic emission line (Skoog et al., 1998; 1993; Christian, 1994).

2.5.2 Interferences

Interferences are effects that cause a systematic deviation in the measurement of 

the signal whilst the concentration of the analyte remains unchanged. Many of the 

interferences caused by concomitants are quite similar with all atomic 

spectrometric techniques (Ebdon et al., 1998; Vandeeasteele & Block, 1993).

2.5.2.1 Spectral Interferences

Spectral interferences occur when the absorption line of interfering 

element/species overlaps or is close to the wavelength of the element of interest
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(i.e. be within 0.01 nm). In order to minimise the effect of spectral interferences, 

wavelengths have been selected which are the least susceptible to interference 

(Elsaied et al., 2009; Dockery et al, 2008). Interferences from the matrix can be 

physical or chemical in nature (Skoog et al., 1998).

2.5.2.2 Physical Interferences

Typical physical interferences can arise from dissolved or suspended solids in the 

sample or have a different viscosity to the calibration standards which affects the 

rate of sample uptake as well as the nébulisation process. The best way to correct 

for physical interferences is to matrix-match the calibration standards to that of 

the samples (Vandeeasteele & Block, 1993).

2.5.2.3 Chemical Interferences

Chemical interferences are the biggest source of problems in FAAS. Chemical 

matrix effects occur when compounds of low volatility are formed in the flame, 

typically by anions combining with the element of interest, and hence eliminating 

the proportion of free atoms of the sample in the flame and subsequent detection 

(Vandeeasteele & Block, 1993). Some elements, such as calcium, readily form 

compounds with a low volatility, such as oxides, phosphates or sulphates (Fifield, 

2000). In flames where oxygen is readily available, refractory metal oxides are 

formed making these metals (e.g. iron) highly susceptible to this type of 

interference (Dockery et al, 2008). This effect can be minimised by using several 

approaches such as a releasing agent; hotter flame; and adjustment of the 

nebuliser to produce a smaller particle size (Ebdon et al., 1998). In this study, 1 

ml of 2 % SrClz was used as a 'releasing agent', which binds preferentially to the 

anions present, releasing the element of interest, namely Ca (Nkono & Asubiojo, 

1998).

2.5.2.4 Ionisation Interferences

Ionisation interferences occur when a sample contains easily ionised elements of 

interest. Alkali and alkaline earth elements are especially susceptible to this type
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of interference. Ionisation decreases the concentration of free atoms in the flame 

and, therefore, must be minimised. This can be achieved through using an 

ionization suppressor to all samples and standards (Vandeeasteele & Block, 

1993).

2.5.3 Limitations of FAAS

There are several limitations of FAAS, aside from the affecting interferences. It is 

a mono-elemental technique which is very useful if only one or two elements are 

to be determined per sample. Analyses are also fairly rapid (~ 15 second / 

sample). However, the samples volume requirement for solution nébulisation is 

quite high -  requiring 2 to 3 ml per element. The elemental detection limits are 

also higher when compared to other atomic spectrometric techniques (Harris, 

2007; Vandeeasteele & Block, 1993).

2.5.4 Instrumentation

A Perkin Elmer Model AAnalyst 400 spectrometer (Perkin Elmer, Beaconsfield, 

UK) was used, which is a computer controlled spectrometer, operating Winlab 32 

for AA™ software. It has a double beam echelle monochromator optical system 

with a segmented solid state detector. An air-acetylene flame was used throughout 

with a 10 cm burner head. Table 2.13 summarises the operating parameters. Three 

readings were taken per sample then averaged, with a separation time of 2  seconds 

between each measurement.

Table 2.13: Typical operation conditions for elements analysed by a Perkin 
Elmer AAnalyst™ 400.

Parameter Na Mg Ca Fe
Wavelength (nm) 589 285.21 422.67 248.33

Slit Width/height (mm) 1 .8 /0 .6 2.7/1.05 2.7/0.6 1.8/1.35
Current (mA) 8 6 10 30

Acetylene flow (1/min) 2.5 2.5 2.5 2.5
Air flow rate (1/min) 10 10 10 10

Limit of Detection (mg/1) 0 .0 1 0.03 0.04 0 .0 1
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2.5.5 FAAS - Calibration

Flame AAS was calibrated before sample analysis by serial dilution of standards 

from 1000 mg/1 single element calibration standards (Aristar®, BDH, UK). A 

calibration blank was also prepared from 1% (v/v) nitric acid (Aristar® 65%) 

(Fisher Scientific UK Limited, Bishop Meadow Road, Loughborough, 

Leicestershire, UK). The calibration range comprised of at least 6  standards, 

including the blank. The calibration curves were obtained using Microsoft® 

Excel™ by plotting absorbance of the calibration standards against the 

concentration. The resultant curves were used to determine the amount of analyte 

in each sample. The least squares regression line and the coefficient of 

determination, R ,̂ were also calculated, as described in Appendix C (Miller & 

Miller, 2010). Figure 2.9 shows a typical calibration graph for iron produced by 

the Perkin Elmer AAnalyst™ 400 FAAS software package.

0.25
v=0.0S 45x-0 .O 018
: -----

0 0.5
Couceutratioa, (mgT)

Figure 2.9: Typical calibration graph for iron as determined by Perkin Elmer
AAnalyst™ 400 FAAS.

2.6 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Inductively coupled plasma mass spectrometry (ICP-MS) has been continually 

developed since the 1980s by combining the ease of sample introduction and rapid 

analysis of ICP technology with the accurate and low detection limits of MS. The 

resulting technique is capable of trace multi-elemental analysis, often at the ng/1 

level (Thomson, 2004; Pin & Le Fevre, 2002).
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2.6.1 Fundamentals

Inductively coupled plasma mass spectrometry (ICP-MS) is the most widely used 

method for trace element analysis. In ICP-MS, the sample is introduced into the 

plasma as an aerosol, where it is desolvated, vaporised and ionised. A small 

proportion of the sample is then extracted into the mass analyser system, which is 

under a vacuum of 1 0 '̂  mbar, through differentially pressurised vacuum stages. 

Within the system, the quadrupole mass analyser separates elemental ions based 

on their mass-to-charge ratio {m/z). The ion counts are then acquired by the 

Channel Electron Multiplier. In general, the different ICP-MS instruments have 

many similar components, such as a nebuliser, spray chamber, plasma torch and 

detector, but can deviate quite significantly in the design of the interface, ion 

focusing system, mass separation and vacuum chamber (Vandeeasteele & Block, 

1993). Figure 2.10 shows a schematic of the Agilent 7700 Series ICP-MS 

instrument.

Octopole ORS Cell 0-pole Mass Filter

Ion L en ses
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Control I ej

Ion Lenses Analyse^Interface

ICP
Sample —  
Introduction

Sampling Cone

Skimmer Cone

iForeline 
i  Pump V acuum

Figure 2.10: Schematic of Agilent 7700 Series ICP-MS instrument, EM is electon 
multiplier (adapted from Agilent, 2010).
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2.6.2 Sample Introduction

There are several modes of sample introduction into the inductively coupled 

plasma (ICP), where ionisation takes place. The most common form of sample 

injection is by means of aerosol generated using a pneumatic nébulisation. Other 

methods can also be used, such as ultrasonic nébulisation, laser ablation, hydride 

generation, and electrothermal volatilisation (O’Connor & Evans, 2007; 

Rodushkin & Axelsson, 2003; Vandeeasteele & Block, 1993). In general, there 

are numerous types of nebulisers available including concentric, Babington, cross- 

flow and glass frit, each having their own benefits and disadvantages. The nature 

of sample introduction technique is dependent on several factors: (i) the nature of 

of sample specimen; (ii) the analytical concentration levels; (iii) scope and 

chemical form of the analytes to be determined; and (iv) the quantity of sample 

available for analysis (Taylor, 2 0 0 0 ).

The sample solution is continuously pumped at ~ Iml/min into a nebuliser via a 

peristaltic pump (Figure 2.10), where it is converted into a fine aerosol (<10 pm 

diameter). A sample aerosol then passes through a double-pass spray chamber (at 

a temperature of 4°C) where the larger sample droplets are removed by collision 

with the spray chamber wall and drain off into a waste bottle. This process 

improves the signal stability. In addition, cooling the sample aerosol in the spray 

chamber via a thermoelectric device gives the instrument a very stable ion signal, 

removes some of the water from the sample and reduces the level of polyatomic 

oxide species formed. As a result the spray chamber enables the remaining sample 

aerosol to continue via the gas flow into the injector, that is the centre tube of the 

torch. In this process, only 1 - 2% of the sample solution reaches the plasma 

(Taylor, 2000; Montaser, 1998).

2.6.3 Inductively Coupled Plasma (ICP)

The ICP is an electrically neutral gas that is made up of positive ions and 

electrons (Harris, 2007). The plasma has sufficiently high energy to atomise and 

ionise virtually all elements in the periodic table, which are intentionally 

introduced into it for the purpose of elemental chemical analysis (Thomas, 2008; 

O’Connor & Evans, 2007; Nelms, 2005).
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The plasma is formed by coupling energy produced by a Radio Frequency (RF) 

generator into the plasma support gas via an electromagnetic field, which is 

induced through the induction coil (also called a load coil -  usually copper) 

(Kenkel, 2003; Ebdon et al., 1998). This coil is wrapped two or three times 

around the ICP torch and has water flowing through it for cooling purposes 

(Thomas, 2008). The ICP torch is comprised of three concentric quartz tubes 

through which streams of argon pass, as shown in Figure 2.11. Between the outer 

and inner tube of a quartz torch, plasma gas flows tangentially (spiral) to the 

orifice of the torch. At the end of the torch, radio frequency power between 750 

and 1700 W is applied via an induction coil forming an oscillating magnetic field. 

The plasma then forms when a spark from a Tesla coil is applied to argon gas; 

electrons are stripped from some of the argon atoms. These electrons trapped in 

the magnetic field are accelerated in the closed circular paths to reach energies 

sufficient to ionise gaseous atoms in the field (Nelms, 2005; Thomas, 2003; 

Taylor, 2000). This sustaining process is known as inductive coupling and the 

plasma formed is referred to as an inductively coupled plasma (ICP). The 

collision of these rapidly moving electrons with neutral argon atoms causes 

further electrons to be stripped from the atoms, creating a chain reaction. The 

formed annular plasma fireball consists of neutral argon atoms, positively charged 

argon ions and electrons (Jakubowski, 2008; Nelms, 2005). The plasma will exist 

for as long as the RF power is supplied to the induction coil. In the centre of the 

plasma, temperatures range from 8000 to 10000 K. The sample aerosol is 

instantaneously desolvated, vaporised, thermally atomised and ionised in the ICP. 

Thermal ionisation is induced by collisions among ions, atoms and free electrons 

in the plasma (Equations 2.5 -  2.7) (Thomas, 2003; Taylor, 2000; Vandeeasteele 

& Block, 1993).

Electron impact: M + e“ M'*’ +  2e“  Equation 2.5

Charge transfer: M + Ar’̂ 'T -> M"*" +  Ar ----------------------------Equation 2.6

Penning ionisation: M + Ar”^'*'+^ M"*" +  Ar +  e“  Equation 2.7

where M is the analyte and Ar is the argon plasma gas (Ar"̂ '*' is the metastable 

species). If an electron absorbs sufficient energy equal to the first ionisation 

energy, it escapes the atomic nucleus and an ion is formed.
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In the ICP the major mechanism by which ionisation occurs is thermal ionisation. 

When a system is in thermal equilibrium the degree of ionisation of an atom is 

given by the Saha equation (Equation 2.8) (Jakubowski, 2008; Ebdon et a l, 1998).

12^ = 2 | ( 2 7 r m f e ^ )  ' e x p  - Equation 2.8

where and are the number of densities of ions, free electrons and atoms, 

respectively, and are the ionic and atomic partition functions, respectively, 

m is the electron mass, k is the Boltzmann constant (1.380650 x 10'^  ̂m  ̂kg/s^/K), 

T is the plasma temperature (6000 -  10000 K), h is Plank’s constant (6.626068 x 

10'̂ "̂  m  ̂ kg/s) and Ei is the first ionisation potential (O’Connor & Evans, 2007; 

Ebdon et al., 1998).

The extent of the ionisation, which is primarily a function of the first ionisation 

potential of the element relative to that of argon (15.76 eV), influences a number 

of factors including sensitivity and susceptibility to certain sample matrix effects. 

In argon plasmas, at a temperature of 7500 to 8000 K, most of the elements in the 

periodic table produce predominantly singly charged ions at yields ranging from 5 

- 100% (Zhang, 2007; Nelms, 2005).

Plasma

Interface

i - . '

•4 h-

/
RF coil

Inner tube

Plasma Auxiliarv
Outer tube gas gas 

i

Nebuliser sas-
Sample tube

Figure 2.11: Schematic of the plasma torch and RF coil relative to the ICP-MS 
interface (after Thomas, 2008).

73



Chapter Two: Analytical Methodology, Instrumentation and Statistical Methods

2.6.4 Sampling Interface

The aim of the interface region is to extract sample ions from the high- 

temperature atmospheric pressure argon plasma into the mass spectrometer, 

whereby they are isolated and their concentrations in the ion beam are measured 

(Figure 2.12). This is achieved by using two concentric water-cooled cones 

fabricated of metal (commonly nickel or platinum) and a series of differentially 

pumped vacuum chambers held at consecutively lower pressure (Jakubowski, 

2008; Taylor, 2000; Ebdon et al., 1998). The outside cone, called the sampling 

cone, is required to be in direct contact with the plasma, such that the orifice is 

immersed in the normal analytical zone. The diameter of the orifice is ~ 1 mm. On 

passing through this orifice the plasma gases, together with analyte ions expand 

adiabatically (without the gain or loss of heat), causing a decrease in gas density 

and kinetic temperature. The enthalpy (internal energy) of the source gas is 

converted into directional flow and the gas temperature drops (O’Connor & 

Evans, 2007). Ions pass through the sampling cone orifice into the interface, 

which is an expansion region evacuated by a mechanical vacuum pump to a 

pressure of about 2 mbar (~ 2 xIO'^ atmospheres, atm). The ion beam then passes 

through a second orifice called the skimmer, located immediately behind the 

sampling cone at a distance of a few millimetres (Figure 2.12). The skimmer cone 

has a much smaller orifice at its apex (~ 0.7 mm in diameter). This orifice samples 

the supersonic gas jet expanding through the sampling cone orifice, directing ions 

into the mass spectrometer (Nelms, 2005; Boss & Fredeen, 1997).

Skim m er am ount 
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Skim m er I Ion  p lu m e

T o \  ap ou rp u m p  To rotar>'pum p

Figure 2.12: Schematic of the ICP-MS interface (after Thomas, 2008).
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Ions are extracted from the interface stage and collimated by two conical 

extraction lenses prior to focusing by the ion optics. The intermediate stage 

contains the ion optic system and is evacuated by a turbo-molecular pump to a 

pressure of about 1 0 '  ̂ mbar (~ 1 0 '̂  atm), the normal operation pressure of the 

mass spectrometer, with an oil diffusion or turbo-molecular pump (Taylor, 2000; 

Mantaser et al., 1998).

2.6.5 Ion Beam Focusing Unit

The ion beam must be focused before entering the quadrupole mass analyser in 

order to achieve high signal sensitivity. This can be achieved by subjecting 

charged ions to constant electric fields. These electric fields have an accelerating 

effect on the ions. Electrostatic plates, known as ion "lenses", are located within 

the intermediate stage through which the ion beam passes. The ion lenses perform 

the dual role of focusing the ion beam and preventing photons and neutral species 

(arising from the plasma) from reaching the detector. Although electron 

multipliers are very sensitive ion detectors, they are also sensitive to photons. The 

first component of an ion lens set often consists of a metal disk called a photon 

stop. This is mounted in direct alignment with the ion beam behind the skimmer 

cone of the interface. The purpose of the photon stop is to intercept photons and 

energetic neutral species produced by the ICP, thereby preventing them from 

entering the mass analyser. The positive analyte ions in the ion beam are directed 

by positively charged lenses to deflect around the photon stop, and as a result 

recombine on the opposite side (Taylor, 2000).

2.6.6 Collision / Reaction Cell (CRC)

In ICP-MS, there are a small number of elements renowned for having poor 

detection limits. These are predominantly elements that suffer from a lower first 

ionisation potential than that of the plasma gas -  typically argon (15.76 eV) as 

determined by the Saha equation (Equation 2.8), with the result that few ions are 

produced. This causes major spectral interferences from ions generated from the 

argon gas, solvent, or sample matrix. For example, the interferences of '̂ ^Ar̂ ^O'*’ 

on the determination of ^^ArH^ on the determination of "̂ Âr on the
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determination of'^^Ca'*’; "*̂ Ar on the determination of ̂ ^Cr ;̂ and "̂ Âr̂ Ĉl"̂  on 

the determination of ^^As  ̂(Broekaert, 2005; Taylor, 2000). In order to help deal 

with these interference problems, the Octopole Reaction System (ORS) was 

developed for ICP-MS (Thomas, 2008). The ORS is an octopole ion guide 

contained within a stainless steel vessel and pressurised with a gas, most often He 

or H2. The ORS is located between the ion lens assembly and the quadrupole mass 

filter. The use of 8  rods in the octopole has greater ion transmission efficiency 

compared to 6  rod (hexapole) or 4 rod (quadrupole) systems, usually operated in 

the RF-only mode. The RF-only field does not separate the masses like a 

traditional quadrupole, but instead has the effect of focusing the ions, which then 

collide and react with molecules of the collision/reaction gas cell in the ORS and 

in so doing lose kinetic energy, a process referred to as thermalisation (O’Connor 

& Evans, 2007; B’Hymer & Caruso, 2006; Nelms, 2005; Thomas, 2003). In this 

technology, ions extract from the interface under vacuum conditions into a 

collision/reaction cell in the ORS. The gas interacts with the ion beam to remove 

polyatomic interfering ions like ^^ArH^, "̂ ®Ar̂ , '̂ ^Ar̂ ^O'"' and '̂ ^Ar'̂ Cl'̂  by one

of two ways: (i) the gas reacts with an interfering ion to convert it to a different 

species (i.e. harmless non-interfering species), as shown in Equation 2.9; (ii) the 

gas collides with the polyatomic interfering ion, causing it to lose energy. Since 

polyatomic species are large, they undergo more collisions than do analytes, and 

so lose more energy. The lower energy (polyatomic ion) is then separate from the 

higher energy (analyte) by energy discrimination (i.e. the cell acts as a molecular 

filter) (Thomas, 2008).

+  H2 ^  H3 +  A r-------------- Equation 2.9

The advantage of using this system for interference reduction (instead of 

employing a high-resolution mass spectrometer) is that in many cases reactions 

proceed without the loss of sensitivity (O’Connor & Evans, 2007; Yip & Sham, 

2007; Broekaert, 2005).

2.6.7 Mass Analysis

Ions pass from the ion lens system through the collision/reaction cell into the 

analyser vacuum stage, where they are separated by the use of a mass
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spectrometer. The mass spectrometer is essentially a mass filter designed to 

isolate a specific mass-to-charge ratio {m/z) ion from the multi-ion beam (Olesik, 

2000). After separation, the specific charged isotopic or molecular species are 

directed to a detector devised to measure their individual ion currents. The 

magnitude of these ion currents is proportional to the population of the analyte ion 

species in the multi-component ion beam sampled from the ICP (O’Connor & 

Evans, 2007; Nelms, 2005; Taylor, 2000). There are two types of mass filter 

frequently used for ICP-MS, namely, the quadrupole and the magnetic sector 

(Boss & Fredeen, 1997). The common type in a routine analytical instrumentation 

is a quadrupole.

A quadrupole mass spectrometer is comprised of four precisely machined 

cylindrical rods (diameter ~ 1 cm and length of about 1 5 - 2 0  cm) aligned parallel 

to each other in a symmetrical configuration (Figure 2.13). These rods are 

manufactured of highly polished or metal-plated (gold) ceramic. The centre space 

contained between the rods is aligned concentric with the ion beam passing 

through and configured by the electrostatic ion lenses (Nelms, 2005). When a 

mixture of varying m/z ions pass through this centre space, travelling parallel to 

the length of the rods, only a single m/z ion species is permitted to traverse 

unimpeded and exit at the opposite end. All other masses are rejected by the 

quadrupole (Taylor, 2000). This process involves the application of both a direct 

current (dc) potential (E) and an RP alternating current potential (V cos(cot)) to 

pairs of the rods. A combined electrical potential of (E + V cos(cot)) is applied to 

two oppositely positioned rods, while simultaneously an applied combined 

potential of -  (E + V cos(cot)) is applied to the other two opposing rods such that 

they oscillate 180° out of phase (O’Connor & Evans, 2007; Nelms, 2005). By 

varying these voltages on the rods, an electrostatic field is established which 

combines with the beam of mixed ion species. Each ion will be deflected into a 

spiral path, the magnitude of which is related to the fields created by the applied 

potentials (Becker, 2008). All ions, with the exception of those with a specific 

unique m/z, will be deflected in such a way as to cause them to travel in a wide 

spiral and collide with the quadrupole rods. Those ions with a unique m/z, will 

continue in a stable path through the central axis of the rods, exiting at the 

opposite end for eventual interaction with the ion detector positioned behind the 

quadrupole rods (Bacon et al., 2000).
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Figure 2.13: Schematic of quadrupole mass filter (Thomas, 2008).

2.6.8 Ion Detection and Signal Handling

Detection of ions can be carried out by a variety of methods, such as electron 

multiplier, channel electron multiplier and Faraday cup detector, but the 

commonest by far is the channel electron multiplier (Ebdon et al., 1998). After 

passing through the quadrupole, ion signals are measured by the channel electron 

multiplier detector. Both the quadrupole and detector are located in the analyser 

stage, which is evacuated by a second turbo-molecular pump. The channel 

electron multiplier detector consists of a horn-shaped glass tube of approximately 

1 mm internal diameter, coated on the inside with a lead oxide semi-conducting 

material (Kebbekus & Mitra, 1998). A voltage difference is applied to the cone, 

with the wide end being held at about -  3000 V and the back at near ground 

(Krems et al., 2005). As ions strike the oxide near the entrance, electron ejection 

occurs. These electrons bounce down the tube, in turn producing more electrons at 

each encounter with the walls. The resulting pulse of electrons at the end of the 

tube is amplified by a factor of 10̂  over the original ion collision. The advantage 

of these detectors over electron multipliers is that exposure to air will not damage 

them if the voltage is not on at the time. However, these multipliers have a limited 

lifetime and must be replaced when the sensitivity begins to decline, and higher
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voltages must be applied to keep the response at the same level (Kebbrkus & 

Mitra, 1998).

2.6.9 Limitations of ICP-MS

ICP-MS has become a widely used technique. The main advantages that ICP-MS 

has over other techniques are low detection limits (1-10 pg/ml) range for 

quadrupole instruments, a wide dynamic range and rapid multi-element analysis 

(Ebdon et al., 1998). However, ICP-MS also suffers from various interference 

effects. There are two main types of interferences which must be considered when 

using ICP-MS, namely spectroscopic and non-spectroscopic interferences 

(Thomas, 2003; Ebdon et al, 1998).

2.6.9.1 Spectroscopic Interferences

There are two spectroscopic problems, isobaric and polyatomic, which occur 

when the interfering species has the same m/z as the isotope of interest 

(Vanheacke & Moens, 2004).

Isobaric interferences arise when the same mass isotopes of different elements 

overlap between each other. For example, '̂̂ Fê  overlaps with "̂̂ Cr̂ ; ^^Rb  ̂ with 

^̂ Sr+; with ^^Fe+ and with ^̂ ^Sn+ (Becker, 2008; Krouse, 2000;

Vandeeasteele & Block, 1993). In order to overcome this problem, other lower 

abundance isotopes can be selected, for example ^^Zn^(27.8%), ^^Zn^(4.11%), 

^^Zn^(18.6%) can be used as appropriate to prevent isobaric interference between 

^Zn""(48.9%) and ^W (1.16% ).

Polyatomic interferences result from the presence of molecular ions overlapping 

with the isotope analysed. They arise either in the high-temperature plasma or in 

the interface region between plasma and the mass filter. These polyatomic ions 

may then overlap with isotopes of the same nominal mass (O’Connor & Evans, 

2007; Beauchemin, 2006; May & Wiedmeyer, 1998). The polyatomic species 

commonly results from different sources, namely the plasma support gas (argon); 

entrained atmospheric gases; water, acids used for dissolution; oxides formation; 

doubly charged ions; and the sample matrix (Becker, 2008; Nelms, 2005; Prichard 

et al., 1996). Methods to overcome these problems include choosing an alternative
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isotope of the analyte which is free from interference. The only exceptions are for 

monoisotopic elements such as As and Mn. In ICP-MS, the determination of As in 

most biological and environmental samples has problems due to the spectroscopic 

interference by the high levels of chloride. Arsenic only has one isotope at m/z 75 

and the chloride matrix causes interference at m/z 75 due to "̂ Âr̂ Ĉl"̂  (Ebdon et 

al., 1998). In addition, alternative sample preparation methods, alternative sample 

introduction, instrumental and other methods were also used to overcome 

spectroscopic interferences (Evan & Giglio, 1993).

The Agilent 7700 Series ICP-MS instrument utilised in this study was equipped 

with collision/reaction cell technology (refer to Section 2.6.6). It was found that 

the use of the collision cell mode reduces the interference effect when compared 

with those instruments without this technology such as a Finnigan MAT Sola ICP- 

MS instrument; for example, "̂ Âr̂ Ĉl"̂  (see Table 2.12, 23 & 2.26). The use of 

collision/reaction cell technology to overcome spectroscopic interferences was 

investigated by another researcher (Watts et al., 2010). Table 2.14 summarises the 

typical spectroscopic interferences affecting the elements of interest, as well as the 

internal standard.

2.6.9.2 Non-spectroscopic Interferences

Non-spectroscopic interferences are caused by species present in the sample 

matrix which affect the signal intensity, and are particularly prevalent when 

analysing high concentrations of dissolved solids (Stone, 2006). The effect may 

cause either suppression or enhancement of the analyte signal (Ebdon et al., 

1998). The most common example is when the matrix contains a high level of 

salts with a low volatility. In most cases, salt may be deposited on the apertures of 

the cones resulting in a reduction of the ion signal. Even if deposition does not 

occur, the analysis of samples containing high levels of salts causes many other 

effects, particularly ionisation suppression (Olivares & Houk, 1986). The 

introduction of easily ionised elements to the plasma contributes strongly to the 

electron density of the plasma, i.e. depletes the plasma of available electrons to 

ionise elements of interest. This shifts ionisation equilibrium, causing the analyte 

ions to be ionised to a lesser extent.
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Isotope Isobaric
(% interferences Poly atomic interferences

abundance) (%abundance)
(19.9) 

"B+ (80.1)
" 'V  (0.25) (5.4), (4.35)

33gl7Q+
(99.75)

52̂  .4-

s34s16oh+ 35ç,j16q+ ^^Ar^V,
^̂ Ar*‘*NH  ̂ V ,  V ,
35/-11 lt)/-vTT+ 4U A 12/-̂+ 36 A 16/̂ + 34/̂ 18/-.+ 36n 16/-\+

Table 2.14: Isobaric and polyatomic interferences on elements of interest in ICP- 
MS analysis, where the selected isotopes are shown in bold (Vandecasteel & 
Block, 1997; Evan & Giglio, 1993).
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Such interferences are usually corrected for by the following approaches.

• Sample dilution (Ebdon et al., 1998);

• The method of internal standardisation. In this method, a non-endogenous 

element of known concentration is added to all standards and samples and 

is monitored. The internal standard elements are affected by the matrix in 

the same way as the analyte elements. It is therefore necessary that the 

mass range of the internal standards covers the same as the analyte range. 

Correction is applied using the ratio of the internal standard signal with 

the isotopes of interest (see Section 2.6.13 for further information) (Adair, 

2 0 0 2 ); and

• Standard addition method -  a known concentration of analyte is added to 

the sample (Vandecasteel & Block, 1997).

2.6.10 Instrumentation

The instrument used in this study was a quadrupole Agilent 7700 Series ICP-MS 

(Agilent, Cheshire, UK) with ASX-500 Autosampler controlled through the use of 

dedicated Agilent software (ChemStation). A Finnigan MAT Sola ICP-MS 

(Finnigan Corp., Hemel Hempstead, UK) was also used in the preliminary 

research until as a result of instrument failure the Finnigan ICP-MS was replaced 

with the new Agilent 7700. As such this thesis will report the instrumental 

operating conditions of the latter instrument which was used for the analysis of 

most of the Karbala samples.

2.6.11 Operating Conditions

Optimisation of the Agilent 7700 Series ICP-MS instrument was performed daily 

before the calibration, validation stages and prior to any samples being analysed. 

The instrument operating parameters were optimised using an Agilent standard 

tuning solution (1 pg/1 mixed solution of Li, Co, Y, Ce and T1 in 2% HNO3). The 

adjustments for each parameter such as the forward power, nebuliser gas flow 

rates and ion lens positions were made in order to achieve the maximum 

sensitivity for the signal values of trace elements under investigation. Parameter 

settings were then saved and used in the corresponding sample analysis. The
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typical operating conditions for the Agilent 7700 ICP-MS instrument are shown in 

Table 2.15.

Table 2.15: Typical operating conditions for the Agilent 7700 Series ICP-MS 
instrument.
Parameter Typical operating conditions
Forward power 1550 W
Plasma gas flow rate 15 1/min
Auxiliary gas flow rate 0 .8  1/min
Nebuliser carrier gas flow 0 .8  1/min
Nebuliser make up gas flow 0.3 1/min
Cooling water temperature 15-40°C
Cooling water minimum flow rate 5.0 1 /min
He gas (CCT conditions) 4.8 ml/min
Acquisition time 120 -  240 seconds
Integration time 0 .1  seconds
Nebuliser Micromist concentric
Spray chamber PTFE Scott-type
Spray chamber temperature 4°C
Torch Quartz 1 -  2.5 mm
Mass range 6  -  260 amu
Type of detector simultaneous
Sample uptake time 50 seconds
Sample stabilisation time 30 seconds
Wash time between samples 90 seconds

2.6.12 ICP-MS - Calibration

Calibration standards for ICP-MS were prepared by serial dilution of a 1000 mg/1 

single element standard solution (Aristar®, BDH, Primar®, Fisher Scientific). The 

calibration concentrations ranged from 1 -  500 pg/1. A calibration blank was also 

prepared from 1% (v/v) nitric acid (Aristar® 65%) (Fisher Scientific UK Limited, 

Bishop Meadow Road, Loughborough, Leicestershire, UK). A calibration plot 

was constructed, based on the measured signal for elements of interest against 

their concentration in a known solution. Figure 2.14 shows a typical calibration 

graph for iron produced by the Agilent 7700 Series ICP-MS software package in 

which the internal standard (IS) corrected signal was plotted against the 

calibration standard concentration. The least squared regression line and the linear 

regression coefficient, R^, were calculated, as described in Appendix C.
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Figure 2.14: Typical calibration graph for iron by the Agilent 7700s ICP-MS 
instrument.

2.6.13 Internal Standard (IS)

The use of a multi-element internal standard (IS) solution helped to monitor the 

performance of the Agilent 7700s ICP-MS instrument through the detection of 

any instrumental drift during analysis (Figure 2.15). The data was used for 

correcting the effects of enhancement/suppression in the ICP signal. In general, 

the IS solution contains elements that are not present in the sample. All internal 

standards should have an atomic mass and a first ionization potential that is near 

to that of the elements to be measured. Suitable internal standards were selected to 

cover the wide range of masses in the periodic table. Internal standards of ^Be\
4 5 o _ +  7 2 ^ _ +  1 0 3 n u + 1 1 5 T  +'Sc Ge^, '^^Rh '̂^^In"^ and 100 pg/1 were used for multi-element

analysis using the Agilent 7700s ICP-MS instrument.

It was found that the stability of the internal standards measured by Agilent 7700s 

ICP-MS (Figure 2.15) was more stable than those measured by the Finnigan MAT 

Sola ICP-MS (Appendix F). Possible explanations are that the Agilent has a better 

interface and stable vacuum system, and the modern technology 

(collision/reaction gas cell) reduces potential interferences in the Agilent 7700s 

ICP-MS rather than the Finnigan MAT Sola ICP-MS. Internal standard (IS) 

correction was carried out automatically through the Agilent ChemStation 

software according to Equation 2.10.
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Analyte intensity(cps) 
IS intensity(cps)

Equation 2.10

The raw count signals reported by the Agilent 7700 Series ICP-MS instrument 

were utilised to manually monitor for the IS correction.
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▲ 72Ge •9Be •45Sc ■103Rh 115In •209Bi
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9:33 11:16 12:00 14:45 16:27 18:08 19:49 21:33 23:19 

Time (hh:mm)

Figure 2.15: Typical long-term stability during the analysis o f tear drops using a 
1 0 0  pg/l o f ^Be, "̂ ^Sc, ^^Ge, ^^^Rh, ^^ În and ^^^Bi as an internal standard solution 
for multi-element analysis by the Agilent 7700 Series ICP-MS instrument.

2.7 Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)

Atomic emission spectrometry (AES) is the oldest atomic spectrometric m ulti

element technique using classical sources (e.g. flame, arc and spark) to atomise 

the sample and to excite (and possibly ionise) the atoms o f the sample 

(Vandecasteele & Block, 1993). Plasma sources were developed for emission 

spectrometry in the 1960s and have become commercially available in the mid 

1970s (Harris, 2007). Inductively coupled plasma atomic emission spectrometry 

(ICP-AES) is a technique which has been in common place in analytical 

laboratories for many decades. In this work, it was used to determine the 

elemental composition o f cigarette tobacco.
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2.7.1 Fundamentals

ICP-AES is a multi-element analysis technique that uses an inductively coupled 

plasma source to dissociate the sample into its constituent atoms or ions, exciting 

them to a level where they emit light of a characteristic wavelength. A detector 

measures the intensity of the emitted light, and calculates the concentration of that 

particular element in the sample (Lehn & Hieftje, 2003; Skoog et al, 1998; 

Vandecasteele & Block, 1993). The main advantages of this method are the large 

dynamic range, auto sampler, high-throughput sample introduction system, 

accepts samples with a matrix of 1% dissolved solids content, good detection 

limits and the ability to detect most elements of the periodic table (Hou & Jones, 

2000). The basic aim of this technique is to identify elements (qualitative 

analysis) and quantify their concentrations in various media (quantitative analysis) 

by the measurement of light emitted from plasmas by atoms after the absorption 

of energy as heat (Ebdon et al., 1998; Skoog et al, 1998; Manning & Grow,

1997).

In general, ICP-AES instruments have four main parts, including: the sample 

introduction system (nebuliser and spray chamber); ICP torch; transfer optics; and 

spectrometer, as shown in Figure 2.16 (Selinus et al, 2009). The first two parts, 

namely sample introduction systems and radiofrequency generators, and the 

nature of ICP itself were found to be the same for ICP-AES and ICP-MS systems, 

with the usual differences between the manufacturers (Ebdon et al, 1998). In 

brief, the sample is usually transported into the instrument as a stream of liquid 

sample. Inside the spray chamber, the liquid is converted into an aerosol through a 

process known as nébulisation. The sample aerosol is then transported to the 

plasma where it is desolvated, vaporised, atomised, and excited and/or ionised by 

the plasma. The excited atoms and ions emit their characteristic radiation which is 

collected by a device that sorts the radiation by wavelength. The radiation is 

detected and turned into electronic signals that are converted into concentration 

information for the analyst (Vandecasteele & Block, 1993). The wavelength range 

of the plasma radiation is extended from 200 to 800 nm (Skoog et a l, 1998).
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Figure 2.16: Typical configuration for ICP-AES instrument (axial viewing of the 
ICP) (adapted from Boss & Fredeen, 1997).

2.7.2 Excitation, Ionisation and Emission

Once the sample aerosol has been desolvated, vaporised and atomised, the plasma 

has one, or possibly two, functions remaining. These functions are excitation and 

ionisation. Typically, the atoms are preferred to be in stable or ground state (i.e. 

the electrons of an atom are in the orbitals closest to the nucleus and lowest in 

energy). When an atom absorbs energy, one of its electrons must be excited to a 

higher energy level (excited state) through an excitation process. In an excited 

state, an atom is less stable and will thus fall back to a less excited state by losing 

energy through a collision with another particle or by emission of a particle of 

electromagnetic radiation, known as a photon, which is characteristic for that 

particular transition (Hou & Jones, 2000; Ebdon et al., 1998; Boss & Fredeen,

1997). Since many elements have their strongest emission lines emitted from the 

ICP by excited ions, the ionisation process may also be necessary for some 

elements. This process occurs when the energy absorbed by an atom is sufficient, 

equal to the first ionisation energy, an electron may be completely dissociated 

from the atom, leaving an ion with positive charge, and another electron can be 

excited (Ebdon et al., 1998). This is the most important advantage of using ICP-
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AES products from the excitation properties of the high temperature source 

utilised in this method. This thermal excitation source can provide a large number 

of different energy levels for several different elements at the same time. All of 

the excited atoms and ions can then emit their characteristic radiation at nearly the 

same time. This provides high level of flexibility to choose from several different 

emission wavelengths for an element and the ability to measure emission from 

several different elements concurrently (Hou & Jones, 2000; Boss & Fredeen,

1997).

Figure 2.17 shows the excitation, ionisation and emission processes schematically. 

The horizontal lines of this simplified diagram represent the energy levels of an 

atom. The vertical arrows represent energy transitions, or changes in the amount 

of energy of an electron. The energy transitions in an atom or ion can be either 

radiational (involving absorption or emission of electromagnetic radiation) or 

thermal (involving energy transfer through collisions with other particles). The 

difference in energy between the upper and lower energy levels of a radiative 

transition defines the wavelength of the radiation that is involved in that 

transition.
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Figure 2.17: Energy level diagram showing energy transitions where a and b 
represent excitation, c is ionisation, d is ionisation/excitation, e is ion emission, 
and f, g and h are atom emissions (Boss & Fredeen, 1997).
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2.7.3 Collection and Detection of Emission (Spectrometer)

In ICP-AES, the light emitted by the excited atoms and ions in the plasma is 

measured to obtain information about the sample. Since the excited species in the 

plasma emit light at several different wavelengths, the emission from the plasma 

is polychromatic. This polychromatic radiation must be separated into individual 

wavelengths so the emission from each excited species can be identified and its 

intensity can be measured without interference from emission at other 

wavelengths. The separation of light according to wavelength is generally done 

using a monochromator, which is used to measure light at one wavelength at a 

time, or a polychromator, which can be used to measure light at several different 

wavelengths at once. The actual detection of the light, once it has been separated 

from other wavelengths, is done using a photosensitive detector such as a photo

multiplier tube (PMT) or advanced detector techniques such as a charge-coupled 

device (CCD) (Harris, 2007; Hou & Jones, 2000; Ebdon et al, 1998; Skoog et al,

1998). The combination of focusing optics, monochromator and detector is 

generally referred to as a spectrometer.

2.7.3.1 Focusing Optics

The emission radiation from the plasma is sampled on to the entrance slit of the 

monochromator by a focusing optic such as a convex lens or a concave mirror 

(Ebdon et al., 1998). There are two ways of viewing the light emitted from an 

ICP, namely radial and axial. In the classical ICP-AES configuration, the light 

across the plasma is viewed radially (side-on), resulting in the maximum signal 

intensity and least interferences. By viewing the light emitted by the sample 

looking down the centre of the torch or axial (end-on), the background signal from 

the ICP itself is reduced, the sample path is maximized. Axial viewing provides 

better detection limits than those obtained via radial viewing by as much as a 

factor of 10. Recently, instruments that combine both radial and axial viewing, 

called dual view, have been introduced (Boss & Fredeen, 1997).
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2.7.S.2 Monochromator

The next step in ICP-AES is the separation of the emission radiation of the 

element of interest from the radiation emitted by other elements and molecules by 

using a monochromator device. A monochromator is defined as an instrument 

that can be used to separate a narrow range of wavelengths (e.g. I - 0.01 nm) 

anywhere in a wide spectral range. A diffraction grating was commonly used with 

most modem instruments. It is a mirror that has a line or density from 600 to 4200 

lines per millimetre etched into it. There are several ways to mount a grating in a 

monochromator such as the Ebert mounting which uses a large spherical mirror 

and the Czemy/Tumer mounting using two small, spherical mirrors (Ebdon et al.,

1998). When light strikes such a grating, it is diffracted at an angle that is 

dependent on the wavelength of the light and the density of the grating. The use of 

a spectrometer with high resolution (~ 0.01 nm) is practical in order to 

differentiate between wavelengths. This can be achieved, either by increasing the 

number of lines per millimetre on the grating or by increasing the focal length of 

the monochromator. There is an additional wavelength dispersive device, called 

an echelle grating, which can achieve greater resolution (i.e. typically 100 lines 

per millimetre). The echelle grating separates the polychromatic radiation by 

wavelengths and produces multiple, overlapping spectral orders (Ebdon et al.,

1998).

2.1.33 Detector

The traditional types of ICP-AES system used a series of photo-multiplier tubes 

(PMT), which converts the photo signal into electron signal (Ebdon et al., 1998). 

In recent decades, advanced solid-state detectors with high sensitivity and 

resolution have been developed; for example, the charge-injection device (CID) 

and the charge-coupled device (CCD). These detectors are based on the light- 

sensitive properties of solid-state silicon (Boss & Fredeen, 1997). In this study of 

ICP-AES systems, solid-state detectors based on a charge-coupled device (CCD) 

were used. The CCD is an extremely sensitive detector in which light creates 

electrons and holes in a semiconductor material. It is comprised of 224 linear 

photodetector arrays on a silicon chip with a surface area of 13 x 18 mm. For each
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subarray there are several pixels, which are photosensitive areas of silicon. In the 

CCD, photons falling on a silicon substrate produce electron-hole pairs. The 

electrons are attracted to regions near positive electrodes, where the electrons in 

each are "stored” until they are ready to be counted. The number of electrons in 

each pixel (picture element) is proportional to the number of photons striking the 

pixel (Harris, 2007; Hou & Jones, 2000; Ebdon et al., 1998; Skoog et al., 1998). 

The main advantage of CCD is that it makes available as many as ten lines for 

each element in the sample. Therefore, lines which suffer from interferences can 

be identified and removed from the analysis (Ebdon et al., 1998). The signal 

output from the detector is usually amplified, converted into a digital signal that 

can be read by computer.

2.7.4 Interferences

Although, the presence of interferences can affect the accuracy of a determination, 

there is no analytical technique that is completely free from interferences. 

However, modem trace elemental analysis instruments have been designed to 

minimize the interferences. Interferences in ICP-AES may start in the sample 

preparation stage and extend to the plasma operating conditions. In general, ICP- 

AES probably has fewest interferences when compared with commonly used 

analytical atomic spectrometry techniques (Hou & Jones, 2000). The technique 

suffers from three types of interferences, namely chemical, spectral and ionisation 

interferences. The high temperature of the plasma helps to reduce chemical 

interferences due to this temperature being sufficient to break down most species 

into atoms or ions for excitation and subsequent emission (Hou & Jones, 2000; 

Ebdon 1998).

The most common interference problem in ICP-AES is spectral interference due 

to the line-rich spectra produced by the hot plasma source. The spectra are likely 

to be rich particularly for a highly complex and concentrated sample due to the 

ICP being capable of exciting almost any element that is introduced into the 

plasma. They can be minimized by using high-resolution spectrometers. In some 

cases, the spectral overlap may even exist with the best commercial system. In 

these cases advanced background correction techniques can be employed or a 

different analytical wavelength for the element(s) of interest is chosen (Hou &

91



Chapter Two: Analytical Methodology, Instrumentation and Statistical Methods

Jones, 2000; Ebdon et al., 1998; Manning et al., 1997). In this study, background 

correction was used in order to overcome spectral interferences.

The ionisation interferences arise from easily ionised elements, such as the alkali 

or alkaline earth elements, in the sample matrix. These types of interference can 

be overcome by matrix matching the samples and standards or by using standard 

additions method (Ebdon et al., 1998).

2.7.5 Instrumentation

A Perkin Elmer Optima™ 5300 DV ICP-AES (Perkin Elmer Life and Analytical 

Sciences, Shelton, CT, USA) with WinLab32™ software and a PerkinElmer SIO 

autosampler (PerkinElmer Life and Analytical Sciences, Shelton, CT, USA) was 

used in this study. This technique was used to analyse different commercial 

cigarette tobacco samples. The typical operation parameters for this instrument are 

displayed in Table 2.16. An echelle grating and the charge-coupled device (CCD) 

were used in the ICP-AES instrument.

Table 2.16: Typical operating conditions for the Perkin Elmer Optima™ 5300 
DV ICP-AES instrument.
Parameter Typical operating condition
RF Power 1300 W
Plasma gas flow 15 1/min
Auxiliary gas flow 0.2 1/min
Nebulizer gas flow 0.8 1/min
Plasma view Axial View
Pump flow 1.5 ml/min
Peak processing Peak area
Points per peak 3
Integration time 50 ms
Auto integration 5 sec min-20 sec max
Read delay 60 sec
Equilibration delay 15 sec
Rinse 30 sec
Replicates 3
Background correction one or two points
Spray chamber Double-pass Scott-type
Nebulizer GemTip cross-flow pneumatic
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2.7.6 ICP-AES -  Calibration

Calibration for ICP-AES was achieved by serial dilution of a 1000 mg/1 single 

element standard solution (Aristar®, BDH, Poole, UK). The calibration range for 

each element has at least 6 standards, including the blank, and a range of 

calibration standards for V, Cr, Mn, Cu, Zn, As and Sr 1 -  10 mg/1 and for Fe, Cr 

and Cd 1 -  5 mg/1. Calibration data was evaluated using WinLab32™ software, 

where the calibration graphs were automatically drawn by plotting the value of 

intensity against the concentration of each element. The linearity range was 

evaluated by inspection of the linear regression coefficient (R^) for each 

calibration curve. Figure 2.18 shows the typical calibration curve for iron by 

Optima 5300 DV ICP-AES.
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Figure 2.18: Typical calibration curve for iron as determined by Perkin Elmer 
OptimaT̂ "̂  5300 DV instrument.

2.8 Quality Control (QC)

There are many QC tests that can be used to evaluate the performance, precision 

and accuracy throughout the study. These evaluations are typically examined 

before any analysis of real samples in order to assess whether the method has the 

correct levels of precision and accuracy. Precision can be verified by using the
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replicate analysis of samples and replicate portions of the same sample (with the 

level reported as the relative standard deviation (%RSD)). Accuracy was 

examined by using calibration checks, Certified Reference Materials, quality 

control samples and a blank. In this study, the values of intensity were corrected 

with a reagent blank by subtracting the response of the reagent blank from the 

response of the real samples. The next section describes the quality control 

analysis for this study.

2.8.1 Limit of Detection (LOD)

The LOD of an individual analytical procedure is ‘the lowest amount of an 

analyte in a sample that can be detected but not necessarily quantified as an exact 

value’. In the Guidelines for Achieving Quality in Trace Analysis, the LOD is 

expressed as ‘the concentration Cl or quantity qL derived from the smallest 

measure Xl that can be detected with reasonable certainty for a given procedure. 

The value Xl is given by equation 2.11 (O’Connor & Evans, 2007).

%L =  Xbi +   Equation 2.11

where Xyi is the mean of the blank measures, Syi is the standard deviation (SD) of 

the blank measures and K is a numerical factor chosen according to the 

confidence interval required (typically 3) (O’Connor & Evans, 2007).

The instrumental LOD may be defined as that quantity of the element which gives 

rise to a reading equal to three times the SD of a series of at least ten 

determinations (n = 10) at near the blank level (Nelms, 2005; Ebdon et al., 1998). 

The LODs for Agilent 7700 Series ICP-MS and Perkin Elmer Optima™ 5300 DV 

ICP-AES instruments were determined for a range of elements in this study. The 

LODs were calculated for a total of 15 blank solutions (1% HNO3). The resulting 

LOD data, based on a mean blank (n = 15) signal + 3SD (Equation 2.11) is shown 

in Tables 2.17 & 2.18.
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Table 2.17: Elemental limit of detection (LOD) values for the Agilent 7700 
Series ICP-MS instrument (pg/1) and typical collision cell conditions.

Element Isotope Relative isotopic 
abundance(%)

Internal
Standard

Collision 
cell gas LOD

B i 1b + 80.1 No gas 7
V 51y+ 99.8 He 0.001
Cr “ Cr'" 83.8 He 0.01
Mn 100 He O.OI
Fe 91.8 He 0.05
Cu “ Cu"" 69.2 He 0.03
Zn 27.9 He 0.1
As 100 ’“Ge" He O.OI
Sr 88gr+ 82.6 ■'■’Ge'" He 0.2
Cd '"Cd+ 12.8 '"In+ No gas 0.01

Table 2.18: Elemental limit of detection (LOD) values for the Perkin Elmer 
Optima™ 5300 DV ICP-AES instrument (pg/1) and selected wavelength.

Element Wavelength (nm) LOD
V 292.402 I.OI
Cr 205.560 0.81
Mn 257.610 0.2
Fe 238.204 1
Cu 324.700 0.81
Zn 213.857 1.3
As 188.979 5.3
Sr 232.235 5
Cd 228.802 0.63

2.8.2 Quality Control Chart

A control chart is a time plot of a measured concentration (QC standard), that is 

usually used to identify any instrument drift throughout the analysis run. In 

general, there are three different lines in this chart, the central line (green line) 

representing the mean value from the whole day, and the two pairs of limit lines 

(blue and red) demonstrating the control limits. It was found that the standard 

deviation of the procedure can be used as a useful tool in establishing the control 

lines (Christian, 1994). When all of the points are set above or below the central 

line it is possible to estimate any systematic error in the instrument. On the other
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hand, if the points lie outside the control lines this indicates that one or more 

measurements are determined to be in error (Harris, 2007; Christian, 1994).

In this study, two control solutions (blank and a standard solution from the middle 

of the calibration range) were analysed after every 20 samples throughout the 

whole analysis run. This was carried out for the determination of every element 

using the Agilent 7700 Series ICP-MS. Figure 2.19 shows a typical instrumental 

drift chart for arsenic from the repeat analysis of 100 pg/l As calibration standard 

for the Agilent 7700 Series ICP-MS. If the instrumental drift was more than ± 5% 

RSD, correction was undertaken, as described in Equation 2.12.

Drift correction
Unknown sample concentration

(Mean calibration standard/known calibration concentration)
-Equation 2 .1 2

Figures 2.20 & 2.21 show a typical instrument drift chart for 1 mg/1 arsenic and 

1.25 mg/1 sodium that was used as a calibration standard for the Perkin Elmer

Optima^"^ 3500 DV ICP-AES and A Analyst™ 400 FAAS, respectively.
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Figure 2.19: Instrumental drift chart for a 100 pg/1 arsenic solution by Agilent 
7700 Series ICP-MS.
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Figure 2.20: Instrumental drift chart for a lmg/1 arsenic solution by Optima 3500 
DV ICP-AES.
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Figure 2.21: Instrumental drift chart for a 1.25 mg/1 sodium solution by
AAnalyst™ 400 FAAS,

Table 2.19 reports the results of the quality control study for different analytical 

techniques. A student’s t-test was used to compare the measured and true values. 

It was found that no significant difference was observed between the true 

concentrations of standard solutions and the measured values during the whole 

day analysis run for ICP-MS, ICP-AES and FAAS at a probability level, P < 0.05, 

as shown in Table 2.19. The %RSD value was used to compare the data between 

these techniques. The Agilent 7700 Series ICP-MS (%RSD = 2) has a higher level 

of precision than the Optima 5300 DV ICP-MS (%RSD = 5) for the arsenic 

analysis of different media (Table 2.19). A possible explanation may be due to the
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effect of the matrix, since tobacco material has more than 4000 components 

(Ward, 1993). Another reason is that the ICP-MS is known to be more sensitive 

and selective than atomic emission, particularly the Agilent 7700 Series ICP-MS, 

which includes the collision / reaction cell technology (see Section 2.6.6).

Table 2.19: Statistic analysis of quality control data for the different analytical 
techniques.

Parameter
Instrument

Agilent 7700 
Series ICP-MS

Optima 3500 DV 
ICP-AES

AAnalyst'^ 400 
FAAS

Standard
concentration 100 |xg/l As 1 mg/1 As 1.25 mg/1 Na

n 6 (one reading for 
every 20 samples)

10 (one reading for 
every 10 samples)

7 (one reading for 
every 10 samples)

Analysis Tear drops Tobacco Scalp hair
Measured value 

^ i S D 99.6 ± 2 0.98 ± 0.05 1.27 ±0.03

%RSD 2 5 3
df= n-I 5 9 6

tcsXc 0.5 1.4 1.77
tcnX 2.57 2.26 2.45

Result at P  < 
0.05 No Sig? No Sig? No Sig?

n = number of samples, X = mean value, SD = standard deviation, RSD = relative 
standard deviation, df=  degrees of freedom, ĉaic and /crit are calculated and critical 
values for student’s t-test, P = probability, and Sig? = significant (P < 0.05).

2.8.3 Precision and Accuracy

Precision can be defined as “the degree of agreement between replicate 

measurements of the same quantity” and it does not necessary imply accuracy 

(Miller & Miller, 2010). Random errors cause the individual results to lie on both 

sides of the average value and this affects the level of precision (Miller & Miller, 

2010; Harris, 2007; Christian, 1994). There are two terms that can be used to 

describe the level of precision, namely repeatability and reproducibility. 

Repeatability (within-run precision) is the degree of agreement between the 

consecutive results carried out under the same conditions and method. 

Reproducibility (between-run precision) is the degree of agreement between the 

individual results carried out under the same conditions and method (Miller &
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Miller, 2010). Typically, the precision level of an instrument is described by using 

the coefficient of variation (CV (%)), which is also known as the relative standard 

deviation (%RSD). The best level of precision relates to a calculated value of 1% 

to 5% (%RSD); the acceptable range is between 1 -1 0  %RSD) (Miller & Miller, 

2010; Adair, 2002).

Accuracy can be defined as “the degree of agreement between a measured value 

and a true value” (Harris, 2007; Christian, 1994). Systematic errors cause all 

results to be in error in the same sense and, therefore, affect accuracy (Miller & 

Miller, 2010). The use of Certified Reference Materials (CRMs) was employed in 

each analytical procedure to determine the validity and accuracy of methods. 

CRMs were chosen based on their similarity to the matrix involved and their 

certified chemical composition, as shown in Table 2.20 (Massait, et al, 1996). 

This can be determined as the percentage recovery (%R), which can be calculated 

by the following equation:

%R =  (Measured value)/(Certified value) x  100 Equation 2.13

Table 2.20: Certified Reference Materials (CRMs) for Quality Control (QC) 
evaluation in this study.

Media CRM Reference

Water, 
tear drops 
and saliva

NIST SRM*’ 1643e Trace 
Elements in Water

National Institute of Standards 
and Technology, Maryland, USA

TMDA 54.4 Trace Elements 
in Fortified Lake Ontario 
Water

National Water Research Institute, 
Ontario, Canada

Scalp hair 
and 

fingernails

GBW 07601 Human Hair China National Analysis Centre 
for Iron and Steel, Beijing, China

GBW 09101 Human Hair China National Analysis Centre 
for Iron and Steel, Beijing, China

Tobacco

NIST SRM® 1573a Tomato 
leaves

National Institute of Standards 
and Technology, Maryland, USA

NIST SRM® 1572a Citrus
leaves

National Institute of Standards 
and Technology, Maryland, USA

In this study, precision levels were evaluated for any matrix effects by replicate 

analysis (n = 10) of a "pooled" sample that was prepared from at least 6 samples 

of water, tobacco, tear drops, saliva, scalp hair and fingernails. Mean, standard 

deviation (SD) and relative standard deviation (%RSD) values are summarized in 

Tables 2.21 & 2.22.
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The precision of the preparation and analytical methods was also checked based 

on the triplicate analysis of the various CRMs analysed in this work, as shown in 

Tables 2.23 -  2.28. In general, good levels of precision were obtained for most 

elements with an acceptable range of O.I -  8.5% RSD, with exceptions being B in 

Tables 2.24 & 2.26 and As in Table 2.22 by ICP-MS and ICP-AES, respectively. 

The analysis of B suffers from a type of spectral interference. As boron is next to 

the presence of large quantities of carbon can cause a very large peak which 

can overlap on the ^̂ B'*’ peak area and even ^̂ B"̂  in extreme cases (Ward, 1993). 

The problem cannot be rectified through internal standardization as it does not 

affect the ^Be^ peak. Another major problem concern with boron analysis is 

contamination; many collection devices contain traceable levels of boron 

(particularly glass), the acids and solvents used in sample preparation can contain 

as much as 20 pg/1 and the basic components of many instruments, for example, 

the sample uptake tubing, spray chamber, ICP torch and ion optics of an ICP-MS 

instrument are prone to significantly enhance the boron levels as a result of 

memory problems (Hill, 2009).

In the case of arsenic, the ionisation interferences can influence the determination 

of As by ICP-AES. These interferences are caused by a large excess of easily 

ionised elements, such as the alkali or alkaline earth elements, in the sample 

matrix (Ebdon et al., 1998). The effect of plant matrices on the determination of 

As have previously been investigated. It was found that the greatest changes in the 

arsenic emission intensity occurred in the presence of Ca and Mg matrices 

(Vassileva & Hoenig, 2001). The determination of arsenic by ICP-MS also has 

problems due to the polyatomic interference, "^^Ar^^C  ̂which overlaps with ^̂ As"̂  

(Broekaert, 2005; Taylor, 2000). This was minimised by using collision/reaction 

cell technology (Section 2.6.6).

Measured CRM values obtained for the analysis of trace elements by ICP-MS and 

ICP-AES, were highly comparative to certified levels (Tables 2.23 to 2.28). 

Analytical recoveries ranged from 90 to 110% for all elements determined.

1 0 0



Chapter Two: Analytical Methodology, Instrumentation and Statistical Methods

Table 2.21: Precision levels for selected trace elements in different pooled human 
samples (n = 10) determined by the Agilent 7700 Series ICP-MS; presented as 
mean, ± SD and %RSD values, pg/1 and pg/kg for human fluids and tissues, 
respectively.

Element
Tear drops 
mean ± SD 

(%RSD)

Saliva 
mean ± SD 

(%RSD)

Scalp hair 
mean ± SD 

(%RSD)

Fingernails 
mean ± SD 

(%RSD)
B 506 ± 22 (4) <70 3382 ±106 (3) 162 ± 19(12)
V 2.7 ±0.1 (3.7) 0.4 ± 0.02 (5) 2158 ±17 (0.8) 350 ± 4  (1.1)
Cr 3.8 ±0.1 (2.6) <0.1 1375 ± 9  (0.6) 747.4 ±4.9 (0.7)
Mn 18.4 ±0.9 (4.9) 1.3 ±0.1 (7.7) 3656 ±39 (1.1) 2440 ± 29(1)

Fe 288 ± 14 (4.9) 8.3 ± 0.5 (6) 236363± 1567 
(0.7) 2420 ±28  (1.2)

Cu 209 ± 9 (4.3) 8.4 ±0.3 (3.6) 15981 ±181 (1.1) 3745 ±48 (1.3)

Zn 773 ± 33 (4.3) 12.9 ±0.5 
(2 9)

6807883 ± 84572 
(1.2)

171507 ±2395 
(1)

As 0.47 ± 0.02 
(3.41)

0.76 ± 0.04 
(5.2) 205 ± 2 (0.9) 201 ±17  (8.5)

Sr 12535 ± 597 
(4 j)

299 ±11 (3.7) 194993 ±230 
(0.1) 8077 ±101 (1.3)

Cd 0.29 ± 0.02 
(6.9) <0.1 4638 ±27 (0.6) 88 ± 3  (3.4)

SD is standard deviation; RSD is a relative standard deviation (quoted as a % in 
brackets).

Table 2.22: Precision levels for selected trace elements in different pooled 
environmental samples (n = 10), water and tobacco determined by the Agilent 7700 
Series ICP-MS and Optima 3500 DV ICP-AES, respectively, presented as mean, ± 
SD and %RSD values, pg/1 and pg/kg for water and tobacco, respectively.

Element Water, mean ± SD (%RSD) Tobacco, mean ± SD (%RSD)
B 1210 ± 11 (0.9) nd
V 8.5 ± 0.2 (2.4) 15882 ±62 (0.4)
Cr 7.5 ± 0.4 (5.3) 0.42 ± 0.02 (4.8)
Mn 32.8 ± 0.8 (2.2) 0.40 ± 0.03 (7.5)
Fe 32.1 ±0.7 (2.3) 258 ± 3  (1.2)
Cu 18.1 ±0.7 (3.9) 3.41 ±0.04 (1.2)
Zn 212 ± 6 (2.8) 23.7 ± 0.2 (0.8)
As 44 ± 3  (6.8) 1.2 ±0.4 (33)
Sr 5363 ± 103 (2) 69 ±1 (1.4)
Cd 0.55 ±0.01 (1.8) 0.89 ± 0.02 (2.2)

nd = not determinec 
(quoted as a % in br

, SD is standard deviation, RSD is a relative standard deviation 
ackets).
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Table 2.23: Accuracy and precision levels for tear drops and saliva CRM NIST 
SRM® 1643e, presented as mean ± SD, %RSD and %R for measured values 
and mean ± SD for certified values.

Element 
(n = 3)

Elemental level (pg/1)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean ± SD

Percentage 
recovery (%R)

%RSD

B 164.8 ±3.6 157.9 ±3.9 104 2.2
V 37.79 ± 1.8 37.86 ±0.59 100 4.8
Cr 20.19 ±0.41 20.40 ± 24 99 2.0
Mn 38.40 ± 2.73 38.97 ±0.45 99 7.1
Fe 97.7 ±5.5 98.1 ±1.4 100 5.6
Cu 22.02 ± 0.76 22.76 ±0.31 97 3.3
Zn 78.6 ±2.8 78.5 ± 2.2 100 3.5
As 58.99 ±2.07 60.45 ± 0.72 98 3.5
Sr 202.8 ± 7.5 223.1 ±3.6 91 3.7
Cd 6.312 ±0.465 6.568 ± 0.073 96 7.4

SD is standarc 
brackets).

deviation, RSD is relative standard deviation (quoted as a % in

Table 2.24: Accuracy and precision levels for water CRM NIST SRM® TMDA 
54.4, presented as mean ± SD, %RSD and %R for measured values and mean ± 
SD for certified values.

Element 
(n = 3)

Elemental level (pg/1)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean ± SD

Percentage 
recovery (%R)

%RSD

B 62.5 ± 11.7 60.6 ±1.5 103 18.7
V 354 ± 3 340 ± 4 104 0.8
Cr 411 ± 2 438 ± 4 94 0.5
Mn 258 ± 5 275 ± 2 94 1.9
Fe 405 ± 12 382 ± 5 106 2.9
Cu 406 ±1 443 ± 4 92 0.2
Zn 505 ± 44 537 ± 6 94 8.7
As 42.6 ± 2.3 43.6 ±0.8 98 5.4
Sr 558 ± 24 589 ± 6 95 4.3
Cd 149 ±13 158 ± 2 94 8.7

SD is standard deviation, RSD is relative standard deviation (quoted as a % in 
brackets).
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Table 2.25: Accuracy and precision levels for human scalp hair and fingernail 
CRM GBW 09101, presented as mean ± SD, %RSD and %R for measured values 
and mean for certified values.

Element 
(n = 3)

Elemental level (mg/kg)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean

Percentage 
recovery (%R) %RSD

V 0.067 ±0.01 0.069 97 7.5
Cr 4.429 ±0.157 4.770 93 3.5
Mn 2.91 ±0.06 2.94 99 2.1
Fe 65.9 ± 1.9 71.2 93 2.9
Cu 22.7 ± 0.5 23.0 99 2.2
Zn 193 ± 5 189 102 2.5
Sr 3.84 ± 0.03 4.19 92 0.8
Cd 0.089 ±0.01 0.095 94 0.9

SD is standard deviation, RSD is relative standard deviation (quoted as a % in 
brackets).

Table 2.26: Accuracy and precision levels for human scalp hair and fingernail 
CRM GBW 07601, presented as mean ± SD, %RSD and R% for measured values 
and mean for certified values.

Element 
(n = 3)

Elemental level (mg/kg)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean

Percentage 
recovery (%R) %RSD

B 1.2 ±0.2 (1.3) 92 16
As 0.26 ±0.01 0.28 93 1.1

Values in brae 
standard devia

cets are not certified, SD is standard deviation, and RSD is relative 
tion (quoted as a % in brackets).

Table 2.27: Accuracy and precision levels for tobacco, NIST SRM® 1573a 
Tomato leaves, presented as mean ± SD, %RSD and R% for measured values and 
mean for certified values.

Element 
(n  = 3)

Elemental level (mg/kg)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean

Percentage 
recovery (%R) %RSD

B nd 33.3 nd nd
V 0.90 ± 0.03 0.835 108 3.3
Cr 1.84 ±0.01 1.99 92 0.5

Mn 222.7 ± 0.7 246 91 0.3
Fe 332.7 ± 0.6 368 90 0.2
Cu 5.16 ±0.03 4.7 110 0.6
Cd 1.49 ±0.01 1.52 98 0.7

SD is standard deviation, RSD is relative standard deviation (quoted as a % in 
brackets).
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Table 2.28: Accuracy and precision levels for tobacco, NIST SRM® 1573a Citrus 
Leave, presented as mean ± SD, %RSD and R% for measured values and mean ± 
SD for certified values.

Element 
(n  = 3)

Elemental level (mg/kg)
Accuracy Precision

Measured value 
mean ± SD

Certified value 
mean ± SD

Percentage 
recovery (%R) %RSD

Zn 27.9 ± 0.3 29 ± 2 96 0.9
As 2.82 ± 0.05 3.1 ± 0.3 91 1.8
Sr 90 ±1 100 ± 2 90 1.1

SD is standard deviation, RSD is relative standard deviation (quoted as a % in 
brackets).

2.9 Significance Tests

The raw data obtained by atomic absorption spectrometry, inductively coupled 

plasma mass spectrometry and inductively coupled plasma atomic emission were 

entered into and processed using Microsoft Excel®. The concentration determined 

from the calibration curve were corrected where necessary for instrumental drift 

followed by any dilution factors applied, such as the initial sample mass and final 

digest mass. The final results for the sample location or population were then 

subjected to calculation of descriptive statistics such as arithmetic mean, standard 

deviation, relative standard deviation, median, geometric mean, 95% confidence 

interval and range as appropriate.

Suitable significance testing, namely Grubb’s outliers, F-test, t-test, one-way 

analysis of variance (ANOVA), analysis of covariance (ANCOVA), Pearson’s 

correlation analysis (r) and discriminant function analysis (DFA), were then 

undertaken. Regression analysis was also utilised to determine the linearity of the 

calibration curve for each trace element by the different techniques investigated in 

this research. Figure 2.22 summarises the statistical approach used in this work. A 

probability level of 5% was considered to be statistically significant. The 

calculations were performed using statistical packages Minitab® version 16, 

Excel® - QI Macros 2011, and IBM SPSS Statistics version 19 (SPSS Inc., 

Chicago, 2010). The following section describes the significance tests used in this 

work. The equations used to calculate these tests are reported in Appendix C.
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distribution
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t-test, assuming 
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Figure 2.22: Statistical methodology flow chart used in this study, IV and DV are 
independent and dependent variables, ANOVA is "analysis of variance", 
ANCOVA is "analysis of covariance", DFA is "discriminant function analysis", 
and the DV is the category while the IV is trace element (Tabachnick & Fidell, 
2007).
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2.9.1 G rubb’s Test

The Grubb’s test was used to check whether any outliers were present in the data 

set. The tested data are the minimum and maximum values. If the calculated value 

Gcaic exceeds the critical value Gcrit, the suspect value is rejected, as reported in 

Chapter 4, Table 4.3 (Miller & Miller, 2010).

2.9.2 t-test

There are a number of different tests based on the t distribution used in this study, 

such as the paired t-test (paired-samples t-test), student’s t-test, t-test for linear 

regression and two-tailed t-test (independent-samples t-test).

• Paired t-test was used to compare pairs of data such as the concentrations 

determined by two methods, for example two digestion methods. The 

calculated value (/caic) is compared with the critical value (rent) for n-1 

degrees of freedom at the 95% confidence interval, as reported in Table 

2.9.

• Student’s t-test was used to calculate the significance of a difference 

between a certified value (̂ caic) and mean value measured for a reference 

material. The calculated value is compared with critical value (rent) for n-1 

degrees of freedom at the 95% confidence interval, as reported in Table 

2.19.

• Linear regression test based on the t distribution was used to determine the 

significance of a correlation from the product moment correlation 

coefficient (r) of n measurements. The calculated value (rcaic) is compared 

to the critical value (rent) for a t distribution with n-2 degrees of freedom at 

the 95% confidence interval, as reported in Chapter 4, Tables 4.17 & 4.18.

• Two tailed t-test was used to compare the mean values of two different 

groups of population such as healthy and diabetic; smokers and non- 

smokers; etc. There are two values of t-test provided; one is for equal 

variance and the other for unequal variance. The correct t-test value 

depends on the result of an F-test. If a P > 0.05 for the F-test, the result 

which refers to equal variances assumed was used, whereas, the result for 

unequal variances was used when the variances for the two groups are not
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the same (P < 0.05), as reported in Chapter 4, Tables 4.4 & 4.5. If the 

value of Sig. (2-tailed t-test) is less than 0.05, then there is a significant 

difference in the mean values of trace elements between the two groups. 

Conversely, when the P-value of the t-test is > 0.05, there is no significant 

difference between the two groups (Miller & Miller, 2010; Field, 2009; 

Tabachnick & Fidell, 2007).

2.9.3 One-way Analysis of Variance (ANOVA)

A one-way ANOVA was used to compare the group categories of a specific 

variable (e.g. biological samples), for the mean values of continuous variables 

(e.g. trace element levels). The main purpose of using one-way ANOVA is to 

examine whether there are significant differences in the mean values of trace 

elements across groups. In general, an P-value test is calculated which represents 

the variance between the groups divided by the variance within the group at the 

level of significance (P < 0.05) (Hair et al., 2010). The values of Sig. and P  are 

used to evaluate whether the differences between the levels of trace elements over 

study groups are significant. If the Sig. value is less than 0.05, then there is a 

significant difference among the mean values of the trace elements across the 

groups (Field, 2009).

2.9.4 Analysis of Covariance (ANCOVA)

Analysis of covariance is an extension of analysis of variance, which was 

conducted to explore the effect of different factors on the levels of trace elements 

in tear drop samples (Tabachnick & Fidell, 2001). It involved three independent 

variables (health status, gender and smoking activity), one dependent variable 

(trace elements in tear drops) and two covariates (the level of trace elements in 

drinking water and an individual’s age). The main advantage of using ANCOVA 

is to determine the differences between groups whilst statistically controlling 

additional variables. These additional variables (called the covariates) are the 

variables that are expected to influence the trace element levels in tear drops 

(Field, 2009). By removing the influence of these additional variables, ANCOVA 

can reduce the error and increase the power of the F-value. The question in
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ANCOVA as ANOVA is whether mean differences in the dependent variable 

between groups are significant at P  < 0.05 with respect to the interaction among 

factors (i.e. is one factor associated with the effectiveness of two groups for other 

factors and vice versa) (Sthiannopkao et al., 2009; Tabachnick & Fidell, 2001). 

For the purpose of this analysis, health status, smoking activity and gender are 

represented by numeric expressions, for example, 1 for male and 2 for female and 

so on, as shown in Chapter 4, Table 4.9.

The ANCOVA summary table is useful to know whether there is a significant 

effect and interactions for each factor (health status, smoking and gender). In 

addition, the results in the ANCOVA table can be used to evaluate whether there 

is a significant relationship between the covariates and the trace element levels. 

The effects and interactions for each factor along with covariate effect are listed 

under the "Source" column, as shown in Appendix E. The values under the "Sig." 

column are important to determine whether there is a significant effect for each 

factor, covariate and interaction. If the value of "Sig" for each factor is less than 

the level of significant (P < 0.05), then there is a significant effect for this factor. 

The P-value could thus determine the most highly associated factors with the level 

of trace elements in tear drops, as shown in Chapter 4, Table 4.11.

The ANCOVA table also provides the value of Partial g^a-squared which can 

be used to determine the strength of significant effect for each factor on the level 

of trace element (i.e. strength of relationship), as shown in Chapter 4, Table 4.16. 

The partial eta squared statistic reports the "practical" significance for each factor, 

based upon the ratio of the variation (sum of squares) accounted for by the factor, 

to the sum of the variation accounted for by the factor and the variation left to 

error (Field, 2009), as shown in the following equation:

Parafai    Equation 2.14
error

where SSgffect and SSgrror are the variance attributable to the effect of interest and 

the variance of error, respectively (Field, 2009; Tabachnick & Fidell, 2007). The 

value of partial can range from 0 to 1. In order to interpret the strength of i f  

values, the following guidelines can be used (Cohen, 1988), as shown in Table 

Z29.
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Table 2.29: The range values for partial eta squared.
n ' Effect

0.01 Small
0.09 Medium
0.25 Large

Source: Cohen’s, 1988.

2.9.5 Correlation Analysis

Correlation analysis was used to describe the strength and direction of the linear 

relationship between trace element levels in tear drops and other biological 

samples. The significance t-test distribution was used to check the level of 

significance for these relationships at the 95% confidence level, as shown in 

Chapter 4, Tables 4.17 & 4.18, and Chapter 5, Tables 5.2, 5.3, 5.5, 5.6, 5.8 & 5.9. 

Cohen (1988) suggested guidelines for this purpose, as shown in Table 2.30. 

Further information about the equations and the degrees of freedom for each study 

tests can be found in Appendix C (Miller & Miller 2010).

Table 2.30: Correlation coefficient guidelines.
Correlation coefficient value (r) Strength of correlation

± 0.0 to ± 0.29 Small
± 0.3 to ± 0.49 Medium
± 0.5 to ± 1.0 Large

Source: Pallant (2005); Cohen (1988).

2.9.6 M ultivariate Discriminant Function Analysis (DFA)

Multivariate data analysis has been used widely by other authors (Pino et al., 

2005; Shah et al., 2006). The use of multivariate methods such as principal 

component analysis (PCA) and discriminant function analysis has drastically 

increased in recent years for analysing environmental and biological data (Saadia, 

et al., 2005; Charpentier et al., 2000).

The main purpose of using DFA is description of group separation in which linear 

functions of the several variables (discriminant functions (DFs)) are used to 

describe or clarify the differences between two or more groups and identifying the 

relative contribution of all variables to separation of the groups. In addition, it is 

the prediction of observations to group in which linear functions of the variable
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(classification functions (CFs)) are used to assign an observation to one of the 

groups (Johnson & Wichem, 2002). In DFA, the independent variables are the 

predictors (trace elements) and the dependent variables are the groups (e.g. 

healthy and diabetic), as outlined in Chapter 4, Section 4.5.3. Generally, several 

variables (such as trace elements) are included in a study to see which ones 

contribute to the discrimination between groups (e.g. healthy and diabetic). The 

method extracts n-1 discriminant functions, n being the number of groups to 

discriminate among, which are linear combinations of the original quantitative 

variables selected. The model parameters are Wilks’ Lambda, an index of the 

discriminating power ranging between 0 and 1 (the lower the value the higher its 

discriminating power); eigenvalues, a measure of the variance in the dependent 

variable for each function; canonical correlations, a measure of the association 

between the groups formed by the dependent variable and the given discriminant 

function (the larger this value, the higher is the correlation between the 

discriminant functions and the groups). The first discriminant function (DFl) 

maximizes the differences between the values of the dependent variables. The 

second function (DF2), orthogonal to the first, maximizes the residual differences 

between values of this variable, and so on. The DFl will be the most powerful 

differentiating dimension, but later functions may also represent additional 

significant dimensions of differentiation, as shown in Chapter 4, Table 4.7. Since 

the different size of the groups under study, the predictions were accordingly 

adjusted using a priori probabilities classification. The predictive validity of the 

model has been assessed by using cross validation method (Chojnacka et aL, 

2010; Field, 2009; Tabachnick & Fidell, 2007).

2.10 Summary

The analytical methodology and instrumentation for the determination of trace 

elements in different biological and environmental samples has been described in 

this chapter. Sample collection, storage, methods of transfer and preparation 

procedures including different washing and digestion strategies are reported in 

Sections 2.1 -  2.4 in order to prepare for the analysis of water, tobacco, tear drops, 

saliva, scalp hair and fingernail samples by various spectrometric techniques. Two 

digestion methods were utilised in this study in order to develop a useful method
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for cigarette tobacco analysis. A statistical test (paired t-test) was used to evaluate 

whether there is any significant difference between the dry ashing and Kjeldahl™ 

tube digestion methods (Table 2.9). The relative standard deviation %RSD and 

recovery test %R for trace elements confirmed that the wet digestion method 

(Kjeldahl™ tube) is the preferred digestion procedure for tobacco with acceptable 

analytical recoveries ranging from 90 to 110%, as shown in Tables 2.27 & 2.28. 

Good levels of precision were obtained with acceptable RSD values from 0 to 

7.5% (Table 2.22) for most elements with the exception being As (Section 2.8.3). 

A new method for the sample collection and subsequent analysis of trace and 

ultra-trace elements in human tear drops was developed. Several washing and 

digestion procedures were developed for determining trace element levels in 

human scalp hair and fingernails (Section 2.2.3). The sequential washing 

procedure (acetone-water-water-water-acetone) was adopted in this study (Table 

2.11). The wet digestion method using a Kjeldahl™ tube provided the best data in 

this work, and as a result was employed for the complete digestion of washed 

human scalp hair and fingernails (Table 2.12).

The principles, instrumentation, operating conditions, advantages and limitations 

for each technique are discussed in Sections 2.5 -  2.7. Schematics for the Agilent 

7700 Series ICP-MS, Perkin Elmer Optima 5300 DV ICP-AES and Perkin Elmer 

AAnalyst™ 400 FAAS are presented with respective calibration curves, operating 

parameters and the calculated limit of detection. A long-term stability chart is 

described in Section 2.6.13 for a 100 pg/1 solution of the selected internal 

standards in order to check for any instrumental drift during the total trace 

element analysis by ICP-MS. Quality control charts are reported in Section 2.8.2 

for the identification of instrument drift throughout the whole analysis run for 

each material by various techniques. Precision and accuracy levels are presented 

in Section 2.8.3 through the determination of the standard deviation (SD), relative 

standard deviation (RSD) and percentage recoveries (%R). The data for these 

studies are shown in Tables 2.21 -  2.28. Several significance tests used in this 

study are reported in Section 2.9.

The developed methods and described techniques outlined in this chapter are now 

used for the elemental analysis of environmental samples (water and tobacco) and 

biological samples (tear drops, saliva, washed scalp hair and fingernails) and the 

results are reported in Chapters 3 ,4  and 5.
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3.0 Introduction

Data for the trace element analysis of different water resources and commercial 

cigarettes tobacco are reported in this chapter. Trace element (B, V, Cr, Mn, Fe, 

Cu, Zn, As, Sr and Cd) levels in commercial, domestic bottled, tap, river, well and 

artesian waters are presented and discussed in Sections 3.1.1 -  3.1.4. All of the 

results are compared with the guideline values for drinking and irrigation waters 

as recommended by the World Health Organisation (WHO); and Iraqi 

specifications and the Food and Agriculture Organisation (FAO). Furthermore, 

the results are also compared with published literature values, particularly from 

other regions within Iraq and other locations near Iraq, such as Turkey and Middle 

East countries. Trace element levels were also determined in various commercial 

cigarette tobacco samples (since a significant proportion of the population in Iraq 

are active smokers) and the results are compared with those reported from other 

regions of the world.

3.1 Water Analysis

3.1.1 Water Location and Sampling

In total, 190 water samples were collected from Karbala (Iraq) and London (UK), 

as described in Sections 2.1.1. Tap waters were collected from Karbala and 

London, whilst commercial, domestic bottled, surface (river) and ground water 

(well and artesian) were collected from Karbala only. In general, the population 

resident in Karbala use tap and bottled waters for drinking and domestic activities 

(washing, cooking and cattle), whilst surface and ground waters are used for 

irrigation, livestock, and in some cases use for drinking purposes. Water samples 

were obtained from Karbala in order to assess whether this media makes any 

significant contribution to the levels of trace elements for the human tissues and 

fluids under investigation, whereas London water samples were used for 

comparative purposes with Karbala samples.
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3.1.2 Instrumentation

An Agilent 7700 Series ICP-MS instrument equipped with collision/reaction cell 

technology was used for multi-element analysis of water samples. The 

optimisation and operation conditions of the ICP-MS instrument are reported in 

Section 2.6.11. The instrument was calibrated by using multi-elemental standard 

solutions, as shown in Section 2.6.12. The stability of the ICP-MS instrument 

throughout the water analysis run was checked by a long-term stability chart, as 

explained in Sections 2.6.13. The levels of precision and accuracy for the ICP-MS 

instrument were confirmed by calculation of the relative standard deviation 

(%RSD) and percentage recoveries (%R) using ten replicate measurements of a 

"pooled" water sample, and certified reference materials (CRMs), as shown in 

Section 2.8.3.

3.1.3 Results

The results for water analysis are divided into two parts, chemo-physical 

properties and multi-trace elemental analysis.

3.1.3.1 Chemo-Physical Properties

The pH values for water samples from commercial, domestic bottled, tap, river, 

well and artesian (spring) sources are reported as mean ± SD (range). The 

maximum pH values were found for commercial, tap (Karbala) and river waters 

(Table 3.1). Conductivity levels (pS/cm) ranged from 223 ± 5 (218 -  228) for 

commercial to (2505 - > 3999) for the well waters. The total dissolved solid 

content ranged from 112 ± 2 (111 -  114 mg/1) for commercial to (1254 - > 2000 

mg/1) for well waters. The results show that the highest values of TDS (> 2000 

mg/1) and EC (> 3999 pS/cm) were found in ground waters. A large difference for 

TDS and EC ranges were observed between the tap water and both of the 

commercial and London waters (Table 3.1).
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3.1.3.2 Trace Elements

Trace element levels for drinking (commercial, domestic bottled and tap), 

irrigation and livestock (river, artesian and well) waters are shown in Tables 3.2 &

3.3 as mean, standard deviation (± SD) and range values along with the WHO, 

Iraqi and FAO guidelines for drinking, irrigation and livestock waters. In drinking 

water, the highest level for most trace elements was found in tap water, with the 

only exception being Zn (105 pg/1) which was higher in domestic bottled waters 

(Table 3.2). Commercial waters used primarily for drinking in Karbala, exhibited 

the lowest levels for all the trace elements in terms of the calculated mean and 

range values.

The trace element levels in surface (river) and ground waters (artesian and well) 

are presented in Table 3.3, as a mean, ± SD and range (pg/1). The highest level of 

trace elements in irrigation waters was found in well waters when compared with 

river and artesian waters.

The results in this study were also compared with another study carried out in 

Baghdad, Iraq for drinking (tap) and irrigation (river) water samples, as shown in 

Table 3.4. Furthermore, the mean, standard deviation and range values for trace 

elements in tap water from Karbala are compared with those reported for tap 

water samples from London (Table 3.4).

3.1.4 Discussion

In Karbala town, responsibility for the production and delivery of drinking water 

is by order of the municipality’s office. During the last three decades, the quality 

of drinking water in Iraq has deteriorated due to the wars that took place at that 

time. Various industrial and man-made activities have dramatically decreased the 

quality of water in Iraq. Water treatment adds different new chemical compounds, 

especially during chlorination processes that can enhance the levels of 

contamination for water, such as trihalomethanes (Ward, 1989).
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Table 3.1: Mean, standard deviation and range for pH, total dissolved solid 
(TDS) and conductivity (EC) values for commercial, domestic bottled, tap, 
river, well and artesian waters from Karbala and tap water from London relative 
to the WHO guideline values for drinking water quality.

Water resource n pH EC (pS/cm) TDS (mg/1)
Commercial 3
Mean ± SD 

range
8.3 ± 0.2 
8.1 -8.5

223 ± 5  
218-228

112±2 
111 -114

Domestic bottled 33
Mean ± SD 

range
7.9 ± 0.3 
7.4 - 8.4

998 ± 472 
216-1553

510 ±238 
108-778

Tap 50
Mean ± SD 

range
8.0 ± 0.2 
7.7 - 8.4

1134± 184 
275 -  1294

566 ± 92 
137-647

River 33
Mean ± SD 

range
8.0 ± 0.2 
7.8 - 8.5

1343 ±40 
1275-1442

675 ± 20 
644-723

Well 47
Mean ± SD 

range
7.5 ± 0.5 
4.9 - 8.5 2505 - > 3999 1254->2000

Artesian (spring) 8
Mean ± SD 

range
7.7 ± 0.2 
7.5 - 7.9 1172->3999 5 8 3 -> 2 0 0 0

London, Tap 16
Mean ± SD 

range
7.6 ± 0.6 
6.1 -8.3

454± 136 
189-582

227 ± 68 
94-291

WHO, 
Guideline for 

drinking water
6 .5 -9 .0 250 1000

n is the number of samples, SD is standard deviation. 
Source: WHO, 2008.

3.1.4.1 Chemo-Physical Properties

The water quality constituents of Karbala and London water samples are reported 

in Table 3.1, along with the WHO guideline for drinking water. The pH values for 

all water samples are predominantly neutral to slightly alkaline, which are within 

the WHO guideline, as shown in Table 3.1 (WHO, 2008).

The conductivity and TDS values in various drinking and irrigation water samples 

from Karbala fluctuate due to the high levels of dissolved salts, such as chlorides 

and sulphates, which were observed during sampling (Barbooti et al., 2010). A 

significant correlation (R^ = 0.9999, P < 0.05) was observed between the TDS and
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conductivity levels in different water resources, as presented in Figure 3.1. Similar 

observations have been reported in the literature in terms of the positive 

correlation between the levels of EC and TDS in water samples that contain 

higher levels of dissolved ions (Atekwana et aL, 2004). A previous study has 

provided a detailed analysis and discussion on the relationship of conductivity 

versus TDS data that ranged from 500 to 3000 mg/L TDS (R^ = 0.59) (Howard & 

Statham, 1993). The highest levels of TDS and EC were reported in ground and 

surface waters when compared with tap and bottled waters (Table 3.1). 

Conductivity (pS/cm) levels for domestic bottled (216 -  1553) and tap (275 -  

1294) waters from Karbala are higher than for commercial (218 -  228) and tap 

waters from London (189 -  582). These results indicate that Karbala waters are 

characterised by relatively high conductivity levels, which are not in agreement 

with the WHO and European recommended values for EC (250 pS/cm) for 

drinking water. The main reason may be related to the high temperature in the 

summer season, typically ~ 51°C, which increases the evaporation of water, and 

hence the higher levels of dissolved solids (Arain et aL, 2009; Yogendra & 

Puttaiah, 2008). In Iraq, high levels of hypochlorite are used in water treatment in 

order to destroy any organic matter. The high levels of chloride may lead to an 

increase in the conductivity of a water body (Barbooti et aL, 2010).

0

Cond uf Uvhy ( p S/c ni)

Figure 3.1: Correlation between the TDS and EC level of the waters for Karbala 
(n = 174).
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3.1.4.2 Trace Elements

The mean and range values for most of the trace elements are lower than the 

permissible limits for drinking water recommended by the WHO and Iraqi 

guidelines. The only exceptions are for B in artesian (1049 ± 746 pg/1) and well 

waters (1569 ± 844 pg/1); Cd in river (8.71 ± 3.65 pg/1), artesian (5.28 ± 4.86 

pg/1) and well waters (9.98 ± 0.31 pg/1). The highest trace element level was 

found in well water for Sr (7096 ± 2923 pg/1), whilst the lowest level was for Cd 

(< 0.01 pg/1) in commercial water from Karbala (Tables 3.2 & 3.3).

Table 3.2: Elemental levels in commercial (n = 3), domestic bottled (n = 33) and 
tap (n = 50) waters from Karbala relative to the WHO guideline for drinking water 
quality.

Element

Elemental level (pg/1)

Commercial^ Domestic
bottled^ Tap WHO,

Guideline
for

drinking
water

Iraqi
specificationMean ± SD 

range
Mean ± SD 

range
Mean ± SD 

range

B 160 ±99 
63 - 260

258 ± 70 
75 - 350

354 ±107 
237 - 588 500 nf

V 0.3 ± 0.2 
0 .1 -0 .5

2.3 ±1.6 
0.1 -4.1

4.0 ±1.7 
0.4- 7.4 15 nf

Cr 0.07 ± 0.04 
0.03-0.11

0.48 ± 0.80 
0.06-4.85

0.46 ±0.12 
0.32 - 0.88 50 50

Mn 0.12 ±0.07 
0 .06-0.19

1.2 ±0.9 
0.3 - 3.9

4.3 ± 8.0 
0 .1 -42 .0 400 100

Fe 0.8 ± 0.2 
0 .7 -0 .9

9.6 ± 7.2 
0 .8 -35 .6

9.4 ±1.5
6.5 -12 .7 nf 300

Cu 0.5 ± 0.3
0.3 -  0.9

5.8 ±5.7 
0 .4 -30 .4

5.4 ±3.5 
1.3-18.5 2000 1000

Zn 2 ±  1 
1 - 2

105 ±146 
2 -7 1 5

52 ±58 
3 -1 9 7 3000 3000

As 0.12 ±0.09 
0.03 -  0.20

0.88 ±0.51 
0.05-1.57

1.56 ±0.59 
0.20 - 2.74 10 10

Sr 70 ±49 
2 2 -1 2 0

817 ±588 
15-1535

1113 ±425 
78-2110 nf nf

Cd < 0 .01-0 .01 0.74 ±0.41 
0.02-1.17

0.90 ± 0.44 
0.09 - 2.05 3 3

n (in brackets) is the number of samples, SD = standard deviation,  ̂commercial 
samples are a potable water usually imported from abroad with high quality, 
domestic bottled samples are made in Karbala for drinking and domestic uses, 
usually cheaper and with variable quality, nf = not found.
Source: Barbooti et al, 2010; WHO, 2008.
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In the case of Sr, there is no guideline value reported by the WHO or Iraqi 

standards that can be used to check whether the level of this element in drinking 

water is acceptable; however the Sr levels were compared with the literature 

values. Furthermore, the level of trace elements in the irrigation waters was below 

the FAO guideline for irrigation and livestock waters (Table 3.3). Comparison 

between Karbala and London tap water showed the levels for all elements are 

higher in Karbala samples, as presented in Table 3.4.

Table 3.3: Elemental levels in the river (n = 33), well (n = 47) and artesian (n = 8) 
waters from Karbala relative to the Food and Agriculture Organisation (FAO) 
guideline water quality for irrigation and the watering of livestock.

Element

Elemental level (pg/1)
Surface water Ground water FAO Guideline

River Well Artesian
(spring) Irrigation

water

Watering
of

livestockMean ± SD 
range

Mean ± SD 
range

Mean ± SD 
range

B 445 ± 97 
246 - 779

1569 ±844 
705 -3941

1049 ±746 
411 -2277 nf 5000

V 4.4 ±1.5 
3 .1-8 .2

6.5 ± 4.9 
0.4-17.8

1.2 ±0.7 
0.3 - 2.4 nf 100

Cr 2.9 ±1.3  
0.3-7.1

16.8 ±12.9
2.8 - 42.9

2.1 ± 1.2 
0.9 - 3.5 100 1000

Mn 3.9 ±2.5 
1 .5-12.8

17.6 ±36.2 
1.6-134.8

1.9 ±0.9 
1.1 - 3.6 200 50

Fe 84 ±33 
7 -1 1 6

98 ± 8  
92 -1 3 2

65 ±34 
3 3 -9 9 nf nf

Cu 30.8 ±14.6  
1 .1-77.0

34.7 ± 2.0 
32.3-41.4

18.4 ±16.8
1.9-37.3 200 1000

Zn 123 ± 48 
9 6 -3 7 7

131 ±31 
105 -253

82 ±56 
14-140 2000 24000

As 2.6 ± 0.9 
1.4 — 6.6

2.6 ±2.1 
1.3-13.1

1.5 ±0.8 
0.7 - 2.5 100 200

Sr 1321 ±409 
335 - 2755

7096 ± 2823 
1512- 14375

3448 ± 2998 
1157- 8308 nf nf

Cd 8.71 ±3.65 
1.02-13.55

9.98 ±0.31 
9.67-11.41

5.28 ±4.86
0.68-10.00 nf 50

n (in brackets) is the number of samples, SD = standard deviation’ FAO -  Food 
and Agriculture Organisation, nf = not found.
Source: FAO, 1994.
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Table 3.4: Elemental levels (pg/1) reported in this study and another study in 
Baghdad, Iraq for drinking and irrigation waters.

Element

’Elemental levels (p g/1)
Drinking water (tap' Irrigation water (river)

This study Baghdad^ 
(n = 21)

This study 
(n = 33)

Baghdad^ 
(n = 6)London 

(n = 16)
Karbala 
(n = 50)

B 45 ±22 
5 -8 4

354± 107 
237 - 588

< 1 0 0 -
230

445 ± 97 
246 - 779 <100

V 0.44 ± 0.32 
0 .04-0 .95

4.0 ± 1.7 
0.4 - 7.4 nd 4.4 ± 1.5 

3.1 - 8.2 nd

Cr 0.11 ±0.06 
0 .04-0 .27

0.46 ±0.12 
0.32 - 0.88 <5 2.9 ±1.3 

0.3 - 7.1 <5

Mn 1.07 ±2.96 
0.04-12.16

4.3 ± 8.0 
0 .1 -42 .0 <1 -< 1 0 3.9 ±2.5 

1 .5-12 .8 < 1 -1 0

Fe 0.8 ±0.1 
0 .7 -1 .0

9.4 ±1.5
6.5 -1 2 .7 < 2 0 -7 6 84 ±33 

7 -1 1 6
< 2 0 -
624

Cu 4.1 ±4.6 
0 .6 -19 .2

5.4 ±3.5 
1.3-18.5 <5 30.8 ± 14.6 

1 .1-77 .0 <5

Zn 8.9 ±14.2 
0 .7 -45 .8

52 ±58 
3 -1 9 7 < 20 - 963 123 ± 48 

9 6 -3 7 7 < 2 0 -4 0

As 0.70 ± 0.47 
0 .02-1 .26

1.56 ±0.59 
0.20 - 2.74 <10 2.6 ± 0.9 

1 .4 -6 .6 <10

Sr 168 ±94 
6 -3 5 7

1113 ±425 
78-2110 nd 1321 ±409 

335 -2755 nd

Cd 0.03 ± 0.01 
0 .01-0 .07

0.90 ± 0.44 
0.09 - 2.05 <1 8.71 ± 3.65 

1.02-13.55
<1

* Karbala data was taken from Tables 3.2 & 3.3, ^this study was carried out in 
Baghdad (Iraq) by other researchers (Barbooti et al, 2010).

Boron

Boron levels increase through the following sequence (well > artesian > river > 

tap > bottled > commercial > London), ranged from 705 - 3941, 411 - 2277, 246 - 

779, 237 - 588, 75 -  350, 63 -  260 to 5 -  84 pg/1, respectively, as shown in Figure 

3.2. These levels are higher than a typical mean value (10 pg/1) for fresh and river 

waters which have been reported in Table 1.5. The B levels in commercial (160 ± 

99 pg/1) and bottled waters (258 ± 70 pg/1) are lower than the levels in bottled 

mineral water (360 pg/1) (Coughline, 1998) and higher than a typical mean value 

for fresh water (10 pg/1) (Ward, 2000); in tap water (354 ± 107 pg/1) are lower 

than the WHO guideline (500 p/1 B) for drinking water (WHO, 2008) and higher
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than a typical mean value for fresh water (10 pg/1); and in river (445 ± 97 pg/1), 

artesian (1049 ± 746 pg/1) and well (1569 ± 844 pg/1) are higher than the WHO 

guideline (500 p/1 B) for drinking water and typical values for river waters (10 

pg/1) (Table 1.5).

The highest elemental levels in irrigation waters were found to be at a level which 

could possibly cause toxicity symptoms and damage to plants (Hill, 2009). As 

such, irrigation waters play an important role in increasing the levels of B in soils 

(Nable, et al, 1997). The high levels of B found in ground water were related to 

soil levels, where the B was added to the soil by irrigation waters and fertilisers 

(Nable, er a/., 1997).

Boron compounds are used in several industries as boric acid, such as glass, 

porcelain manufacture, carpets, photographic chemicals, and fertilisers. Moreover, 

the levels of B are also dependent on the geology conditions and waste water 

discharges that are released into the environment from detergents (production and 

end use). This process leads to increase in the levels of B in the waste effluent, 

and then in ground water (Vengosh et al, 1994).

'.mr-

^  ].mY-

IoikJoii ConmTcial fîtuikd 

Key: ^  Mean value

Confidence mten'al

River Spnng Well 

WHO 500 u e l diinkin? water limit

Figure 3.2: Level of boron (pg/1) reported in different water samples (see 
Appendix D for sample codes).

In Iraq, B compounds are typically used in the production of detergents and glass, 

and usually the waste water for these industries is released into the rivers 

(Barbooti et al, 2010). Previous studies in Iraq have reported higher levels of B
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(10 mg/1) in Karbala for ground water (Al-Dbbas, 2006), and lower levels in 

Baghdad (<0.1 -  0.23 mg/1) for tap and (< 0.1 mg/1) for river water (Barbooti et 

al., 2010). Boron levels reported in this study were also compared with the 

literature values for those reported in other countries. In general, B concentrations 

vary widely and depend on the surrounding geology and waste water discharges. 

For most of the world, the concentration range of boron in drinking water is 

judged to be between 100 and 300 pg/1 (Hill, 2006). However, B ranged in tap 

(237 -  588 pg/1) and well water (705 -  3941 pg/1) in this study and are therefore 

higher than those reported in the UK (4.2 -  62.3 pg/1) and (1.5 -  55.8 pg/1), 

respectively (Ward, 1989). Ground water samples were collected from 47 wells 

distributed in the desert of Karbala, which are arid soils. A previous study has 

found that B can be very high in arid or semi-arid areas where leaching is limited 

(Gupta et al, 1985). These regions are often characterised by high levels of 

salinity and, therefore, higher levels of B (Gupta et al, 1985). Figure 3.3 shows 

the positive correlation between B and the TDS levels in Karbala waters (R^ = 

0.687, P < 0.05). Boron was reported in the literature to be a significant factor that 

can affect the metabolism of Ca and Mg (Usuda et al, 2007). In the light of these 

results, water from Karbala may require chemical treatment at the municipal water 

plant in order to reduce B levels, and thereby improve the quality of drinking 

water.

R - = 0.687. P <  0.05

500 1000
TDS

500 2000

Figure 3.3: Correlation between boron and the TDS levels for water samples from 
Karbala (n = 174), the circles in red colour represent the values > 2000 as the 
Hanna HI 98129 Digital Combo Meter is limited by the detectable ranges (0 -  
2000 mg/1 TDS) (Hanna, 2008).
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Vanadium

Vanadium levels for water samples increase through the following sequence (well 

> river > tap > bottled > artesian > London > commercial, as shown in Figure 3.4. 

The results in Tables 3.2 & 3.3 show that the mean values for water samples are 

below the guideline value for drinking water recommended by the WHO (15 pg/1 

V). There is no guideline value reported by the FAO for V in irrigation water 

(Table 3.3). However, V levels in irrigation water were lower than the guideline 

for livestock water (100 pg/1 V). The highest levels of V in this study were found 

in ground water (well) (6.5 ± 4.9 pg/1), whilst the lowest levels were in 

commercial waters (0.3 ± 0.2 pg/1). In general, the levels (mean ± standard 

deviation pg/1) measured in commercial waters (0.3 ± 0.2) are lower, and in 

bottled (2.3 ± 1.6), tap (4.0 ± 1.7), river (4.4 ± 1.5), artesian (1.2 ± 0.7) and well 

(6.5 ± 4.9) are higher than the levels typically found in fresh (0.5 pg/1) and river 

(1 pg/1) waters (Ward, 2000).

15-

I -
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Figure 3.4: Level of vanadium (pg/1) reported in different water samples (see 
Appendix D for sample codes).

In comparison with the literature, the levels of V are within the ranges reported by 

other authors for drinking water (0.093 -  235 pg/1) (Reimann et al, 2003), and 

lower than others (10 -  200 pg/1) (Ikem et al., 2003). Several well waters in 

Karbala have levels of V (17.8 pg/1) exceeding the guideline value reported by the 

WHO for drinking water (Table 3.3). The main source of V in Iraq may be from
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oil. Therefore, elements can seep from oil into the aqueous environment during 

the weathering, oil spill, oil combustion and the emissions from power plants 

(Baird & Cann, 2005). Interestingly, a previous study in Japan has suggested that 

possible beneficial health effects can arise from drinking water with a high level 

of V. In one study, drinking such water could lower blood glucose levels in 

diabetic patients, and improve the insulin-resistant status of healthy women (Seko 

et al., 2006).

Chromium

Chromium is found at high levels in well waters (2.8 - 42.9 pg/1), and lowest 

levels in commercial waters (0.03 -  0.11 pg/1), as shown in Figure 3.5. In general, 

the levels of Cr in drinking and irrigation water samples are lower than the WHO 

guideline and Iraqi specification for drinking water (50 pg/1 Cr) (Table 3.2), and 

FAO for irrigation and livestock (100 and 1000 pg/1 Cr) (Table 3.3), respectively. 

The Cr levels for drinking water, reported as mean ± standard deviation 

(commercial, 0.07 ± 0.04 pg/1) (bottled, 0.48 ± 0.80 pg/1) and (tap, 0.46 ± 0.12 

pg/1) are lower than the typical values in fresh and river water (1 pg/1 Cr), 

respectively (Ward, 2000).

The results of Cr levels in the irrigation (river, 2.9 ± 1.3 pg/1) and drinking (tap, 

0.46 ±0.12 pg/1) waters in this study are in agreement with those reported in other 

places in Iraq (river and tap < 5 pg/1 Cr) (Barbooti et al., 2010). The levels of Cr 

in the water samples reported in this study are within the ranges published in the 

literature. Chromium was reported in the literature as ranging over (< 0.01 -  21.3 

pg/1 Cr) for ground water (Reimann et al, 2003), (0.8 -  1.48 pg/1 Cr) (Nkono & 

Asubiojo, 1998) and (0.4 -  1.50 pg/1 Cr) (Ward, 1989) for tap waters. Figure 3.6 

shows the relationship between Cr and the TDS levels in Karbala waters (R^ = 

0.564, P < 0.05). In the light of these results, Cr levels in Karbala waters are 

considered to be acceptable in terms of quality as they were below the acceptable 

value by the WHO.
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Figure 3.5: Level o f chromium (pg/1) reported in different water samples (see 
Appendix D for sample codes).
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Figure 3.6: Correlation between chromium and the TDS levels for water samples 
from Karbala (n = 174). The circles in red colour represent the values > 2000 as 
the Hanna HI 98129 Digital Combo M eter is limited by the detectable ranges (0 -  
2000 mg/1 TDS) (Hanna, 2008).

Manganese

The lowest levels were found to be in commercial water (0.12 ± 0.07 pg/1) from 

Karbala, whilst the highest levels were in ground waters (well) (17.6 ± 36.2 pg/1), 

as shown in Figure 3.7. All o f the results confirm that the mean Mn values for all 

types o f  drinking (commercial, bottled and tap) and irrigation waters (river, 

artesian and well) waters are lower than the permissible limits recommended by 

the WHO for drinking water (400 pg/1 Mn) and FAO for irrigation (200 pg/1 Mn)
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and livestock (50 pg/1 Mn), as reported in Tables 3.2 & 3.3. The levels o f Mn 

(mean ± standard deviation) in tap water (4.3 ± 8.0 pg/1) are within the literature 

ranges reported in Iraq (< 1 -  < 10 pg/1) (Barbooti et al., 2010) and for other 

countries (1.40 -  4.54 pg/1) (Ward, 1989), (2.3 -  9.20 pg/1) (Nkono & Asubiojo, 

1998). M anganese levels in river and ground waters are also in agreement with 

those reported in Iraq for river water, < 1 - 1 0  pg/1 Mn (Barbooti et al, 2010) and 

in another country for well water, < 0.1 -  2440 pg/1 Mn (Reimann et al, 2003). In 

addition, the typical levels reported in the literature for fresh (10 pg/1 Mn) and 

river waters (7 pg/1 Mn) (Ward, 2000) are higher than the Mn levels measured in 

this study for drinking and irrigation waters, respectively. The only exception is 

for well water (17.6 ± 36.2 pg/1). In summary, there appears to be no concerns 

over the levels o f Mn in Karbala waters as the mean values are in agreement with 

the guideline reported by the WHO.
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Figure 3.7: Level o f manganese (pg/1) reported in different water samples (see 
Appendix D for sample codes).

Iron

The W orld Health Organization does not recommend a guideline value for Fe in 

drinking water (WHO, 2008). However, the levels o f Fe in both drinking and 

irrigation water are significantly lower than the Iraqi specification (300 pg/1 Fe) 

(Barbooti et al., 2010). Levels o f Fe in the water samples increase through the 

following sequence (well > river > artesian > bottled ~  tap > London ~
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commercial, as shown in Figure 3.8. Iron in drinking water was found to be in the 

range o f (0.7 -  0.9 pg/1) for commercial, (0.8 -  35.6 pg/1) for bottled and (6.5 -  

12.7 pg/1) for tap water. It was found that Fe could be present in drinking water 

due to the coagulation process, where several Fe salts are used as coagulating 

agents in water treatment. In addition, the corrosion o f steel, cast and galvanised 

iron pipes during water distribution can also increase the concentration o f Fe in 

drinking water (Ilyas & Sarwar, 2003). Typical values for Fe in fresh water are 

reported in Table 1.5 (500 pg/1); Fe levels in drinking water samples (commercial, 

bottled and tap) are slightly lower than this typical levels and within the reported 

range in the literature (4.2 -  15.3 pg/1 Fe) (Nkono & Asubiojo, 1998). Moreover, 

the levels o f Fe in tap water are lower than those reported in Baghdad, Iraq (< 20 

-  76 pg/1) (Table 3.4).
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Figure 3.8: Level o f iron (pg/1) reported in different water samples (see Appendix 
D for sample codes).

The levels o f Fe in river (84 ± 33 pg/1); artesian (65 ± 34 pg/1); well (98 ± 8 pg/1) 

waters are higher than those reported as typical values for river (40 pg/1 Fe) 

samples in Table 1.5, and in the literature for other countries (40 pg/1) (Khan et 
al., 2005). The high levels o f Fe in rivers arises from the waste water discharged 

by industrial activities, such as thermal power plants and a urea plant, which are 

located adjacent to nearby local rivers. The results obtained in this study are 

within the reported range for irrigation water in Iraq, Baghdad (< 20 - < 624 pg/1)
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(Table 3.4). The level of Fe correlates with the TDS for Karbala waters, as shown 

in Figure 3.9. The results indicate that Fe levels in Karbala water are below the 

acceptable limit according to the Iraqi standard limit for drinking water.
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Figure 3.9: Correlation between iron and the TDS levels for water samples from 
Karbala (n = 174). The circles in red colour represent the values > 2000 as the 
Hanna HI 98129 Digital Combo Meter is limited by the detectable ranges (0 -  
2000 mg/I TDS) (Hanna, 2008).

Copper

The distribution of Cu in various water samples is shown in Figure 3.10. Copper 

levels were found to be in commercial (0.3 -  0.9 pg/1), bottled (0.4 -  30.4 pg/1), 

tap (1.3 -  18.5 pg/1), river (1.1 - 77.0 pg/1), artesian (1.9 -  37.3 pg/1) and well 

(32.3 - 41.4 pg/1) waters at levels lower than the WHO and Iraqi guideline for 

drinking water, (2000 and 1000 pg/1), respectively. These values are higher than 

typical levels for fresh (3 pg/1) and river water (5 pg/1) (Ward, 2000). The only 

exception is for commercial water, which is lower than this typical level. In 

comparison with another study reported in Baghdad, the levels of Cu in drinking 

water (tap) are in disagreement with the Baghdad study (< 5 pg/1), and the levels 

in river water are correspondingly higher (< 5 pg/1) (Table 3.4). The Cu levels in 

drinking water reported in the literature cover the range, (5 -  18000 pg/1) (Ilyas & 

Sarwar, 2003). It is well known that copper is used in several commercial 

processes, such as copper pipes, valves, alloys and coatings (WHO, 2008). Copper 

levels can increase in drinking water due to the corrosion of plumbing (USEPA,
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1991). Overall, the levels of copper in Karbala water are under the levels set by 

the WHO for drinking water.
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Figure 3.10: Level of copper (pg/1) reported in different water samples (see 
Appendix D for sample codes).

Zinc

Zinc levels in Karbala water samples are summarised in Tables 3.2 & 3.3 and 

presented in Figure 3.11. In general, the levels of Zn in both drinking and 

irrigation waters are in accordance with the WHO, Iraq and FAO guidelines. The 

highest Zn levels are observed in well and river waters, as mean ± standard 

deviation (131 ± 31 and 123 ± 48 pg/1), respectively, whilst the lowest level is 

measured in commercial water ( 1 - 2  pg/1). Typical zinc levels in fresh and river 

waters are reported in Table 1.5 (15 and 20 pg/1), respectively. The majority of 

drinking water samples (except commercial water) are higher than the values for 

fresh water. Furthermore, most irrigation waters are also higher than the published 

value for typical river water. Zinc values in the literature fluctuate, for example, 

Ilyas & Sarwar (2003) reported Zn levels in drinking waters of 0 -  3600 pg/1, 

Kabata-Pendias & Mukherjee (2007), 1.1 -24000 pg/1.

The WHO states that the levels of Zn in drinking water could be increased 

through the dissolution of zinc from pipes (WHO, 2008). In this study, the levels
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of Zn in drinking water are lower than literature values although the pipes used for 

water distribution in Karbala include Zn materials. A possible explanation for this 

phenomenon is that the pH of water samples was slightly alkaline, which can lead 

to a decrease in the solubility of Zn (Ilyas & Sarwar, 2003). On the other hand, the 

levels of Zn in domestic bottled water (105 ± 146 pg/l) are higher than tap water 

(52 ±58 pg/1). The relatively high value of Zn in the bottled water is possibly due 

to the fact that these waters are stored in galvanised tanks which corrode rapidly 

in the tropical environment and leach the elements into the water supplies (Nkono 

& Asubiojo, 1998). The Zn levels in drinking water are in agreement with a study 

in Baghdad (Table 3.4). However, the Zn levels of irrigation water are higher than 

those reported in Baghdad (< 20 -  40 pg/1). In conclusion, the drinking and 

irrigation water data in this study provides a level of confidence that there are no 

zinc contamination problems in Karbala water samples.
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Figure 3.11: Level of zinc (pg/1) reported in different water samples (see 
Appendix D for sample codes).

Arsenic

Arsenic levels (pg/1) for commercial (0.12 ± 0.09), bottled (0.88 ± 0.51), tap (1.56 

± 0.59), river (2.6 ± 0.9), artesian (1.5 ± 0.8) and well waters (2.6 ± 2 .1 ) are 

within the WHO guideline (10 pg/1) for drinking water, as shown in Figure 3.12. 

Arsenic levels (pg/1) for most drinking and irrigation samples are higher than
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values for fresh and river waters, as reported in Table 1.5 (0.5 pg/1 As) and (2 pg/1 

As), respectively. The only exception is for As levels (pg/1) in commercial waters, 

which are lower than fresh waters. Moreover, As values in this study are in 

agreement with those reported in Baghdad (< 10 pg/l As) for tap and river waters 

(Barbooti et al., 2010). However, tap water values (1.56 ± 0.59 pg/l As) are lower 

than those reported in other countries, such as Nigeria (13 pg/1 As) (Nkono, & 

Asubiojo, 1998), and higher than British tap water levels (0.04 -  0.45 pg/1 As) 

(Ward, 1989). It should be noted that high natural levels of arsenic have been 

reported in different countries, such as Bangladesh or Thailand (> 1000 pg/1 As) 

and Finland (about 50 mg/1 As) (Mandai & Suzuki, 2002). In addition, a high 

arsenic concentration has also been reported in the USA (ground water), and La 

Pampa, Argentina (< 4 to 530 pg/1 As) (Smedley et al, 2002). The long term use 

of contaminated waters with high levels of As may cause an accumulation of As 

in soils and crops (Heikens et ah, 2007). According to the WHO and other 

authors, high levels of As in water can be a possible cause of adverse health 

effects and/or diseases (Arain et al., 2009; Arain et al., 2008; WHO, 2008).
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Figure 3.12: Level of arsenic (pg/1) reported in different water samples (see 
Appendix D for sample codes).

Furthermore, various studies in the USA have reported that As in drinking water 

has been associated with the onset of type 2 diabetes (Navas-Acien et al., 2008; 

Kile & Christiani, 2008; Meliker et al., 2007). According to the WHO guideline
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for drinking water, the values for water samples in Karbala are at acceptable 

levels in terms of As.

Strontium

Strontium may be considered to be one of the important elements to be 

determined in this study. The level of Sr is higher in all water samples; the mean, 

standard deviation and range values in different water samples are summarised in 

Tables 3.2 & 3.3. The WHO do not recommend any guideline value for Sr in 

water samples. Another problem is that there is a lack of literature on Sr in 

environmental samples.

The results show that the levels of Sr (pg/1) increase according to the following 

trend (well > artesian > river > tap > bottled > London > commercial), with ranges 

from 1512 -  14375, 1157 -  8308, 335 -  2755, 78 -  2110, 15 -  1535, 6 - 357 to 22 

- 120 pg/1 Sr, respectively, as shown in Figure 3.13. The U.S. Environmental 

Protection Agency (USEPA) recommended that the acceptable level of Sr in 

drinking water should not exceed (4000 pg/1 Sr) (Usuda et a l, 2007). The mean 

values for commercial, domestic bottled, tap, river and artesian waters are lower 

than the standard value (4000 pg/1 Sr) of the USEPA (Tables 3.2 & 3.3), whilst 

the Sr levels in well waters (7096 ± 2823 pg/1) exceed this value. Thus, Sr levels 

have a strong correlation with the TDS (R^ = 0.850, P < 0.05), as shown in Figure 

3.14.

The levels of Sr in drinking water, namely commercial; domestic bottle; and tap 

are equal to, ~ 12 times higher than and 16 times higher than those reported in 

fresh water (70 pg/1 Sr), respectively. Similar results were reported for irrigation 

waters when compared with typical values for river samples. The levels of Sr for 

river, artesian and well waters are equal to ~ 19 times higher, 49 times and 101 

times higher than typical river value (60 pg/1 Sr), respectively (Table 3.3). The 

results were also compared with data reported in the literature. The Sr levels in 

drinking water (domestic bottled and tap) are higher than those reported in other 

countries such as Dhaka (127.6 pg/L Sr); Karanikong (217.98 pg/L Sr); Japan 

(81.88 pg/L Sr) and Saudi-Arabia (376.46 pg/1 Sr) (Chiba et al., 2006; Al-Saleh, 

1996). In addition, Sr levels in surface (river) and ground (artesian and well) 

waters are higher than those reported in the literature for surface (24.9 - 30.6 pg/1
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Sr) water (Reimann et al, 2003); (8.8 -  0850 pg/1 Sr) and (800 pg/1 Sr) for ground 

water (Azparren et al, 2000; Kikuchi et al, 1999). A previous study in Denmark 

has reported a high level of Sr in ground water -  up to 53 mg/1 Sr, (Greve et al, 

2007).

In the light of these results, the highest levels of Sr were found in ground water. 

The presence of Sr may be due to natural distribution throughout rocks, soil, dust, 

coal and oil in this region. Eventually, it is moved to the ground water through the 

natural re-crystallisation or weathering of rocks and soils (Greve et al, 2007). The 

soil in Iraq includes high levels of oil and, therefore, might be a reasonable source 

for Sr. In addition, human activities could also increase the levels of Sr in the 

environment, where Sr is used to produce ceramics and glass products, 

pyrotechnics, paint pigments, fluorescent lights, medicines, colour television 

picture tubes and a red colour in fireworks (Usuda et a l, 2007). In general, the 

population are exposed to high levels of Sr via food and drinking water, where 

some Sr compounds are dissolved in such waters (Spector & Curzon, 1978). 

Previous studies have shown that Sr in drinking water can enter the bloodstream 

from the intestine and through the skin during bathing / swimming (Ozden et al, 

2007).
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Figure 3.13: Level of strontium (pg/1) reported in different water samples (see 
Appendix D for sample codes).

The biological effects of strontium (as discussed in Section 1.1.3.9) are linked 

with bone disease due to the Sr being accumulated in bones as a "look-a-like" to 

Ca (Usuda et al, 2007; Verberckmoes et al, 2003). However, Sr could be used as
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a drug for treatment of osteoporosis (Malaise et al, 2007), and to cause rickets 

disease particularly in a strontium-rich soil, such as Turkey (Ozgur et al, 1996).
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Figure 3.14: Correlation between strontium and the TDS levels for water samples 
from Karbala (n = 174). The circles in red colour represent the values > 2000 as 
the Hanna HI 98129 Digital Combo Meter is limited by the detectable ranges (0 -  
2000 mg/1 TDS) (Hanna, 2008).

Cadmium

Cadmium levels in Karbala water samples (drinking and irrigation) are presented 

in Tables 3.2 & 3.3. It was found that Cd levels (pg/1) in drinking water 

(commercial, < 0.01 -  0.01; bottled, < 0.02 - 1.17; and tap, 0.09 - 2.05) are lower 

than the WHO and Iraqi guidelines (3 pg/1 Cd). The irrigation water samples 

(river, 1.02 - 13.55; artesian, 0.68 - 10.00; and well, 9.67 - 11.41 pg/1) also include 

Cd levels lower than the Permissible Limit reported by the FAQ for Livestock (50 

pg/1 Cd), and higher than the WHO and Iraqi guidelines for drinking water, as 

shown in Figure 3.15. A positive relationship was found between Cd 

concentration and the TDS levels in the water samples from Karbala (R^ = 0.450, 

P < 0.05), as shown in Figure 3.16.

The highest levels of Cd were found in ground water (9.98 ± 0.31 pg/1 Cd), and 

the lowest in commercial water. Typical mean values reported in the literature for 

fresh and river water are, 0.03 and 0.02 pg/1 Cd, respectively (Ward, 2000). The 

mean value (pg/1) of Cd in tap (0.90 ± 0.44) and river (8.71 ± 3.65) water in this 

study are 31 times and 400 times higher than typical values for fresh and river
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waters, respectively. The reported values in the literature for Cd in drinking water 

are: 0.07 -  0.62 pg/1 Cd (Ward, 1983) and 0.32 -  1.08 pg/1 Cd (Nkono & 

Asubiojo, 1998) for tap water and 0.018 -  0.056 pg/1 Cd (Ilyas & Sarwar, 2003) 

and < 0.002 -  6.41 pg/1 Cd (Reimann et al., 2003) for ground water. The results in 

this study show that the values of Cd in drinking water are within the literature 

range, whilst in ground water are higher than the literature ranges. In addition, 

these results are in agreement with those reported in Baghdad, Iraq by Barbooti et 

al. (2010) for drinking water (< 1 pg/1 Cd) and higher than Baghdad levels (< 1 

pg/1 Cd) in terms of river water.

Cadmium is a toxic trace element (Skrzydlewska et al., 2003; Jarup et al., 1998). 

In general, besides cigarette smoking, people are usually exposed to Cd levels 

from industrial sources, such as steel, plastic, Zn smelting and battery 

manufacturers (e.g. electrode in rechargeable nickel-cadmium batteries used in 

calculators and smaller devices) (Baird & Cann, 2005). Cadmium is released to 

the environment through the wastewaters and fertilisers (WHO, 2008). Overall, 

the drinking water (commercial, bottled and tap) in Karbala can be used directly, 

whereas irrigation water (river, artesian and well) water may need chemical 

treatment prior to use as drinking water by the population.
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Figure 3.15: Level of cadmium (pg/1) reported in different water samples (see 
Appendix D for sample codes).
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Figure 3.16: Correlation between eadmium and the TDS levels for water samples 

from Karbala (n = 174).

3.2 Cigarette Tobacco

Smoking is considered to be a major environmental risk factor associated with 

many serious systemic diseases, including respiratory diseases, heart diseases and 

cancers (Varela-Lema et al, 2009; Pappas et al., 2006; Fowles & Dybing, 2003; 

Tomar & Asma, 2000). One study in the USA reported that there is a link between 

smoking tobacco and the onset of type 2 diabetes (Will et al., 2001). Many toxic 

trace elements are found in cigarette tobacco which can cause more health 

problems and disorders (Kim et al., 2010; Chiba & Masironi, 1992).

Tobacco samples were collected from Karbala (n = 16), as described in Section 

2.1.1. The tobacco samples under investigation cover the commercial materials 

available to the individuals who make-up the study group in Chapter 4. The aim 

of this study was to develop an analytical method for the determination of trace 

elements in cigarette tobacco, and to investigate whether cigarette tobacco may 

contribute to the elevation of elemental levels in the tissues and fluids of cigarette 

smoking individuals living in Karbala.
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3.2.1 Instrumentation

The inductively coupled plasma atomic emission spectrometry (ICP-AES) 

operating conditions used in this study are reported in Table 2.16. The instrument 

was calibrated by using multi-elemental standard solutions, as shown in Section 

2.7.6. The limit of detection (LOD) for the instrument was determined prior to any 

tobacco sample analysis and the results are reported in Table 2.18. The stability 

for the ICP-AES instrument was confirmed by using a control quality chart, which 

is reported in Section 2.8.2. The calculated relative standard deviation (%RSD) 

values were used to measure the precision of the ICP-AES instrument through the 

replicate analysis of pooled samples. Certified reference materials (CRMs) were 

used to determine the levels of accuracy (Section 2.8.3).

3.2.2 Results and Discussion

Soil is the main source for trace elements in plants. The mobility of trace elements 

from the soil solution into the plant as free ionic or complex forms which occurs 

either by ion exchange or adsorption between the root and soil (Baird & Cann, 

2005). The processes of mobility and availability of trace elements in plants are 

based on several factors, namely pH, redox reactions, geochemical, biological, 

external weathering and condition and the internal bond to various compounds 

(Baird & Cann, 2005). Tobacco leaves are widely used in manufacturing smoking 

materials (Mench, 1998). Because of the possible transfer of certain elements 

from the tobacco to tobacco smoke during the combustion process, it is desirable 

to study the concentration of various elements present in cigarette tobacco 

(Martinez et al., 2008). Multi-trace element analysis by ICP-AES was performed 

for cigarette tobacco samples; the elemental mean, standard deviation (±SD) and 

range values are summarised in Table 3.5. The highest mean trace elements values 

were found in tobacco samples as reported for Fe (257 ± 52 mg/kg Fe, dry weight, 

d.w.), whilst the lowest mean values are observed for V (0.42 ±0 .12  mg/kg V, 

d.w.). The overall order of the trace elements levels in all cigarette tobacco 

samples is Fe > Mn > Sr > Zn > Cu > As > Cd > Cr > V. Iron and Mn are found in 

higher levels when compared with other elements as they are widely spread in the 

soil ((Kabata-Pendias, 2000).
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Table 3.5: Comparison of the elemental levels for commercial tobacco (n = 16) 
used in this study and those reported in the literature (mg/kg, dry weight).

Element
Elemental level (mg/kg, dry weight), mean or range

This study. Mean ± SD (range) Literature range Cigarette type

V
0.42 ±0.12 

(0.26-0.67)
0.49-5.33+ nf

Cr
0.62 ±0.17 

(0.40-0.99)
< 0 .1 -3 .4 5
4.44-29.3

USA
Algerian

Mn
99 ±24 

(5 9 -  158)
81 -1 4 8
155-400

Mexican
USA

Fe
257 ± 52 

(166-349)

359 -  564 
656 -  823 
325-520  
449 ± 6*

Mexican
Algerian

USA
Iran

Cu
5.36 ±2.54 

(2.45-9.88)
9 - 1 7

9.01-19.18
Mexican

India

Zn
26.8 ±5.2 

(18.1-34.9)

16.8-30.5 
35" 

12.6 ± 0.4

USA
Turkey

Iran

As
1.7±1.1 

(0 .7-4 .2)

< 0 .5 5 -3 .2 4  
4.05 -  6.4 

1"

nf
Algerian
Turkey

Sr
75± 14 

(53-102)

74.2-151.2
136.88-203.20

29.7-49.5

Jordanian
Algerian

USA

Cd
0.90 ± 0.47 

(0.24-2.03)
0 .23-5 .8

0 .28-0 .87
nf

India
nf = not found, range, ’ mean ± SD, mean value.
Source: Verma et al, 2010; Hamidatou et al., 2009; Martinez et al., 2008; 
Oliveira et al., 2000; Adachi, et al, 1998; Vega-Carrillo et al, 1995; Ward, 1993; 
Chiba & Masironi, 1992; Gulovali & Gunduz, 1983; Abedinzadeh et a l, 1997.

A  great number of articles have reported the chemical levels of tobacco with data 

focusing on cigarette tobacco from different countries such as Turkey, Iran, 

Brazil, Mexico, etc. It is interesting to compare the analytical results in this study 

with those obtained in the literature, as presented in Table 3.5. In general, the 

mean values for most elements are in agreement with the literature ranges. On the 

other hand, there are differences between the reported ranges for all elements in 

different countries. The tobacco plant absorbs many essential, non-essential and 

toxic elements from the soil, irrigation water, pesticide treatments and 

contamination from the storage and packing processes, which varies between the
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countries that produce tobacco (Rickert & Kalserman, 1994). Thus, the levels of 

trace elements in tobacco are higher when grown in soil contaminated with these 

elements. Other environmental factors may influence the trace element uptake by 

tobacco plants including soil pH and fertilizers applied to crops (Martinez et al., 

2008; Adamu et al., 1989). The leaf age can also affect the level of these elements 

(i.e. the older leaves having higher elemental levels when compared to younger 

leaves) (Chiba & Masironia, 1992).

Many studies have investigated the elemental levels of cigarette tobacco and 

associated health/pollution implications. It has been known for a few decades that 

tobacco combustion has the potential to deliver dangerous quantities of heavy 

metals to the blood and various organs (Landsberger et al., 1993; Chiba & 

Masironi, 1992). Cadmium in particular is regarded as one of the “strong 

carcinogens” in tobacco smoke (Hecht, 2003). Tobacco plants have a special 

ability to absorb Cd from soil and to accumulate it in unusually high 

concentrations in the leaves (ranging from 0.77 to 7.02 mg/kg) (Stavrides, 2006). 

In cigarettes, Cd concentrations range in this study from 0.24 to 2.03 mg/kg, with 

a mean level of 0.90 ± 0.47 mg/kg (dry weight). These are very high levels 

compared with those in food which are normally below 0.05 mg/kg (Landsberger 

et al., 1993). A large proportion of the Cd contained in the cigarette passes into 

the smoke. Since Cd concentration in the ash is practically constant (about 16% of 

that present in the unsmoked cigarette and a further 15% is retained by the filter), 

the greater part (nearly 70%) passes into the smoke (Mussalo-Rauhamaa et al., 

1986; Schenker, 1984). Furthermore, the boiling point of trace elements can play 

a significant role in increasing or decreasing the levels of trace elements in 

cigarette smoke, and hence their effects on smoker health (Adachi et al, 1998). 

For example, the boiling points of Cd and V are 767°C and 3000°C, respectively; 

the temperature of a cigarette could exceed 800°C at the end when ignited (Adachi 

et al, 1998). Therefore, the concentration of Cd in cigarette smoke could 

potentially be higher than V due to the fact that the boiling point of Cd is lower 

than that of V. In contrast, the concentration of V in filter and ash is higher than 

Cd (Landsberger et al, 1993). As a result, the impact of Cd on the smoker health 

will increase.
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3.3 Summary

This chapter has reported the results from the environmental study (water and 

cigarette tobacco) of this research. The water quality measurements showed that 

the pH for water samples were slightly alkaline (7.5 -  8.3). Conductivity levels 

ranged from 223 pS/cm in commercial water to > 3999 pS/cm in ground water; 

and total dissolved solid (TDS) ranged from 112 mg/1 in commercial water to > 

2000 in ground water, as reported in Table 3.1. A significant correlation (R^ = 

0.9999, P < 0.05) was found between the TDS and conductivity levels in the 

water samples from Karbala, as presented in Figure 3.1. Conductivity values were 

higher for most water samples when compared with the guideline reported by the 

WHO (250 pS/cm); therefore, the high levels of EC require further investigation 

in order to link the EC values with human health, and to establish a guideline 

value for the EC limits within the Iraq Standard Specifications.

Multi-trace element analysis by ICP-MS was performed for drinking (commercial, 

bottled and tap) and irrigation (river, well and artesian) waters and tap water from 

London. In general, the highest level for all elements were found in ground water 

when compared with other types of water tested in this study, whereas the lowest 

level was found in commercial water (Tables 3.2 & 3.3). The trace element levels 

measured in tap water from Karbala were higher when compared with those from 

London (Table 3.4). According to trace element levels and water parameter 

values, the quality for water samples collected from London is higher when 

compared with those from Karbala.

The results were compared with the guideline value for drinking and irrigation 

water recommended by the WHO and FAQ in order to evaluate the quality and 

freshness of drinking, irrigation and domestic uses. In general, most trace 

elements are lower than the permissible limits for drinking water recommended 

by the WHO and Iraqi standard. The only exceptions are for B in artesian (1049 ± 

746 pg/1 B) and well waters (1569 ± 844 pg/1 B), Cd in river (8.71 ± 3.65 pg/1 

Cd), artesian (5.28 ± 4.86 pg/1 Cd) and well waters (9.98 ± 0.31 pg/1 Cd). 

Moreover, the high levels of Sr reported in this study for drinking and irrigation 

waters suggest that a follow-up study be undertaken to establish whether a 

possible link can be found through the analysis of soils and main foodstuffs in this 

region.
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The results were also compared with the literature ranges reported in Baghdad 

(Iraq) and other regions in the world. In general, the level of trace elements is in 

agreement with Baghdad study for most elements. In addition, the results are 

comparable with those reported in different countries with the only exceptions 

found for B, Sr and Cd in ground water.

Generally, the samples of water analysed may be considered of good quality. Only 

the levels of B, Sr and Cd may require chemical treatment at the municipal water 

plant in order to improve the quality of drinking water. The results also confirmed 

that other trace elements that exist in drinking water are found to be at acceptable 

levels in terms of water quality.

The levels of trace elements in cigarette tobacco are reported in Table 3.5. It was 

found that all the elements are found in cigarette tobacco according to the 

following order: Fe > Mn > Sr > Zn > Cu > As > Cd > Cr > V. The findings 

confirm that the levels of trace elements in cigarette tobacco are in general 

agreement with the reported data for other countries. The highest trace element 

levels in tobacco were found to be for Fe (257 ± 52 mg/kg Fe d.w.), whilst the 

lowest levels were for V (0.42 ± 0.12 mg/kg V d.w.).
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4.0 Introduction

Trace element levels in human tear drops are reported in this chapter, as shown in 

Sections 4.4 - 4.5. Samples were collected and prepared, as outlined in Section 

2.2.3. Methods were developed and validated, as described in Sections 2.2.3.1 & 

2.2.3.2. An Agilent 7700 Series ICP-MS instrument was used for multi-element 

analysis, as described in Section 2.6. The results for boron (B), vanadium (V), 

chromium (Cr), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), 

strontium (Sr) and cadmium (Cd) in tear drop samples are reported in Tables 4.2 -  

4.18. Residents from Karbala (Iraq) were recruited for the main study, whereas 

residents from London (UK) were used for a comparative study, as described in 

Section 2.1.2. The influence of health status, gender, age, drinking water, 

residential location, smoking activity and statistical interactions on the elemental 

levels were also investigated. The results were compared with published literature 

values, as described in Tables 4.5 & 4.6. The aim of this chapter was to develop 

tear drops as a potential new non-invasive biomarker for monitoring trace element 

levels in the human body for short periods, in terms of the evaluation of human 

health and possible use to identify the impact of environmental pollution.

4.1 Statistical Methods of Analysis

Statistical analysis used to evaluate the level of trace elements in tear drops 

samples starts with an examination of the results of a study population to evaluate 

the relationships between trace element levels and health status, gender, age, 

smoking activity, residential location and drinking water. The tests range from 

simple descriptive statistics, such as arithmetic mean and standard deviation, 

through to tests for statistical outliers and the comparison of data sets using an F- 

test and a two tailed t-test (refer to Appendix C). Multivariate Discriminant 

Analysis (MDA) was used to determine the set of variables (trace elements) that 

discriminated between healthy and diabetic groups, as shown in Section 2.9.6. 

Analysis of covariance (ANCOVA) was used to explore the effect and 

interactions of different factors (such as health status, smoking activity and 

gender) and covariates (age and drinking water) on the level of trace elements in 

the tear drop samples, as outlined in Section 2.9.4. The Pearson correlation
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coefficient (r) was performed to evaluate associations between trace element 

levels in tear drops (Miller & Miller, 2010). The statistical analysis was carried 

out using the statistical package IBM SPSS, version 19 (SPSS, Chicago, IL, 

USA). Table 4.1 describes the statistic plan used in this study.

Table 4.1: Statistical plan used to evaluate the significance of the trace element 
leves in tear drop samples.

Step Task Analytic strategy Section

Step 1

Sample data were divided into the 
three population groups, namely 
healthy and diabetic from Karbala 
and healthy from London.

Preliminary
analysis 4.3

Step 2

Determine the value of arithmetic 
mean, standard deviation, median, 
geometric mean, range, 95% 
confidence interval for mean and 
box-plots.

Descriptive
statistics 4.3

Step 3 Checking for outliers Grubb’s test 4.4.1

Step 4 Determine reliability of mean group 
differences

F-test and two 
tailed t-test 4.5.1 & 4.5.2

Step 5 Create a linear combination of I Vs 
to maximize group differences. DFA 4.5.3

Step 6
Effects and interactions for 
different factors and covariate 
variables.

ANCOVA 4.5.4 & 4.5.5

Step 7 Significance effect of factors on 
elemental data.

Partial eta 
squared {if) 4.5.6

Step 8 Degree of relationship among trace 
element levels in tear drops

Pearson’s 
correlation 

coefficient (r)
4.5.7

ANCOVA is "analysis of covariance", IV = independent variable, DFA is 
"Discriminant Function Analysis".

4.2 Use of Tear Drops as a Biomarker

Human biological monitoring has become an important tool in the assessment of 

exposure to various pollutants in an occupational and/or environmental setting, 

and to evaluate the metabolic state in populations exposed to essential, non- 

essential and toxic elements (Nunes et al., 2010; Olmedo et a l, 2010; Wang et a l, 

2009; Amaral et a l, 2008; Gault et al, 2008; Ozden et al., 2007; Schuhmacher et 

al., 2002; Bass, 2001; Ashraf et al., 1995). In addition, biomonitoring has played
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significant roles in terms of the establishment of occupational and environmental 

limits of exposure of trace elements, and then contributed to reduce exposure and 

prevent adverse health effects (Gil & Hernandez, 2009).

4.3 Elemental Composition of Tear Drops

The major problem associated with tear drop analysis is the variable volume that 

is produced by the glands (Kuizenga et a l, 1991). Therefore, trace element 

analysis of tear drops has not yet been established due to the insufficient amounts 

of sample available for multi-element determination using most analytical 

techniques (Made), 2010; Baeyens & Gumy, 1997). Many studies have 

determined the levels of trace elements in other human fluids (blood serum, 

plasma, urine and saliva) and tissues (scalp hair and fingernails) (Flores et al, 

2011; Menegario et al, 2001, Stovell, 1999). In general, elemental levels in 

human biological samples vary from one country to another because of 

geographical differences; nutritional status; and the method of analysis (Samatha 

et al, 2004). Therefore, it is difficult to establish reference ranges for trace 

elements in human fluids and tissues because of the effects of said factors, as they 

impose restrictions on the interpretation of the results. This study is the first to 

describe the detection of trace element levels in human tear drops. Therefore, the 

ranges obtained can be used as a valuable database for future studies. The results 

can be used to evaluate the possible relationship between tear drops and human 

health status as well as environmental exposure with respect to trace elements.

The main descriptive statistics of elemental levels in tear drops (arithmetic mean, 

standard deviation (SD), range, median, geometric mean, 95% confidence interval 

for mean and the number of samples) for Karbala (healthy and diabetic) and 

London (healthy) populations are summarised in Table 4.2. Figure 4.1 shows the 

box-plots for trace element levels in the populations under investigation.

The levels of trace elements (pg/1) for tear drops of healthy individuals from 

Karbala increase according to the following sequence Zn > Fe > Sr > Cu > Mn > 

Cr > As > V > Cd. In the case of diabetic patients from Karbala, the sequence is 

Zn > Sr > Fe > Cu > Mn > Cr > V > As > Cd, whereas for healthy individuals 

from London, the sequence is Cu > B > Zn > Fe > Sr > Mn > Cr > Cd > As > V. 

The main reasons for these differences are the effect of factors such as
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environmental exposure; diet; smoking activity; drinking water; gender; age; and 

health status, which all play a significant role in the evaluation of the metabolism 

of trace elements in the human body leading to various health problems, disorders 

and diseases (Gault et al., 2008; Hill, 2006).

Table 4.2: Population data for trace element levels (pg/1) in tear drops from Iraqi 
individuals resident in Karbala (Iraq) and London (UK).
Element Group Mean ± SD GM Median Range 95% Cl

HK 389± 158 355 383 < 70 - 898 (356,421)
B* DK 606 ±415 494 479 < 70 - 2020 (466, 747)

HL 216± 127 184 203 83 - 498 (330, 443)
HK 5.6 ± 5.3 3.7 3.4 0.5-21.2 (4.6, 6.6)

V DK 4.1 ±2.6 3.1 3.7 0.1 -10.8 (3.4,4.9)
HL 0.7 ± 0.4 0.5 0.6 0.1 - 1.3 (0.5, 0.8)
HK 13.4 ± 15.8 8.2 8.2 0 .7 -92 .8 (10.5, 16.4)

Cr DK 11.3 ± 10.4 6.5 7.3 0.2 - 40.9 (8.2,14.4)
HL 4.6 ±1.7 4.3 4.3 2.4 - 8.1 (3.8, 5.4)
HK 60.6 ± 100.5 32.1 32.8 1.9-822.7 (41.9, 79.3)

Mn DK 111.5± 113.8 54.2 68.6 0.8-445.5 (77.8, 145.1)
HL 6.8 ± 2.2 6.3 6.4 3.4-11.1 (5.8, 7.9)
HK 734± 1198 346 370 7 - 9300 (512, 957)

Fe DK 577 ±516 302 442 3 - 2003 (425, 730)
HL 159 ±68 143 157 64 - 269 127, 190)
HK 268 ±156 222 223 35 - 741 (234,294)

Cu DK 204± 145 128 190 1-594 (161,247)
HL 227 ± 62 217 242 90 - 335 (199, 256)
HK 1369± 1764 741 753 149 - 10562 (1041, 1697)

Zn DK 2122 ±2638 995 1009 47- 10434 (1320, 2924)
HL 188 ±58 179 186 79 - 324 (161,215)
HK 8.3 ±11.1 3.9 2.9 0.1 -44.8 (6.3,10.4)

As DK 2.7 ± 2.4 1.9 2.1 0 .2-11.1 (2.0, 3.5)
HL 1.4 ±0.7 1.2 1.3 0.2 - 2.9 (L I, 1.7)
HK 459 ± 255 382 431 49-1183 (411,506)

Sr DK 1230 ±1524 637 619 7 - 6552 (780,1681)
HL 62 ±19 58 65 26-98 (53, 70)
HK 2.3 ± 3.5 1.4 1.4 0.1-13.1 (1.9,2.8)

Cd DK 2.2 ±2.1 1.4 1.5 0.1 - 8.4 (1.6,2.8)
HL 3.8 ±2.7 3.0 3.0 1.3-9.0 (1.3, 6.3)

Cl is confidence interval for mean, SD = standarc deviation, GM = geometric
mean; HK = healthy Karbala (n = 111); DK = diabetic Karbala (n = 44); HL =
healthy London (n = 18), * the levels of boron in 19 samples of healthy and 8 of
diabetic subjects from Karbala are below the limit of detection (70 pg/1).
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Figure 4.1: Trace element levels (pg/1) in tear drops (a & b) for different 
population groups: HK is "healthy Karbala" (n = 111) and DK is "diabetic 
Karbala" (n = 44) individuals from Karbala (Iraq); HL is "healthy London" (n = 
18) individuals from London (UK), middle band, box and whiskers represent the 
median, 25th and 75th percentile, and 5th and 95th percentile, respectively. 
Circles represent outliers, whereas represents extreme values.
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4.4 Study Population

A total number of 173 Iraqi individuals resident in Karbala (Iraq) (healthy, n = 

111 and diabetic, n = 44) and London (UK) (healthy, n = 18) were selected to 

participate in this study, as described in Section 2.2.3.

4.4.1 Checking for Outliers

Many of the statistical tests covered in this study are sensitive to outliers (Miller 

& Miller, 2010; Field, 2009). The results of some trace elements were found to 

contain one (or possibly more) value/s that appear to differ unreasonably from the 

others in the study data set. These cases can have a disproportionate influence on 

statistical results such as the mean, which can result in misleading interpretations. 

The data was inspected for statistical outliers by means of a Grubb’s test (G), as 

described in Appendix C. If the calculated value, Gcaic, exceeds the critical value, 

Gcrit, the suspect value is rejected so that it will not affect the accuracy of 

comparison studies between the various population groups (Miller & Miller, 

2010). No statistical outliers were found for the data of the healthy populations 

from London for all trace elements under investigation suggesting a link to normal 

distribution. The elemental patterns for healthy individuals from the London 

population were found to be normally distributed with the only exception being 

Cd (Adair, 2002), as shown in Appendix E. For the healthy population from 

Karbala, Cr, Mn, Fe, Zn and Cd were found to have 4, 6, 7, 5, and 5 outliers, 

respectively. In the case of diabetic patients, one value for Mn, three values for Zn 

and As and five values for Sr were detected as outliers with a Grubb’s test. The 

results of the Grubb’s tests are summarised in Table 4.3. In most cases the effect 

of removal of the outliers can improve the histogram of trace elements in tear 

drops because the degree of positive skew from the mean is decreased (Usuda et 

al., 2007), as shown in Appendix E. The skew value provides an indication of the 

symmetry of the distribution. If the distribution is perfectly normal, then the value 

of skew is zero (Tabachnick & Fidell, 2007).
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Table 4.3: Summary of Grubb’s outlier testing on the healthy and diabetic 
population from Karbala (Iraq).

Parameter Healthy (pg/1) Diabetes (pg/1)
Cr Mn Fe Zn Cd Mn Zn As Sr

Before G-test
Mean 13.4 60.6 734 1369 2.3 111 2122 2.7 1230

SD 15.8 100.5 1198 1764 2.5 114 2638 2.4 1524
Median 8.2 32.8 370 753 1.4 69 1009 2.1 619

95% Cl 10.5-
16.4

41.9-
79.3

512-
957

1041-
1697

1.9-
2.8

79-
145

1320-
2924

2.0-
3.5

780-
1681

Max 92.8 822.7 9300 10562 13.1 446 10434 11.1 6552
Skewness’ 2.6 5.2 4.8 3.0 2.1 1.3 2.1 1.9 2.4

n 111 111 111 111 111 44 44 44 44
After G-test

Mean 11.2 41.7 499 1075 1.9 104 1536 2.2 757
SD 10.6 35.4 460 1032 1.7 103 1520 1.4 589

Median 8.2 30.4 339 717 1.3 59 966 2.1 510

95% Cl 9.2-
13.2

34.9-
48.6

409-
588

876-
1273

1.6-
2.3

72-
135

1056-
2016

1.8-
2.8

565 - 
947

Max 47.1 158.9 2060 4164 6.7 381 5726 5.5 2361
Skewness’ 1.8 1.1 1.3 1.4 1.1 1.1 1.3 0.6 0.9

n 107 105 104 106 106 43 41 41 39
Cl = confie 
Positive ske 
low value ii 
scores at the

ence interval, SD = standard c 
wness values indicate positive sV 
1 histogram), whilst negative ske 
high end (right-hand side of a gi

eviation, n = number of samples, 
:ew (scores clustered to the left at the 
wness values indicate a clustering of 
aph), as shown in Appendix E.

4.5 Results and Discussion

4.5.1 Influence of Residential Location - Link to Environmental Factors

In this study, tear drop samples were collected from Iraqi healthy individuals 

living in Karbala (Iraq) and London (UK) in order to compare the elemental levels 

between the two residential location subgroups (Appendix E). It is possible to use 

these results to evaluate whether food, lifestyle and drinking water can affect the 

elemental levels. The mean and standard deviation for trace elements between the 

two population groups were compared using an F-test and a two-tailed t-test and 

the results are summarised in Table 4.4. Further information regarding F-test, t- 

test and the degrees of freedom can be found in Appendix C.
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Chapter Four: Trace Element Levels in Tear Drops

The results show significantly higher levels of B, V, Cr, Mn, Fe, Zn, As and Sr in 

the tear drop samples from the Karbala population (at P < 0.05) when compared 

to those from London. In contrast, a significantly higher level of Cd was found in 

the tear drop samples from London compared to Karbala individuals. No 

statistical difference was found for Cu between the two healthy groups at the 

probability level o f f  < 0.05.

This study has shown a wide variation in the total concentration for most trace 

elements between the two populations. The elevated levels of trace elements in 

Karbala healthy samples rather than London (except Cd) are probably due to the 

influence of trace element exposures and nutritional factors caused by different 

environmental settings (Samanta et al., 2004).

The individuals from Karbala live close to sites of pollution such as from military- 

weapons that were used in the wars, along with oil spills and scrap metal from 

destroyed military vehicles. It is fairly well documented that many regions of Iraq 

have a high concentration of pollution (UNEP, 2003). Reports from UNEP have 

revealed 300 sites in Iraq that are considered to be contaminated by various 

pollutants. Furthermore, the presence of human activities has directly influenced 

the chemical balance of the Iraqi environment. This includes a wide range of 

metals (Cd, As, Cr, Cu and Zn) associated with commercial or industrial 

(smelters, power stations and mining drainage), transportational (petroleum 

related pollutants, combustion products) and agricultural factors (fertilizers, 

sewage, sludge, pesticides). Further information can be found in Chapter 3.

These findings reflect the content of trace elements in drinking water for these 

regions (Greve et al., 2007). It was found that the trace element levels in drinking 

water from Karbala were higher than those collected from London (refer to 

Chapter 3). The high level of trace elements in drinking water may have caused 

elevated levels in tear drops of Karbala individuals when compared with London, 

as outlined in Section 4.5.4.5.

The higher Cd level in tear drop samples was found in London samples (3.8 ± 2.7 

pg/1) rather than those from Karbala (1.9 ± 1.7 pg/1). This could have originated 

from industrial discharges such as electroplating, PVC and the production of 

batteries. Similarly, higher levels of Cd are found in the subjects living in the 

areas of greatest industrial contamination compared to those living in areas with 

lower industrial contamination (Bernard, 2008; Onyari et al., 1991). A previous
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Chapter Four: Trace Element Levels in Tear Drops

study has shown that the elemental concentrations of scalp hair for Pakistani and 

Libyan populations were dependent on geographic location, environmental 

exposure and dietary habits (Shah et al., 2006).

Overall, the results indicate that the environment and any factors that interfere 

with the environment have more influence on the levels of trace elements than 

other parameters as described above (further information can be found in Chapter

3).

4.5.2 Influence of Type 2 Diabetes - Link to Human Health

The concentration of essential trace elements are homeostatically regulated when 

the health status of individuals is under normal conditions (healthy individuals) 

(Adair, 2002). There is accumulating evidence that the metabolism of several 

trace elements is altered in type 2 diabetes mellitus, and may play significant roles 

in the pathogenesis and progress of this disease (Afridi et al., 2009; Hussain et al., 

2009; Afridi et al., 2008). Many studies have previously discussed the relationship 

between trace elements and type 2 diabetes for diabetic patients by comparing 

them with healthy individuals. These studies have used different human fluids and 

tissues such as blood (whole, plasma and serum), saliva, hair and nails (Flores et 

al., 2011; Edwards et al., 2009; Navas-Acien et al., 2009; Sukumar & 

Subramanian, 2007; Stone, 2006; Wrobel et al., 1999).

In this work, the results of healthy individuals and diabetic patients resident in 

Karbala have been compared in order to evaluate whether there are any significant 

differences in the elemental levels between the two groups (Appendix E). This 

can be used to describe whether type 2 diabetes plays any significant role in these 

differences by increasing or decreasing the elemental levels inside the human 

body through the effect on the metabolism of essential elements. The diabetic 

patients have a mean age of 53.93 ± 7.85 years (range 40 -75 years) with no other 

chronic or infectious diseases as reported in the questionnaires of participants in 

this study. The mean and standard deviation values for trace element levels in tear 

drops of the healthy and diabetic populations were compared by using an F-test 

and a two-tailed t-test, and the results obtained are listed in Table 4.5.
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Chapter Four: Trace Element Levels in Tear Drops

In general, significantly higher tear drop levels of B, Mn and Sr are found in 

diabetic patients when compared with healthy individuals {P < 0.05). In contrast, 

the levels of V, Cu, and As are observed to be significantly higher in healthy 

individuals than diabetic patients. Although the levels of Fe and Zn are slightly 

higher in diabetic patients than healthy, the differences are not statistically 

significant {P < 0.05). Cr and Cd are found in approximately similar levels in both 

population groups. It is clear that there is a good agreement for most elements 

between the results of this study and those reported by Flores et al (2011) for 

blood serum in terms of the comparison between healthy and diabetic populations, 

as shown in Table 4.5.

The results of healthy individuals and diabetic patients in this study were 

compared with the literature range reported for saliva and blood serum, as shown 

in Table 4.6. In terms of the results of healthy individuals, the mean value of Zn 

(1075 pg/1) is in agreement with the reference range (700 - 1600 pg/1 Zn) for 

blood serum. Cu mean value (268 pg/1 Cu) lies below the minimum values of the 

reference range (700 - 1300 pg/1 Cu). The mean values for B (389 pg/1), V (5.6 

pg/1), Cr (11.2 pg/1), Mn (41.7 pg/1). As (8.3 pg/1), Sr (459 pg/1) and Cd (1.9 pg/1) 

were above the maximum values of the reference range (39 - 365 pg/1 B; 0.03 -

5.00 pg/1 V; 0.1 - 0.5 pg/1 Cr; 0.6 - 1.3 pg/1 Mn; 0.5 - 1.8 pg/1 As; and ~ 30 pg/1 

Sr; and 0.2 - 1.0 pg/1 Cd).

The elemental ranges for tear drops overlap the literature ranges reported in saliva 

for most trace elements, the only exceptions are for Cu and Cd, which were within 

the ranges (Table 4.6).

The results for healthy individuals were also compared with the reference ranges 

reported for serum and plasma of European populations, as reported in Table 4.6 

(Stone, 2006). The mean value of Zn (1075 pg/1) in tear drops was found to be in 

agreement with the reference range (120 -  2760 pg/1 Zn) for two blood fractions 

(serum and plasma). Fe mean value (499 pg/1) was within the reference range 

reported for plasma (200 -  4455 pg/1 Fe) and below the range reported for serum 

(1100 -  1377 pg/1 Fe). The mean value for Cu (268 pg/1) lies below the minimum 

value of the reference ranges for serum and plasma (560 -  1850 pg/1 Cu). The 

mean values for Cr (11.2 pg/1), Mn (41.7 pg/1) and V (5.6 pg/1) were found to be 

higher than the maximum values of the reference ranges for serum (0.14 - 0.43
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(ig/1 Cr; 0.54 - 34.50 îg/1 Mn; and 0.016 - 1.300 pg/1 V) and plasma (0.03 - 0.39 

|ig/l Cr; 0.54 - 34.50 pg/1 Mn; and 0.016 - 1.300 pg/1 V), as shown in Table 4.6. 

These results are also in agreement with those published in the report by Muniz et 

al. (2001) for Zn in blood serum; and Gil et al. (2011) for Cd, Cr and Mn in blood 

and saliva.

The results of diabetic patients were compared with the reference ranges reported 

for serum and plasma of diabetic European populations, as shown in Table 4.6 

(Stone, 2006). The mean value for V (4.1 pg/1) falls within the reference range of 

(2 -  11.4 pg/1 V) in plasma samples. The mean values of Cu (204 pg/1 Cu) and Fe 

(577 pg/1 Fe) were found to be below the reference range of serum (565 -  1461 

pg/1 Cu; 690 -  1240 [ig/1 Fe) and plasma (1070 -  1226 pg/1 Cu; 1430 -  4690 pg/1 

Fe). In contrast, the maximum values of Mn and Zn in diabetic serum (1.1 pg/1 

Mn; 1503 pg/1 Zn; ) and plasma (2.7 pg/1 Mn; 1150 pg/1 Zn) were found to be 

below the mean value in tear drops for diabetic patients (104 pg/l Mn; 1536 pg/1 

Zn) (Stone, 2006). Cr mean value (11.3 pg/1) was above the maximum value of 

the reference range of plasma (0.75 - 6 .8  pg/1 Cr). The mean values for As (2.2 

pg/1) and Cd (2.2 pg/1) were higher compared with those reported by other 

researchers in serum (0.83 pg/1 As and 0.13 pg/1 Cd) (Flores et al., 2011).

Table 4.6: Reported literature concentration for trace elements in biological fluids 
for healthy individuals and diabetic patients.

Element
Elemental level (pg/1)

Saliva Blood serum Blood plasma
Healthy^ Healthy^ Healthy^ Diabetes^ Healthy^ Diabetes^

B 0.6-20.5 39-365" nd nd nd nd
V nv 0.03-5.00 0.016-1.3 nd 0.016-1.3 2-11.4
Cr 0.41-1.64 0.1-0.5 0.14-0.43 nd 0.03-0.39 0.75-6.8
Mn 0.47-7.23 0 .6 -1 .3 0.54-34.5 0 .0 -1.1 0.54-34.5 0.6-2.7

Fe 32-270 - 1 1 0 0 -
1377 690-1240 200-4455 1430-4690

Cu 23-387 700-1300 560-1850 565-1461 560-1850 1070-1226
Zn 11-158 700-1600 120-2760 523-1503 120-2760 499-1150
As 0.19-3.3 0.5-1.8 nd nd nd nd
Sr 2.16 ±0.96 -30* nd nd nd nd
Cd 0.33-2.35 0 .2 -1.0 nd nd nd nd

nd is not determined.
Source: ' Kim et al, 2010; Yuan et al, 2008; Ward, 1993; and Ward & Ward, 
1991;  ̂Flores et a l, 2011;  ̂Stone, 2006; * Azparren et a l, 2000.
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One study in Egypt also found that the Cr mean values did not differ in blood 

between healthy individuals (0.20 pg/1 Cr) and type 2 diabetic patients (0.19 pg/1 

Cr) (Kamal, et al., 2009). Cr is required for normal carbohydrate metabolism as a 

critical cofactor for insulin action (Kimura, 1996).

The results from this study are in agreement with several researchers who have 

reported that diabetics may benefit from V. It was found that V salts (such as 

NaVOa and VOSO4) could lower blood glucose in diabetic patients, and improve 

insulin-resistant status in healthy women (Seko et al, 2006; Srivastava & Mahdi, 

2005; Wang et al, 2001).

In recent decades. As has been suggested as being essential in the human body 

(Wang et a l, 2009). In general, people are exposed to inorganic As via drinking 

water and cigarette smoking (Navas-Acien et al, 2008; Meliker et a l, 2007; Will 

et al, 2001). According to World Health Organisation (WHO) instructors and 

previous studies, high levels of As in water can be a possible cause of adverse 

effect on human health (Arain et al, 2009; Arain et a l, 2008; WHO, 2008). In 

this study, the As levels in drinking water were within the recommended guideline 

set by the World Health Organisation (WHO) (10 pg/1 As) (see chapter 3, Table 

3.2). However, the participants could be exposed to As by food and environmental 

sources. Significant exposure to As occurs through both anthropogenic and 

natural sources. Occupational exposure to As is common in the smelting, mining 

and microelectronic industries and the production of iron and steel (Baird & Cann, 

2005). Inorganic As compounds are also used in common products such as wood 

preservatives, paints, pesticides and herbicides used in local or home gardens 

(Baird & Cann, 2005).

Arsenic exposure through food poses a substantial risk to humans in certain parts 

of the world, particularly in Asia from the consumption of staple foods such as 

rice, which have been irrigated with As-rich groundwater (Mondai & Polya, 2008; 

Meharg & Rahman, 2003). The population of Karbala followed a similar diet as 

found in the Study Questionnaires (refer to Appendix A). The diet included bread 

and rice as part of daily main meals. The Iraqi government usually imports these 

grains from various Asian countries such as India, Bangladesh and Thailand, 

where high (> 1000 pg/1) natural levels of As have been reported in irrigation 

water (Mandai & Suzuki, 2002).
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Zinc has been suggested in the literature to play significant roles in terms of the 

activity of insulin; the ability of glucose to enter cells; and glucose metabolism 

(Hussain et al., 2009; Kamal et al., 2009).

There are a few reports on the reference values for B and Sr in human biological 

samples, and previous studies have been shown that they have specific biological 

effects. For example, B affects Ca absorption (Hegsted et al., 1991), and Sr can 

reduce the risk of vertebral fractures in postmenopausal women with osteoporosis 

(Meunier et al., 2004). The available data on human health effects following 

exposure to strontium is very limited. The excess of Sr could cause disturbance in 

the metabolism of Ca (Chojnacka et al., 2010). Animal studies have indicated that 

the critical target after oral exposure to stable strontium is the skeleton (Greve et 

al, 2007).

The literature indicates that there are conflicting results with reporting elevated 

and declined manganese concentrations in diabetes mellitus patients (Flores et al, 

2011; Hussain et al, 2009). Manganese is a cofactor for the antioxidant enzyme, 

MnSOD (SOD is superoxide dismutase). In spite of the role of Mn not having 

been thoroughly presented in terms of the pathology of type 2 diabetes, Mn is 

known to be essential for glucose metabolism (Hussain et a l, 2009).

The results for Cu in tear drops disagree with those reported by other researchers 

for blood serum: they found high levels of Cu in diabetic patients rather than 

healthy individuals {P < 0.05) (Flores et al., 2011; Hussain et al., 2009). Another 

study in Iran has reported that the level of Cu in serum was significantly higher in 

diabetics when compared to the non-diabetic individuals (Nasli-Esfahani et al, 

2011). At this time no information is available to explain this finding. In general, 

the redox chemistry of Cu makes for a powerful enzyme catalyst and a dangerous 

reactant that generates hydroxyl radicals. Cells in the human body require Cu to 

drive important biochemical reactions; therefore, abnormal Cu metabolism can 

lead to several chronic conditions, such as diabetes (Thiele, 2003).

4.5.3 Discriminant Function Analysis

Variation in the level of trace elements in tear drops of healthy individuals and 

diabetic patients was evaluated through discriminant function analysis (DFA) (see 

Section 2.9.6). The DFA applied on raw data consisted of ten trace elements in
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order to determine which discriminate between healthy and diabetic groups. Only 

two discriminant functions (DFs) were found to discriminate the three population 

groups (healthy Karbala (HK), diabetic Karbala (DK) and healthy London (HL)), 

as shown in Table 4.7. Wilk’s Lambda test showed that DF is statistically 

significant at P  < 0.001. Furthermore, 100% of the total variance between the 

three population groups was explained by only two DFs. It can be seen that, Sr, 

Mn, B, Zn, V, As and Cd exhibited a strong contribution in discriminating the 

three population groups and account for most of the expected variations in tear 

drops, while other trace elements showed less contribution in explaining the 

variation between the HK, HL and DK population (Table 4.7).

The DFl explained 71.5% of the total variance with a good correlation value 

(0.706). In Table 4.7, the matrix structure coefficients, showing the correlations of 

each trace element in the model with each discriminant function, are also reported. 

The DFl mostly discriminated the HK and HL groups (showing negative score 

values) from the DK group (high positive score values), as shown in Figure 4.2. 

The DFl was mainly correlated to high concentrations of Sr (0.551), Mn (0.539), 

B (0.536) and Zn (0.313), as shown in Table 4.7. This means the cases with a 

positive score on DFl (diabetic group in this case) tended to have higher 

concentrations of these elements (Figure 4.2) (see also Table 4.5). The high B, 

Mn, Zn and Sr levels associated with type 2 diabetes could be also connected with 

environmental and/or lifestyle factors such as drinking water quality and smoking 

(Gil et a l, 2011).

The DF2 value explained 28.5% of the total variance (DFl + DF2 = 100%) with a 

correlation value equal to 0.532, and resulted in giving a useful contribution to the 

discrimination. The DF2 separated the HL and DK groups (negative values) from 

the HK group (positive values), as shown in Figure 4.2. In this case, the DF2 

appeared mainly associated with high concentrations of V (0.533), As (0.504) and 

a low concentration of Cd (- 0.428). Therefore, cases with a positive score on DF2 

(HK group in this case) tended to have higher levels of the former elements and 

lower levels of the latter element, as shown in Figure 4.2. The results show that 

cases with a negative score on the DFl and DF2 (healthy individuals from 

London) tended to have higher levels of Cd and lower levels of Sr, Mn, B, Zn, V 

and As. This was discussed in Section 4.5.1.
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Table 4.7: Matrix structure coefficients^ percentage of variance, eigenvalues, 
correlations, cumulative% and Wilks’ Lambda of the final model for tear drops.

Element Discriminant function
DFl DF2

Sr 0.551* <0.3
Mn 0.539* <0.3
B 0.536* <0.3
Zn 0.313* < 0 3
V <0.3 0.533*
As <0.3 0.504*
Cd < 0 3 - 0.428*
Cr < 0 3 <0.3
Fe <0.3 <0.3
Cu <0.3 <0.3

% of variance 71.5 28.5
Eigenvalues 0.991 0.395
Correlation 0.706 0.532

Cumulative% 71.5 1 0 0
Wilks’ Lambda 0.360 at P <  0.001 0.717 at P <  0.001

* Largest absolute correlation between trace element and discriminant function, 
the structure coefficients are similar to correlation coefficients, and reflect the 
uncontrolled association of the discriminating variables (trace elements) with the 
categorical variable (population groups).

Table 4.8 summarizes the degree of success of the classification of each group. 

The number of cases correctly classified and misclassified is displayed. Two 

results of the classification of the samples are shown: original and cross- 

validation. In the original results each case in the analysis is classified by the 

functions derived from all cases. With cross-validation, each case in the analysis 

is classified by the functions derived from all cases other than that case. This last 

procedure ascertains the efficiency of this model in classifying new samples. Rate 

errors of classification for each group are the proportion of cases not classified in 

this group. The discriminant functions appeared to have a good classification with 

85% of original cases correctly classified and 83% of cases using the cross- 

validation procedure. The results show that the DK group was classified (75%) 

with 9/44 cases misclassified into the HK group. The HK group (84.7%) was also 

misclassified in 10/111 and 7/111 cases into the DK and HL group, respectively. 

The HL group was classified with high accuracy (94.4%). These classifications 

are represented in Figure 4.2 for the two most important discriminant functions.
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Table 4.8: Classification results for tear drops of the three population groups.

Type of classification Group Predicted Group IVembership TotalHK DK HL
HK 95 9 7 111

Count DK 8 34 2 44
Original HL 0 .0 0 .0 18 18

85% HK 85.6 8.1 6.3 1 0 0

% DK 182 773 4.5 1 0 0
HL 0 .0 0 .0 1 0 0 1 0 0
HK 94 10 7 111

Count DK 9 33 2 44
Cross-validated HL 1 0 .0 17 18

83% HK 84.7 9.0 6.3 1 0 0
% DK 203 75.0 4.5 1 0 0

HL 5.6 0 .0 94A 1 0 0

HK = healthy Karbala; DK = diabetic Karbala; anc HL = healthy London.
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Figure 4.2: Plot of DFl vs DF2 for tear drops. DF: discriminant function (see 
Appendix E for discriminant data).

In order to evaluate whether the differences in the elemental levels are caused by 

type 2  diabetes and not by other factors, the factorial analysis for the data of 

populations from Karbala was carried out. This analysis was used to determine the
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effect for each factor, namely health status, smoking activity and gender, and 

covariates (age and drinking water) on the level of trace elements in the total tear 

drop samples (healthy and diabetic). In addition, the interaction between each pair 

of these factors can also be determined. The next section describes the analysis of 

covariance.

4.5.4 Factors Influencing Elemental Data (Factorial Analysis)

The mean values of the trace elements were categorised according to different 

parameters (factors) obtained from the questionnaire, as shown in Table 4.9. It is 

important that multiple effects should be studied in research rather than the single 

effect for each factor (Hair et al., 2010). Analysis of covariance (ANCOVA) was 

used to investigate the effects and interactions of independent variables (factors) 

on the level of trace elements (dependent variables) in tear drops for individuals 

resident in Karbala (n = 155) (further information about ANCOVA can be found 

in Chapter 2, Section 2.9.4). The mean and standard deviation for each group are 

presented in Table 4.10. The results of ANCOVA for each element are reported in 

Appendix E, and the summary results for all elements are shown in Table 4.11. 

The effect for each factor and covariate was investigated. The f-values can be 

used to determine whether there is a significant effect. If the value of "Sig” for 

each factor is less than the level of significance {P < 0.05), then there is a 

significant effect for this factor.

Table 4.9: Demographic characteristics of participants according to different 
factors.

Factor Code
number Group Number of subjects

Health status 1 diabetic 44 (male =18, female = 26)
2 healthy 111 (male = 42, female = 69)

Gender 1 male 60 (healthy = 42, diabetic = 18)
2 female 95 (healthy = 69, diabetic = 26)

Smoking
activity

1 smoker 30 (male = 15, female = 15)
2 non-smoker 125 (male = 45, female = 80)

Total 155
* Each factor must be assigned a numerical code before it can be entered into 
SPSS.
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4.5.4.1 Influence of Health Status

The effects of health status on the trace element levels in tear drops are reported in 

Table 4.11 using analysis of covariance (ANCOVA). In general, significant 

effects are found for B (F(ijig) = 12.573, P < 0.01), Mn (F(i,i38) = 16.286, P < 

0.001) and Sr (F(i^40) = 5.388, P < 0.05). No significant effects found in the health 

status by the levels of V, Cr, Fe, Cu, Zn, As and Cd at f  < 0.05. The results are in 

agreement with those reported in Table 4.5 for most trace elements. The only 

exceptions are found for V, Cu and As, which show significant differences 

between healthy individuals and diabetic patients using a two-tailed t-test 

procedure to compare means for two groups of cases. The possible explanation is 

that the levels for these elements are influenced by the individual’s age (in the 

case of As (P < 0.001) and Cu (P < 0.1)) and their levels in drinking water (in 

terms of V (P < 0.001). However, when the covariates (age and drinking water) 

are removed from the model, the effect of health status becomes significant for Cu 

(P(i.i46) = 7.733, P  < 0.01) and As (P(i,i43) = 6.416, P  < 0.05), whilst approaching 

significant for V at P  < 0.05 (P(i,i47) = 3.316, P  = 0.071) (See Appendix E). A 

previous study in the UK has found that the distribution of trace elements may be 

attributed to the weighting caused by age bias (Stone, 2006).

4.5.4.2 Influence of Gender

The effect of gender on the levels of trace elements in tear drop samples was 

investigated. The total population from Karbala (n = 155) was divided into two 

gender groups, males and females. The mean and standard deviation (±SD) for 

each gender group are summarised in Table 4.10. The highest mean values in the 

two gender groups are found for Zn (males; 1136; and females; 1245 p,g/l Zn) 

followed by iron for males (706 p.g/1 Fe) and strontium for females (533 p.g/1 Sr). 

Cd showed the lowest concentration for both gender groups (males: 2.3 pg/1 Cd) 

and (females: 1.8 pg/l Cd). The order of increasing trace element levels in the tear 

drops for males is: Cd < V < As < Cr < Mn < Cu < Sr < Fe < Zn, whilst for 

females is: Cd < V < As < Cr < Mn < Cu < Fe < Sr < Zn.

The effect of gender on the level of trace elements was investigated using analysis 

of covariance, and the results are listed in Table 4.11. The findings show that
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there is a significant effect of gender on the levels of Fe (P(i,i38) = 5.626, P < 

0.05). Similar results were also reported by other researchers in blood (Stone, 

2006; Devlin, 2002) and scalp hair (Forte et al., 2005). In these studies, the 

researchers have observed the higher levels of Fe in males when compared to 

females for healthy individuals and diabetic patients. The lower levels of iron in 

females may be due to blood losses during menstruation (Jian et al., 2011) and the 

difference in outdoor activities, difference of urine excretion or kidney activities 

(Ozden et a l, 2007).

No significant effect {P < 0.05) was found for either gender for other trace 

elements such as B, V, Cr, Mn, Cu, Zn, As, Sr and Cd, as shown in Table 4.11. 

Similar results were also found by Gil et al. (2011) and Shigemi et al. (2008) in 

terms of Sr and Cd. They found that Sr and Cd have similar levels for saliva 

samples in males (mean ± SD: 7.44 ± 3.54 pg/1 Sr), (mean ± SD: 0.14 ± 0.23 pg/1 

Cd) and (mean ± SD: 7.97 ± 3.70 pg/1 Sr), (mean ± SD: 0.23 ± 0.34 pg/1 Cd) for 

females. According to Sukumar & Subramanian (2007), there were no significant 

differences found between males and females for Cd, Cu and Zn in the human 

scalp hair and fingernails.

The results of chromium in tear drops are in disagreement with those reported by 

other researchers for males (mean ± SD: 3.02 ± 8.87 jig/1 Cr) and females (5.10 ± 

9.54 pg/1) in saliva (Gil et al., 2011).

The significant effect of gender on the elemental levels in tear drops was also 

determined using a two tailed t-test. Similar results to ANCOVA test were found 

for Fe (̂ (90) = 3.585, P < 0.01) and all trace elements with the exception of Cr 

(refer to Appendix E). A significant interaction was found between smoking and 

gender for Cr (P(i,i4i) = 4.244, P < 0.05), as shown in Section 4.5.5.3. This 

interaction leads to a change of effect of gender on the levels of Cr. Thus the 

interpretation of the effect may be incomplete or misleading (Field, 2009).

4.5.4.3 Influence of Smoking Activity

The effect of smoking activity on trace element levels in various invasive and 

non-invasive human fluids and tissues has been studied by several other 

researchers (Gil et al., 2011; kim et al., 2010; Sukmar & Subramanian, 2007; 

Chojnacka et al., 2006).
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M ulti-element analysis o f  various brands o f  imported cigarette tobacco collected 

from Karbala is presented in Chapter 3 (Table 3.5) in order to evaluate whether 

any relationship exists between their levels in cigarette tobacco and hum an health. 

The population o f  Karbala was divided into smokers and non-smokers, as shown 

in Table 4.10. The influence o f smoking activity on the trace elem ent levels in tear 

drops was examined by using ANCOVA, and the results are summarised in Table

4.11. It was found that there is no significant effect o f smoking activity for most 

trace elements in tear drops at P  < 0.05; the only exception is for Cd (P(i,i4 0 ) = 

9.681, P  < 0.01). The results show higher levels o f  Cd in tear drops for smokers 

when compared to non-smokers.

The m ajority o f studies in the literature reported high levels o f  Cd in the human 

scalp hair and nails (Sukumar & Subramanian, 2007; Chojnacka et al., 2006) and 

blood (Gill et al., 2011) o f  smokers when compared with those o f non-smokers. 

Chojnacka et al. (2006) Hoffmann et al. (2000), Frery et al. (1993), and Ellis et 

al. (1981) also found that smokers have elevated blood and scalp hair Cd levels 

when compared to non smokers. Similar results were also reported when the Cd 

mean value for smokers was compared with non-smokers by using a two tailed t- 

test (f(i48) = 2.527, P < 0.01) (refer to Appendix E). On the other hand, significant 

differences reported for M n at P < 0.05 using a two-tailed t-test (/(i48) = 2.367, P < 

0.05) were also found by using ANCOVA test but at P < 0.1 (P(i,i38) = 3.417, P = 

0.067). Arsenic levels were found to be significantly different between smokers 

and non-smokers by using a two tailed t-test (̂ (i48) = 2.544, P < 0.05), whilst there 

is no significant effect observed using ANCOVA (P(i,i42) = 0.205, P < 0.652). 

This may be due to the significant effects o f individual’s age and drinking water 

on the level o f  As (P(i,i42) = 17.176, P < 0.001) and M n (P(i.i42) = 8.240, P < 

0.01), respectively (Table 4.11).

4.5 4.4 Influence of Age

Additionally, age and drinking water were selected to be covariant variables in 

order to evaluate whether these parameters provide any significant effects on the 

levels o f trace elements in tear drops along with other factors. The results show 

that the effect o f an individual’s age was significant for Zn (P(i,i3 7 ) = 6.373, P  < 

0.05) and As (P(i,i4 2 ) = 17.176, P  < 0.001) levels. No significant effects at (P  <
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0.05) were caused by the individual’s age for other elements such as B (F(i,n8) = 

0.755, P = 0.387), V (F(i,i45) = 3.186, P = 0.076), etc., as presented in Table 4.11.

4.5.4.5 Influence of Drinking W ater

The relationship between the level of trace elements in drinking water and tear 

drops was investigated. The effect of drinking water elemental levels was 

significant for several trace elements in tear drops such as Sr (P(i,i40) = 175.783, P 

< 0.001); V (F(i,i45) = 13.305, P < 0.001) and Mn (P(i,i38) = 8.240, P < 0.01). The 

strength and direction of these relationships were evaluated using correlation 

coefficient (r) analysis; the value of r was calculated and then subjected to a 

significance test. A strongly positive significant correlation is found for Sr levels 

between drinking water and tear drops (r = 0.760, (̂153) = 14.224, P < 0.001), as 

shown in Figure 4.3. Higher levels of Sr were found in drinking water (tap water; 

n = 50; range: 0.078 -  2.110; mean: 1.113 mg/1 Sr) as compared with those from 

London (tap water; n = 16; range: 0.006 -  0.357; mean: 0.168 mg/1 Sr). Thus, 

higher levels of Sr were found in tear drop samples of healthy Karbala individuals 

(459 ± 255 pg/1 Sr) when compared to London (62 ± 19 pg/l Sr). The possible 

explanation is that the population living in Karbala are exposed to high levels of 

strontium via drinking water. Strontium values are generally very high reflecting a 

vast number of possible industrial discharges (such as ceramic, glass products and 

paint pigments) as described in Chapter 3. Similar strong linear relationship was 

found by other researches between the Sr levels in drinking water and surface 

enamel (r = 0.97, P = 0.001) (Spector & Curzon, 1978). A previous study has 

reported that the highest levels of Sr in saliva were found in the areas where Sr in 

drinking waters was highest (Spector & Curzon, 1978). Vanadium (r = 0.30, /(153) 

= 3.160, P < 0.01) and Mn (r = 0.30, /(146) = 3.377, P < 0.01) are found to have a 

weakly positive significant correlation. In addition, no significant correlations 

observed for other elements, namely B, Cr, Fe, Cy, Zn, As and Cd.
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Figure 4.3: Correlation between strontium levels in tear drops and drinking water.

4.5.5 Interaction Effects

Generally, the interaction between different factors occurs when the effect(s) of 

one factor varies over the levels (groups) of another factor (Field, 2009). Part of 

the power of the analysis of variance and covariance is the ability to estimate the 

interaction effects. The interactions are very important, and the key to 

understanding them is being able to interpret interaction plots (Tabachnick & 

Fidell, 2007). A plot was performed for each significant effect of a factor on the 

trace element levels in tear drops using the adjusted means, as shown in Tables 

4 .13-4 .15 . In general, parallel lines indicate that there is no interaction between 

factors, whilst non-parallel lines mostly mean that the interaction is significant 

(Field, 2009). The interaction results between different factors such as health x 

smoking; health x gender; gender x smoking; and health x gender x smoking are 

reported in Table 4.12. Further information about the results of interaction can be 

found from ANCOVA summary tables in Appendix E.

4.5.5.1 Interaction Between Health Status and Smoking Activity

The results in Table 4.12 Indicate that there are two significant interactions 

between health status and smoking activity for Zn (F(i 137) 7.654, P < 0.01) and

Sr (F(i,i40) = 8.165, P < 0.01).
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Table 4.12: Interaction effects between different factors for trace element levels 
in tear drops (outliers omitted).
Element n H S x G H S x S A G x S A HS X SAX G

B 128 F(i,ii8>f = 0.841, 
f  = 0.361

7̂ (1,118) = 
0.209, f  = 

0.648

P(l,118) = 
3.200, P  = 

0.076

7X1,118) =  

3.328, 
P  = 0.071

V 155 F(1,145) -  0.001, 
f  = 0.975

F(1,145) =
0.027, P = 

0.871

7̂ (1,145) = 
0.234, P  = 

0.629

7X1,145) = 
0.425,

P  =  0.516

Cr 151 F(i,141) — 0.812 
P = 0.369

7^(1.141) =  

0.920, P  = 
0.339

P(l,141) =

4.244, P  =  

0.041*

7X1,141) =  

0.107,
P  =  0.745

Mn 148 7^(1,138) -  0.407, 
f  =  0.524

7^(1,138) =  

0.986, P =  

0.322

7^(1,138) =  

1.891,P  =  

0.171

P (l,138) =  

0.888,
P  =  0.348

Fe 148 F ( i ,138) =  0.486, 
P =  0.487

7^(1,138) =  

0.642, P  =  

0.424

7^(1,138) = 
3.011,P  = 

0.085

7X1,138) = 
2.174,

P  = 0.143

Cu 155 F (i,i4 5 ) — 1.108, 
f  = 0.294

7^(1,145) = 
3.084, P  = 

0.081

7X1,145) = 
1.998, P  = 

0.160

7X1,145) = 
0.392,

P  = 0.532

Zn 147 7^(1,137)= 1.285, 
P = 0.259

F(1,137) =
7.654, P  = 

0.006**

7X1,137) =  
0.024, P  =  

0.878

7X1,137) =  
0.081,

P  =  0.776

As 152 7^(1,142) — 0.052, 
P = 0.820

F(1,137) =

0.035, P =  
0.852

7X1,137) =  
0.429, P =  

0.513

7X1,137) =  
0.429,

P  =  0.513

Sr 150 7^(1,140) = 0.719, 
f  = 0.398

F(1,140) =
8.165, P  =  

0.005**

7X1,140) = 
0.344, P  = 

0.558

P (l,140) =
6.039,

P  = 0.015*

Cd 150 F ( i , i40) -  1.242, 
f  = 0.267

7^1,140) = 
0.285, P  = 

0.594

7X1,140) = 
0.734, P  = 

0.393

7X1,140) = 
0.005,

P  = 0.942
n = number of samples,  ̂df=  degrees of freedom, F=  calculated value of F-test, 
P = probability, HS = health status, G = gender, SA = smoking activity, the bold 
values indicate significant differences at the level of significance *P < 0.05 and 
**P < 0.01 (see Appendix E)

Table 4.13 and Figure 4.4 show the significant interaction between health status 

and smoking activity for Sr levels in tear drops. Although, the concentrations of 

Sr in the healthy and diabetic tear drops are similar for smokers, there is a big
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difference for non-smokers. Therefore, the effect of health status was significant 

( ^ 1,140) = 5.388, P < 0.05) in Table 4.11, as the mean value of Sr for diabetic cases 

(red line) is generally higher than healthy cases (blue line). This suggests that 

diabetic cases lead to higher Sr levels than healthy (Figure 4.4). On the other 

hand, the Sr mean values for smokers and non-smokers over the health status 

levels are roughly the same for Karbala population. Thus, the effect of smoking 

activity in Table 4.11 was not significant a t f  < 0.05 (T(],i40) = 0.041, P = 0.841).

Table 4.13: The mean values of healthy individuals and diabetic patients across 
smoking activity groups for Sr levels in tear drop samples from Karbala (n = 150).

Health status Smoking activity Mean" 95% Confidence interval
Lower Upper

healthy
smoker 613.868 470.351 757.386

non-smoker 462.655 408.709 516.601

diabetic
smoker 600.499 459.254 741.744

non-smoker 774.787 658.917 890.658
* Adjusted mean value which is determined at the arithmetic mean value for age = 
36 years and Sr level in drinking water = 1069 pg/1.

Health status
 healthy
—  diabetic

C l

Cl

>  500-

smoker lioii-smoker
Smoking activity

Figure 4.4: Interaction between health status and smoking activity for Sr levels 
(pg/1) in tear drop samples from Karbala (the data was taken from Table 4.13).

171



Chapter Four: Trace Element Levels in Tear Drops

In the case of zinc, the results show that there are no effects for both factors on the 

levels of Zn in tear drops (Table 4.11), but cross-over interactions are found to be 

significant (Appendix E), No significant interactions {P < 0.05) were found 

between the health status and smoking activity for other elements, namely B, V, 

Cr, Mn, Fe, Cu, As and Cd, as presented in Table 4.12.

4.5.5 2 Interaction Between Health Status and Gender

In general, there was no significant interaction {P < 0.05) found between the 

health status and participants gender for all the trace elements in tear drops (Table 

4.12). In other words, there is no change in the effect of health status over the 

levels of gender (male and female) and vice versa.

4.5.5.3 Interaction Between Gender and Smoking Activity

The results in Table 4.12 show that there is a significant interaction between 

gender and smoking activity for Cr (f(i,i4i) = 4.244, P < 0.05), as shown in Table 

4.14 & Figure 4.5. No significant effects (P < 0.05) were found in Table 4.11 for 

both factors on the levels of Cr in tear drops. In other words, both smokers and 

non-smokers have a very different effect on gender levels. Therefore, both effects 

destroy each other, but cross-over interactions are found to be significant. 

Furthermore, there was no significant interaction between gender and smoking 

activity found for other elements, as shown in Table 4.12.

Table 4.14: The mean values of males and females across smoking activity 
groups for Cr levels in tear drop samples from Karbala (n = 151).

Gender Smoking activity Mean*
95% Confidence Interval

Lower Upper

male
smoker 10.874 4.860 16.887

non-smoker 14.524 10.543 18.505

female
smoker 15.347 9.311 21.383

non-smoker 8.994 6.172 11.816
’ Adjusted mean value which is determined at the arithmetic mean value for age =
36 years and Cr level in drinking water = 0.5 pg/1.
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ct

Figure 4.5: Interaction between gender and smoking activity for Cr levels (|ag/l) 
in tear drop samples from Karbala (the data was taken from Table 4.14).

4 5.5.4 Interaction Between Health Status, Smoking Activity and Gender

The three-way interaction shows whether the health status x  smoking activity 

interaction described above is the same for males and females. There is a 

significant three-way interaction between health status x  smoking activity x 

gender for Sr levels = 6.039, P < 0.05), as shown in Table 4.12. The

nature o f this interaction is presented in Table 4.15.

Figures 4.6 & 4.7 show the interaction between health status and smoking activity 

for males and females, respectively. The graph for male data shows the interaction 

between health status and smoking activity. For diabetic patients, the Sr mean 

value was lowest for smokers. For healthy individuals, however, the lowest Sr 

mean value occurs for non-smokers. This clearly suggests that healthy and 

diabetic subjects appear to respond differently to smoking activities, and that to 

explore the effect o f smoking on the levels o f Sr in tear drops, one must consider 

the health status o f participants. The picture for females is quite different. For 

diabetic patients, there is no difference between smokers and non-smokers in 

terms o f Sr levels (i.e. the Sr mean values are generally the same). In the case o f 

healthy individuals, the levels o f Sr are slightly lower for non-smokers than 

smokers. The data in Figure 4.7 suggests that there is unlikely to be a significant
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interaction because the effect of smoking which is the same for healthy 

individuals and diabetic patients. Moreover, there are no significant three-factor 

interactions (P < 0.05) found for other elements in tear drops, as shown in Table

4.12.

Table 4.15: The mean values of healthy and diabetic for males and female across 
smoking activity groups for Sr levels in tear drop samples from Karbala (n = 150).

Health status Gender
Smoking
activity

Mean"
95% Confidence Interval

Lower Upper

healthy
male

smoker 709.641 497.941 921.341
non-smoker 451.234 372.250 530.218

female
smoker 518.096 319.653 716.539

non-smoker 474.076 407.054 541.099

diabetic
male

smoker 507.180 304.015 710.345
non-smoker 856.926 681.732 1032.121

female
smoker 693.818 513.415 874.221

non-smoker 692.648 562.784 822JT2
" Adjusted mean value which is determined at the arithmetic mean va 
36 years and Sr level in drinking water = 1069pg/l.

ue for age =

Gender = male
9 00- Health status

 healthy
—  diabetic

'00-

500-

^  500“

400-

smoker

Figure 4.6: Interaction between health status and smoking activity for Sr levels 
(pg/1) in tear drop samples of males from Karbala (the data was taken from Table 
4.15).
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C ie n d t 'r  -  f e im ie

smoker

Figure 4.7: Interaction between health status and smoking activity for Sr levels 
(gg/1) in tear drop samples of females from Karbala (the data was taken from 
Table 4.15).

4.5.6 Significant Effect of Factors on Elemental Data

The results investigated above provide an indication of whether the difference 

between groups is statistically significant. The aim for most researchers is to find 

their results are significant (i.e. the factor effect on trace element levels is 

significant). This does not mean that the difference has any practical or theoretical 

significance; for example, with large samples, even very small differences 

between groups can become statistically significant (Field, 2009; Tabachnick & 

Fidell, 2007). Partial eta squared {rf') was used to determine the strength of the 

significant effect for each factor on the level of trace elements (i.e. strength of 

relationship), as shown in Section 2.9.4.

Table 4.16 shows the rĵ  values for the significant effects and interactions for 

health status, gender and smoking activity, and the effect of covariates (age and 

drinking water). There are four significant effects related to the levels of Sr in tear 

drops, namely drinking water: rf' = 0.557 (55.7%); health status: rf' -  0.037 

(3.7%); interaction between health status and smoking activity: rf' = 0.055 (5.5%); 

and interaction between health status, smoking activity and gender: tf' = 0.041 

(4.1%). Larger values of if' indicate a greater amount of variation caused by the
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factor (Tabachnick & Fidell, 2007). The values of rf show that drinking water has 

a higher effect on the levels of Sr in tear drops when compared to other factors. 

The results for other elements in Table 4.16 confirm that the major factors 

affecting the levels of trace elements in tear drops {F < 0.05) are: health status for 

B (9.6%), Mn (10.6%) and Sr (3.7%; drinking water for V (8.4%), Mn (5.6%) and 

Sr (55,7%); age for Zn (4.4%) and As (10.8%); gender for Fe (3.9%); and 

smoking for Cd (6.5%). Furthermore, some interactions between two or three 

factors can also make a major effect for trace elements, namely health status X 

smoking activity for Zn (5.3%) and Sr (5.5%); gender X smoking activity for Cr 

(2.9%); and health status x smoking activity X gender for Sr (4.1%). The value 

of other factors is approximately 0 for specific trace elements as they have a 

negligible amount of variation compared to the error term.

In the light of these results, health status and drinking water can be considered as 

the important factors for trace element levels in tear drops when compared to 

other factors, as shown in Table 4.16.

Table 4.16: Partial eta squared values for significant effects and interactions {P < 
0.05) of factors and covariates on the level of trace elements in tear drops from 
Karbala.

Effect Partial eta squared {rĵ )
B V Cr Mn Fe Cu Zn As Sr Cd

Age NS NS NS NS NS NS 0.044 0.108 NS NS
DW NS 0.084 NS 0.056 NS NS NS NS 0.557 NS

Health 0.096 NS NS 0.106 NS NS NS NS 0.037 NS
Gender NS NS NS NS 0.039 NS NS NS NS NS

Smoking NS NS NS NS NS NS NS NS NS 0.065
H * G NS NS NS NS NS NS NS NS NS NS
H * S NS NS NS NS NS NS 0.053 NS 0.055 NS
G * S NS NS 0.029 NS NS NS NS NS NS NS

H * G * S NS NS NS NS NS NS NS NS 0.041 NS
H = healthy, S = smoking activity, G = gender, DW = drinking water, " inc 
an interaction term, NS is not significant effect at P  < 0.05 (refer to Append

ication 
ix E).

4.5.7 Inter-Element Correlations

In the human body, the biological processes depend on the six major nutrient 

elements carbon, hydrogen, nitrogen, oxygen, sulphur, and phosphorus and are 

complemented by a selected group of other elements, usually metals or metalloids
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present in trace quantities that serve critical cellular functions, such as enzyme co

factors (Berg et al., 2007). Many biological processes are especially dependent on 

the essential trace elements to function correctly (Mertz, 1981). However, these 

processes can be impaired by the presence of other elements which may have 

synergistic or antagonistic effects. Some elements are known to exhibit these 

relationships, such as the antagonism between Zn and Cd (Hille, 2002; Lane & 

Morel, 2000); Cu and Mn (Cropper et at., 2000) or Cu and Fe (Jameson & Ibers, 

2007); Sr and Ca (Verberckmoes et al, 2003); and As and P (Schoepp-Cothenet 

et al., 2011; Wolfe-Simon et al., 2011). Therefore, an investigation for any 

correlations between the elements analysed in this work was performed.

Outliers can have a dramatic effect on the correlation coefficient and make the r 

value much smaller than it should be, causing misleading results (Field, 2009; 

Tabachnick & Fidell, 2007); therefore, the outliers are removed from the data set, 

as described in Table 4.3. Moreover, any cases with missing values for one or 

both of a pair of trace elements for a correlation coefficient were excluded from 

the analysis (excluding cases pairwise) as each coefficient is based on all cases 

that have valid codes on that particular pair of trace elements.

Pearson’s Product Correlation Coefficient (r) was used to investigate the 

relationship between the trace element levels in tear drops for healthy individuals 

and diabetic patients from Karbala (Chojnacka et al., 2005). This was investigated 

in order to evaluate which elements are correlated in tear drops and whether type 

2 diabetes can be affecting inter-element relationships through a breakdown in 

metabolism or homeostatic regulations (Flores et al., 2011). Different 

interpretations were suggested by researchers in terms of the values of r between 

0 and 1 (further information see Section 2.9.6). Therefore, the value of r was 

subjected to a significance test to examine whether r is significantly different at 

the 95% confidence interval (P < 0.05). The correlation coefficient results for tear 

drops associated with healthy individuals and diabetic patients resident in Karbala 

are summarised in Tables 4.17 & 4.18, respectively.

4.5.7.1 Healthy Individuals

A total of 111-tear drop samples of healthy individuals were analysed for the trace 

elements under study using correlation analysis. Thirty-two of the examined 45
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possible correlations were statistically significant after correlation for multiplicity, 

as shown in Table 4.17.

Table 4.17: Inter-element Pearson Correlation Coefficient (r) values for tear 
drops of healthy individuals from Karbala.
Element B V Cr Mn Fe Cu Zn As Sr Cd

B
r 1.000
n 92

V
r NS 1.000
n 92 111

Cr
r NS 0.538" 1.000
n 89 107 107

Mn
r NS 0.488" 0.513" 1.000
n 87 105 103 105

Fe
r 0.226' 0.514" 0.574" 0.638" 1.000
n 86 104 102 104 104

Cu
r NS 0.499" 0.581" 0.585" 0.496" 1.000
n 92 111 107 105 104 111

Zn
r NS 0.640" 0.478" 0.622" 0.384" 0.560" 1.000
n 88 106 102 101 100 106 106

As
r NS 0.244" NS NS NS NS 0.302" 1.000
n 92 111 107 105 104 111 106 111

Sr
r NS 0.453" 0.451" 0.606" 0.378" 0.483" 0.667" NS 1.000
n 92 111 107 105 104 111 106 111 111

Cd
r NS 0.502" 0.401" 0.496" 0.408" 0.572" 0.650" 0.203* 0.404" 1.000
n 88 106 102 102 101 106 102 106 106 106

** Correlation is significant at P  < 0.0 level. * correlation is significant at P  <
0.05 level, NS = no significant correlation at P  < 0.05, n is the number of samples.

The highest correlation coefficient was found in tear drops between Zn-Sr {r = 

0.667; P < 0.01) (Figure 4.8); Zn-Cd (r = 0.650; P < 0.01); V-Zn (r = 0.640; P  < 

0.01); Mn-Fe {r = 0.638; P  < 0.01); Mn-Zn {r = 0.622; P < 0.01); and Mn-Sr (r = 

0.606; P  < 0.01). Vanadium, Fe, Zn and Cd were statistically significantly 

correlated with the largest number of other elements (8 correlations), followed by 

Cr, Mn, Cu and Sr (7 correlations). Arsenic was statistically significantly 

correlated with three correlations with others (V, Zn and Cd), and B was 

correlated with Fe.
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Figure 4.8: Correlation between zinc and strontium in tear drop samples from 
healthy individuals from Karbala (n = 106).

4.5.7.2 Diabetic Patients

A total of 44-tear drop samples from diabetic patients in Karbala were analysed 

for the trace elements under study using correlation analysis. Table 4.18 shows the 

correlations between trace element levels in tear drop samples for diabetic 

patients. There were 27 statistically significant correlations of the total 45 tested 

in tear drops. The strongest correlation, as indieated by the magnitude of r, is 

found between Cr-Mn (r = 0.840; P < 0.01), as shown in Figure 4.9. The elements 

with the most frequently statistically significant correlations were Cr and Mn (8 

correlations), followed by Cu and Sr (7 correlations). All elements were 

statistically significantly correlated with at least three others.

4.5.7.3 Comparison Study

Comparison of correlation coefficients between healthy individuals and diabetic 

patients shows the following significant positive correlations (P < 0.01 or < 0.05) 

were found: V-Mn, V-Fe, V-As, Cr-Mn, Cr-Fe, Cr-Cu, Cr-Zn, Cr-Sr, Cr-Cd, Mn-
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Fe, Mn-Cu, Mn-Zn, Mn-Sr, Mn-Cd, Fe-Cu, Fe-Sr, Cu-Zn, Cu-Cd, Cu-Sr, Zn-Sr 

and Zn-Cd, as shown in Tables 4.17 & 4.18. However, there is no difference 

between these correlations in both of the healthy individuals and diabetic subjects. 

Vanadium was correlated significantly with Cr, Cu, Zn, Sr and Cd; Fe with Zn 

and Cd; As with Zn and Cd; Sr with Cd and B with F e in  healthy populations 

rather than in diabetic patients. In contrast, there are several statistically 

significant correlations that were observed in tear drops of diabetic patients rather 

than healthy individuals, namely: B-Cr, B-Cu, B-Sr, As-Cr, and As-Mn. Figures 

4.10 & 4.11 show the linear regression relationship between V-Zn in both 

population groups.

Table 4.18: Inter-element Pearson Correlation Coefficient (r) values for tear 
drops of diabetic patients.
Element B V Cr Mn Fe Cu Zn As Sr Cd

B
r 1.000
n 36

V
r NS 1.000
n 36 44

Cr
r 0.371* NS 1.000
n 36 44 44

Mn
r NS 0.332* 0.840" 1.000
n 35 43 43 43

Fe
r NS 0.581" 0.393" 0.402" 1.000
n 36 44 44 43 44

Cu
r 0.394* NS 0.631" 0.432" 0.348' 1.000
n 36 44 44 43 44 44

Zn
r NS NS 0.630" 0.592" NS 0.611" 1.000
n 34 41 41 40 41 41 41

As
r NS 0.327* 0.547" 0.667" NS NS NS 1.000
n 34 41 41 40 41 41 38 39

Sr
r 0.431* NS 0.574" 0.535" 0.329* 0.330' 0.337' 0.339* 1.000
n 32 39 39 38 39 39 38 36 39

Cd
r NS NS 0.558" 0.457" NS 0.428'* 0.442" NS NS 1.000
n 36 44 44 43 44 44 41 41 39 41

** Correlation is significant at P < 0.01 level, * correlation is significant at P  < 
0.05 level, NS = no significant correlation at P  < 0.05, n is the number of samples.
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Figure 4.9: Correlation between manganese and chromium in diabetic tear drop 
samples (n = 43).
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Figure 4.10: Correlation between vanadium and zinc in tear drop samples from 
healthy individuals in Karbala (n -  106).
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Figure 4.11: Correlation between vanadium and zinc in tear drop samples from 
diabetic patients in Karbala (n = 41).

Generally, inter-element interactions were discussed only in a few papers in the 

available literature (e.g. Flores et aL, 2011; Chojnacka et al., 2010; Wang et al., 

2009; Shah, et al., 2006; Chojnacka et al., 2005; Forte et al., 2005; Barany et al., 

2002; Faghihian & Rahbarnia, 2002; Vishwanathan et al., 2002; Rodushkin & 

Axelsson, 2000; Georgescu et al., 1998). For the group of healthy individuals, the 

following correlations have been found in blood serum between Zn-Cu {r = 0.14, 

P < 0.01) (Barany et al., 2002), and in scalp hair between Zn-Mn (r > 0.4, P < 

0.05) (Shah et al., 2006). Chojnacka et al. (2010) reported the following 

statistically significant correlations between the elements in hair: V with Mn, Fe, 

Cu and As; Cr with Mn, Zn and Cd; Mn with Fe, Cu, Zn, Sr and Cd; Fe and Zn; 

Cu with Zn, Sr and Cd (Chojnacka et al., 2010). Significant correlation was found 

between Mn-Sr (r = 0.530) in human scalp hair for healthy populations (Shah, et 

al., 2006). Similar results were also found in scalp hair for Cu with B, V and As; 

Zn with Cd; Fe with Mn and Cr; Mn with Cr, V, B and Sr; Cr with B and As; and 

B with V and Cd (Chojnacka et al., 2005).

In the case of diabetic patients, other researchers have found similar significant 

correlations in blood serum between: Mn-Cu (r = 0.310, P <  0.05), Zn-Cu (r = 

0.557, P < 0.01) and Mn-Zn (r = 0.394, P < 0.05) (Flores et al., 2011).
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In this study, a large number of correlations were found between elements in tear 

drops for healthy individuals and diabetic patients, some of which have not been 

previously reported. Similar results were found by another study that reported 34 

significant correlations between the trace element levels in blood serum (Barany 

et al., 2002). The correlation between trace elements occurs according to their 

similarity of properties as well as co-occurrence in nature or common exposure 

sources (Rodushkin & Axelsson, 2000). However, to assess the implications of 

these correlations, several possible routes were investigated whereby such 

correlations could have arisen. Firstly, pre-analytical factors (e.g. contamination 

by two elements at the same time) and instrumental shortcomings (isotopic or 

polyatomic mass interferences, variations in instrument sensitivity, or blank 

signal) were considered (Barany et al., 2002). Secondly, some trace elements are 

released into the environment by common sources that contribute to 

environmental pollution. These elements were significantly correlated (Chojnacka 

et al., 2005). Finally, the correlation between two elements might be due to the 

first element affecting another or an additional variable affecting both elements. In 

addition, the majority of correlations between trace element levels in tear drops 

for healthy and diabetic populations were positive, as shown in Tables 4.18 & 19. 

There are two factors which could cause the positive correlations, namely 

exposure from the same source, or metabolic interactions such as binding to the 

same proteins (Barany et al., 2002). At this time, there is no biological or 

mechanistical information available to explain many of the reported correlations, 

and more studies are needed in this area. This research therefore proposes a strong 

interdependence of various element levels in the tear drops matrix.

4.6 Summary

The results presented in this Chapter for elemental levels in human tear drop 

samples are summarised in Table 4.19, showing the descriptive statistics, namely, 

mean, standard deviation, geometric mean, median, range and the number of 

samples in each population group. The highest elemental level reported in the tear 

drops of healthy individuals and diabetic patients from Karbala was for Zn, (1075 

± 1032 pg/1) and (1536 ± 1520 pg/1), respectively. Similar results were found for
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whole blood, serum and plasma as reported by other studies (Flores et al., 2011; 

Stone, 2006).

Table 4.19: Summary of descriptive statistics of the elements measured in human 
tear drops for healthy individuals and diabetic patients from Karbala (Iraq) and 
healthy individuals from London (UK) (value in |xg/l).
Element n Group Mean ± SD GM Median Range

92 HK 389± 158 355 383 < 70 - 898
B 36 DK 606 ±415 494 479 < 7 0 -2 0 2 0

18 HL 216± 127 184 203 83 -4 9 8
111 HK 5.6 ± 5.3 3.7 3.4 0 .5 -21 .2

V 44 DK 4.1 ±2.6 3.1 3.7 0 .1 -10 .8
18 HL 0.7 ± 0.4 0.5 0.6 0.1 -  1.3
107 HK 11.2 ± 10.6 7.5 8.2 0 .7-47.1

Cr 43 DK 11.3 ± 10.4 6.5 7.3 0 .2 -40 .9
18 HL 4.6 ± 1.7 4.3 4.3 2 .4 -8 .1
105 HK 41.7 ±35.4 28.0 30.4 1 .9-159

Mn 43 DK 104± 103 51.9 58.8 0 .8-381
18 HL 6.8 ± 2.2 6.3 6.4 3.4-11 .1

104 HK 499 ± 460 295 339 7 -2 0 6 0
Fe 44 DK 577 ±516 302 442 3 -2 0 0 3

18 HL 159 ±68 143 157 6 4 -2 6 9
111 HK 268± 156 222 223 35-741

Cu 44 DK 204 ± 145 128 190 1 -5 9 4
18 HL 227 ± 62 217 242 90 - 335

106 HK 1075± 1032 665 717 149-4164
Zn 41 DK 1536 ±1520 839 966 47 -5 7 2 6

18 HL 188 ±58 179 186 79 -  324
111 HK 8.3 ±11.1 3.9 2.9 0 .1 -44 .8

As 41 DK 2.2 ± 1.4 1.7 2.1 0 .2 -5 .5
18 HL 1.4 ±0.7 1.2 1.3 0 .2 -2 .9
111 HK 459 ± 255 382 431 49-1183

Sr 39 DK 757 ±589 493 510 7-2361
18 HL 62± 19 58 65 2 6 -9 8

106 HK 1.9± 1.7 1.2 1.3 0 .1 -6 .7
Cd 44 DK 2.2 ±2.1 1.4 1.5 0 .1 -8 .4

18 HL 3.8 ±2.7 3.0 3.5 1 .3 -9 .0
n = number of samples; SD = standard deviation; GM = geometric mean; HK =
healthy Karbala; DK = diabetic Karbala; HL = healthy London.

The elemental levels were determined in healthy individuals from Karbala and 

were found to be significantly higher {P < 0.05) when compared with those from
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London. There was no significant difference found for Cu between the two 

healthy groups, whilst the level of Cd was higher in London than Karbala (Table 

4.19). The observed variations in elemental concentrations in tear drops of the two 

donor groups reflected different food habits, drinking water and geographic 

location as causatives that collectively affected individual variability and 

metabolic activity. The present work showed a marked trace element level in tear 

drop samples which is dependent on geographic location, environmental exposure 

and dietary habits of the donors.

The relationship between elemental level and health status is very strongly linked 

for many of the elements determined in this research. Discriminant function 

analysis was applied between three population groups (healthy and diabetic from 

Karbala and healthy from London) in order to find whether there were any 

differences between these groups and which elements could be used to 

discriminate the study populations. The results provided evidence that Sr, Mn, B, 

Zn, V, As and Cd in tear drops can be used to best discriminate (standardised 

coefficient > 0.3) between healthy individuals and diabetic patients. The model 

was able to correctly classify the 85% of cases and the 83% of cases after cross- 

validation. Thus, these findings suggest that DFA could be correctly applied to the 

type 2 diabetes as a diagnostic statistical test.

The results were compared with literature ranges for other human fluids such as 

blood serum and saliva, as described in Tables 4.5 & 4.6. In general, the results of 

healthy individuals from Karbala reported in this work are in agreement with 

those published by Flores et al. (2011) for V and Zn in blood serum; Muniz et al. 

(2001) for Zn in blood serum; Gil et al. (2011) for Cd, Cr and Mn in blood and 

saliva; Ward & Ward (1991) for Cu and Cd in saliva; and Stone (2006) for Fein  

plasma and Zn in plasma and serum. The mean values for B, As and Sr are in 

disagreement with the reported literature range in serum (Flores et al., 2011; 

Ward, 1993) and saliva (Kim et al., 2010; Yuan et al., 2008; Ward, 1993).

In comparison with diabetic results reported in the literature for blood serum, B, 

Cr, Zn, As, Sr and Cd levels were higher, whilst Fe and Cu were below the ranges 

reported in blood serum by Flores et al. (2011) and Stone (2006). The mean value 

of V falls within the reference range reported in plasma by Stone (2006).

The infiuence of various factors (health status, gender and smoking activity) and 

covariates (individual’s age and drinking water) on elemental levels was
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determined. The results were then subjected to ANCOVA and a two tailed t-test in 

order to check whether the effects of these factors and covariates are statistically 

significant. A statistical evaluation of the results are summarised in Table 4.20. 

The results of ANCOVA show that the influence of health status was significant 

on the level of B, Mn and Sr, whereas there were no significant effects for V, Cr, Fe, 

Cu, Zn, As and Cd (Table 4.20).

The effect of gender on the level of trace elements in the two populations from 

Karbala (healthy and diabetic) was investigated. It is known that trace element 

requirements and levels can differ between the genders. This may therefore also 

infiuence the trace element content of tear drops. This has been reported for other 

human fluids (Gil et al., 2011) and tissues (Sukumar & Subramanian, 2007). 

Therefore, the study populations of Karbala were split into male and female sub

groups and the data was subjected to significance testing, as shown in Table 4.20. 

Of the elements under investigation in this research, the Fe levels were distinctly 

higher in males than females in the total population (healthy and diabetic) at f  < 

0.05. The results were in agreement with the findings of Gil et al. (2011), 

Sukumar & Subramanian (2007), Stone (2006) and Forte et al. (2005).

The infiuence of smoking activity on the trace element levels of human tear drops 

was examined and the results are reported in Table 4.10. The study population 

was split into smoker and non-smoker groups, and the significant differences were 

examined by using a two tailed t-test and ANCOVA, as shown in Table 4.20. It 

was found that Cd levels were significantly higher (F < 0.05) in tear drops for 

smokers when compared to non-smokers. The results for Cd are in full agreement 

with the majority of studies reported in the literature (Gil et al., 2011; Sukumar & 

Subramanian, 2007; Chojnacka et al., 2006; Hoffmann et al., 2000; Ward, 1993). 

The effect of age was evaluated to determine whether time played a role in the 

elemental levels present in human tear drops. A significant correlation was found 

between As and Zn levels and an individual’s age using ANCOVA at f  < 0.05. 

The remaining elements did not appear to have any significant relationship with 

age at f  < 0.05. Similar results were also reported in the literature by other 

researchers (Sthiannopkao et al., 2010; Sarah, 2009; Chojnacka et al., 2006; Shah 

et al, 2006).

The results of ANCOVA analysis found three significant relationships between 

drinking water and tear drops in terms of V, Mn and Sr at f  < 0.05.
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The interactions between different factors such as health status, gender and 

smoking activity were determined by using ANCOVA. The results of Karbala 

population show that there are two significant interactions between health status 

and smoking activity for Zn and Sr at P  < 0.05. There is a significant interaction 

between gender and smoking activity for Cr at P  < 0.05. The interaction between 

health status, smoking activity and gender was significance for Sr at P  < 0.05. The 

results are summarised in Table 4.20.

The correlation coefficient (r) was determined for each pair of elements in the two 

populations (healthy individuals and diabetic patients from Karbala). The results 

are presented in Tables 4.17 & 4.18 for healthy and diabetic individuals, 

respectively. Strong correlations, as indicated by the magnitude of r, were found 

between Zn-Sr (r = 0.667, P  < 0.01) for healthy individuals and Cr-Mn (r = 0.84, 

P  < 0.01) for diabetic patients. There were 32 and 27 statistically significant 

correlations of the total 45 tested in tear drops for healthy and diabetic cases, 

respectively. The elements with the most frequently statistically significant 

correlations were V, Fe, Zn and Cd for healthy individuals and Cr and Mn for 

diabetic patients. Similar results were also found for other biological media, 

namely blood serum, saliva and scalp hair (Flores et al., 2011; Gill et al., 2011; 

Barany et al., 2002; Shah et al, 2006).

In the light of these results, the present data can be used to establish a data base of 

normal levels for Iraqi individuals resident in Karbala as no study has been 

previously published in this region. This could act as baseline information for 

comparison with other countries and for the evaluation of future environmental 

pollution and possible human health studies in Iraq. Furthermore, tear drops could 

be used to determine the potential infiuence for health status, gender, age, 

smoking activity and residential location on the elemental levels in the human 

body. This can be used to investigate whether human tear drops can be used as a 

biomarker in the assessment of exposure to pollutants in an occupational and/or 

environmental setting in Iraq. In addition, the results can be used to evaluate or 

confirm previous data from published studies in order to asses whether there is 

any possible link between specific trace elements and type 2 diabetes.
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5.0 Introduction

The level of trace elements in human saliva, washed scalp hair and fingernails are 

reported in this chapter, as shown in Sections 5.2 - 5.4. Samples were collected 

and prepared, as described in Sections 2.2.4 — 2.2.6. Methods were developed and 

validated, as outlined in Sections 2.3.2. Multi-elemental analysis was performed 

for boron (B), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), copper 

(Cu), zinc (Zn), arsenic (As), strontium (Sr) and cadmium (Cd) in different media 

using an Agilent 7700 Series ICP-MS instrument with collision cell technology 

(CCT), as described in Section 2.6. The aim of this chapter was; to investigate 

whether human saliva, scalp hair, and fingernails could be used as a biomarker in 

the assessment of exposure to pollutants in an occupational and/or environmental 

setting; to compare the results with those obtained for tear drops collected earlier 

in this study; and to establish normal levels for Iraqi individuals which can be 

used for comparison with other countries and for evaluation of future 

environmental pollution and possible human health/disease studies in Iraq. The 

results are reported in Tables 5.1- 5.11. The main study was carried out on 

participants from Karbala (Iraq), whereas the subjects from London were used for 

a comparative study.

5.1 Statistical Methods of Analysis

Descriptive data analysis (arithmetic mean, standard deviation, range and 95% 

confidence interval) was performed on concentration values obtained for saliva, 

washed scalp hair and fingernails. The F-test and two tailed t-test were used to 

assess the significance of the variations in saliva, washed scalp hair and 

fingernails trace element levels between Karbala (Iraq) vs. London (UK) and 

healthy vs. diabetic populations (both from Karbala). The Pearson product 

correlation coefficient (r) calculation was carried out to evaluate associations 

between trace elements in different media, namely saliva, scalp hair and 

fingernails. A one-way ANOVA calculation was used when testing for differences 

between the four biological samples, as described in Section 2.9.3.
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All statistical analysis was undertaken using the statistical package SPSS - version 

19 (SPSS Inc., Chicago, IL, USA) (Miller & Miller, 2010; Field, 2009; 

Tabachnick & Fidell, 2007). See Appendix C for all equations.

5.2 Saliva

The main reasons for using saliva in this study are: (i) tear drops and saliva have 

similar properties, (namely non-invasive fluids) and have the same relative 

composition in terms of protein (lysozyme) and antibody (immunoglobulin) 

content; (ii) the transport media is water; and (iii) the nutritional source is the 

blood (Zhao et al., 2010; Wang et al., 2008). In addition, the use of saliva 

provides a data base of normal levels of trace elements for Iraqi individuals 

resident in Karbala (Iraq). This was established as no study has been published in 

the literature regarding Iraqi individuals living in Karbala.

Saliva has been used in the literature for multi-elemental analysis because of the 

ready access and non-invasive sampling nature (Wang et al., 2008).

There are several limitations which have been reported in the literature in terms of 

the use of saliva as a biomarker for trace element levels in the human body: (i) 

variation in salivary flow-rates; (ii) potential blood contamination during 

sampling collection; (iii) lack of standard or certified reference materials (CRMs); 

(iv) the absence of reliable reference values for the human population; and (v) the 

presence of low concentrations of metal compounds (or trace elements) in saliva 

(Kim et al., 2010; Esteban & Castano, 2009; Barbosa et al., 2006).

5.2.1 Elemental Composition of Saliva

The level of trace elements in unstimulated saliva samples are summarised in 

Table 5.1. The results are presented as an arithmetic mean, standard deviation, 

range, 95% confidence limit for mean value and the number of samples in the 

three populations (healthy Karbala, diabetic Karbala and healthy London). Some 

trace elements, namely B, Cr and Cd, were found to have several values below the 

reported limit of detection. Therefore, the mean values for these elements were 

not calculated.
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Table 5.1: Population data for trace element levels (pg/1) in saliva from
individuals resident in Karbala (Iraq) and London (UK).

Concentration (pg/1)
Element Variable Karbala London

Healthy (n = 43) Diabetes (n = 29) Healthy (n = 25)
Mean ± SD nd nd nd

Range < 7 0 - 1254 < 7 0 -3 3 2 <70 - 575
95% Cl nd nd nd

n 39 27 14
Mean ± SD 0.43 ± 0.47 0.35 ±0.31 0.16 ±0.20

V Range 0.02-1.79 0.02-1.21 0.03 -  0.94
95% Cl (0.28, 0.57) (0.23, 0.47) (0.07, 0.24)

n 43 29 25
Mean ± SD nd nd nd

Cr+ Range < 0 .1 -0 .8 6 <0.1 -0 .8 6 < 0 .1 -0 .5 3
95% Cl nd nd nd

n 34 23 6
Mean ± SD 3.72 ±5.09 8.12 ±9.09 1.38 ±1.72

Mn Range 0.19-23.64 0.51-39.01 0.10-7 .38
95% Cl (2.15,5.28) (4.66,11.57) (0.67,2.09)

n 43 29 25
Mean ± SD 29.39 ±31.73 22.84 ± 27.58 9.40 ± 8.26

Fe Range 1.80-110.50 1.30-131.40 0.70-34.70
95% Cl (19.62, 39.15) (12.35, 33.33) (5.99,12.81)

n 43 29 25
Mean 14.49 ± 14.72 12.34 ±9.29 24.43 ± 18.20

Cu Range 1.40-68.50 1.20-41.20 1.80-171.03
95% Cl (9.96,19.02) (8.80, 15.87) (8.68, 40.22)

n 43 29 25
Mean ± SD 74 ±82 73 ±70 37 ±41

Zn Range 7 -4 0 2 4 -2 8 8 1 -1 7 8
95% Cl (48,99) (46,99) (20,54)

n 43 29 25
Mean ± SD 3.03 ± 3.96 1.09 ±0.64 0.36 ±0.55

As Range 0.11-23.19 0.15-2 .74 0.11-2 .47
95% Cl (1.81,4.25) (0.84,1.33) (0.13,0.60)

n 43 29 25
Mean ± SD 109.28 ±213.89 190.34 ±464.22 29.64 ±26.01

Sr Range 2.24-1324.35 4.43-2545.12 2.34-114.13
95% Cl (43.45, 175.11) (13.84, 366.84) (14.77, 44.51)

n 43 29 25
Mean ± SD nd nd nd

Cd^ Range < 0 .1 -1 .0 3 < 0 .1 -0 .3 7 < 0 .1 -1 .0 1
95% Cl nd nd nd

n 25 9 11
SD is standard deviation, Cl is confidence interval for mean. n is the number of
samples, the levels of B, Cr and Cd in several samples were found below the
limit of detection (B < 70, Cr and Cd < 0.1 |xg/l), nd is not determined.
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Although the elemental concentrations in biological samples vary considerably 

due to geographical differences, nutritional status, and environmental factors, the 

results for different elements have been compared with other results reported by 

several researchers, and the range of worldwide mean values determined by other 

researchers (Samanta et al., 2004). The results are in general agreement with 

values reported by other authors, as described in Table 4.6. The only exceptions 

are for B and Sr as their levels in the majority of samples were above the literature 

values. A possible explanation is that the drinking and irrigation waters in Karbala 

(Iraq) have higher levels of these elements which could be attributed to the 

industrial environment, as reported in Chapter 3, Tables 3.1 -  3.4.

5.2.2 Results and Discussion

The comparative results of trace element levels in saliva for various populations 

were investigated, as presented in Table 5.1. In order to determine whether there 

are any significant differences that can be attributed to diabetic status and 

residential location, an F-test and a two-tailed t-test were undertaken on the saliva 

data from healthy and diabetic individuals, as reported in Appendix F. The effect 

of residential location on the distribution of trace elements in the two healthy 

populations (Karbala and London) was investigated in order to evaluate whether 

this factor may affect the elemental levels in saliva samples. In this study, saliva 

samples were collected from Iraqi individuals resident in Karbala (n = 43) and 

London (n = 25). In general, using a two-tailed t-test, the levels of V (/(62) = 3.26, 

/crit = 1.99, P < 0.01), (where the number in brackets is the number of degrees of 

freedom and the critical value (̂ crit) is determined at the probability level of P = 

0.05), Mn (/(56) = 2.75, tcxix = 2.0, P < 0.01), Fe (f(5i) = 3.91, /crit = 2.01, P < 0.001), 

Zn (̂ (65) = 2.45, ĉrit = 1.99, P < 0.05), As (^s) = 4.34, ?crit = 3.52, P < 0.001) and 

Sr (f(46) = 2.38, ĉrit = 2.01, P < 0.05) of healthy individuals from Karbala were 

significantly higher than those reported for London, as shown in Appendix F 

(Table F 1.4). On the other hand, there is no significant difference found for Cu 

between the two healthy populations at the level of significance P < 0.05. Similar 

results were reported for tear drops when the healthy individuals from Karbala 

were compared with those from London, as reported in Table 4.4.
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As can be seen, the levels for most of the trace elements are higher in saliva 

samples from Karbala than those collected from London. This may be due to diet 

as found from the questionnaire information collected during sampling. 

Furthermore, the risk of environmental input has to be seriously considered in 

terms of the Karbala samples (UNEP, 2003); the population of Karbala use 

drinking water with higher levels of trace elements when compared with London 

drinking water, as described in Chapter 3.

There are many studies which have used other non-invasive media to evaluate 

whether there is any possible relationship between the elemental levels and 

several disease conditions (Esteban & Castano, 2009; Gellein et al, 2008).

The study population from Karbala (Iraq) was divided into healthy and diabetic 

sub-groups and the data was subjected to significance testing. The results show 

that the As levels in saliva samples for healthy individuals were significantly 

higher than those for diabetic patients using a two-tailed t-test (As /(4s) = 3.145, fcrit 

= 2.01, P < 0.01). In contrast, Mn levels for healthy were lower than diabetic 

individuals (Mn r(40) = 2.37, /crit = 2.02, P < 0.05). No statistically significant 

differences were observed for V, Fe, Cu, Zn and Sr (P < 0.05) between healthy 

and diabetic, as shown in Appendix F (Table F 1.3). Interestingly, similar results 

were reported for V, Mn, Cu, As and Sr in diabetic tear drops; although the 

differences between healthy and diabetic saliva samples did not reach the 

significance level of P  < 0.05 for some trace elements. Similar findings have been 

reported by other authors (Flores et al, 2011; Kamal et al, 2009).

The range of trace elements (pg/1) for the saliva of healthy individuals from 

Karbala increases through the following sequence (Sr > B > Zn > Fe > Cu > Mn > 

As > V > Cd > Cr). In the case of diabetic patients from Karbala, the sequence is 

(Sr > B > Zn > Fe > Cu > Mn > As > V > Cr > Cd), whereas for healthy 

individuals from London, the sequence is (B > Zn > Cu > Sr > Fe > Mn > As > 

Cd > V > Cr). A box-plot was used to visually inspect the differences among the 

three populations (namely, healthy and diabetic individuals from Karbala and 

healthy from London), as shown in Figure 5.1.

Overall, the results show that factors such as lifestyle and type 2 diabetes could 

affect element levels in saliva. However, this media can be used as a biomarker 

for human health and environmental exposure with respect to trace element levels.
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Figure 5.1: Box-plots for V, Mn, Fe, Zn, As and Sr levels in saliva samples for 
healthy individuals (n = 43) and diabetic patients (n = 29) from Karbala and 
healthy individuals (n = 25) from London. Middle band, box and whiskers 
represent the median, 25̂  ̂ and 75* percentile, and 5th and 95th percentile, 
respectively. Circles represent outliers, whereas represent extreme values 
(some extreme values were excluded from the figure in order to enlarge the scale; 
this did not change the relationship).

5.2.3 Inter-element Correlation of Saliva

A series of calculations were undertaken to evaluate the possible existence of 

significant (P < 0.01 or 0.05) inter-element correlations in saliva and tear drop 

samples from healthy and diabetic individuals resident in Karbala (Iraq). There 

were 32 and 27 statistically significant correlations of the total 45 tested in tear
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drops for healthy individuals (refer to Table 4.17) and diabetic patients (refer to 

Table 4.18), respectively, whilst 37 and 11 statistically significant correlations of 

the total 45 tested in saliva samples for healthy individuals (Table 5.2) and 

diabetic patients (Table 5.3), respectively. Strong correlations, as indicated by the 

magnitude of r, are found between Zn-Sr (r = 0.67; P  < 0.01) for tear drops (refer

to Figure 4.17) and Zn-B (r = 0.90; P  < 0.01) for saliva (Figure 5.2) of healthy

individuals. For diabetic patients, strong correlations were found between Cr-Mn 

(r = 0.84; P  < 0.01) for tear drops (refer to Figure 4.18) and Fe-Cr {r = 0.70; P  < 

0.01) for saliva, as shown in Figure 5.2. The elements with the most frequently 

statistically significant correlations were V, Fe, Zn and Cd (8 correlations) in tear 

drops of healthy individuals and Cr and Mn (8 correlations) in diabetic patients. In 

the case of saliva samples, Mn and Zn (9 correlations) and B, V, Fe and Sr (8 

correlations) have the most frequently statistically significant correlation for 

healthy individuals, whilst Fe (4 correlations) was observed for diabetic patients. 

Such correlations were found in the biological samples from healthy individuals 

in Karbala, Iraq; namely, for saliva and tear drops, between:

B-Fe;

V with Cr, Mn, Fe, Cu, Zn, As and Sr;

Cr with Mn, Fe, Cu, Zn and Sr;

Mn with Fe, Cu, Zn, Sr and Cd;

Fe with Cu, Zn and Sr;

Cu with both Zn and Sr;

Zn with As, Sr and Cd; and 

As-Cd.

Significant correlations were also found in both diabetic groups for tear drops and 

saliva between:

• B-Sr;

• V with Mn and Fe; and

• Cr with Fe and Cu.

Similar results were reported for Mn, Cu and Zn in saliva by another study (Wang 

et aL, 2008).
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Table 5.2: Statistically significant correlations (r) between elements for saliva of 
healthy individuals (n = 43^.

TE B V Cr Mn Fe Cu Zn As Sr Cd
B 1.0
V 0.699 1.0
Cr 0.583 0.796 1.0
Mn 0.376 0.487 0.410* 1.0
Fe 0.755 0.727 0.586 0.493 1.0
Cu 0.430 0.527 0.387* 0.637 0.598 1.0
Zn 0.900 0.723 0.648 0.600 0.786 0.531 1.0
As 0.508 0.325' NS 0.388* 0.489 NS 0.602 1.0
Sr 0.89 0.694 0.561 0.461 0.657 0.425 0.817 0.387* 1.0
Cd NS NS NS 0.420* NS NS 0.452* 0.595* NS 1.0
* B (n  = 39), Cr (n = 34), Cd (n = 25), NS = no significant correlation at P  < 0.05, 

correlation is significant at P < 0.05 level, otherwise correlation is significant at 
P  < 0.01, TE is trace element.

Table 5.3: Statistically significant correlations (r) between elements for saliva of 
diabetic patients (n = 29^).
TE B V Cr Mn Fe Cu Zn As Sr Cd
B 1.0
V NS 1.0
Cr NS 0.677 1.0
Mn 0.557 0.543 NS 1.0
Fe NS 0.527 0.701 NS 1.0
Cu NS NS 0.497* 0.460* 0.373* 1.0
Zn NS NS NS NS NS NS 1.0
As NS NS NS NS 0.437* NS 0.3980 1.0
Sr 0.495 NS NS NS NS NS NS NS 1.0
Cd NS NS NS NS NS NS NS NS NS 1.0

^B (n  = 27), Cr (n = 23), Cd (n = 9), NS = no significant correlation at P  < 0 
correlation is significant at P < 0.05 level, otherwise correlation is significan 
<0.01, TE is trace element.

.05,* 
t at P
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Figure 5.2: Correlation between (a) Zn and B for healthy individuals (n = 39) and 
(b) Cr and Fe for diabetic patients (n = 23) in saliva samples.

5.2.4 Comparison of Saliva and Tear drops

In this study 42 samples of tear drops and saliva were collected from the same 

healthy individuals. This sub-population was investigated to check whether any 

significant differences exist between the levels of trace elements in these media. 

An F-test and a two-tailed t-test were used to compare the two mean values for 

each element, as shown in Appendix F. In general, there are significant 

differences for all trace elements between tear drops and saliva. It was found that 

the levels of B (t̂ ee) = 4.24, /crit = 199, P < 0.001), (where the number in brackets 

is the number of degrees of freedom and the critical value (C n t)  is determined at P 

= 0.05), V (f(42) = 6.09, /crit = 2.02, P < 0.001), Cr (f(4 i) = 5.51, ̂crit = 2.02, P <

0.001), Mn (f(4 i) = 5.02, tent = 2.02, P < 0.001), Fe (/(41) = 5.79, fcht = 2.02, P <

0.001), Cu (̂ (42) “  11.01, Crit ~ 2.02, P < 0.001), Zn (̂ (4 i) — 5.02, /cnt ~ 2.02, P <

0.001), As (̂ (52) = 2.43, ĉrit = 2.01, P < 0.05), Sr (̂ (73) = 6.26, /crit = 199, P <

0.001) and Cd (f(42) = 4.24, tent = 2.02, P < 0.001) were found significantly higher 

in tear drops when compared to saliva, as shown in Appendix F (Table F1.3).

In the light of these results, it can be seen that the trace element levels in saliva are 

far lower than those reported in tear drops. This result confirmed that the use of 

tear drops as a biomarker may be more meaningful than saliva, as several trace 

elements are elevated in tear drops. This is due to several limitations associated 

with the use of saliva as a biomarker, such as the potential blood contamination 

during sampling collection, very low concentration of analyte, and the
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concentration of fluoride in toothpaste and amalgam fillings which may affect the 

elemental levels in saliva fluids (Wang et aL, 2008; Monaci et aL, 2002). In 

addition, the presence of metallic orthodontic appliances has the potential 

capability to increase the amount of elements in the saliva (Olmedo et aL, 2010). 

Figure 5.3 shows the mean and 95% confident interval of the mean for each 

element level in the tear drops and saliva for similar healthy individuals resident 

in Karbala.
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Figure 5.3: Elemental levels in tear drops and saliva for individuals from the 
healthy population of Karbala who provided both media. Circles represent mean 
value, whereas I  represents 95% confidence interval.

5.3 Washed Scalp Hair

In the last two decades, human scalp hair has been used widely as a biomarker in 

the assessment of exposure to various pollutants in an occupational and/or 

environmental setting (Olmedo et aL, 2010; Esteban & Castano, 2009; Li et aL, 
2008; Ohno et aL, 2007; Ashraf et al, 1995) (as discussed in Chapter 1, Section 

1.1.3). The main advantages of using scalp hair as a biomarker for trace element 

levels in the human body are: (i) it is a stable matrix; (ii) it does not show storage 

changes from the period between sampling and analysis; and (iii) it has long term 

potential for monitoring of past exposure (i.e. reflects the past exposure). On the 

other hand, the potential for external contamination and the failure to remove it 

completely by using different washing procedures can be considered the main

199



Chapter Five: Trace Element Levels in Saliva, Washed Scalp LLair & Fingernails

concerns associated with using scalp hair as a medium for assessing trace element 

status (Gil et aL, 2011).

5.3.1 Elemental Composition of Washed Scalp Hair

In total, 265 human scalp hair samples (refer to Appendix F) were collected from 

Iraqi individuals resident in Karbala (Iraq) (healthy individuals, n = 171 and 

diabetic patients, n = 44) and London (UK) (healthy individuals, n = 50) in order 

to determine the elemental composition of scalp hair. This can be used to 

investigate whether human scalp hair can play a significant role as a biomarker in 

the assessment of human health and environmental chemical exposure. Trace 

element levels (mg/kg dry weight, d.w.) in washed scalp hair samples for healthy 

individuals (HK) and diabetic patients (DK) resident in Karbala and healthy 

individuals (HL) from London are summarised in Tables 5.4. The data is reported 

as the mean, standard deviation, range, 95% confidence interval for mean and the 

number of samples. The highest elemental values in washed scalp hair were found 

for Zn (HK: 138 ± 87; DK: 86 ± 51; HL: 41 ± 4 mg/kg d.w. Zn), whilst the lowest 

was for As, as shown in Table 5.4. It was found that some of the trace elements in 

washed scalp hair samples were below the limit of detection, namely for B, Cr, 

Mn, As and Cd. A possible explanation is that the level of Zn, Fe, Cu and Sr are 

found at much higher levels in scalp hair when compared with the other elements 

under investigation. Therefore, the concentration of these elements cannot be 

detected by ICP-MS unless they were diluted. This dilution reduced the levels of 

other elements to below the limit of detection. As a result of the dilution factor 

used the mean values for Cr and As in the three populations; Mn for healthy 

London; and Cd for diabetic and healthy London were not determined. The results 

in this study are in general agreement with the literature ranges reported in Table

5.4 (Rodushkin & Axelsson, 2000). The only exception is for B, as the maximum 

value was higher when compared to the literature range. Similar findings have 

been previously reported by other researchers (Sukumar and Subramanian, 2007; 

Forte et aL, 2005).
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Table 5.4: Population data for trace element levels (mg/kg) in washed scalp hair 
from individuals resident in Karbala (Iraq) and London (UK), along with literature 
range.

TE Variable

Concentration (mg/kg, dry weight)
Kar )ala London Literature

range*
(n = 114)Healthy Diabetes Healthy

B Mean ± SD nd 30 ±30 10±6 0.88-
8.0Range <3.5-242 6 -165 4 -3 2

95% Cl nd (21,40) (8, 12)
n 16^ 44 50

V

Mean ± SD 0.165 ±0.129 0.005 ± 0.003 0.002 ±0.001 0.005 -  
160Range 0.010-0.740 0.001-0.012 0.001-0.006

95% Cl (0.146, 0.185) (0.004, 0.006) 0.002 -  0.003
n 171 44 50

Cr

Mean ± SD nd nd nd 0.03-33
Range <0.005-1.27 <0.005-0.06 <0.005-0.01
95% Cl nd nd nd

n 148+ 21+ 4+

Mn

Mean ± SD 0.83 ± 0.66 0.02 ±0.01 nd 0.03-50
Range 0.13-3.85 0.01-0.07 <0.005-0.08
95% Cl (0.73, 0.93) (0.02, 0.03) nd

n 171 44 8+

Fe

Mean ± SD 13.58 ± 14.50 0.30 ± 0.22 0.07 ±0.05 3 -9 0 0
Range 1.80-92.60 0.05-0.82 0.04-0.34
95% Cl (10.69, 16.47) (0.23-0.37) (0.06, 0.09)

n 171 44 50

Cu

Mean 6.15 ±3.26 0.57 ± 0.26 1.14±1.29 0.3-293
Range 1.80-27.90 0.17-1.31 0.36-6.41
95% Cl (5.50, 6.80) (0.49, 0.65) (0.65, 1.63)

n 171 44 50

Zn

Mean ± SD 138 ±87 86 ±51 41 ± 4 40-327
Range 36 - 602 12-148 2 9 -5 0
95% Cl (125,151) (71,102) (40, 43)

n 171 44 50

As

Mean ± SD nd nd nd 0.015 - 
26Range <0.005-0.19 <0.005-0.06 < 0.005

95% Cl nd nd nd
n 119+ 6+ 0.0+

Sr

Mean ± SD 6.45 ± 8.32 1.14± 1.09 0.38 ± 0.28 0.2-860
Range 0.64-49.05 0.10-4.15 0.11-0.96

95% Cl (5.19, 7.70) (0.80,1.47) 0.30-0.46
n 171 44 50

Cd

Mean ± SD 0.22 ± 0.34 nd nd 0.02-16
Range 0.02-3.12 <0.005-2.06 <0.005-0.70
95% Cl (0.15, 0.29) nd nd

n 171 11+ 7+
SD is standard deviation. Cl is con; 
samples were below the reported det« 
determined, TE is trace element, * (R

îdence interval for mean, + element has several 
îction limit, n is the number of samples, nd is not 
odushkin & Axelsson, 2000).
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The results of washed scalp hair were also compared with those reported in this 

study for tear drops and saliva. In general, the elemental levels for all of the trace 

elements in washed scalp hair are found to be far higher than those reported in tear 

drops and saliva; scalp hair is a long-term growth material, therefore most trace 

elements accumulate in the hair (Bermejo-Barrera et aL, 2002). As a result, scalp 

hair can provide some useful data, and reflect the body status over a long period 

of time (Sukumar and Subramanian, 2007).

5.3.2 Results and Discussion

The results for the three population groups, namely healthy Karbala (HK), 

diabetic Karbala (DK) and healthy London (HL) were compared using an F-test 

and a two-tailed t-test in order to investigate whether there are any significant 

differences between the different populations, as presented in Table 5.4. In 

general, the levels of V (/(no) = 16.55, /crit = L97, P < 0.001), Fe (/(no) = 12.18, /crit 

= 1.97, P < 0.001), Cu (/(201) = 16.21, tcxw = 1.97, P < 0.001), Zn (/(173) = 14.45, /crit 

= 1.97, P < 0.001) and Sr (/(171) = 9.52, tent = L97, P < 0.001) of healthy 

individuals resident in Karbala were significantly higher than those from London, 

as shown in Appendix F (Table F2.5). Similar results were reported for tear drops 

and saliva samples, as reported in Tables 4.4 & 5.1.

There were statistically significant differences in the levels of V (/(no) = 16.21, /cht 

= 1.97, f  < 0.001), Mn (/(ni)= 15.87,/crit= 1.97, P  < 0.001), Fe(/(i70)=  11.96,/crit 

— 1.97, P < 0.001), Cu (/(178) ~ 22.13, /crit “  1.97, P < 0.001), Zn (/(213) ~ 3.77, /cnt ”

1.97, P < 0.001) and Sr (/(!%) = 8.08, /cnt = 1.97, P < 0.001) between the healthy 

individuals and diabetic patients resident in Karbala, as shown in Appendix F 

(Table F2.4). Similar results were reported for V and Cu in tear drops (refer to 

Table 4.5). The results show that the level for most trace elements is higher in 

scalp hair samples of healthy individuals when compared to diabetic patients. The 

bioaccumulation of trace elements in human hair is a complicated process 

influenced by several factors during hair growth, namely metabolic changes, age, 

gender and living environment quality (Samanta et aL, 2004; Wolf-sperger et aL, 

1994).
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5.3.3 Inter-element Correlation of Washed Scalp Hair

Correlation analysis was performed on washed scalp hair data of healthy 

individuals and diabetic patients in order to describe the strength and direction of 

possible linear relationships between the trace element levels. A Pearson product 

correlation coefficient (r) was used for this purpose and the results are 

summarised in Tables 5.5 & 5.6. There was found to be 22 statistically significant 

correlations between trace elements for the washed scalp hair of healthy 

individuals, whilst 10 significant correlations were found in diabetic patients. The 

most highly significant correlations, as indicated by the magnitude of r, were 

found to exist between Mn-Cr (r = 0.584; P  < 0.01) for healthy individuals and 

Mn-Sr (r = 0.677; P < 0.01) for diabetic patients, as shown in Figure 5.4.

Similar correlations were found in the biological samples from healthy individuals 

in Karbala, Iraq, namely for washed scalp hair and tear drops, between:

V with Cr, Mn, Fe, Cu, Zn, As, Sr and Cd;

Cr with Mn, Fe and Cu;

Mn with Fe, Cu, Zn and Sr;

Fe-Cu;

Zn-Sr; and 

Sr-Cd.

Significant correlations were also found in both diabetic groups for tear drops and 

washed scalp hair between:

• B-Cu;

• V-Mn;

• Cr-Cu;

• Mn with Cu and Sr; and

• Zn-Sr.

In comparison with the literature values, similar correlations were found in scalp 

hair between Fe-Mn and Fe-Cu (Hill, 2009); Mn-Sr, V-Cu, V-Mn, Cr-Fe, Cr-Mn, 

Mn-Cu, Zn-Sr and Sr-Cd (Chojnacka et aL, 2005); Mn-Sr (Shah et aL, 2006); Cu 

with B and As, Fe-Mn and Cr-As (Chojnacka et aL, 2010).
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Table 5.5: Statistically significant correlations (r) between elements for washed 
scalp hair of healthy individuals (n = 171'*').
TE B V Cr Mn Fe Cu Zn As Sr Cd
B 1.00
V NS 1.00
Cr NS 0.437" 1.00
Mn NS 0.562 0.584 1.00
Fe NS 0.343 0^26 0.498 1.00
Cu NS 0.281 0.387 0.209 0.212 1.00
Zn NS 0.508 NS 0.284 NS NS 1.00
As NS 0.289 0.318 0.474 0.566 0.242 NS 1.00
Sr NS 0.453 NS 0379 NS NS 0.481 NS 1.00
Cd NS 0.200" NS NS NS NS NS NS 0.329 1.00
 ̂B (n = 16), Cr (n = 148) and As (n = 119), 

0.05, ^correlation is significant at P < Q 
significant at P < 0.01 level, TE is trace elem

'^S = no significant correlation at f  < 
1.05 level, otherwise correlation is 
ent.

Table 5.6: Statistically significant correlations (r) between elements for washed 
scalp hair of diabetic patients (n = 44^.
Element B V Cr Mn Fe Cu Zn As Sr Cd

B 1.00
V NS 1.00
Cr NS NS 1.00
Mn NS 0.507 NS 1.00
Fe NS NS NS NS 1.00
Cu 0.309J 0.454 0.496" 0.306" NS 1.00
Zn NS 0.609 NS NS 0.427" NS 1.00
As NS NS NS NS NS NS NS 1.00
Sr NS 0.657 NS 0.677 NS NS &62 NS 1.00
Cd NS NS NS NS NS NS NS NS NS 1.0

'*' Cr (n = 21), As (n = 6) and Cd (n = 11), NS = no significant correlation at P < 
0.05, ^correlation is significant at P < 0.05 level, otherwise correlation is 
significant at f  < 0.01 level.
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Figure 5.4: Correlation between (a) Mn and Cr for healthy individuals (n = 148), 
(b) Mn and Sr for diabetic patients (n = 44) in the washed scalp hair samples.
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5.3.4 Comparison of Trace Element Levels of Tear Drops and washed Scalp 

Hair.

In total 50 tear drop and scalp hair samples were collected from the same healthy 

individuals in order to test whether there are any significant differences between 

the trace element levels in both media. An F-test and a two-tailed t-test were used 

to compare the two mean values for each element in the two media. It was found 

that there are significant differences for all trace elements between tear drops and 

washed scalp hair. The levels o f V (/(4 9 ) = 9.28, tm\ = 2.01, f  < 0.001), Cr (/(4 g) = 

7.68, ĉrit = 2.01, P  < 0.001), M n (/(5 0 ) = 11.75, /crit = 2.01, P  < 0.001), Fe (/(5 0 ) = 

9.31, rent = 2.01, P  < 0.001), Cu (/(4 9 ) = 17.44, rcrit = 2.01, P  < 0.001), Zn (̂ (4 9 ) = 

10.05, tcrii = 2.01, P  < 0.001), As (̂ (3 2 ) = 4.50, /crit = 2.04, P  < 0.001), Sr (̂ (4 9 ) = 

6.37, rcrit = 2.01, P  < 0.001) and Cd (̂ (4 9 ) = 4.37, rent ^  2.01, P  < 0.001) were found 

to be significantly higher in washed scalp hair than tear drops, as shown in 

Appendix F (Table F2.6). The levels o f B for most hair samples were below the 

limit o f detection; therefore, the comparison was not established for B between 

tear drops and scalp hair.

In the light o f these results, it can be seen that the trace element levels in tear 

drops are far lower than those reported in washed scalp hair. Figure 5.5 shows the 

mean and 95% confidence interval for mean (lower-upper limits) for each element 

level in the tear drops and washed scalp hair for similar healthy individuals 

resident in Karbala.

I  Mu

Z  20,000-
X

Figure 5.5: Elemental level in tear drops and washed scalp hair for individuals 
from the healthy population o f Karbala who provided both media. Circles 
represent mean value, w hereasj represents 95% confidence interval.
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5.4 Washed Fingernails

Recently, human fingernail tissue has been recognised as an invaluable tissue for 

the assessment of exposure to various pollutants in an occupational and/or 

environmental setting. It provides a useful indication of exposure to many toxic 

and essential trace elements over a long period of time, as this material remains 

isolated from any metabolic activity in the human body. Thus, they are considered 

to be a finger-print of the body’s trace element levels over a period of time, which 

is not possible with materials such as blood (Olmedo et al., 2010; Batista et al, 

2008; Samanta et a l, 2004; Nowak & Chmielnicka, 2000). Previous studies have 

reported that the levels of trace elements in fingernail tissue were found to be 

higher than those of body fluids and other accessible tissues (Sukumar & 

Subramanian, 2007; Rodushkin & Axelsson, 2000).

Fingernail material has many useful advantages for trace element research than 

other biological media, namely: is a stable matrix; does not show storage changes 

from the period between sampling and analysis; and the potential for external 

contamination is lower when compared with scalp hair (Gil et al, 2011).

5.4.1 Elemental Composition of Washed Fingernail

In this study, 259 fingernail samples (refer to Appendix F) were provided by Iraqi 

individuals (healthy (n = 127) and diabetic (n = 87)) resident in Karbala (Iraq) and 

healthy (n = 45) from London (UK). A major problem involves the limited sample 

mass provided by conventional collection methods, particularly children’s 

samples. Table 5.7 compares the trace element levels (mean, standard deviation, 

range and 95% confidence interval) in the fingernail samples of healthy 

individuals (FHK) and diabetic patients (FDK) from Karbala, and healthy 

individuals (FHL) from London. The highest mean values in washed fingernails 

are reported for Zn (FHK: 89 ± 54; FDK: 73 ± 42; FHL: 78 ± 25 mg/kg d.w. Zn). 

Similar results were reported for tear drops, washed scalp hair and fingernails in 

this study. The levels of B and Cd in the three populations, Fe in the two healthy 

populations, and Cr, Mn and As in healthy individuals from London were found 

to have several samples under the limit of detection for these elements (Table 

5.7), as described in scalp hair results (see Section 5.3.1).
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Table 5.7: Population data for trace element levels in washed fingernails from
individuals resident in Karbala (Iraq) and London (UK), along with literature
range.

Concentration (mg/kg)
TE Variable Karbala London Literature

Healthy Diabetes Healthy range
Mean ± SD nd nd nd

B
Range < 3 .5 -4 4 < 3 .5 -1 6 < 3 j 0 .12-
95% Cl nd nd nd 333

n 10̂ 6+ 0.0+
Mean ± SD 0.164 ±0.175 0.141 ±0.086 0.026 ± 0.033

V Range 0.010-0.900 0.010-0.400 0.001-0.169 0.018-
95% Cl (0.133,0.195) (0.122, 0.159) 0.016-0.036 0.476

n 127 87 45
Mean ± SD 0.40 ± 0.48 0.53 ± 0.59 nd

Cr Range 0.01-3.45 0.02-4.12 <0.005-0.85 0.224-
95% Cl (0.32, 0.49) (0.40, 0.66) nd 3.20

n 127 87 17+
Mean ± SD 2.27 ±3.50 1.29 ± 1.18 nd

Mn Range 0.05 -19.08 0.05-7.11 <0.005-1.24 0.19-
95% Cl (1.65, 2.88) (1.04, 1.55) nd 3.30

n 127 87 21+
Mean ± SD nd 73.1 ±55.7 nd

Fe Range < 0.025 -  
326.94 2.8-263.71 <0.025-37.18 12-189

95% Cl nd (61.7, 85.5) nd
n 103+ 87 2+

Mean 5.13 ±6.25 0.69 ±0.69 3.84 ± 1.23

Cu Range 0.44-61.31 0.01-4.29 2.36-7.63 4.2 -1795% Cl (4.04, 6.23) (0.54, 0.84) (3.47,4.21)
n 127 87 45

Mean ± SD 89 ±54 73 ±42 78 ±25

Zn Range 8 -4 2 7 1-277 38-155 80-19195% Cl (80, 98) (64, 82) (70, 85)
n 127 87 45

Mean ± SD 0.10±0.13 0.14 ±0.19 nd

As Range 0.01-1.16 0.02-1.69 <0.005-1.26 0.065 -
95% Cl (0.08, 0.12) (0.10, 0.18) nd 1.09

n 127 87 35+
Mean ± SD 4.38 ±3.93 5.33 ± 4.79 0.82 ±0.61

Sr Range 0.29-23.46 0.16-17.43 0.10-9.56 0.17-
95% Cl (3.69, 5.07) (4.30, 6.35) 0.34-1.29 1.39

n 127 87 45
Mean ± SD nd nd nd

Cd Range <0.005-1.71 <0.005-1.42 <0.005-0.33 0.013-
95% Cl nd nd nd 0.438

n 94+ 62+ 28+
SD is standard deviation. Cl is confidence interval for mean, element has several
samples were below the reported detection limit, n is the number of samples, nd is not
determined, TE is trace element, (Rodushkin & Axelsson, 2000).
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The mean values for most trace elements are within the literature ranges reported 

by other researchers, the only exception was for Sr (Rodushkin & Axelsson, 

2000), as shown in Table 5.7. The high level of Sr for fingernail samples was also 

reported for tear drops and saliva from healthy individuals when compared with 

the literature values, as discussed in Section 5.2.1. In addition, the maximum 

values for B, Fe and Cd were found to be higher than the maximum values of the 

literature ranges (Table 5.7).

As described in the scalp hair discussion, the results of the trace element levels in 

washed fingernails are found to be far higher than those reported in tear drops and 

saliva (Bermejo-Barrera et al., 2002). Thus, fingernail tissue can provide good 

data, and reflect the body status over a period of time (Sukumar & Subramanian, 

2007).

5.4.2 Results and Discussion

Washed fingernails of healthy Karbala (FHK), diabetic Karbala (FDK) and 

healthy London (FHL) residents were compared to investigate whether there were 

any significant differences between the trace element levels of the three 

populations. In general, the levels for most trace elements in several fingernail 

samples collected from London were found to be below the limit of detection for 

these elements (except V, Cu, Zn and Sr) (Table 5.7). Thus, the comparison using 

an F-test and a two-tailed t-test was not established for these elements between the 

two healthy populations from Karbala and London. The levels of V ( (̂i48) = 8.43, 

/crit = 2.01, P < 0.001) Cu (f(i50) = 2.23, tcnx = 1.97, P < 0.05), and Sr (̂ (le?) = 8.44, 

tcni = 1.97, P < 0.05) of healthy individuals resident in Karbala were significantly 

higher than those from London {P < 0.05), as shown in Appendix F (Table F3.8). 

Similar results were reported for tear drops saliva and washed scalp hair samples, 

as reported in Tables 4.2, 5.1 & 5.4, respectively. In the light of this result, it 

would appear that factors like environmental exposure, food program and 

drinking water can affect the distribution of trace elements in various biological 

samples, namely: fingernails.

In comparison to diabetic patients, there are statistically significant differences in 

the levels of Mn (/(les) = 2.90 /crit = 1.97, P < 0.01), Cu (/(no) = 7.94, /crit = 198, P 

< 0.001) and Zn (/(212) = 2.29, /crit = 1.97, P < 0.05). Similar results have also been
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reported in this study for tear drops in terms of Cu and washed scalp hair for Mn, 

Cu and Zn. No statistically significant differences are observed between the 

washed fingernails of healthy individuals and diabetic patients for other elements 

{P < 0.05), namely V = 0.1.22, P = 0.22), Cr (/(212) = 1.78, P = 0.33), As 

(/(212) = 1.81, P -  0.07) and Sr (/(i60) = 1.53, P = 0.129), as shown in Appendix F 

(Table F3.7). The results are in agreement with the literature values reported by 

other authors (Kazi et aL, 2008; Sukumar & Subramanian, 2007; Fort, 2005).

5.4.3 Inter-element correlation of Washed Fingernails

The Pearson product correlation coefficient (r) was used to evaluate the strength 

and direction of a linear relationship between the trace element levels for 

fingernail samples of healthy individuals and diabetic patients resident in Karbala, 

and the results are summarised in Tables 5.8 & 5.9. The number of significant 

correlations for trace elements in the washed fingernails of healthy individuals (24 

correlations) was larger than those reported for diabetic patients (16 correlations). 

Strong correlations are found between Fe-V (r = 0.912; P < 0.001) and V-Sr (r = 

0.789; P < 0.001) for healthy individuals and Fe-V (r = 0.764; P < 0.001) and Sr- 

Zn {r = 0.683; P < 0.001) for diabetic patients, as shown in Figure 5.6. Similar 

correlations were found in the biological samples from healthy individuals in 

Karbala, Iraq, namely for washed fingernails and tear drops, between:

V with Cr, Mn, Fe, Cu, Zn, As and Sr;

Cr with Fe, Cu, Zn and Sr;

Mn with Fe and Sr;

Fe with Cu, Zn and Sr;

Cu with Zn and Sr; and 

Zn with As and Sr.

For diabetic patients, significant correlations were also observed in both diabetic 

groups for tear drops and washed fingernails between:

• V with Mn and Fe;

• Cr with Mn, Fe, Cu, Zn and Sr;

• Mn with Fe and Sr;
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• Fe-Sr;

• Cu with Zn and Sr;

• Zn-Sr; and

• As-Sr,

Table 5.8: Statistically significant correlations (r) between elements for washed 
fingernails of healthy individuals (n = 127+).
TE B V Cr Mn Fe Cu Zn As Sr Cd
B 1.00
V NS 1.00
Cr NS 0.749 1.00
Mn NS 0.248 NS 1.00
Fe NS 0.912 0.735 0.346 1.00
Cu NS 0.276 0.304 NS 0.346 1.00
Zn NS 0.342 0.468 NS 0.369 0.331 1.00
As NS 0.301 0.262 0.348 0.227 NS 0.249 1.00
Sr NS 0.789 0.678 0.218' 0.675 0.231' 0.353 0.319 1.00
Cd NS NS NS NS NS NS NS NS NS 1.00
+ B (n = 1C 
0.05, *corr 
significant i

)), Fe (n = 103), Cd (n = 94), NS = no significant correlation at P  < 
elation is significant at P  < 0.05 level, otherwise correlation is 
It P  < 0.01 level, TE is trace element.

Table 5.9: Statistically significant correlations if) between elements for washed 
fingernails of diabetic patients (n = 87^).
TE B V Cr Mn Fe Cu Zn As Sr Cd
B 1.00
V NS 1.00
Cr NS 0.405 1.00
Mn NS 0.404 0.631 1.00
Fe NS 0.764 0.518 0.628 1.00
Cu NS 0.221' 0.216' NS NS 1.00
Zn NS NS 0.310 NS NS 0.290 1.00
As NS NS NS NS NS NS NS 1.00
Sr NS NS 0.510 0.413 0.259' 0.259' 0.683 0.214' 1.00
Cd NS NS NS NS NS NS NS NS NS 1.00
+ B (n = 6), Cd (n = 62), NS = no significant correlation at P  < 0.05, ^correlation is 
significant at P  < 0.05 level, otherwise correlation is significant at P  < 0.01 level, 
TE is trace element.
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Figure 5.6: Correlation between V and Fe for (a) healthy individuals (n = 103), 
and (b) for diabetic patients (n = 87) in the washed fingernail samples.

5.3.4 Comparison of Trace Element Levels of Tear Drops and washed 

Fingernails.

In total 51 samples of both tear drops and fingernails were provided by Iraqi 

individuals in order to test whether there were any significant differences between 

the trace element levels in both media from an individual. An F-test and a two- 

tailed t-test were used to compare the two mean values for each element, as shown 

in Appendix F (Table F3.9).

The results show that there are significant differences for all trace element levels 

between tear drops and fingernails. The most significant levels were for V (/(50) =

5.97, /crit = 2.01, P < 0.001), Cr (/(50) = 4.86, /crit = 2.01, P < 0.001), Mn (̂ (so) =

4.30, /crit ^  2.01, P < 0.001), Fe (/(39) = 5.33, ĉrit = 2.01, P < 0.001), Cu (/(50) =

8.91, ĉrit = 2.00, P < 0.001), Zn (/(50) = 14.11, /crit = 2.01, P < 0.001), As (̂ (53) =

8.94, fcrit = 2.01, P < 0.05), Sr (f(5i) = 7.57, tent = 2.01, P < 0.001) and Cd (/(40) =

3.13, /crit ^  2.02, P < 0.01) in the washed fingernails rather than tear drops. The 

levels of B for most of the washed fingernails samples were below the limit of 

detection; therefore, there is no comparison for the B level between tear drops and 

fingernails. Figure 5.7 shows the mean and 95% confident interval for mean 

(lower-upper limits) for each element level in the tear drops and washed 

fingernails for similar healthy individuals resident in Karbala.
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Figure 5.7: Elemental levels in tear drops and washed fingernails for individuals 
from the healthy population o f Karbala who provided both media. Circles 
represent mean value, whereasTrepresents 95% confidence interval.

5.5 Comparison Study Between the Four Biological Media

In this study, human fluids (tear drops and saliva) and tissues (scalp hair and 

fingernails) were obtained in a few cases from the same healthy individuals from 

Karbala for comparison studies, as shown in Appendix F (Table F4.1). In total 30 

samples o f each biological sample was collected in order to determine whether 

there were any significant differences between the trace element levels o f these 

media and the correlation for trace element levels between these media at P  < 

0.05. The highest mean values for most trace elements were found in human 

tissues (washed scalp hair and fingernails) when compared to human fluids (saliva 

and tear drops). A possible explanation is that scalp hair and fingernails are long

term growth materials; therefore, several trace elements accumulate in hair and 

nails (Sukumar & Subranian, 2007). The highest elemental level reported in this 

study was for Zn in the washed scalp hair o f healthy individuals (mean ± SD: 157 

± 1 1 4  mg/kg d.w. Zn). In general, the lowest levels for most trace elements were 

measured in saliva samples and then in tear drops. Figure 5.8 shows the trace 

element levels in different biological samples used in this study. Human scalp hair 

was found to have higher mean values for V, Cu, Zn, Sr and Cd, whilst higher 

levels o f Cr, Mn, Fe and As were observed for fingernail samples. The trace 

element levels in tear drops, saliva, washed scalp hair and fingernails are reported 

in Table 5.10.
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Figure 5.8: Elemental levels in different media for healthy individuals (n = 30) 
from Karbala who provided all four tissues and fluids.

One-way ANOVA was used to check whether there were any significant 

differences exist between groups o f trace element levels at the probability level o f 

P < 0.05. The results show that there are significant differences for all trace 

elements, as shown in Table 5.11. Figure 5.9 shows the box-plots for trace 

element levels in the four biological samples and the data is presented as the 

distribution o f trace elements in tear drops, saliva, washed scalp hair and 

fingernails through the value o f median, first (25%) and third quartile (75%), and 

lower/upper whiskers.

The Pearson product correlation coefficient (r) was determined for each element, 

as described in Appendix C, and the value o f r was subjected to a significance test 

to evaluate if  there was any significant correlation. Significant positive 

correlations were found between tear drops and fingernails for Mn {r = 0.56, P < 
0.01) and Fe {r -  0.47, P < 0.01) and scalp hair for As {r = 0.39, P < 0.05), whilst 

negative significant correlations were found for B (r = - 0.43, P < 0.05) and Fe (r 

= - 0.36, P < 0.05) between tear drops and saliva. No statistically significant 

correlations for the remaining trace elements were found between tear drops and 

other media, namely saliva, washed scalp hair and fingernails.
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Table 5.10: Mean, standard deviation, range and 95% confidence interval for
mean of trace element levels in tear drops, saliva, washed scalp hair and
fingernails for healthy individuals from Kar )ala, Iraq.

TE Media Mean ± SD (pg/1 
or pg/kg)

95% Cl Range 
(pg/1 or pg/kg)n

Lower Upper
Tear drops 24 472 ±167 401 542 < 70 - 853

B* Saliva 28 268 ±238 175 360 <70 - 1254
Scalp hair 2 nd nd nd < 3500 - 6077

Fingernails 4 nd nd nd <3500- 13472
Tear drops 30 4.5 ± 4.7 2.8 6.3 0.8-21.1

V Saliva 30 0.4 ± 0.4 0.3 0.6 0.1 - 1.8
Scalp hair 30 179.9 ± 137.6 128.6 231.3 32.2-614.3

Fingernails 30 173.6 ± 174.1 108.6 238X) 22.3 - 888.4
Tear drops 30 14.68 ± 17.29 823 21.14 0.73 - 68.39

Cr Saliva 26 0.28 ± 0.22 0.19 0.36 < 70 - 0.82
Scalp hair 30 147.2 ±108.9 106.5 187.9 20.3-390.2

Fingernails 30 418.8 ±400.4 269.3 568.3 9.4-1810.1
Tear drops 30 37.1 ±50.3 18.3 55 j 52-270.1

Mn Saliva 30 3.2 ± 3.3 2.0 4.4 0.4 - 14.5
Scalp hair 30 843.7 ±654.5 599.3 1088.1 142.0-3350.0

Fingernails 30 2531.0 ±3741.1 1134.1 3927.9 192.0- 15842.4
Tear drops 30 580 ±613 352 809 13-2816

Fe Saliva 30 34 ±33 22 47 2 -1 1 0
Scalp hair 30 10678 ±7085 8032 13323 1875-31503

Fingernails 26 60921± 76912 32201 89641 < 25-325194
Tear drops 30 257± 143 204 311 2 6 -5 8 9

Cu Saliva 30 16± 15 10 21 3 - 6 9
Scalp hair 30 6179± 1856 5486 6872 2822-10741

Fingernails 30 4693 ± 3994 2157 3415 976-23027
Tear drops 30 791± 1009 414 1167 49-4109

Zn Saliva 30 78 ±89 45 111 7-402
Scalp hair 30 156682± 113805 114186 199177 44693-434110

Fingernails 30 87513 ±39310 72834 102191 30717- 172970
Tear drops 30 6.0 ± 10.2 2.2 9.8 0.1-44.8

As Saliva 30 3.5 ±4.4 1.8 5.2 0.2 - 23.2
Scalp hair 20 33.9 ±25.2 22.1 45.7 < 5 -8 6 .0

Fingernails 30 92.4 ± 49.9 73.7 111.1 2 1 .1 -2 7 7 2
Tear drops 30 397± 249 304 409 58-1159

Sr Saliva 30 126 ±245 34 217 5 -1 3 2 4
Scalp hair 30 10970 ± 14526 5546 16394 710-49050

Fingernails 30 4857 ±3390 3591 6122 7 5 7 - 14811
Tear drops 30 1.5 ±1.7 0.9 2.1 0 2 -6 .1

Cd Saliva 18 0.2 ± 0.2 0.1 0.3 <0.1 -1.0
Scalp hair 30 276.3 ± 400.0 126.9 425.6 16.1 -2 0 5 0 2

Fingernails 25 43.7 ±35.3 292 582 < 5 -1 5 4 .1
SD == standard deviation, n = number of samples, " the level of B for most scalp
hair and fingernail samples was below the limit of detection of B (< 3500 pg/kg), 
nd = not determined. Cl is confidence interval for mean, TE is trace element.
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Table 5.11: Analysis of variance ANOVA for trace element levels in the tear drops, 
saliva, washed scalp hair and fingernails for healthy individuals from Karbala, Iraq.

TE
Source of 
variance Sum of Squares d f Mean Square F Sig.

B
Between Groups nd nd nd nd nd
Within Groups nd nd nd

Total nd nd

V
Between Groups 912521 3 304173.7 24.7 <0.001
Within Groups 1428637 116 12315.8

Total 2341158 119

Cr
Between Groups 3299993 3 1099998 24.6 <0.001
Within Groups 5002503 112 44665

Total 8302496 115

Mn
Between Groups 126110533 3 42036844 11.6 < 0.001
Within Groups 418370700 116 3606644

Total 544481233 119

Fe
Between Groups 75660531935 3

2522017731
2 16.9 <0.001

Within Groups 173016229029 116 1491519216
Total 248676760964 119

Cu
Between Groups 876596675 3 292198892 60.2 <0.001
Within Groups 563262306 116 4855709

Total 1439858981 119

Zn
Between Groups 515830582903 3 1719435276

34
47.4 <0.001

Within Groups 420439848994 116 3624481457
Total 936270431897 119

As
Between Groups 153693 3 51231 61.7 < 0.001
Within Groups 88042 106 831

Total 241735 109

Sr
Between Groups 2318257514 3 772752505 13.9 <0.001
Within Groups 6455507821 116 55650929

Total 8773765335 119

Cd
Between Groups 1474216 3 491405 10.4 <0.001
Within Groups 4670312 99 47175

Total 6144528 102
d f =  degrees of freedom, for between-groups {d fg ) = number of groups -  
group {d fw ) =  d f r  -  d fg;  Total number of degrees of freedom { d f r )  = n 
observations -  1, mean square = (SS/<^, F  is the calculated value for F- 
MSfi/MSw,* Sig. is the significance level, TE is trace element.

; within- 
umber of 
■test, F  =
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Figure 5.9: Manganese, Fe, Cu and Sr levels in tear drops, saliva, washed scalp 
hair and fingernails for healthy individuals (n = 30), Middle band, box and 
whiskers represent the median, 25̂ *̂  and 75̂  ̂ percentile, and 5th and 95* 
percentile, respectively. Circles represent outliers, whereas represents extreme 
values (other box-plots are reported in Appendix F (Figure F4.1), (some extreme 
values were excluded from the figure in order to enlarge the scale; this did not 
change the relationship).

5.6 Summary

This chapter has presented the trace element levels in human saliva, washed scalp 

hair and fingernails for healthy individuals and diabetic patients from two 

research sites (Karbala and London) which not only differ in terms of 

environmental factors, but also individuals life style, water consumption, etc. The 

results are summarised in Table 5.12 showing the statistical evaluation of the 

study populations for the trace elements determined in tear drops, saliva, scalp 

hair and fingernails. Higher levels were found for most of the trace elements for 

Iraqi individuals resident in Karbala (Iraq) when compared to those residents in 

London (United Kingdom). A significant difference (F < 0.05) was found for B, 

V, Cr, Mn, Fe, Zn, As, Sr and Cd in tear drops; V, Mn, Fe, Zn, As and Sr in
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saliva; V, Fe, Cu, Zn and Sr in scalp hair and V, Cu and Sr in terms of fingernails. 

This is due to environmental exposure and diet (as found from questionnaire 

information collected during sampling). In Karbala, the risk of chemical input 

from environmental sources has to be seriously considered because of the Gulf 

wars during the last thirty years. In addition, the higher levels for most trace 

elements in drinking water from Karbala compared to London may be another 

possible source of these elements, as described in Chapter 3.

The effect of health state was investigated by determining the elemental levels in 

healthy individuals and diabetic patients. The results show that there are 

significant differences between healthy individuals and diabetic patients in terms 

of the level of B, V, Mn, Cu, As and Sr in tear drops; Mn and As in saliva; V, Mn, 

Fe, Cu, Zn and Sr in scalp hair; and Mn, Cu and Zn in fingernails, as shown in 

Table 5.12.

Table 5.12: Summary of the statistical comparison (P < 0.05) of study 
populations involving Iraqi individuals resident in Karbala (Iraq) and London 
(UK) for different biological media for all elements investigated.

Element Group Human sample
Tear drops Saliva Scalp hair Fingernails

B H K & H L H K >H L NC NC NC
H K & D K H K <D K NC NC NC

V H K & H L H K >H L H K >H L H K >H L H K >H L
H K & D K H K >D K NS H K >D K NS

Cr H K & H L H K >H L NC NC NC
H K & D K NS NC NC NS

Mn H K & H L H K >H L H K >H L NC NC
H K & D K H K <D K H K <D K H K >D K H K >D K

Fe H K & H L H K >H L H K >H L H K >H L NC
H K & D K NS NS H K >D K NC

Cu H K & H L NS NS H K >H L H K >H L
H K & D K H K >D K NS H K >D K H K >D K

Zn H K & H L H K >H L H K >H L H K >H L NS
H K & D K NS NS H K >D K H K >D K

As H K & H L H K >H L H K >H L NC NC
H K & D K H K >D K H K >D K NC NS

Sr H K & H L HK >H L H K >H L H K >H L H K >H L
H K & D K H K <D K NS H K >D K NS

Cd H K & H L HK <H L NC NC NC
H K & D K NS NC NC NC

HK, DK are healthy and diabetic samp es from Karbala, HL = healthy samples
from London, > and < represent the significant difference, using a two tailed t-
test, NS = no significance, NC = no comparison due to one or both groups having 
elemental levels below the limit of detection.
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The results in this study are in general agreement with values reported by other 

researchers (Yuan et al., 2008; Rodushkin & Axelsson, 2000; Ward & Ward, 

1993). The mean values for most trace elements are found to be within the 

literature ranges reported for saliva (Samanta et al., 2004). The only exceptions 

are for B and Sr as their levels in the majority of samples are above the literature 

values. The mean values for trace elements in washed scalp hair were comparable 

with those reported in the literature (Sukumar and Subramanian, 2007; Forte et 

al., 2005; Rodushkin & Axelsson, 2000; Miekeley et al., 1998). Similar findings 

have previously been reported by other researchers for most trace elements in 

fingernails (Kazi et al., 2007; Sukumar & Subramanian, 2007; Fort, 2005; 

Rodushkin & Axelsson, 2000).

In order to compare the results of tear drops with other biological samples, paired 

samples, namely tear drops/saliva, tear drops/scalp hair and tear drops/fmgemails 

were collected from the same healthy individuals. The highest elemental level 

reported in this study was for Zn in scalp hair (138 ± 87 mg/kg d.w.). The highest 

mean values for most elements were found in human tissues (hair and nail), whilst 

the lowest levels were in human fluid (tear drops and saliva) (Table 5.13). 

Furthermore, the trace element levels in saliva in this study are far lower than 

those reported for tear drops. Thus, it can be proposed that tear drops can be used 

as a useful matrix in occupational biomonitoring when compared with saliva 

(Table 5.13), as described in Section 5.2.4.

A Pearson product correlation coefficient (r) was used to describe the strength and 

direction of possible linear relationships between the trace element levels in 

saliva, washed scalp hair and fingernail samples collected from healthy and 

diabetic individuals, and the results were compared with tear drops. Positive 

significant inter-correlations were noted for healthy and diabetic individuals (at a 

probability P level of < 0.05 and < 0.01) for different media, as reported in Table 

5.14. Similar correlations were found between most trace elements for tear drops 

and other human samples. Such correlations were found in the literature by other 

researchers (Chojnacka et al., 2010; Kamal et al., 2009; Hill, 2009; Shah et al., 

2006; Stone, 2006; Chojnacka et al., 2005).
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Table 5.13: Summary of statistical comparison (P < 0.05) between tear drops 
and other biological samples in the same healthy individuals from Karbala for 
all trace elements investigated.
Element Comparison" n Significant difference (P < 0.05)

B
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingernails

35#8
42/2
44/4

Tear drops > Saliva
NC
NC

V
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/50
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Cr
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/34
50/45
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Mn
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/50
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Fe
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/40
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Cu
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/50
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Zn
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/50
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

As
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/26
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Sr
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/42
50/50
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

Cd
Tear drops/saliva 
Tear drops/scalp hair 
Tear drops/fingemails

42/24
50/41
51/51

Tear drops > Saliva 
Tear drops < Scalp hair 
Tear drops < Fingemails

n is the number of samples, NC = no comparison due to the levels of B for 
most scalp hair and fingernails samples were below the limit of detection (< 
3.5 mg/kg), * using an F-test and a two tailed t-test, further information can be 
found in Appendix F (Tables FI.5, F2.6 and F3.9).

Another statistical comparison was performed on the trace element levels in the 

four different types of biological media provided by a healthy individual, in order 

to evaluate the differences between different media. The results of one-way 

ANOVA show that there are significant differences in all trace elements between 

tear drops and other biological samples, as described in Table 5.11.
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The Pearson product correlation coefficient (r) was determined for the trace 

element levels between tear drops and other media. Two significant correlations 

were reported. Positive correlations were found between tear drops and fingemails 

for Mn (r = 0.56, P < 0.01) and Fe {r = 0.47, P < 0.01), and between tear drops 

and scalp hair for As (r = 0.39, P < 0.05), whilst negative significant correlations 

were found between tear drops and saliva for B (r = - 0.43, P < 0.05) and Fe (r = - 

0.36, P = 0.05).

Table 5.14; Summary of statistical correlations {P < 0.05) between trace element 
levels in different biological samples for healthy individuals and diabetic patients 
resident in Karbala, Iraq.
Correlation Group TD S SH FN
V-Cr, V-Mn, V-Fe, V-Cu, V-Zn, V-As, V-Sr, 
Cr-Fe, Cr-Cu, Mn-Fe, Mn-Sr, Fe-Cu, Zn-Sr. Healthy Sig. Sig. Sig Sig.

Cr-Mn, Mn-Cu, Mn-Zn. Healthy Sig. Sig. Sig NS
Cr-Zn, Cr-Sr, Fe-Zn, Cu-Zn, Zn-As, Cu-Sr, 
Fe-Sr, Cu-Sr. Healthy Sig. Sig. NS Sig.

Mn-As, Fe-As. Healthy NS Sig. Sig. Sig.
B-Fe, Mn-Cd, Zn-Cd, As-Cd. Healthy Sig. Sig. NS NS
V-Cd. Healthy Sig. NS Sig. NS
Cr-As. Healthy NS NS Sig. Sig.
Cr-Cd, Fe-Cd, Cu-Cd, Sr-Cd. Healthy Sig. NS NS NS
B-V, B-Cr, B-Mn, B-Cu, B-Zn, B-As, B-Sr. Healthy NS Sig. NS NS
Cu-As. Healthy NS NS Sig NS
As-Sr. Healthy NS NS NS Sig.
V-Mn, Cr-Cu. Diabetic Sig. Sig. Sig Sig.
Mn-Cu. Diabetic Sig. Sig. NS
V-Fe. Diabetic Sig. Sig. NS Sig.
Zn-Sr. Diabetic Sig. NS Sig. Sig.
B-Sr, Fe-Cu. Diabetic Sig. Sig. NS NS
B-Cu. Diabetic Sig. NS Sig. NS
Cr-Mn, Cr-Zn, Mn-Fe, Cu-Zn, Cu-Sr, As-Sr Diabetic Sig. NS NS Sig.
V-Cr. Diabetic NS Sig. Sig. Sig.
V-Cu. Diabetic NS NS Sig. Sig.
B-Cr, V-As, Cr-As, Cr-Cd, Mn-Zn, Mn-As, 
Mn-Cd, Cu-Cd, Zn-Cd. Diabetic Sig. NS NS NS

B-Mn, Fe-As, Zn-As. Diabetic NS Sig. NS NS
V-Zn, V-Sr, Fe-Zn. Diabetic NS NS Sig. NS
TD, S, SH and FN represent tear drops, saliva, scalp hair and fingemails, Sig. = 
significant correlation at F < 0.05, NS = no significant correlation at F  < 0.05, 
the data taken from Tables 4.17,4.18, 5.2,5.3,5.5,5.6, 5.8 & 5.9.
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6.0 Introduction

The use of human tissues (scalp hair and fingernails) and fluids (blood, saliva, and 

urine) as biomarkers for trace elements in the human body and environment have 

recently been investigated by several studies (Olmedo et al., 2010; Sthiannopkao 

et al, 2010; Esteban et al, 2009; Rodrigues et al., 2008). Human biomonitoring is 

used in several different situations to (Flores et al, 2011; Sardans et al., 2010; 

Wang et al, 2009; Shah et al, 2006; Wilhelm et al., 2002; Jin et al, 2000; 

Paulsen er a/., 1996; Schuhmacher o/., 1996).

• identify and eliminate the potential environmental exposure sources;

• detect time trends in chemical variations;

• show the effectiveness of bans or restrictions;

• discover relationships between chemical exposure and diseases;

• map the geographical distribution of contaminated regions; and to

• identify relationships between chemical body burden and dietary system or 

an occupational exposure.

In general, there is no ideal matrix that can be used to monitor human health in 

every situation. The ideal biomarkers must have several characteristics, namely: 

collection does not cause a health risk to the individual; include chemical levels 

detectable by the techniques available; provide sufficient amounts for the analysis; 

easily accessible for sampling; and reflect the body problem (Esteban et al, 

2009).

Clinical methods are mainly used to analyse trace element deficiencies or to 

evaluate occupational and/or environmental exposure to toxic elements based on 

the analysis of blood (whole, serum, and plasma) specimens. The main 

disadvantage of using blood in human biomonitoring is that it is an invasive 

matrix and thus can have an adverse effect on the participant response in volunteer 

epidemiological studies (Rockett et al., 2004). However, non-invasive matrices, 

such as tear drops, saliva, hair and fingemails were preferred by Iraqi individuals 

as they are easily accessible for collection, and more acceptable to the population 

than blood sampling, allowing for repeated determinations over time.

In consideration of the above, it is apparent that there is a need for further 

biomarkers with significant potential to monitor, in a non-invasive fashion, the 

required trace elements associated with health assessment. The main aim of this
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study was to develop and validate a new biomarker for evaluation of the elemental 

levels of Iraqi individuals resident in Karbala (Iraq) and London (UK). Tear drop 

fluid was selected as a possible new biomarker in this research as there has been 

no previously published studies in this area. In addition, other biological samples, 

such as saliva, scalp hair and fingemails were also used in order to develop the 

analytical methods for the determination of trace elements in these media, and to 

establish a data base of normal levels for Iraqi individuals. This data can also be 

used to provide values for comparative analysis with the tear drop results. 

Furthermore, environmental samples (water and cigarette tobacco) were also 

collected from the areas of study in order to evaluate whether these media make 

any significant contribution to the elemental levels in the human tissues and fluids 

under investigation.

The analytical methodological issues were described in Chapter 2, with 

appropriate dilution and digestion of samples and optimised instmmental 

conditions. Chapter 3 presented the results of the environmental samples, namely 

water and tobacco. The elemental results for tear drops were reported in Chapter 

4. The comparative study data between tear drops and saliva, washed scalp hair 

and fingemails were outlined in Chapter 5.

6.1 Environmental Analysis

During the last century, Iraq’s industry has suffered from a decade of economic 

sanctions and lack of investment. This has led to chronic environmental problems, 

such as discharges of untreated effluent into surface waters, spillages and 

discharges of chemicals into soils and ground water, and widespread uncontrolled 

emission of particulates and gases from stacks. The recent wars have undoubtedly 

exacerbated the chronic environmental stresses that have accumulated in Iraq over 

the past three decades. An important part of the environmental damage associated 

directly with the war arises from the looting and pillaging of key infrastructures 

and the ransacking of equipment and supplies, including hazardous and 

radioactive materials. According to reports from the United Nations Environment 

Programme (UNEP), there are 300 sites in Iraq that are considered to be 

contaminated by various pollutants (UNEP, 2003: Al-Bedri & Al-Jobori, 1991).
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Environmental samples, namely water and cigarette tobacco were collected from 

Karbala, Iraq. Tap water was also collected from London (UK) so as to evaluate 

the relationship between the trace element levels in Iraqi residents in Iraq and 

London (UK) and whether different chemical levels in water may provide 

information on the trace element levels in various human tissues and fluids. The 

values of water parameters (pH, total dissolved solid (TDS) and electrical 

conductivity (EC)) for commercial, domestic bottled, tap, river and ground (well 

and artesian) waters were measured directly at the time of sampling, as they can 

change with storage time and temperature (Arain et al, 2008), as shown in Table 

3.1.

Results showed that the pH levels for all water samples were predominantly 

neutral to slightly alkaline (6.1 -  8.5), which are within the WHO guidelines for 

drinking water (WHO, 2008). Electrical conductivity on the other hand was 

higher in domestic bottled (998 ± 472 pS/cm), tap (1134 ± 1 8 4  pS/cm), river 

(1343 ± 40 pS/cm), artesian (1172 - > 3999 pS/cm) and well waters (2505 - > 

3999 pS/cm) when compared with the WHO and European recommended values 

for EC (250 pS/cm) for drinking water. High levels of EC can be associated with 

salinity; ions that have a major influence on the EC are H \  Na"*", K^, Câ "̂ , Mg^% 

c r ,  s o / ’ and HCO3* (Radojevic & Bashkin, 2006). Therefore, EC increases with 

the mineral content of a water sample - thus its use in the measure of mineral 

contents. A significant correlation was observed between the TDS levels in 

different water resources and conductivity (R^ = 0.9999) (Figure 3.1). Thus, 

higher levels of TDS were found in artesian (583 - > 2000 mg/1) and well waters 

(1254 - > 2000 mg/1) when compared with the recommended guidelines by the 

WHO for drinking water (1000 mg/1). The results showed significant correlations 

(at P < 0.05) between TDS and B (R^ = 0.687), Cr (R^ = 0.564), Fe (R^ = 0.470), 

Sr (R^ = 0.850) and Cd (R^ = 0.450).

Multi-elemental analysis was performed for commercial, domestic bottled, tap, 

river, artesian and well waters collected from Karbala and tap water from London 

(Tables 3.1 -  3.4). In general, the highest trace element levels in drinking and 

irrigation waters were found for Sr in tap (1113 ± 425 pg/1) and well water (7096 

± 2823 pg/1) respectively, whilst the lowest levels were for Cd (< 0.01 -  0.01 

pg/1) and V (1.2 ± 0.7 pg/1) in commercial and artesian waters, respectively.
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Highly elevated trace element levels were reported in tap water from Karbala 

compared to the London samples, as presented in Table 3.4.

The findings were compared with the guideline values for drinking and irrigation 

waters as recommended by the World Health Organisation (WHO), Iraqi 

Specifications and the Food and Agriculture Organisation (FAO). In addition, the 

results were also compared with published literature values. In general, the mean 

and range values (pg/1) for most trace elements are lower than the permissible 

limits for drinking water recommended by the WHO and Iraqi guidelines. The 

only exceptions are for B in artesian (1049 ± 746 pg/1) and well waters (1569 ± 

844 pg/1); and Cd in river (8.71 ± 3.65 pg/1), artesian (5.28 ± 4.86 pg/1) and well 

waters (9.98 ± 0.31 pg/1). In the majority of cases, levels of B and Cd greatly 

exceeded the WHO guideline limit of 500 pg/1 B and 3 pg/1 Cd, recommended as 

a maximum allowable level in potable waters (refer to Table 3.3). Total cadmium 

concentrations in Karbala were in good agreement with other literature sources 

reported for drinking (Barbooti et al., 2010; Nkono & Asubiojo, 1998; Ward, 

1983) and irrigation waters (Barbooti et al., 2010; Reimann et al., 2003).

The levels of B were in disagreement with other literature ranges reported for 

drinking water in Baghdad (Iraq) (Barbooti et al., 2010) and other countries (Hill, 

2006). On the other hand, the total B reported in ground water showed lower 

levels than another reported study in Karbala (Al-Dbbas, 2006), which also 

reported a maximum of 10 mg/1 B in ground water supplies throughout the west of 

Karbala province, compared to a maximum of 3.9 mg/1 B determined in this study 

(carried out over a more localised sampling area). These differences may be based 

on the natural geology of the province, the time of sampling and the different 

wells visited.

The levels of Sr were relatively high in different water samples; concentration of 

Sr in these waters were generally of the order well > artesian > river > tap > 

bottled > commercial. The WHO and Iraqi government do not recommend 

guideline values for Sr. Thus, the mean values of Sr were compared with the 

United States Environmental Protection Agency (USE?A) guideline limit of 4000 

pg/1, recommended as an acceptable level in drinking water (Usuda et al., 2007). 

According to the USEPA, the levels of Sr in ground water wells (1512 - 14375 

pg/1) and artesian bores (1157 -  8308 pg/1)) were higher and require further 

investigation. There is a relative lack of data on Sr occurrence in water.
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Commonly, Sr is present in water as carbonates and sulphates, which are slightly 

soluble. However, the concentration of Sr can differ depending on local 

conditions (Kabata-Pendias & Mukherjee, 2007). Sr levels in river waters ranged 

from 3 to 238 pg/1 Sr, whilst the world average is 60 pg/1 Sr (Gaillardet et al., 

2003). The level of Sr can be higher in industrial regions such as the river waters 

of Poland (> 300 pg/1 Sr). Thus, the levels of Sr in river water from Karbala (335 

-  2755 pg/1 Sr) are higher comparing with those reported in Poland; in 

uncontaminated rivers Sr ranges from 10 to 35 pg/1 Sr (Kabata-Pendias & 

Mukherjee, 2007). The levels of Sr were also higher when compared with other 

studies reported by other researchers, such as Ikem et al., (2003); Reimann et al,

(2003); Azparren et al, (2000); and Kikuchi et al, (1999) for drinking and 

Jrrigation_waters___________________

In summary, boron was found to be at higher levels in Karbala waters, which 

could possibly cause toxicity symptoms and damage to plants (Hill, 2009). 

Therefore, attention should be paid to using chemical treatment for Karbala water 

to reduce B levels, and thereby improve the quality of water. The higher levels of 

Sr found in all water samples requires further investigation. The drinking water 

(commercial, bottled and tap) in Karbala can be used directly, whereas irrigation 

water (river, artesian and well) may need chemical treatment prior to the use as 

drinking water by the population. The levels of Cr, Mn, Fe, Cu, Zn and As in 

Karbala water were under the levels set by the WHO for drinking water.

Multi-elemental analysis was also performed on cigarette tobacco from Karbala. 

This was established due to a significant proportion of the population in Iraq 

being active smokers, as shown in Section 3.2. The highest mean (and standard 

deviation) trace element value found in tobacco samples was reported for iron 257 

± 52 mg/kg Fe (dry weight or d.w.), whilst the lowest mean and standard 

deviation was observed for vanadium 0.42 ±0.12 mg/kg V (d.w.) (Table 3.5). The 

findings were compared with those reported in the literature. In general, the levels 

of trace elements in cigarette tobacco are in agreement with the reported ranges 

for other countries. The results of different commercial brands of cigarette 

tobacco showed that the mean value for toxic elements particularly for Cd (0.90 

mg/kg d.w.) was higher when compared to those reported for normal plant 

material (typically < 0.4 mg/kg Cd), as described in Section 3.2.2 (Ward, 1993).
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6.2 Human Exposure Analysis

An evaluation of the trace elements (B, V, Cr, Mn, Fe, Cu, Zn, As, Sr and Cd) on 

the inhabitants of Karbala (healthy and diabetic) and London (healthy) was carried 

out, using tear drops, saliva, washed scalp hair and fingernails as potential 

biomarkers. The results showed elevated trace element levels in drinking water 

from Karbala compared to London (refer to Table 3.4). Elevated total trace 

element levels were also seen in tear drops, saliva, washed scalp hair and 

fingemails from Karbala compared to a comparative region (London) (refer to 

Tables 4.2, 5.1, 5.4 & 5.7). Differences in trace element levels in different human 

tissues and fluids were significant (F < 0.05) between Karbala and London, 

suggestive of potentially different environmental and dietary exposure to trace 

elements. These differences may be based on the natural environment of the two 

sites, as described above in Section 5.2 (UNEP, 2003).

Comparison between the elemental levels in the human tissues and fluids under 

investigation shows the highest elemental level reported in tear drops, washed 

scalp hair and fingemails of healthy individuals and diabetic patients was for Zn, 

whilst in saliva was for Sr (refer to Tables 4.2, 5.1, 5.4 & 5.7). Similar results 

were found in the literature for whole blood, serum and plasma (Flores et al., 

2011; Stone, 2006).

The trace element levels in saliva were lower than those reported in tear drops, 

suggesting tear drops may have an advantage of being a better biomarker for trace 

elements when compared with saliva fluid in terms of the capability of the 

analytical technique being able to determine more accurately the higher elemental 

levels (refer to Section 5.2.4). The higher mean values for all trace elements were 

found in human tissues (hair and fingemails) compared to human fluids (tear 

drops and saliva) (refer to Figure 5.8). A possible explanation is that tissues are 

long-term growth materials; therefore, several trace elements accumulate in hair 

and nails (refer to Sections 5.3.4 & 5.4.4) (Sukumar & Subranian, 2007).

The results for tear drops, saliva, washed scalp hair and fingemails were 

compared with literature ranges. In general, tear drop results are in agreement 

with those reported by Flores et al. (2011) for V and Zn in blood serum; Muniz et 

al. (2001) for Zn in blood serum; Gill et al. (2011) for Cd, Cr and Mn in blood 

and saliva; Ward & Ward (1991) for Cu and Cd in saliva; and Stone (2006) for Fe
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in plasma, and Zn in plasma and serum. The mean values for B, As and Sr are in 

disagreement with the reported literature values in serum and saliva (Flores et al., 

2011; Gill et al., 2011) (refer to Tables 4.5 & 4.6). Saliva results are in general 

agreement with values reported by other authors for most trace elements except B 

and Sr, as described in Tables 4.6 & 5.1. The mean values for most trace elements 

in washed scalp hair and fingemails were within the literature ranges reported by 

other researchers with the only exception being B (Sukumar and Subramanian, 

2007; Forte et al., 2005; Rodushkin & Axelsson, 2000). The majority of human 

tissue and fluid samples have B and Sr levels above the literature values, as the 

higher level of B and Sr in water samples may have elevated these elements for 

the individuals under investigation.

The levels of these elements have been suggested, in terms of deficiency or 

excess, to be a probable reason for the on-set of type 2 diabetes. This was 

evaluated by determining the trace element levels in the tear drops of both healthy 

individuals and diabetic patients with subsequent statistical evaluation using 

significance testing. Significantly higher tear drop levels of B, Mn and Sr, and 

lower levels of V, Cu and As were found in diabetic patients when compared with 

healthy individuals (P < 0.05). No significant differences were found for other 

elements between healthy and diabetic groups using a two-tailed t-test. These 

results are in agreement with those reported by Flores (2011) in Table 4.6 for V, 

Mn, Cu and As. Interestingly, similar results were reported for Mn and As in 

saliva; V and Cu in washed scalp hair; and Cu in fingemails.

Multivariate discriminant function analysis (DFA) was applied to evaluate which 

of the trace elements discriminates between healthy individuals (Karbala and 

London) and diabetic patients (Karbala). Only two discriminant functions (DFl 

and DF2) were found to discriminate the three population groups, as shown in 

Table 4.7. It can be seen that, Sr, Mn, B, Zn, V, As and Cd exhibited a strong 

contribution in discriminating the three populations and accounts for most of the 

expected variations in tear drops (100%), whilst other trace elements showed a 

less contribution (< 0.3) in explaining the variation between healthy and diabetic 

populations. These results were in agreement with the results determined by a two 

tailed t-test (Tables 4.4 & 4.5) and ANCOVA results (Table 4.11).

The influence of various factors (gender, smoking activity, health status, 

individual’s age and drinking water) on elemental levels was determined, using
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the analysis of covariance (ANCOVA). Significant effects were found for health 

status, gender, smoking activity, age and drinking water on the levels of B (F(i,n8) 

= 12.573, P = 0.001), Mn (F(i,i38) = 16.286, P < 0.001) and Sr (F(i,MO) = 5.388, P 

= 0.022); Fe (F(i,i38) = 5.626, P = 0.019); Cd (F(ij40) = 9.681, P = 0.002); Zn 

(F(i,i37) = 6.373, P = 0.013) and As (F(;j42) = 17.176, P < 0.001); and V (F(i,i45) = 

13.305, P < 0.001), Mn (F(i,i3g) = 8.240, P = 0.005); and Sr (F(ij40) = 175.783, P 

< 0.001), respectively. These results were consistent with other studies reported in 

the literature by Flores et al. (2011) for Mn, Forte et al. (2005); Kamakura (1983); 

Stone (2006), and Jian et al. (2010) for Fe; and Sukumar & Subramanian (2007); 

Chojnacka et al. (2006), and Gill et al. (2011) for Cd by using other biological 

samples. A Pearson product moment correlation was used to describe the strength 

and direction of the relationship between the trace element levels in tear drops and 

drinking water. A strongly positive significant correlation was seen between tear 

drop strontium and drinking water strontium (r = 0.760, /(153) = 14.224, P < 

0.001), as shown in Figure 4.3.

6.3 Inter-Element Correlations

Inter-element interactions were investigated in this study by the calculation of 

correlation coefficients for healthy individuals and diabetic patients (refer to 

Tables 4.19 & 4.20). The Pearson correlation coefficient (r) was verified for each 

pair of trace elements for tear drop, saliva, washed scalp hair and fingernail 

samples in order to check if any significant correlations could be found between 

the trace elements in the matrix, and whether the effect of type 2 diabetes changes 

this, as described in Section 4.5.7. For tear drops from healthy individuals, strong 

correlations, as indicated by the magnitude of r, were found between Zn-Sr (r = 

0.667, P < 0.01), whilst for diabetic patients they were between Cr-Mn {r = 0.84, 

P < 0.01). There were 32 and 27 statistically significant correlations of the total 45 

tested in tear drops for healthy and diabetic individuals, respectively (refer to 

Tables 4.17 & 4.18). Similar correlations were reported in the literature for other 

biological samples (Flores et al. (2011); Gill et al. (2011); Barany et al. (2002), 

and Shah et al. (2006).

Comparison between tear drops and saliva showed similar correlations exist 

between B-Fe; V with Cr, Mn, Fe, Cu, Zn, As and Sr; Cr with Mn, Fe, Cu, Zn and
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Sr; Mn with Fe, Cu, Zn, Sr and Cd; Fe with Cu, Zn and Sr; Cu with both Zn and 

Sr; Zn with As, Sr and Cd; and As-Cd for healthy individuals (Tables 4.17 & 5.2) 

and B-Sr; V with Mn and Fe; Cr with Fe and Cu; and Mn-Cu for diabetic patients 

(Tables 4.18 & 5.3).

In the case of washed scalp hair, the following correlations were also found in tear 

drops: V with Cr, Fe, Cu, Zn, As, Sr, and Cd; Cr with Mn, Fe and Cu; Mn with 

Fe, Cu, Zn and Sr; Fe-Cu; Zn-Sr; and Sr-Cd for healthy (Tables 4.17 & 5.5); and 

B-Cu; V-Mn; Cr-Cu; Mn with Cu and Sr; and Sr-Zn for diabetic (Table 4.18 & 

5.6). Several correlations in washed scalp hair were also reported by other 

researchers in the literature, such as Fe-Mn and Fe-Cu (Hill, 2009), Mn-Sr, V-Cu, 

V-Mn, Cr-Fe, Cr-Mn, Mn-Cu, Zn-Sr and Sr-Cd (Chojnacka et aL, 2005).

Similar correlations were also found for tear drops and fingernails: namely for 

healthy individuals: V with Cr, Mn, Fe, Cu, Zn, As and Sr; Cr with Fe, Cu, Zn and 

Sr; Mn with Fe and Sr; Fe with Cu, Zn, and Sr; Cu with Zn and Sr; and Zn with 

As and Sr (Tables 4.17 & 5.8), whereas for diabetic are between V with Mn and 

Fe; Cr with Mn, Fe, Cu, Zn and Sr; Mn with Fe and Sr; Fe-Sr; Cu with Zn and Sr; 

Zn-Sr; and As-Sr (Tables 4.18 & 5.9).

A Correlation Coefficient (r) was also calculated to evaluate whether there were 

any significant correlations between the level of trace elements in tear drops and 

each of saliva, washed scalp hair and fingernails. In general, significant positive 

correlations were found between tear drops/fingemails for Mn (r = 0.56, P < 0.01) 

and Fe (r = 0.47, P < 0.01) and tear drops/scalp hair for As (r = 0.39, P < 0.05), 

whilst negative significant correlations were found for B (r = - 0.43, P < 0.05) and 

Fe (r = - 0.36, P < 0.05) between tear drops and saliva.

In conclusion:

The present study is the first full study, to my knowledge to highlight the use of 

tear drop fluid as a biomarker for the level of trace elements in the human body. 

This study provides a preliminary assessment of the determination of trace 

element levels in saliva, washed scalp hair and fingernails for Iraqi individuals in 

the province of Karbala, Iraq. The results show that both the aim and main 

objectives of this study have been achieved. Firstly, an assessment of the trace 

element exposure of the inhabitants of Karbala was carried out, using tear drops, 

saliva, washed scalp hair and fingernails as a potential biomarkers. Karbala 

samples showed elevated trace element levels in drinking water over the range of
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London. Elevation of most of the trace elements were seen in tear drops, saliva, 

washed scalp hair and fingernails collected from Karbala when compared to those 

from London, suggestive of deleterious exposure to some trace elements such as 

B, Sr and Cd. Secondly, the data for most elements in tear drops is in agreement 

with those reported in saliva, scalp hair and fingernails for diabetic and healthy 

subjects. This provides evidence that tear drops can potentially be used as a new 

biomarker for determining the health status of an individual. Finally, significant 

differences were found in the levels of most of the trace elements throughout this 

study between females and males; Karbala and London; and smokers and non- 

smokers. These results can confirm that factors like gender, residential location 

and smoking activity can affect the elemental levels in the human body.

6.4 Further Work

Further research could be designed from this study as there are no previously 

published studies about the levels of trace elements in biological samples 

collected from Karbala (Iraq):

• The higher levels of Sr found in all water and biological samples require a 

follow-up study to establish whether a possible link exists with regard to 

soils and main foods in this region;

• The major problem associated with tear drop analysis is the variable 

volume that is produced by the glands. In most cases, the amount of tear 

drop fluid required for analysis using the techniques in this study is > 2.5 

ml. As such, the potential of electrothermal sample introduction (ETV- 

ICP-MS), which requires smaller volumes for analysis ( 5 - 1 0  pi), needs 

to be investigated;

• As described in this study, tear drops provide data about human processes 

over short periods similar to that for blood and urine. However, more 

research is needed to evaluate whether or not this fluid provides any 

advantages over the traditional biological fluids (blood and urine);

• The data from this study confirms that the deficiency and excess of some 

trace elements may play a role in the development of diabetes mellitus. 

However, further clinical studies are required using larger numbers of
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diabetic patients. In addition, blood and urine need to also be collected and 

analysed to enable a clearer picture of the trace elements of diabetics; 

Further studies are needed to explain many of the reported correlations of 

various elemental levels in the tear drops fluid;

The levels (pg/1) of most trace elements in irrigation water are lower than 

the permissible limits for drinking water recommended by the WHO and 

Iraqi guidelines. The only exceptions are for B, Cd and Sr. However, water 

from Karbala may require chemical treatment at the municipal water plant 

in order to reduce B, Cd and Sr levels, and thereby improve the quality of 

drinking water;

It was found that Sr has been associated with different diseases such as 

dental caries. However, new studies are needed to evaluate whether the 

high levels of Sr could be associated with local diseases or health 

conditions in Iraq; and

The higher levels of electrical conductivity (EC) in the water samples from 

Karbala needs further investigation to link the EC values with human 

health, and to establish a guideline value for the EC limits within the Iraq 

Standard Specifications.
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A1.3; Confirmation letters from Iraq about the innovation in this research;
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A1.4: World Health Organisation document for water quality in Iraq:

WORLD HEALTH ORG.\NIZATIOX
Régional OSlce for the EastrnitvWiteaaneon 1 l - U  " ^

ORGAMSATIOXMONDIALDELASAXTE
BtaeauMfitWtklaMeditcrMiiceOncatale

Baghdad - Iraq j& Jl ^ > 41  4 ^ *

OFFICE OF THE ^A'HO REPRESENTATI\TE 

Press Release

WHO and Iraq Agree to Implement a W ater Quality Control and Surv eillance 
Project in Iraq and Rehabilitate the Central Water Quality Control Lab in 
Baghdad.

W ater Quality Regulations and Policies in Iraq under Review

2S September 2004 ' Amman — Tlie World Health Organization (WHO) and Iraq's 
Ministry o f  Enviromneni (MOE) agreed to review and tqvdate the current regulations and 
policies far water qualitv" in Imq with pailicipation o f different parties 6om  other 
ministries and univei^ities. The two sides also agreed on the operational plan to 
reliabilitate the Centml Water Quality Control (WQC) Lab in Baghdad.

"Access to safe water is a right to all people and lias major implications on the protection 
o f the health o f  people." said Di'. Naeema Al-Gasseer, WHO Repiesentative in Iraq, 
adding that "Unsafe water leads to many diseases and tlneats o f public health risks."

The agreement which was signed on 25 September 2004 in Amman by Dr. Al-Gasseer on 
behalf o f WHO in Iraq, and Di Mishkat Mumin, Iraq's Minister o f Environment, came at 
the end o f a two-day woiking '»ession in which delegations from both sides discussed the 
cun ent environmental situation in Iraq and ways to improve its conditions. To that 
effect, the MOE and WHO agreed to stait the implementation o f  an Iraqi proposal on 
Water Quality Control and Surveillance in Imq that aims at designing a compreliensive 
watei'quality monitoring system. Tliis system entails establishing 15 centi-al labs and 30 
district labs in tlie center and soutli o f Iraq, hmded by tlie European Commission through 
the UNDO Trust Fund.

The agreement also stipulates tlie rehabilitation o f the Central WQC Lab in Baghdad 
beginning with the establishment of a joint committee to assess the conditions o f  the 
building and the financial and administmtive preparations.

In addition, the agreement provides for WHO-supported capacit}' building for the MOE 
staff with training courses to be held in and outside Iraq, and tlie conducting of  
researches in the field o f envhonment with special emphasis on water quality.

The Iraqi Minister praised the eilbits o f kVHO to organize the working session and 
underlined the significance of the agreed upon projects and their positive impact on the 
fiituie o f the Iraqi people.
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A1.4; (continued) World Health Organisation document for water quality in Iraq:

WHO has been supporting the government o f  Iraq in improving die health situation in 
Iraq, upgrading health policies and strategies, and holding training workshops. WHO is 
also working in close collaboration with the Ministries o f  Health, Environment. 
Education, Higher Education, Plaiuiing and otliei' ministiies as w ell as U N  partners and 
NGOs to help the Iraqi people enjoy the higliest attainable standard o f  health as one o f  
the fiuidaniental rights o f  every haqi wdtiiout distinction o f  race, mligion, political heliefi 
econom ic or social condition.

For more information contact:

Eng. Mohammad Hamaslta
WHO Iiaq. Water and Sanitation Focal Person
Mobile: 00 96279 5043981
Tlmraya: 00 68:16  33330765
Email: hamashal Â vahoo.com

Alt Hamati
WHOTraq. Commimication 0:%cer 
Mobile: 00 96279 5934876  
Office: 00 9626 5510438 ext. 61024 
Email: hntiiatiaairq.enno.who.iiit
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A1.6: Research Participant Consent Form:

Sample Consent Form 

“Trace Element Levels in Hnman Tear Drops and Other Media”

• I have read and understood the Information Sheet for Participants provided. 
I have been given a full explanation by the investigators of the nature, 
purpose, location and likely duration of the study, and of what I will be 
expected to do. I have been given the opportunity to ask questions on all 
aspects of the study and have understood the advice and information given as 
a result.

co-

#

I agree to comply with any instruction given to me during the study and to 
operate fully with the investigators.

I agree to the investigators contacting my local medical practitioner about my 
participation in the study, and I authorise my local medical practitioner to 
disclose details of my relevant medical status, in confidence.

• I consent to put my personal data, as outlined in the accompanying 
information sheet, being used for the research project detailed in the 
information sheet, and agree that data collected may be shared with other 
researchers or interested parties.

• I understand that all personal data relating to volunteers is held and processed 
in the strictest confidence, and in accordance with the Data Protection Act 
(1998).

• I confirm that I have read and understood the above and freely consent to 
participating in this study. I have been given adequate time to consider my 
participation and agree to comply with the instructions and restrictions of the 
study.

Name of volunteer (BLOCK CAPITALS): ..................................................................

Signed: .........................................................................................

Date:..... ....................................

Name of researcher/person taking consent (BLOCK CAPITALS):

Signed: ..........................................................................................

Date:.........................................
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A1.7: Information Sheet Form:

Information Sheet for Participants

The following information sheet is planned to be read by the participants in this 

research project.

“Trace Element Levels in Human Tear Drops and Other Media”

This study will focus on evaluating the effect of any excess or deficiency of trace and 

minor elements (Na, Mg, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd 

and Hg) on the health of the local population, particularly individuals with diabetes 

(type 2) by determining the elemental levels in human scalp hair, nails, tear drops and 

saliva samples. Further information will be obtained from environmental samples, 

such as, drinking water sources. In addition, information that will be obtained through 

the course of this study that will be available for other approved research studies. 

However, the researchers will not be given information that will identify any 

individual;

The main benefits that will result from this study include:

• a database of the local population about the levels of these elements in 

selected tissues and fluids of the body;

• to investigate the elemental quality of drinking water used by the local 

population and its impact on public health;

• to assess for the local population the potential causes that lead to an excess or 

deficiency of an essential elements in human body;

• to assess if environmental exposure has any effect on the health of participants 

through comparison with those living in another place of world;

• to strengthen the participants awareness and knowledge about the harmful 

effects of smoking and possible sources of environmental pollution in relation 

to the monitoring of essential and non-essential elements in selected tissues 

and fluids of the human body (through dissemination of the results via Iraqi 

conferences and to be incorporated into educational material at local 

universities);
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Participants for this study will be approached (based on their suitability) by a 

General Practitioner (OP) at the locations (Karbala and London) involved in the 

collaboration of this research. Sample consent forms will be issued and after 

approval, sample collection will then be carried out at these locations;

The participant must cooperate fully with investigators, and to complete 

questionnaires to provide personal details and information about health, diet and 

lifestyle at the time the sample(s) are collected. The questionnaires will be 

administered by a trained interviewer or will be mailed to a participant for 

completion and returned in a reply-paid confidential labeled envelope;

We cannot promise that you will benefit from being a participant. We do hope and 

expect that the outcomes of the research will be available via publications and 

presentations at conferences;

It is probable, that information about the study might be published in scientific 

journals. However, no information that might identify participant will appear in 

these publications;

The participants will need permission from their parents if their ages under 18 

years. Therefore, investigators will carry out a parental interview. The purpose of 

this to obtain their permission, and information about their children;

The participants are free to withdraw from the study at any time, without having 

to give a reason for withdrawing. All the information will be kept strictly 

confidential within the research team unless permission had been granted by the 

named participant to divulge certain information to a third party;

Participants of the study may receive a report of the chemical results which will be 

obtained from a medical practitioner; and

Any complaint or concerns about any aspects of the way you have been dealt with 

during the course of the study will be addressed; please contact Prof. Neil I. Ward, 

Principal Investigator on +44(0) 1483 68 93 or n.ward@surrey.ac.uk.
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Appendix B1 

B l.l

Use of Human Tear Fluid as a Potential New Biomarker for Trace Elements 

in Healthy Individuals and Diabetic Patients^

Baker A. Joda and Neil I. Ward 
ICP-MS Facility, Chemical Sciences, Faculty o f Health and Medical Sciences, 

Guildford, Surrey, GU2 7XH

Abstract: The use of unconventional biological materials as biomarkers in trace 
element studies has increased in terms of published research studies. In this study, 
human tear fluid was used to be a possible new biomarker for trace elements in 
the human body as no study has been published in this area yet. Samples were 
obtained from 111 healthy individuals and 44 diabetic patients resident in 
Karbala, Iraq, and 18 samples were also collected from healthy Iraqi individuals 
resident in London, UK, for comparative study. Saliva (n = 97) and water (n = 
173) samples were also collected from the same regions. The level of V, Mn, Fe, 
Cu, Zn, As, Sr and Cd was determined by inductively coupled plasma mass 
spectrometry (ICP-MS). The validity, precision and accuracy of the methodology 
were evaluated using a “pooled” sample for each media and various certified 
reference materials. The validation methods provided acceptable levels of 
precision and accuracy with lower range of RSD (< 10%) and acceptable range of 
elemental recoveries (90-110  %), respectively. Significantly higher levels of V, 
Cr, Mn, Fe, Zn, As and Sr, and lower levels of Cd were found in tear drop 
samples from Karbala when compared with those from London (P < 0.05). 
Similar results were found in saliva for most trace elements. Discriminant analysis 
suggested that V, Mn, Zn, As, Sr and Cd levels could be used to discriminate 
between healthy and diabetic populations (83% of cases correctly classified).

Keywords; Tear drops. Saliva, Type 2 diabetes. Trace elements. Multivariate 
analysis, ICP-MS, Karbala.

this paper was sent to the Journal of Trace Elements in Medicine and Biology
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B1.2

Influence of Gender, Age and Smoking Habit on the Trace Elements Levels 

of Washed Scalp H air of a Control Population from Karbala, Iraq^

Baker A. Joda and Neil I. Ward*
ICP-MS Facility, Chemical Sciences, Faculty o f Health and Medical Sciences, 

Guildford, Surrey, GU2 7XH 
(* author for correspondence n.ward@surrey.ac.uk)

Abstract Hair samples (n=236) of healthy individuals were collected from of 

Karbala, a city in south-western Iraq. The study population consisted of males 

(n=196) and females (n=40), age: children (<15 years, n=57); young (15 -  25, 

n=78); adults (25 -  45, n=76); and oldest (> 45 years, n=25). All cases were 

subdivided according to smoking habits (non, passive and active) so as to 

compare the levels of trace elements in scalp hair in relation to smoking habits. V, 

Mn, Co, Cu, Zn, Sr and Cd levels in washed scalp hair were measured by 

inductively coupled plasma mass spectrometry (ICP-MS). The validity and 

accuracy of the methodology were evaluated by using a certified reference 

material GBW 09101 Human Scalp Hair with an acceptable range for elemental 

recoveries ranging from 90 to 107 %. The results obtained showed significantly 

higher mean level (pg/g dry. weight) of Sr (11.58) in the scalp hair when 

compared with the reference range values for control or healthy individuals 

reported in different countries (0.06 -  6.31). It was found that the mean values of 

Sr and Co were significantly higher in females than males, whilst the levels of V, 

Mn, Cu, Zn and Cd were similar (at a probability level p = 0.05). Hair of the 

oldest group has more mean levels (pg/g d.w.) of V (0.42), Mn (2.75), Sr (12.24) 

and Cd (0.49) than the other age groups. The high of mean levels of Co (0.21 

pg/g) were reported in the hair of individuals of age 1 5 - 2 5  years; whilst the high 

of mean levels (pg/g) of Cu (27.52) and Zn (249) were found in children (<15 

years). Hair of smokers contained significantly more V, Sr and Cd than the hair of 

non-smokers (at p = 0.05). The levels of Mn, Co, Cu and Zn were similar in both 

sub-groups of smoking activity (at p = 0.05).

Keywords Scalp hair analysis. Trace elements. Karbala, Iraq. ICP-MS. Smoking 

habits

this paper was sent to Biological Trace Element Research Journal
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Cl. Statistical Equations Used in this Study (Miller &  Miller, 2010; Farrant, 

1997)

Arithmetic mean

The Arithmetic mean (x) is the sum of measured value divided by the number of 

measurements (n):

-  ̂V
i=l

Standard deviation (s)

The standard deviation (s) is a measure of the agreement between a set of n  data 

points; it is also the measure of random error. The following equation is used to 

calculate s:

n — 1
where = x  value and x  =  arithmetic mean of x  values.

s =

Variance (S )̂

Variance is the square of the standard deviation and is a measure of the extent to 

which results in a set of data differ from one another. The larger the variance, the 

greater the difference between the results.

Relative Standard Deviation (%RSD)

Also known as the coefficient of variation, it is a measure of the relative error of a 

set of data. RSD enables comparison between the precision of results that may 

have different orders of magnitude or units, and can be determined as described 

below:

RSD = T X 100 
%

where s = standard deviation and x = arithmetic mean of the data set.

274



Appendix C: Statistics

Geometric Mean

The geometric mean is a measure of the average rate of change of values in a data 

set, given a varying rate of change. It is calculated as the nth root of the product of 

a set of data. It is more appropriate than the arithmetic mean when the population 

is log-normally distributed. The following equation can be used to calculate 

geometric mean;

G e o m e t r i c  M e a n  =

Median

The median is the middle value in a set of data when the data is arranged in 

ascending order. It is another way of expressing the central tendency of dataset, 

and often gives a better approximation of the mean, particularly with small n and 

is independent of outliers.

Skewness

It is a measure of the degree of symmetry in a distribution. A symmetrical 

distribution has a skewness of zero and deviations from this are either positive or 

negative, depending upon the direction of the skew. It can be calculated by the 

following equation:

-  x y
S k e w n e s s  =

s^. (n - 1 )

Drift Correction

The instrumental drift can be corrected by the following equation:

U n k n o w n  s a m p l e  c o n c e n t r a t i o n  
D r i f t  c o r r e c t i o n  —  c a l i b r a t i o n  s t a n d a r d j

k n o w n  c a l i b r a t i o n  c o n c e n t r a t i o n
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Least Squares Regression Line fit

The least squares regression fit calculates a straight line in the form y = /wx + c, 

that best fits the data. The regression line for the least squares line fit is calculated 

as follows:

S i l f c  -  x)(yi -  ÿ)]
S l o p e  =  m =

Intercept = c = ÿ  — mx  

where % = value, x  = mean of x values, y  = value, ÿ  = mean of y  values 

Pearson Product Moment Correlation Coefficient

The Pearson product moment correlation coefficient (r) is a dimensionless index 

ranging from -1 to +1 inclusive, which reflects the extent of a linear relationship 

between two sets of data. It is calculated as follows:

-  x)(yi -  y)]

-  ÿ y ]

Coefficient of Determination (r^ or R^)

The coefficient of determination (r^) is the square of the Pearson product moment 

correlation coefficient (r) for the purposes of linear calibration.

Recovery

The recovery is used to identify any problems in the sample preparation process 

and the analytical measurement technique. The desired percentage recovery (%R) 

is 90 -  110 % and is calculated by the following formula:

Measured value
= 7  . . . .  3---- 1—  X 100Certified value
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Confident Interval

The confident interval (p) is the range of values within which there is a specified 

probability that the true value lies. It is used to evaluate whether there are any 

systematic errors throughout the analysis. The confidence limits for the mean are 

given as follows:

p = ±zs/V n

where the value of z depends on the degree of confidence required, for 95% 

confidence limits, z = 1.96, for 99% confidence limits, z = 2.58.

Anderson-Darling Test

The Anderson-Darling test is used to detect whether a sample of data came from a 

population with a specific distribution. The Anderson-Darling statistic (A^) is 

defined as:

1 'A
A ^ =  1). [In F  + ln(l -  F

i=l
where n = the number of sample, F(X) = cumulative distribution function for the 

specified distribution and i = the i‘̂  sample when the data is sorted in ascending 

order.

Outlier Identification -  Grubb’s Test

A Grubb’s test is used to check whether one (or possibly more) value/s appears to 

differ from other values in the set of data. It is performed by calculating a value of 

G and comparing it to G-critical values at the 95% confidence interval. Any 

values where Gcaic > Gcrit maybe rejected as outliers. This test can be performed 

by calculation of a value of G and comparing it to G critical value (at P = 0.05). In 

order to use Grubbs' test for an outlier, the statistical G is calculated from:

^  \ x  —  s u s p e c t ]
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F-Test

An F-test is used to compare the standard deviations of two populations (s j and 

52 ), whereby the ratio of two variances is calculated. The calculated value (Fcaic) 

is compared to an F-critical value (Tkht) at the 95% confidence interval for n \ - \  

and «2  -  1 degrees of freedom. If the two variances are not significantly different, 

the F value will be close to 1. The value of F is calculated as follows;

5

Student t-test

A student’s t-test is used to calculate the significance of a difference between a 

known value (p), such as certified reference value and a measured mean (f)  and 

standard deviation (s). Then the calculated value (̂ caic) is compared to the t-critical 

(^crit) value for n-1 degrees of freedom at the 95% confidence interval {P < 0.05). 

The value is calculated as follows:

(% -  p)Vn
t  =  --------------

5

Paired t-test

This test is used to compare pairs of data, such as when a single sample has been 

measured by the two analytical techniques or prepared by the two digestion 

methods. The difference between the data values for the two different methods is 

used to determine the calculated value (/caic) value. This value is compared with a 

t-critical (/crit) value for n-1 degrees of freedom at the 95% confidence interval {P 

< 0.05), as shown:

Dyfu 
locale -  ~~

— N - 1

Where Sj is standard deviation, Dj is the individual difference between the two 

methods for each sample, with regard to sign; and D is the mean of all the 

individual differences.
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Significance test for Linear Regression

The significance of the Pearson product moment correlation coefficient (r) can be 

established using a t-test. The calculated (̂ caic) value is compared to the t-critical 

(fcrit) value for n-2 degrees of freedom at the 95% confidence interval {P < 0.05), 

the t value is calculated from:

_  |r|Vn -  2 
Vl -

T-test Assuming Equal Variance

This test is used to compare two experimentally determined means for which both 

populations have equal standard deviations (pre-determined using an F-test). The 

calculation of t also requires the calculation of the pooled standard deviation (ps). 

The calculated (tcaic) value is compared with the t-critical (rent) value for U] + U2 -  

2 degrees of freedom at the 95% confidence interval (P < 0.05). The equations are 

as follows:

ps^ =
(tii — l ) s i  +  (ti2 — 1)^2

(Pi +712—2)

%  -  X2)t =

■Jn, ri2

T-test Assuming Unequal Variance

When the comparison of two experimentally determined means both have 

populations with significantly different standard deviations (pre-determined using 

an F-test), the following t-test is performed. A further calculation for the degrees 

of freedom (d/) is also required as it is not appropriate to use the pooled standard 

deviation.

vTL, n . /  f — Â2)

■■  ̂ : : C I : :

where Xi and %2 are the means of populations 1 and 2, and Si and S2 are the 

respective standard deviations.
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Appendix D: Water and Tobacco Results

Appendix D2
Cigarette Tobacco Results:
Table D2.1: Description of cigarette tobacco samples digested using dry and wet 
digestion methods (paired t-test data).
Kjeldahl™

tube
Elemental levels (mg/kg)’

PIN V Cr Mn Fe Cu Zn As Sr Cd
KCT-1 0.42 0.72 8838 279.38 6.45 34.95 2.37 52.98 0.79
GCT-2 0.32 0.87 89.63 208.51 4.88 18.09 1.20 72.96 0.24
RCT-3 0.34 0.67 114.24 237.31 4.18 3330 0.86 69.42 1.11
RCT-4 0.35 0.40 91.29 212.07 238 26.24 1.20 79.76 0.66
GCT-5 0.43 0.99 97.30 254.04 3.37 24.74 0.83 77.00 1.10
BCT-6 0.32 0.66 117.38 251.17 7.99 31.18 3.54 66.90 1.38
GCT-7 0.38 0.45 95.13 268.22 9.88 33.28 3.46 56.77 2.03
ECT-8 0.41 0.62 102.99 280.79 6.12 25.04 0.89 101.88 0.84
CCT-9 0.26 0.40 62.04 165.80 3.55 19.66 1.03 62.55 0.51
ICT-10 0.42 0.82 77.98 272.26 6.10 23.67 4.18 76.99 0.53
DCT-11 0.56 0.62 59.39 236.86 2.93 28.49 0.66 68.95 0.40
ACT-12 0.61 0.50 127.98 349.26 9.32 3232 2.10 98.80 0.91
FCT-13 0.53 0.71 100.65 315.72 2.47 19.30 1.09 88.87 0.48
BCT-14 0.46 0.45 109.81 284.84 8.80 2833 238 81.12 1.51
MCT-15 0.67 0.54 157.70 330.32 2.45 25.08 0.81 86.53 0.76
PCT-16 0.27 0.48 90.57 167.48 4.74 25.55 1.13 63.18 1.22

Dry ashing Elemental evels (mg/kg)*
PIN V Cr Mn Fe Cu Zn As Sr Cd

KCT-1 0.42 0.69 82.95 256.56 6.61 2636 0.62 37.78 0.61
GCT-2 0.41 0.99 80.61 240.80 8.60 19.60 0.44 57.08 0.20
RCT-3 0.35 0.74 106.92 247.19 9.60 2832 0.75 54.86 1.15
RCT-4 0.49 0.52 102.70 271.66 9.33 24.59 0.81 59.18 0.74
GCT-5 0.37 0.90 121.46 230.79 6.98 22.67 0.72 55.71 1.00
BCT-6 0.37 0.81 95.60 241.66 7.15 23.73 0.47 50.40 1.03
GCT-7 0.39 0.53 101.99 238.12 9.74 33.47 0.45 42.02 1.84
ECT-8 0.42 0.59 91.04 258.70 7.43 21.70 0.17 66.74 0.79
CCT-9 0.27 0.50 72.71 166.94 7.28 18.37 0.38 46.94 0.51
ICT-10 0.58 0.98 96.81 327.02 5.91 20.76 0.48 60.46 0.33
DCT-11 0.55 0.89 69.29 297.27 9.85 26.75 0.64 54.75 0.68
ACT-12 0.70 0.56 128.38 359.62 7.76 24.28 0.13 73.73 0.76
FCT-13 0.56 0.68 127.49 306.41 4.94 20.19 0.35 74.48 0.51
BCT-14 0.51 0.54 112.72 286.69 8.10 20.71 0.75 65.59 0.91
MCT-15 0.58 0.51 143.72 313.19 4.18 18.08 0.63 68.87 0.70
PCT-16 0.32 0.56 91.26 184.78 6.95 21.91 0.52 44.49 0.94

" replicate value (n = 3), ID codes have been describee in Section 2.1.1 (Table 2.2).
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Appendix E: Human Tear Drop Results

Table E l.2: Elemental data for "pooled" tear drop samples stored in a refrigerator at 4 
°C and repeatedly analysed (n = 6) over a 4 week period.
Storage Concentration (pg/1)

time B V Cr Mn Fe Cu Zn As Sr Cd

Week 1

1 480 2.75 4.02 19.14 299 211 780 0.52 648 0.30

2 508 2.79 3.96 19.19 281 209 767 0.48 589 0.29

3 550 2 j3 4.00 23.02 287 206 753 0.45 580 0.28

4 497 2.74 3.94 18.09 281 218 757 0.48 609 0.27

5 512 2.68 3.77 18.59 291 200 751 0.56 584 0.28

6 509 2.77 4.02 18.60 260 199 741 0.41 575 0.26

Week 2

1 487 2.68 3.66 17.81 269 209 734 0.50 599 0.29

2 508 2.79 3.68 18.77 268 203 771 0.60 596 0.26

3 511 2.76 3.46 19.03 281 189 766 0.53 587 0.24

4 512 2.68 3.92 19.47 291 210 753 0.53 554 0.24

5 503 Z59 3.81 20.81 296 202 755 0.34 621 0.25

6 550 2.62 3.85 20.42 302 214 749 0.51 592 0.28

Week 3

1 515 2.70 3.49 18.14 294 203 740 0.44 591 0.27

2 518 2.79 3.94 18.64 286 210 755 0.53 552 0.29

3 526 2.69 3.91 18.57 273 211 754 0.38 595 0.31

4 490 2.69 289 17.02 292 218 748 0.62 629 0.28

5 485 2.65 3.87 17.07 294 209 742 0.53 577 0.27

6 530 253 3.77 19.40 268 202 769 0.38 590 0.27

Week 4

1 500 2.67 3.66 19.21 276 203 754 0.49 608 0.29

2 508 258 3.98 20.20 273 208 758 0.48 595 0.30

3 518 2.60 3.67 18.66 296 207 753 0.37 604 0.26

4 486 2.67 3.67 18.52 302 202 756 0.62 614 0.25

5 546 2.59 3.96 17.09 282 221 755 0.50 602 0.27

6 523 252 3.70 18.66 289 208 725 0.40 545 0.28
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Appendix E: Human Tear Drop Results

Appendix E l
Trace Element Distribution

It is expected that essential elements follow a normal distribution in blood 

samples for healthy individuals. Log-normal distributions are typically found for 

non-essential and toxic elements, or in individuals where there is some breakdown 

in homeostatic regulation (Adair, 2002). The elemental patterns of healthy and 

diabetic populations from Karbala were found to be log-normally distributed for 

most trace elements. This is consistent with other findings indicating that the 

elemental levels in some biological samples are perhaps not subject to the same 

metabolic regulation as others (Stone, 2006). In contrast, the healthy individuals 

from London were found to have a normal distribution for most trace elements 

(except Cd which was log-normal). This difference is attributed to changes in 

various food habits, use of metal cookware and the environmental setting which 

could cause changes in elemental distributions in tear drops. In addition, factors 

like health status, gender, age, drinking water and the total number of the 

population may also affect the normality of distribution for trace elements in tear 

drops, as is a similar case for blood (Field, 2009; Stone, 2006; Sukumar & 

Subramanian, 2007).

Strontium
20

15

10

0

Concentration (fig/1)

Chromium

20 -

0.0 0.4 O.S 1.2
Log concentration (fig'l)

1.6

Figure E l i: Normal distribution for strontium and log-normal for chromium in 
healthy Karbala population (n = 111) with normal curve (red line).
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Appendix E: Human Tear Drop Results

Table E1.3: Summary of the distribution and statistical comparison of Karbala
(healthy and diabetes) and London (healthy) data sets for trace elements under
investigation.

Anderson-Darling test
Element Group Distribution A-squared

value ■dcrit P-value
Significant?

HK Normal 1.962 0.787 <0.001 N
B DK Log-normal 0.519 0.787 0.175 Y

HL Normal 0.649 0.787 0.075 Y
HK Log-normal 0.473 0.787 0.239 Y

V DK Normal 0.520 0.787 0.177 Y
HL Normal 0.402 0.787 0.323 Y
HK Log-normal 0.262 0.787 0.699 Y

Cr DK Log-normal 0.868 1.092 0.024 Y
HL Normal 0.515 0.787 0.166 Y
HK Log-normal 0.537 0.787 0.165 Y

Mn DK Log-normal 0.742 0.787 0.051 Y
HL Normal 0.234 0.787 0.761 Y
HK Log-normal 0.705 0.787 0.064 Y

Fe DK Normal 1.444 0.787 0.001 N
HL Normal 0.395 0.787 0.336 Y
HK Log-normal 0.596 0.787 0.119 Y

Cu DK Normal 0.535 0.787 0.162 Y
HL Normal 0.498 0.787 0.184 Y
HK Log-normal 0.498 0.787 0.207 Y

Zn DK Log-normal 0.281 0.787 0.624 Y
HL Normal 0.245 0.787 0.721 Y
HK Normal 13.786 0.787 <0.001 N

As DK Log-normal 0.397 0.787 0.355 Y
HL Normal 0.617 0.787 0.091 Y
HK Normal 0.978 1.092 0.013 Y

Sr DK Log-normal 0.784 0.787 0.039 Y
HL Normal 0.247 0.787 0.716 Y
HK Log-normal 0.348 0.787 0.472 Y

Cd DK Log-normal 0.254 0.787 0.716 Y
HL Log-normal 0.765 0.038 0.787 Y

HK = Healthy Karbala (n = 111), DK = Diabetes Karbala (n = 44), HL = Healthy
London (n = 18), Y = yes a significant result at P < 0.05 or P  > 0.01 for Cr in
diabetic group and Sr in healthy group, N = no significant difference at P  < 0.05
or P > 0.01 for Cr in diabetic group and Sr in healthy group, P  = probability (level
of significance), Acni = critical value.
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Appendix E: Human Tear Drop Results

00o Tfm cn
cn 8 "d" osin

ooOs oVO
Osin in ooCN 8 o cn r-m 8

Osin 3 8 VO
cn
<o> mos 00d"

CNCOS oVO 00d-
Os Os o Oi o, o Os i/>cn Os CTs -

ci CN Os o VO o Os CO Os Os cos cos COS COS

1
V)m Tf- p; o Os cncn Os•d-

ooin cnVO 00o cn VO in CNcn cncn CN <Ost-- OScn Os VOcn OsOs Om r-CN cn 00o m00
o o o cn O o CN ■d- CN o O o VO CN o CN o o CN o o CN o o O d" o

u
VOm orf cn'd' 0000 in■d- "d" m"d" oocn in00 cnin OScn ind- cncn r-cn O t-'d" 3 VOcn d" od" cn 9 d- s VOin 00cn incn
O o o o o o o o o o d" o o O o o O o o o o o o o O o o o o o o

"C
Q

>
mr- or- Oslo VO

o VO VOcn 8 ■d"cn VO
(3s

00r- OCN oo 8 cno 00oo 00oo oOs ooVO od- oo
o d" oOs cn00 VO mr- d-cn VO

VO CN m m cn cn cn cn cn cn o cn cn O CN o cn cn cn VO cn cn o CN cn cn cn cn cn
_L

1<u
CQ

00
in

t> 00 8CN C3SCN
'd'CNcn ocn cn

VDcncn osCN
mco> cn

cn
in
ocn

cn
CN

mooCN
CN VOOsCN

CNOsCN
oo
ocn

00 oVOm
CN
cn

oOsCN
in VOCN

OsO cos
ocn

oincn
cn
ocn R VOcn

1
s

k g m CN
inm in

cn
VOcn

oin d- 00cn in
in inm d-in

d"
d" 00 00in 5 00CN

o
o
8

CNCNcn oo g d" cn
d-

VOmin ool>
mmoo

m OscnO

d>
S

r-
cn P! moo os o

o cn o(JS cnin oo cnos 00os VO cn 00 inCN cn VOcn mcn od- d" CNCN
m

COS

Q.
o CNm i2 OsCN R oo 9 r- CN d" 0C5 0C3 inin

cncnCN
d"cnin

OsCN
c i
o cn oo00

mooCN
mCN 00cn cos

1
Ô

3 Os ■d- 3 CNin S Os Sg d"cn VOcn cnoo 8 00CN Os
o d- cnoo

oo cnCN 0000
inCN s Oin

00 in 'd- cn cn CN cJ CN d" d" oo ind" d- in o o 00 VO o VOCN CN 8 cn

>
c^m m r~-oo CNm os OsOs C3sOS s "d" 00 C3SCN m00 VOcn d-00

d-cn 8 oo inin cn cTs VOos o VDVO oooo inm 8 8 in
o

oo CN CN VO cn cn CN o cn o l/S od VO ciCN CN cn VO o cn VO d" CN m oo

CQ mm cn cn
OS cnCN

CN
"d" CN V

Os00 V
Os
CN

Os
cn 8cn

oi>
V

S!in Ç
or-
V CN cn

o
cn

oo
V

osCN
8
V

(OsOSCOS ?
o 8

V
8
V

mmcn
cos(Oscn

a cd cd cd S cd cd Cd S s S cd cd cd cd Cd cd cd od cd cd cd Cd cd cd cd cd cd cd ,s cd

1
cd
f

cd
f

cd
f

cd
-iP

cd
-f=

cd
f 1 cd I cd

•§
cd
-f:

cd
fî '4 cd cd

-2
cd
-2 1 1 cd

-2
cd
-2

cd
-2

cd
-2

cd
-2 1 1 cd

-2CJO S â tSt2 3, 3 3 3 3 3 3 â

1
1 Z § X X X X X z xnX CO%COz CO%X X X

OPÏ2: X X
c/3z c/3z Z z X C/3 c/3 C/3 C/3 C/3 C/D C/D c/3

c
O

S
%m OS o OS CNcn in•d"

r—( incn d" r~ ocn d"in CN
T—1 oo pj oom cnd" cnCN OSm ind- ind" in in ooin inm

<

1
« 1

Ph k Cu Cu Cu Cu Cu Cu ttH Cu cu CU Cu cu Cu cu Cu b Cu Cu Cu Cu Cu S S S 2

I
K

c/3 K X X X X X X X X X X X X X X X X X X X X X X Q Q Q Q Q Q Q Û
0\°?oS' ? cn

S' ? in
S'

VO
S'

00
S'

Os
S'

8 o § s 8 in
o

VO
o o

oo
o

OsO o CN cn d" m VO oo cos

g
o\
o
oCN

0\
o
oÇN

0\
o

Os
o
o

C3sO Os
o
o

Os
o

8

c?s
o
oCN

Os
o

OS
o

as
o

OsO Os
o

OsO OS
o

OsO Os
o
8

Os
o
8

o
o
oCN

OS
o
o(N

Os
o
o(N

Os
o
o(N

OsOO(N

OsOO<N 1CN

Os
o
8

COS
o
8

cos
o
ofN

cos
o
8

OS
o
8

OS
o
oCN

Ph S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S'
? ? ? ? ? ? ? ? % ? ? ? ? ? ? ? ? ? % % X ? ? Q 9 9 9 9 9 9 9

? § ?
Q

? e § § § §

1
W

I
302



Appendix E: Human Teav Dwp Results

OsOs m 8 inm 8 Oscn d- ooo ooo d"cn ooCN h-o Sv o ooo cnm s 00d" g 8 8 d" ooo
cno 8 d" d-

CN
Os Os VO oo O s VO (Os (Os Os (_j r- VO os Os VO cd os VO t ^ o (OS l> (Os -

1
d"m in mCN d-

oocn s Osd" Oso in00 CN inCN cnVO C3S
00cn Oso CNcn inoo 8 in cnCN (Oscn incn C3SCOS CN 00 8

o m in o d" o CN O VO o O d" o o o o o m o o o o O o o

1 U
00 Osrn oVO 8 ood- VOcn d" VOcn 8 cnm VOcn incn d-cn 8 8 3 cnin VOcn cn CO\ cnm g oocn

tS o o O o o o o o O o o o o o o o o o o o o o o o o o o o o

>
00 CNm o00 Oso ocn in00 VOcn mCN cn C3Sin moo 00 VO ocn mCN cnVO oOs VO cn cnd" 0000 oocn 8 00o cnoo 00cn oo ooo
m m cn r~ r- VO cn cn cn CN cn CN cn VO cn o cn r- VO o cn d" o

Ï
CQ

OsOS(N
VOosCN

CN
cn

osd"in
0000in

VO
in ocn

oinm 8cn
00
OsCN 8

t-'
CN cnCN

0000in
oinm OsCN 8in VOcn sin

CNmCN
00
cn

ood"in VOm
oo in (Osocn VOm cnm cnCN

1

oCu
OOOin mCN cn

r~
g

cno
8

r-in 00
3

d-VOCN o
VOinCN §

00VOcn
o VOd- mocn

Oscncn oo
oVOCN

o
s

ood- oCN 8 8
oo
8 8

(Os00 00o

w

Q.
1 vdm

cn
d-

8
00

CN

§

Os
cnos d"

Oscn(N

inin
(Os cn

VOcn
vdcn

ooo
cncn

OsO
odCN

00cn
aCN

cnm
9d"

oo
Os
<6oCN

r~m
osOSCN

00o oo
Os00

VO
od

d-CN
odcn

OCN
cnCN o

vd

cn00
(d

8
m

8
cnoo

in
cos'o

mm
cn

-o

1
U (N s

cncn
o

d"in
od

s
CN

?od
in
vd

VOcn
g

d"
vd

in
d-

VOo
od

Oscn
vd inCN

inOs
d>d-

oo
od

VOin d"O
8

S
cn vd

g
d"m VO0C3 O sin

CN
in
CN

VOCN
o

g
(d

VOin
cnCN

00 8

> s in inoo 8 cnin m cnr- oo CN d- Osin 8 VO os 00 ooCN ooo min in00 ind- VOOO cn d"m CN d" 8 CN 8
m CN o cn cn in d" CN CN r-- <N CN cn o d- CN os o d- CN o m (d VO

CQ 8
osmm

oo d-cnoo
r-
8

ooocn 8
V in

inmcn
or-
V

mCNcn VOoo Sin
O
g(N

8m
00cnd- 8cn

cnod"
8
V

COS
cn

COs d"00cn
cos
8

oo
8

(OSo g §
ooinin

oocnin

S cd cd cd cd cd cd cd cd 2 cd cd cd cd cd ,2 cd cd cd cd cd cd cd cd cd cd cd 2 cd

1 1 1
cd
-2

cd
-2 1

cd
-2

cd cd
-2

cd
-2

cd
-2

cd
-2

cd
-2 4 « 1 '41 1 1 1

cd
-2

cd
-2

cd
-2 1

cd cd
u

2 w 3 3 3 3 !Z (2 3 3 3 3 3 3 3 2 3 Ni 3 3 3 Ni a 2 3 a a

I
c/3

C/3 C/3 c/3z c/3z cn
Z z z c/3z c/3z z c/3 J/3 CO c/3 c/3 c/3 xn c/3 c/3 cn

Z z z z z xn
Z z z z

c/3z

S
s

8 mm oin VOin r-in cnin 00d" inin oin OSin m 8 8 VOd" 8 r-d" 00d" 8 8 8 8 VOd" 8 d"m d"m
<

0

1
1 S S S Ph Ph Ph Ph Ph P4 Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph

g -
Ü

cd
C/3

K Q Q Û Q Q Q Q Q Û Q Q a Q Û Q O Q Û Û Û Q Q Q Û Û Q Q Q Q

§ CN g 8 s
mCN 8 B

00CN (OsCN Ocn cn CNcn cncn d-cn mcn VOcn cn OOcn Oscn 1 d" g cnd" ind- VOd- § ood"

g

os

;

CJsOOCN

OsO
8

OsO
8

Os
o

8
Os
o
oCN

Os
o

8
(Os

;

OsOOCN

Os
o

8
OS
o
o(N

OsO
8

Os
o
o(N

Os
o

8
os
o
oCN

CJS
o

8
os
o
ors

Os

I

OsOOCN

OsO
8

Os
o

8
Os
o

8
(OsO
o(N

Os
o

8
(OsO
oCN

(OS
o
o<N

Os
o
8

Os
o
oCN

cos
§CN

cu S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S' S'
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

§
Ni Ni Ni Ni Ni N: Ni Ni Ni Ni Ni N:

f

I
W
<u

;
303



Appendix E: Human Tear Drop Results
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Appendix E: Human Tear Drop Results
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Appendix E: Human Tear Drop Results

A ppendix  E4
Analysis o f  covariance (ANCOVAl:
T ab le  E4.1: ANCOVA results for B in tear drops (n = 128).
Source o f 
variance

Sum o f 
squares df MS F Sig. if

Corrected
Model

2155766.828 9 239529.648 3 ^ 3 5 0.000 0.226

Intercept 1420880.710 1 1420880.710 22.748 0.000 0.162
Age 47153.413 1 47153.413 0.755 0.387 0.006
DW 81800.316 1 81800.316 1.310 0.255 0.011

Health 785287.009 1 785287.01 12.573 0 .0 0 1 ^ 0.096
Gender 2720.305 1 2720.305 0.044 0.835 0.000

Smoking 50945.837 1 50945.837 0.816 0.368 0.007
H * G 52524.896 1 52524.896 0.841 0.361 0.007
H * S 13045.937 1 13045.937 0.209 0.648 0.002
G * S 199892.460 1 199892.460 3.200 0.076+ 0.026

H * G * S 207882.412 1 207882.41 3 3 2 8 0.071+ 0.027
Error 7370339.598 118 62460.505
Total 35421799.45 128

Corrected
Total

9526106.426 127

H = healthy, G = gender, S = smoking, df = degrees o f  freedom, F is the 
calculated value for F -test, ^critical = 3.909, DW  = drinking water, * indicates an 
interaction term, Sig. = level o f significance, significant effect or interaction; is 
significant at f  < 0.01, ^ is significant at P  < 0.1. M ean o f  square (MS) = sum o f 
squares (SS)/df, F = MSeffect/MSgrror, = partial eta squared = SSeffect/SSeffect + 
SSerror*

T able  E4.2: ANCOVA results for V in tear drops (n =  155).
Source o f  variance SS df MS F Sig.
Corrected M odel 421.772 9 46.864 2.264 0.021 0.123

Intercept 177.051 1 177.051 8.554 0.004 0.056
Age 65.945 1 65.945 3.186 0.076+ 0.022
DW 275.387 1 275.387 13.305 0.000++ 0.084

Health 27.182 1 27.182 1.313 0.254 0.009
Gender 0.033 1 0.033 0.002 0.968 0.000

Smoking 32.158 1 32.158 1.554 0.215 0.011
H * G 0.021 1 0.021 0.001 0.975 0.000
H *  S 0.549 1 0.549 0.027 0.871 0.000
G * S 4.850 1 4.850 0.234 0.629 0.002

H * G * S 8.793 1 8.793 0.425 0.516 0.003
Error 3001.160 145 20.698
Total 7543.614 155

Corrected Total 3422.931 154
H = healthy, G = gender, S = smoking, df= degree o 
value for F -test, Fcriticai = 3.909, DW = drinking w 
term, Sig. = level o f significance, ++ significant effect 
significant at P  < 0.1. Mean o f square (MS) =  si 
MSeffect/MSerror, =  partial eta squared =  SSeffect/SSgf

• freedom, F is the calculated 
ater,*indicates an interaction 
or interaction at P  <  0.001, + 

am o f  squares (SS)/df, F =

fect^" S S  error*
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Appendix E: Human Tear Drop Results

T able  E4.3: ANCOVA results for Cr in tear drops (n = 151).
Source o f 
variance

Sum o f 
squares df Mean

squares F Sig. rf
Corrected

Model
1842.140 9 204.682 1.971 0.047 0.112

Intercept 2605.908 1 2605.908 25.093 0.000 0.151
Age 307.558 1 307.558 2.962 0.087++ 0.021
DW 16.130 1 16.130 0.155 0.694 0.001

Health 153.468 1 153.468 1.478 0.226 0.010
Gender 4.914 1 4.914 0.047 0.828 0.000

Smoking 31.675 1 31.675 0.305 0.582 0.002
H * G 84.374 1 84.374 0.812 0.369 0.006
H * S 95.508 1 95.508 0.920 0.339 0.006
G * S 440.704 1 440.704 4.244 0.041+ 0.029

H * G *  S 11.065 1 11.065 0.107 0.745 0.001
Error 14642.925 141 103.851
Total 35512.641 151

Corrected Total 16485.065 150
H = healthy, G = gender, S = smoking, df= degree o 
value for F-test, Fcriticai = 3.909, DW  = drinking wa 
term, Sig. = level o f significance, + significant effect 
significant at P  < 0.1. M ean o f square (MS) = si 
MSeffect/MSerror, if = partial eta squared = SSeffect/SSef

'  freedom, F is the calculated 
ter, * indicates an interaction 
or interaction at P  < 0.05, ++ 
am o f  squares (SS)/df, F =
feet S S  error*

T able  E 4 .4 :  ANCOVA results for Mn in tear drops [n = 148).
Source o f 
variance

Sum o f 
squares df Mean

squares F Sig. rf
Corrected

Model
182083.342 9 20231.482 5.494 0.000 0 .2 6 4

Intercept 72824.328 1 72824.328 19.775 0.000 0.125
Age 2401.711 1 2401.711 0.652 0.421 0.005
DW 30345.322 1 30345.322 8.240 0.005+ 0.056

Health 59974.369 1 59974.369 1 6 .2 8 6 0.000++ 0.106
Gender 426.769 1 4 2 6 . 7 6 9 0.116 0.734 0.001

Smoking 12583.648 1 1 2 5 8 3 .6 4 8 3.417 0.067+++ 0.024
H * G 1499.985 1 1499.985 0.407 0.524 0.003
H * S 3631.583 1 3631.583 0.986 0 . 3 2 2 0.007
G * S 6965.341 1 6965.341 1.891 0.171 0.014

H * G *  S 3269.306 1 3 2 6 9 . 3 0 6 0.888 0.348 0.006
Error 508193.946 138 3682.565
Total 1218423.933 148

Corrected
Total

690277.288 147

H = healthy, G = gender, S = smoking, df= degree o f freedom, F is the calculated 
value for F-test, Pcriticai = 3.909, DW  = drinking water, * indicates an interaction 
term, Sig. = level o f significance, ++ significant effect or interaction at P  < 0.001, + 
is significant at P  < 0.01, + ^  P  < 0.1. Mean o f square (MS) = sum o f squares 
(SS)/df, p =  M Seffect/M Serror, if = partial eta squared = SSeffect/SSeffect + SSerror*
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Appendix E: Human Tear Drop Results

T able  E4.5: ANCOVA results for Fe in tear drops (n = 148).
Source o f 
variance

Sum o f 
squares df M ean squares F Sig. rf

Corrected
Model

5048460.351 9 560940.039 2.722 0.006 0.151

Intercept 2064113.423 1 2064113.423 10.017 0.002 0.068
Age 89110.069 1 89110.069 0.432 0.512 0.003
DW 436436.819 1 436436.819 2.118 0.148 0.015

Health 160001.161 1 160001.161 0.777 0.380 0.006
Gender 1159264.615 1 1159264.615 5.626 0.019+ 0.039

Smoking 9244.897 1 9244.897 0.045 0.833 0.000
H * G 100163.711 1 100163.711 0.486 0.487 0.004
H * S 132263.269 1 132263.269 0.642 0.424 0.005
G * S 620347.216 1 620347.216 3.011 0.085 0.021

H * G * S 447929.098 1 447929.098 2.174 0.143 0.016
Error 28435159.85 138 206051.883
Total 73794721.11 148

Corrected
Total

33483620.20 147

H = healthy, G = gender, S = smoking, df= degree of freedom, F is the calculated value 
for F-test, Fcnticai = 3.909, DW = drinking water, * indicates an interaction term, Sig. = 
level of significance,  ̂significant effect or interaction at P  < 0.05. Mean of square (MS) 
= sum of squares (SS)/df, F = MSeffect/MSe„or, f  = partial eta squared = SSeffect/SSeffect + 
SSerror*

T able  E4.6: ANCOVA results for Cu in tear drops (n = 155).
Source o f 
variance

Sum o f 
squares df M ean squares P Sig. rf

Corrected
Model

425055.163 9 47228.351 2.088 0.034 0.115

Intercept 1185011.746 1 1185011.746 52.387 0.000 0.265
Age 85309.540 1 85309.540 3.771 0.054+ 0.025
DW 18518.117 1 18518.117 0.819 0.367 0.006

Health 51296.824 1 51296.824 Z 268 0.134 0.015
Gender 7971.983 1 7971.983 0.352 0.554 0.002

Smoking 14140.476 1 14140.476 0.625 0.430 0.004
H * G 25072.565 1 25072.565 1.108 0.294 0.008
H * S 69763.723 1 69763.723 3.084 0.081+ 0.021
G * S 45206.633 1 45206.633 1.998 0.160 0.014

H * G *  S 8868.045 1 8868.045 0.392 0.532 0.003
Error 3279951.418 145 22620.355
Total 13350029.34 155

Corrected
Total

3705006.581 154

H = healthy, G = gender, S = smoking, df= degree o f freedom, F is the calculated 
value for F-test, Pcriticai = 3.909, DW = drinking water, *indicates an interaction term, 
Sig. = level o f significance, + significant effect or interaction at P  < 0.1. Mean of 
square (MS) = sum of squares (SS)/df, P  = MSeffect/MSerror, if = partial eta squared = 
SSeffect/SSeffect SSerror*
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Appendix E: Human Tear Drop Results

T able  E4.7; ANCOVA resu ts for Zn in tear drops (n = 147).
Source o f 
variance

Sum o f 
squares df Mean

squares P Sig. tf
Corrected

Model
29981961.1 9 3331329.0 2.529 0.010 0.142

Intercept 55022140.6 1 55022140.6 41.775 0.000 0.234
Age 8394559.3 1 8394559.3 6.373 0.013+ 0.044
DW 3018589.1 1 3018589.1 2 2 9 2 0.132 0.016

Health 1663286.1 1 1663286.1 1.263 0.263 0.009
Gender 1257753.5 1 1257753.5 0.955 0.330 0.007

Smoking 1801513.3 1 1801513.3 1.368 0.244 0.010
H * G 1692227.8 1 1692227.8 1.285 0.259 0.009
H * S 10080760.0 1 10080760.0 7.654 0.006++ 0.053
G * S 31207.6 1 31207.6 0.024 0.878 0.000

H * G * S 106701.0 1 106701.0 0.081 0.776 0.001
Error 1.804E8 137 1317119.3
Total 4.233E8 147

Corrected
Total

2.104E8 146

H = healthy, G = gender, S = smoking, df= degree o f  freedom, F is the calculated 
value for F-test, Pcriticai = 3.909, DW  = drinking water, * indicates an interaction 
term, Sig. = level o f significance, ++ significant effect or interaction at P  < 0.01, + 
is significant at P  < 0.05. M ean o f square (MS) = sum o f squares (SS)/df, P  = 
MSeffect/MSerror, if = partial eta squared = SSeffect/SSeffect + SSerror-

T able  E4.8: ANCOVA results for As in tear drops (n = 152).
Source o f 
variance

Sum o f 
squares df Mean

squares P Sig. rf
Corrected

Model
2844.709 9 316.079 3.773 0.000 0.193

Intercept 1437.011 1 1437.011 17.155 0.000 0.108
Age 1438.777 1 1438.777 17.176 0.000++ 0.108
DW 158.224 1 158.224 1.889 0.171 0.013

Health 8.272 1 8.272 0.099 0.754 0.001
Gender 9.835 1 9.835 0.117 0.732 0.001

Smoking 17.140 1 17.140 0.205 0.652 0.001
H * G 4.339 1 4.339 0.052 0.820 0.000
H * S 2.944 1 2.944 0.035 0.852 0.000
G * S 35.968 1 35.968 0.429 0.513 0.003

H * G * S 35.949 1 35.949 0.429 0.513 0.003
Error 11894.770 142 83.766
Total 21543.089 152

Corrected Total 14739.480 151
H = healthy, G = gender, S = smoking, df= degree o 
value for F-test, Pcriticai = 3.909, DW = drinking wa 
term, Sig. = level o f  significance, ++ significant effec 
M ean o f square (MS) = sum o f squares (SS)/df, P  = 

eta squared SS effect/SSeffect”̂  SSerror*

'  freedom, P  is the calculated 
ter, * indicates an interaction 
t or interaction at P  < 0.001. 

M Seffect/M Serror, 1J partial
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T able  E4.9: ANCOVA results for Sr in tear drops (n = 150).
Source o f 
variance

Sum o f 
squares df Mean

squares P Sig.

Corrected
Model 14925165.043 9 1658351.671 29.156 0.000 0.652

Intercept 126951.378 1 126951.378 2.232 0.137 0.016
Age 31533.890 1 31533.890 0.554 0.458 0.004
DW 9998396.033 1 9998396.033 175.783 0.000+ 0.557

Health 306479.365 1 306479.365 5.388 0.022++ 0.037
Gender 23382.180 1 23382.180 0.411 0.522 0.003

Smoking 2311.539 1 2311.539 0.041 0.841 0.000
H * G 40923.593 1 40923.593 0.719 0.398 0.005
H * S 464395.290 1 464395.290 8.165 0.005+++ 0.055
G * S 19590.982 1 19590.982 0.344 0.558 0.002

H * G * S 343517.661 1 343517.661 6.039 0 .0 1 5 ^ 0.041
Error 7963088.556 140 56879.204
Total 66029062.247 150

Corrected
Total 22888253.600 149

H = healthy, G = gender, S = smoking, df= degree o f  : 
value for F-test, Pcriticai = 3.909, DW  = drinking wate 
term, Sig. = level o f  significance, + significant effect 
significant at P  < 0.05, +++ significant at P  < 0.01. M c £  

squares (SS)/df, P  = M Seffect/M Serror, if = partial eta 
SSerror*

Teedom, P  is the calculated 
r, *indicates an interaction 
)r interaction P  < 0.001, ++ 
in o f  square ( M S )  = sum o f 
squared =  SSeffect/SSeffect +

T able E4.10: ANCOVA results for Cd in tear drops [n = 150).

Source o f  variance
Sum o f 
squares df Mean

squares P Sig.

Corrected Model 61.254 9 6.806 2.186 0.026 0.123
Intercept 93.718 1 93.718 30.107 0.000 0.177

Age 4.794 1 4.794 1.540 0.217 0.011
DW 11.572 1 11.572 3.717 0.056+ 0.026

Health 0.164 1 0.164 0.053 0.819 0.000
Gender 10.351 1 10.351 3.325 0.070"^ 0.023

Smoking 30.136 1 30.136 9.681 0 .0 0 2 ^ 0.065
H * G 3.866 1 3.866 1.242 0.267 0.009
H * S 0.887 1 .887 0.285 0.594 0.002
G * S 2.285 1 2.285 0.734 0.393 0.005

H * G * S 0.017 1 0.017 0.005 0.942 0.000
Error 435.800 140 3.113
Total 1104.726 150

Corrected Total 497.054 149
H = healthy, G = gender, S = smoking, df= degree o 
value for F-test, Pcriticai = 3.909, DW = drinking wa 
term, Sig. = level o f  significance, ++ significant effec 
is significant at P  <  0.1. Mean o f square (MS) = s 

M Seffect/M Serror, if = partial eta squared = SSeffect/SSefi

■ freedom, P  is the calculated 
ter, ^indicates an interaction 
t or interaction at P  <  0.01, ^ 
>um o f  squares (SS)/df, P  = 
ect”̂  SSerror*
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T able  E4.11: ANCOVA results for Cu in tear drops (n = 155) without covariant 
variable (individual’s age).

Source o f 
variance

Sum o f 
squares df M ean squares P Sig. if

Corrected
Model

339745.6 8 42468.203 1.842 0.074 0.092

Intercept 3104884.9 1 3104884.945 134.704 0.000 0.480
DW 21047.4 1 21047.376 0.913 0.341 0.006

Health 178235.7 1 178235.700 7.733 0.006+ 0.050
Gender 1531.7 1 1531.707 0.066 0.797 0.000

Smoking 4426.1 1 4426.116 0.192 0.662 0.001
H * G 30322.3 1 30322.331 1.316 0.253 0.009
H * S 49177.6 1 49177.613 2.134 0.146 0.014
G * S 27226.9 1 27226.927 1.181 0.279 0.008

H * G * S 23326.8 1 23326.791 1.012 0.316 0.007
Error 3365260.9 146 23049.733
Total 13350029.3 155

Corrected
Total

3705006.6 154

H = healthy, G = gender, S = smoking, df= degree o f freedom, F is the calculated 
value for F-test, Pcriticai = 3.909, DW  = drinking water, * indicates an interaction 
term, Sig. = level o f  significance, + significant effect or interaction at P  < 0.01. 
Mean o f square (MS) = sum o f squares (SS)/df, P  = MScffcct/MScrror, if ~ partial 
eta squared sSeffect/SScflect ̂  SSerror*

T able  E4.12: ANCOVA results for As in tear drops (n = 152) w ithout covariant 
variable (individual’s age).

Source o f variance Sum o f 
squares df M ean

squares P Sig. rf
Corrected Model 1405.933 8 175.742 1.885 0.067 0.095

Intercept 159.110 1 159.110 1.706 0.194 0.012
DW 156.936 1 156.936 1.683 0.197 0.012

Health 598.247 1 598.247 6.416 0.012+ 0.043
Gender 14.416 1 14.416 0.155 0.695 0.001

Smoking 7.672 1 7.672 0.082 0.775 0.001
H * G 13.463 1 13.463 0.144 0.705 0.001
H * S 56.035 1 56.035 0.601 0.439 0.004
G * S .030 1 0.030 0.000 0.986 0.000

H * G * S 1.498 1 1.498 0.016 0.899 0.000
Error 13333.547 143 93.242
Total 21543.089 152

Corrected Total 14739.480 151
H = healthy, G = gender, S = smoking, df= degree o f 
value for F-test, Pcriticai = 3.909, DW =  drinking wate 
term, Sig. = level o f  significance, significant effect 
significant at P  < 0.05. Mean o f  square (MS) = su 
MScffcct/MScrror, if = partial eta squared = SScffect/SScffe<

ifeedom, P  is the calculated 
r, * indicates an interaction 
or interaction; + is highly 

m o f  squares (SS)/df, P  = 
: t +  SSerror*
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T able E4.13: ANC
variables (age and c

OVA results for V in tear drops (n = 155) without covariant 
rinking water).

Source o f variance Sum o f 
squares df MS P Sig. rf

Corrected Model 86.546 1 12.364 .545 0.799 0.025
Intercept 2090.962 1 2090.962 92.127 0.000 0.385
Health 75.257 1 75.257 3.316 0.071 + 0.022
Gender 0.314 1 0.314 0.014 0.906 0.000

Smoking 15.488 1 15.488 0.682 0.410 0.005
H * G 0.977 1 0.977 0.043 0.836 0.000
H *  S 2.413 1 2.413 0.106 0.745 0.001
G *  S 0.004 1 0.004 0.000 0.989 0.000

H * G * S 0.016 1 0.016 0.001 0.979 0.000
Error 3336.385 147 22.696
Total 7543.614 155

Corrected Total 3422.931 154
H = healthy, G = gender, S == smoking, df= degree o: 
value for F-test, Pcriticai = 3.909, DW = drinking wa 
term, Sig. = level o f significance, + significant effe 
Mean o f square (MS) = sum o f squares (SS)/df, P  =
eta squared SSeffect/SSeffectSSerror*

'  freedom, P  is the calculated 
ter, * indicates an interaction 
ct or interaction at P < 0.1.

MSeffect/MSerror, rf = partial

A ppendix  E5

The effect o f Drinking W ater on the Level o f Trace Elements in Tear Drops

100

^  , % 604
I
Ï40

20

n  T ea rd ro p s-L o n d o n  

O  Tap w a te r-L o n d o n  

c n  T ea rd ro p s-K arb a la  

B 1  Tap w ater-K arb a la

C r M n  C u  Fe 
Dement

Z n A s C d

Figure E5.1: Comparative elemental levels in tear drops (pg/1) and corresponding 
tap water (pg/1) for two population groups (n = 155 for Karbala and 18 for 
London samples).
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Appendix E: Human Tear Drop Results
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Appendix A: Documentation and Clinical Study

A ppendix  E7

Interaction effect

T able E7.1: The mean values o f healthy individuals and diabetic patients across
smoking activity groups for Zn levels in tear drop samples from Karbala (n =
147).

Health status Smoking activity Mean 95% Confie ence Interval
Lower Upper

healthy
smoker 1938.493 1199.628 2677.359

non-smoker 853.508 587.790 1119.226

diabetic
smoker 1522.981 895.759 2150.202

non-smoker 1959.557 1410.792 2508.322
" Adjusted mean value which is determined at the arithmetic mean value for age =
36 years and Zn level in drinking water = 69 pg/l.

2-1600-

1000-

non-smoker
Snmking acdvih '

F igure E7.1: Interaction between health status and smoking activity for Zn levels 
(|ig/l) in tear drop samples from Karbala (the data was taken from Table E7.1).
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

A ppendix  F I
Comoarison Studv:
T ab le  F I .3: Summary o f  F-test and a two tailed t-test results for elemental 
levels in saliva samples o f  healthy and diabetic individuals from Karbala, Iraq.

Element
F-test for equality o f 

variances
t-test for equality o f means

(ni, ni)
Variance Fca\c Sig i calc Sig. fcrit

B EVA nd nd

(39 ,27) UVA

V EVA 2.602 0.111 0.764 70^ 0.448

(43 ,29) UVA 0.826 70"^ 0.412

Cr EVA nd nd

(34 ,23) UVA

Mn EVA 7.861 0.007 :L626 70 0.011

(43 ,29) UVA 2 3 6 8 40 0.023 2.02

Fe EVA 1.983 0.164 0.904 70 0.369

(43 ,29) UVA 0.929 66 0.356

Cu EVA 2.071 0.155 0.699 70 0.487

(43 ,29) UVA 0.761 70 0.449

Zn EVA 0.283 0.596 0.058 70 0.954

(43 ,29) UVA 0.060 66 0.952

As EVA 10.708 0.002 2.604 70 0.011

(43 ,29) UVA 3.145 45 0.003 2.01

Sr EVA 1.410 0.239 1.001 70 0.320

(43 ,29) UVA 0.880 36 0.385

Cd EVA nd nd

(25 ,9 ) UVA

EVA and 
= not detei 
o f detecti 
individuals 
U2 -l for F- 
for t-test d 
values for 
values indi 
level o f si^

JV A  are equal variances assumée 
^mined due to there being several 
3n (Table 2.17), ni, n2  are th( 

and diabetic patients, respectivel 
■test, degrees o f freedom for t-ti 
etermined as described in Append 
F-test and t-test, respectively, ĉrit 

cate significant differences at the 
jnificance.

and unequal variances assumed, nd 
samples which were below the lim it 
3 number o f samples for healthy 
y, df= degrees o f  freedom, ni-1 and 
3St (ni+n2-2), degrees o f  freedom 
ix C , Fcaic and tca\c are the calculated 
s critical value atP = 0.05, the bold 
level o f significance P < 0.05, Sig. =
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F I .4: Summary o f F-test and a two tailed t-test results for elemental 

levels in saliva samples for individuals from the healthy population o f  Karbala 

and London.

Element 
(ni, n:)

F-Test for equality o f 

variances
t-test for equality o f  means

Variance ■Fcalc Sig. t calc df Sig. fcrit

B

(39 ,14)

EVA nd nd

UVA

V

(43 ,25)

EVA 10.523 0.002 2.701 66^ 0.009

UVA 3.259 6 2 ^ 0.002 1.99

Cr 

(34, 6)

EVA nd nd

UVA

Mn

(43 ,25)

EVA 7.449 0.008 2.219 66 0.030

UVA 2.754 56 0.008 2.00

Fe

(43 ,25)

EVA 22.001 0.000 3.080 66 0.003

UVA 3.908 51 0.000 2.01

Cu

(43 ,25)

EVA 7.991 0.006 1.532 66 0.130

UVA 1.251 28 0.221

Zn

(43 ,25)

EVA 5.080 0.028 2.091 66 0.040

UVA 2.455 65 0.017 1.99

As

(43 ,25)

EVA 10.936 0.002 3333 66 0.001

UVA 4.338 45 0.000 3.52

Sr

(43 ,25)

EVA 4.828 0.032 1.841 66 0.070

UVA 2.384 46 0.021 2.01

Cd

(25 ,11)

EVA nd nd

UVA

ni, n2  are tl 

words can

le number o 

take from Tz

■ samples for Karbala and London, respectively. Other key 

ible F 1.3.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F1.5: Summary o f F-test and a two tailed t-test results for elemental levels 

in tear drops and saliva for individuals from the healthy population o f  Karbala 

who provided both media.

TE
Mean*

(Fg/l)
C f S )

F-Test for equality o f 
variances

t-test for equality o f  means

Variance ■Fcalc Sig. i calc df Sig. ĉrit

B 0 2 6 ,

234)

EVA 0.453 0.50 4.249 71 0.000 1.99

UVA 4.303 67.711 0.000

V (5.0,

0.4)

EVA 41.409 0.00 6.091 82 0.000

UVA 6.091 41.637 0.000 2.02

Cr (14.2,

0.3)

EVA 33.869 0.00 4.956 74 0.000

UVA 5.515 41.019 0.000 2.02

Mn (45.81,

3.24)

EVA 26.496 0.00 5.019 82 0.000

UVA 5.019 41.454 0.000 2.02

Fe (586,

28)

EVA 43.228 0.00 5.789 82 0.000

UVA 5.789 41.194 0.000 2.02

Cu (257.1,

13.7)

EVA 60.222 0.00 11.005 82 0.000

UVA 11.005 41.792 0.000 2.02

Zn (1004,

70)

EVA 35.709 0.00 5.023 82 0.000

UVA 5.023 41.367 0.000 2.02

As (7.4,

3.0)

EVA 14.971 0.00 2.431 82 0.017

UVA 2.431 51.651 0.019 2.44

Sr (427,

102)

EVA 5.878 0.02 6.265 82 0.000

UVA 6.265 78.465 0.000 1.99

Cd (2.1,

0.3)

EVA 16.090 0.00 3.205 64 0.002

UVA 4.239 41.836 0.000 2.02

’ n = 42, the only exception are for E 

Cr in saliva (n = 34); and Cd in saliva

in tear drops (n = 35) and saliva (n = 38); 

(n = 24), TE is trace element.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

A ppendix  F2
W ashed S cab  Hair Results
T able F2.1: Typical operating conditions for a Finnigan M AT Sola ICP-MS 
instrument.

Parameter Typical operating conditions
Plasm a argon flow rate 16 1/min

Auxiliary argon flow rate 1.2 1/min
Nebuliser argon flow rate 0.8 1/min

Incident power 1400 W
Reflected power 5 W

Nebuliser pressure 2.0 bar
Sample orifice (nickel) 1.1 mm

Skimmer orifice (nickel) 0.7 mm
Spray chamber temp. 2 °C
Cooling water temp. 16 °C

Pump speed 10.2 rpm
Isotopes -  internal standard solution 

(100 pg/L)
^Be+, and

7 2 G g+ “D —115In+
2 5 0 0 0

20000

1 5 0 0 0 ,î~!

a  10000

o  5 0 0 0

9 . 0 0  9 . 5 5  1 0 . 1 0  1 0 . 5 5  1 1 . 2 0  1 1 . 7 5  1 2 . 3 0  1 2 . 8 5  1 3 . 4 0  1 3 . 9 5  1 4 . 5 0

Time (hh:mm)

F igure  F2.1: Typical long term-stability during the analysis o f  scalp hair using a 

100 pg/1 o f and ^^^In as an internal standard solution for multi-elem ent 

analysis by the Finnigan M AT Sola ICP-MS instrument.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

A m endix  F2 
Comoarison Studv:
T ab le  F2.4: Summary o f F-test and a two tailed t-test results for elemental levels 
in washed scalp hair samples o f  healthy and diabetic individuals from Karbala, 
Iraq.

Element
F-Test for equality o f 

variances
t-test for equality o f means

(ni, ni)
Variance Fcalc t calc df Sig. tcni

B EVA nd nd
(171,44) UVA

V EVA 52.140 0.000 8.217 213+ 0.000
(171,44) UVA 16.214 170++ 0.000 1.97

Cr EVA nd nd
(148,21) UVA

M n EVA 43.296 0.000 8.048 213 0.000
(171,44) UVA 15.875 171 0.000 1.97

Fe EVA 27.417 0.000 6.062 213 0.000
(171,44) UVA 11.967 170 0.000 1.97

Cu EVA 18.290 0.000 11.329 213 0.000
(171,44) UVA 22.127 178 0.000 1.97

Zn EVA 0.513 0.475 3.775 213 0.000 1.97
(171,44) UVA 5.078 115 0.000

As EVA nd nd
(119,6) UVA

Sr EVA 24.598 0.000 4.218 213 0.000
(171,44) UVA 8.080 190 0.000 1.97

Cd EVA nd nd
(171,11) UVA

EVA and UVA are equal variances assumée 
not determined due to there being several s 
detection (Table 2.17), ni, ni are the num t 
and diabetic patients, respectively, df= deg 
test, degrees o f freedom for t-test (ni+n 
determined as described in Appendix C , Fa 
F-test and t-test, respectively, tan is critica 
indicate significant differences at the level o 
significance.

and unequal variances assumed, nd = 
amples which were below the limit o f 
)cr o f samples for healthy individuals 
çrees o f  freedom, ni-1 and n ]-l for F- 
2 -2 ), degrees o f  freedom for t-test 
lie and ĉaic are the calculated values for 
1 value at P = 0.05, the bold values 
f  significance P < 0.05, Sig. = level o f
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F2.5: Summary o f F-test and a two tailed t-test results for elemental levels 

in washed scalp hair samples for individuals from the healthy population o f 

Karbala and London.

Element 

(ni, nz)

F-Test for equality o f 

variances
t-test for equality o f means

Variance -Fcalc Sig. t calc df Sig. fcrit

B

(16 ,50)

EVA nd nd

UVA

V

(171,31)

EVA 60.192 0.000 8^ 3 8 219+ 0.000

UVA 16.551 170++ 0.000 1.97

Cr

(171,4)

EVA nd nd

UVA

Mn

(171,8)

EVA nd nd

UVA

Fe

(171,50)

EVA 32.197 0.000 6.574 219 0.000

UVA 12.177 170 0.000 1.97

Cu

(171,50)

EVA 8.671 0.004 10.607 219 0.000

UVA 16.208 201 0.000 1.97

Zn

(171,50)

EVA 28.456 0.000 7.834 219 0.000

UVA 14.454 173 0.000 1.97

As

(171,0)

EVA nd nd

UVA

Sr

(171,26)

EVA 36.181 0.000 5.146 219 0.000

UVA 9.516 171 0.000 1.97

Cd

(171,7)

EVA nd nd

UVA

ni, n 2  are the number o f  samples for Karbala and London samples, respectively. 

Other key words can take from Table F2.4.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F2.6: Summary o f F-test and a two tailed t-test results for elemental levels 
in tear drops and washed scalp hair for individuals from the healthy population 
o f Karbala who provided both media.

TE
Mean*

(Fg/1)
(T ,H )

F-Test for equality o f 
variances

t-test for equality o f  means

Variance Fcalc.  ̂calc. df Sig. ^crit.

B (414,nd) EVA nd nd
UVA

V (4.7,
217.5)

EVA 70.956 0.000 9.283 98 0.00

UVA 9 283 49 0.00 2.01
Cr (13 ,137) EVA 82.140 0.000 8.067 93 0.00

UVA 7.679 48 0.00 2.01
Mn (39,795) EVA 66.923 0.000 11.756 98 0.00

UVA 11.756 50 0.00 2.01
Fe (599,

9692)
EVA 78.053 0.000 9.312 98 0.00

UVA 9.312 50 0.00 2.01
Cu (226,

6125)
EVA 52.551 0.000 17.439 98 0.00

UVA 17.439 49 0.00 2.01
Zn (987,

183342)
EVA 75.964 0.000 10.053 98 0.00

UVA 10.053 49 0.00 2.01
As (9.1,

3 3 J )
EVA 24.707 0.000 5.481 74 0.00

UVA 4.500 32 0.00 2.04
Sr (409,

11131)
EVA 74.920 0.000 6.374 98 0.00

UVA 6.374 49 0.00 2.01
Cd (1.7.1,

327.5)
EVA 23.875 0.000 4.375 98 0.00

UVA 4.375 49 0.00 2.01
T = tear drops, H = Scalp hair, ’ n = 50, t 
(n = 42) and washed scalp hair (n = 2); ( 
in washed scalp hair (n = 26), TE is tn 
from Table F2.4.

le only exception are for 
Zv in washed scalp hair (r 
ace element. Other key v

3 in tear drops 
= 4 5 ) and As 

/ords can take
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

A ppendix  F3
Fingernail Results:
T able  F3.1: Elemental levels (mg/kg) for a "pooled" fingernail sample -  
unwashed (n = 3) ranging from 0.05 to 0.20 g mass digested in different volumes 
(constant dilution factor, 100 fold).

Element
Elemental levels+ (mg/kg)

100* 100* 100* 100* RSD%
V 0.06 0.06 0.08 0.08 16
Cr 0.24 0.28 0.19 0.26 16

Mn 0.77 0.79 0.88 0.68 11
Fe 28.02 28.66 30.55 2 8 3 9 4
Cu 5.01 4.74 5.79 5.14 9
Zn 190.23 231.56 212.96 203.64 8
As 6.05 6.17 6.24 6.77 5
Sr 4.98 6 3 9 4.13 5 3 3 18
Cd 0.34 0.36 0.37 0.38 4.7

*dilution factor, RSD is relative standard deviation, + n = 3 replicates.

T able F3.2: Elemental levels (mg/kg) for "pooled" fingernail samples -  unwashed 
(n=3) ranging from 0.05 to 0.20 g mass digested in a constant volume 20 ml 
(variable dilution factor ranging from 100 -  to 400 fold).

Element
Elemental levels+ (mg/kg)

400* 200* 133* 100* RSD%
V < L O D 0.63 0.19 0.12 -
Cr < L O D 0.64 0.37 0.21 -

Mn 0.72 9.08 3 3 6 0.55 112
Fe 21.26 61.51 24.54 19.86 63
Cu 5 3 8 7.84 6 2 2 5.04 20
Zn 167.73 303.70 320.28 199.71 31
As 13.70 7.98 7.45 6.00 39
Sr 14.01 18.11 8.07 5.55 50
Cd 0.64 0.46 0.38 0.47 22

*dilution factor, RSD is relative standard deviation, + n = 3 replicates.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F3.3: Elemental levels (mg/kg dry weight) and percentage removal for 
"pooled" fingernail sample (using a 0.25 g, constant dilution factor 100 fold 
dilution volume o f  25 ml) (using different washing procedure (n=3).

Element

Elemental levels (mg/kg) (% removed)
Unwashed W ashing procedures*

A B
V 0.08 < L O D < L O D
Cr 0.58 0.08 (86) 0.31 (47)

M n 1.93 0.22 (89) 0.76 (61)
Fe 91.90 14.31 (84) 66.65 (27)
Cu 4.73 1.87 (60) 2.21 (53)
Zn 163.88 48.65 (70) 77.99 (52)
As 8.64 5.05 (42) 8 .14(6)
Sr 5.60 1.55 (72) 3.93 (30)
Cd 0.39 0.29 (26) 0.31 (21)

*A: sequential washing in ultrasonic bath with acetone-water-water-water- 
acetone, B: sequential washing in ultrasonic bath with ether-Triton x-lOO-water- 
water, values in brackets were calculated using this equation, Removed % = 
{(unwashed value -  washed value)/unwashed value} x 100.

T able  F3.4: Accuracy and precision levels for human scalp hair CRM GBW 
09101, and matrix effect for fingernail analysis using a Kejldahl™ tube method.

Element 
(n = 3)

Elemental Levels (mg/kg)

Accuracy Precision
M easured 

value 
mean ± SD

Certified
value
mean

% R mean ± SD %RSD

V
0.066 ± 
0.011

0.069 96 0.14 ±0 .01 7

Cr 0.35 ± 0.04 0.37 95 0.32 ± 0.03 9.4
Mn 2.51 ± 0 .014 2.94 85 2.96 ± 0 .1 8 6.1
Fe 70.8 ± 0.84 71.2 99 176.1 ± 2 .5 1.4
Cu 22 ±0.11 23 96 3.57 ± 0 .05 1.4
Zn 187 ± 0 .3 2 189 99 85 ±  1 1.1
As 0.63 ±0.41 0.59 107 4.22 ±  0.49 11.6
Sr 21.97 ± 9 24 92 13.8 ± 0 .5 3.6
Cd 0.104 ±0.01 0.11 95 0.17 ± 0 .0 2 11.76

SD is standard deviation, RSD is relative standard c 
recovery.

eviation, R  is percentage

354



Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

a
co
Co
U
"O

T 3
U

C/3
O

lo
o
od>
V

<N

<N

O

(N
O

(N

Os
O

in

m
o
o
o

V

00
o

o\

in
o
o
o

V

in
o

o
( N

in
o
oc6
V

inm

G\
O

"4"
( N

CN
O

in

o\
o

inin
(N

m
o

(N
O
o

VO
ni

VOin

r4

o

-4-
o

c3
15
I
so
cd
- i

bOB

§
B<u
W

N

<upL,

o\
ni

mVO
m

m

n)

m om
ni

VO'd"

<n
o
m’m

n-o\
o<m

00

O s
00
VOo\

n -m
Tj-

"d*
o
cnm

O nm
in

o\r-
ni

n -m

oo

n -m o
O n

00'd"

oom
ni

n-n'

'd-m
VO

VO

VO

VOm
ni

VO

OV
o
ni

m
o
ni

Ovm

m

VOm
n - 'ni

■d"m

oin

oo
n j
d"

OV
OV

OVm

oni
ooo

r-'00
VOd-

?
ni

o
o

m

s
n i

n -
o
OVoom

d3
d

u

>

o
n i

om

om VO

CO

OV
d "
o

VO
o

OVm
n i

CQ
in
m’
V

OV
O

VO
o

in
ni
V

in
ni
V

cd§ÜÛcIP
-o

(U
J O

a01
oJ

<c/3

I

cd
'd
I

VO

d

I
d
"dI

n i

_ d
dI

OV

dI

in
nv

c / 3
z

n -
VO

d
d

I

d -
i n

jd
' d

I

n i
d "

jd
' dI

d
" d

c / 3
z

d "in

CDOC

V f -
O

co

2 Pu

II

d)o
1/3
£JiZd
H

d>d3
_0J

C L

I
C / 3

a

c/3
X

IX, X X X X X X

OV
o
o
n i

V
OV
O

;z ẑ
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results
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Comparison Studv:
T able  F3.7: Summary o f F-test and a two tailed t-test results for elemental levels 
in washed fingernail samples o f healthy and diabetic individuals from Karbala, 
Iraq.

Element
F-Test for equality o f 

variances
t-test for equality o f  means

(n l,n 2 )
Variance Fcalc Sig. i calc Sig. fcrit

B EVA nd nd

(10 ,8 ) UVA

V EVA 13.515 0.000 1.092 212+ 0.276

(127, 87) UVA 1.224 196++ 0.222

Cr EVA 0.953 0.330 1.782 212 0.076

(127, 87) UVA 1.716 160 0.088

Mn EVA 19.930 0.000 2.496 212 0.013

(127, 87) UVA 2.900 165 0.004 1.97

Fe EVA nd nd

(103, 87) UVA

Cu EVA 17.023 0.000 6 j9 9 212 0.000

(127, 87) UVA 7.942 130 0.000 198

Zn EVA 1.313 0.253 2.289 212 0.023 1.97

(127, 87) UVA 2 J 9 8 209 0.017

As EVA 0.400 0.528 1.808 212 0.072

(127, 87) UVA 1.686 139 0.094

Sr EVA 8.450 0.004 1.584 212 0.115

(127, 87) UVA 1.526 160 0.129

Cd EVA nd nd

(94 ,62) UVA

EVA and L 
not determi 
detection Ç 
and diabeti 
test, degr 
determined 
F-test and 
significant 
significanc(

VA are equal variances assumée 
ned due to there being several s 
fable 2.17), ni, ri2 are the numt 
c patients, respectively, df= de^ 
ees o f  freedom for t-test (nj+n 
as described in Appendix C , Fc, 
t-test, respectively, /crit is critic 
value, the bold values indicate 
Î P < 0.05, Sig. =  level o f signifn

and unequal variances assumed, nd = 
amples which were below the limit o f 
)cr o f samples for healthy individuals 
jrees o f  freedom, ni-1 and U2 - l for F- 
2 -2 ), degrees o f  freedom for t-test 
lie and /calc are the calculated values for 
:al value at P  = 0.05, reported for 
significant differences at the level o f 
:ance.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F3.8: Summary o f  F-test and a two tailed t-test results for elemental levels 
in washed fingernail samples for individuals from the healthy population o f 
Karbala and London.

Element

(n l,n 2 )

F-Test for equality o f 

variances

t-test for equality o f  means

Variance Fcalc Sig. t calc df Sig. fcht

B

(10, 0)

EVA nd nd

UVA

V

(127,32)

EVA 25.776 0.000 5.224 170+ 0.000
UVA 8.433 148++ 0.000 1.97

Cr

(171,17)

EVA nd nd

UVA

Mn

(127,21)

EVA nd nd

UVA

Fe

(103 ,2)

EVA nd nd

UVA

Cu

(127,45)

EVA 5.433 0.021 1.385 170 0.168

UVA 2.228 150 0.027 1.97

Zn

(127,45)

EVA 6.094 0.015 1.339 170 0.182
UVA 1.852 160 0.066 1.97

As

(127,35)

EVA nd nd

UVA

Sr

(127,45)

EVA 24.658 0.000 5.905 170 0.000
UVA 8.438 167 0.000 1.97

Cd

(94 ,28)

EVA nd nd

UVA

ni, n2  are the number o f  samples 
determined due to there are seve 
(Table 2.17). Other key words can

h r  Karbala and London, respectively, nd = not 
ral samples were below the lim it o f detection 
take from Table F3.7.
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Appendix F: Human Saliva, Washed Scalp Hair and Fingernail Results

T able  F3.9: Summary o f F-test and a two tailed t-test results for elemental levels 
in tear drops and washed fingernail for individuals from the healthy population o f 
Karbala who provided both media

IE*
M ean

(Fg/1)
(T ,F )

F-Test for equality o f 
variances

t-test for equality o f  means

Variance Fcalc % t calc df Sig. ^crit

B (nd,nd) EVA nd nd
UVA

V (5.7,
1 3 8 . 4 )

EVA 3 1 . 9 3 0 0 . 0 0 5 . 9 7 2 1 0 0 + 0 . 0 0

UVA 5 . 9 7 2 5 0 + + 0.00 2 . 0 1

Cr ( 1 2 ,

398)
EVA 3 1 . 3 1 9 0 . 0 0 4 . 8 5 9 1 0 0 0 . 0 0

UVA 4 . 8 5 9 5 0 0.00 2 . 0 1

Mn (53,
1 8 7 7 )

EVA 2 7 . 3 6 2 0 . 0 0 4 . 3 0 1 1 0 4 0 . 0 0

UVA 4 . 3 0 1 5 0 0.00 2 . 0 1

Fe (749,
62003)

EVA 5 5 . 9 9 4 0 . 0 0 6 . 0 3 0 89 0 . 0 0

UVA 5.332 3 9 0.00 2 . 0 2

Cu (279,
4 7 0 4 )

EVA 1 9 . 4 2 2 0 . 0 0 8 . 9 0 6 1 0 0 0 . 0 0

UVA 8 . 9 0 6 5 0 0.00 2 . 0 1

Zn (1244,
9 7 4 9 5 )

EVA 3 0 . 5 1 4 0 . 0 0 1 4 . 1 0 5 1 0 0 0 . 0 0

UVA 1 4 . 1 0 5 5 0 0.00 2 . 0 1

As (6.6,
7 9 . 7 )

EVA 3 1 . 5 5 8 0 . 0 0 8 . 9 3 7 1 0 0 0 . 0 0

UVA 8 . 9 3 7 5 3 0.00 2 . 0 1

Sr (424,
4304)

EVA 4 9 . 1 9 1 0 . 0 0 7.567 1 0 0 0 . 0 0

UVA 7.567 51 0.000 2 . 0 1

Cd (2.1,
68.5)

EVA 14.028 0 . 0 0 3.492 90 0 . 0 0 1

UVA 3.127 40 0.002 2 . 0 2

T = tear drops, F = fingernail, nd = not determined d 
samples were bellow the limit o f  detection (Table 2.1 
exception are for B in tear drops (n = 44) and washed fi 
washed fingernails (n = 40) and Cd in washed fingemai 
element. Other key words can take from Table F3.7.

ue to t 
7), * n 
ngemai 
Is (n =

lere are several 
= 51, the only 
s (n = 4); Fe in 
41), TE is trace
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Figure F4.1; Vanadium, Cr, Zn and As levels in tear drops, saliva, washed scalp 

hair and fingernails for healthy individuals (n = 30), M iddle band, box and 

whiskers represent the median, 25th and 75th percentile, and 5th and 95th 

percentile, respectively. Circles represent outliers, whereas represents extreme 

values.
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