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Introduction 

The ability of discrete element modelling (DEM) to provide useful information on the micro-scale 

parameters that underlie the observed macro-scale response of soil is now well established.  Notable 

examples include the work of Thornton (2000) and Cheng et al (2003).   In geotechnical laboratory 

testing the need to maintain a small ratio for the particle dimensions to the sample dimension is well 

established.  The same consideration should be made when simulating element tests using discrete 

element simulations.  One option is to consider an ideal, boundary free simulation environment using 

a rectangular periodic cell (e.g. Thornton, 2000).  However where this approach, the simulations 

cannot easily be directly compared with physical tests for validation purposes.  Furthermore, as 

demonstrated by Cui and O’Sullivan (2005) DEM simulations can provide insight into the non-

uniformities present in real physical tests when the test boundary conditions are included in the DEM 

model.  One limitation associated with particulate DEM simulations is their computational cost.  Each 

particle is modelled as a rigid body, or a number of rigid bodies bonded together.  Consequently of the  

number of degrees of freedom associated with the simulation of even a conventional triaxial 

laboratory test can easily be in the order of 10
5
 – 10

6
.   The simulations are also dynamic, requiring 

the dynamic equilibrium of each particle to be considered at discrete points in time.  The inherent 

non-linearity of the particulate systems considered and conditional numerical stability of the central 

difference time integration algorithm used in DEM limit the time step that can be used in the 

simulations, further adding to the computational cost.  While there is potential to improve DEM 

simulation run-times by efficient coding, careful compiler selection and parallel processing, there is 

also merit in exploring the possibility to reduce the number of particles or degrees of freedom present 

in the system by taking advantage of symmetry considerations where possible.   

This paper proposes a framework for simulating only one segment of the system for DEM simulations 

of geometrically axi-symmetric assemblies of particles, reducing the number of particles that need to 

be analysed while preserving the three dimensional contact force network.  Axi-symmetry is 

encountered in a variety of systems of interest in geomechanics, most notably the samples tested in 

the commonly used triaxial test are cylindrical and the applied stress field is axi-symmetric. The 

concept of the system is firstly proposed, followed by a description of the analytical and laboratory 

validation of the approach.  The evolution of the approach for 90
o
 segments has been described in 

prior publications (e.g. Cui et al (2007), O’Sullivan et al (2008) and O’Sullivan and Cui (2009)).  The 

objective of the current paper is to describe the generalized formulation for the approach and a 

coherent documentation of the key findings from the completed validation study. 

Description of Boundary Conditions 

The use of rectangular periodic boundaries for DEM simulations of boundary free element tests has 

been described by numerous DEM analysts (including Thornton (2000)).  In that approach rectangular 

samples are used the particle coordinates and contact force information is translated to the opposite 



boundary to maintain an infinite continuous network of interparticle contact forces.  For axi-

symmetric simulations this concept can be adapted by rotating the particle coorindates and contact 

force information to maintain a continuous network about the central vertical axis in a triaxial test 

simulation.  Figure 1 illustrates this concept for a 90
o
 segment, where a quarter of the system is 

considered and two orthogonal, vertical radial period boundaries bound the quadrant.  Particles A and 

B are both adjacent to these boundaries.  The coordinates of particle B are rotated for the purposes of 

contact detection.  The magnitude of the interparticle force between particle A and B is calculated 

using the rotated particle coordinates.  This force is then applied directly to particle A and rotated for 

application to particle B as illustrated.  For ease of implementation of the system the z axis should be 

taken to act along the centre of symmetry of the sample and the x axis should form one of the 

circumferential boundaries, the second periodic boundary is then inclined at an angle θ to the x axis, 

where θ ≤ 90
o
.  Then for general implementation of the system the coordinates of B (xB, yB, zB)  are 

mapped to the point B’ (xB’, yB’, zB’) using the following orthogonal rotation: 

�������� � �cos � �sin � 0sin� cos � 00 0 1��
���������� 

The contact force coordinates are then mapped back to the original particle B using the inverse of this 

transformation matrix.  This approach was implemented into a modified version of the TRUBAL 

DEM code (Cundall and Strack, 1979) initially only for θ = 90
o
 segment, and then extended to the 

general case of θ ≤ 90
o
   as described by Barreto Gonzalez (2009). 
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Figure 1 Illustration of circumferential periodic boundaries (a) Mapping of ball to new 

equivalent position. (b) Rotation of contact forces along boundaries 

An additional challenge regarding the general implementation of the axi-symmetric periodic boundary 

system is the contact detection algorithm.  Typically in a DEM simulation testing for contact between 

a given particle and every other particle in the system is both computationally expensive and 

unnecessary.  From geometrical considerations any one particle can potentially contact only those 

particles that are close to it.  The most common approach to identifying particles that are close is to 

adopt a binning algorithm.  In this approach the entire system of particles is overlain with a regular 

grid, with each grid cell having dimensions (in 3D) zyx ∆×∆×∆ , with nx, ny and nz being the 

number cells in the x, y, and z directions respectively.   Using this information a simple calculation 

can be used to map each particle to a cell in the grid and a list of the particles mapped to each grid cell 



can be generated.  Then, as illustrated in Figure 2(a) for a simple cartesian system, the adjacent cells 

(housing potential contacting particles) can be simply identified.  In contrast, for the axi-symmetric 

system where a particle is adjacent to the periodic boundary geometrical considerations increase the 

number of cells housing potential contacting particles along the other periodic boundary. 
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Figure 2 Illustration of contact detection challenges for axisymmetric system 

Validation 

The axi-symmetric periodic boundary environment was validated both analytically and 

experimentally.  As discussed by O’Sullivan (2002) amongst others, consideration of the response of 

uniform disks and spheres with lattice packing configurations is useful for validation of DEM 

simulations.  The first phase of the validation of the axi-symmetric considered uniform spheres with a 

face-centered-cubic (FCC) packing configuration and a comparison was made with the analytical 

solution proposed by Thornton (1979).   A quantitative match between the simulation results and the 

analytical results was achieved (within 5% error).   The experimental validation of the algorithm 

considered the response of specimens of steel spheres in vacuum confined triaxial tests.  The testing 

and simulation program considered both uniform (mono disperse) and non-uniform (poly disperse) 

triaxial tests.  The samples were subject to simple, strain controlled monotonic triaxial tests, tests 

involving pre-peak load reversals and strain controlled cyclic tests.  As illustrated in Figure 3 a good 

agreement was obtained between the physical tests and numerical simulations in for all three test 

series. 
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Figure 3 Validation results (a) Monotonic triaxial tests (b) Monotonic triaxial tests including pre-peak 

load reversals (c) Cyclic triaxial tests. 
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