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Abstract 

The aim of this study was to develop a mathematical modelling method that can predict individual 

patients’ response to radiotherapy, in terms of tumour volume change during the treatment. The main 

idea was to start from a population-average model, which is subsequently updated from an individual’s 

tumour volume measurement; therefore the model becomes more and more personalised and so is the 

prediction. This idea of adaptive prediction was realised by using a Bayesian approach for updating the 

model parameters. The feasibility of the developed method was demonstrated on the data from 25 non-

small cell lung cancer patients treated with helical Tomotherapy, during which tumour volume was 

measured from daily imaging as part of the image-guided radiotherapy. The method could provide 

useful information for adaptive treatment planning and dose scheduling based on the patient’s 

personalised response. 
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1. Introduction 

Among available treatments for cancer, radiotherapy has been one of the two most effective methods 

(the other being surgery) in the care and cure of cancer (Joiner & van der Kogel, 2009). A fundamental 

task in radiotherapy research is to understand and predict the response of tumour and normal tissues to 

treatment. This paper is focused on the tumour response; in particular, the modelling and prediction of 

tumour volume change during the course of radiotherapy. Since tumour volume has been regarded as a 

measure of treatment response (Bral et al., 2009; Bentzen & Thames, 1996; Dubben et al., 1998; 

Mozley et al., 2012; Willner et al., 2002), such predictive models could provide useful information that 

could be used to optimise treatment for individual patients, as demonstrated in computer simulations 

(Chen et al., 2012; Dionysiou & Stamatakos, 2006; Kim et al., 2009). It should be noted that rapid 

reduction of tumour volume during radiotherapy can associate with poor outcome (e.g. Brink et al., 

2014); therefore care needs to be taken when using volume alone as treatment marker. 

Monitoring tumour volume change in radiotherapy has recently become easier than before, due to 

the wide use of image-guided radiotherapy (IGRT), e.g. the megavoltage computed tomography 

(MVCT) enabled Tomotherapy and cone-beam CT based systems (Burnet et al., 2010; Xing et al., 

2006). During the course of IGRT, tumours can be imaged before each fraction of radiation, providing 

the measurements of tumour volume at multiple time points during treatment, thus timely indication of 

tumour response for individual patients (Barker et al., 2004; Loo et al., 2011; Woodford et al., 2007). 

The availability of such data has generated substantial research interest in developing mathematical 

models that can describe and predict the time-profile of tumour change, in particular for individual 

patients. This line of research, if successful, would significantly contribute to personalised optimisation 

of radiotherapy treatment. 

Mathematical modelling of tumour growth and response to radiotherapy has been well reported 

(e.g. Barazzuol et al., 2010; Chvetsov et al., 2008; Huang et al., 2010; Rockne et al., 2009, 2010). 

Nevertheless, only until recently it has been possible to model tumour volume change at multiple time 

points during treatment, thanks to the use of IGRT. Examples include radiobiological modelling the 

dynamics of gross tumour volume (GTV) during radiotherapy of head-and-neck cancer with four cell 

populations (Chvetsov et al., 2009). Later the modelling approach was adapted to non-small cell lung 
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cancer (NSCLC) to estimate the cell survival fraction and its correlation with patient survival time 

(Chvetsov et al., 2014). An empirical regression model was presented by Seibert et al. (2007) for lung 

cancer (both non-small cell and small cell) treated by helical Tomotherapy. Recently, we reported a 

radiobiological modelling study for stereotactic ablative radiotherapy (SABR) of NSCLC (Tariq et al., 

2015), which emphasised the need for a systems approach to the selection of proper models. However, 

these studies have been limited to fitting the models to clinical data. Because of large inter-patient 

variability, it is not clear how the models, developed using data from existing patients, can be used to 

predict the tumour volume change of a new patient. 

More recently, the concept of adaptive modelling of tumour volume for individual patients has 

started to emerge. Zhong & Chetty (2014) showed that the parameters of a radiobiological model can be 

more accurately estimated by using more data of an individual patient; however they did not explore 

further to demonstrate adaptive prediction of tumour volume. In another study, Brink et al. (2014) 

reported that when the model was developed by using the tumour volumes from the first 2/3 of the 

treatment, its prediction of the remaining 1/3 of the treatment was very good; however the model used 

was not radiobiology-based but an empirical exponential equation. 

Against this background, this paper reports a new Bayesian adaptation approach with 

radiobiological modelling, for predicting individual patient’s tumour volume change during 

conventionally fractionated radiotherapy of NSCLC. The primary idea is described below. First, a 

radiobiological model is developed from a population of existing patients. Given the various possible 

modelling options (e.g. whether tumour growth is exponential or logistic, whether tumour cells are 

homogeneous, etc.), the Akaike information criterion (AIC) reported in our previous study (Tariq et al., 

2015) is applied to select a model that gives good trade-off between goodness-of-fit and model 

complexity (Burnham & Anderson, 2002). Then, when a new patient is about to be treated, his/her 

volume change will be predicted based on the population-averaged model, because very little is known 

about how this patient will respond to therapy a priori. Subsequently during the treatment, the 

population model is adapted (updated) when new GTV measurement is available, so that the model 

becomes more and more “personalised” to the specific patient and thus the prediction becomes more 

accurate. Model adaptation to incoming, patient-specific data is realised through a Bayesian parameter 
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estimation method (Gelman et al., 1995), which facilitates a smooth transition from the population-

averaged to a patient-specific model. It is worth noting that the model selection step is necessary, 

because if the model is too complex and has too many parameters, its quick adaptation to a small 

amount of patient-specific data will be difficult. The usefulness of the proposed method is demonstrated 

on NSCLC patients undergoing Tomotherapy.  

The method explored in this study could be used in a clinical environment to provide timely and in-

treatment prediction of tumour response; such information could be useful for personalised optimisation 

of the treatment schedule. It should be noted that because the model adaption method relies on patient-

specific volume measurements during treatment, it may not be suitable for hypofractionated 

radiotherapy (e.g. SABR) which does not provide sufficient number of measurements.  

 

2. Patients and data 

Twenty five patients, treated for NSCLC on the Hi-Art helical Tomotherapy unit at the London 

Regional Cancer Program, Ontario, Canada, from 2005 to 2007, were used for this study. The patient 

cohort and data were originally reported in (Woodford et al., 2007) for 17 patients, and were expanded 

to have 25 patients when made available to this study. Here only brief description of the patients and 

data is provided; more detailed information can be found in (Woodford et al., 2007).  

All patients received cisplatin and vinorelbine as neoadjuvant chemotherapy, finishing treatment 4-

6 weeks before the start of radiotherapy. Chemotherapy is not expected to affect relative GTV changes 

from radiotherapy because all patients were treated using the same regimen. A prescription dose of 60-

64 Gy in 2 Gy per fraction was used for patients in this study, all of whom had locally advanced (Stages 

III-IV) disease. Prior to treatment, CT simulation, treatment planning and delivery quality assurance 

were performed to ensure proper dose distributions and absolute dose delivery. During treatment, daily 

MVCT images were acquired for setup verification. The GTVs used in this study were calculated 

retrospectively based on the MVCTs. Elective nodal radiation was used for some patients, but the nodes 

were excluded from the GTV; only primary tumour volume was measured for the modelling purpose in 

this work. Figure 1 illustrates the GTV change with respect to time for all 25 patients; for clarity the 

data are shown in two plots on the basis of initial volume. The uncertainties of the measured GTVs 
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were established to be around 4%, see (Chvetsov et al., 2014) for detailed descriptions. 

 

(a) 

 

 

(b) 

 

Figure 1.  Summary of data used in the modelling study: (a) the initial GTV is less than 150 cm
3
; (b) the 

initial GTV is greater than 150 cm
3
. 
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3. Modelling and Bayesian adaption methods 

This section briefly presents the mathematical models used to describe the change of GTV over time, 

and the AIC method for model selection, similar to our previous modelling study for SABR (Tariq et al., 

2015) and other related work (Chvetsov et al., 2014). The focus will then be on presenting a Bayesian 

model adaptation algorithm for prediction. 

 

3.1. The models 

The basic model consists of two types of tumour cells: living or dead. Without radiation, the living cells 

(volume   ) will proliferate according to rate  , and the dead cells (volume   ) will be cleared 

according to rate  , as follows:  

    
  
     

(1) 

    
  

      
(2) 

where   is time. The radiation damage on tumour cells is modelled by the linear-quadratic equation, 

which describes the proportion of living cells surviving irradiation: 

   (    )    ( )    (      
 ) (3) 

where    denotes the infinitesimal time after radiation delivered at time  ,   is the radiation dose per 

fraction, and   and   are the model parameters. The killed tumour cells will join the population of dead 

cells as follows: 

   (    )    ( )    ( )[     (      
 )] 

     ( )    ( )    (    ) 

 

(4) 

The total measured tumour volume is then        . 

It should be noted that since the dose per fraction is constant (2 Gy), for the given dose   and 

surviving fraction     (       ), there will be infinite combinations of   and   that satisfy this 

equation. As a result, it is not possible to estimate both   and  . In this study,     ratio is fixed to 10 

Gy, a value widely used for lung tumours (e.g. Jin et al., 2010). This approach is mathematically 

equivalent to directly estimating the survival fraction as in (Chvetsov et al., 2014). 
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The model described in eq. (1)-(4) may be simplified in various ways. One possibility is to ignore 

cell proliferation; it however cannot well describe some patients whose tumour volume increases during 

the treatment, and thus is not considered in this study. Another approach is to assume a single type of 

tumour cells, motivated by the fact that CT images do not differentiate dead from living cells, and thus 

the actual measurement is only the overall volume. Without the dead cell compartment, the model 

describes the change of volume due to growth: 

   

  
    

(5) 

and the shrinkage of volume due to radiotherapy: 

  (    )   ( )    (       ) (6) 

A major shortcoming of this one-compartment model is that the estimated model parameters do not 

represent the radiobiology of tumour cells; instead they should be interpreted with respect to the change 

of the volume, within which both living and dead cells exist. 

Finally, the basic model can also be made more complex by including other subtleties. One 

possibility is to use logistic growth, in place of the exponential growth in eq. (1) or eq. (5), for cell 

proliferation. Without treatment, tumour would grow indefinitely under the exponential proliferation 

model, whilst described by logistic growth equation it would reach a plateau due to the lack of 

sufficient nutrients. The logistic growth for living cell proliferation is described by 

    
  
    (  

  
 
) 

(7) 

where   is the carrying capacity; by dropping the subscript  , the model for one population can be 

obtained in place of eq. (5).  

It is well accepted that small tumours tend to grow nearly exponentially; but when they become 

sufficiently large, logistic growth is more applicable due to the effect of cell loss and hypoxia. If the 

volume (  ) is much smaller than the carrying capacity ( ), logistic growth degenerates to exponential 

growth. However, logistic growth model introduces one extra parameter ( ), and whether this provides 

better model accuracy needs to be investigated in light of data.  

Table 1 summarises the four modelling options to be investigated. 
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Table 1. Modelling options considered in this study. In the abbreviation, prefix denotes either one type 

(“1”) or two types (“2”) of tumour cells, and suffix denotes either exponential (“Exp”) or logistic 

(“Logit”) growth.  

Model abbreviation Equations Parameters 

1-Exp Eq. (5)(6)     (      ) 

1-Logit Eq. (5)(7)       (      ) 

2-Exp Eq. (1)-(4)       (      ) 

2-Logit Eq. (2)-(4),(7)         (      ) 

 

3.2. Model calibration and selection 

We follow the previous study of modelling tumour volume during SABR for model calibration and 

selection (Tariq et al., 2015). Specifically, the models listed in Table 1 are calibrated to each of the 25 

patients by estimating the parameters, using the maximum likelihood method which is equivalent to 

minimising the sum of squared errors between measured GTV and model fitting. Lower and upper 

bounds were added to constrain the possible range of the parameters, in light of reported literature data, 

as follows: 

 The rate of proliferation for NSCLC,   (     ), was reported to be in the range of [0.001, 

0.086] (Sharouni et al., 2003), which was used as the bounds in this paper.  

 The survival fraction of NSCLC cell lines under 2 Gy was reported to be between 0.164 and 

0.922, which is equivalent to a range of [0.0338, 0.7533] for the linear radiobiological 

parameter,   (    ), by fixing     to 10 Gy.  

 The carrying capacity,   (   ), varies from patient to patient, and so do the bounds. The lower 

bound was set as the maximum GTV of a particular patient, while the upper bound is 10 times 

of the lower bound to allow sufficient space for parameter estimation.  

 The clearance rate for dead tumour cells,   (     ), was reported to be 0.0246, 0.0096 and 

0.0383 for different tumours (Chvetsov et al., 2008; 2009). Literature data are sparse for this 

parameter. In order to allow sufficient freedom for parameter estimation, the bounds were 
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expanded to set as [0.0045, 0.0540]. 

The percentage root mean squared error (%RMSE) will be reported to assess model goodness-of-fit. 

Subsequently, the Akaike information criterion (AIC) (Burnham & Anderson, 2002) was used to help 

select a model that attains a good balance between complexity and goodness-of-fit. The rationale is that 

if a model is complex with a large number of free parameters, it would fit the data better than a simpler 

model. However, complex models tend to over-fit the data and do not generalise well to predict unseen 

measurements. The AIC is given as 

             (8) 

where   is the number of free parameters, and   is the maximum likelihood achieved in model 

calibration. The model with the minimum AIC should be chosen. 

It should be noted that this study is focused on prediction for individual patients, for which it is 

critical to ensure that the modelling option selected provides satisfactory results. Therefore, the model 

parameters were separately estimated for each patient. A population representation of the parameters 

will be derived from the distribution of the estimated parameter values, as explained in the section 

below. 

 

3.3. Bayesian adaptive prediction 

The main idea of adaptive prediction is to sequentially improve the prediction of a patient’s response to 

therapy by using data collected during the treatment. When a new patient enters the treatment, the 

response will be predicted based on a population-averaged model and initial GTV. Subsequently during 

the treatment, the population model is updated using the GTV measurement of this specific patient, so 

that the model becomes more and more personalised and the prediction becomes more accurate. Model 

adaptation will be implemented through a Bayesian parameter estimation method (Gelman et al., 1995), 

which facilitates a smooth transition from the population-averaged to a patient-specific model. 

The Bayesian approach synthesises two sources of information about the model parameters. The 

first is the prior distribution corresponding to the information about population patients in this study. 

The second is the likelihood function that represents the data of a specific patient. Let   be the set of 

model parameters and   denote the data of the patient, Bayes theorem results in the following posterior 
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distribution of the parameters  ( | ): 

  ( | )     ( )  ( | ) (9) 

where  ( ) is the prior and  ( | ) the likelihood. Model adaptation is thus achieved by searching for 

the value of parameters   that maximises the posterior probability density function given in eq. (9). 

Subsequently, the updated parameter value is used for predicting the tumour volume change towards the 

end of treatment.  

In eq. (9), the likelihood function is the same as used for model calibration stage. The prior 

distribution is derived from the parameters estimated in the model calibration stage explained in Section 

3.2. There are 25 patients in the study; for each patient to be predicted, the remaining 24 patients form 

the population. This ensures that the prior distribution does not contain any specific information from 

the new patient to be predicted. For each of the model parameters, a log-normal distribution is 

established from the 24 values of the population patients. Log-normal distribution is used because all 

model parameters are positive (Table 1). The model parameters are assumed independent a priori and 

thus the overall prior distribution is a product of the log-normal distributions of the k parameters:  

 

 ( )   ∏ (  )

 

   

 (10) 

The above method of obtaining population parameter distribution is a two-stage approach, since it 

estimates the parameter values for individual patients first, prior to combining them into a distribution. 

The two-stage approach is used in this study, because we need to assess the model goodness-of-fit for 

individual patient; it was shown to produce similar results when compared with the more rigorous, non-

linear mixed-effect approach for obtaining population parameter distribution directly (Hahn et al., 2011). 

Arguably, the parameters can be updated by maximising the likelihood function of patient-specific 

data only, which is a method widely used in the biomedical community (Chen et al., 2012; Noble et al., 

2010). However, the Bayesian approach provides a natural combination of information from population 

and individual. This is especially useful at the initial stage of the treatment, when the patient-specific 

data is scarce and maximum likelihood may not give a reliable estimate of the parameters. On the other 

hand, Bayesian estimation will converge to maximum likelihood method when the amount of data tends 

to infinity anyway.  
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In the results section, the two adaptive prediction methods, Bayesian and maximum likelihood, will 

be compared. In addition, these two methods will be further compared with the prior prediction method 

(i.e. only using prior population model parameters for prediction with no adaption to individual 

patients), as well as the model fitting results. The intention was that prior prediction established the 

baseline results against which adaptive prediction can improve, and the fitting results gave the upper 

limit of the model accuracy. 

 

4. Results  

Two sets of results are presented in this section: those for model calibration and selection, and those for 

adaptive Bayesian prediction.  

Table 2 shows the calibration results of the four models, including the estimated parameters, 

the %RMSE and AIC values. Since the models were calibrated to 25 individual patients, the median 

and range of the results are reported. In the light of %RMSE, it appears that more complex models have 

better goodness-of-fit than simple ones, though the improvement is not substantial. Including carrying 

capacity (thus exponential growth becoming logistic growth) provides very little benefit (RMSE 

reduced from 8.85% to 8.39% for one-population model, and no change for two-population model), 

whilst adding a population of dead cells has more appreciable effect. Based on goodness-of-fit, it might 

be reasonable to choose the 2-Logit model. However, the trend for AIC is different: adding carrying 

capacity actually results in worse AIC, which increases from 108 (1-Exp) to 109 (1-Logit) for one-

population model and from 79 (2-Exp) to 81 (2-Logit) for two-population model. According to the 

principle of AIC, using logistic growth is not well supported by the data, and 2-Exp is a good choice in 

terms of the balance between model complexity and goodness-of-fit. Therefore, the subsequent results 

will be focused on 2-Exp. In addition, the 5.43% RMSE achieved by 2-Exp is close to the uncertainties 

of the measured GTVs (around 4%). 
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Table 2. Summary of the model calibration results.  

   (     )   (    )   (   )   (     ) RMSE (%) AIC 

1-Exp       

median 0.0371 0.0338 - - 8.85 108 

range [0.012, 0.049] [0.0338, 0.050] - - [2.52,18.61 ] [-38,243] 

       

1-Logit       

median 0.0371 0.0338 899 - 8.39 109 

range [0.001, 0.086] [0.0338, 0.040] [18, 1200] - [2.51,18.61] [-36,274] 

       

2-Exp       

median 0.0016 0.4924 - 0.0155 5.43 79 

range [0.001, 0.086] [0.0338, 0.753] - [0.0045, 0.041] [2.42,14.35] [-51,245] 

       

2-Logit       

median 0.0016 0.4079 100 0.0155 5.43 81 

range [0.001, 0.086] [0.0338, 0.753] [50, 1200] [0.0045, 0.041] [2.42,14.35] [-49,247] 

 

 

 

 

 

Figure 2 presents the overall satisfactory modelling results of 2-Exp, by plotting the fitted GTV 

against measured values for all 25 patients. As explained before, the model parameters are fitted to 

individual patients and thus different patients have different values of the parameters. Figures 3-5 

demonstrate the profile of GTV dynamics for three representative patients having the lowest (patient 9), 

median (patient 6) and highest (patient 19) %RMSE. Even for patient 19 with the highest RMSE, the 2-

Exp model is still able to follow the main trend. 
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Figure 2. Model fitting results of 2-Exp for all 25 patients’ data. The diagonal line corresponds to 

perfect fit. 

 

 

Figure 3. GTV dynamics for patient 9 (RMSE=2.42%). 
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Figure 4. GTV dynamics for patient 6 (RMSE=5.43%). 

 

Figure 5. GTV dynamics for patient 19 (RMSE=14.35%). 
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Next, we present the results of Bayesian adaptive prediction using the 2-Exp model. Note that the 

prior distribution of the model parameters was assumed to be log-normal. To verify this assumption, 

Figure 6 gives the histograms of the three parameters as calibrated to the 25 patients individually. As 

expected, these parameters do not conform to normal distributions, as they must be positive. Instead, 

Figure 6 shows that log-normal distributions appear to be good representation of   and  . But for  , 

almost half of the estimated values are close to the upper bound and thus the distribution appears to be 

bi-modal. Nevertheless, log-normal distribution was still used for   for its straightforward 

implementation. The histograms also show a large inter-patient variability for all three parameters 

estimated. 

(a)         (b) 

  

(c) 

 

Figure 6. Histograms (normalised to probability density function (pdf)) of estimated parameters for the 

2-Exp model, and the fitted log-normal distributions. (a) Rate of proliferation ( ); (b) Rate of clearance 

( ); (c): The linear killing effect of radiation ( ). 
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Figures 7-9 give the typical results of Bayesian adaptive prediction for three patients, whose model 

fitting results were shown previously. For clarity, the predicted GTV changes are presented for every 

five fractions of radiotherapy, though the model and the prediction were actually updated after each 

fraction of radiotherapy. The prior predictions show similar trend for all patients, since they rely on the 

similar population parameters which indicate that on average, patients are quite responsive to the 

treatment with decreasing GTV over time. (Note that the prior distributions are not exactly the same for 

different patients, because when one patient is to be predicted, it is excluded from the population for 

calculating the prior. This method is adopted to mimic the reality that a particulate patient’s GTV 

change is not known prior to treatment.) In general, the prior predictions are inaccurate, and for the 

three patients presented they substantially over-estimate the sensitivity to radiotherapy. The Bayesian 

adaption method achieved improved prediction to various extent. For patient 9 (Figure 7), the model 

seems to provide satisfactory prediction as early as fraction 10 (total 28 fractions). However for patient 

6 and 19 (Figures 8 and 9, respectively), the computational method could not “foresee” a quick drop of 

GTV somewhere in the middle of treatment, and thus the predictions were not as satisfactory until late 

stage of the treatment. 
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Figure 7. Bayesian model adaptation for patient 9 (the lowest %RMSE in model calibration). 

 

Figure 8. Bayesian model adaptation for patient 6 (the median %RMSE in model calibration). 
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Figure 9. Bayesian model adaptation for patient 19 (the highest %RMSE in model calibration). 

 

Figure 10 summarises the overall prediction results of all 25 patients for Bayesian model 

adaptation, compared with maximum likelihood (ML) adaptation, prior prediction (i.e. no adaptation), 

and model fitting (i.e. no prediction). The percentage RMSE is calculated from the time of prediction 

towards the end of the treatment, which is why the RMSEs for model fitting and prior prediction change 

slighly with the number of fractions. It can be seen that adaptive prediction methods are useful in terms 

of reducing errors when compared with prior prediction: this happens after 4 fractions for Bayesian 

adaption and after 8 fractions for ML adaptation. The improvement in prediction accuracy becomes 

more apparent when more data are available, e.g. the RMSE at 15 fractions is 30.1% for Bayesian 

adaptation against 44.2% for prior prediction, and at 20 fractions is 28.0% for Bayesian adaptation 

against 44.3% for prior prediction. Bayesian method appears to be more reliable than the ML adaptation 

when the number of fractions, thus the amount of an individual patient’s data, is small. When more data 

become available, Bayesian adaptation converged to the ML method, as expected. Finally, when 

approaching the last few fractions, adaptive prediction methods achieved an accuracy comparable to 
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pure model fitting, e.g. at fraction 26, the RMSE for Bayesian adaptation is 13.0% whilst that for model 

fitting is 11.2%. 

 

 

Figure 10. Quantitative analysis of model fitting, Bayesian adaptation, prior prediction and Maximum 

likelihood adaptation for 25 patient’s data 

 

5. Discussions 

The first important observation is that the 2-Exp model appears to be a good option for describing 

tumour volume dynamics in the course of radiotherapy. This model describes the exponential growth of 

living cells and first-order clearance of dead cells, together with the linear-quadratic equation for the 

radiation effect. Although tumour cells cannot exponentially grow indefinitely, this model may provide 

a good balance between model complexity and goodness-of-fit, as assessed by the AIC. It should be 

noted that similar models have been used in other tumour volume modelling studies (Chvetsov et al., 

2014; Tariq et al., 2015). 

In addition, the results show substantial variability across different patients, which can be seen 
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from the wide range of %RMSE and AIC values, as well as the estimated model parameters in Table 2. 

As expected, different patients may respond to radiotherapy very differently, a phenomenon also 

observed in our previous report of modelling SABR patients (Tariq et al. 2015), and other related 

studies (Seibert et al., 2007; Chvetsov et al., 2009; Chvetsov et al., 2014). The inter-patient variability 

suggests that a population model, which describes some average profile of response to treatment, has 

limited value in the prediction for individual patients. Patient-specific information is needed for 

personalised prediction. In this regard, the presented Bayesian adaption approach can adjust the model 

and prediction based on the patient’s early response; it can provide significantly improved prediction as 

illustrated in Figure 10. 

It should be noted that the model adaptation methods (both Bayesian and maximum likelihood) do 

not give better predictions than the population average at the first few fractions when data are limited. 

This is expected, since the 2-Exp model has three parameters and cannot be reliably estimated by using, 

e.g. three data points or less. In other words, the patient has not provided sufficient, individual 

information for the model to adapt properly. Nevertheless, the Bayesian approach appears to be less 

susceptible to the limited amount of data when compared with the maximum likelihood method. 

Therefore, it is recommended that adaptive prediction should only be considered when the number of 

patient-specific data points is greater than the number of model parameters, and the Bayesian approach 

is preferred to the maximum likelihood estimation. This requirement may exclude the application of the 

adaptive prediction method to hypo-fractionation in which only a few fractions of high dose radiation 

are used (e.g. SABR). 

Apparent tumour growth can be observed for some patients, for example patient 19 shown in 

Figure 9. The same phenomenon was seen in our previous modelling study of hypofrationated 

radiotherapy (SABR) of lung cancer (Tariq et al., 2015). As discussed in that study, the apparent 

volume growth could be the result of a number of factors (possibly a combination of them), including (i) 

actual tumour growth, (ii) tumour inflammatory response to treatment, (iii) surrounding normal tissue’s 

response to treatment, (iv) uncertainties in contouring, and (iv) changes in breathing patter or patient 

motion. Only the first factor was explicitly represented in the model, since it is not possible to 

distinguish these from MVCT images. 
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A limitation of the model adaption approach is its reliance on the data obtained during treatment. If 

a particular patient’s response is very different from the average profile of the population, the prediction 

will need much more data to be adapted properly. The limitation is vividly illustrated on patient 19, 

whose GTV only began to reduce from day 30 (Figure 9). Therefore, it is almost impossible to predict 

that patient 19’s GTV will eventually shrink only by looking at the data prior to day 30. The apparent 

delay in tumour shrinkage is probably due to other patient-specific factors, which are not reflected in 

the early stage of the treatment. Therefore, the possibility of sudden GTV change in later stage of the 

treatment needs to be borne in mind when using the predictions for decision-making. It would be useful 

to identify, as early into treatment as possible, which patients can be well predicted. From Figures 7-9, 

it is tempting to hypothesise that (i) if a patient responds early to radiotherapy (patient 9), then very 

good prediction accuracy can be achieved; and conversely (ii) if a patient does not respond until about 

half into treatment (patient 6 and 19), then prediction will not be as good. However, this hypothesis 

does not generalise to all patients in the cohort (results not shown). Nevertheless, given the small 

patient cohort (25 patients), it is too early to tell whether this hypothesis is valid or not. This 

phenomenon also indicates that, although model adaptation methods provide improved prediction when 

compared with using population average, they could be further enhanced by including other patient-

specific factors. These should be further investigated. 

 

6. Conclusions 

This paper presents an adaptive modelling method for predicting the tumour volume change in response 

to radiotherapy. In terms of model fitting, the results echo previously reported studies in that relatively 

simple models are adequate for describing tumour volume dynamics. More importantly, the presented 

Bayesian adaptation method can substantially improve the prediction results by using patient-specific 

data that are collected along with the treatment. This work represents a step towards developing 

quantitative tools to support personalised and adaptive approach to radiotherapy.  

Future work is focused on extending the adaptive prediction of tumour volume, which is usually a 

secondary end-point, to primary treatment end-points such as tumour control probability. In addition, 

we also plan to explore how other factors, in addition to tumour volume, could be included in the 
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modelling framework to further improve the prediction accuracy. To this end, advanced functional 

imaging, for example positron emission tomography-computed tomography (PET-CT), is a promising 

technique. It is known that tumour control probability is determined by the living tumour cells, which 

cannot be differentiated from those killed by radiation on volume measurements alone. Tumour 

heterogeneity seen on functional imaging is likely to provide key information for the prediction of 

treatment outcome, and this will be explored in future work.  
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