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While the idea of computer simulation has had enormous influence on most areas of 
science, and even on the public imagination through its use in computer games such 
as SimCity, it took until the 1990s for it to have a significant impact in the social 
sciences. The breakthrough came when it was realised that computer programs offer 
the possibility of creating ‘artificial’ societies in which individuals and collective 
actors such as organisations could be directly represented and the effect of their 
interactions observed.  This provided for the first time the possibility of using 
experimental methods with social phenomena, or at least with their computer 
representations; of directly studying the emergence of social institutions from 
individual interaction; and of using computer code as a way of formalising dynamic 
social theories.  In this chapter, these advances in the application of computer 
simulation to the social sciences will be illustrated with a number of examples of 
recent work, showing how this new methodology is appropriate for analysing social 
phenomena that are inherently complex, and how it encourages experimentation and 
the study of emergence. 

Social simulation 
The construction of computer programs that simulate aspects of social behaviour can 
contribute to the understanding of social processes.  Most social science research 
either develops or uses some kind of theory or model, for instance, a theory of 
cognition or a model of the class system. Generally, such theories are stated in textual 
form, although sometimes the theory is represented as an equation (for example, in 
structural equation modelling). A third way to express theories is as computer 
programs. Social processes can then be simulated in the computer. In some 
circumstances, it is even possible to carry out experiments on artificial social systems 
that would be quite impossible or unethical to perform on human populations. 
An advantage of using computer simulation is that it is necessary to think through 
one’s basic assumptions very clearly in order to create a useful simulation model. 
Every relationship to be modelled has to be specified exactly. Every parameter has to 
be given a value, for otherwise it will be impossible to run the simulation. This 
discipline also means that the model is potentially open to inspection by other 
researchers, in all its detail. These benefits of clarity and precision also have 
disadvantages, however. Simulations of complex social processes involve the 
estimation of many parameters, and adequate data for making the estimates can be 
difficult to come by.  
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Another benefit of simulation is that, in some circumstances, it can give insights into 
the 'emergence' of macro level phenomena from micro level actions. For example, a 
simulation of interacting individuals may reveal clear patterns of influence when 
examined on a societal scale. A simulation by Nowak & Latané (1994), for example, 
shows how simple rules about the way in which one individual influences another’s 
attitudes can yield results about attitude change at the level of a society. A simulation 
by Axelrod (1995) demonstrates how patterns of political domination can arise from a 
few rules followed by simulated nation states. Schelling (1971) used a simulation to 
show that high degrees of residential segregation could occur even when individuals 
were prepared to have a majority of people of different ethnicity living in their 
neighbourhood.  
 
Figure 1:  The pattern of clusters that emerge from Schelling’s model 

Schelling’s study is a good illustration of the kind of work involved in simulation. He 
modelled a neighbourhood in which homes were represented by squares on a grid.  
Each grid square was occupied by one simulated household (in Figure 1, either a 
green or a red household), or was unoccupied (black).  When the simulation is run, 
each simulated household in turn looks at its eight neighbouring grid squares to see 
how many neighbours are of its own colour and how many of the other colour.  If the 
number of neighbours of the same colour is not sufficiently high (for example, if there 
are fewer than three neighbours of its own colour), the household ‘moves’ to a 
randomly chosen unoccupied square elsewhere on the grid.  Then the next household 
considers its neighbours and so on, until every household comes to rest at a spot 
where it is content with the balance of colours of its neighbours.   
Schelling noted that when the simulation reaches a stopping point, where households 
no longer wish to move, there is always a pattern of clusters of adjacent households of 
the same colour.  He proposed that this simulation mimicked the behaviour of whites 
fleeing from predominantly black neighbourhoods, and observed from his 
experiments with the simulation that even when whites were content to live in 
locations where black neighbours were the majority, the clustering still developed: 
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residential segregation could occur even when households were prepared to live 
among those of the other colour. 

Sociology and complexity 
The physical world is full of systems that are linear or approximately linear.  This 
means that the properties of the whole are a fairly simple aggregation of the parts.  
For example, the properties of even such a massive system as a galaxy, with hundreds 
of millions of component stars, can be predicted precisely using the basic equations of 
motion.  The same applies to aggregations on an atomic and molecular level.   
Societies, in particular human societies, are different.  They seem to have rather 
unpredictable features, meaning that it is perilous to make exact predictions of their 
future development, and their characteristics at any one time seem to be affected by 
their past histories.  For example, the adoption of one of a pair of alternative 
technologies within a society can be greatly influenced by minor contingencies about 
who chooses which technology at an early stage in their introduction (see Arthur 
1989).  This is known as ‘path dependence’.   It is a sign that human societies, 
institutions and organisations are complex systems, using ‘complex’ in the technical 
sense to mean that the behaviour of the system as a whole cannot be determined by 
partitioning it and understanding the behaviour of each of the parts separately, which 
is the classic strategy of the reductionist physical sciences. 
One reason why human societies are complex is that there are many, non-linear 
interactions between their units, that is between people.  The interactions involve the 
transmission of knowledge and materials that often affect the behaviour of the 
recipients.  The result is that it becomes impossible to analyse a society as a whole by 
studying the individuals within it, one at a time.  The behaviour of the society is said 
to ‘emerge’ from the actions of its units.  There are many examples of emergence in 
social systems; indeed, it may be that almost all significant attributes of social 
systems are emergent.  For example, markets emerge from the individual actions of 
traders; religious institutions emerge from the actions of their adherents; and business 
organisations emerge from the activities of their employees, in addition to the actions 
of groups such as legislators, lawyers, advertisers and suppliers.  We can say that a 
phenomenon is emergent when it can only be described and characterised using terms 
and measurements that are inappropriate or impossible to apply to the component 
units.  For example, we can identify the creed of a church or the mission of an 
organisation, but these terms fit uncomfortably, if at all, when applied to individual 
people. 
While emergent phenomena can also be found in physical systems, a feature of 
human societies that makes then unique is that people can recognise (and therefore 
respond to) the emergent features (Gilbert 1995).  For example, households not only 
often cluster in segregated neighbourhoods, but these neighbourhoods are named and 
can acquire reputations that further affect the behaviour of those living there and 
others such as employers who may stereotype the inhabitants. 
Another important characteristic of societies is that they are result of dynamical 
processes.  The individuals within a society are constantly ‘in motion’: talking, 
listening, doing.  Society emerges from this constant change.  Like a waterfall that 
exists only so long as the water of which it is formed is moving, a society only exists 
while its members are living, acting and reacting.  Moreover, the units from which 
societies are formed, that is, people, vary greatly in their capabilities, desires, needs 
and knowledge, in contrast to most physical systems that are composed of similar or 
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identical units.  For these reasons, while theories of complexity developed for the 
understanding of natural systems can be illuminating, caution needs to be exercised in 
applying them directly to social phenomena. 

Data 
In order to understand complex, dynamical societies, we need appropriate data to base 
analyses on.  Unfortunately, acquiring such data is very hard.  The traditional methods 
of analysis in sociology have been to gather qualitative data from interviews, 
observation or from documents and records, and to carry out surveys of samples of 
people.  While qualitative data can illustrate very effectively the emergence of 
institutions from individual action, because of the nature of the data most analyses 
inevitably remain somewhat impressionistic.   
More precision is apparently provided by studies based on quantitative data, but 
typical survey data has severe limitations if we take seriously the idea that societies 
are complex and their feature are emergent.  Survey data, with just a few exceptions, 
treats individuals as isolated ‘atoms’ and pays little attention to the impact of people’s 
interactions with others.  The exceptions are data intended for studies of social 
networks, where respondents are asked about whom they communicate with, are 
friends with, and so on.  However, it is difficult to make such sociometric surveys 
representative.  The result is that much quantitative sociology is based on data that are 
inappropriate for understanding social interactions.  This difficulty applies equally to 
the study of other complex systems.  For instance, if you want to understand the 
biology of a mouse, taking a random sample of a small proportion of its cells and 
studying these is unlikely to improve greatly one’s knowledge of the mouse’s 
structure and function.   
Another problem with much sociological quantitative data, including most surveys, is 
that they come from measurements made at a one moment in time.  But this makes the 
way in which individuals change, and the effect of these changes, almost invisible to 
the analyst.  Asking ‘retrospective’ questions about the respondents’ past can help, 
but the answers will inevitably be coloured by their present situation.  What are 
needed are data that track individuals through their life course.  Such data are starting 
to become available with large-scale panel studies, but they are very expensive to 
collect and still limited in scope. 
These limitations of conventional sociological data are fairly well known.  The 
problem is overcoming them.  A completely different approach is to build simulation 
models corresponding to one’s theories about society and then to test these against 
data.  In contrast to the inductive methodology of collecting data and then building 
models that describe and summarise those data, this approach starts from a more 
deductive perspective.  A model is created, calibrated from whatever data is available 
and then used to derive testable propositions and relationships.  The advantage of this 
approach is that it places much lower demands on the data, while the models can truly 
reflect the complex nature of societies. 

Multi-agent models 
A multi-agent model consists of a number of software objects, the ‘agents’, 
interacting within a virtual environment.  The agents are programmed to have a 
degree of autonomy, to react to and act on their environment and on other agents, and 
to have goals that they aim to satisfy.  In such models, the agents can have a one-to-
one correspondence with the individuals (or organisations, or other actors) that exist 
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in the real social world that is being modelled, while the interactions between the 
agents can likewise correspond to the interactions between the real world actors.  
With such a model, it is possible to initialise the virtual world to a preset arrangement 
and then let the model run and observe its behaviour.  Specifically, emergent patterns 
of action (e.g. ‘institutions’) may become apparent from observing the simulation.   
Agents are generally programmed using either an object-oriented programming 
language or a special-purpose simulation library or modelling environment, and are 
constructed using collections of condition-action rules to be able to 'perceive' and 
'react' to their situation, to pursue the goals they are given, and to interact with other 
agents, for example by sending them messages. The Schelling model described above 
is an early and simple example of a multi-agent model.  Agent-based models have 
been used to investigate the bases of leadership, the functions of norms, the 
implications of environmental change on organizations, the effects of land-use 
planning constraints on populations, the evolution of language, and many other topics.  
While most agent-based simulations have been created to model real social 
phenomena, it is also possible to model situations that could not exist in our world, in 
order to understand whether there are universal constraints on the possibility of social 
life. (For example, can societies function if their members are entirely self-interested 
and rational?) These are at one end of a spectrum of simulations ranging from those of 
entirely imaginary societies to those that aim to reproduce specific settings in detail. 
When an agent-based model has been constructed, it can be run in order to generate 
output that can be validated against readily observable data.  For example, Schelling 
proposed that local processes of choice about residential domicile, influenced by 
individuals’ and households’ perception of the ethnicity of other households within 
the immediate neighbourhood, would result in residential segregation and yield 
emergent patterns of clustering, or in the extreme, ghettos with a preponderance of 
residents of the same ethnicity. It is extremely difficult to gather useful data about 
individual residential choices, which are made only occasionally and at different 
times by different residents.  A survey of households would only pick up people’s 
retrospective justifications for the decisions that they made about housing choice, 
which may rationalise decisions based on criteria that they no longer remember 
clearly.  Attempts to tap current attitudes to, for example, living near neighbours of a 
different ethnicity may also be subject to many kinds of bias.  However, in contrast, it 
is easy to measure people’s actual household location and their ethnicity.  It is then 
possible to compare this with the clustering observed after running a Schelling model 
(e.g. Clark 1991; Sander, Schreiber and Doherty 2000; Bruch and Mare 2006).   
Although using a simulation to generate patterns that one would expect to find (if the 
model is correct) and then comparing these with targeted observations of the social 
world is considerably easier than trying to obtain detailed data about social processes 
directly, there are two complications which must be considered.  The first is that most 
models and the theories on which they are based are stochastic.  That is, they are 
based in part on random chance.  For example, in a segregation model, the simulation 
will normally initialise the landscape by distributing agents randomly.  As the 
simulation runs, the agents migrate according to their preferences to locations where 
they feel more comfortable with their neighbours.  The spot where they finish will 
depend in a complicated way on where they and all the other agents started.  The 
precise pattern of clusters will depend on the chance arrangement of agents at 
initialisation; re-running the simulation with a new random starting configuration will 
yield a different pattern of clusters.  The important point about this and similar models 
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is not that they generate a particular pattern of clusters, but that in every case, for a 
specific set of parameters, some clustering always emerges.  The characteristics of 
these clusters can be assessed using measures such as the mean cluster density 
(averaged over many runs of the model, each with a different starting configuration), 
and the variance of the cluster size.  It is these ‘statistical signatures’ that need to be 
compared with the observed residential segregation, which itself can be considered to 
be one possible outcome of a stochastic process.  Unfortunately, the statistical 
methods needed to make sound comparisons, given that the distributions of the 
metrics are unknown but often far from ‘normal’, are not yet well developed, at least 
in the social sciences. 
The second caveat is that many different models may yield the same emergent 
patterns.  Hence, a correspondence between what one sees emerging from the model 
and what ones sees in the social world is only a necessary, but not a sufficient 
condition for concluding that the model is correct.  There are many different kinds of 
processes which can yield clustering and so the fact that households are often 
ethnically segregated and the Schelling model generates clusters does not prove that 
the Schelling process is in fact the process followed by households in making 
migration decisions (Gilbert 2002).  All one can do is to gradually increase one’s 
confidence in a model by testing it against observation in more and more ways.  In 
this respect, the methodology of simulation is no different from other approaches in 
social science. 

Examples of agent-based models 
Many hundreds of multi-agent social simulation models have now been designed and 
built, to examine a very wide range of social phenomena.  It is not practicable to 
review all of these, and even describing a representative sample would be a difficult 
exercise.  However, there are dimensions along which models can be arranged (see 
e.g. Hare and Deadman 2004; Berger and Manson, 2001; David et al 2004).  In this 
section, these will be illustrated by reference to some typical social simulations.  
Abstract versus Descriptive. Models can vary in the degree to which they attempt to 
incorporate the detail of particular targets.  An example of a model which aims to be a 
detailed representation of a specific location and the developments there is the work 
by Dean et al. (1999) on the Long House Valley, in northern Arizona near Monument 
Valley. The model covers a time from about A.D. 400 to 1400 and consists of agent 
households that inhabit a digitized version of the Long House Valley landscape. 
Agents have rules for determining their agricultural practices and residential 
locations, as well as for reproduction and mortality. Each run of the model generates a 
unique history of population, agricultural output, and settlement patterns which can be 
compared with archaeological evidence from the Valley.   
In contrast, a series of papers (Conte and Castelfranchi 1995, Castelfranchi, Conte and 
Paolucci 1998, Saam and Harrer 1999, Staller and Petta 2001, Flenthe, Polani and 
Uthman 2001, Hales 2002, Younger 2004) has explored the relationship between 
norms and social inequality using a very simple ‘game’ in which agents controlled by 
‘norms’ (i.e. behavioural rules) search a regular grid for ‘food’, which they consume 
to maintain their energy level or ‘strength’.  These authors carried out experiments to 
study the mean and variance of the distribution of strength under various normative 
arrangements.  Two examples are ‘blind aggression’, when agents attack other agents 
to grab their food, regardless of whether the attacked agent is stronger than they are, 
and ‘finders-keeper’, when agents respect ‘property rights’ and do not attack other 
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agents for their food. The experiments have shown that under some conditions (e.g. 
when the agents start with more or less equal levels of strength), the finders-keeper 
norm reduces inequality, but if the agents start with an unequal distribution, holding 
to the same norm can increase the degree of inequality.   These findings are not 
directly descriptive of or applicable to any real human society or group, although they 
do raise some interesting questions for the conceptualisation of power and for 
understanding the origins of social inequality. 
Artificial versus Realistic.  Although the work on norms mentioned above is highly 
abstract, it is intended to aid in the understanding of actual human societies.  
However, some agent-based models are not intended as simulations of human 
societies at all. A good example is the research of Doran (1997), who investigated the 
implications if agents were able to see what will befall them in the future (that is, have 
perfect foresight). Other work on artificial societies has been driven by a desire to 
engineer groups of cooperative agents to achieve results that single agents could not 
do on their own.  While some of this engineering-oriented modelling takes its 
inspiration from human societies, much of it assumes a command and control regime 
that is not a plausible description of real world societies (for examples of such an 
engineering approach to social simulation, see, for example, Wooldridge 2002).  
In contrast, some models are firmly focussed on modelling real social problems.  An 
excellent example of this is Eidelson and Lustick’s (2004) research on the 
effectiveness of alternative defensive strategies against a possible smallpox attack or 
other major epidemic.  Obviously there is neither much experience nor the possibility 
of experimentation to compare options, such as inoculating a whole population as a 
precaution versus vaccinating cases after the infection has begun to spread.  Their 
model allows a number of possibilities to be investigated and the most important 
parameters for confining the epidemic to be identified. 
Positive versus normative.  Models with clear application to policy domains may tend 
towards being normative, that is, designed to make recommendations about what 
policies should be pursued.  For example, Moss (1998) developed a model to 
represent the decision-making of middle managers in crises and was then able to 
make some tentative recommendations about the appropriate organisational structures 
to deal with critical incidents.  This article is also interesting for the methodology of 
model building that it recommends.  The majority of social agent-based simulations, 
however, are intended to be positive, that is descriptive and analytical about the social 
phenomena studied, aiding understanding rather than providing advice. 
Spatial versus Network.  The agents in some models operate in a spatial environment, 
often a two dimensional grid of rectangular cells, but sometimes a map of some 
specific landscape, over which the agents are able to move.  In the latter case, the map 
is often provided by a geographical information system (GIS) (Dibble and Feldman 
2004).  An example is the model of the recreational use of Broken Arrow Canyon in 
Arizona (Gimblett, Itami and Richards 2002), which was developed to study policies 
for protecting the environment and providing a good recreational experience for 
visitors. Options include building new trails, limiting the number of visitors, or 
relocating existing trails. The model includes a detailed representation of the 
environment, including the physical topography of the canyon. 
For other models, the physical geography is irrelevant.  What is important are the 
relationships between agents, often represented as a network of links between nodes.  
For example, Gilbert, Pyka and Ahrweiler (2001) describe a model of an ‘innovation 
network’ in which the nodes are high tech firms that each have a knowledge base 
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which they use to develop artefacts to launch on a simulated market.  Some artefacts 
are successful and the firms thrive; others fail.  The firms are able to improve their 
innovations through research or by exchanging knowledge with other firms.  The 
form of the emergent network and its dynamics observed from the simulation are 
compared with data from the biotechnology and mobile personal communication 
sectors and shown to be qualitatively similar. 
Complex versus Simple agents.  The simplest agents are ones that use a production 
system architecture (Gilbert and Troitzsch 2005), meaning that the agent has a set of 
condition-action rules.  An example of such a rule could be ‘IF the energy level is 
low, THEN move one step towards the nearest food source’.  The agent matches the 
condition part of the rule against its present situation and carries out the 
corresponding action.  These rules might be explicitly coded as declarative 
statements, as in this example, or they may be implicit in a procedural algorithm.  
However, it is difficult to model cognitively realistic agents using such a simple 
mechanism and so model-builders have sometimes adopted highly sophisticated 
cognitive model systems to drive their agents.  The best known of these are SOAR 
(Laird, Newell and Rosenbloom 1987) and ACT-R (Anderson and Lebiere 1998). 
Carley, Prietula and Lin (1998) describe a number of experiments comparing models 
of organisation in which the agents have cognitive architectures of increasing 
complexity, from a basic production system to the use of a version of SOAR.   They 
conclude that simpler models of agents are all that is needed if the objective is to 
predict the behaviour of the organisation as a whole, but more cognitively accurate 
models are needed to generate the same predictive accuracy at the individual or small 
group level. 

Developing multi-agent models 
Developing good multi-agent models is still something of an art, rather than a science.  
However, there is now some understanding of the steps that usually need to be carried 
out (Gilbert and Terna 2000; Gilbert 2007).  The first is to be sure about the objective 
of the work. The research question and the model that is to be designed are sometimes 
clear from the start. More often, one has an idea of the topic, but not anything more 
precise. It is essential that a general interest in a topic is refined down to a specific 
question before the design begins. If this is not done, either the design task can seem 
impossibly difficult or the model can become too encompassing to be helpful.  
It is useful to think about narrowing down a research question in terms of moving 
through a set of layers (see Punch 2000 for a helpful treatment). An area of research 
contains many topics. More specific is a general research question, usually phrased in 
terms of theoretical concepts and the relationship between these. The general research 
question will generate a small number of specific research questions. The specific 
research questions should be at a level of detail such that their concepts can be used as 
the main elements of the model.  
The social world is very complicated, a fact that modellers are well aware of, 
especially when they begin to define the scope of a model. The art of modelling is to 
simplify as much as possible, but not to oversimplify to the point where the 
interesting characteristics of the phenomenon are lost. Often, an effective strategy is 
to start from a very simple model, which is easy to specify and implement. When one 
understands this simple model and its dynamics, it can be extended to encompass 
more features and more complexity.  
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The baseline model can be designed to be the equivalent of a null hypothesis in 
statistical analysis: a model that is not expected to show the phenomenon in question. 
Then, if an addition to the baseline model is made and the model behaves differently, 
one can be sure that it is the addition that has the effect. This strategy also has the 
advantage that it helps to focus attention on the research question or questions that are 
to be answered. A modeller should always have at the forefront of their attention why 
they are building the model and what they are seeking to obtain from it.  
If the baseline model is simple enough, the first prototype implementation can 
sometimes be a ‘pencil and paper’ model, in which the designer (or the designer and a 
few colleagues) plays out the simulation ‘by hand’ through a few rounds. This 
simulation of a simulation can quickly reveal gaps and ambiguities in the design, 
without the need to do any coding.  
Designing a model is easier if there is already a body of theory to draw on. At an early 
stage, therefore, one should look around for existing theory, in just the same way as 
with more traditional social science methodologies. Theories that are about processes 
of change and that consider the dynamics of social phenomena are of course likely to 
be more helpful than theories about equilibria or static relationships, but any theory is 
better than none. What the theory provides is an entry to the existing research 
literature, hints about what factors are likely to be important in the model, and some 
indications about comparable phenomena.  Another function of theory can be to 
identify the assumptions on which the model is built. These assumptions need to be as 
clearly articulated as possible if the model is to be capable of generating useful 
information.  
Once the research questions, the theoretical approach and the assumptions have been 
specified, it is time to begin to design the simulation. A set of issues needs to be 
considered for almost all simulations, and it is helpful to deal with these 
systematically and in order. Nevertheless, there is no ‘right’ or ‘wrong’ design so long 
as the model is useful in addressing the research question.  
The first step is the definition of the types of objects to be included in the simulation. 
Most of these objects will be agents, representing individuals or organizations, but 
there may also be objects representing inanimate features that the agents use, such as 
food or obstacles. The various types of object should be arranged in a class hierarchy, 
with a generic object at the top, then agents and other objects as subsidiary classes, 
and if necessary, the agent class divided into further sub-classes.  Each actual object 
in the simulation will be an example of one of these types (an ‘instance’ of the class). 
All instances of a class are identical in terms of the code that creates and runs them, 
but each instance can be in a different state, or have different attributes.  
Once the objects have been decided, one can consider the attributes of each object. An 
attribute is a characteristic or feature of the object, and is either something that helps 
to distinguish the object from others in the model, or is something that varies during 
the execution of the simulation.  Attributes function like variables in a mathematical 
model. Consider each object in turn, and what features it has that differ from other 
objects. Properties such as size, colour or speed might be relevant attributes in some 
models. State variables such as wealth, energy and number of friends might also be 
attributes.  
An attribute might consist of a single one of a set of values (for example the colour 
attribute might be one of red, green, blue or white); a number, such as the energy level 
of the agent; or a list of values, such as the list of the names of all the other agents that 
an agent has previously encountered. Sub-classes inherit the attributes of their 
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superior class, so that, for instance, if all objects have a location, so do all its sub-
classes. When the attributes for each class of object have been decided, they can be 
shown on a class diagram.  This way of representing classes and attributes is taken 
from a design language called the Unified Modelling Language (UML) (Booch et al. 
2000) and is commonly used in object-oriented software design.  
The next stage is to specify the environment in which the objects are located. If the 
environment is a spatial one, each object has a location within it (in that case, the 
objects need to have attributes that indicate where they are at the current time). But 
there are other possibilities, such as having the agents in a network linked by relations 
of friendship or trade with other agents. Sometimes it may be convenient to represent 
the environment as another object, albeit a special one, and specify its attributes. One 
of the attributes will be the current simulated time. Another may be a message buffer 
that temporarily holds messages sent by agents to other agents via the environment 
before they are delivered. Defining the classes, attributes and environment is an 
iterative process, involving refining the model until the whole set seems consistent.  
When this is done, at least to a first approximation, one has a static design for the 
model. The next step is to add some dynamics, that is, to work out what happens 
when the model is executed. It is usually easiest to start by considering the 
interactions of each class of agent with the environment. An agent acts on the 
environment in one or more ways and the environment acts on the agent. Once lists of 
the actions of the agents and the environment have been created, one can consider 
when the actions happen. Against the list of agent actions on the environment, 
indicate the conditions under which these actions should occur. This table of 
conditions and actions will lead naturally to defining a set of condition-action rules. 
Each rule should be associated with a unique state of the agent (a unique set of 
attribute values and inputs from the environment). After the interactions with the 
environment have been decided, the same job can be done for interactions between 
agents.  
It is likely that, in working through these lists, it will be realized that additional 
attributes are needed for the agents or the environment or both, so the design process 
will need to return to the initial stages, perhaps several times. When a consistent set of 
classes, attributes and rules has been created, it can be helpful to summarize the 
dynamics in a sequence diagram, another type of UML diagram. A sequence diagram 
has a vertical line for each type or class of agent, and horizontal arrows representing 
messages or actions that go from the sender object to the receiver object. The 
sequence of messages is shown by the vertical order of the arrows, with the top arrow 
representing the first message and later messages shown below.  
It can also be useful to employ state chart and activity diagrams to summarize the 
behaviour of agents (Fowler and Scott 1999). A state chart diagram shows each 
distinct state of an agent and what is involved in moving from one state to another. An 
activity diagram shows how decisions are made by an agent.  
At this stage in the design process, most of the internal aspects of the model will have 
been defined, although normally there will still be a great deal of refinement needed. 
The final step is to design the user interface.  The components of this interface will be 
graphical representations of sliders, switches, buttons and dials for the input of 
parameters, and various graphs and displays for the output, to show the progress of 
the simulation. Initially, for simplicity it is best to use a minimum of input controls. 
As understanding of the model improves, and additional control parameters are 
identified, further controls can be added. Similarly, with the output displays, it is best 
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to start simple and gradually add more as the need for them becomes evident. Of 
course, every model needs a control to start it, and a display to show that the 
simulation is proceeding as expected (for example, a counter to show the number of 
steps completed). At the early stages, there may also be a need for output displays that 
are primarily there for debugging and for building confidence that the model is 
executing as expected. Later, if these displays are not required to answer the research 
question, they can be removed again.  
Even before the coding of a model is started, it is worth considering how the 
simulation will be tested. A technique that is gaining in popularity is ‘unit testing’. 
The idea is that small pieces of code that exercise the program are written in parallel 
with the implementation of the model. Every time the program is modified, all the 
unit tests are re-run to show that the change has not introduced bugs into existing 
code. As the model is extended, more unit tests are written, the aim being to have a 
test of everything. The idea of unit tests comes from an approach to programming 
called XP (for eXtreme programming, Beck 1999), a software engineering 
methodology that is particularly effective for the kind of iterative, developmental 
prototyping approach that is common in most simulation research.  
When there are many unit tests to carry out, it becomes tedious to start them all 
individually and a test harness that will automate the process is needed. This will also 
have to be designed, possibly as part of the design of the model itself, although there 
are also software packages that make the job easier (see, for example, the open source 
Eclipse toolset, http://www.eclipse.org/). When the model is working as expected, it 
will probably be necessary to carry out sensitivity analyses involving multiple runs of 
the simulation while varying the input parameters and recording the outputs. Doing 
such runs manually is also tedious and prone to error, so a second reason for having a 
test harness is to automate analysis. The starting and ending points of an input range 
can be set and then one can automatically sweep through the interval, re-running the 
model and recording the results for each different value. To enable this to be done, the 
model may need to have two interfaces: a graphical one so that the researcher can see 
what is happening and an alternative test- or file-based interface that interacts with the 
testing framework. 
It is likely that all the output from the first run of a model will be due, not to the 
intended behaviour of the agents, but to the effect of bugs in the code. Experience 
shows that it is almost impossible to create simulations that are initially free of bugs 
and, while there are ways of reducing bugs (for example, the unit test approach 
mentioned above), one should allow at least as much time for chasing bugs as for 
building the model. The most important strategy for finding bugs is to create test 
cases for which the output is known or predictable, and to run these after every 
change until all the test cases yield the expected results. Even this will not necessarily 
remove all bugs and modellers should always be aware of the possibility that their 
results are merely artefacts generated by their programs.  

Conclusion 
Agent-based models can be of great value to the social sciences and their potential is 
beginning to be realised.  In this chapter, I have shown that such models are especially 
relevant to simulating social phenomena that are inherently complex and dynamic.  
These models are also effective at demonstrating the emergence of social institutions 
from the actions of individual agents, an area where previous methods of analysis can 
be very weak.  A number of examples of work in which multi-agent models have 
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been used were reviewed to show the range of possibilities now available to the 
researcher: models may be abstract or descriptive, positive or normative; based on a 
geographical landscape or represent a social network; while the agents themselves 
may be simple or very complex.  Now that agent-based simulation is a thriving area 
of research, there is a growing body of experience on how to build models and in the 
latter part of this chapter, I outlined a typical process of model development.  With 
this as guidance (see Gilbert and Troitzsch 2005 for a more detailed discussion of 
methods) and an idea of the opportunities for social simulation, I hope that many 
readers might be inspired to try this approach to social science for themselves on their 
own research topics. 
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