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Abstract. Recent studies show that visual information contained in vi-
sual speech can be helpful for the performance enhancement of audio-only
blind source separation (BSS) algorithms. Such information is exploited
through the statistical characterisation of the coherence between the au-
dio and visual speech using, e.g. a Gaussian mixture model (GMM).
In this paper, we present two new contributions. An adapted expecta-
tion maximization (AEM) algorithm is proposed in the training pro-
cess to model the audio-visual coherence upon the extracted features.
The coherence is exploited to solve the permutation problem in the fre-
quency domain using a new sorting scheme. We test our algorithm on
the XM2VTS multimodal database. The experimental results show that
our proposed algorithm outperforms traditional audio-only BSS.
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1 Introduction

Human speech perception is essentially bimodal as speech is perceived by audi-
tory and visual senses. In traditional blind source separation (BSS) for auditory
mixtures, only audio signals are considered. With the independence assumption,
many algorithms have been proposed, e.g. [1]-[4]. The use of visual stimuli in
BSS represents a recent development in multi-modal signal processing. Sodoyer
et al. [5] addressed the separation problem for an instantaneous stationary mix-
ture of decorrelated sources, with no further assumptions on independence or
non-Gaussianity. Wang et al. [6] implemented a similar idea by applying the
Bayesian framework to the fused feature observations for both instantaneous and
convolutive mixtures. Rivet et al. [7] proposed a new statistical tool utilizing the
log-Rayleigh distribution for modeling the audio-visual coherence, and then used
the coherence to address the permutation and scale ambiguities in the spectral
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domain. However, the algorithm proposed in [5] used simple visual stimuli with
only plosive consonants and vowels and worked for only instantaneous mixtures;
the method in [6] considered a convolutive model with a relatively small number
of taps for the mixing filters; the approach in [7] trained the audio-visual coher-
ence with high dimensional audio feature vectors, thus the coherence model was
sensitive to outliers.

In this paper, we consider the convolutive model [6]-[11] with the assumption
of non-Gaussianity and independence constraints of the sources. We synchronize
and merge the modified Mel-frequency cepstrum coefficients (MFCCs) as audio
features and some geometric-type features from the video stream to obtain the
audio-visual features for the estimation of the parameters of the bimodal coher-
ence. A GMM model is trained on the audio-visual features using the adapted ex-
pectation maximization (AEM) algorithm that considers the different influences
of the audio features on the model. The audio-visual coherence is then applied
to address the permutation indeterminacy in the frequency domain based on an
iterative sorting scheme. The remainder of the paper is organised as follows. An
overview of convolutive BSS is presented in Section 2. Section 3 introduces our
bimodal feature extraction and fusion method. Detailed indeterminacies cancel-
lation algorithm exploiting the audio-visual coherence is presented in Section 4.
The simulation results are analyzed and discussed in Section 5. Finally Section
6 concludes the paper.

2 BSS for Convolutive Mixtures

BSS aims to recover sources from their mixtures without any or with little prior
knowledge about the sources or the mixing process. Consider the convolutive
model:

xp(n) =
K∑
k=1

+∞∑
m=0

hpk(m)sk(n−m) + ξp(n), for p = 1, ..., P (1)

or in matrix form: x(n) = H(n) ∗ s(n) + ξ(n), where x(n) = [x1(n), ..., xP (n)]T

are P observations obtained from K sources s(n) = [s1(n), ..., sK(n)]T and ∗
denotes a convolution; H(n) is the mixing matrix whose entry hpk(n) represents
the impulse response from source k to sensor p; ξ(n) is the additive noise vector;
n is the discrete time index. The objective of convolutive BSS is to find a set of
separation filters {wkp(n)} that satisfy:

ŝk(n) = yk(n) =
P∑
p=1

+∞∑
m=0

wkp(m)xp(n−m). for k = 1, ...,K (2)

The matrix form of the separation process is ŝ(n) = y(n) = W(n) ∗ x(n) where
W(n) is the separation matrix whose entries are the impulse responses wkp(n).

Convolutive BSS is often performed in the frequency domain as depicted by
the upper dashed box in Fig.1. After applying the short-time Fourier transform
(STFT) to the observations, the convolutive mixture in the time domain is trans-
formed to a set of instantaneous mixtures in the frequency domain. Then ICA is
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applied to the spectral components X(f, t) = [X1(f, t), ..., XP (f, t)]T in each fre-
quency bin f to obtain the independent outputs Y(f, t) = [Y1(f, t), ..., YK(f, t)]T ,
and t is the time-frame index. In matrix form Y(f, t) = W(f)X(f, t) = Ŝ(f, t),
where W(f) is the separation filter, assumed to be linear time-invariant (LTI).
It would be ideal if we could exactly recover the original sources that Ŝ(f, t) =
Y(f, t) = S(f, t). However, the ICA algorithms can estimate the sources only up
to a permutation matrix P(f) and a diagonal matrix of gains D(f):

Ŝ(f, t) = Y(f, t) = P(f)D(f)S(f, t). (3)

The permutation and scale ambiguities at each frequency bin present severe
problems when reconstructing the separated sources in the time domain:

1. Recovered signal Yk(f, t) may not correspond to the same source sk(n) at some
frequency bins, caused by P(fi) 6= P(fj), i 6= j.........permutation indeterminacy
2. Spectral components of Yk(f, t) coming from sk(n) are amplified at different
frequency bins, caused by D(fi) 6= D(fj), i 6= j.....................scale indeterminacy

To solve the permutation ambiguity, there are traditionally two methods.
The first method is based on the continuity of adjacent bins, also known as
the correlation approach [8]. The other method uses beam-forming theory [3]
such as directional pattern estimation for permutation alignment [9]. As for the
scale ambiguity, the minimum distortion principle can be applied to reduce the
influence of a scale factor [10].

Previous algorithms using only audio streams have some drawbacks. The
correlation approach may lead to continuous alignment errors; the beam-forming
approach requires prior knowledge about the microphone array arrangement
and some constraints on the spacing of microphones; the scale ambiguity is not
perfectly solved. To solve the indeterminacies, as motivated by the work in [6]
and [7], we use the bimodal coherence of audio-visual features described in detail
in the next section (shown in Fig.1).
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3 Feature Extraction and Fusion

3.1 Audio & Visual Feature Extraction

We take the Mel-frequency cepstrum coefficients (MFCCs) as audio features as in
[6] with some modifications. The MFCCs exploit the non-linear resolution of the
human auditory system across an audio spectrum, which are the Discrete Cosine
Transform (DCT) results of the logarithm of the short term power spectrum
on a Mel-scale frequency. To avoid inverse DFT to Y(f, t) in the separation
process described in Section 4, we replace the first component of MFCCs with
the logarithmic power of spectral data. We obtain the modified L-dimensional
MFCCs aT(t) = [logE(t), c1(t)..., cL−1(t)]T (Fig.2). For simplicity, we denote the
audio feature vector as aT(t) = [aT1(t), ..., aTL(t)]T .

Unlike the appearance-based visual features used in [6], we use the same front
geometric visual features as in [5][7]: the lip width (LW) and height (LH) from the
internal labial contour. Fig.3 shows the method for obtaining the 2-dimensional
visual feature vector vT(t) = [LW(t),LH(t)]T .
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3.2 Feature-Level Fusion

We concatenate the audio and visual features after synchronization to get the
(L + 2)-dimensional audio-visual vector uT(t) = [aT(t); vT(t)], which will be
used for training. The audio-visual coherence can be statistically characterized
as a GMM with I kernels:

pAV (uT(t)) =
I∑
i=1

γipG(uT(t) | µi,Σi), (4)

where γi is the weighting parameter, µi is the mean vector and Σi is the co-
variance matrix of the i-th kernel. Every kernel of this mixture represents one
cluster of the audio-visual data modeled by a joint Gaussian distribution:

pG(uT(t) | µi,Σi) =
exp{− 1

2 (uT(t)− µi)TΣi
−1(uT(t)− µi)}√

(2π)L+2 | Σi |
. (5)
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We denote λi = {γi,µi,Σi} as the parameter set, and it can be estimated
by the expectation maximization (EM) algorithm. In the traditional EM train-
ing process, all the components of the training data are treated equally what-
ever their magnitudes. Therefore if we train the data u†(t) = [aT(t); vT(t)] and
u‡(t) = [2aT1(t), aT2(t), ...aTL(t),vT(t)T ]T respectively, we get two joint dis-
tributions pAV †(·) and pAV ‡(·) with two sets of parameters {λi†} and {λi‡}.
However, these joint distributions are identical:

pAV †(u†(t)) = pAV ‡(u‡(t)). (6)
Thus the influence of aT1(t) on the final probability does not change even its
magnitude is doubled. Nevertheless, some components of the audio vector with
large magnitudes are actually more informative about the audio-visual coher-
ence than the remaining components (consider, for instance, the case of lossy
compression of audio and images using DCT where small components can be
discarded). For example, the first component of the audio vector (aT1(t)) should
play a more dominant role in affecting the probability pAV (uT(t)) than the last
one. Also, the components of the audio vector having very small magnitudes are
likely to be affected by noise. Therefore, considering these factors, we propose
an adapted expectation maximization (AEM) algorithm.

I. Initialize the parameter set {λi} with the K-means algorithm.
II. Run the following iterative process:

i. Compute the influence parameters βi(·) of uT(t) for i = 1, ...I.

βi(uT(t)) = 1− ‖ uT(t)− µi ‖∑I
j=1 ‖ uT(t)− µj ‖

, (7)

where ‖ · ‖ denotes the squared Euclidean distance.
ii. Calculate the probability of each cluster given uT(t).

pi(uT(t)) =
γipG(uT(t) | µi, Σi)βi(uT(t))∑I
j=1 γjpG(uT(t) | µj , Σj)βj(uT(t))

. (8)

iii. Update the parameter set {λi}:

µi =
∑
t uT(t)pi(uT(t))∑

t pi(uT(t))
, γi =

∑
t pi(uT(t))∑

t

, Σi =
∑
t(uT(t)− µi)2pi(uT(t))∑

t pi(uT(t))
.

(9)

4 Resolution of Spectral Indeterminacy

As yk(n) is the estimate of sk(n), yk(n) will have maximum coherence with
the corresponding video signal vk(t). Therefore we can maximize the following
criterion in the frequency domain to address the indeterminacies as mentioned
in Section 2:

[P̂(f), D̂(f)] = arg max
P(f),D(f)

∑
t

K∑
k=1

pAV (uk(t)), (10)

where uk(t) = [ak(t); vk(t)] is the audio-visual feature extracted from the profile
Ŝk(·, t) = Yk(·, t) of the k-th source estimate and the recorded video associated
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with the k-th speaker at time-frame t. If we are just interested in an estimate of
s1(n) from the observations, we can get the first separation vector p(f) (note it
is not the separation matrix) and the scale parameter α(f) by maximizing:

[p̂(f), α̂(f)] = arg max
p(f),α(f)

∑
t

pAV (u1(t)). (11)

Since the permutation problem is the main factor in the degradation of the
recovered sources, we focus on permutation indeterminacy cancellation for a two-
source and two-mixture case detailed as follows. Suppose there are 2M frequency
bins in total. Based on the symmetry, we will only consider the positive M bins.
Denote v1(t) as the visual feature that we have extracted from the recorded
video signal associated with the target speaker. Generate an intermediate vari-
able Y †1 (f, t) spanning the same frequency and time-frame space as Y1(f, t) (or
Y2(f, t)). Initialize P(f) with identity matrices for f = f1, ..., fM .

I. Test which profile, Y1(·, t) or Y2(·, t), is more coherent with v1(t).
1. For f = f1, ..., fM , let Y †1 (f, ·) = Y2(f, ·).
2. Extract the audio feature a1(t) and a†1(t) from Y1(·, t) and Y †1 (·, t).
Let u1(t) = [a1(t); v1(t)], u†1(t) = [a†1(t); v1(t)], and then calculate the
audio-visual probability pAV (u1(t)) and pAV (u†1(t)) respectively based on
the GMM model in equation (4) and the parameter set λi that has been
estimated with the AEM algorithm.
3. If

∑
t pAV (u1(t)) >

∑
t pAV (u†1(t)), do nothing; otherwise, swap the

rows of P(f) (i.e. P(f)←− [ 0 1
1 0 ] P(f)), W(f) and Y(f, ·) for f = f1, ..., fM .

II. Equally divided M bins into 2 parts.
II.i. 1. For f = f1, ...fM/2, Y †1 (f, ·) = Y2(f, ·); for the remaining bins, Y †1 (f, ·) =

Y1(f, ·).
2. Extract u1(t) and u†1(t), and then calculate pAV (u1(t)) and pAV (u†1(t)).
3. If

∑
t pAV (u1(t)) >

∑
t pAV (u†1(t)) do nothing; otherwise, update P(f),

W(f) and Y(f, ·) as in step I for f = f1, ...fM/2.
II.ii. Repeat the replacement, calculation, comparison and update as in step

II.i for f = fM/2+1, ...fM .
III. Divide M bins into 4 (8, 16,...) parts, and continue the progressive scheme.

This scheme can reach a high resolution, which is determined by the number
of partitions at the final division, and the larger the number, the higher the res-
olution. However, most permutations occur continuously in practical situations,
therefore even if we stop running the algorithm at a very ‘coarse’ resolution, the
permutation ambiguity can still be well reduced.

The scale indeterminacy can be addressed by some gradient algorithms [4].
However, estimating the gradient of

∑
t pAV (u1(t)) is computationally demand-

ing, and it remains an issue in our future work.

5 Experimental Results

The proposed method was tested on the XM2VTS [12] multi-modal database,
in which the speech data were recorded 4 times at approximately one month
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intervals, with continuous sentences of words and digits in mono, 16 bit, 32 kHz,
PCM wave files, and the frontal face videos were captured at 25 fps.

We trained the audio-visual coherence model of the target speaker with con-
catenated audio and visual speech signals lasting for approximately 40 seconds.
The audio was downsampled to 16 kHz, and the 32 ms (512 points) Hamming
window with 12 ms overlap was applied in STFT. 5-dimensional (L = 5) MFCCs
as audio features were extracted from 24 mel-scaled filter banks. The visual fea-
tures were upsampled to 50 Hz to be synchronized with the audio features. Thus
the audio-visual data were 7-dimensional. For simplicity, we only used 5 (I = 5)
kernels to approximate the audio-visual coherence.

The algorithm was tested on convolutive mixtures synthesized on computer.
The filters {hpk(n)} were generated by the system utilizing the impulse response
measurements of a conference room [13] with various positions of the micro-
phones and the speakers. We resampled those filters and used the beginning 256
measurements (the reverberation time was 16 ms) as the final mixing filters. Two
audio signals with each lasting 4 s were convolved with the filters to generate
the mixtures, and Gaussian white noise (GWN) was added to both mixtures.
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We use the global filters G(f) =
h

G11(f) G12(f)
G21(f) G22(f)

i
= W(f)H(f) in the frequency

domain and signal to interference and noise ratio (SINR) at different signal to noise
ratios (SNRs) as criteria to evaluate the performance of our bimodal BSS algorithm.
Suppose s1(n) is the target source, then

SINR = 10 log
Ps1

Pŝ1−s1

= 10 log

P
n ‖

PP
p=1 w1p(n) ∗ hp1(n) ∗ s1(n) ‖P

n ‖ ŝ1(n)−
PP

p=1 w1p(n) ∗ hp1(n) ∗ s1(n) ‖
. (12)

Fig.4 is the comparison of the global filters between the frequency-domain audio-
only BSS using the correlation method [8] (left half) and audio-visual BSS (right half).
It shows that our algorithm has corrected the permutation ambiguity at most frequency
bins, while the permutation ambiguities in a large number of bins has not been resolved
with the correlation method [8]. Fig.5 shows the SINR over different input SNRs. The
SINR is calculated over a total of 100 independent runs with different convolutive
filters. In the figure, Audio-only1 and Audio-only2 are two algorithms using only audio
signals. Audio-only1 is a frequency-domain BSS algorithm, exploiting the correlation
method [8]. Audio-only2 is a time-domain fast fixed-point BSS algorithm based on a
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convolutive sphering process [11], and when the order of the mixing filters is high (e.g.,
256 in our simulation), it may not converge. However, the ICA technique degrades in
adverse conditions, and as a result the improvement of bimodal BSS disappears at low
SNRs. When it is noise-free, the SINR of bimodal BSS is 21.9dB.

6 Conclusions

We have presented a new audio-visual convolutive BSS system. In this system, we
have used the modified MFCCs as audio features, which were combined with geometric
visual features to form an audio-visual feature space. An adapted EM algorithm is then
proposed to exploit the different influences of the audio features on the statistically
modeling of the audio-visual coherence. A new sorting scheme exploiting the audio-
visual coherence to solve the spectral indeterminacy problem has also been presented.
Our algorithm has been tested on the XM2VTS database and has shown improved
performance over audio-only BSS systems. In the future, we will consider using some
dynamic features in video as well, instead of just static features. In addition, we will
increase the number of kernels to improve the accuracy of the audio-visual model.
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