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Abstract—We present a fully automatic approach to real-time
3D face reconstruction from monocular in-the-wild videos. With
the use of a cascaded-regressor based face tracking and a 3D
Morphable Face Model shape fitting, we obtain a semi-dense 3D
face shape. We further use the texture information from multiple
frames to build a holistic 3D face representation from the video
footage. Our system is able to capture facial expressions and
does not require any person-specific training. We demonstrate
the robustness of our approach on the challenging 300 Videos in
the Wild (300-VW) dataset. Our real-time fitting framework is
available as an open source library at http://4dface.org.

I. INTRODUCTION

This paper addresses the problem of reconstructing a 3D
face from monocular in-the-wild videos. While the problem
has been studied in the past, existing algorithms rely either on
depth (RGB-D) data or have not demonstrated their robustness
on realistic in-the-wild videos.

From the algorithms working on monocular video se-
quences, the method of Garrido et al. [1] requires manual,
subject-specific training and labelling. Moreover, it has only
been evaluated on a limited set of HD quality videos under
rather controlled conditions, with frontal poses. Ichim et al. [2]
also require subject-specific training and manual labelling by
an experienced labeler. This takes several minutes per subject,
and their resulting model is person-specific. In addition to
subject-specific manual training being a tedious step, creating
a personalised face model offline is not possible where the
subject can not be seen beforehand, e.g. for face recognition
in the wild, customer tracking for behaviour analysis or various
human-computer interaction scenarios. Jeni et al. [3] use
rendered 3D meshes to train their algorithm, which do not
contain the variations that occur in 2D in-the-wild images;
for example, the meshes have to be rendered on random
backgrounds. Furthermore, they only evaluate their method by
cross-validation on the same 3D data their algorithm has been
trained on. Cao et al. [4], [5] reconstruct only shape, without
using texture, and do not perform evaluation on in-the-wild
videos. Cao et al. [6] don’t require user-specific training, but
present only results in controlled conditions involving frontal
pose and high image resolution and they require a GPU to
achieve real-time performance.

In contrast to these approaches, we present an approach
that requires no subject-specific training and evaluate it on a

Fig. 1. Real-time 3D face reconstruction from a monocular in-the-wild
video stream. Our method uses a 3D Morphable Face Model as face prior
and fuses the information from multiple frames to create a holistic 3D face
reconstruction, without requiring subject-specific training.

challenging 2D in-the-wild video data set. We are the first
to carry out such an evaluation of a 3D face reconstruction
algorithm on in-the-wild data with challenging pose and light
variations as well as limited resolution and show the robustness
of our algorithm. While many of the previous works focus
on face re-enactment, we focus on a high-quality texture
representation of the subject in front of the camera. Our
approach runs in near real-time on a CPU.

This paper presents the following contributions. By com-
bining cascaded regression with 3D Morphable Face Model
fitting, we obtain real-time face tracking and semi-dense 3D
shape estimates from low-quality 2D webcam videos. We
present an approach to fuse the face texture from multiple
video frames to yield a holistic textured face model. We
demonstrate the applicability of our method to in-the-wild
videos on the challenging 300-VW database [7] that includes
scenarios such as speeches and TV shows. In addition, we
propose a linear method to fit both shape identity and expres-
sions by extending an existing shape fitting method. Finally,
our method is available as open-source software on GitHub.

II. METHOD

In general, reconstructing a 3D face from 2D data is an
ill-posed problem. To make this task feasible, our approach
incorporates a 3D Morphable Face Model (3DMM) to provide
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Patrik
Highlight

Patrik
Highlight

Patrik
Highlight

Patrik
Highlight

Patrik
Highlight

Patrik
Highlight



prior knowledge about faces. In this section, we first briefly
introduce the 3D Morphable Face Model we use. We then
present our 3D face reconstruction approach and the texture
fusion.

A. 3D Morphable Face Model

A 3D Morphable Model (3DMM) is based on three-
dimensional meshes of faces that have been registered to a
reference mesh, i.e. are in dense correspondence. A face is
represented by a vector S ∈ R3N , containing the x, y and z
components of the shape, and a vector T ∈ R3N , containing
the per-vertex RGB colour information. N is the number of
mesh vertices. The 3DMM consists of two PCA models, one
for the shape and one for the colour information, of which
we only use the shape model in this paper. Each PCA model
consists of the mean of the model v̄ ∈ R3N , a set of principal
components V = [v1, . . . ,vM ] ∈ R3N×M , and a vector of
standard deviations σ ∈ RM . M is the number of principal
components, capturing 95% of the variance. Novel faces can
be generated by calculating

S = v̄ +

M∑
i

αiσivi (1)

for the shape, where the vector α ∈ RM conveys a set of 3D
face instance coordinates in the shape PCA space.

Throughout this paper, we use the Surrey Face Model [8]
with N = 3448 for our experiments, which provided adequate
representation of shape.

B. Face Tracking

To track the face in each frame of a video, we use a
cascaded-regression-based approach, similar to Feng et al. [9],
to regress a set of sparse facial landmark points. The goal is
to find a regressor R : f(I,θ)→ δθ, where f(I,θ) is a vector
of image features extracted from the input image, given the
current model parameters θ, and δθ is the predicted model
parameter update. This mapping is learned from a training
dataset using a series of linear regressors {Rn}, where

Rn : δθ = Anf(I,θ) + bn, (2)

and An is the projection matrix, bn is the offset (bias) of
the n-th regressor, and f(I,θ) extracts HOG (histogram of
oriented gradients) features from the image.

When run on a video stream, the regression is initialised
at the location from the previous frame but with the model’s
mean landmarks, which acts as a regularisation.

C. 3D Model Fitting

In subsequent steps, the 3D Morphable Model is fitted to the
subject in a frame. This section describes our camera model,
the PCA shape fitting, and subsequent refinement using facial
expressions and contour landmarks.
Camera model From the 2D landmark locations and their
known correspondences in the 3D Morphable Model, we
estimate the pose of the camera. We assume an affine camera
model and implement the Gold Standard Algorithm of Hartley

& Zisserman [10], which finds a least-squares approximation
of a camera matrix C ∈ R3×4 given the 2D - 3D point pairs.

Shape fitting Given the estimated camera pose, the 3D shape
model is fitted to the sparse set of 2D landmarks to produce
an identity-specific semi-dense 3D shape. We find the most
likely vector of PCA shape coefficients α by minimising the
following cost function:

E =

3L∑
i=1

(yp,i − yi)2

2σ2
2D,i

+ ‖α‖22 , (3)

where L is the number of landmarks, y is a stacked vector
of detected or labelled 2D landmarks in homogeneous co-
ordinates, σ2

2D are the variances of these landmark points,
and yp is a stacked vector of the 3D Morphable Model
shape points that correspond to the respective 2D landmarks,
projected to 2D using the estimated camera matrix. More
specifically, yp = P · (V̂hα + v̄), where P is a matrix that
has copies of the camera matrix C on its diagonal, and V̂h

is a modified PCA basis matrix that consists of the rows that
correspond to the landmark points that the shape is fitted to.
The basis vectors are multiplied with the square root of their
respective eigenvalue, and, because the derivation is expressed
in homogeneous coordinates, a row of zeros is inserted after
every third row. With this formulation, the cost function in
Eq. (3) can be expressed in terms of a regularised quadratic
form, which has a closed form solution (derived in [11]):
α = −(V̂T

hPTΩPV̂h + λI)−1(V̂T
hPTΩT(Pv̄ − y)), where

Ω = diag(σ−22D).

D. Expression Fitting

To model expressions, we use a set of additive expression
blendshapes B that have been computed from 3D expression
scans. A linear combination of these blendshapes is added to
the PCA model, so a face shape is represented as:

S = v̄ +

M∑
i

αiσivi +

K∑
j

ψjBj , (4)

where Bj is the j-th column of B (the j-th blendshape) and
ψj the corresponding blendshape coefficient.

To find the blendshape coefficients, we propose an extension
of [11] that fits expression blendshapes, and then alternates
to fit both identity and expression. We use a standard least-
squares formulation, similar to Section II-C, but instead of
using the mean shape v̄, we substitute it with a face instance
Sα, generated with the currently estimated α. V̂h is replaced
with B̂h, where B̂h is modified from B in the same way
as V̂h, and we set: ψ = −(PB̂h)

−1(PSα − y). We solve
this system of equations with a Non-Negative Least Squares
algorithm [12].

Once an estimate of the blendshape coefficients ψ is com-
puted, we generate a shape instance Sψ using these estimated
coefficients, and use this face instance in the identity fitting
instead of the mean face v̄. This process of shape identity
and expression blendshape fitting is alternated, and usually
converges within ten iterations.
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The result of the fitting is the identity-specific shape coef-
ficients α and expression blendshape coefficients ψ. Besides
modelling the subject’s expressions, blendshape fitting can be
used to remove a facial expression from a subject, or to re-
render it with a different expression. Figure 2 shows a frame
with a strong expression, the expression-neutralised face, and
a re-rendering with a synthesised expression.

Fig. 2. Frame with strong expression and expression-neutralised image. (left):
Input frame. (middle): Expression-neutralised 3D model. (right): Face with
artificially added smile expression.

E. Contour Refinement

In general, the outer face contours present in the 2D image
do not correspond to unique contours on the 3D model. At
the same time, these contours are important for an accurate
face reconstruction, as they define the boundary region of the
face. This problem has had limited attention in the research
community, but for example Bas et al. [13] recently provided
an excellent overview describing the problem in more detail.

To deal with this problem of contour correspondences, we
introduce a simple contour fitting that fits the front-facing face
contour given semi-fixed 2D-3D correspondences. We assume
that the front-facing contour (that is, the half of the contour
closer to the camera, for example the right face contour when
a subject looks to the left) corresponds to the outline of the
model. We thus define a set of vertices V along the outline of
the 3D face model, and then, given an initial fit, search for the
closest vertex in that list for each detected 2D contour point.
Given a 2D contour landmark y, the optimal corresponding
3D vertex v̂ is chosen as:

v̂ = argmin
v∈V

‖Pv − y‖2 , (5)

where P is the currently estimated projection matrix from 3D
to 2D. V is small, and we find v̂ by computing all distances.

Using a whole set of potential 3D contour vertices makes the
method robust against varying roll and pitch angles, as well as
against vertical inaccuracies of the contour from the landmark
regressor. Once found, these contour correspondences are
then used as additional corresponding points in the algorithm
described in II-C and II-D.

F. Texture Reconstruction

Once an accurate model fit is obtained, we remap the image
texture from a frame to an isomap that puts each pixel into
a globally registered representation. The isomap is a texture
map, created by projecting the 3D model’s triangles to 2D
while preserving the geodesic distances between vertices ([14],

[15]). The mapping is computed only once, so the isomaps of
all of the frames are in dense correspondence with each other.
Note that the texture map resolution is independent of the
number of vertices N of the shape model.

Inspired by [16], we compute a weighting ω for each point
in the isomap that is given by the angle of the camera viewing
direction d and the normal n of the 3D mesh’s triangle that
corresponds to the point: ω = 〈d,n〉. Thus, vertices that
are facing away from the camera receive a lower weighting,
and self-occluded regions are discarded. In contrast to [16],
our approach does not depend on the colour model or an
illumination model fitting. Figure 3 shows an example.

Fig. 3. View visibility information (including regions of self-occlusions) from
the 3D face model. (left): Input frame. (right): red = 0°(facing the camera),
blue = 90°or facing away. JET colourmap.

To reconstruct the texture value ĉx,y at each pixel location
(x, y), we calculate a weighted average of all frames up to the
current frame n, each pixel weighed by its triangle’s computed
ω of a particular frame:

ĉnx,y =
1

n

n∑
i=1

ωi
x,yc

i
x,y, (6)

where cix,y is the colour of frame i at location (x, y).
In practice, this average can be computed very efficiently,

i.e. by adding the values of the current frame to the previ-
ous average and normalising accordingly, without having to
recompute the values for all previous frames. Naturally, there
is a trade-off between coverage and blurring with respect to
the number of frames - to address this is the subject of future
work. While more complex fusion techniques could be applied,
our method is particularly suited for real-time application and
in that it allows the computation of an incremental texture
model on a video stream, without having knowledge of the
whole video in advance.

III. EXPERIMENTS

A. Landmark Accuracy

First, we evaluate the proposed approach on the ibug-Helen
test set [17] to be able to compare the landmark accuracy
to other approaches in the literature. We train a model using
the algorithm of Section II-B, using F-HOG features and 5
cascaded linear regressors in series. On the official ibug-68
landmarks set, we achieve a mean error of 0.049, measured
in percent of the distance between the outer eye corners, as
defined by the official ibug protocol (which they refer to as
inter-eye distance, IED). The algorithm was initialised with
bounding boxes given by the ibug face detector. Table I shows
a comparison with recent state-of-the-art methods.
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Fig. 4. (Top row): Frame from the original video. (Second row): Reconstructed face texture using our real-time method. (Third row): Ground truth face
texture. (bottom row): Rendering of a novel pose.

TABLE I
LANDMARK ERROR (IN % OF IED)

SDM [18] ERT [19] Ours

HELEN 0.059 0.049 0.049
300-VW - - 0.047

To evaluate the accuracy of our tracking and the landmarks
used for the shape reconstruction on in-the-wild videos, we
evaluate the proposed approach on the public part of the
300-VW dataset [7]. For the amount of subject and camera
movements present in 300-VW, the tracking did not require
reinitialisation. Across all videos, our tracking achieves an
average error of 0.047. Figure 5 shows the accuracy of
each individual landmark. Our approach achieves competitive
results even on challenging video sequences. Given that all
300-VW data is annotated semi-automatically, and the ground
truth contour landmarks (1-8, 10-17) are not well-defined and
vary largely along the face contour, we believe this to be very
close to the optimum achievable accuracy.

All the results in this paper were achieved by training on
databases from sources other than 300-VW.
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Fig. 5. Accuracy of each individual landmark on the 300-VW videos. 1-8 and
10-17 are contour landmarks, with significantly higher error. The horizontal
bar depicts the average error.

B. Face Reconstruction

Our main experiment is concerned with reconstructing the
3D face and texture from in-the-wild video sequences. Since

for such video sequences, no 3D ground truth is available, we
evaluate the reconstruction quality on the texture map, since it
accounts for shape as well as texture reconstruction accuracy.
We create a ground truth isomap for ten 300-VW videos, by
manually merging a left, frontal and right view, generated
from accurate manual landmarks. We then compare our fully
automatic reconstruction with these reference isomaps.

Figure 4 shows results of ibug 300-VW reconstructions. Our
pipeline copes well with changing background, challenging
poses, and, to some degree, varying illumination. The weighted
fusion works well in these challenging conditions and results
in a holistic, visually appealing reconstruction of the full
face. The averaging results in slight blurring, but produces
consistent results.

IV. CONCLUSION

We presented an approach for real-time 3D face recon-
struction from monocular in-the-wild videos. The algorithm is
competitive in landmark tracking and succeeds at reconstruct-
ing a shape and textural face representation, fusing different
frames and view-angles. In comparison with existing work,
the proposed algorithm requires no subject-specific or manual
training, reconstructs texture as well as a semi-dense shape,
and it is evaluated on a true in-the-wild video database.

Furthermore, the 3D face model and the fitting library are
available at https://github.com/patrikhuber/eos. In future work,
we plan to improve the real-time texture fusion with a method
that reduces the blur caused by averaging, while still being
robust to in-the-wild conditions.
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