
Higher Level Techniques for the

Artistic Rendering of Images and

Video
submitted by

John Philip Collomosse

for the degree of Doctor of Philosophy

of the

University of Bath

2004

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

John Philip Collomosse

Higher Level Techniques for the

Artistic Rendering of Images and

Video

John Philip Collomosse

i

SUMMARY

This thesis investigates the problem of producing non-photorealistic renderings for the

purpose of aesthetics; so called Artistic Rendering (AR). Specifically, we address the

problem of image-space AR, proposing novel algorithms for the artistic rendering of

real images and post-production video.

Image analysis is a necessary component of image-space AR; information must be ex-

tracted from two-dimensional content prior to its re-presentation in some artistic style.

Existing image-space AR algorithms perform this analysis at a “low” spatiotemporal

level of abstraction. In the case of static AR, the strokes that comprise a rendering

are placed independently, and their visual attributes set as a function of only a small

image region local to each stroke. In the case of AR animation, video footage is also

rendered on a temporally local basis; each frame of animation is rendered taking ac-

count of only the current and preceding frame in the video. We argue that this low-level

processing paradigm is a limiting factor in the development of image-space AR. The

process of deriving artwork from a photograph or video demands visual interpretation,

rather than localised filtering, of that source content — a goal challenging enough to

warrant application of higher level image analysis techniques, implying interesting new

application areas for Computer Vision (and motivating new Computer Vision research

as a result).

Throughout this thesis we develop a number of novel AR algorithms, the results of

which demonstrate a higher spatiotemporal level of analysis to benefit AR in terms of

broadening range of potential rendering styles, enhancing temporal coherence in ani-

mations, and improving the aesthetic quality of renderings. We introduce the use of

global salience measures to image-space AR, and propose novel static AR algorithms

which seek to emphasise salient detail, and abstract away unimportant detail within

a painting. We also introduce novel animation techniques, describing a “Video Paint-

box” capable of creating AR animations directly from video clips. Not only do these

animations exhibit a wide gamut of potential styles (such as cartoon-style motion cues

and a variety of artistic shading effects), but also exhibit a significant improvement in

temporal coherence over the state of the art. We also demonstrate that consideration of

the AR process at a higher spatiotemporal level enables the diversification of AR styles

to include Cubist-styled compositions and cartoon motion emphasis in animation.

ii

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor, Peter Hall, for taking me on, and wish to ex-

press my sincere gratitude for all his hard work, patience and encouragement. Thanks

are also due to members of the Media Technology Research Centre at the University

of Bath: Phil Willis, Dan Su, Emmanuel Tanguy, and in particular to David Duke,

whose advice and feedback over the last three years has been invaluable. Many thanks

also go to “our animator” David Rowntree (and others at Nanomation Ltd.) who, on

numerous occasions, supplied useful advice and assisted with edits of both conference

papers and the Video Paintbox show-reel. Thanks also to Catriona Price, our ballerina

in the show-reel, and the artists who have commented on our work over the course of

this project. I am also grateful to the numerous conference attendees and anonymous

referees, in both the Computer Graphics and Vision communities, who have provided

encouragement and suggestions regarding this work.

Thanks to all the postgraduate students and research officers, with whom I have shared

the lab, for the numerous coffees and distractions from work: Adam B., Andy H., Dan,

Emma, Marc, James, Owen, and Vas. Thanks also to Ben for teaching me backgam-

mon, and occasionally allowing me to win. Special mentions go those who “star” in

the videos in this thesis: Emmanuel, Adam D., Siraphat, and of course Martin who

was coerced into a bear costume to co-star in the sequences at Sham castle. I am also

indebted to our lab support staff Mark and Jim for turning a blind eye to the copious

amount of disk storage occupied by this work.

Finally, I would like to thank my family for their emotional and financial support

throughout this project. Thanks also to Becky for her love and support.

I gratefully acknowledge the financial support of the EPSRC who funded this research

under grant GR/M99279.

John P. Collomosse,

May 2004.

iii

PUBLICATIONS

Portions of the work described in this thesis have appeared in the following papers:

Chapter 3

[23] Collomosse J. P. and Hall P. M. (October 2003). Cubist style

Rendering from Photographs. IEEE Transactions on Visualization and

Computer Graphics (TVCG) 4(9), pp. 443–453.

[22] Collomosse J. P. and Hall P. M. (July 2002). Painterly Rendering

using Image Salience. In Proc. 20th Eurographics UK Conference, pp.

122–128. (awarded Terry Hewitt Prize for Best Student Paper, 2002)

Chapter 4

[24] Collomosse J. P. and Hall P. M. (October 2003). Genetic Painting: A

Salience Adaptive Relaxation Technique for Painterly Rendering.

Technical Report, University of Bath. Report No. CSBU-2003-02.

[66] Hall P. M. and Owen M. J. and Collomosse J. P (2004). A Trainable

Low-level Feature Detector. Proc. Intl. Conference on Pattern

Recognition (ICPR), to appear.

Chapter 6

[27] Collomosse J. P., Rowntree D. and Hall P. M. (September 2003).

Video Analysis for Cartoon-like Special Effects. In Proc. 14th British

Machine Vision Conference (BMVC), pp. 749–758. (awarded BMVA

Industry Prize, 2003)

[25] Collomosse J. P., Rowntree D. and Hall P. M. (July 2003).

Cartoon-style Rendering of Motion from video. In Proc. 1st Intl.

Conference on Video, Vision and Graphics (VVG), pp. 117–124.

[28] Collomosse J. P. and Hall P. M. (2004). Automatic Rendering of

Cartoon-style Motion Cues in Post-production Video. submitted to

Journal on Graphical Models and Image Processing (CVGIP).

iv

Chapter 8

[26] Collomosse J. P., Rowntree D. and Hall P. M. (June 2003). Stroke

Surfaces: A Spatio-temporal Framework for Temporally Coherent

Non-photorealistic Animations. Technical Report, University of Bath.

Report No. CSBU-2003-01.

NON-PUBLICATIONS

Collomosse J. P. and Hall P. M. (March 2004). Stroke Surfaces: A

Spatio-temporal Framework for Temporally Coherent Non-photorealistic

Animations. Presented at BMVA Symposium on Spatiotemporal

Processing.

Collomosse J. P. and Hall P. M. (July 2002). Applications of Computer

Vision to Non-photorealistic Rendering. Poster at 8th EPSRC/BMVA

Summer School on Computer Vision.

In some cases, these papers describe work in an earlier stage of development than

presented in this thesis. Electronic versions are available on the DVD-ROM in

Appendix C and at http://www.cs.bath.ac.uk/~jpc/research.htm.

v

Contents

I Introduction 1

1 Introduction 2

1.1 Contribution of this Thesis . 3

1.2 Motivation for a Higher level of Analysis 4

1.2.1 The Low-level Nature of Image-space AR 4

1.2.2 Limitations of a Low-Level Approach to AR 5

1.3 Structure of the Thesis . 8

1.4 Application Areas . 12

1.5 Measuring Success in Artistic Rendering 13

2 The State of the “Art” 14

2.1 Introduction . 14

2.2 Simulation and Modelling of Artistic Materials 15

2.2.1 Brush models and simulations . 15

2.2.2 Substrate and Media models . 18

2.3 Interactive and Semi-automatic AR Systems 19

2.3.1 User assisted digital painting . 20

2.3.2 User assisted sketching and stippling 22

2.4 Fully Automatic AR Systems . 23

2.4.1 Painterly Rendering Techniques 24

2.4.2 Sketchy and Line-art Techniques 28

2.5 Non-photorealistic Animation . 28

2.5.1 Animations from Object-space (3D) 29

2.5.2 Artistic rendering from video (2D) 29

2.5.3 Rendering Motion in Image Sequences 33

2.6 Observations and Summary . 34

II Salience and Art: the benefits of

vi

Higher level spatial analysis 40

3 Painterly and Cubist-style Rendering using Image Salience 41

3.1 Introduction . 41

3.2 A Global Measure of Image Salience . 45

3.3 Painterly Rendering using Image Salience 48

3.3.1 Results and Qualitative Comparison 52

3.4 Cubist-style Rendering from Photographs 54

3.4.1 Identification of Salient Features 55

3.4.2 Geometric Distortion . 57

3.4.3 Generation of Composition . 60

3.4.4 Applying a Painterly Finish . 66

3.4.5 Results of Cubist Rendering . 67

3.5 Personal Picasso: Fully Automating the Cubist Rendering System . . . 70

3.5.1 An Algorithm for Isolating Salient Facial Features 70

3.5.2 Tracking the Isolated Salient Features 73

3.6 Summary and Discussion . 77

4 Genetic Painting: A Salience Adaptive Relaxation Technique for Painterly

Rendering 80

4.1 Introduction . 80

4.2 Background in Evolutionary Computing 83

4.2.1 Genetic Algorithms in Computer Graphics 84

4.3 Determining Image Salience . 86

4.3.1 Determining Pixel Rarity . 87

4.3.2 Determining Visibility . 87

4.3.3 Classification of Image Artifacts 88

4.3.4 Selection of Scale for Classification 90

4.4 Generating the Painting . 95

4.4.1 Stroke placement algorithm . 95

4.4.2 Relaxation by Genetic Algorithm 99

4.5 Rendering and Results . 104

4.6 Summary and Discussion . 111

III Video Paintbox: the benefits of

Higher level temporal analysis 116

5 Foreword to the Video Paintbox 117

5.1 Introducing the Video Paintbox . 117

vii

6 Cartoon-style Visual Motion Emphasis from Video 122

6.1 Introduction . 122

6.2 Overview of the Subsystem . 124

6.3 Computer Vision Component . 124

6.3.1 Camera Motion Compensation 125

6.3.2 Tracking Features through the Compensated Sequence 126

6.3.3 Recovering Relative Depth Ordering of Features 129

6.4 Computer Graphics Component . 131

6.4.1 Motion Cues by Augmentation 131

6.4.2 Motion Cues by Deformation . 135

6.4.3 Rendering in the Presence of Occlusion 139

6.4.4 Compositing and Rendering . 141

6.5 Summary and Discussion . 141

7 Time and Pose Cues for Motion Emphasis 148

7.1 Introduction . 148

7.2 Recovery of Articulated Pose in the plane 150

7.2.1 Four Algorithms for Recovering inter-feature pivot points 151

7.2.2 Closed Form Eigen-solutions . 151

7.2.3 Evidence Gathering, Geometric Solutions 154

7.2.4 Summary of Algorithms . 155

7.2.5 Comparison of Pivot Recovery Algorithms 156

7.3 Recovering Hierarchical Articulated Structure and Pose 160

7.4 Temporal Re-sampling . 164

7.4.1 Temporally Local transformation (anticipation) 164

7.4.2 Temporally Global transformation (motion exaggeration) 169

7.5 Video Re-synthesis . 173

7.6 Integrating Time and Pose Cues within the Video Paintbox 175

7.7 Varying the Temporal Sampling Rate 176

7.8 Summary and Discussion . 177

8 Stroke Surfaces: Temporally Coherent Artistic Animations from Video180

8.1 Introduction . 180

8.1.1 Overview and Capabilities of the Subsystem 183

8.2 Front end: Segmenting the Video Volume 184

8.2.1 Frame Segmentation . 185

8.2.2 Region association algorithm . 189

8.2.3 Coarse Temporal Smoothing . 193

8.3 Front end: Building the Representation 196

8.3.1 Stroke Surface Representation . 197

viii

8.3.2 Fitting Stroke Surfaces . 198

8.3.3 Counter-part Database . 200

8.3.4 Capturing Interior Region Details in the Database 201

8.4 Back end: Rendering the Representation 203

8.4.1 Surface Manipulations and Temporal Effects 204

8.4.2 Rendering the Interior Regions 208

8.4.3 Coherent Reference Frames and Stroke Based Rendering 210

8.4.4 Rendering the Holding and Interior Lines 216

8.5 Interactive Correction . 219

8.6 Comparison with the State of the Art 221

8.6.1 RGB Differencing . 221

8.6.2 Optical Flow . 223

8.6.3 Comparison Methodology . 224

8.6.4 Results and Discussion . 227

8.7 Integration with the Motion Emphasis Subsystems 238

8.8 Benefits of an Abstract Representation of Video Content 240

8.9 Summary and Discussion . 242

IV Conclusions 245

9 Conclusions and Further Work 246

9.1 Summary of Contributions . 246

9.2 Conclusions . 247

9.2.1 Control over Level of Detail in Renderings (aesthetic quality) . . 247

9.2.2 Temporal Coherence of Animations (aesthetic quality) 249

9.2.3 Diversity of AR Style . 249

9.3 Discussion . 250

9.4 Further Work . 253

9.5 Closing Remarks . 255

V Appendices 256

A Miscellaneous Algorithms 257

A.1 A Sparse Accumulator Representation for the Hough Transform 257

A.1.1 Introduction to the Hough Transform 257

A.1.2 Finding superquadrics with the Hough Transform 259

A.1.3 Our Sparse Representation Strategy 260

A.1.4 Summary and Conclusion . 264

A.2 A P-time Approximation to the Graph Colouring Problem 264

ix

A.3 The Harris Corner Detector . 266

A.3.1 Basic Algorithm . 266

A.3.2 Extension to Sub-pixel Accuracy 267

A.4 A 1D Illustrative Example of a Kalman Tracker 268

A.4.1 Initialisation . 269

A.4.2 Iterative Process . 269

A.5 Identification of Markers for Substitution in Tracking 270

A.6 On the Effects of Pivot Motion during Rotation in 2D 272

B Points of Definition 273

C Supplementary Material: Images, Papers and Videos (Electronic) 275

C.1 Paintings . 275

C.2 Papers . 276

C.3 Videos . 276

x

Part I

Introduction

1

Chapter 1

Introduction

Research in the field of Computer Graphics has traditionally been dominated by at-

tempts to achieve photorealism; modelling physical phenomena such as light reflection

and refraction to produce scenes lit, ostensibly, in a natural manner. Over the past

decade the development of novel rendering styles outside the bounds of photorealism

has gathered momentum — so called non-photorealistic rendering or NPR. Given that

they are defined by what they are not, it is perhaps unsurprising that NPR techniques

are broad in classification. NPR has been successfully applied by scientific visualisa-

tion researchers to improve the clarity and quantity of information conveyed by an

image [133]; exploded diagrams in maintenance manuals and false colour satellite im-

agery are two common examples of such visualisations. NPR algorithms have also

been produced that are capable of emulating a broad range of artistic media from

pastel to paint [20, 62], and to mimic many artistic techniques such as hatching and

shading [65, 97]. This latter subset of NPR algorithms concerns the production of

renderings solely for the benefit of aesthetic value, and is the field to which this thesis

contributes. We collectively term these techniques “Artistic Rendering” to draw dis-

tinction from the rather general definition of NPR.

Illustrations offer many advantages over photorealism, including their ability to stylise

presentation, clarify shape, abstract away detail and focus attention. Contemporary

artists typically draw not only to convey knowledge of a scene, but also to convey a sense

of how that scene is to be perceived. Strothotte et al [151] formalised this distinction

by writing of the transmitted versus the transputed (perceived) image. For example, it

is common practice that architects will often trace over draft designs with a pencil to

produce a “sketchy” look, so helping to convey to clients the incomplete nature of their

design. By contrast, photorealism carries with it an inherent sense of accuracy and

completeness, which offers little potential for manipulation of the transputed image.

Psychophysical experiments have shown that eighty percent of the sensory input we

process is visual [165], and as such Computer Graphics provides one of the most natural

2

INTRODUCTION 3

means of communicating information — a principle that underpins much of scientific

visualisation, and was first posited in the 1960s by Sutherland with his SKETCHPAD

systems [153]. Nowadays computer generated imagery is all pervasive in our society,

and common applications for Computer Graphics include cinema, art, television and

advertising. The ability to present such imagery in styles other than photorealism is

of great value both commercially and in terms of aesthetics. As such the study of

non-photorealism, and specifically of Artistic Rendering, is arguably of considerable

relevance to modern society.

1.1 Contribution of this Thesis

Artistic Rendering (AR) techniques may be segregated into two broad categories; those

producing artistic renderings from object-space (3D) scenes and those operating from

image-space (2D) data. This thesis is concerned solely with the latter category, and

specifically addresses the problem of automatically rendering both real images and

post-production video sequences in artistic styles.

The problem of image-space AR is a particularly challenging one. Valuable geometric

information such as silhouettes and relative depth are easily obtained from an object

space representation. By contrast, much of the structure and information required to

produce quality renderings is difficult to recover from a two dimensional scene. Image

analysis therefore forms part of the rendering pipeline in image-space AR methods.

We will show that existing automatic image-space AR algorithms perform this analysis

at a “low” spatiotemporal level. In the case of static rendering (for example, trans-

forming photographs into paintings), each brush stroke is painted independently and

according to decisions based upon only a small local pixel neighbourhood surrounding

that stroke’s location. In the case of animations, video footage is also rendered on a

temporally local basis; each frame of animation is rendered taking account of only the

current and preceding frame in the video.

This thesis argues for the interpretation of image and video content at a higher spa-

tiotemporal level, contending that this low-level processing paradigm is a limiting factor

in the development of image-space AR. Throughout this thesis we develop a number

of novel image-space AR algorithms, the results of which demonstrate a higher spa-

tiotemporal level of analysis to be beneficial in terms of broadening range of potential

rendering styles, enhancing temporal coherence in animations, and improving the aes-

thetic quality of renderings. The enabling factor for our work is the application of both

novel and existing contemporary Computer Vision techniques to the problem of AR,

and as such our work falls within the newly developing convergence area between both

INTRODUCTION 4

Computer Graphics and Computer Vision.

1.2 Motivation for a Higher level of Analysis

We now give a brief overview of image-space AR, highlighting the difficulties arising

from the low-level signal processing operations which drive the current state of the art.

We use these observations to motivate our argument for a higher level of spatiotemporal

analysis in image-space AR.

1.2.1 The Low-level Nature of Image-space AR

Early image-space AR techniques were highly interactive, and the vast majority con-

centrated upon the simulation of traditional artistic media within interactive painting

environments [20, 150, 142]. The development of automated AR algorithms arguably

began to gain momentum with Haeberli’s semi-automatic paint systems [62]. These al-

lowed users to interactively generate impressionist style “paintings” from photographs,

by creating brush strokes on a virtual canvas. The colour and orientation of these

strokes were determined by point-sampling the reference photograph. In such systems

the onus was on the user to guide the rendering process, supplementing information lost

by the (camera) projection to 2D by means of their natural ability to interpret image

content. As applications increasingly demanded automation, such rendering decisions

shifted necessarily away from the user and towards increasingly automated processes.

In Haeberli’s system a user might choose a finer brush to render detailed areas in an

image, but to mimic this behaviour automatically is more difficult. Early automated

systems were based, for the most part, upon pseudo-randomness [63]. However data

dependent approaches were later presented, driven by heuristics based upon local image

processing operations which automatically estimated stroke attributes such as scale or

orientation [71, 103, 159].

We present a comprehensive review of such techniques in Chapter 2, but briefly sum-

marise that the heuristics of current automatic algorithms make an important but

implicit assumption that all fine detail in an image is salient (visually important).

The vast majority of automated techniques paint to conserve high frequency detail in

a scene. For example, in fully automatic coarse-to-fine multi-scale painterly render-

ers [71, 140], strokes depicting the finest scale artifacts are painted last. Additionally,

we observe that all current algorithms are guided by local information, for example

intensity gradient, colour, or statistical measures such as variance within a window.

Consequently, when placing a stroke, only the pixels within a small region surrounding

that stroke’s location influence the decisions which determine that stroke’s attributes

(Figure 1-1). Such algorithms therefore operate at a spatially low-level, typically as

INTRODUCTION 5

non-linear image filters which seek to texture content to convey the impression of some

artistic style (for example, stipples or oil paint), whilst preserving all fine scale image

content within the artistic rendering.

Researchers have found the extension of automatic AR algorithms to image sequences

to be non-trivial. Current AR algorithms can not be applied independently to indi-

vidual video frames without introducing aesthetically poor temporal incoherence into

the resulting animation (manifested as distracting motion and rapid flickering, termed

“swimming”). Attempts have been made to control swimming, for example by trans-

lating virtual paint strokes between frames, rather than painting each frame inde-

pendently. Inter-frame motion is estimated on a per pixel basis, using either optical

flow [96, 103], or frame differencing [75] operations. Although such approaches continue

to operate at a spatially low-level, we observe that they also operate at a temporally

low-level; analysing and rendering video on a per frame sequential basis, considering

only content in the previous frame when rendering the next.

1.2.2 Limitations of a Low-Level Approach to AR

We argue that the ubiquitous trend to process images and video sequences at a low

spatiotemporal level is a limiting factor in current AR. There are a number of disad-

vantages of low-level approaches, which we summarise here, and attempt to resolve

through higher level spatiotemporal analysis in later chapters (3–8).

1. Aesthetic Quality of Rendering suffers

1a. Control over level of detail (emphasis) in renderings

Drawings and paintings are abstractions of photorealistic scenes in which salient ele-

ments are emphasised. Artists commonly paint to capture the structure and elements

of the scene which they consider to be important; the remaining detail is abstracted

away in some differential style or possibly omitted. Similarly, fully automatic image-

space AR algorithms modulate stroke placement to preserve high frequency detail in

the rendered output. However the assumption that high frequency artifacts unequivo-

cally correlate with regions of importance does not hold true in the general case. The

typical result is a painting in which all fine detail is emphasised, rather than only the

salient detail. Arguably this disparity contributes to the undesirable impression that

such paintings are of machine (AR) rather than natural origin.

Figure 1-1a gives an example which demonstrates that not all fine detail should be

regarded as salient. In this figure, salient and non-salient artifacts are of similar scale,

that is, we require windows of comparable size to detect them reliably. Such examples

INTRODUCTION 6

a) b)

c) d)

such fields are
also generated using
local windows, e.g.
convolution kernels

y

x

Attributes for each stroke are

Stroke locations

decided using only the data
within a local pixel window

e.g. axis of least variance..

..or by point sampling image
derived fields e.g. Sobel ’edges’

1 2 1

−1 −2 −1
0 00

Raster of ‘virtual canvas’

stroke

Figure 1-1 Left: By examining a window locally (yellow) in an image, we can not deter-
mine the importance of that region relative to the whole image; in (b) the stripes would
be considered salient, while in (a) the face would. It is generally incorrect to correlate
the presence of fine detail with image salience. In photo (a), salient edges and non-salient
texture edges are of similar scale and magnitude, prohibiting isolation of salient artifacts
through application of local measures (c). By considering all pixels using a global statis-
tical measure of salience (proposed in Chapter 3) we approach a more intuitive result (d).
Right: Illustrating the spatially local nature of typical image-space AR techniques.

make the case for some other measure of salience incontrovertible. When one speaks of

the salience of image regions, one implicitly speaks of the importance of those regions

relative to the image as a whole. It follows that global image analysis is a prerequisite

to salience determination. Restricting attention to local image properties, by indepen-

dently examining small pixel neighbourhoods, can give no real indication of salience in

an image. The implication is that low-level image analysis prohibits the use of image

salience to drive the level of emphasis in a rendering, and thereby imposes limitations

upon the quality of renderings that may be produced.

Some recent image-space AR techniques have begun to re-examine collaborative (semi-

automatic) approaches to rendering — allowing the user to interactively control the

level of detail in certain regions of the image. Rather than emphasise high frequency

artifacts, the image is broken into small segments which may be interactively merged to

reduce detail in desired areas. This is achieved by specifying masks over image regions,

either manually [3, 71] or using more exotic devices such as eye trackers [38]. We

observe that such systems appeal to the human visual system to perceive the image, and

interactively correct the level of emphasis attributed to regions by the AR heuristics.

In doing so they are tacitly supporting our argument that a global image analysis is

required to introduce some notion of relative importance within the image. In Chapters

3 and 4 we propose an automatic solution to this problem, introducing novel painterly

rendering algorithms which regulate the level of emphasis over the rendering using a

globally derived measure of image salience.

INTRODUCTION 7

Figure 1-2 Previewing some of the results of our algorithms, which perform higher spa-
tiotemporal analysis upon image and video sequence content to produce artistic renderings.
We demonstrate benefit of higher level analysis to static AR: improving quality of render-
ing using salience adaptive stroke placement (left, Chapter 4) and improving diversity of
style, through use of high level features to create Cubist compositions (middle, Chapter
3). We are also able to improve the temporal coherence of AR animations, and extend the
gamut of video driven AR to include both cartoon shading, and motion emphasis (right,
Chapters 6–8).

1b. Temporal Coherence of Animations

Rendering video sequences on a temporally local (per frame, sequential) basis causes

rapid deterioration of temporal coherence after only a few frames of animation. Errors

present in the estimated inter-frame motion fields quickly accumulate and propagate to

subsequent frames, manifesting as swimming within the rendered animation. This can

only be mitigated by exhaustive manual correction of motion fields. For example, the

film “What Dreams May Come” [Universal Studios, 1997], featured a short painterly

video sequence (rendered using [103]) requiring more than one thousand man-hours of

motion field correction before being deemed aesthetically acceptable [61].

The problem of processing a video sequence for artistic effect is complex, and basing

decisions upon a local, per frame algorithm is unlikely to result in an optimal (in

this context, temporally coherent) solution. A global analysis over all frames seems

intuitively more likely to produce coherent renderings. In Chapter 8 we develop such

a rendering framework, which operates upon video at a higher spatiotemporal level to

produce animations exhibiting superior temporal coherence than the current state of

the art.

2. Diversity of style suffers

By restricting ourselves to a low-level analysis of the source image or video sequence,

we also restrict the range of potential rendering styles to those of a low level. For

example, the significant majority of existing artistic rendering algorithms follow the

ordered brush stroke paradigm first proposed by Haeberli [62], in which atomic render-

ing elements (strokes) are individually arranged to form artwork (subsection 2.3.1). It

INTRODUCTION 8

H/L Spatial
Analysis

Salience−driven
painting & Cubism

Visual motion
emphasis

H/L Temporal
Analysis

Thesis

(3)

(5)

(6)
Salience−driven

paint by relaxation
Timing cues for

video shadingmotion emphasis (7)
Temporally coherent

(8)(4)

Figure 1-3 Structure and principal contributions of this thesis. The argument for higher
level analysis in image-space AR is presented in terms of spatial and temporal processing,
in parts II and III respectively. Chapter numbers are in parentheses.

is arguable that any artistic rendering would consist of multiple strokes of some media

type (much as any digital image is comprised of pixels). However, we argue that iden-

tification and manipulation of conceptually higher level features in images and video

can broaden the range of potential rendering styles in AR. Spatially, we may identify

high level features within an image (such as eyes, or mouths) for the purposes of pro-

ducing compositions, for example those of abstract art (see the Cubist composition

algorithm of Chapter 3), which could not be achieved through image analysis at the

level of abstraction of pixel neighbourhoods. Temporally, we may track the trajectories

of features over extended periods of time, in order to characterise the essence of their

movement using cartoon motion cues (see Chapters 6 and 7). If we restrict ourselves to

local spatiotemporal content analysis, then these novel rendering styles are not possible.

1.3 Structure of the Thesis

This thesis therefore argues that performing analysis of the image or video sequence at

a higher level proves beneficial in terms of both improving quality of output (controlling

level of emphasis, and enhancing temporal coherence), and broadening the gamut of

potential AR styles. The argument may be broadly summarised by the statement “to

draw well, one must be able to see”; that is, in order to reap these benefits, one must

approach AR from the stand-point of interpreting or “perceiving” content, rather than

simply applying non-linear transformations to local regions of that content indepen-

dently.

As evidence for our argument we propose several novel AR algorithms which operate at

a higher spatial (Part II: Chapters 3 and 4) and temporal (Part III: Chapters 5, 6, 7 and

8) level to render images and video sequences, highlighting the benefits over low-level

approaches in each case. We now outline the structure of the thesis, summarising the

principal contributions made in each chapter and how they contribute to our central

argument for higher level analysis in AR (Figure 1-3).

INTRODUCTION 9

Part I — Introduction

Chapter 1 — Introduction

In which we describe the contribution of the thesis by outlining our case for the higher

level analysis of images and video sequences for automated AR. We give a brief sum-

mary of the algorithms proposed in the thesis, their contributions to AR, and the

evidence they provide to support our thesis.

Chapter 2 — State of the “Art”

In which we present a comprehensive literature survey of related AR techniques, form-

ing observations on trends and identifying gaps in the literature. In particular we

identify the local spatiotemporal nature of existing image-space AR algorithms, and

that the extension of static AR techniques to video is an under-researched problem.

Part II — Salience and Art

Chapter 3 — Painterly and Cubist-style Rendering using Image Salience

In which we introduce the use of perceptual “salience” measures from Computer Vi-

sion to AR. We argue that existing AR methods should more closely model the practice

of real artists, who typically emphasise only the salient regions in paintings. To this

end, we propose a novel single-pass painting algorithm which paints to conserve salient

detail and abstracts away non-salient detail in the final rendering. Image salience is

determined by global analysis of the image, rather than on a local pixel-neighbourhood

basis (as with current AR). We further apply this measure to propose the use of high

level, salient features (connected groups of salient pixels, for example an eye or ear in

a portrait) as a novel alternative to the stroke as the atomic element in artistic render-

ings. We describe a novel rendering algorithm capable of producing compositions in a

Cubist style, using salient features identified across an image set. Control of the AR

process is specified at the compositional, rather than the stroke based level. We also

demonstrate how preferential rendering with respect to salience can emphasise detail

in important areas of the painting, for example the eyes in a portrait. The painterly

and Cubist algorithms demonstrate the benefit of higher level spatial analysis to image-

space AR in terms of enhancing quality of rendering and diversity of style, respectively.

Chapter 4 — Genetic Painting: A Salience Adaptive Relaxation Technique

for Painterly Rendering

In which we build on the success of our single-pass salience based painterly technique

(Chapter 3) to propose a novel, relaxation based iterative process which uses curved

spline brush strokes to generate paintings. We build upon our observations relating

artwork and salience to define the degree of optimality for a painting to be measured

INTRODUCTION 10

by the correlation between the salience map of the original image and the level of detail

in the corresponding painting. We describe a novel genetic algorithm based relaxation

approach to search the space of possible paintings and so locate the optimal painting

for a given photograph, subject to our criterion. In this work we make use of a more

subjective, user trained measure of salience. This work serves to reinforce our argument

that AR quality can benefit from higher level spatial analysis, especially when combined

with a relaxation based painting process. Furthermore, differential rendering styles are

also possible by varying stroke style according to the classification of salient artifacts

encountered, for example edges or ridges. We also compensate for noise, present in

any real image. The context-dependent adaptation of style and noise compensation are

further novel contributions to AR.

Part III — The Video Paintbox

Chapter 5 — Foreword to the Video Paintbox

In which we give a brief introduction to the “Video Paintbox”; a novel system for

generating AR animations from video. This system is developed throughout Part III

(Chapters 6, 7, and 8). We recall our observations in Chapter 2 which highlighted the

limited scope of existing video driven AR techniques. We use these observations to

provide motivation to the Video Paintbox, and give a brief overview of its core subsys-

tems and their principal contributions.

Chapter 6 — Cartoon-style Visual Motion Emphasis from Video

In which we propose a framework capable of rendering motion within a video sequence

in artistic styles, specifically emulating the visual motion cues commonly employed by

traditional cartoonists. All existing video driven AR methods mitigate against the

presence of motion in the video for the purpose of maintaining temporal coherence. By

contrast our method is unique in emphasising motion within the video sequence. We

are able to synthesise a wide range of augmentation cues (streak-lines, ghosting lines,

motion blur) and deformation cues (squash and stretch, exaggerated drag and iner-

tia). The system specifically addresses problematic issues such as camera motion and

occlusion. Effects are generated by analysing the trajectories of tracked features over

large temporal windows within the source video — in some cases (for example squash

and stretch) object collisions must also be automatically detected, as they influence

the style in which the motion cue is rendered. Breaking from the per frame sequential

processing paradigm of current AR enables us to introduce a diverse range of motion

cues into video footage.

Chapter 7 — Time and Pose Cues for Motion Emphasis

In which we extend the framework proposed in Chapter 6 to include the animation

INTRODUCTION 11

timing cues employed by traditional cartoonists, again by analysing the trajectories of

features over the course of the video sequence. We begin by deriving and comparing a

number of algorithms to recover the articulation parameters of a tracked subject. We

apply our chosen algorithm to automatically locate pivot point locations, and extract

trajectories in a pose space for a subject moving in the plane. We then perform local

and global distortions to this pose space to create novel animation timing effects in the

video; cartoon “anticipation” effects and motion exaggeration respectively. We demon-

strate that these timing cues may be combined with the cues of Chapter 6 in a single

framework. The high level of temporal analysis required to analyse and emphasise a

subject’s pose over time is an enabling factor in the production of this class of motion

cue.

Chapter 8 — Stroke Surfaces: Temporally Coherent AR Animations from

Video

In which we describe a novel spatiotemporal approach to processing video sequences

for artistic effect. We demonstrate that by analysing the video sequence at a high spa-

tiotemporal level, as a video volume (rather than on a per frame, per pixel basis as with

current methods) we are able to generate artistically shaded video exhibiting a high

degree of temporal coherence. Video frames are segmented into homogeneous regions,

and heuristic associations between regions formed over time to produce a collection

of conceptually high level spatiotemporal objects. These objects carve sub-volumes

through the video volume delimited by continuous isosurface “Stroke Surface” patches.

By manipulating objects in this representation we are able to synthesise a wide gamut

of artistic effects, which we allow the user to stylise and influence through a param-

eterised framework. In addition to novel temporal effects unique to our method we

demonstrate the extension of “traditional” static AR styles to video including painterly,

sketchy and cartoon shading effects. An application to rotoscoping is also identified,

as well as potential future applications arising from the compact nature of the Stroke

Surface representation. We demonstrate how this coherent shading framework may

be combined with earlier motion cue work (Chapters 6 and 7) to produce complete

cartoon-styled animations from video clips using our Video Paintbox.

Part IV — Conclusion

Chapter 9 — Conclusions and Further Work

In which we summarise the contributions of the thesis, and discuss how the results

of the algorithms we have developed support our central argument for higher level

spatiotemporal analysis in image-space AR. We suggest possible avenues for the future

development of our work.

INTRODUCTION 12

Part V — Appendices

Appendix A — Details of Miscellaneous Algorithms

Appendix B — Points of Definition

Appendix C — Electronic Supplementary Material (images, videos and papers.)

1.4 Application Areas

When the first cameras were developed there was great concern amongst artists that

their profession might become obsolete. This of course did not happen, for the most-

part because the skill to abstract and emphasise salient elements (the interpretation

of the scene) could not, and may never be, fully automated. Likewise, modern AR

algorithms come far from obsoleting the skills of artists. Our work does not aim to

replace the human artist or animator. Rather we wish to produce automated tools and

frameworks that allow the artist to express their creativity but without the associated

tedium that often accompanies the process.

Our motivation is to produce a series of encompassing frameworks, capable of stylising

images and video sequences with a high degree of automation. Users express their artis-

tic influence through a series of high level controls that translate to parameters used

to drive our rendering frameworks; control is typically exerted through specification

of artistic style, rather than by manipulating pixel masks or individual strokes. Ap-

plications of this work lie most clearly within the entertainment industry, for example

film special effects, animation and games. For example, consider the Video Paintbox

developed throughout Part III (Chapters 5, 6, 7 and 8). Animation is a very costly pro-

cess and a facility to shoot footage which could be automatically rendered into artistic

styles could see commercial application. More domestic applications can be envisaged,

for example the facility for a child to turn a home movie of their toys into a cartoon.

In this latter case, the child would not have the skills (or likely the patience) to create

a production quality animation. However they would often have an idea of what the

result should look like. The “Video Paintbox” technology thus becomes an enabling

tool, as well as tool for improving productivity. We hope that, in time, the algorithms

and frameworks presented in this thesis may allow experimentation in new forms of

creativity; for example the “Video Paintbox” might be used for experimentation in

new forms of dynamic art.

INTRODUCTION 13

1.5 Measuring Success in Artistic Rendering

Non-photorealistic rendering is a new but rapidly growing field within Computer Graph-

ics, and it is now common for at least two or three AR papers to appear per major

annual conference. A characteristic of the field’s youth is that many proposed tech-

niques break new, imaginative ground. However as the field matures, a difficult issue

likely to emerge is that of comparison and evaluation of novel contributions which seek

to improve on existing techniques. Although it is possible to design objective perfor-

mance measures for some aspects of an AR algorithm (for example to evaluate temporal

coherence of an animation, Section 8.6), comparative assessment of a rendering created

solely for the purposes of aesthetics is clearly a subjective matter. Throughout our

work we have worked closely with artists and animators who judge our output to be

of high aesthetic value; we believe this is important given the absence of any specific

ground truth. The aesthetics of our output are further evidenced by non-academic

publication of our work; a Cubist-styled portrait of Charles Clark MP recently took

the front page of the Times Higher Educational Supplement [3rd January 2003, see

Figure 3-18], and we have received interest from a producer wishing to incorporate our

cartoon rendering work into a pilot MTV production.

Novel AR developments are often inventive, yet also tend to be extremely specific; for

example, describing a novel brush-type. We believe that as the field matures, less value

will be gleaned from proposing specific novel, or unusual, rendering styles. Rather,

greater value will be attributed to the development of encompassing frameworks and

representations, capable of producing a diverse range of stylised renderings. In this

thesis we present novel rendering algorithms. However, we do not wish to be novel

for novelty’s sake, but rather to illustrate the benefits that higher level image analysis

confers to AR. For example, in Chapter 3 we make use of conceptually high level

salient features (for example, eyes, ears, mouths) to synthesise abstract compositions

reminiscent of Cubism. Although this work certainly extends the gamut of styles

encompassed by AR it is important to note that such compositions arguably could

not be produced without the consideration of high level salient features. Likewise the

temporal coherence afforded by the Stroke Surface framework (Chapter 8) and the

ability to render motion cues (Chapters 6 and 7) could not have been achieved without

performing a high level spatiotemporal analysis of the source video sequence. We

believe that our success should therefore be judged by the versatility of our proposed

frameworks, and through the advantages demonstrated as a consequence our higher

level spatiotemporal approach to processing images and video for artistic effect.

Chapter 2

The State of the “Art”

In this chapter we present a comprehensive survey of relevant Artistic Rendering tech-

niques, forming observations on trends and identifying gaps in the literature. We

explain the relevance of our research within the context of the reviewed literature.

2.1 Introduction

There have been a number of published AR surveys, including Lansdown and Schofield

([97], 1995), a comprehensive SIGGRAPH course edited by Green ([61], 1999), and

a recent text ([59], 2000), which have documented progress in the field. However

development has gathered considerable momentum, and these surveys are no longer

representative of current rendering techniques. We now present a comprehensive sur-

vey of artificial drawing techniques, which for the purposes of this review have been

segmented in to the following broad categories:

1. physical simulations and models of artistic materials (brushes, substrate, etc.)

2. algorithms and strategies for rendering static artwork

2a. interactive and semi-automatic AR systems

2b. fully automatic AR systems

3. techniques for producing non-photorealistic animations

Although research continues to be published in each of these areas, we indicate a rough

chronological ordering in selecting these categories. Arguably the field of AR grew from

research modelling various forms of physical artistic media in the late eighties and early

nineties. These models were quickly incorporated into interactive painting systems, and

were later enhanced to provide semi-automatic (yet still highly interactive) painting en-

vironments, for example assisting the user in simple tasks such as colour selection [62].

An increased demand for automation drove the development of these semi-automatic

14

THE STATE OF THE “ART” 15

systems towards fully automatic AR systems in the late nineties. More recently, the

high level of automation achieved by these techniques has facilitated the development

of techniques for production of non-photorealistic animations.

We now review each of these AR categories in turn, forming observations and drawing

conclusions at the end of the Chapter (Section 2.6).

2.2 Simulation and Modelling of Artistic Materials

The vast majority of early AR techniques addressed the digital simulation of physical

materials used by artists. Such research largely addresses the modelling of artists’

brushes, but also extends to the modelling of both the medium (e.g. sticky paint)

and the substrate. Such models vary from complete, complex physical simulations

— for example, of brush bristles — to simulations which do not directly model the

physics of artists’ materials, but approximate their appearance to a sufficient level to

be aesthetically acceptable for the purposes of Computer Graphics.

2.2.1 Brush models and simulations

Among the earliest physical simulations of brushes was Strassman’s hairy brush model [150].

As with most subsequently published brush models, Strassman assumes knowledge of

the stroke trajectory in the form of a 2D spline curve. To render a stroke, a one-

dimensional array is swept along this trajectory, orientated perpendicular to the curve.

Elements in the array correspond to individual brush bristles; the scalar value of each

element simulates the amount of paint remaining on that bristle. As a bristle passes

over a pixel, that pixel is darkened and the bristle’s scalar value decremented to sim-

ulate a uni-directional transfer of paint. Furthermore, pressure values may be input

to augment the curve data, which vary the quantity of paint transferred. Strassman

was able to produce convincing greyscale, sumi-e1 artwork using his brushes (Figure 2-

1a), although hardware at the time prevented his LISP implementation from running

at interactive speeds (brush pressure and position data were manually input via the

keyboard). The principal contribution of this work was the use of simulated brush

bristles; a significant improvement over previous paint systems which modelled brushes

as patterned “stamps”, which were swept over the image to create brush strokes [166].

A further sumi-e brush model was later proposed by Pham [121]. Similar to Strass-

man’s technique, the system interpolates values (for example, pressure value or colour)

1Sumi-e: a form of traditional Japanese art. The popularity of sumi-e in brush modelling may be
attributed to the fact that such artwork consists of few elegant, long strokes on a light background,
which often serves as an excellent basis for clearly demonstrating brush models.

THE STATE OF THE “ART” 16

a) c)

b)

d)

Bowtie effect
in regions of
high curvature

Figure 2-1 Demonstrating various brush models developed over the years: (a) Imple-
mentation of Strassman’s hairy brush [150]; (b) Pudet’s rigid brush (top) and dynamic
brush (bottom) model with dynamic model skeleton (middle) — reproduced from [124];
(c) Artwork produced with a real brush (top) and Xu’s calligraphic volume based brush
(bottom) — reproduced from [177]; (d) Typical quadrilateral (top) and triangular (bot-
tom) methods of texture mapping splines, demonstrating the problematic bow-tie effect in
areas of high curvature (mitigated by the approach of Hsu et al [80]).

between knots on the curve. Each bristle’s course is plotted parallel to the predefined

stroke trajectory, and the entire stroke is then scan-converted in a single pass (rather

than by sweeping a one-dimensional array over the image).

Pudet [124] proposed incremental improvements over previous systems [121, 150, 166].

Pudet’s system makes use of a cordless stylus device similar to those used with modern

day graphics tablets. This stylus is analogous to a brush, and rendering takes into

account not only pressure and position, but also the angle of the stylus. Most notably

this work achieves frame rates sufficient to allow interactive painting, and introduces

the concept of the rigid and dynamic brushes. Rigid brushes change their width ac-

cording to angle of the stylus, whilst dynamic brushes also vary in width according to

stylus pressure (Figure 2-1b).

The first attempt to use a physical model to simulate the bristles of a brush was pro-

posed by Lee [99]. Lee was dissatisfied with the limited physical simulation of then

current models, and made a thorough study of the physics of brushes during paint-

ing, with particular regard to the elasticity of brush bristles. He proposes a 3D brush

model, in which the friction and inertia of bristles are modelled, although as with

previous models, paint transfer is only modelled uni-directionally (flowing from brush

to paper). It was not until the simulated water-colour work of Curtis et al [33] that

bi-directional transfer of paint was considered (discussion of this system is deferred to

Section 2.2.2). Baxter et al recently presented “DAB”, the first painting environment

to provide haptic feedback (via a Phantom device) on several types of physically mod-

THE STATE OF THE “ART” 17

elled brushes. Painting takes place in a 3D environment, similar to that of Disney’s

Deep Canvas [35] (described in Section 2.3), and also features bi-directional transfer of

paint between brush and surface. Recent advances in volume based brush design have

been published incrementally by Xu et al in [178] and [177]. These systems feature

full simulations of brush bristles and their interaction with the substrate entirely in

object-space. Although computationally very expensive to render, such systems pro-

duce highly realistic brush strokes (Figure 2-1c) and are the current state of the art in

physical brush simulation.

As mentioned in Section 2.2, many practical techniques do not seek to perfectly sim-

ulate the physics of the brush, but emulate the appearance of real brush strokes on

the digital canvas to an aesthetically acceptable level. To this end, a large number

of automatic AR algorithms use texture mapping techniques to copy texture sampled

from real brush strokes onto digital brush strokes. Often an intensity displacement map

is used to simulate the characteristic pattern of the brush or media being emulated;

for example crayon, pastel and paint can be emulated satisfactorily in this manner.

Recently bump mapping has been used in place of texture mapping to good effect [73].

Hsu et al [80] presented “skeletal strokes” which are, in essence, a means of smoothly

mapping textures on to the curved trajectories of strokes. Standard texture mapping

techniques, demonstrated in Figure 2-1d, harbour the disadvantage that high curva-

ture regions of stroke trajectories often cause the vertices of polygons used to create

texture correspondences to cross (the bow-tie effect). Hsu et al mitigate this behaviour

by proposing a new deformable material which is used to map a wide variety of tex-

tures to a skeleton trajectory. Anchor points may also be set on the skeleton which,

when placed judiciously, can create the aesthetically pleasing variations in brush width

demonstrated by Pudet’s dynamic brushes [124].

The brush techniques reviewed so far are intended to be rendered once, at a single scale.

Subsequent large-scale magnification of the canvas will naturally cause pixelisation of

the image. This can be a problem for certain applications, where successive magnifica-

tions should ideally yield an incremental addition of stroke detail in the image without

pixelisation. Perlin and Velho [120] present a multi-resolution painting system which is

capable of such behaviour. Strokes may be stored in one of two ways; either as a proce-

dural texture (allowing stroke synthesis at any scale) or as a band-pass pyramid2. The

latter approach is ultimately limited in its range of potential rendering scales. However

the advantage of the band-pass approach is that textures are precomputed prior to

2A band-pass pyramid consists of a coarse scale image and a series of deltas from which finer
scale images may be reconstructed. By contrast, the more common low-pass pyramid stores multiple
complete images which have been low-pass filtered at various scales.

THE STATE OF THE “ART” 18

display, and procedural knowledge of the brush textures is therefore not required by

the display algorithm (allowing for the simpler, faster display processes often required

by interactive systems). Since the pyramidal approach does not require specification of

a generative function for the texture, it may also be viewed as a more general solution.

2.2.2 Substrate and Media models

Models of artistic media and substrate are often presented together as inter-dependent,

tightly coupled systems and accordingly we review both categories of model simulta-

neously in this section.

The first attempt to simulate the fluid nature of paint was the cellular automata based

system of Small [142]. Small modelled the canvas substrate as a two-dimensional ar-

ray of automata, each cell corresponding uniquely to a pixel, with attributes such as

paint quantity, and colour. Paint could mix and flow between adjacent automata (i.e.

pixels), to create the illusion of paint flowing on the substrate’s surface. Furthermore

Small proposed a novel model of a paper substrate, comprising intertwined paper fi-

bres and binder which determined the substrate’s absorbency. Rendering proceeded

in two stages. First, the movement of fluids on the substrate surface was computed.

This movement of fluid was simulated using a diffusion-like process which encouraged

communication of paint between adjacent automata. Second, the transfer of fluid from

the paper to a “paper interior” layer was computed, which fixed the pigment. Small

describes no brush model for use in his system, but suggests application of Strassman’s

model [150].

Cockshott et al [20] also propose a two-dimensional cellular automata system address-

ing the modelling wet and sticky media on canvas. Their system allows for a much

wider range of parameters than Small’s, and although this causes a corresponding in-

crease in complexity of control, the wet and sticky model is capable of emulating a

wider range of media. Although the wet and sticky system seeks only to emulate the

apparent behaviour of paint (rather than describing a physical model) the results are

highly realistic and the simulated paint may be seen to bleed, run, drip and mix in a

manner typical of wet and sticky substances when applied to a canvas. Their model is

divided into three components: paint particles, an “intelligent” canvas, and a painting

engine responsible for movement of paint particles on the canvas. The paint particles

and the cellular automata may be seen to be analogous to elements in Small’s sys-

tem. However the novel paint engine they propose also simulates the drying of paint

over time, adjusting the liquid content of each substrate cell. This affects the paint’s

response to environmental conditions such as humidity and gravity; simulation of the

latter allows the authors to create novel running effects when paint is applied to a tilted

THE STATE OF THE “ART” 19

canvas. The principal contribution however, is in the use of a height field on the canvas

to model the build up of paint. This height field can then be rendered as a relief surface

(via application of bump mapping), which produces a distinctive painterly appearance.

The authors acknowledge the computational expense of their system and appeal to

parallel processing techniques to make their algorithm run interactively, although to

the best of our knowledge, no such interactive systems have yet been implemented.

The first physically based simulation of water colour painting was proposed by Curtis

et al [33]. The authors propose a more complex model of pigment-substrate diffusion

consisting of multiple substrate layers. In descending order of depth in the substrate

these are: the shallow water layer, where pigment may mix on the surface; the pigment

deposition layer, where pigment is deposited or lifted from the paper; and the capil-

lary layer, where pigment is absorbed into the substrate via capillary action. Aside

from this novel physical model, a further novel contribution is that the authors model

bi-directional transfer of painting medium between the brush and canvas. Thus a light

stroke which passes through wet, dark pigment causes pollution of the brush, leading

to realistic smearing of the pigment on paper (wet-on-wet effects). The results of this

system are very realistic, and are often indistinguishable from real water colour strokes.

Although the majority of media emulation work concentrates on paint, there have also

been attempts by Sousa and Buchanan to model the graphite pencil [146, 147, 148].

Their proposed systems incorporate physically based models which are based upon

observations of the pencil medium through an electron microscope. In particular pencils

are modelled by the hardness and the shape of the tip; the latter varies over time as

the pencil tip wears away depositing graphite on to discrete cells in the virtual paper

(adapted from the substrates of Cockshott et al and Small). A volume based model for

coloured pencil drawing was proposed by Takagi et al [156]. The authors identify that

graphite particles may be deposited not only in convex regions of the paper volume

due to friction, but also may adhere to the paper surface. Pencils may deposit their

particles in either manner, however the authors also provide a means to simulate the

brushing of water over the image in which only the latter class of deposited particles

are shifted. A further model of the graphite pencil is presented by Elber [44] as part

of an object-space sketching environment.

2.3 Interactive and Semi-automatic AR Systems

The use of the computer as an interactive digital canvas for artwork was first pioneered

by Sutherland in his doctoral thesis of 1963. During this period the Cathode Ray Tube

(CRT) was a novelty, and Sutherland’s SKETCHPAD system [153] allowed users to

THE STATE OF THE “ART” 20

Figure 2-2 Paintings produced interactively using Haeberli’s impressionist system —
images reproduced from [62]. The user clicks on the canvas to create strokes, the colour
and orientation of which are point sampled from a reference photograph (inset).

draw points, lines and arcs on the CRT using a light-pen. However it was not until the

early seventies that the first digital painting systems (SuperPaint, and later BigPaint)

were implemented by Shoup and Smith at Xerox Parc, Palo Alto. These systems pi-

oneered many of the features still present in interactive painting software today, as

well as making hardware contributions such as the 8-bit framebuffer used as the digital

canvas. Numerous commercial interactive paint systems followed in the early eighties,

and many interactive systems exist on the today’s software market.

The use of interactive systems in AR initially grew out of the desire to create environ-

ments for the use and demonstration of novel artistic material models (Section 2.2).

However, these later evolved to semi-automatic systems which assisted the user in cre-

ating artwork from images. Many modern systems extend the concept of painting

on a two-dimensional canvas to a three-dimensional environment. These object-space

painting environments have been used extensively in commercial digital animation.

2.3.1 User assisted digital painting

Haeberli [62] observed that artwork produced in digital paint systems often lacked

colour depth, and attributed this behaviour to a prohibitively long “time to palette”;

the time taken to select new colours in contemporary paint systems. In his influential

paper entitled “Paint by numbers”, Haeberli proposes a novel, semi-automatic approach

to painting which permits a user to rapidly generate impressionist style “paintings” by

creating brush strokes, the colour and orientation of which are determined by point-

sampling a reference image. This reference image is of identical geometry to the digital

canvas. Users are able to choose various brush shapes and sizes for painting; for ex-

ample, choosing fine brushes to render detailed areas of the source image. The process

of point-sampling the reference image, combined with image noise and the presence of

stochastic variation in stroke parameters, causes variation in stroke colour which gives

THE STATE OF THE “ART” 21

an impressionistic look to the painting. The system thus enables even the unskilled user

to create impressionist paintings from photographs via a computer assisted interactive

process (Figure 2-2).

In the same paper, Haeberli formalises the concept of a painting as an ordered list of

brush strokes — each with associated attributes, which in his system are:

• Location: the positions of the brush stroke

• Colour: the RGB and alpha colour of the stroke

• Size: the scale of the stroke

• Direction: angle of the stroke in the painting

• Shape: the form of the stroke, e.g. circle or square

Virtually all modern AR techniques make use of this paradigm in their generation and

representation of paintings and drawings. Furthermore many painterly rendering sys-

tems use a variation upon Haeberli’s point-sampling technique to create their output

from reference images. For example, Curtis et al use a similar approach to demonstrate

application of their water colour simulations [33].

Systems which allow the user to apply paint and texture to modelled 3D surfaces have

also been proposed. Arguably the first was described by Hanrahan and Haeberli [67],

who implement a WYSIWYG painting system in object-space. Their system facilitates

not only application of pigment to the surface but also models the build up of paint

on surfaces, which are subsequently lit and rendered using bump mapping. Disney’s

Deep Canvas is a descendant of this system in which brush stroke parameters update

dynamically according to viewing angle, and has been used in many feature length ani-

mations such as “Tarzan” [Disney, 1999]. The Piransei system, described by Lansdown

and Schofield [97], is another example of a system which permits drawing and painting

directly on to object-space surfaces.

An interesting approach to applying artistic texture to object-space surfaces was pre-

sented by Markosian et al [108], who adapt the concept of “Graftals” [143] for use

in AR. Graftal textures are specified procedurally at a number of discrete levels of

scale. The area of view-plane occupied by a Graftal after camera projection deter-

mines the level of detail it will be rendered at — though, unlike pyramidal texture

approaches such as MIP-maps [168], graftals are not interpolated between levels of

scale (the texture corresponding to the closest scale representation is rendered). The

authors demonstrate application of their system with a Dr Seuss style animation, in

THE STATE OF THE “ART” 22

which close-up tree graftals exhibit leaves, yet distant views of the same graftals indi-

cate only an approximation of the tree using a couple of leaves. The system prevents

superfluous stroke texture being applied to distant objects, and so gives the impres-

sion of abstracting away distant detail. However the approach is expensive in terms

of interaction to set up (due to the procedural specification of graftals), and flickering

may be observed when animating Graftal textures at scales halfway between any two

consecutive discrete scale boundaries.

Recently, semi-automatic image segmentation approaches to painting have been pro-

posed [3, 38]. Both techniques operate by segmenting the source image at various

scales (ranging very coarse to very fine), to form a nested hierarchical representation

of regions in the image similar to that of a low-pass pyramid. An image region in

the output may then be rendered at scales, proportional to the depth to which the

“scale-space” hierarchy is traversed. This tree depth is specified interactively by the

user. In [38] control of scale is varied using interactive gaze trackers, while in [3] a cross

shaped mask is placed at a user specified location in the image — hierarchy depth is

proportional to distance from this mask.

2.3.2 User assisted sketching and stippling

Salisbury et al [134] presented a suite of interactive tools to assist in the creation of

digital pen-and-ink illustrations, using a library of stroke textures. Textures were in-

teractively placed and clipped to edges in the scene; these edges could either be drawn

or estimated automatically using an intensity based Sobel filter. This system was later

enhanced, using local image processing operators (intensity gradient direction), to in-

crease automation in [135]. In this enhanced system pen-and-ink renderings could be

quickly constructed using a user assisted system, similar in spirit to Haeberli. Users

specify texture types and orientations for regions of an image. Line-art textures com-

prised of β-splines are then composited on to the canvas, adapting automatically to

tone present in the image. A further interactive pen-and-ink system is described by

Elber [45] which makes use of graphite pencils to sketch on three-dimensional surfaces.

Techniques to interactively vary the weight, thickness, and accuracy of contours in a

CAD system’s output were outlined by Lansdown and Schofield [97]. Draft CAD de-

signs rendered in a sketchy form by this system were found to convey a lesser degree

of finality to users, and the qualitative studies presented were among the first to show

that variation in rendering style can strongly influence perception of an image [97, 138].

Saito and Takahashi [133] described a “comprehensible rendering” system, in which

operations such as Sobel edge detection and depth mapping were performed to pro-

duce a bank of filtered image from an object-space model, for example a machine part.

THE STATE OF THE “ART” 23

Users were then able to interactively combine various filtered images to generate more

“comprehensible” renderings of the model, for example with thick holding lines. This

research formed the basis of later work by Gooch et al [57] who proposed a suite of

novel lighting models for non-photorealistic rendering of CAD output. Notably this

work also improves on Saito and Takahashi’s approach to silhouette edge detection by

computing such edges directly using the object-space scene (rather than performing

Sobel filtering on the 2D rendered image).

Various AR techniques for interactive stippling have been presented, for example [9, 43].

Stipples are small marks used to depict the shape of objects; typically dense regions

of stipples are used to depict visually dark regions and are so used to convey shape

through shading cues. In this sense, stippling, dithering and half-toning algorithms

have much in common, and a growing trend among researchers has been to draw upon

the wealth of dithering research (originally developed for use on low colour depth dis-

plays) for the purposes of AR. Indeed it could be argued that artistic styles such as

pointillism unconsciously anticipated the modern day dithering processes such as offset

lithography and half-toning [48]. Conversely novel dithering algorithms now often cite

AR as a potential end-user application. One such example is Buchanan’s work [9],

in which controlled artifacts such as high frequency noise may be used to model AR

textures, such as coarse paper.

Recent developments in interactive systems tend to concentrate upon human-computer

interaction issues, for example transfer of skill from the domain of brush and canvas

to that of the digital computer. This was the aim of Baxter et al’s [4] haptic feedback

brush, and partial motivation for DeCarlo and Santella’s painting system [38] which

was driven by eye tracking data. Interactive tools have also been developed to facili-

tate virtual sculpture using more exotic media such as wood [117], and the engraving

of copper-plate [100].

Finally, various user interfaces for the creation of 3D shapes from sketches have been

presented. The SKETCH system proposed by Zeleznik et al [180] (and the later Teddy

system [82]) permit the rapid creation of 3D shapes using gestural sketches.

2.4 Fully Automatic AR Systems

The modelling of artistic materials, and their successful application to interactive and

semi-automatic painting environments, provided a means by which the user and com-

puter could collaborate to create impressive digital artwork. However this process

was often labour intensive due to the high level of interaction required (usually at the

THE STATE OF THE “ART” 24

level of individual stroke placement), and increasing demands for automation lead re-

searchers to propose novel, fully automatic AR systems. The subsequent evolution of

automated AR from interactive painting environments (notably from Haeberli’s “Paint

by numbers” system [62]) has driven a trend among AR systems to create artwork by

compositing discrete atomic rendering elements termed “strokes” on a digital canvas.

These “strokes” may take the form of simulated brush strokes or some other medium

such as stipples. This process is generically termed “stroke based rendering” and is

the paradigm adopted by the vast majority of automated AR algorithms operating in

both object and image space. The automatic nature of such systems dictates that the

attributes of strokes are no longer directly influenced by the user, but are necessarily

decided by procedural, automated heuristics specific to the particular AR algorithm

used. These systems aspire to provide a “black-box” which will accept a source model

or image, and output an artistic rendering with a bare minimum of user interaction.

2.4.1 Painterly Rendering Techniques

The earliest automated painterly rendering algorithm is described by Haggerty [63], and

is a commercial adaptation of Haeberli’s “Paint by numbers” system. Many stroke at-

tributes set interactively in Haeberli’s system, such as stroke scale and location, as well

as some data-dependent attributes such as orientation, are replaced by simple pseudo-

random processes in this automated system. Although such use of non-determinism

serves to disguise the machine origins of the rendering, salient image detail is often lost

in the final painting and results are difficult to reliably reproduce. Loss of salient detail

can be mitigated by aligning strokes tangential to the direction of intensity gradient in

the image [62, 71, 103]. Many commercial software packages such as the Linux GIMP

and Adobe Photoshop contain painterly filters which operate in this manner.

Meier extended Haeberli’s point-sampled particle system into three-dimensions [111],

addressing both the problem of rendering object-space scenes to produce paintings,

and in particular of producing temporally coherent painterly animations. The princi-

pal contribution of the paper is the stochastic, but uniform, scattering of paint particles

uniformly on to surfaces in object-space (in contrast to [62, 63]); this is achieved by tri-

angulating surfaces and distributing strokes over each triangle in proportion to its area.

However brush strokes are not rendered upon the triangulated surfaces themselves —

instead the stroke locations are projected to image-space during scene rendering, where

they are rendered and textured entirely in 2D. The order of rendering is determined

by scene depth, with standard hidden surface removal algorithms determining which

strokes are visible for a given viewpoint. The resulting animations exhibit good tem-

poral coherence in the majority of cases. Problems arise when certain projections, for

example perspective, cause gaps to appear between strokes. Also as objects rotate in

THE STATE OF THE “ART” 25

axes non-parallel to the viewer’s optical axis, the varying depths of stroke particles can

cause swimming in the animation. A similar technique for rendering static object-space

scenes in water-colour was implemented by Curtis et al as a means of demonstrating

their water-colour media simulation system. A real-time implementation of Meier’s

system is described in [107], where faster execution speeds are possible due to a novel

probabilistic speed-up of Appel’s hidden surface removal algorithm.

Litwinowicz [103] proposed the first automatic, data-dependent painting algorithm to

operate entirely in image-space (that is, the first technique to place strokes according

to image content, rather than in a pseudo-random fashion). The strategy employed by

Litwinowicz is to “paint inside the lines”, so preventing strokes from crossing strong

edges in the source image. This clipping strategy may be seen to be partly motivated

by Salisbury et al’s earlier clipping of textures in [134]. By preserving edge detail

the algorithm generates paintings of subjectively higher quality than previous pseudo-

random methods. Processing begins by computing a Sobel edge field (∂I
∂x ,

∂I
∂y) (see

Figure 1-1) for a source image I, from which gradient direction θ(I) and gradient

magnitude E(I) fields are derived:

θ(I) = arctan

(

∂I

∂y
/
∂I

∂x

)

E(I) =

[

(

∂I

∂x

)2

+

(

∂I

∂y

)2
] 1

2

(2.1)

The system paints with short, rectangular strokes of fixed size, which are aligned tan-

gential to the local gradient direction field. The edge magnitude field is globally thresh-

olded at a user-selected limit to create a binary mask of edges. Any strokes which cross

an edge pixel are clipped, thus retaining the integrity of edges in the final painting.

Strokes are placed in uniformly sampled positions, but drawn in a random order (again,

to help convey the impression that the painting was not created by a deterministic ma-

chine). The colour of each stroke is set by point sampling a reference image as with [62].

Notably, Litwinowicz was the first to extend his technique to produce painted anima-

tions from video, and we defer discussion of this aspect of his algorithm to Section 2.5.2.

Treavett and Chen propose an automatic image-space painting method in [159], which

used statistical measures to drive placement of strokes. Strokes are initially placed

stochastically, and for each stroke location a small, local pixel window is selected. The

standard deviation and variance of pixel intensities within this window are calculated,

and strokes aligned along the axis of least variance (i.e. the principal eigen-axis).

Shiraishi and Yamaguchi propose a very similar painterly algorithm in [140], using

THE STATE OF THE “ART” 26

Figure 2-3 Incremental stages in Hertzmann’s coarse to fine approach — images repro-
duced from [71]. The source image is shown on the top-left, the coarse sketch is top-right.
The bottom row of images contain the final two layers of painting, from left to right. Ob-
serve that fine non-salient texture on the shirt, and salient detail on the hands, is afforded
equal emphasis.

chromatic variance rather than intensity variance, and using windows of varying size.

Hertzmann presented the first automatic painterly rendering technique to paint with

curved (β-spline) strokes rather than dabs of paint [71]. Hertzmann’s technique oper-

ates in image-space and employs a multi-scale approach to painting. First, a low-pass

image pyramid is created at various predefined scales. Sobel edge magnitude and di-

rection fields are computed for each pyramid level (after Litwinowicz [103]). A “coarse

sketch” is produced by painting curved strokes using data from the coarse pyramid

layer. Successively finer pyramid layers are painted over this sketch using progressively

smaller strokes; however stroke are only overlaid in areas where the difference between

the previous and current canvas layers is above a user-tuned threshold. Regions con-

taining the finest scale detail are therefore painted last. Control points for each spline

stroke are selected in an iterative manner, by hopping a predefined distance between

pixels in the direction of their Sobel edge gradient and keeping a history of visited pixels.

Gooch et al propose a further image-space painterly technique in [58] which paints using

curved strokes. The system approaches painting in a novel way, by identifying regions

of homogeneous intensity value in the image, which are subsequently skeletonised (i.e.

THE STATE OF THE “ART” 27

their medial axis is computed). Curved strokes are then fitted to this medial axis. We

observe that this approach is extremely intolerant to noise or texture in an image which

prevents the formation of regions of homogeneous intensity, and so causes the system

to tend toward photorealism in most real images.

Hertzmann et al proposed a novel example based approach to painting in [74]. Given

a image A and a painting of that image A′, the system is able to take a new image B

and render it in a similar style to generate B ′. Hertzmann et al dub this process “paint

by analogy”. For each point in the novel image B a search is performed to determine

the best matching pair of pixels in A and A′. The best match for a particular point

is determined by examining its immediate pixel neighbourhood, and also by seeking to

maintain the coherence of that point with its neighbours. Various low-level filters such

as blurring and sharpening can be learnt, as well as approximations to AR painterly

filters.

Finally, relaxation based approaches to painting have briefly been considered. Although

Haeberli was the first to openly propose such approaches [62], the first algorithmic so-

lution was described by Hertzmann in [72]. In his system, β-spline strokes double up

as active contours (snakes) and are used to seek a painting which minimises a prede-

termined objective function. Hertzmann selects a function which favours preservation

of the maximum amount of high frequency content between the original and painted

images. His relaxation algorithm is iterative in nature, and proceeds as follows:

1. Compute a “score” for the paintings by evaluating the objective function.

2. Select a stroke at random, or possibly add a new stroke.

3. Modify the position of the selected stroke’s control points (via active contour

relaxation), or possibly delete it.

4. Repeat from (1) until the painting’s score is acceptably close to the goal state.

As with all active contour implementations success is sensitive to initial contour loca-

tion, due to the inherent susceptibility of snakes to local minima [91]. Unfortunately

Hertzmann does not give details on how his snakes are initialised, though implies that

the initial locations might be established via some stochastic process. A further re-

laxation process employing stochastic search is proposed in [155] in which strokes are

iteratively added to a painting at random; after each iteration an objective function is

evaluated. After a predetermined amount of time, the painting which has evaluated to

the lowest score is output. The objective function is again based upon conservation of

all high frequency information in the rendering.

THE STATE OF THE “ART” 28

2.4.2 Sketchy and Line-art Techniques

The first automated sketch rendering was reportedly produced by a plotter with a

wobbly pen attached [161]. Many improvements toward automated pen-and-ink and

sketchy rendering have since been presented.

Hall describes Q-mapping (a corruption of “cue mapping”) [65], and is able to produce

a wide variety of stylised pen-and-ink renderings from both 2D and 3D sources. In the

simplest case, Q-maps are generated by creating multiple logical slabs aligned to each

principal axis in the source. Logical rules are then specified with respect to these slabs;

for example, marks may be made where slabs intersect (binary AND). The width and

spacing of slabs are set as data-dependent power functions of image intensity (2D) or

surface irradiance (3D). Convincing cross-hatching effects are easily created using this

system.

The vast majority of pen-and-ink renderers, however, operate exclusively in object-

space. A number of algorithms have been presented which use the principal curvature

direction of a surface to orientate hatches [44, 170, 171]. One such system, proposed

by Winkenbach and Salesin, used pen-and-ink textures defined at multiple resolutions.

Users could interactively specify levels of detail for particular surfaces, and thus vary

the resolution at which texture on that surface was rendered. This permitted a wall,

for example, to be indicated by the rendering of just a couple of bricks, rather than

rendering every single brick. This produces impressive interactively driven abstraction

of detail, though the authors acknowledge that automation of such composition would

be difficult.

Other pen-and-ink approaches make use of 3D surface parameterisation to guide hatch

placement [44, 171], though the surface parameterisation itself ultimately determines

the quality of the hatching (if one exists at all). Veryovka and Buchanan [162] employ

modified half-toning, and real-time implementations of hatching are described in [107]

and [122]. An unusual approach to sketch rendering is presented by Mohr et al [112],

in which API calls to the OpenGL graphics library are intercepted and modified to

produce a sketch-like output.

2.5 Non-photorealistic Animation

The success and availability of automatic AR techniques has encouraged research in to

the problem of automatically producing non-photorealistic animations. The principal

goal in producing such animations is that of generating animations exhibiting good

temporal coherence. Without careful rendering, the discrete strokes that comprise a

THE STATE OF THE “ART” 29

scene tend to flicker or move in a counter-intuitive manner which distracts from the

content of the animation. Consequently it is important that the motion of strokes is

smooth, and matches the motion of semantic objects within the animation. Although

computing object motion is trivial given an object-space scene, motion recovery is

very difficult from 2D monocular sources such as video. It is predominantly for this

reason that object-space AR techniques have been more successfully applied to produce

artistically styled animations than their image-space cousins.

2.5.1 Animations from Object-space (3D)

Many modern animations are produced on computer and it is now unusual to en-

counter a hand-drawn feature length animated film, or animated television series. This

is arguably due to improved productivity digital systems offer animation houses. Most

modern graphical modelling packages (3D Studio MAX!, Maya, XSI SoftImage) support

plug-ins which offer the option of rendering object-space scenes to give a flat shaded,

cartoon-like appearance rather than strict photorealism. Because scene geometry is

known at the time of rendering, these systems are able to generate temporally coherent

animations with relatively fewer additional complications than when rendering a single

frame. Typically cartoon shaders operate using specially adapted lighting models for

shading, and compute silhouette edges with respect to the camera perspective, which

are rendered as thick “holding lines”. Though not without their technical intricacies,

such functions are easily performed with an object-space representation of the scene to

hand.

Meier was the first to produce painterly animations from object-space scenes [111] (see

Section 2.4.1). Since this initial work, a number of object-space AR environments have

been presented. Hall’s Q-maps [65] (Section 2.4.2) may be applied to create coherent

pen-and-ink shaded animations from object-space geometries. A system capable of

rendering object-space geometries in a sketchy style was outlined by Curtis [32], and

operates by tracing the paths of particles travelling stochastically around isocontours

of a depth image, generated from the 3D object.

2.5.2 Artistic rendering from video (2D)

A few post-production effects have been developed to create animations in artistic styles

directly from video (2D) — in particular the problem of producing temporally coher-

ent painterly animations has received some attention. The problem central to painterly

animation is that painting individual frames of video on an independent basis produces

an unappealing swimming, often due to noise or motion in the image, and sometimes

due to the presence of stochastic decisions in the algorithm itself. This appears to be

THE STATE OF THE “ART” 30

Figure 2-4 Illustrating Litwinowicz’s painterly video technique — images reproduced
from [103], original inset. Sobel edges (left) are computed for each frame; strokes are
placed and clipped to these edges (right). Strokes are translated over the course of the
animation, according to the optical flow vectors computed between frames. This algorithm
represents the state of the art in creating automated painterly animations from video.

an in-principal difficulty when extending any static, stroke based AR algorithm to video.

A naive solution is to fix the position of strokes on the view-plane, however this gives

the illusion of motion behind a “shower door”; strokes adhere to the image plane rather

than to moving objects within the scene. However some simplistic post-production tex-

turing effects have been created using this approach. A texture is typically blended via

per-pixel RGB multiplication with each frame in the video, to give the impression of

a canvas or cross-hatched texture within the image content. Examples are the Inland

Revenue advertisements currently appearing on British television, where actors seem-

ingly move within a bank note — the texture of the note is simply multiplied over the

video frame image. Of course such textures are entirely independent of the video itself

and are static relative to image content, giving the impression of video moving behind

a textured filter rather that the appearance of authentic animated footage. Hall’s Q-

maps may be used in a similar manner to generate textures in video, and though they

do exhibit adaptation to the intensity of footage moving behind them, the textures

themselves are static with respect to video content.

Ideally strokes should adhere to and move with the objects to which they are seman-

tically attached (as with Meier’s system [111]), but since video is only a 2D camera

projection of object space rather than an object-space representation itself, this goal

is difficult to achieve. There have been two solutions proposed in the literature which

address this problem.

The first solution was proposed as an extension to Litwinowicz’s static painterly tech-

THE STATE OF THE “ART” 31

nique (see Section 2.4.1), and makes use of optical flow [7] to estimate a motion vector

field from frame to frame [103]. Brush strokes are painted upon the first frame, and

translated from frame to frame in accordance with the optical flow vectors estimated

from the video (Figure 2-4). This lends a degree of coherence to stroke motion in the

resulting animation. Further steps are introduced to prevent strokes bunching together

in the view-plane. Prior to rendering each frame a Delauney triangulation of stroke

centroids is performed as a means of measuring the local stroke distribution density.

In regions where strokes have densely bunched together (as a consequence of stroke

motion) strokes are deleted at random until the density falls to an acceptable level.

Conversely, in sparsely populated regions where strokes have moved too far apart,

strokes are added. The ordering of strokes is decided stochastically in the first frame,

but that ordering is then maintained through all subsequent frames. Any newly added

strokes are inserted into the ordered stroke list at random locations.

In practice Litwinowicz’s algorithm achieves satisfactory coherence only after painstak-

ing hand correction of these optical flow fields; errors quickly accumulate due to the per

frame sequential manner in which the video is processed. The quality of the method is

therefore bound to the quality of optical flow algorithm implemented. No robust optical

flow algorithm is known, and these cumulative errors tend to creep in due to simplifying

assumptions, for example assuming well textured surfaces, constant scene illumination,

or no occlusion, which do not hold true in real-world video sequences [54]. Optical

flow methods have also been employed by Kovacs and Sziranyi [96] to produce painted

video in a similar way; their algorithm paints using rectangular strokes, extending their

“Random Paintbrush Transformation” [155] to video. Again, this technique operates

on per frame sequential manner; translating strokes based on optical flow computed

from frame to frame. The small contribution over Litwinowicz’s method [103] is the

ability to set “key-frame” instants in the video in which strokes are painted as if the

key-frame were the initial frame. This can mitigate the creeping error problem present

due to the accumulation of inaccuracies in optical flow estimates, but can not remove

swimming in the sequence (observe that in the limit each frame is painted individually,

using a stochastic algorithm [155]).

A second, simpler solution is proposed by Hertzmann [75], who differences consecutive

frames of video, re-painting only those areas which have changed above some global

(user-defined) threshold. Swimming is therefore localised to those areas of the image

are detected as having moved; he dubs this approach “paint-over”. However slow mov-

ing, intensity homogeneous, or low intensity regions tend to be missed as a consequence

of the RGB frame differencing operation. Hertzmann tries to mitigate this by using

cumulative differencing approaches, though results do not improve significantly. Fur-

THE STATE OF THE “ART” 32

Figure 2-5 Representative examples of the classes of low-level video effects available in
commercial software — rendered with Adobe Premier 6.5 [Adobe, 2003]. (a) Posterisation
(palette colour quantisation), (b) Motion blur (temporal low-pass filter), (c) Spatial warps
(spherical warp), (d) Single scale, per-frame implementation of Haeberli’s paint system [62],
exhibiting heavy swimming.

thermore, the method only mitigates swimming in static regions — in a fast moving

video the entire animation will swim unhindered.

We observe that various image-space tools have also been presented which, while

highly interactive, assist in the process of creating digital non-photorealistic anima-

tions. Fekete et al describe one such system in [46] to assist in the creation of line art

cartoons. An interactive system for cartoon rendering was described in [1], whereby a

user hand-segmented an image, and active contours (snakes [91]) were used to track the

segmentation boundaries from frame to frame (again in a per frame sequential manner).

The system fails if the segmented topology of the frame changes i.e. under occlusion.

Animations also flicker due to the instability of snakes which are relaxed at each frame

(this instability is a consequence of the susceptibility of snakes to local minima).

The film “Waking Life” [Fox Searchlight, 2001] made use of an automated rotoscop-

ing system to give a cartoon appearance to video. The technique of rotoscoping was

THE STATE OF THE “ART” 33

pioneered by animators of the 1930s, who captured real-world footage on film, and sub-

sequently traced over frames to rapidly produce cels of animation. Rotoscoping thus

reduced the workload for these animators, and enabled Disney to produce their first

animated feature-length film “Snow White” [Disney, 1937]. In the automated system

used for “Waking Life”, artists drew a shape in a single frame, and another ten or

twenty frames away. The system then interpolated the shape over the interval between

key-frames — a process referred to as “in-betweening” by animators. This automated

blend of rotoscoping and in-betweening is sometimes referred to as “advanced roto-

scoping” by the Computer Graphics community, and although highly labour intensive,

alleviates some of the tedium of the animation process since not every animation frame

must be keyed. The resulting animations still tend to swim, due to the motion disconti-

nuities produced by repeatedly keying the interpolation process. Critics have suggested

this technical issue to be the motivation behind the scintillating “dream world” setting

of the “Waking Life” film.

A number of post-production video effects are available in commercial programs, such as

Adobe Premier (Figure 2-5). These provide a suite of low-level effects, for example slow-

motion, spatial warping, and motion blur (achieved by temporally averaging, i.e. low-

pass filtering, video). Filters are available which modify the RGB or HSV attributes of

the video sequence globally; these may be used to produce monochrome and sepia toned

video, or vibrant colours by boosting saturation. A posterisation function is sometimes

used to give a surreal non-photorealistic effect to video; this effect is produced by

quantising colours in the scene. Since palette colour quantisation does not consider

spatial relationships between pixels in a scene, the boundaries between coloured regions

are often very noisy and do not correspond well to the boundaries of semantic objects

within the video itself (Figure 2-5a).

2.5.3 Rendering Motion in Image Sequences

Very little literature exists regarding the rendering of motion in image sequences, since

the majority of relevant image-space techniques attempt to mitigate the presence of

motion in the video for the purposes of temporal coherence, rather than emphasise it.

In an early study [98], Lasseter highlights many of the motion emphasis techniques com-

monly used by animators for the benefit of the computer graphics community, though

presents no algorithmic solutions. Streak-lines and deformation for motion emphasis

(Chapter 6) and anticipation (Chapter 7) are discussed. Strothotte et al [151] and

Hsu [80] glance upon the issue by interactively adding streak-lines and similar marks

to images. In the former case, the lines drawn form the basis for a psychological study

into perception of motion; in the latter case they are only a means of demonstrating

a novel brush model. Artificial squash-and-stretch effects have been applied to em-

THE STATE OF THE “ART” 34

phasise motion of cylindrical and spherical objects prior to ray-tracing [18]. A further

object-space technique was recently presented by Li et al [102], in which users may

adjust trajectories of objects to stylise their motion via an interactive process. This

work is aligned strongly with motion retargetting (see also [8]), and differs from our

work (Chapters 6, 7) in both scope and level of interaction. We automatically analyse

trajectories in image-space, visually characterising the essence of that motion using

cartoon style motion cues — rather than requiring users to interactively specify novel

trajectories in object-space prior to rendering.

The portrayal of motion in an abstract manner is currently under-studied. An empirical

study [16] suggests that superimposing several frames of animation at specific intervals

can affect perception of time. A set of interactive tools [93] recently proposed by Klein

et al allows a user to interactively manipulate video via a point and click process; this

interactive system can be used to produce output ostensibly similar to earlier stages of

our Cubist work which allows motion to be depicted in an abstract manner (Chapter

3), but differs greatly in both level of interaction and abstraction (we construct com-

positions using identified high level features rather that allowing a user to interactively

subdivide blocks of video). The literature remains sparse concerning techniques for

two-dimensional rendering of motion, and the synthesis of abstract artistic styles.

2.6 Observations and Summary

We observe that whilst earlier work in artistic rendering concentrated upon the em-

ulation of media and the production of interactive paint systems, there has been a

strong trend in recent work toward producing automated rendering systems (see the

distribution of publications in Figure 2-7). The overwhelming majority of these inter-

active and automated systems synthesise artwork by placing discrete “strokes” either

upon surfaces within object-space or directly upon an image-space canvas. However,

in such systems, little consideration is given to the rendering and appearance of the

individual strokes placed. Interestingly this abstraction of stroke placement strategy

from media type is a simplification that has crept into the AR literature with seemingly

no “real-world” parallel; neither can any discussion or justification of this decoupling

be found in any AR literature. Certainly artists would strongly disagree with such an

abstraction; brush and pen technique, for example, varies greatly depending on the

nature of the subject being drawn [69].

In this thesis we also subscribe to this convenience of abstraction. The majority of al-

gorithms we propose in the following chapters are concerned only with issues of stroke

THE STATE OF THE “ART” 35

Salisbury 94 [134]

Pudet 94 [124]

Hanrahan 90 [67]

Bangham 03 [3]

DeCarlo 02 [38]

Deussen 00 [43]

Agarwala 00 [1]

Salisbury 97 [135]

Xu 03 [177]

Hsu 94 [80]

Haeberli 90 [62]

Perlin 95 [120]

Curtis 97 [32]

Daniels 99 [35]

Gooch 02 [59]

Hertzmann 98 [71]

Buchanan 96 [9]

Haggerty 91 [63]

Shiraishi 00 [140]

Hertzmann 00 [75]

Hertzmann 01 [74]

Hertzmann 01b [72]

Kovacs 02 [96]

Markosian 97 [107]

Elber 99 [45]

Saito 90 [133]

Leister 94 [100]

Strothotte 94 [151]
Lansdown 95 [97]

Chenney 02 [18]

Mohr 02 [112]

Praun 01 [123]

Sousa 99a [146]

Curtis 99 [32]

Elber 98 [45]

Fekete 95 [47]

Xu 02 [178]

Hertzmann 02 [73]

Sousa 00 [148]

Sousa 99b [147]

Igashari 99 [82]

Zeleznik 96 [180]

Hall 99 [65]

Treavett 97 [159]

Liwinowicz 97 [103]

Sziranyi 00 [155]

Winkenbach 96 [170]

Veryovka 99 [162]

Baxter 01 [4]

Sousa 03 [149]
DeCarlo 03 [37]

Ostromoukhov 99 [117]

Complete AutomationMedia Emulation Only
Entirely Interactive /

Level of Interaction

2D or 3DSo
ur

ce
 F

or
m

at

Winkenbach 94 [171]

Either

3D

2D

Some Automation

Strassman 86 [150]
Pham 91 [121]

Small 91 [142]

Cockshot 92 [20]

Takagi 99 [156]

Meier 96 [111]

Static 2D image

2D image sequence

3D geometry

Output

Figure 2-6 Reviewed artistic rendering systems classified according to dimensionality
of source and rendered content, and according to level of user interaction. Systems are
denoted by first author, year of publication, and thesis citation. Entries applicable to more
than one category have been placed according to their principal contribution area.

placement. Simple texture mapped strokes are almost always sufficient to demonstrate

such algorithms, and the substitution for more extravagant strokes is straightforward

due to the decoupled nature of AR. However in Chapter 4 we glance upon this issue,

describing a system that interpolates between preset media styles according to the ar-

tifact (for example, edge or ridge) encountered in the source image. We suggest that

an area open for future research may involve a reconsideration of the decoupled nature

of AR, and the stylistic limitations that such an approach imposes on potential devel-

opment of the field.

Haeberli formalised the representation of a painting as an ordered list of strokes over

a decade ago [62]. Researchers have since concentrated upon either novel stroke place-

THE STATE OF THE “ART” 36

Year

M
ai

ns
tr

ea
m

 P
ub

lic
at

io
ns

Trend

1986

2

0

4

6

8

10

12

1990 1994 1998 2002

Figure 2-7 Illustrating trends in AR. Left: demonstrating the increasing rate of main-
stream publication of AR techniques (major international conferences and journals, trend
in blue). Right: The focus of AR development has shifted from interactive to automatic
systems, which make use of local (low-level) signal processing operators to guide rendering.

ment strategies, or upon the realistic emulation of artistic media within individual

placed strokes. The gamut of artistic rendering styles has therefore been constrained

to traditional stroke based forms of art; for example sketching, hatching and painting.

No consideration has been given to the automated synthesis of artistic styles at a higher

level, for example to the development abstract artistic styles or composition technique.

It is perhaps the simple, local nature of these virtual strokes that has led researchers

to employ local image processing operators to guide stroke placement in automatic

image-space AR systems. In our review we have documented the use of three classes of

local window operator to drive automatic stroke placement; intensity gradient (Sobel

operator), intensity or chromatic variance, and segmentation.

Intensity gradient is by far the most popular measure for driving stroke placement

heuristics, and is used by the majority of algorithms [62, 71, 72, 75, 103, 134, 135].

Intensity gradient is measured, in all cases, using the Sobel operator; a simple edge de-

tection technique developed in the seventies, which computes the first order derivative

of 2D scalar fields (in the case of AR, greyscale images) to which it is applied. This is

achieved by convolving a small kernel (pixel window) of particular configuration (see

Figure 1-1) with the image, which simultaneously smooths the image signal along one

principal axis whilst differentiating the image signal along the orthogonal axis. The

Sobel operator is a high-pass filter, and as such its response over a window is directly

proportional to the magnitude of high frequency content within that window. The fre-

quency at which the response peaks can be reduced by low-pass filtering (smoothing)

the Sobel kernel prior to application, or equivalent, low-pass filtering the image itself.

The majority of automatic AR algorithms scatter strokes over the image, and give pref-

erential treatment to strokes falling in regions exhibiting high Sobel response (regions

THE STATE OF THE “ART” 37

containing high frequency artifacts, such as edges or fine texture). The nature of this

preferential treatment depends on the heuristics used in the AR algorithm — we recall

two representative examples:

1. In Litwinowicz’s method [103], the Sobel edge magnitude field (equation 2.1) is

globally thresholded; this serves as a simple means to determine whether a given

pixel forms part of a high frequency artifact, such as an edge. Strokes are then

clipped during painting to ensure that they do not cross the thresholded edges.

The painting process is intentionally biased toward conservation of fine scale, high

frequency content in the final rendering; thus there is an tacit assumption that

high frequency content correlates with salient detail in the image. In practice

Litwinowicz advocates blurring of the original image to remove extraneous fine

detail (effectively shifting the peak response of the Sobel filter to lower frequen-

cies). The scale of the low-pass filter and the aforementioned Sobel threshold

value are user-defined, and constant over the entire image; the user tweaks these

constants to create an aesthetically pleasing rendering. It is assumed that simple

blurring, i.e. filtering on scale, can be used to distinguish salient and non-salient

areas of the image. If non-salient detail is of greater or equivalent scale to salient

detail, we can not set a frequency threshold which removes all non-salient detail

without removing some salient detail.

2. In Hertzmann’s methods [71, 74, 75], strokes are laid down in successive layers

using a coarse to fine pyramid based approach. The initial layer of strokes is taken

from the coarsest scale layer of the low-pass pyramid. Successive layers of strokes

correspond to increasingly finer scale artifacts, and thus strokes corresponding to

the finest scale artifacts are painted last, on top of coarser strokes. Again we see

there has been an implicit assumption correlating fine detail with salience, since

strokes from fine scale regions are painted over coarser-scale regions of the image.

The finest scale at which artifacts are painted can be used as a threshold, as with

the previous example [103], raising identical objections.

This assumption is also made in algorithms [140, 159] which use statistical variance

measures, rather than the Sobel operator, to automatically decide stroke parameters

within a window local to that stroke. The measure of variance magnitude over a win-

dow has no spatial component; one can determine if signal variation exists within a

window, but can extract no information regarding the frequencies or spatial relation-

ships within that signal. Consequently, algorithms vary the size of the window over

which variance is measured in order to determine the spatial scale of the signal, and

so decide stroke size in the painting. Yamaguchi and Shiraishi [140] use windows of

several sizes to implement their variance based painting approach, closely emulating

the coarse to fine approach of Hertzmann [71]. In doing so they again correlate fine

THE STATE OF THE “ART” 38

scale, high frequency details with image salience. Moments have been employed to

orientate paint strokes; just as Sobel-driven algorithms orientate strokes tangential to

intensity gradient direction. Treavett and Chen [159] compute moments within a local

window of constant size, and align strokes along the axis of least variance (a technique

also adopted by the multi-scale window approach of [140]). There does not appear to

be any advantage in orientating strokes using moments rather than gradient direction.

Finally, we have reviewed a fully automatic, segmentation driven technique [58] which

locally segments the source image regions of homogeneous luminance (using a modi-

fied flood fill). These regions are used to form brush strokes for painterly rendering.

In regions containing detail such as edges or texture, the size of regions generated by

the segmentation process decreases and the rendering tends back toward photorealism.

Again, the painting process is biased toward conservation of fine scale content.

Examining this chapter retrospectively, all fully automatic image-space AR algorithms

we have reviewed may be seen to make an important but implicit assumption that

high frequency image artifacts are salient, and that all such artifacts should therefore

be conserved in the final rendering. In fact this goal was explicitly stated both in the

objective function of Hertzmann’s active contour based relaxation algorithm [74], and

in [155]. Given this observation, one may consider automatic AR algorithms as local,

non-linear filtering processes which operate at the pixel neighbourhood level to gener-

ate “artistic” renderings. Current painterly renderers may be thought of as performing

an anisotropic blurring of the image, the effect of which is attenuated in areas of the

image populated by high frequency artifacts. This observation is novel to us, but well

illustrated by Hertzmann et al’s paint-by-analogy systems [72]. These learn “painterly

styles” by training on which pixel neighbourhoods in an original map onto which pixel

neighbourhoods in a painting. By attempting this, Hertzmann et al subscribe to this

spatially local, low-level approach to artistic rendering, which characterises current

AR. In the following chapter we discuss the difficulties which arise with this low-level

approach; the most significant of which is an unappealingly consistent conservation of

fine detail within the final rendering regardless of its perceptual importance.

We have reviewed some semi-automatic AR algorithms which are driven by image seg-

mentation operations [3, 38]. As with [58], these algorithms paint by breaking the image

up into small regions in a manner conducive to the preservation of detail. Rather than

relying on image processing driven heuristics to identify salient regions of the image,

the user is instead permitted to specify these regions (using binary masks, or interactive

eye trackers). As we discussed in Chapter 1, this appeal to the human visual system to

guide rendering is in line with the form of higher level image analysis that this thesis

THE STATE OF THE “ART” 39

advocates; although such an appeal is ultimately limiting, for example in the context

of producing AR animations. In Chapters 3 and 4 we develop fully automatic painterly

renderers which use globally computed salience measures to drive emphasis in rendering.

We observe from the distribution of publications in Figure 2-6 that the automated

creation of AR animations from video clips is a very sparsely researched problem. Al-

though it is often possible to produce temporally coherent animations from techniques

which operate in object-space [18, 35, 111], comparatively few methods [75, 96, 103]

are capable of producing stylised animations from image-space (for example post-

production video, see Figure 2-7). Techniques that aim to produce temporally co-

herent animations from 2D image sequences use local motion approximations (optical

flow, inter-frame differencing) to correlate stroke motion with video content, which

often yields imprecise or erroneous motion fields (Section 2.5.2). Additionally, these

techniques process video on a per frame sequential basis, translating brush strokes from

frame to frame using the estimated motion field. This is another manifestation of local

processing though in a temporal rather than spatial sense. The result is that processing

errors from a single frame propagate forward to subsequent frames, causing a cumula-

tive error that manifests as uncontrolled swimming in the animation. We address this

problem in Chapter 8. Furthermore all automatic video driven AR algorithms seek

to mitigate against motion for the purposes of coherence; none attempt to emphasise

motion, visually (Chapter 6) or by affecting temporal properties of the video (Chapter

7). We argue that this is further manifestation of the disadvantages of processing at

temporally low level. By analysing video at a temporally higher level we later show

that we are able to extend the range of video driven AR to include stylisation of motion

with the sequence itself, an important artistic device for modern day animators, but

one that has so far been neglected in AR.

We conclude that current AR techniques for rendering images and video sequences

concentrate predominantly upon stroke based artistic styles, employing spatiotemporal

local processing methods to guide stroke placement. There is clear scope for develop-

ment of artistic rendering algorithms which operate at a higher level, both spatially (for

example, performing a global analysis to identify salient features within images) and

temporally (examining past and future events rather than only the subsequent frame

during video processing).

Part II

Salience and Art: the benefits of

Higher level spatial analysis

40

Chapter 3

Painterly and Cubist-style

Rendering using Image Salience

In this chapter we make observations on the manner in which artists draw and paint,

and contrast this with the spatially local manner in which existing automatic AR

techniques operate. To address this discrepancy we introduce the use of a globally

computed perceptual salience measure to AR, which we apply to propose a novel al-

gorithm for automatically controlling emphasis within painterly renderings generated

from images1. We also propose a further algorithm which uses conceptually high level,

salient features (such as eyes or ears) identified across set of images as a basis for pro-

ducing compositions in styles reminiscent of Cubism2. These algorithms support our

claim that higher level spatial analysis benefits image-space AR — specifically, enhanc-

ing aesthetic quality of output (though controlled emphasis of detail) and broadening

the gamut of automated image-space AR to include artistic styles beyond stroke-based

rendering.

3.1 Introduction

A drawing or painting is an artist’s impression of a scene encapsulated on a two-

dimensional canvas. Traditional artists often build up their renderings in layers, from

coarse to fine. Coarse structure in a scene is closely reproduced, either using a trained

eye, or by “squaring up”; overlaying a grid to create correspondence between image

and canvas. By contrast, details within the scene are not transcribed faithfully, but are

individually stylised by the artist who can direct the viewer’s focus to areas of interest

through judicious abstraction of the scene. Typically an artist will paint fine strokes to

1The salience adaptive painterly rendering technique was published in [22], and was awarded the
Terry Hewitt prize for best student conference paper.

2An earlier version of our Cubist rendering work was published in [23].

41

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 42

Figure 3-1 Two examples of paintings illustrating the artist’s importance-driven stylisa-
tion of detail. Non-salient texture in the background has been abstracted away, yet salient
details are emphasised on the figures (left) and portrait (right) using fine strokes.

emphasise detail deemed to be important (salient) and will abstract the remaining de-

tail away. By suppressing non-salient fine detail, yet implying its presence with coarser

strokes or washes, the artist allows the viewer to share in the experience of interpreting

the scene (see, for example, the paintings in Figure 3-1). Tonal variation may also be

used to influence the focus, or centre of interest, within a piece [69].

The omission of extraneous, unimportant detail has been used to improve the clarity

of figures in medical texts, such as Gray’s anatomy [60] which consists primarily of

sketches. Such sketches remain common practice in technical drawing, and were also

used heavily by naturalists in the 19th century. In cinematography too, camera focus

is often used to blur regions of the scene, and so redirect the viewer’s attention. Both

adults and children can be observed to create quick sketches and drawings of a scene by

jotting down the salient lines; effectively leaving the viewer the task of interpreting the

remainder of the scene. Picasso is known to have commented on what he regarded as

the pain-staking nature of Matisse’s art [64]; suggesting that Matisse worked by tracing

the lines of a subject, then tracing the lines of the resulting drawing, and so on, each

time stripping down the figure further toward its essence — “... He is convinced that

the last, the most stripped down, is the best, the purest, the definitive one”. In effect

Matisse is iteratively refining his sketches to the few lines and strokes he deems to be

salient.

We have observed (Section 2.6) that the heuristics of fully automatic AR techniques

modulate the visual attributes of strokes to preserve all fine detail present in the source

image. Specifically the emphasis, through level of stroke detail, afforded to a region

within an artistic rendering is strongly correlated with the magnitude of high frequency

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 43

content local to that region. Such behaviour can be shown to differ from artistic prac-

tice in the general case. First, consider that fine detail, such as a fine background

texture, is often less salient than larger scale objects in the foreground. An example

might be a signpost set against a textured background of leaves on a tree, or a flag-

stone set in a gravel driveway. Second, consider that artifacts of similar scale may

hold differing levels of importance for the viewer. We refer the reader back to the ex-

ample of the portrait against a striped background (Figure 3-3, middle-left), in which

the face and background are of similar scale but of greatly differing importance in the

scene. An artist would abstract away high frequency non-salient texture, say, on a

background, but retain salient detail of similar frequency characteristic in a portrait’s

facial features. This behaviour is not possible with automatic AR algorithms which

seek to conserve all fine detail in a rendering, irrespective of its importance in the scene.

The level of detail rendered by existing automatic AR techniques is determined by

the user. Constants of proportionality must be manually set which relate stroke size

(and so, detail in the final rendering) with high frequency magnitude. The values of

these parameters are constant over the entire image and, in practice, setting these val-

ues is a tricky, iterative process, which often requires several runs of the algorithm to

produce an aesthetically acceptable rendering [58, 71, 103]. Keeping too little of the

high frequency information causes salient detail to be lost, and the painting to appear

blurry; keeping too much causes retention of non-salient texture (too many details in

the “wrong places”) which cause the output to tend toward photorealism. Moreover, if

salient detail is of lower frequency magnitude than non-salient detail, then there is no

acceptable solution obtainable by varying these constants — either some non-salient

detail will be erroneously emphasised to keep the salient detail sharp, or some salient

detail will be abstracted away in an effort to prevent emphasis of non-salient detail.

This, of course, points to a flaw in the original premise; that all fine detail is salient.

We thus observe that although for a given image the set of salient artifacts may in-

tersect the set of fine scale artifacts, there may remain many salient artifacts that are

not fine scale, and many fine scale artifacts that are not salient. We conclude that

many images exist for which current AR methods do not emphasise some or all of the

salient elements in the scene. The behaviour of current AR is at odds with that of

the artist, and it is arguably this discrepancy that contributes to the undesirable im-

pression that AR synthesised renderings are of machine, rather than true human origin.

In our opening paragraphs (Chapter 1), we argued that the notion of importance, or

salience, is a relative term. When one speaks of the salience of regions in an image, one

speaks of the perceptual importance of those regions relative to that image as a whole.

Global analysis is therefore a prerequisite to salience determination; the independent

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 44

examination of local pixel neighbourhoods can give no real indication of salience in an

image. The aesthetic quality of output synthesised by automatic AR would benefit

from higher level (global) spatial analysis of images to drive the decision processes gov-

erning emphasis during rendering.

A further observation in Chapter 2 notes the ubiquitous trend in AR to process images

at the conceptually low-level of the stroke (stroke based rendering). There are certain

advantages to processing artwork at this low-level; algorithms are not only fast and

simple to implement, but very little modelling of the image content is required — we

have already highlighted the frequency based decision model used to guide rendering

heuristics. The simplicity of this modelling admits a large potential range of images for

processing. However this low-level, stroke based approach to rendering also restricts

current AR to the synthesis of traditional artistic stroke based styles (such as hatch-

ing [135], stippling [43] or painterly impressionism [103]). We argue that a higher level

of abstraction is necessary to extend the gamut of automated AR to encompass compo-

sitional forms of art, including abstract artistic styles such as Cubism. The successful

production of such compositions is again predicated upon the development of a global

image salience measure, which may be applied to identify high level salient features

(for example, eyes or ears in a portrait). Such features may then be used as a novel

alternative to the stroke as the atomic element in artistic renderings. In this case,

the model we choose must be sufficiently general to envelope a large range of input

imagery, but sufficiently high level to allow the extraction of these conceptually higher

level salient features.

In the next Section, we propose a rarity based measure of salience which performs a

global statistical analysis of the image to determine the relative importance of pixels.

We apply this measure to develop two novel algorithms, each respectively addressing

one of the two deficiencies in AR identified in the preceding paragraphs:

1. Limited ability to control emphasis, through level of detail, in renderings.

2. Limited diversity of style.

First, we propose a novel single-pass painting algorithm which paints to conserve salient

detail and abstract away non-salient detail in the final rendering. Arguably this ap-

proach is more in line with traditional artistic practice, and we demonstrate the im-

proved results (with respect to level of emphasis in the rendering) of our salience based

rendering in comparison to existing AR. This algorithm serves as a pilot for salience

driven painterly rendering, which we build upon to propose a salience-adaptive, relax-

ation based painting technique in Chapter 4, and extend to process video footage into

painterly animations in Chapter 8. Second, we propose a novel rendering algorithm

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 45

Figure 3-2 Our rarity based salience measure computes a series of derivatives for each
image location, which form feature vectors in a high dimensional space. By fitting an
eigenmodel to this distribution and isolating the outliers (the green hyper-ellipse boundary
indicates a threshold), we may identify salient image artifacts.

capable of producing compositions in a Cubist-style, using salient features (such as

eyes, ears etc.) identified across an image set. Control of the AR process is specified

at the compositional, rather than the stroke based level; a further novel contribution

to AR. We incorporate both these algorithms into a single system, where we apply our

salience based painting algorithm to the output of the Cubist rendering algorithm to

give our compositions a painterly appearance. Furthermore, we show how preferential

rendering with respect to salience can emphasise detail in important areas of the com-

position (for example, to bring out the eyes in a portrait using tonal variation). This

salience adaptation is a novel contribution to automatic image-space AR that could

not be achieved without a spatially higher level, global analysis of the source image.

3.2 A Global Measure of Image Salience

We locate salient features within a single image by modifying a technique due to Walker

et al [163], who observe that salient pixels are uncommon in an image. The basic

technique is to model the statistical distribution of a set of measures associated with

each pixel, and to isolate the outliers of this distribution. The pixels corresponding to

these outliers are regarded as salient (Figure 3-2).

To compute these measures, x, over each pixel we convolve each RGB channel of

the image with a set of origin-centred 2D Gaussian derivative filters. Specifically we

use 5 first and second order directional derivatives: ∂G(x, y;σ)/∂x, ∂G(x, y;σ)/∂y,

∂2G(x, y;σ)/∂x2, ∂2G(x, y;σ)/∂y2, and ∂2G(x, y;σ)/∂x∂y. These filters smooth the

image before computing the derivative; they respond well to edge and other signals of

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 46

characteristic scale σ, but as Figure 3-3 shows, our method is more general than edge

detection. We filter using octave intervals of σ, as such intervals contain approximately

equal spectral power. In our implementation we use σ values of 1, 2, 4 and 8; thus with

each pixel we associate a vector x of 20 = 5× 4× 3 components.

For an image of M pixels we will have M vectors x ∈ <n, where for us n = 60. We

assume these points are Gaussian distributed, which we represent using an eigenmodel;

a simple and convenient model that works acceptably well in practice. The eigenmodel

provides a sample mean µ; a set of eigenvectors each a column in orthonormal matrix U ;

each eigenvector has a corresponding eigenvalue along the diagonal of Λ. An eigenmodel

allows us to compute the squared Mahalanobis distance of any point x ∈ <n:

d2(x) = (x− µ)TUΛUT (x− µ) (3.1)

The Mahalanobis distance measures the distance between a point and the sample mean,

and does so using the standard deviation (in the direction x−µ). This provides a con-

venient way of deciding which sample points are salient; we use a threshold, d2(x) > 9,

since 97% of normally distributed points are known to fall within 3 standard deviations

of the mean. This threshold has also been shown empirically to produce reasonable

results (Figure 3-3). Notice that because we look for statistical outliers we can record

pixels in flat regions as being salient, if such regions are rare; a more general method

than using high frequency magnitude.

Figure 3-3 demonstrates some of the results obtained when applying our salience mea-

sure to examples of real and synthetic data, and compares these results to “ground

truth” importance (salience) maps which are representative of those generated by in-

dependent human observers. The global measure can be seen to out-perform local

high-frequency detectors in the task of “picking out” salient artifacts, even against a

textured background. We use the Sobel edge detector for comparison, as it is used by

the majority of image-space AR techniques. Our measure is also shown to be sensitive

to chromatic variations, whereas the Sobel edge detector used in existing AR tech-

niques is concerned only with luminance. We observe that our global salience measure

produces salience maps qualitatively closer to the ground truth that the local (Sobel)

edge measure.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 47

Source Image Local Edge Global Salience Ground Truth

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

1

2

3

4

5

6

7

8

9

10
11
12131415161718192021222324252627282930

False positive rate

T
ru

e
po

si
tiv

e
ra

te

* = threshold value

Mahalanobis dist. threshold (std devs.)

P
er

fo
rm

an
ce

 (
tr

ue
 p

os
. −

 fa
ls

e
po

s.
)

0 3 5 10 14 19 24 29

1.0

0.75

0.5

0.25

0

Ground Truth (manual)

Optimal threshold

Figure 3-3 Top: Examples of real and synthetic images, processed by a local edge filter
(Sobel) and our global, rarity based salience map. We observe that our approach pro-
duces maps qualitatively closer to a manually specified ground truth for image salience;
we can “pick out” the circle and face where edge detection fails. Chromatic variations,
scale and orientation are encapsulated in the rarity measure. Bottom: ROC curve rep-
resenting sensitivity (true positive rate) vs. specificity (one minus false positive rate), as
the Mahalanobis distance threshold is varied. The source image for these results is given
in Figure 3-11 (middle-left). The pure chance response is plotted in dotted red. Right:
Performance of the measure with various thresholds, derived from the ROC. The manually
specified ground truth segmentation for this comparison is inset.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 48

3.3 Painterly Rendering using Image Salience

We now describe a novel single-pass painterly rendering algorithm which applies our

global salience measure to generate pointillist-style painterly renderings from pho-

tographs. By automatically controlling the level of emphasis in the painting (adapting

the level of detail according to the salience of the region being painted), we address the

first issue — aesthetic quality of rendering — raised in Section 3.1.

Our algorithm accepts a 2D image as input, and outputs a single 2D painting generated

from that image. Paintings are formed by sampling a reference image at regular spatial

intervals to generate a series of three-dimensional brush strokes; inverted cones with

superquadric cross-section. The superquadric class of functions can be represented by

the equation:

(x

a

) 2

α
+
(y

b

) 2

α
= r

2

α (3.2)

where a and b are normalised constants (a+ b = 1; a, b > 0) which influence the hori-

zontal and vertical extent of the superquadric respectively, and r is an overall scaling

factor. We observe that equation 3.2 reduces to the general equation for a closed el-

liptic curve when α = 1, tends toward a rectangular form as α = 0, and toward a

four-pointed star as α → ∞. Thus the superquadrics can express a wide variety of

geometric forms, using a single parameter.

Each generated conic stroke is z-buffered and the result is projected orthogonally onto

the (2D) image plane to generate the final painting (Figure 3-4). There are seven pa-

rameters to each stroke; a, b, r, α (from equation 3.2), RGB colour j(c), orientation

angle θ and height h. Parameter α determines the form of the stroke, and is preset by

the user. Low values (< 1) of α create cross-sections of a rectangular form, giving the

image a chiselled effect, whilst higher values of α produce jagged brush styles. Strokes

are shaded according to the colour c of the original image at the point of sampling.

Function j(c) transforms, or “jitters”, the hue component of stroke colour c by some

small uniformly distributed random quantity, limited by a user defined amplitude ε. By

increasing ε, impressionist results similar to those of Haeberli’s interactive systems [62]

can be automatically produced. Further brush styles can also be generated by tex-

turing the base of each cone with an intensity displacement map, cut at a random

position from a sheet of texture; we find that this process greatly enhances the natural,

“hand-painted” look of the resulting image. The remaining five stroke parameters (a,

b, r, θ, and h) are calculated by an automated process which we now describe.

Stroke height h, is set proportional to image salience at the point of sampling. Higher

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 49

Salient region

Superquadric
Strokes

z

x

h

ra rb

θ

Image plane

Stroke partially
obscured

Figure 3-4 Strokes take the form of inverted cones with superquadric cross-section, and
are z-buffered to produce the final painting.

salience image pixels tend to correspond to the features and detail within the image,

and so produce strokes of greater height to protrude over the lower salience strokes

in the z-buffer. The scale of the base of the cone, r, is set inversely proportional to

salience magnitude. This causes small, definite strokes to be painted in the vicinity of

artifacts corresponding to salient detail in the image. Larger strokes are used to shade

non-salient areas, mimicking the behaviour of the artist. Hence our method tends to

draw low, fat cones in regions of low salience, and tall, narrow cones in regions of high

salience.

We also derive gradient information from the reference image, by convolving the inten-

sity image with a Gaussian derivative of first order. Stroke orientation θ is derived from

gradient orientation; the larger axis of the superquadric is aligned tangential to the edge

direction. In areas where gradient magnitude is low, orientation derived in this manner

becomes less reliable. We therefore vary the eccentricity of the superquadric (a, b) in

relation to the magnitude of the image gradient at the position sampled. If the gradient

is low, then a ≈ b, and orientation becomes less important as the superquadric is not

greatly expressed in either horizontal or vertical directions. Where image gradient is

high, then a > b and the superquadric stretches out. One emergent property of this

approach is that strokes typically stretch along salient edges tending to merge, often

causing edge highlights to appear as though produced by fewer, longer strokes. This

is typical of the manner in which an artist might manually render such highlights, and

adds aesthetic quality to the image.

Although we have used a global salience measure to drive emphasis in the rendering

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 50

Figure 3-5 Comparison of our salience based method. Left: Results of an impressionist
algorithm (due to Litwinowicz [103]). Middle: Our algorithm, but driven using Sobel
response rather than global salience. Right: Our proposed salience-adaptive algorithm;
non-salient background detail is abstracted away, whilst salient detail is emphasised on the
face. Observe that the Sobel driven algorithms (left, middle) emphasise all high frequency
detail to a similar degree, detracting from the emphasis given to the facial features. See
Figure 3-3 for corresponding Sobel and salience maps.

Figure 3-6 Left: Three images of identical subject; the original image (top), painterly
rendering with salience (middle), and painterly rendering without salience (bottom). The
right hand column holds the salience map of the original image (top), and the edge maps of
the two paintings (middle, right). Right: Strokes applied with (top) and without (bottom)
salience adaptation. We make the qualitative observation that salient detail is conserved
using our painterly technique.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 51

Figure 3-7 Illustrating the application of our rendering algorithm. A section of the phone-
box rendering has been magnified, demonstrating the alignment of strokes tangential to
the salient window frames. Portions of the pickup truck painting with (inset, left) and
without (inset, right) salience are shown. The source image and salience map are also
inset below.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 52

Figure 3-8 A “salient sketch” (right) produced by adapting our painterly technique to
draw along the principal axis of each superquadric stroke — demonstrating both the close
relationship between an artist’s sketch and a salience map, and the potential of salience
measures in driving alternative artistic rendering styles. In descending order, the original
image, our automatically derived rarity based salience map, and a ground salience map,
are shown on the left.

process, certain local measures have also been used to set attributes such as stroke

orientation. These are inherently local properties, and we are justified in setting them as

such; by contrast the concept of importance demands global analysis for computation.

3.3.1 Results and Qualitative Comparison

We present the results of applying our painting algorithm to a variety of images in

Figures 3-5, 3-6 and 3-7, and demonstrate two advantages of our salience adaptive ap-

proach to painting.

Figure 3-5 contains three paintings of identical subject, painted using automatic, single-

pass painterly algorithms. The right-hand painting was created using our global salience

adaptive painting scheme, and demonstrates how non-salient detail (in this case, repet-

itive background texture) is abstracted away with coarse strokes. Salient detail has

been emphasised with fine strokes, and the contrast produced against the coarser back-

ground serves to further emphasise this detail. The middle painting was generated

using our algorithm, but for the purposes of illustration we have replaced our global

salience measure with Sobel intensity gradient magnitude; the measure used by vir-

tually all automatic image-space AR algorithms. Observe that the non-salient back-

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 53

ground, and salient foreground are emphasised equally, since they exhibit similar high

frequency characteristics. The left-hand painting was generated using a recent daub

based, painterly algorithm from the literature [103]. This algorithm is also driven by lo-

cal, high frequency based heuristics and so also erroneously emphasises the non-salient

background texture. A sketchy rendering of the portrait has been generated in Fig-

ure 3-8 by plotting the principal axis of each superquadric. This serves to illustrate

both the alignment and placement of individual strokes, and the possibility of alterna-

tive salience driven rendering styles.

Our algorithm causes the least salient strokes to be laid down first, much as an artist

might use a wash to generate wide expanses of colour in an image, and fill in the de-

tails later. Without this sensitivity to salience, the rendering procedure can obscure

regions of high salience with strokes of lower salience, demonstrated by Figure 3-6. By

setting the conic height h proportional to salience, salient detail is conserved within the

painting — this is especially clear around the eyes and nose in Figure 3-6, left-middle.

Ignoring the implicit ordering of strokes can still produce a painterly effect, but with-

out the adaptive sensitivity to salient detail that our method provides (Figure 3-6,

left-bottom). By inspection we make the qualitative observation that the majority of

salient pixels in the original, and edge pixels (corresponding to detail) in the salience-

painted images correspond; this is not true for the non-salience adaptive paintings.

A salience adaptive approach to painting therefore benefits aesthetic quality in two

respects. Not only are salient regions painted with improved clarity (strokes from

non-salient regions do not encroach upon and distort regions of greater salience — Fig-

ure 3-5), but renderings also exhibit a sense of focus around salient regions due to the

abstraction of non-salient detail (Figure 3-6).

Figure 3-7 contains a gallery of paintings generated by our algorithm. The image of the

pickup truck was rendered with superquadric shape parameter α = 1. Portions of the

painting rendered with and without salience adaptation are shown inset, as well as with

the source image. The phone-box has been rendered with α = 0.5; in particular we

draw attention to the detail retained in the window frames (inset). Strokes have been

aligned tangential to the edges of each frame, merging to create sweeping brush strokes.

The strokes rendering the window glass do not encroach upon the window frames, which

are more salient, and for the most-part, salient detail is conserved within the painting.

A clear exception where salient detail has been lost, is within the plaque containing

the words “Telephone”. Our conditioned ability to immediately recognise and read

such text causes us to attribute greater salience to this region. The degradation in

aesthetic quality is therefore not due to the argument for salience adaptive painting,

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 54

but rather due to the salience map of our measure diverging from the ground truth (the

expectation of the viewer). This highlights the simplistic nature of our rarity driven

salience measure, and suggests that one’s experiences cause certain classes of artifact

to be regarded as more salient than others. We return to this point later in Chapter

4, when we extend our single-pass salience adaptive painting algorithm in a number of

ways — one of which is to make use of a trainable salience measure, capable of learning

the classes of artifact the user typically deems to be salient.

3.4 Cubist-style Rendering from Photographs

We now describe a novel AR algorithm which addresses the second deficiency in AR

identified in Section 3.1; the limited diversity of styles available by approaching AR

through the low-level paradigm of stroke-based rendering. Our aim was to investigate

whether aesthetically pleasing art, reminiscent of the Cubist style, could be artificially

synthesised. We are influenced by artists such as Picasso and Braque, who produced art

work by composing elements of a scene taken from multiple points of view. Paradoxi-

cally the Cubist style conveys a sense of motion in a scene without assuming temporal

dependence between views. The problem of synthesising renderings in abstract styles

such as Cubism is especially interesting to our work, since it requires a higher level of

spatial analysis than currently exists in AR, in order to identify the salient features

used to form stylised compositions. By salient feature we refer to an image region con-

taining an object of interest, such as an eye or nose; a composition made from elements

of low salience would tend to be uninteresting. We considered the following specific

questions:

• How is salience to be defined so that it operates over a wide class of input images?

• How should salient features be selected from amongst many images, and how

should the selected features be composed into a single image?

• How should the angular geometry common in Cubist art be reproduced?

• How should the final composition be rendered to produce a painted appearance?

Resolution of the first two questions provides the basic mechanism by which a Cubist-

like image can be formed; resolution of latter two questions enhances aesthetic quality.

Our algorithm accepts one or more 2D images taken from different viewpoints as in-

put (see Figure 3-17a), and produces a single 2D image rendered in the Cubist style.

Salient artifacts within each image are first identified using our global salience measure

(Section 3.2). This can produce disconnected features, which requires correction; in our

case by minimal user interaction. These features are geometrically distorted. A subset

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 55

is then selected and composited, ensuring that non-selected features do not inadver-

tently appear in the final composition – näive composition allows this to happen. The

composition process is stochastic, and a new image may be produced on each new run

of the method. An element of control may also be exerted over the composition pro-

cess, affecting the balance and distribution of salient features in the final painting. The

ability to influence rendering at a compositional level, rather than setting parameters of

individual strokes, is a novel contribution of our method. In rendering a painting from

the final composition we make use of our previously described salience based painting

algorithm (Section 3.3) which treats brush strokes in a novel way, ensuring that salient

features are not obscured.

We begin by registering all source images so that objects of interest, such as faces, fall

upon one another; this assists the composition process in subsection 3.4.3. We threshold

upon colour to partition foreground from background, and translate images so that

first moments of foreground are coincident. Finally we clip the images to a uniform

width and height. This step creates spatial correspondence between source images on

a one-to-one basis: pixels at the same location (x, y)T in any image correspond. The

remaining algorithm stages are of greater interest, and we describe each of them in

turn in the following subsections.

3.4.1 Identification of Salient Features

We wish to find a set of salient features amongst the registered images. These images

should be unrestricted in terms of their subject (for example, a face or guitar). In

addition, we want our salient features to be relatively “high level”, that is they corre-

spond to recognisable objects, such as noses or eyes. This implies we need a definition

of salience that is both general and powerful; such a definition does not currently exist

in the computer vision literature, or elsewhere. However, we can make progress by

choosing a definition of salience that is sufficiently general for our needs, and allow

user interaction to provide power where it is needed.

We begin by applying our global salience measure to the set of source images (Sec-

tion 3.2). In practice salient pixels within these images form spatially coherent clusters,

which tend to be associated with interesting objects in the image, including concep-

tually high level features such as eyes (Figure 3-3). However, our method is general

purpose, and therefore has no specific model of eyes, or indeed of any other high level

feature. It is therefore not surprising that what a human regards as a salient feature

may be represented by a set of disconnected salient clusters.

Given that the general segmentation problem, including perceptual grouping, remains

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 56

unsolved we have two choices: either to specialise the detection of salient regions to

specific classes of source images, such as faces (see the fully automatic case study

described later in Section 3.5); or to allow the user to group the clusters into features.

We adopt the latter approach for its power and simplicity: powerful because we rely

on human vision, and simple not only to implement but also to use. We allow the

user to draw loose bounding contours on the image to interactively group clusters.

This mode of interaction is much simpler for the user than having to identify salient

features from images ab initio; that is with no computer assistance. Feature grouping

is also likely to be consistent between source images, because our salience measure

provides an objective foundation to the grouping. The contour specified by the user

forms the initial location for an active contour (or “snake”), which is then iteratively

relaxed to fit around the group of salient clusters. Active contours are parametric

splines characterised by an energy function Esnake; the sum of internal and external

forces [91]. Internal forces are determined by the shape of the contour at a particular

instant, and external forces are determined by the image upon which the contour lies.

Here the spline is defined by a parametric function v(s):

Esnake =

∫ 1

0
Esnake(v(s))ds (3.3)

Esnake =

∫ 1

0
Einternal(v(s)) + Eexternal(v(s))ds (3.4)

During relaxation we seek to minimise the contour’s energy by iteratively adjusting the

position of the spline control points, and thus tend toward an optimal contour fit to

the salient feature. In our case energy is defined as:

Einternal = α

∣

∣

∣

∣

dv

ds

∣

∣

∣

∣

2

+ β

∣

∣

∣

∣

d2v

ds2

∣

∣

∣

∣

2

(3.5)

Eexternal = γf(v(s)) (3.6)

where the two terms of the internal energy constrain the spacing of control points and

curvature of the spline respectively. The external energy function is simply the sum

of salience map pixels bounded by the spline v(s), normalised by the number of those

pixels. Constants α, β and γ weight the importance of the internal and external con-

straints and have been determined empirically to be 0.5, 0.25 and 1. In our application

we fit an interpolating (Catmull-Rom) spline [51] through control points to form the

parametric contour v(s). We assume that the user has drawn a contour of approximate

correct shape around the feature clusters; the weighting constants have been chosen

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 57

Figure 3-9 Four stages of a geometric warp where α′ = 0.3. From left to right: (a) the
source and target superquadrics, fitted about a salient feature; (b) the continuous forward
vector field; (c) the mesh of quadrilaterals (mapped pixel areas); (d) the final distorted
image.

to promote retention of initial shape in the final contour. Relaxation of the snake

proceeds via an algorithm adapted from Williams [167], in which we blur the salience

map heavily in early iterations and proportionately less on subsequent iterations. This

helps prevent the snake snagging on local minima early in the relaxation process. Our

initial approach [23] made use of a convex hull based grouping technique to form salient

clusters, however this precluded the possibly of accurately extracting concave features.

Further advantages of the snake segmentation method are a tighter, more accurate fit

to features, and greater robustness to noise. There is also a lesser degree of sensitivity

upon the initial positioning of the contour, since the snake shrinks to fit the exterior

boundary of the salient pixel cluster.

The union of the salient features identified in each source image forms the set of salient

features we require, which we call F . In addition to grouping clusters into features, the

user may also label the features. These labels partition the set of all salient features

F into equivalence classes, such as “eyes”, providing a useful degree of high level

information (these classes represent a simple model of the object in the picture). We

make use of F , and associated equivalence classes, throughout the remaining three

stages of our algorithm.

3.4.2 Geometric Distortion

We now wish to distort the identified features, in F , to produce the more angular forms

common in Cubist art. Our approach is to construct a continuous vector field V over

each source image, which is a sum of the contributions made by distorting the set of all

features f ∈ F belonging to that image. That is, we define a vector-valued distortion

function g : <2 7→ <2, so that for every point u ∈ <2, we have g(u) = u+ V(u) where

V (u) =
∑

φ∈f

dφ (u) (3.7)

To define a particular distortion function dφ(.) we fit a superquadric about the perime-

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 58

ter of feature φ, then transform that fitted superquadric to another of differing order;

thus specifying a distortion vector field dφ(<2). We now describe the details of this

process.

Recall equation 3.2 in which the superquadric class of functions may be represented in

Cartesian form by:

(x

a

) 2

α
+
(y

b

) 2

α
= r

2

α (3.8)

We use a parametric form of equation 3.2 determined by an angle θ about the origin, by

which we correlate points on the perimeter of one superquadric with those on another.

x =
r cos(θ)

(

|cos(θ)/a| 2α + |sin(θ)/b| 2α
)α

2

(3.9)

y =
r sin(θ)

(

|cos(θ)/a| 2α + |sin(θ)/b| 2α
)α

2

(3.10)

We calculate the distortion for a given feature by fitting a general superquadric of order

α, and warping it to a target superquadric of new order α′. Features whose forms differ

from this target superquadric are therefore distorted to a greater degree than features

that already approximate its shape; thus each feature boundary converges toward the

geometric form specified by α′. Typically we choose α′ < 1 to accentuate curves into

sharp angles. The initial superquadric is fitted about the bounding pixels of the feature

using a 6-dimensional Hough transform based search technique described in Appendix

A.1. We find this global fitting method suitable for our purpose due to its relatively

high tolerance to noise.

Recall the distortion function dφ(.); we wish to produce a displacement vector v for a

y

x

β

β

α

 feature

O

u

α
θ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ns
fe

r
fu

nc
. T

(x
)

Distance (x)

Figure 3-10 Left: The fitted and target superquadrics, described by α and α′ respec-
tively. Intersection with line ~Ou is calculated using angle θ. Right: The decay function
(equation 3.12) used to dampen the vector field magnitude.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 59

given point u = (ux, uy). We first calculate the points of intersection of line ~Ou and

the two superquadric curves specified by α and α′, where O is the origin of both su-

perquadrics (these origins are coincident). We derive the intersections by substituting

a value for θ = arctan(uy/ux) into equations 3.9) and (3.10. We denote these intersec-

tion points by β and β′ respectively (see Figure 3-10, left). The vector β ′−β describes

the maximum distortion in direction θ. We scale this vector by passing the distance (in

superquadric radii) of point u from the origin, through a non-linear transfer function

T (.). So, for a single feature φ:

dφ(u) = T
(

|u−O|
∣

∣β −O
∣

∣

)

(

β′ − β
)

(3.11)

The ideal characteristics of T (x) are a rapid approach to unity as x → 1, and a slow

convergence to zero as x → ∞. The rise from zero at the origin to unity at the

superquadric boundary maintains internal continuity, ensuring a topologically smooth

mapping within the superquadric (Figure 3-10, right). Convergence to zero beyond

unit radius mitigates against noticeable distortion to surrounding areas of the image

that do not constitute part of the feature. The Poisson distribution function (equation

3.12) is a suitable T , where Γ(.) is the gamma function [123] and λ is a scaling constant.

T (x) =
λxeλ

Γ(x)
(3.12)

Recall from equation 3.7 that we sum the individual vector fields of each feature be-

longing to a specific source image, to construct the overall vector field for that image.

With this field defined, we sample those points corresponding to the corners of every

pixel in the source image, and so generate their new locations in a target image. This

results in a mesh of quadrilaterals, such as that in Figure 3-9c. Mapping each pixel

area from the original bounded quadrilateral to the target bounded quadrilateral yields

the distorted image.

The distortion process is repeated for each source image, to produce a set of distorted

images. At this stage we also warp the bounding polygon vertices of each feature, so

that we can identify the distorted salient features F ′. For reasons of artistic prefer-

ence, we may wish to exercise control to use different values of α′ for each equivalence

class; for example, to make eyes appear more angular, but leave ears to be rather more

rounded.

We draw attention to issues relating to the implementation of our method; specifically

that the feature distortion stage can be relatively expensive to compute. This bottle-

neck can be reduced by: (a) precomputing the transfer function T (.) at suitably small

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 60

discrete intervals, and interpolating between these at run-time; (b) using a fast but

less accurate method of integrating distorted pixel areas such as bilinear interpolation.

In both cases we observed that the spatial quantisation induced later by the painterly

rendering stage mitigates against any artifacts that may result.

3.4.3 Generation of Composition

We now describe the process by which the distorted salient features are selected from

F ′ and composited into a target image. Specifically we wish to produce a composition

in which:

• The distribution and balance of salient features composition may be influenced

by the user.

• Features do not overlap each other.

• The space between selected salient features is filled with some suitable non-salient

texture.

• Non-salient regions are “broken up” adding interest to the composition, but with-

out imposing structure that might divert the viewer’s gaze from salient regions.

A subset of the distorted salient features F ′ are first selected via a stochastic process.

These chosen features are then composited, and an intermediary composition produced

by colouring uncomposited pixels with some suitable non-salient texture. Large, non-

salient regions are then fragmented to produce the final composition.

Selection and Composition

We first describe the process by which a subset of distorted salient features in F ′ are

selected. We begin by associating a scalar s(f) with every feature f ∈ F :

s(f) = A(f) · T (E(f)) (3.13)

in effect the area of the feature A(f) weighted by a function T (.) of the fractional size

of the equivalence class to which it belongs (which we write as E(f)). By varying the

transfer function T (.), the user may exercise control over the balance of the composition.

We use:

T (x) = xβ (3.14)

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 61

Figure 3-11 Left: Three source images used to create a Cubist portrait. Right: Features
selected from the set F ′ via the stochastic process of Section 3.4.3 with balance parameter
β = 1. Notice that the number of facial parts has a natural balance despite our method
having no specific model of faces; yet we still allow two mouths to be included. Pixels not
yet composited are later coloured with some suitable non-salient texture.

β is a continuous user parameter controlling visual “balance” in the composition. If

set to unity, features are distributed evenly in similar proportion to the equivalence

classes of the original image set. By contrast β = 0 introduces no such bias into the

system, and a setting of β = −1 will cause highly unbalanced compositions, in which

rarer classes of feature are more likely to be picked.

We treat each scalar s(f) as an interval, and concatenate intervals to form a range.

This range is then normalised to span the unit interval. We choose a random number

from a uniform distribution over [0, 1], which falls in a particular interval, and hence

identifies the corresponding feature. Features of larger area with large associated scalar

values (s(f)) tend to be selected in preference to others, which is a desirable bias in

our stochastic process. The selected feature is removed from further consideration, and

included in a set C, which is initially empty.

This selected feature may intersect features in other images, by which we mean at a

least one pixel (i, j) in the selected feature may also be in some other feature in some

other image (recall the registration process aligns pixels to correspond on a one-to-one

basis). Any features that intersect the selected feature are also removed from further

consideration, but are not placed in the set C.

We have found the choice of β = 1 to produce aesthetically pleasing renderings. In this

case the process is biased toward producing a set C containing features whose equiv-

alence classes are similar in proportion to the original source images. For example,

if the original subject has two eyes and a nose, the algorithm will be biased toward

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 62

6 - Use pixels from image X
7 - Use pixels from X or Y (arbitrary)

1 - Use pixels from image X
2 - Use pixels from X or Y (arbitrary)
3 - Use pixels from image Y
4 - Use pixels from image X
5 - Use pixels from image Y

9 - Use pixels from image Y
8 - Use pixels from image X

A

B

1

2

3

5

6

7

C
D

E

4

9

8

B - Chosen feature from image Y
A - Chosen feature from image X

C,D,E - Unchosen features from X, Y or Z.

Figure 3-12 (a) potential intersections between features (top); (b) final compositions
without (left) and with (right) the second stage of processing.

producing a composition also containing two eyes and a nose, but deviation is possible,

see Figure 3-11.

The second step of our process is concerned with the composition of the chosen fea-

tures in C to produce the final image. We begin this step by copying all chosen features

into a target plane, producing a result such as Figure 3-11. In order to complete the

composition we must determine which image pixels have not yet been composited, and

colour them with some suitable non-salient texture.

An initial approach might be to compute a distance transform [145] for each non-

composited pixel, which determines its distance to the nearest feature. The corre-

sponding pixel in the distorted source image containing this nearest feature is used to

colour the uncomposited pixel. This produces similar results to a Voronoi diagram,

except that we seed each Voronoi segment with a region rather than a point. Unfortu-

nately this initial approach is unsatisfactory: under some circumstances regions may

be partially textured by unchosen salient features, and images such as Figure 3-12b

(left) may result. To mitigate against partial mouths and similar unappealing artifacts

requires greater sophistication, which we introduce by performing a second set of in-

tersection tests.

We copy each of the unchosen features onto the image plane, and test for intersection

with each of the chosen features C. If an unchosen feature u intersects with a cho-

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 63

Figure 3-13 Illustrating composition from a collection of warped salient features in the
guitar image set. Composition balance parameter β = 1.

sen feature c, we say that ‘c holds influence over u’. Unchosen features can not hold

influence over other features. By examining all features, we build a matrix detailing

which features hold influence over each other. If an unchosen feature u is influenced by

exactly one chosen feature c, we extend feature c to cover that influenced area. We fill

this area by copying pixels from corresponding positions in the distorted image from

which c originates. Where an unchosen feature is influenced by several chosen features,

we arbitrarily choose one of these chosen features to extend over the unchosen one (Fig-

ure 3-12a, region 2). However, we do not encroach upon other chosen regions to do this

– and it may be necessary to subdivide unchosen feature areas (Figure 3-12a, regions

1, 3 and 4). Only one case remains: when two unchosen features intersect, which are

influenced by features from two or more differing source images (Figure 3-12a, region

7). In this case we arbitrarily choose between those features, and copy pixels from the

corresponding distorted source image in the manner discussed.

We now perform the previously described distance transform procedure on those pixels

not yet assigned, to produce our abstract composition.

Fragmentation of Non-salient Areas

The composition produced at this stage (Figure 3-14a, left) is often composed of pieces

larger than those typically found in the Cubist paintings. We wish to further segment

non-salient regions to visually “break up” uninteresting parts of the image, whilst avoid-

ing the imposition of a structure upon those areas.

We initially form a binary mask of each non-salient segment using information from

the previous distance transform stage of Section 3.4.3, and calculate the area of each

segment. We then average the area of the chosen salient features C, to produce a de-

sired “segment size” for the composition. Each non-salient segment is fragmented into

n pieces, where n is the integer rounded ratio of that segment’s area to the desired

segment size of the composition. To perform the segmentation we produce a dense

point cloud of random samples within the binary mask of each non-salient segment.

Expectation maximisation [41] is used to fit n Gaussians to this point cloud. We then

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 64

Figure 3-14 (a) Composition after application of steps in Section 3.4.3 exhibiting large
non-salient segments (left) and a uniquely coloured finer segmentation (right) (b) Results
of finer segmentation and shading of non-salient areas in the composition.

calculate the Gaussian centre to which each pixel within a given mask is closest; a

Voronoi diagram is thereby constructed, the boundaries of which subdivide the non-

salient segment being processed into multiple non-salient fragments.

Each of the non-salient fragments must now be shaded to break up the composition. We

choose a point, or “epicentre” along each fragment’s boundary, and decrease the lumi-

nosity of pixels within that fragment proportional to their distance from the epicentre

(see Figure 3-15). The result is a modified intensity gradient across each fragment,

simulating light cast over a fragment’s surface. In practice it is desirable that no two

adjacent fragments have an intensity gradient of similar direction imposed upon them;

doing so induces a noticeable regular structure in non-salient areas, which can divert

the viewer’s attention from the more interesting salient features elsewhere in the com-

position. Placement of the epicentre at a random location upon the boundary produces

too broad a range of possible gradient directions, causing shading to appear as noise.

We therefore restrict shading to a minimal set of directions, calculated in the following

manner.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 65

A region adjacency graph is constructed over the entire composition; each non-salient

fragment corresponds to a node in the graph with vertices connecting segments adja-

cent in the composition. We then assign a code or “colour” to each node in the graph,

such that two directly connected nodes do not share the same colour. Graph colouring

is well-studied problem in computer science, and an minimal colour solution is known

to be NP-hard to compute. We therefore use a heuristic based approximation which

is guaranteed to return a colouring in P-time, but which may not be minimal in the

number of colours used (see Appendix A.2 for details). The result is that each fragment

is assigned an integer coding in the interval [1, t], where t is the total number of colours

used by our approximating algorithm to encode the graph.

The result of one such colouring is visualised in Figure 3-14a. The epicentre of each

fragment is placed at the intersection of the fragment’s boundary and a ray projected

from the centroid of the fragment at angle θ from vertical (Figure 3-15), where θ is

determined by:

θ = 2π

(

segment code

t

)

(3.15)

This expression guarantees placement of the epicentre at one of t finite radial positions

about the boundary of the segment, as the segment coding is an integer value.

The introduction of additional segmentation, and therefore edge artifacts, into non-

salient areas of the composition can have the undesired effect of diverting a viewer’s

gaze from salient features present in the picture. We mitigate against this effect in two

ways. First, we convolve the non-salient regions of the image with a low-pass filter ker-

nel such as a Gaussian. This has the effect of smoothing sharp edges between fragments,

but conserving the more gradual intensity differential over each non-salient fragment’s

3

Non−salient fragment
(Colour 1)

Non−salient fragment
(Colour 3)

θ

Epicentre

Contours equidistant
from epicentre

θ

Epicentre

θ
2

34

5

1

Template:

Figure 3-15 The geometry of two adjacent non-salient fragments, and a single template
determining the location of the epicentre within a fragment. The epicentre of a fragment
of colour i lies at the intersection of that fragment’s boundary and the ith template spoke.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 66

Figure 3-16 Comparison of two painted compositions with (left) and without (right)
preferential shading treatment to salient regions. Observe how salient features such as the
eyes are brought out within the salience adaptive composition; tonal variation has been
used to emphasise the salient regions via histogram equalisation.

surface. This also proves advantageous in that the jagged edges of lines partitioning

fragments are smoothed. Second, we use a variation upon histogram equalisation [145]

to boost contrast within the foreground of the composition (determined during image

registration), causing features such as eyes or noses to “stand out” from the softened

segmentation boundaries. Specifically, we calculate the transfer function between the

luminosities of the source and equalised compositions. For each pixel in the composi-

tion we then interpolate between these luminosities proportional to that pixel’s salience;

thus contrast is boosted in more salient areas of the composition, greatly improving

the aesthetics of the painting (Figure 3-16).

This produces a final composition such as that of Figure 3-14b. We draw attention to

the fact that major segmentation lines (produced by the steps of Section 3.4.3) and

salient features remain unaffected by this final segmentation of the composition.

3.4.4 Applying a Painterly Finish

The final stage of our algorithm is concerned with creating a painterly effect on the

generated composition, to which there are two sub-stages: colour quantising, and brush

stroke generation.

The colour quantising step should be performed prior to composition, but is described

here for the sake of clarity. We use variance minimisation quantisation [174], to reduce

the colour depth of three independent areas within the image: the distorted salient

features (F ′); the foreground of each distorted image; and the background of each dis-

torted image. Distinction between foreground and background is made by thresholding

upon a simple characteristic property of the image, such as hue or intensity (as was per-

formed during image registration). Our motivation to quantise follows the observation

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 67

that an artist typically paints with a restricted palette, and often approximates colours

as a feature of the Cubist style [81]. We allow a level of control over this effect by

differentiating the level of quantisation over the various image components, and have

found that heavy quantisation of the features and foreground, contrasted by a lesser

degree of background quantisation can produce aesthetically pleasing effects.

At this stage we optionally introduce false colour to the image. Artists such as Braque

and Gris often painted in this manner, contrasting shades of brown or grey with yellows

or blues to pick out image highlights. We use a look-up table based upon a transfer

function, which generates a hue and saturation for a given intensity, calculated from

the original input colour. Typically we define this function by specifying several hue

and saturation values at various intensities, and interpolate between these values to

produce a spectrum of false colour to populate the look-up table.

The second step of the rendering process concerns the generation of “painted” brush

strokes, using our previously described salience adaptive painterly technique (Sec-

tion 3.3). This ensures that strokes from non-salient regions to do encroach upon

salient features during this final rendering step.

3.4.5 Results of Cubist Rendering

We present the results of applying our Cubist algorithm to three image sets; a portrait,

a guitar, and a nude. These subjects were popular choices for artists of the Cubist

period, and we use them to demonstrate the processes of composition, distortion, and

painting respectively.

The original source image sets were captured using a digital video camera, and are

given in Figure 3-17a. Figure 3-17b presents the results of processing the portrait im-

ages; salient features were the ears, eyes, nose and mouth. Figures 3-17b1 and 3-17b2

were created by successive runs of the algorithm, using identical distortion parameters;

the stochastic nature of feature selection produces varying compositions in the same

visual style. Figure 3-17b3 demonstrates the consequence of relaxing the constraints

which maintain proportion between equivalence classes during composition; equivalence

classes are no longer proportionally represented; in this case parameter β = 0.

The nude has been rendered with minimal distortion; salient features were the eyes,

nose, mouth, chest and arm. False colour has been introduced to Figure 3-17c2, using

the complementary colours of blue and orange to contrast highlight and shadow. Many

abstract artists make use of complementary colour pairs in a similar manner.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 68

Figure 3-17 A gallery of images illustrating the application of our rendering algorithm.

Paintings produced from the guitar images are presented in Figure 3-17d; salient fea-

tures were the hole, neck, bridge and chair arms. Figures 3-17d1, 3-17d2, and 3-17d3

are identical compositions rendered with different distortion and painting parameters.

The values of distortion parameter α′ for each of the renderings is 0.5, 1, and 2 respec-

tively. Notice how the hole in the guitar changes shape, from rectangular to star-like.

By changing only these parameters, a varied range of styles are produced. The finer

segmentation of non-salient regions was not performed on these renderings, to allow

clear demonstration of distortion effects.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 69

Figure 3-18 A Cubist-style image of Charles Clark MP appeared in the Times Higher
Educational Supplement [3rd January 2003], and was rendered from a set of photographs
supplied by Times reporter Steve Farrar (below).

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 70

Best fit
superquadric

Figure 3-19 Illustrating our ad-hoc facial registration technique. Left: Images are pro-
cessed using a hue/saturation based eigen-model to identify flesh coloured areas (inset).
Candidate faces (green) are found using our Hough based search strategy (Appendix A.1),
which operates on edge pixels identified in the image (blue) following eigen-analysis. Mid-
dle: Difference map used to quantify the symmetry expressed by image data along the prin-
cipal axis of a candidate superquadric. Right: A rigid template containing eyes and mouth
(yellow) is fitted to the image data by translation and scaling within the ortho-normal basis
of the best fit superquadric. Snake initial contour locations are also transformed with the
template (blue), and subsequently relaxed to identify salient features (Section 3.4.1).

3.5 Personal Picasso: Fully Automating the Cubist Ren-

dering System

The general segmentation problem unfortunately prohibits the fully automatic extrac-

tion of salient features from a general image. However certain classes of image are

well studied in Computer Vision, and can be automatically segmented into such fea-

tures. In this section we describe an implementation of our Cubist rendering system

which adapts techniques from the Vision literature to locate the features of a face

within a single video frame. These features are then tracked through subsequent video

frames, and so substitute the interactive elements of our Cubist algorithm to create a

fully automatic rendering process. The motivation for this case study is to produce a

“Personal Picasso” system capable of rendering Cubist portraits from video. Poten-

tial applications for this system might include installation as a feature in commercial

photo booths. We describe a proof of concept implementation of such a system in the

following subsections.

3.5.1 An Algorithm for Isolating Salient Facial Features

We begin by describing an ad-hoc technique for locating salient facial features within a

single image. The first stage of processing involves the location of the face within the

image; we assume that a full frontal image of a single face will always be present. The

second stage localises the various facial features, e.g. eyes, mouth within the identified

face.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 71

Locating the face

Faces are located on the basis of their distinctive colour signature and shape, using a

ad-hoc process which draws upon both previous colour-blob based face location strate-

gies (for example, [125]) and the Hough transform based, geometric approach of [106].

It is well known that, despite natural variations in skin tone and colour, skin pigments

tend to form a tight cluster in 2D hue/saturation space [49]. Prior to processing, we

perform a one-time training process which fits an eigenmodel to various samples of

skin colour taken from photographs; this has empirically proven to be a satisfactory

model of the unimodal distribution of pigments. The eigenmodel is specified by a mean

µ, eigenvectors U , and eigenvalues Λ. When processing a novel source image for face

location, we compute the Mahalanobis distance of each novel pixel’s colour with respect

to the trained eigenmodel. The Mahalanobis distance L(c) of a particular pixel with

colour c = (ch, cs)
T (where ch is the colour hue component, and cs the saturation —

both components normalised to range [0,1]) may therefore be written as:

L(c) =
(

(c− µ)TUΛUT (c− µ)
)

1

2 (3.16)

More precisely, taking into account ch = ch mod 1 we use:

L′(c) = min(L(c), L(c+

[

0.5

0

]

)) (3.17)

This produces a modified Mahalanobis field such as that of Figure 3-19, left (inset).

Canny edges [12] are detected within this map to produce a set of binary edge pixels.

Faces vary in their shape; some tend toward elliptical forms whilst others are described

as being more rectangular. In line with this observation we have chosen to model the

face as a superquadric (equation 3.2) which encompasses all of these forms in a single

parameterised framework. Superquadrics are fitted to the edge pixels using a Hough

based search technique, which incorporates a novel implementation strategy to handle

the large parameter space defining potential superquadrics. The reader is referred to

Appendix A.1 for a full discussion of this fitting process. The fitting process results in

a ranked list of 6-tuples, each corresponding to a potential location for a superquadric

(Figure 3-19, left). Each 6-tuple contains a set of parameters: [Cx, Cy, r, a, θ, α],

which correspond to the 2D centroid location, scale, eccentricity, orientation and form

factor respectively.

We take advantage of the natural symmetry of faces to assist in selecting the best fit

superquadric from those returned. We quantify the symmetry (about the principal axis)

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 72

of the image region bounded by each candidate superquadric. For a given superquadric,

the line of symmetry passes through point (Cx, Cy)
T at angle θ degrees from the vertical.

The reflected image p′ of point p in homogeneous form may be obtained using the

following affine transformation:

p′ = T−1R−1FRTp (3.18)

T =







1 0 −Cx

0 1 −Cy

0 0 1






, R =







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






, F =







−1 0 0

0 1 0

0 0 1







We perform the reflection on all pixels within the candidate superquadric, and com-

pute the mean squared error (MSE) of the reflected and original images (Figure 3-19,

middle). We score each candidate by multiplying the integer “evidence” for that su-

perquadric (returned by the Hough search, see Appendix A.1), with unity minus its

MSE. The highest scoring candidate is deemed to correspond to the facial region.

Locating features within the face

Facial features are located using a simple template based correlation scheme. Prior

to processing, several eyes and mouths are manually segmented and registered upon

one another to produce “average” feature templates. We used sixteen samples from

the Olivetti face database [136] for this task; these faces are available only as greyscale

images, and the template matching process thus correlates using only luminance data.

The pixel data for each template is stored, along with the average triangle formed by

the centroids of the two eyes and the mouth. This results in a rigid, planar template

of the three features, which we attempt to register on to the facial region identified at

run-time.

Registration is a two step process. First, the basis of the template is rotated to align

with the ortho-normal basis of the superquadric bounding the facial region. Second,

the template is subjected to translation (Tx, Ty)
T and uniform scaling s in order to min-

imise the MSE between the template and the image data. Minimisation is performed

using a Nelder-Mead search [114] to locate the optimal triple (Tx, Ty, s). Coarsely

fitting shapes (circles for the eyes, rectangles for other features) are also drawn onto

the template prior to processing. The vertices of these shapes form the initial control

points for the active contours (snakes) which are relaxed on to salient features as per

Section 3.4.1 (Figure 3-19, right), once the template has been fitted. The template also

assigns preset equivalence class categories to the localised features, for example “eye”,

“nose” etc.

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 73

Note that we assume that this initial image contains a full frontal image of the face free

from occlusion; though this image may be subjected to affine variations. This seems a

reasonable constraint to impose given the photo booth application that motivates this

case study.

3.5.2 Tracking the Isolated Salient Features

We can further automate the Cubist system by tracking identified salient features over

consecutive frames of video. This implies that a temporal dependency must exist be-

tween source images, which has not been a constraint on the process until this point.

However since the majority of source imagery is likely to be captured in the form of

video, and this may be acceptable in the majority of cases.

The tracking process commences directly after the snake relaxation step for the initial

frame (see previous subsection). We write p
i

to represent the ith of n inhomogeneous

control points describing the spline fitted about a salient feature. We may write these

points as a column vector to obtain a point φ:

φ =
(

pT
1
, pT

2
, ..., pT

n

)T
∈ <2n (3.19)

The problem of tracking a salient feature from one frame to the next is now reformulated

to that of determining the mapping of the feature’s bounding spline φ to a new point

φ′ = M(φ) in the high dimensional space <2n. If we assume all points on the feature

boundary to be co-planar, this mapping M(.) decomposes into a homography H plus

some additive term representing spatial deformation s. Writing P as a homogeneous

representation of the points encoded in φ:

P =

[

p
1
, p

2
, ..., p

n

1

]

(3.20)

we write the mapping as:

P ′ = HP + s (3.21)

If we assume that the object being tracked deforms very little from frame to frame,

then all image-space deformation is due to viewpoint change. Under these conditions,

homography H well describes the mapping M(.):

H =







h1 h2 h3

h4 h5 h6

h7 h8 h9






(3.22)

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 74

where hj is the jth component of the homography H (by convention, H is normalised

such that h9 = 1; the transformation has eight degrees of freedom). We can therefore

consider an eight dimensional subspace in <2n, within which points corresponding to

valid splines (and so tracked features) will approximately lie3. Deviation from this

space corresponds to feature shape deformation during tracking. We assume the man-

ifold of valid splines to be locally linear and so well approximated by a hyper-plane

(this assumption is justified momentarily). The bases of this plane are obtained by

computing the Jacobian of M(.). Applying a Taylor expansion of 1st order to M(.) we

obtain:

M(φ+ dφ) = M(φ) +5T
M(φ)

dφ (3.23)

where 5T
M(φ)

is the gradient of M(φ) at φ. Under our assumption that M(.) varies

only by homography, then 5
M(φ)

may be written as:

5
M(φ)

=













∂φ
1

∂h1

∂φ
1

∂h2
...

∂φ
1

∂h8

∂φ
2

∂h1

∂φ
2

∂h2
...

∂φ
2

∂h8

...
∂φ

2n

∂h1

∂φ
2n

∂h2
...

∂φ
2n

∂h8













(3.24)

where
∂φ

i

∂hj
denotes the shift of the ith control point under a small change of the jth

component of the homography.

The basis of the valid subspace corresponds to the eight columns of 5
M(φ)

, scaled by

the reciprocal of the square of their respective L2 norms. This process compensates

for the greater influence over motion that some homography components (e.g. pro-

jections) hold over others (e.g. translations) given similar numerical variation. The

remaining null space <2n−8 accounts for arbitrary shape deformations of the tracked

spline. Generating small normal variate offsets from φ within the homography space

basis set generates “similar” splines, related by homography to the spline specified by φ

(see Figure 3-20). Notice that as projections are cast further from the original contour

they tend away from homographies and begin to exhibit shape deformations. This is

because our linear approximation is only local to φ, and deteriorates as we move further

from φ so digressing from the space of valid contours into the shape deformation (null)

space.

A two stage process is employed to track features. First we determine the homography

3In fact, our <2n parameter space was chosen specifically because of its support for shape change due
to homography. Such support is not generally present for any parameter space; consider, for example,
the 6D parameter space of the superquadric (Appendix A.1).

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 75

Figure 3-20 The bounding spline of a salient feature (the guitar hole) after snake relax-
ation (dark blue). The three leftmost images show variation in homography space using
normal variates of standard deviation 20, 50, and 100 (from left to right). Shape deforma-
tion becomes apparent with greater standard deviation as the local linear approximation
deteriorates. By contrast the rightmost image shows variation in the null (arbitrary shape
deformation) space.

that best maps the feature from one frame to the next. In this context the “best”

mapping corresponds to a minimisation of the mean squared error (MSE) E(.) between

the RGB colour values of pixels bounded by the spline in the current frame It(.) and

those bounded by the putative spline location in the next frame It+1(.):

E(Mi(.);φ, I) =
1

N

∣

∣It+1(Mi(φ))− It(φ)
∣

∣

2
(3.25)

where N is the number of pixels bounded by spline Mi(φ). M(.)i is a putative mapping

(homography) obtained by local stochastic sampling in the valid subspace as previously

described — we use a random variate centred at φ, with a preset standard deviation

σ. Choice of σ effectively determines the maximum inter-frame distance an object can

move, such that we may continue to track it; note that σ can not be too large, or the

locally linear approximation to the homography breaks down. Values up to around 50

are reasonable for video frame size images; lower values are possible for tracking slower

movements. This process yields an approximate grouping contour which is used as the

initial position for a snake which is iteratively relaxed to account for any shape defor-

mation in the feature (as per the method of Section 3.4.1). We perform this relaxation

to take into account shape deformations, which we do not wish to track explicitly. This

is due to their high dimensionality and unconstrained nature, which has been shown to

cause unstable tracking in the absence of a predetermined, specific motion model [84]

(which we did not wish to introduce for reasons of generality).

This approach does not yet take into account the possibility of occlusion — however

features can become occluded when subjected to large camera viewpoint changes. We

handle this problem in two ways. First, we may choose to track individual features

(as in Figure 3-20), or the entire set of features simultaneously under the assumption

that all features are co-planar in the world. This latter approach holds the advantage

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 76

Figure 3-21 Four frames of a source video after image registration. Features have been
tracked as a planar group, and each active contour subsequently relaxed to yield a salient
feature boundary (shown in yellow). The corresponding Cubist painting is on the right.

that if one salient feature, say an eye, rotates away from the view of the camera, the

other features may still be tracked. This yields a robust common homography under

which all features are assumed to have moved. We have found this approach to work

acceptably well for faces (Figure 3-21). Second, if the MSE for a feature (equation 3.25)

rises above a preset upper threshold, then that feature is deemed to be occluded. In

such cases, the feature is not to be sampled from the current frame, to prevent garbled

image fragments being forwarded to the composition engine in place of the occluded

feature. The equivalence classes attached to a feature persist over time during tracking.

We stated earlier that a locally linear approximation to the homography space was

satisfactory for our application. We have shown this to be true by examining the 2nd

order Taylor expansion of M(.). This results in eight second order Jacobians, which we

observe have determinants close to zero in all but the cases in which h7 and h8 vary.

Thus the valid space is approximately linear except for the projective components of

the homography. If we make the intuitively valid assumption that that change of view-

point is small (relative to other homography components) from one frame to another,

then a linear approximation to the space is justified.

The decomposition approach allows us to track robustly since we restrict the possible

deformations of the contour to those caused by a change of viewpoint, which we assume

accounts for the majority of deformation in the 2D scene projection. However, there

are further advantages gained through decomposition of motion into a homography

plus some general shape deformation. As each transform φ′ = M(φ) is computed, we

calculate a motion vector φ′ − φ in the valid subspace <8. Based on the line integral

of the path traced in this space, we are able to quantify the magnitude of change of

viewpoint. Since we approximate the space to be locally linear we are justified in using

a Euclidean distance to compute this inter-frame distance; however the path integral

approach is necessary over larger time periods, since we have shown the space to be

globally non-linear. When this accumulated distance rises above a certain threshold,

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 77

we sample the current frame from the video for use in the composition. Thus the selec-

tion of frames for composition is also automated (subject to the user setting a suitable

threshold for the integral function).

Future work might attempt to further decompose motion into the various components

of the homography to estimate how the feature has translated, rotated etc. Currently

the Cubist algorithm performs a translational image registration using distinct colour

signatures within the image. Using the homography to determine an inverse translation

may allow us to register images regardless of their colour characteristics, and we predict

that this may improve the generality of the algorithm.

3.6 Summary and Discussion

We have argued that the paradigm of spatial low-level processing limits AR in two ways.

First, that quality of rendering suffers since magnitude of high frequency content, rather

than the perceptual importance, of artifacts governs emphasis during rendering. We

have shown that addressing this limitation demands global image analysis, rather than

the spatially local approach so far adopted by AR. Second, that the spatially local

nature of processing limits AR to low level, stroke based styles. We argued that the

synthesis of compositional forms of art, such as Cubism, can not be achieved without

processing images at a spatially higher level than that of local pixel neighbourhood

operations.

In this chapter we introduced a global salience measure to AR, to determine the rela-

tive importance of image regions. We applied this measure to propose two novel AR

algorithms, which respectively addressed each of the AR limitations identified in the

previous paragraph. The first was a single-pass AR algorithm capable of rendering

photographs in a painterly style reminiscent of pointillism. This algorithm adaptively

varies the emphasis in a painting to abstract away non-salient detail, and emphasise

salient detail. The second was an algorithm capable of producing compositions in a

style reminiscent of Cubism. Uniquely, this algorithm made use of salient features (eyes,

ears, etc.) as the atomic element in the painting, rather than the low-level stroke. The

two algorithms respectively demonstrate how a spatially higher level of image analysis

can improve the aesthetic quality of renderings (more closely mimicking the practice

of human artists), and extend the gamut of AR beyond stroke based rendering to en-

compass compositional artistic styles such Cubism.

There are a number of directions in which this work might be developed further. We

have shown the introduction of a global salience measure can remove limitations im-

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 78

posed by spatially local nature of current AR. Although this rarity based salience

measure is new to computer graphics, it is quite simplistic. The definition of image

salience is highly subjective and context sensitive. Consider a snap-shot of a crowd: in

one scenario a particular face might be salient (for example, searching for a friend); in

another scenario (for example, crowd control), each face might hold equivalent salience.

The development of image salience measures is an area of considerable interest in Com-

puter Vision, and no doubt other global salience measures might be substituted for our

own — the loose coupling between the salience measure and rendering steps facilitates

this. Indeed, in Chapter 4 we make use of a more subjective, user trained measure

of salience to drive a more sophisticated salience adaptive painterly rendering process,

which follows on from this work.

The Cubist rendering algorithm is an illustration of the potential expansion of AR’s

gamut of artistic styles that can be achieved by considering spatially higher level fea-

tures within a scene. However to achieve this higher level of segmentation we must

impose a restrictive model upon the scene, removing the need for interaction, at the

cost of generality. It is unfortunate that contemporary Computer Vision techniques

limit full automation to only a few well studied cases. However, interactive group-

ing typically takes less than one minute of user time, and so we are content with our

method as a compromise between a general system and automation. As regards the

“Personal Picasso” proof of concept system, although the face localisation algorithm

is reasonably robust, the location of facial features themselves leaves something to be

desired. Likewise, the tracker is adequate but could be improved to be more robust

to occlusion. The implementation of a more sophisticated facial feature location and

tracking system for the Cubist renderer is a live BSc. project at Bath.

Although Chapter 4 serves as a continuation of the pilot painterly rendering algorithm

presented in this Chapter, there are a number of interesting directions the Cubist ren-

dering work might take. The depiction of movement within a static image is a unique

contribution to AR, but may hold further applications. For example, the production

of static “thumb-nail” images to help summarise and index video content. We might

consider undertaking a compositional analysis in order to more aesthetically place our

high level features, and progress yet further toward emulating Cubism; however we be-

lieve such an analysis is a considerable challenge that is not necessary to demonstrate

the synthesis of Cubist-like renderings are made possible through higher level spatial

analysis. We might revisit the way in which we apply paint, so that it appears more in

the tradition of a particular artist, but there is no compelling reason to focus our work

in such a way at this stage: the manipulation of high level features is the only neces-

sary step to producing images that can be classified as “Cubist” or, at least, “Cubist

PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 79

influenced”.

A higher level of analysis still, might be applied to extract salient features from im-

age; perhaps a full 3D scene reconstruction and re-projection from novel perspectives

to generate alternative Cubist-like styles. Perhaps alternative global analyses of the

image might generate aesthetically pleasing abstract artwork. For example, one might

investigate use of the Hough transform to identify target shapes within an image, taken

from a user defined “shape library”. The subsequent rendering of those shapes may pro-

vide a basis for synthesising alternative abstract artistic styles. Such possibilities lend

further credence to our argument that higher level spatial analysis opens the doorway

to a wide range of otherwise unobtainable artistic rendering styles.

Chapter 4

Genetic Painting: A Salience

Adaptive Relaxation Technique

for Painterly Rendering

In this chapter we build on the single-pass salience adaptive painterly technique of

the previous chapter to propose a novel, relaxation based iterative process which uses

curved spline brush strokes to generate paintings1. We draw upon our previous ob-

servations of artistic practice to define the degree of optimality for a painting to be

measured by the correlation between the salience map of the original image and the

level of detail present in the corresponding painting. We describe a novel genetic algo-

rithm based relaxation approach to search the space of possible paintings and so locate

the optimal painting for a given photograph, subject to this criterion. In this work we

make use of a more subjective, user trained measure of salience2. The quality of the

rendering is further enhanced through the use of context dependent stroke rendering

styles, and compensation for image noise; both are additional novel contributions to

image-space AR.

4.1 Introduction

In the previous chapter we observed a relationship between the importance that artists

assign to artifacts in a scene, and the level of detail and emphasis afforded to such

artifacts in a piece of artwork. We also observed that automatic image-space AR tech-

niques are at odds with this behaviour, emphasising all detail regardless of its salience.

1This work has previously appeared as [24].
2The trainable salience measure we use is described in Section 4.3 and will appear as [66]. The

primary investigator of the measure was Peter Hall (University of Bath), with whom the author collab-
orated. For the purposes of examination, the areas of the measure to which the author has contributed
are clearly indicated in situ within Section 4.3.

80

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 81

We rectified this discrepancy by developing a novel, single-pass painterly rendering pro-

cess which modelled the artist’s salience adaptive behaviour. The resulting paintings

exhibited improved aesthetics; not only were salient regions painted precisely (strokes

from non-salient regions did not encroach upon and distort regions of greater salience),

but the rendering also exhibited a sense of focus around salient regions due to the

abstraction of non-salient detail. We compared the edge maps of the resulting paint-

ings with the salience maps of their original images, and observed the two to exhibit

qualitatively closer correspondence than when using local frequency response filters to

drive the rendering process (Figure 3-6).

We now build upon the success of this pilot, single-pass salience adaptive rendering tech-

nique (Section 3.3) to propose a novel relaxation based approach to salience adaptive

painting. We build upon our previous observations to define the degree of optimality for

a painting to be measured by the correlation between the salience map of the original

image and level of detail within the corresponding painting. We describe novel salience

based approach to painting which uses a genetic algorithm (GA) relaxation technique

to search the space of possible paintings, and so locate the optimal painting for a given

photograph. In doing so we use a more subjective definition of salience that can be

trained to select features interesting to an individual user, and which performs global

analysis to simultaneously filter and classify low-level features, for example to detect

edges, ridges and corners. A further contribution of our method is that differential

rendering styles are possible by varying stroke style according to the classification of

salient artifacts encountered. Uniquely, we also compensate for noise; a component of

any real image.

There are several advantages that this novel technique holds over our previous single-

pass technique of Section 3.3.

1. Single-pass rendering techniques (such as our pointillist-style algorithm and many

existing image-space AR methods [58, 71, 103, 140, 159]) are highly susceptible to

image noise. Some stroke attributes, such as orientation, are determined by local

sampling of fields obtained through differentiation of the source image; for ex-

ample Sobel intensity gradient fields. This differentiation process often serves to

exaggerate noise present in the image, which manifests as numerical inaccuracies

in the field leading to poor stroke placement or poor setting of visual attributes.

In single-pass techniques, a stroke’s location and visual attributes are determined

once only, after which they remain fixed. One has no guarantee that the com-

positing of multiple, placed strokes will lead to an aesthetically optimal painting;

strokes do not take into account the effect of other strokes in their vicinity. By

contrast, a goal directed iterative painting strategy can approach a more optimal

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 82

Figure 4-1 Section of a painting generated using our salience based relaxation technique,
taken from the fittest individual within the 80th generation of paintings. High resolution
versions of this and other paintings in this chapter are included in the electronic supple-
mentary material in Appendix C.

solution. We describe a GA based relaxation process which iteratively varies the

attributes of strokes, assessing the “fitness” of the entire painting at each itera-

tion (using our salience based optimality criterion), with the aim of producing an

optimal, target painting.

2. We make use of a user-trained salience measure, which users may teach to recog-

nise artifacts which they deem to be perceptually important. As we mention in

Chapter 3, salience is a task specific, subjective concept which can only be ad-

dressed by prescriptive measures at an early visual level. This trainable method

provides a more subjective basis to the problem of determining the salience of

artifacts within an image.

3. Our painterly technique not only drives emphasis in the painting via salience

magnitude, but can also vary stroke rendering style according to the classification

of salience artifact encountered (for example, edge or ridge).

4. Our algorithm composits multiple curved spline strokes to create paintings, rather

than simple daubs of paint. This allows synthesis of paintings exhibiting elegant,

flowing brush strokes, for example in the style of Van Gogh (Figure 4-17, right).

This approach presents a more general painting solution, since the rendering pa-

rameters controlling maximum stroke length can be reduced, causing the output

of the system to degenerate back toward daub based pointillist styles. Thus the

proposed salience-driven system is capable of rendering photographs in a wider

gamut of artistic styles than our previous salience-driven approach.

Our paintings are formed by compositing curved Catmull-Rom [14] spline brush strokes

via an adaptation of the multi-scale curved stroke painterly technique proposed by

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 83

Hertzmann [71]. We build upon this work in two ways. First, we modify the tech-

nique to accommodate preferential rendering with regard to salience. Strokes are more

densely placed in salient regions, then ordered and modulated to prevent strokes from

non-salient areas encroaching upon more salient ones. Differential rendering styles are

also possible by varying stroke style according to the classification of salient artifacts,

for example edges or ridges. This context-dependent adaptation of stroke style is a

novel contribution to AR. Second, we use our novel relaxation scheme to iteratively

converge the rendering toward the “optimal” painting for a given image. We adapt

Hertzmann’s contour tracing algorithm to account for the influence of noise, present

in any real image. As a consequence, post-relaxation strokes tightly match the con-

tours of salient objects whilst non-salient high frequency detail (emphasised with other

painterly methods) is attenuated. We demonstrate the results of our painterly tech-

nique on a wide range of images, illustrating the benefits of rendering with regard to

salience and the improvements gained by subsequent relaxation of the painting using

our GA based technique.

4.2 Background in Evolutionary Computing

Evolutionary Algorithms (EAs) seek to model the evolutionary processes found in bi-

ology, such as natural selection or mutation, to search for an optimal solution to a

problem under a specific set of constraints. The early development of EAs dates back

to the sixties, when the research of such algorithms fell under the encompassing title of

“Evolutionary Computing”. However the independent development of similar ideas by

separate research groups ensured that, by the early eighties, EAs had diversified into

three subtly distinct categories [70]: Genetic Algorithms (GAs) [36, 56, 77], Evolution-

ary Programming (EP) [50] and Evolutionary Strategies (ES) [131].

GAs are generally considered to originate from the cellular automata work of Holland et

al [77]. The GA operates upon a population of individuals; each individual represents

a point in the problem space and is uniquely characterised by its associated genome

containing a “genetic code”; this code often takes the form of a binary string but this is

not strictly necessary. Each individual can be evaluated via a “fitness function” to yield

a scalar value corresponding to the optimality of the solution it represents. The GA

operates by breeding successive generations of these individuals. Selection of individ-

uals for breeding is via a stochastic process biased toward selecting fitter individuals;

so exhibiting a Darwinian “survival of the fittest” behaviour. The breeding process

itself involves the swapping of genetic code (genome fragments) between parents, to

produce a novel individual. This exchange of code is termed the “cross-over” process.

In addition, each element of the genome may be perturbed by some random amount

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 84

— however the probability of large scale perturbation is slight. This process is termed

“mutation”. Self propagation (analogous to asexual reproduction) of a single parent

may also be permitted in some implementations. This survival of the fittest methodol-

ogy can evolve populations of individuals which tend to approach global maxima even

for complex problems exhibiting turbulent, high dimensional problem spaces. The GA

is a methodology, rather than an algorithm, and there are five principal issues that

must be resolved to successfully tailor the GA to a specific application:

1. How should a solution be represented by an individual’s genome?

2. What are the mechanics of the cross-over and mutation processes?

3. How should the initial population be generated?

4. How should fitness be defined?

5. What should the population size be? Should it vary or remain static?

We address these issues in situ, during the explanation of our GA based relaxation

process (Section 4.4.2).

The EP methodology is subtly different to that of the GA, in that no cross-over is per-

formed. Offspring for successive generations are copied from a single parent, selected

stochastically with a bias to fitness, and subjected to mutation; major mutations have

a much lower probability than minor mutations. The genome tends not to be explicitly

represented as a string, but as a point in the problem space. Mutation in many cases

takes the form of a translation in the problem space of stochastically chosen direction

and magnitude.

The ES methodology is very similar to that of EP, but again differs slightly. The

selection process in EP is often “tournament based”; a pair of parents are picked at

random to compete in a tournament — the outcome being decided by their fitness and

the winner being allocated a “win point”. Many individual tournaments take place

when producing a successive generation, and the highest aggregate scoring parents are

allowed to propagate. By contrast, with ES the weaker parents are deterministically

culled from the population prior to propagation.

4.2.1 Genetic Algorithms in Computer Graphics

EA based techniques have been successfully applied to a number of areas within Com-

puter Graphics. Early uses of EAs include Reynolds’ distributed behavioural mod-

els [129]. These simulated many individual automata interacting via simple rules, from

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 85

which emerge more complex collective behaviours such as flocking and herding. A

realistic model of fish locomotion was presented by Tu and Terzopoulos [160], which

simulated perception, learning and, like Reynolds’ automata, also exhibited group be-

haviour. A well known application of GAs to Computer Graphics is in the virtual

creatures of Sims [141]. Each of Sims’ creatures is defined genetically, and generations

of creatures can evolve novel behavioural and graphical characteristics over time. Sims

posited that creatures which evolve via simulated genetic processes should be capable of

exhibiting more a complex and realistic biological evolutionary response than possible

through explicit, procedural modelling. GAs have also been applied to content based

image retrieval (CBIR) [2].

The majority of applications for GAs in the field of Computer Graphics address the

problem of goal directed animation. GAs have been successfully applied to animate

realistic flower growth [105], and also to develop stimulus response systems for human

articulated motion [115]. Tang and Wan [157] described a GA based system which

allows character motions to evolve in virtual environments, for example learning the

optimal way to perform a jump to reach a goal. Motion planning and character ani-

mation techniques were also driven by GAs in [126] and [179] respectively.

Our paint by relaxation technique is GA based. To justify this, consider Haeberli’s [62]

abstraction of a painting as an ordered list of strokes (comprising control points, thick-

ness, etc. with colour as a data dependent function of these); the space of possible

paintings for a given image is clearly very high dimensional, and our optimality crite-

rion makes this space extremely turbulent. Stochastic searches that model evolutionary

processes, such as genetic algorithms, are often cited as among the best search strategies

in situations of similar complexity [36]. This is due to the fact that GAs search from a

population of points, not a single point, and that the mutation and cross-over processes

integral to propagation cause jumps in the problem space which can mitigate against

the attraction of local minima; these cause difficulty to other strategies such as gradient

descent or simulated annealing. Furthermore, whilst it is difficult to explicitly model

the complex relationships between stroke parameters during the creation of a painting,

goal driven stochastic optimisers such as GAs are known to perform acceptably is the

absence of such models.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 86

4.3 Determining Image Salience

For the purposes of examination, please note that the primary investigator of the

salience measure described in this section was Peter Hall of the University of Bath,

with whom the author collaborated. Specifically, Hall developed the basic measure

which operates at a single scale (Sections 4.3.1– 4.3.3). The multi-scale extensions

to the measure were investigated and developed by the author (Section 4.3.4).

Our painterly process requires a method to automatically estimate the perceptual

salience of images. That is, produce a mapping from a colour image to a scalar field

in which the value of any point is directly proportional to the perceived salience of the

corresponding image point. We now describe an approach to estimating this mapping,

comprising three operators which respectively compute the rarity, visibility, and clas-

sification of local image artifacts. These three operators are computed independently

yielding three probabilities (Prare, Pvisible, Pclass). These are combined to estimate the

final probability of an image artifact being salient as:

Psalient = PrarePvisiblePclass (4.1)

Each of the three operators makes use of circular signals generated by sampling from

concentric rings centred upon the pixel whose salience is to be determined. The first

operator performs unsupervised global statistical analysis to evaluate the relative rarity

(Prare) of image artifacts. This process is similar to our original rarity based approach

of Section 3.2, and the motivation for this operator is principally to adapt that rarity

measure to be consistent with the circular sampling strategy. However the rarity based

measure is augmented with two further operators. Not all rare artifacts should be

considered salient; for example, normally invisible JPEG image compression artifacts

can sometimes be regarded as salient using rarity alone. A prerequisite for salient ar-

tifacts is therefore that they should also be visible, motivating a second perceptually

trained operator which estimates the visibility (Pvisible) of image artifacts. The mea-

sure is refined by asserting that certain classes of artifact, for example edges or corners,

may be more salient than others. This motivates use of a third operator, which users

train the system by highlighting artifacts in photographs they regard as salient. Sig-

nals corresponding to these artifacts are clustered to produce a classifier which may be

applied to artifacts in novel images in order to estimate their potential salience (Pclass).

This definition allows for a more subjective measure of salience, and holds further ad-

vantages in that classes of salient features may be trained and classified independently.

This allows stroke parameters to vary not only as a function of salience magnitude, but

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 87

also allows differentiation of rendering style according to the classification of salient

regions (see Figure 4-8).

4.3.1 Determining Pixel Rarity

The first operator is an unsupervised technique for determining pixel rarity. The tech-

nique is very similar to that of Section 3.2 in that a model is constructed which encodes

the statistical distribution of a set of measures locally associated with each pixel, and

the outliers of this distribution are isolated.

For a given pixel p = (i, j)T the operator examines a series of rings of radius ρ, each

centred at (i, j)T . The image is uniformly sampled around each ring’s circumference

at angular positions θ, hence obtaining a discrete signal x(p) = (ρ, θ) ∈ <3; colours are

in RGB space. This signal is rewritten as a column vector. We have found a sampling

rate of 16, and values of ρ ranging from 1 to 3 pixels in increments of 0.5, to yield

good results in subsequent processing. As before, an eigenmodel is created from the

collection of vectors x(.) resulting from each pixel within the image. The Mahalanobis

distance d(.) is then computed for all pixels P in the image.

d2(x(.)) = (x(.)− µ)TUΛUT (x(.)− µ) (4.2)

The probability of an individual pixel q ∈ P being rare is then written as a quotient

measuring the fraction of the sample density which is less rare than the pixel q:

Q = {r : d(x(r)) ≤ d(x(q)) ∧ r, q ∈ P} (4.3)

Prare(q) =

∑

p∈Q d(x(p))
∑

∀p∈P d(x(p))
(4.4)

4.3.2 Determining Visibility

The second operator estimates the probability that a local image window contains a

perceptually visible signal. The just noticeable difference (JND) between colours in

RGB format is empirically measured. It is assumed that for each RGB colour r there

is distance τ(r), also in RGB space. Together the colour and the distance specify a

sphere of RGB colours (r, τ(r)). No colour interior to the surface of the sphere can

be perceptually discriminated from the centre colour, whilst all exterior colours can be

so discriminated. The distance τ(r) is one JND at the colour r. The sphere radius

can vary depending on experimental conditions, and after several experimental trials

τ emerges as the mean radius accompanied by an associated standard deviation σ.

Although this is a simple colour model (an ellipsoid might better model JND surfaces)

it has been found to perform satisfactorily, and the reader is referred to [66] for dis-

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 88

cussion and experimental details. Similar distance metrics are also described in [175]

for luminance. The advantage of the this approach and [175], over other perceptually

based colour spaces (such as CIELAB), is that unit distances in JND space correspond

to colour distances that are only just discernible by the user.

To evaluate the visibility of artifacts local to a point p = (i, j)T , the image is sampled in

a manner identical to Section 4.3.1 to obtain a signal (ρ, θ), the differential magnitude

of which may be written as:

d(ρ, θ; p) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

dc(ρ, θ; p)

dρ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dc(ρ, θ; p)

dθ

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

1/2

(4.5)

where c(ρ, θ; p) returns the RGB value of the image at coordinates (ρ, θ) relative to p.

This is, however, not a perceptual distance and the probability φ(.) that this change is

visible is computed as:

φ(ρ, θ) = erf ((d(ρ, θ)− τ)/σ) (4.6)

where τ and σ are the JND and its deviation for the colour sample at c(ρ, θ) in the

local window. The reasoning is that if a signal is visible in any ring, then it is visible

for the whole ring but not for the whole disc, and so write:

Pvisible =

ρmax
∑

ρ=1

max(φ(ρ, θ)) (4.7)

as the probability of the disc being visible. This definition ensures that if a signal

grazes the edge of the disc it will register as visible, but not strongly because it will

not pass through every ring. If, on the other hand, a signal pases through the centre

of the disc then it passes through every ring, and a high visibility is obtained.

4.3.3 Classification of Image Artifacts

The final operator introduces a degree of subjectivity by allowing users to train the

system to identify certain classes of low-level artifact as potentially salient.

For a given pixel p, the image is sampled in an identical manner to that used for de-

termining pixel rarity. However, each ring is treated separately, and so considers the

classification of the colour signal c(θ) at constant ρ (this transpires to be more stable

than considering the disc as a whole). A feature vector is formed by first differentiating

c(θ), using Euclidean distance in RGB space, to obtain a periodic scalar signal y(θ)

(Figure 4-2).

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 89

16

r

ridge

2π

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

si
gn

al

sample position (ith sector)

corner corner
ridge

edge

Figure 4-2 Circular descriptors (top left) are used to create signals (top right) from points
specified as salient by the user, which are then processed and clustered in a high dimensional
space. Features such as ridges, edges and corners (second row) create distinctive spectral
signals (third row), which may be used to determine not only the salience of a point, but
also its classification type. Bottom row: a photograph and its corresponding salience map
with edges in red, ridges in green and corners in blue.

The absolute value of the Fourier components |F [y(θ)]| are computed, normalised to

unit power, and the d.c. (zeroth) component dropped. Thus for a given y(θ) a feature

is computed as follows:

f(ω) =
|F [y(θ)]|

(
∑

θ |y(θ)|2
) 1

2

(4.8)

f(ω) ← f(ω) \ f(0) (4.9)

by appeal to Parseval’s theorem to compute power. Removing the d.c. component is

equivalent to subtracting the mean, which makes this feature vector invariant to linear

colour shifts. It is also invariant to orientation. Thus c(θ), c(θ)+α, c(θ+β) all map to

the same point in feature space. The system has proven to be robust to more general

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 90

colour scalings, γc(θ), but cannot be invariant (suppose γ = 0).

It is these properties that principally motivated choice of circular sampling (after Smith

and Brady who advocated the use of circular sampling [144] in their SUSAN system),

since the classification of salient artifacts (for example, edges) should be invariant with

respect to a cyclic shift of the signal. This contrasts with features based on standard

derivative forms, in which edge signals, say, are thinly distributed across feature space

(forming a closed one-dimensional manifold).

Training and Classification

Training is a supervised process that occurs over several images, and requires the user

to interactively highlight artifacts they regard as salient during a pre-processing step.

Moreover, the user may choose a number of classes of artifacts (such as edge, ridge, or

corner), and identify a class label with each artifact they highlight. Training therefore

results in multiple sets of artifacts, each set containing artifacts of identical class.

To build the classifier each artifact in a given set, k say, is converted into a feature

vector as previously described. An estimate of the class conditional density p(f |k) for

that set of features is then obtained using a Gaussian Mixture Model (GMM), fitted

using Expectation Maximisation [41]. A prior, p(k), is also estimated as the expected

number of points — the ratio of the number elements in the given set to the number

of points in all sets. This enables computation of the posterior likelihood p(k|f) by

appeal to Bayes theorem:

p(k|y) =
p(y|k)p(y)

∑N
j=1 p(y|j)p(j)

(4.10)

During painting, classification of a pixel begins by sampling to obtain a new artifact.

This is converted to a feature vector and the above probability vector is computed (one

element per class). The L1 norm of this vector is unity, and in fact we can simply add

elements to estimate the probability that an artifact belongs to a subset of classes. For

each classified pixel we therefore have a probability p(k|y) of membership to each of

the trained classes, and compute Pclass as the maximum value over all p(k|y). Later,

this classification allows us to vary the stroke rendering style according to the class of

salient artifact encountered — see Figure 4-8.

4.3.4 Selection of Scale for Classification

The above approach classifies artifacts at a constant ρ, and so at constant scale. How-

ever classification can vary over scale. For example, an artifact classified as an edge at

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 91

Figure 4-3 Top: Classifier output using a single scale ρ = 3 (left) and multiple scales
(right). Note that ridges and edges around the tiles are more clearly discriminated using the
multi-scale technique. Middle: Further multi-scale classified output on real and synthetic
source images. Bottom: Source images.

small scales might be classified a ridge at larger scales; in such cases one would arguably

prefer the final classification to be “ridge”. By contrast corners remain relatively sta-

ble over scale variation, and it transpires that a range of heuristics exist for other such

combinations. To opt for the most stable classification over scale is therefore insuffi-

cient, but to hard code heuristics specific to edges, ridges etc. is also a poor solution

since these are but examples of more general features that users may identify as salient.

Our strategy is to perform the classification of a given point at several values of ρ; again

using the range 1 to 3 pixels at increments of 0.5. At each scale we obtain a posterior

probability vector p(k|y), and concatenate these to form a column vector (in effect, a

point in a higher-dimensional space that now encapsulates scale information). Since we

know the user supervised classification of each point we may again perform clustering

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 92

Figure 4-4 Applying the salience measure to an image from test set β, from left to right:
original image, Sobel filtered image, multi-scale salience map (red lines indicate salient
edges), and a manually specified ground truth of salient edges. The salience measure
allows us to discriminate between salient edges, and the ridges and non-salient artifacts
that comprise the remainder of the image. Such distinction is not possible using local
measures. We later present a painterly rendering of this image in Figure 4-13, in which
salient edges (for example the face) are emphasised, and other details (such as the rock
texture) are abstracted away.

of salient feature classes, this time by fitting GMMs in this scale-dependent space. The

advantage of our approach is that the aforementioned “heuristics” for classification are

now implicitly learnt by example.

The extension of the feature classifier to operate at multiple scales impacts both a)

the ability to determine salience magnitude, and b) the ability to classify the salient

artifacts encountered — both are relevant to our painting process. We performed two

experiments to measure each of these impacts respectively.

Experiment 1: Salience magnitude

We trained both the single-scale and multi-scale versions of the salience measure using

the image set α (see Figure 4-5). The classes of feature trained on were edges, ridges

and corners. In the case of the single-scale measure, we used a disc radius value of ρ = 3

for both the training and classification processes; this value has been found to work

well over many images (see [66]). Once trained, we applied both measures to a further

image set β (distinct from α), to determine salience magnitude within those images

(Psalient, see equation 4.1). We also manually obtained a ground truth salience map

for each image in β manually, from a human participant instructed to draw over the

important features in the image. The ground truth, and the training, were supplied

by the same participant in our experiment (a sample ground truth map is given in

Figure 4-4). We compared the output of the salience measures with the ground truth

salience map, to determine the performance of each salience measure.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 93

The upper left graph of Figure 4-5 summarises the results of this experiment. The

graph shows the ROC curve for the detection of salient pixels, where Psalient ≥ 0.5

(that is, where pixels are more likely to be salient than not). The curve plots sensitiv-

ity (true positive rate; the fraction of ground truth salient points classified as salient by

the measure), versus specificity (one minus the false positive rate; the fraction of ground

truth non-salient points classified as salient). These measures were averaged over the

ten image test set (β). A range of radial sampling rates were tested {6, 8, 16, 24, 32} for

both the single and multi-scale versions of the salience measure. The performances of

both measures over the range of sampling rates were plotted with accompanying trend

lines.

Both measures perform well at sampling rates of around 16, providing a good com-

promise between true positives and false positives, and motivating the choice of 16

sampling intervals in our painting process. Both the true positive and false positive

rates fall as sampling rate increase beyond the neighbourhood of 16; in general fewer

points are identified as salient at these rates. Although the internal representation

of the circular signal is superior at higher sampling rates, it is likely that the higher

dimensionality of the space in which these signals are distributed inhibits clustering

(since both true and false positive signals decline uniformly). Note that although the

rate of true positives (pixels correctly identified as salient) does not increase greatly us-

ing the multi-scale approach, the false positive rate declines significantly, so improving

performance.

Experiment 2: Accuracy of Classification

Our second experiment tested for any specific improvements in classifier accuracy due

to the multi-scale extensions. The experiment applied the same single and multi-scale

measures, trained over image set α, to the test image set β. However, the ground truth

in this experiment was a manually specified map in which corners, edges and ridges had

been manually identified (in a similar manner to the classifier training process itself).

As with experiment 1, the same person trained the classifier as provided the ground

truth data.

Figure 4-5 contains the results of this experiment. The upper right graph shows an

ROC curve, which compares the true and false classification rates (with respect to the

manually specified ground truth). This graph was generated by forming a “confusion

matrix” for each test image. Examples of a confusion matrices for a real image (the

kitchen image, Figure 4-3, bottom-left), and a synthetic image (the Mondrian image,

Figure 4-3, bottom-right), and also given in Figure 4-5. The values in the confusion

matrix represent the proportion of ground truth artifacts (specified by the horizontal,

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 94

0 0.1 0.2 0.3 0.4 0.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

6
6

88

1616

24
24

32

32

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Single scale (data)
Multi scale (data)
Single scale (trend)
Multi scale (trend)

0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75

0.8

0.85

0.9

6
6

8

8

16

16

24

24

32

32

False classification rate

T
ru

e
cl

as
si

fic
at

io
n

ra
te

Single scale (data)
Multi scale (data)
Single scale (trend)
Multi scale (trend)

Conf. matrices (kitchen)

Single scale

ct et rt

cd 0.97 0.03 0.00
ed 0.01 0.81 0.05
rd 0.02 0.09 0.89

Multi-scale

ct et rt

cd 0.97 0.00 0.00
ed 0.00 0.91 0.04
rd 0.03 0.03 0.90

Conf. matrices (synthetic)

Single scale

ct et rt

cd 0.89 0.15 0.17
ed 0.05 0.65 0.15
rd 0.03 0.14 0.64

Multi-scale

ct et rt

cd 0.98 0.18 0.16
ed 0.01 0.72 0.10
rd 0.00 0.09 0.73

Training set (α)

Test set (β)

Figure 4-5 Comparison of salience measure performance under varying circular sampling
rates, using single-scale vs. multi-scale classification (results discussed in Section 4.3.4).
Top: Two ROC graphs of the single-scale (blue) and multi-scale (red) measures, showing
performance over various sampling rates (labelled). Top-left: True and false positives wrt.
detection of salient points. Top-right: True and false classifications rates of identified
salient feature points. Bottom left: Confusion matrices when classifying a sample real and
synthetic image, with and without multiple scale classification (c, e and r represent rates
for corners, edges and ridges respectively. Subscript t indicates ground truth classifications,
while subscript d indicates detected classification). Bottom right: The distinct training
(α) and test (β) image sets.

subscript “t”) deemed to be of a certain classification (specified by the vertical, sub-

script “d”). Note that columns in the matrix need not sum to unity, since it is possible

that a true corner, for example, may not be picked out as salient by the measure (a false

negative). Likewise, the rows need not sum to unity since salient artifacts identified by

the measure need not have been specified as such in the ground truth (a false positive).

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 95

The diagonal of the matrix may be averaged to give the true classification rate for an

image. The remainder of the matrix may be averaged to obtain the false classification

rate. The values used for the ROC curve correspond to these true and false classifi-

cation rates, averaged over the entire test image set (β). On average, the multi-scale

approach to classification demonstrates superior performance than the single scale ap-

proach (exhibiting higher true positive, and lower false negative rates for classification).

Compare the confusion matrices for the single and multiple scale approaches. Perfor-

mance for both the real and synthetic images is improved in both cases using the multi-

scale approach. This may be visually verified by comparing the classification results of

the real (kitchen) scene in Figure 4-3 with (upper-right) and without (upper-left) the

use of multi-scale information; ridges and edges are discriminated more clearly in the

former case. Indeed, the confusion matrices show the greatest performance increase

is in the discrimination of these two feature classes — confirming our suggestion that

scale is of great importance when deciding between a classification of “edge” or “ridge”.

The performance increase on the synthetic (Mondrian) image is less pronounced than

that of the real scene. We suggest that this is possibly due to the training of the

classifier on image set α, which consists entirely of real world images; the frequency

characteristics of a synthetic scene may exhibit differences which impede the classi-

fication process, although acceptable classifications are produced by the system (see

Figure 4-3, middle-right).

4.4 Generating the Painting

We now describe our algorithm for generating a painting from a 2D image. We begin

by computing a salience map for the source image using the technique of Section 4.3.

An intensity gradient image is also computed via convolution with directional Gaussian

derivatives, from which a gradient direction field is obtained by taking arc tangents.

In areas of low gradient magnitude the directional field can be unreliable, and so is

interpolated smoothly from neighbouring pixels using a distance transform. The source

image, direction field and salience map are used in subsequent stages of the painting

algorithm. We first describe how individual strokes are placed to create a painting,

and then describe the relaxation stage which results in the generation of an “optimal”

painting.

4.4.1 Stroke placement algorithm

Our paintings are formed by compositing curved spline strokes on a virtual canvas.

We choose piecewise Catmull-Rom splines for ease of control since, unlike β-splines

(used in [58, 71]), control points are interpolated. We begin by placing seed points

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 96

on the canvas, from which strokes are subsequently grown bidirectionally. Seeds are

placed stochastically, with a bias toward placement of seeds in more salient regions.

As a heuristic we make provision for a stroke to be seeded at every other pixel; the

salience map then governs the distribution of these strokes over the image. In practice

we scatter 95 percent of the n strokes in this manner, the remaining 5 percent are

scattered uniformly; this prevents holes appearing in areas of relatively low salience

(Figure 4-6, right).

Bidirectional Stroke Growth

Strokes are grown to extend bidirectionally from seed points. Each end grows indepen-

dently until it is halted by one or more preset criteria. Growth proceeds in a manner

similar to Hertzmann’s algorithm [71] in that we hop between pixels in the direction

tangential to their intensity gradient. A history of visited pixels is recorded, and used

to form the control points for the spline stroke.

We observe that noise forms a component of any real image, and any locally sampled

direction estimate is better regarded as being sampled from a stochastic distribution

(Figure 4-6, left). We assume that noise obeys the central limit theorem, and so model

this distribution as a zero centred Gaussian, G(0, σ); we determine σ empirically (see

next subsection). Given a locally obtained gradient direction estimate θ we select a hop

direction by adding Gaussian noise G(0, σ). The magnitude of the hop is also Gaussian

distributed, on this occasion G(µ′, σ′), both µ′ and σ′ being inversely proportional to

the local value of the precomputed salience map. Provided that a preset minimum

number of hops have been executed, the growth of a stroke end is halted when either

the curvature between adjacent pixels, or the distance (in JND space) between the

0 θ

σ

)G(σ=θ() 0,p

θ = stochastic deviation (3)σ

Sampled hop site
(stroke control point)

θ

θ

θ

θ

θ
θ

θ

Measured contour
(stroke trajectory)

Physical contour

Stroke seed point

θ

Figure 4-6 Left: Illustrating the stochastic growth of strokes from a seed pixel. We
choose strokes with hop sites which minimise our objective function, under the constraint
that hop angles are drawn from the distribution p(θ) = G(0, σ). Right: The salience-biased
stochastic distribution of strokes, corresponding to the painting of Figure 4-13.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 97

User selected patch of
constant orientation

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

Angle (rad)

F
re

qu
en

cy
 c

ou
nt

Figure 4-7 The system estimates the standard deviation of image noise by accepting
a “ground truth” from the user. The user selects a region of the image within which
they deem paint strokes should be orientated in a uniform direction (left). The gradient
direction of pixels within this region is then measured (blue). We have observed that such
image noise tends to obey the central limit theorem, and so is well modelled by a Gaussian
(above, the mean direction is approximately 88◦, standard deviation σ ≈ 5◦.

colour of the pixel to be appended and the mean colour of visited pixels, exceeds a

threshold (preset at 3 JNDs).

This method initially yields a sub-optimal trajectory for the stroke with respect to our

measure, described in Section 4.1. For a “loose and sketchy” painting this is often

desirable (see Figure 4-8), but for painting styles exhibiting tighter stroke placement,

trajectories must be closer to the optimal. The degrees of freedom resulting from each

of the many stochastic hops combine to create a range of stroke loci, at least one

of which will result in the maximal conservation of salient detail. The combination of

these optimally positioned strokes comprises the optimal painting, and it is by means of

breeding the fittest paintings to create successively superior renderings, that we search

for such a painting via GA relaxation in Section 4.4.2. Our relaxation strategy is thus

able to approach more globally optimal stroke trajectories, and these can out-perform

trajectories based purely on local estimates of direction.

Calibration for image noise

The choice of σ significantly influences the stroke growth and relaxation process. A

value of zero forces degeneration to a loose and sketchy painterly system, whilst a high

value will lengthen the relaxation process unnecessarily and also may introduce unnec-

essary local minima. We propose a one time user calibration process to select this σ,

typically performed during the training step of the perceptual salience measure.

The user is asked to draw around sample image regions where direction of image gra-

dient is perceived to be equal; i.e. along which they would paint strokes of similar

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 98

orientation. This results in multiple samples of the gradient components, from which

we compute gradient direction by taking arc-tangents. We have observed the natural

distribution of these values to be Gaussian, confirming our assumption that such im-

age noise obeys the central limit theorem (Figure 4-7). We therefore take the mean

angle µ(.) as the common tangential angle. Similarly, we compute the unbiased stan-

dard deviation of the set of measured tangential angles which subsequently becomes

the σ parameter for bidirectional stroke growth. We assume σ to be equal for all angles.

We typically obtain very similar σ values for similar imaging devices, which allows us

to perform this calibration very infrequently. A typical σ ranges from around 2 to 5

degrees, with the larger deviations being attributed to digital camera devices (possibly

as artifacts of lower CCD quality or JPEG compression). This variation allows between

twelve and thirty degrees of variation per hop for noisy images which, given the number

of hops per stroke, is a wide range of loci for a single stroke. Such observations add

credence to our argument for the need of a relaxation process taking into account

image noise; potentially large variations in stroke placement due to uncompensated

image noise are likely to produce inaccurate stroke placements in single-pass (i.e. single

iteration) painterly rendering systems [58, 71, 103, 140].

Rendering and Differential Styles

Stroke rendering attributes are set automatically as a function of stroke salience, taken

as the mean value of the salience map under each control point. By default, stroke

thickness is set inversely proportional to salience. Stroke colour is uniform and set

according to the mean of all pixels encompassed in the footprint of the thick paint

stroke. During rendering, strokes of least salience are laid down first, with more salient

strokes being painted later. As with our previous algorithm (Section 3.3) this prevents

strokes from non-salient regions encroaching upon salient areas of the painting.

The ability of our salience measure to differentiate between classes of salient feature

also enables us to paint in context dependent styles. For example, we have described

how we may discriminate between artifacts such as edges and ridges (Section 4.3.3).

In Figure 4-8 we give an example of a painting generated by our system, in which the

classification probability of a feature is used as a parameter to interpolate between

three rendering styles (parameter presets) flat, edge and ridge. For the flat preset,

rendering takes the default form described in the previous paragraph. For edges and

ridges, the luminance of strokes is heavily weighted to create dark, outline strokes. In

the case of edges, thickness of strokes is also boosted to create thick outlines — while

with ridges the thickness is greatly reduced to produce thin wispy strokes. The σ value

for ridges is also boosted to reduce accuracy and produce “sketchy” strokes. Since these

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 99

Figure 4-8 Top: a still-life composition and corresponding salience map. Bottom: the
above rendered as a loose and sketchy painting, exhibiting differential stroke rendering
styles determined by local feature classification. Edges are drawn with hard, precise thick
strokes; ridges with a multitude of light, inaccurate strokes. Rendered prior to the relax-
ation step of Section 4.4.2.

preset rendering parameters (thickness, luminance decay, etc.) all vary by continuous

multiplicative factors, interpolation between the presets according to the classification

probability vector is straightforward. This process also adds semantic to the rendering,

in that we render ridges as single strokes, rather than as two separate edge strokes.

To the best of our knowledge the rendering of paintings in differential styles via an

automated heuristic is a novel contribution to AR.

4.4.2 Relaxation by Genetic Algorithm

Genetic algorithms simulate the process of natural selection by breeding successive

generations of individuals through the processes of cross-over, fitness-proportionate re-

production and mutation. In our algorithm such individuals are paintings; ordered lists

of strokes and their associated attributes. Recall that we define the fitness of a given

painting as proportional to the correlation between the salience map of the original

image and level of (high frequency) detail within the corresponding painting.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 100

Fitness and Selection

We begin by seeding an initial generation of paintings using the approach described in

Section 4.4.1 and then enter the iterative phase of the genetic algorithm (Figure 4-11).

First we perform evaluation; the entire population is rendered, and edge maps of each

painting produced using by convolution with Gaussian derivatives, which serve as a

quantitative measure of local, high frequency detail. The scale of the Gaussian is care-

fully chosen so as to smooth the fine inter-stroke edges, and prevent these influencing

this detail measure in the painting. The generated edge maps are then compared to

the precomputed salience map of the source image. The mean squared error (MSE)

between maps is used as the basis for fitness measure F (.) for a particular painting;

the lower the MSE, the better the painting:

F (I, ψ) = 1− 1

N

∑

|S(I)− E(Ψ(I, ψ))|2 (4.11)

The summation is over all N pixels in source image I. Ψ(.) denotes our painterly pro-

cess, which produces a rendering from I and an ordered list of strokes ψ (ψ corresponds

to an individual in the population). Function S(.) signifies the salience mapping pro-

cess of Section 4.3, and E(.) the process of convolution with Gaussian derivatives to

produce an edge map. In this manner, individuals in the population are ranked ac-

cording to fitness. The bottom ten percent are culled, and the top ten percent pass to

the next generation. The latter heuristic promotes convergence; the fittest individual

in successive generations must be at least as fit as those in the past. The top ninety

percent are used to produce the remainder of the next generation through simulated

natural selection. Two individuals are selected stochastically with a bias to fitness,

and bred via cross-over to produce a novel offspring for the successive generation. This

process repeats until the population count of the new generation equals that of the

current.

Cross-over

We now describe the cross-over process in detail (Figure 4-9, below). Two difference

images, A and B, are produced by subtracting the edge maps of both parents from the

salience map of the original image, then taking the absolute value of the result. By

computing the binary image A > B, and likewise B > A, we are able to determine

which pixels in one parent contribute toward the fitness criterion to a greater degree

than those in the other. Since the atoms of our painterly renderings are thick brush

strokes rather than single pixels, we perform several binary dilations to both images to

mark small regions local to these “fitter” pixels as desirable. A binary AND operation

between the dilated images yields mutually preferred regions. We mask these conflicting

regions with a coarse chequerboard texture (of random scale and phase offset) to decide

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 101

preferential to parent A Parent A preferential

Binary
dilation

Binary
dilation

Β

Α

Parent B preferential

? (Α > Β)

? (Β > Α)
Absolute
Difference

Difference
Absolute

salience map
parent A

salience map
source image

salience map
parent B

Create new painting
by cloning strokes
under both masks

mutation operator

cross−over operator

chequerboard pattern

no preference (A or B)

Figure 4-9 Genetic operators: the mutation and cross-over operators used during the
relaxation process.

between parents in an arbitrary fashion. Finally, strokes seeded within the set regions

in each parent’s mask are cloned to create a new offspring.

Mutation

Finally, when a bred individual passes to a successive generation it is subjected to a

random mutation. A new “spare” painting is synthesised (though never rendered), and

a binary mask produced containing several small discs scattered within it. The number,

location and radius of the discs are governed by random variates. Strokes seeded within

set regions of the binary mask are substituted for those in the spare painting; the spare

painting is then discarded. In our implementation large areas of mutation are relatively

rare, averaging around four hundredths of the image area per painting.

Termination

The relaxation process runs until the improvements gained over the previous few gen-

erations are deemed marginal (the change in both average and maximum population

fitness over sliding time window fall below a threshold ∆), at which point the search

has settled into a minima (see Figure 4-20) of sufficient extent in the problem space

that escape is unlikely (Figure 4-10, right). The fittest individual in the current pop-

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 102

ulation is then rendered and output to the user. Typically executions run for around

one to two hundred iterations for values of σ between two and five degrees, which we

found to be a typical range of standard deviations for image noise (see Section 4.4.1).

Forcing larger values of σ can result in convergence but, we observe, at the cost of an

exponential increase in execution time (Figure 4-10, left).

Parallel Implementation

In practice, evaluation is the most lengthly part of the process and the rendering step is

farmed out to several machines concurrently. In our implementation we distribute and

receive paintings via the Sun RPC interface, using XDR to communicate over a small

heterogeneous (Pentium/UltraSPARC) compute cluster running on our local network.

Each painting in the population represents one “job” of work. Execution is blocked

until the entire population of paintings are rendered, that is, all jobs are complete. In

order to maintain acceptable execution speeds it is therefore important to assign jobs

to machines in an efficient manner.

The time between sending a job to a helper (slave) machine, and the return of re-

sults from that machine is recorded. A mean execution time is thus maintained and

updated for each machine throughout the rendering of a population. In our original

implementation, jobs were simply farmed out to the first available machine. However

in a heterogeneous system, machines may be of varying speeds and capabilities, and a

single relatively slow machines can severely impact the performance of the whole

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

Sigma (degrees)

Ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce
 (

m
ea

n)

Trend

0 100 200 300 400 500 600 700 800 900 1000
0.09

0.095

0.1

0.105

0.11

0.115

0.12

Generation

M
ea

n
co

rr
el

at
io

n
M

S
 E

rr
or

 (
1−

fit
ne

ss
)

Automatic cut−off
(124th generation)

Figure 4-10 Illustrating GA termination. Left: Increasing the value of σ allows processing
of noisier image at the cost of an exponentially increasing execution time. Right: the MSE
(inverse fitness) averaged over the entire population. Automatic algorithm termination
was suppressed, and the GA forced to run for 1000 iterations (data has been sub-sampled
for presentation). This is representative of relaxation process’ behaviour, and there is little
advantage in exploring additional local problem space after the termination point.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 103

Compute initial

Top 10% pass to
next generation

Yes

No

source salience,
orientation etc.

Render best
individual and
output to user

Slave n

Slave 2

XDR

population
Render entire

Significant

SUN−RPC
Source + paintings

Renderings

Evaluate

recent generations?
improvement over

maps of renderings

Painting Population
Generate Initial

Slave 1

stochastically
individuals

Add to new
generation

NoYes

Perform cross−over
(reproduce)

Perform
random mutation

new generation?
members for the

Enough

Select two

Cull weakest 10%

Heterogeneous Compute Cluster

Scheduler

Compute edge

Figure 4-11 Illustrating flow of control in the genetic algorithm. The population eval-
uation stage is inherently parallel and rendering is farmed out to a distributed compute
cluster.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 104

time

Machine A

Machine B

Machine C

Machine D

Machine E

Machine F

1

2

3

4

5

6

Slow Machine Z 7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 5 9

time

Machine A

Machine B

Machine C

Machine D

Machine E

Machine F

1

2

3

4

5

6

Slow Machine Z 7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 5 7

Figure 4-12 Illustrating the scheduling algorithm governing the distributed rendering of
a 20 painting generation. Left: The simplistic “first free machine” scheduling strategy
becomes time inefficient toward the last few jobs in the population. Right: Sending jobs
to machines that we predict will complete them soonest maintains time efficiency over the
entire population.

cluster using this strategy (Figure 4-12). Instead, our strategy is to predict which of

the machines is likely to finish the pending job first, and then queue the job on that

machine. This may involve queueing a job on a faster, busy machine, when a slower

machine is idle. Note that for the first iteration of rendering we will not hold an

estimate for the speed of machines, and so on this iteration all are assumed to render

at equivalent speed.

The typical time to render a fifty painting generation at high (1024 × 768) resolution

is approximately five minutes over six workstations. Relaxation of the painting can

therefore take in the order of hours, but significant improvements in stroke placement

can be achieved, as can been seen in Figure 4-16 and the accompanying video. The

overhead of our task scheduler is low, and processing time falls approximately linearly

as further machines of similar specification are added to the cluster.

4.5 Rendering and Results

We have generated a number of paintings to demonstrate application of our algorithm

using the source photographs of Figure 4-17. The reader is also referred back to the

dragon (Figure 4-1) and sketchy still-life (Figure 4-8) paintings, presented in situ. As

a note, we have found that running the paintings through a standard sharpening fil-

ter [145] can assist presentation of our paintings on the printed page, and have applied

such a filter to all paintings presented in this chapter.

The painting of the model in Figure 4-13a converged after 92 generations. Thin pre-

cise strokes have been painted along salient edges, while ridges and flats have been

painted with coarser strokes. Observe that non-salient high-frequency texture on the

rock has been abstracted away, yet tight precise strokes have been used to emphasise

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 105

A B

C

D

Figure 4-13 Man on rock: (a) final painting after convergence using our proposed method,
close-up of hands in (c). (b) example of the face rendered with insufficient emphasis
(d) example of rock texture rendered with too great an emphasis. Refer to the text of
Section 4.5 for full explanation of (b) and (d), and how our salience adaptive painting
avoids such difficulties.

salient contours of the face. In the original image the high frequency detail in both

regions is of similar scale and edge magnitude; existing painterly techniques would,

by contrast, assign both regions equal emphasis. With current techniques, one might

globally increase the kernel scale of a low-pass filter [71] or raise thresholds on Sobel

edge magnitude [103] to reduce emphasis on the rock (Figure 4-13c). However this

would cause a similar drop in the level of detail on the face (Figure 4-13b). Conversely,

by admitting detail on the face one would unduly emphasise the rock (Figure 4-13d).

In our method, we automatically differentiate between such regions using a perceptual

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 106

B

A

Figure 4-14 Pickup truck after convergence. Observe salience adaptive emphasis of sign
against background in (a). We have manually dampened the salience map in (b) to cause
greater abstraction of detail; compare stroke placement here with the remainder of the car
body. Original photo courtesy Adam Batenin.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 107

Figure 4-15 Sunflowers after convergence. Inset: a sketchy version of the sunflowers in
the style of Figure 4-8, prior to relaxation.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 108

1st

30th

70th

Figure 4-16 Relaxation by genetic algorithm. Detail in the salient region of the “dragon”
painting sampled from the fittest individual in the 1st, 30th and 70th generation of the
relaxation process. Strokes converge to tightly match contours in salient regions of the
image thus conserving salient detail (an animation of this convergence has been included
with the electronic supplementary material in Appendix C).

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 109

Figure 4-17 Source images used to generate the paintings of Figures 4-13, 4-14, and 4-15.

Figure 4-18 Left: The distinction between salient and non-salient detail can not be made
by current image-space painterly techniques which use locally measures such as variance
or the Sobel operator (rendered using [103]). All high frequency detail is afforded equal
emphasis. Right: “Sheaf-binder” [Van Gogh, 1889]. The majority of Van Gogh’s work
is characterised by his use of elegant, curved sweeping strokes; our system is capable of
producing strokes in ostensibly similar styles (Figure 4-15).

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 110

Figure 4-19 Detail from Figure 4-14, region A. Left: Section of the original photograph
exhibiting non-salient background texture (shrubbery) and salient foreground (sign-post).
Middle: All fine detail is emphasised using existing automatic approaches (here we use [103]
as a representative example), which place strokes using only spatially local information.
In this image, the high frequency detail of the background leaf texture has caused strokes
to be clipped at edges, tending the process back toward photorealism. However attempts
to mitigate this effect, by reducing the edge threshold for clipping, will further degrade
salient detail on the sign. Right: Using our adaptive approach, salient detail is conserved,
and non-salient detail is abstracted away.

salience map (Figure 4-4) — contrast this with the Sobel edge field in the same figure,

in which no distinction between the aforementioned regions can be made.

We present a still-life in Figure 4-15 which achieved convergence after 110 generations.

Inset within this figure we present a similar painting prior to relaxation, demonstrating

differential rendering style as strokes with a high probability of being edges are dark-

ened to give the effect of a holding line. Further examples of level of detail adaptation

to salience are given in Figure 4-14. In region A, observe that the salient ’phone sign

is emphasised whilst non-salient texture of the background shrubbery is not (also see

Figure 4-19 for a enlarged, comparative example). For the purposes of demonstration

we have manually altered a portion of salience map in region B, causing all detail to

be regarded as non-salient. Contrast stroke placement within this region with that on

the remainder of the car body. Variations in style may be achieved by altering the

constants of proportionality, and also thresholds on curvature and colour during stroke

placement. Paintings may be afforded a more loose and sketchy feel by increasing the

halting threshold ∆ and so decreasing the number of relaxation iterations; essentially

trading stroke placement precision for execution time. A similar trade-off could be

achieved by manually decreasing the σ parameter (Figure 4-10, left).

All of our experiments have used populations of fifty paintings per generation. We

initially speculated that population level should be set in order of hundreds to create

the diversity needed to relax the painting. However it transpires that although con-

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 111

0 20 40 60 80 100 120
0.085

0.09

0.095

0.1

0.105

0.11

0.115

C
or

re
la

tio
n

M
S

 E
rr

or
 (

1−
fit

ne
ss

)

Generation
0 20 40 60 80 100 120

0.088

0.09

0.092

0.094

0.096

0.098

0.1

0.102

M
ea

n
co

rr
el

at
io

n
M

S
 E

rr
or

 (
1−

fit
ne

ss
)

Generation

Figure 4-20 Three representative runs of the relaxation process; blue corresponds to the
model (Figure 4-13), red the dragon (Figure 4-1) and green the abbey (Figure 4-21). The
left-hand graph shows the MSE (inverse fitness) of the fittest individual over time, the
right-hand graph shows the same measure averaged over each generation.

vergence still occurs with such population limits, it requires, on average, two to three

times as many iterations to achieve. Such interactions are often observed in complex

optimisation problems employing genetic algorithms [56]. We conclude that the diver-

sity introduced by our mutation operator (Section 4.4.2) is sufficient to warrant the

lower population limit.

During development we experimented with a number of alternative GA propagation

strategies. Originally we did not carry the best individuals from the previous gener-

ation directly through to the next. Instead, the search was allowed to diverge, and

a record of the “best painting so far” was maintained separately. This resulted in a

more lengthly relaxation process, which sometimes produced marginally fitter paintings

than the current method. However the marginal aesthetic benefit that resulted did not

seem to warrant the large increase in run-time. Similar results were observed using an-

other early strategy; if, after a number of generations, we observe no change in fitness,

then we may have reached a plateau in the problem space. In such circumstances the

probability of large scale mutation occurring was gradually increased until the search

escaped the plateau. Again, this caused lengthly execution times for which the pay off

in terms of quantitative change in the fitness function, and qualitative improvement in

aesthetics, was marginal.

4.6 Summary and Discussion

In this chapter we have presented a novel automatic algorithm for creating impasto

style painterly renderings from photographs. This work builds upon the pilot single-

pass salience adaptive painterly technique introduced in the previous chapter, which

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 112

aimed to control emphasis in a painting through use of a global salience map. The

principal disadvantage of single-pass algorithms is that strokes are placed only once

and then remain fixed; image noise local to stroke location can produce inaccuracies in

the rendering. By contrast, relaxation based painting techniques can iteratively tweak

stroke parameters to converge the painting toward some procedurally defined “goal”

state. Such an approach is of considerable benefit, since in the absence of a specific

procedural model of the painting process, we can still approach a specific goal; in effect,

we can specify where we want to be, and provide only vague instructions on how to get

there.

We drew upon our observations of artistic practice in Chapter 3 to define the degree

of optimality for a painting to be measured by the correlation between the salience

map of the original image and level of detail within the corresponding painting. To

search for this optimal painting, we developed a novel GA based relaxation technique.

Our choice of GAs for relaxation was motivated by their superiority to other search

techniques for high dimensional problem spaces with many local optima. Furthermore,

although it is difficult to explicitly model the complex relationships between stroke

parameters during creation of a painting, goal driven stochastic processes such as GAs

are known to perform acceptably well without such models. The inherent parallelism

of the population evaluation step also permits acceptable performance when combined

with distributed computation techniques (Section 4.4.2).

The paintings generated by our algorithm serve to reinforce our argument that a higher

level of spatial analysis is of benefit to AR, in terms of enhancing quality of output. The

GA relaxation framework and salience measure serve as a more sophisticated means

to the same end; that of generating paintings with a focus and emphasis driven by

global image importance rather than simple local frequency content. For example, the

salience adaptive discrimination between level of detail on the rock, and the model’s

face (see Figure 4-13), or the sign-pose and shrubbery (see Figure 4-19), would not

have been possible using local, frequency driven approaches to AR.

We are not the first to describe relaxation approaches to painterly rendering. As we

observe in the review of Section 2.4.1, the discussion of such approaches dates back

to Haeberli [62], and the first algorithmic solutions was described in [155]. However

the relaxation techniques that exist contain objective functions that specifically aim to

maximise the preservation of high frequency detail in the final painting. We discussed

the disadvantages of this spatially local approach to rendering in Chapter 3.

Our algorithm operates by compositing curved spline brush strokes, which are fitted

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 113

Figure 4-21 Bath Abbey after 110 generations of the relaxation process. The darker
strokes outlining the arch and other salient edges are generated by interpolating between a
default and “edge” preset according to the probability of salient artifacts being edges (see
Section 4.4.1). Original photograph inset, top-left.

by sampling local gradient orientation. We argued that orientation measurements are

better modelled as points sampled from a Gaussian distribution, due to the presence

of noise (a component of any real image). Our algorithm is provided with a calibrated

estimate of the level of noise in the image, and so can produce a stochastic distribution

of potential values for measurements, such as orientation, taken from the image. Our

relaxation based approach varies stroke parameters within this distribution to converge

toward our optimality criterion. This explicit modelling of image noise is a novel

contribution to AR. Furthermore, the estimate of noise (σ) need only be approximate

and should be greater than or equal to the true level of noise in the image. The

penalty for over-estimating noise is an unnecessarily long execution time (Figure 4-10,

left), although this often still results in convergence unless a gross over-estimation of σ

has been made. The penalty for under-estimating noise is that the painting may not

converge to the optimal, since stroke attributes may not be allowed to vary sufficiently

to reach the best configuration. Although the placement of strokes is governed primarily

by the relaxation process, each stroke has a guaranteed number of hop sites, and hop

lengths in inverse proportion to the salience of the image regions they cover. Selection

of reasonable values for minimum hop length and count prevents the output of system

tending toward photorealism, should such an attraction evolve.

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 114

Further contributions of our method were the use of a user trained measure of salience

(which the author played a collaborative role in developing, see Section 4.3). The ad-

vantages of using this method were two-fold. First, the salient artifacts encountered

were classified into one of several trained categories (such as edges, or ridges). This

allowed us to automatically differentiate stroke rendering style over the image; a novel

contribution. Second, the measure represented a more subjective approach to problem

of estimating image salience.

There are a number of potential avenues for development of the GA based relaxation

process. An interesting investigation might be to allow users, rather than our objective

function, to choose survivors for each iteration of the GA, and to investigate whether

such a system might assist the exploration of alternative rendering styles. However

this would undoubtedly increase the demands on user time, which are currently very

low for our system. We might also choose to introduce novel additional constraints

into the relaxation process. For example, explicitly including an information theoretic

constraint controlling the density of stroke coverage for a region; this is currently a

stochastic decision performed once for each painting generated. More generally, we

believe the most interesting direction for development would be to explore alternative

objective functions for painting using constraints. A natural extension of the system

would be to devise a library of constraints, by studying a range of artists’ painting

styles. The distributed GA painting system could then be applied to fit a particular

painting model (selected by a user) to a photograph, thus painting that photograph in

one of a range of established artistic styles. Depending on the commonalities identified

between styles, this “paint by model fitting” approach could potentially yield a single

versatile system capable of generating many artistic styles within a single parameter

space.

Simplifying assumptions have been made in the salience measure. For example, the

decision to use spherical JND surfaces in the visibility operator, and the use of a single

Gaussian for clustering during rarity were made on the grounds of unattractive com-

putational complexity during clustering. Work continues at Bath to investigate higher

level models for the classifier of Section 4.3.3, which take into account neighbouring

regions to produce a more context sensitive classification of artifacts.

As regards rendering, we might choose to texture strokes to produce more realistic brush

patterns, although this should be a post-processing step so as not to introduce undue

error in the comparison of salience maps. Many techniques apply texture mapping

to strokes [71, 103, 140], and a bump mapping technique was also proposed in [73].

Highly realistic volume based hairy brush models have recently been proposed [177]

GENETIC PAINTING: SALIENCE ADAPTIVE RELAXATION FOR PAINTERLY RENDERING 115

which could be swept along the Catmull-Rom spline trajectories generated by our al-

gorithm. However, we have concentrated primarily upon stroke placement rather than

media, and we leave such implementation issues open. We believe the most productive

avenues for future research will not be in incremental refinements to the system, but

rather will examine alternative uses for salience measures in the production of image-

space artistic renderings.

The electronic Appendix C contains high resolution versions of all paintings presented

in this chapter (see /paintings).

Part III

Video Paintbox: the benefits of

Higher level temporal analysis

116

Chapter 5

Foreword to the Video Paintbox

In this chapter we give a brief introduction to the “Video Paintbox”, a novel system

for generating AR animations from video. This system is developed throughout the

remainder of Part III (Chapters 6, 7, and 8); each chapter dealing with one of the three

individual subsystems comprising the Video Paintbox. In this introduction we recall

our discussion in Chapter 2 which highlighted the limited scope of current research

into video driven AR, and use these observations to motivate development of the Video

Paintbox. We give a brief overview of the paintbox’s core subsystems, their principal

contributions, and the arguments they make for higher level temporal analysis in AR.

5.1 Introducing the Video Paintbox

We observed in our literature review that although image-space AR techniques have

become increasingly common in the literature, the problem of synthesising artistically

rendered animations from video remains sparsely researched. A very small number of

algorithms [75, 96, 103] exist for automatically producing such animations, and each

of these propose a solution to the very specific problem of creating a painterly effect in

video whilst maintaining temporal coherence. We argue that the current literature is

limited in its approach to video driven AR animation in a number of respects.

• First, all algorithms which address the problem of automated painterly animation

process video on a per frame sequential basis, rendering each frame of animation

using data from only the current and previous frame. Processing begins by di-

rectly applying a standard, static AR algorithm to the first frame of video. Most

methods [96, 103] then translate brush strokes from frame to frame using a vec-

tor field produced using an optical flow technique [7], which supplies a per pixel

inter-frame motion estimate. Although the level of temporal coherence is, of

course, determined by the optical flow technique implemented, optical flow does

117

FOREWORD TO THE VIDEO PAINTBOX 118

In this box, nesting indicates
a dependency.

components
computer vision Intermediate

representation

timing and pose cues
− anticipation
− pose changes

������������

real world video input cartoon animation output
animator controluser correction

object description:
shape, color, motion

depth information

inter−frame homographies

hierachical articulated figure

stroke surfaces and volumes

motion emphasis cues:

coherent painting

augmentation cues
− streak−lines
− ghosting effects

cell renderer

Colours are used to show which computer
vision components are responsible for building
elements in the IR, and the computer graphics
components that use them.

trajectory analyser
tracker
object identifier

occlusion analyser

doll builder

video volume
segmentor

camera motion
compensation

deformation cues
− squash and stretch
− general deformations

line artist
interior filler
rotoscoping

computer graphics
components

Figure 5-1 A schematic overview of the Video Paintbox. Video is parsed through applica-
tion of Computer Vision techniques, to generate intermediate representations of the video
content. These representations are then rendered, subject to user parameterisation, to gen-
erate the final animation. In the diagram, red items indicate use by the visual motion cue
subsystem (Chapter 6), blue items the time and pose motion cue subsystem (Chapter 7),
and green items the Stroke Surface (coherent artistic video shading) subsystem (Chapter
8).

not generally perform well in the presence of occlusion, varying lighting condi-

tions, or within flat untextured regions [54]. Unfortunately, a general solution

to the problem of creating an error-free motion field between two images is un-

known to Computer Vision; the problem can be reposed as the under-constrained

general “correspondence problem”1 [145]. Estimation errors quickly accumulate

and propagate forward through the video sequence, manifesting themselves as

an uncontrolled “swimming” in the animation. Exhaustive manual correction is

typically required to compensate for these errors and improve temporal coher-

ence [61]. A faster, but less accurate, approach to producing painterly video was

proposed by Hertzmann and Perlin [75], where an RGB differencing operation is

used to “paint over” areas of the frame that are deemed to have moved, i.e. ex-

hibit large inter-frame pixel differences. Under this algorithm, lighting changes or

fast camera movements cause behaviour to degenerate to an independent painting

of each video frame, reintroducing associated difficulties with swimming.

• Second, the scope of research into video driven AR has so far been very limited.

Temporally coherent video rendering is a difficult problem, worthy of study. How-

ever, the concentration of research effort on this issue has been at the expense of

other, in our opinion, equally worthy investigations. In particular, the characteri-

sation and emphasis of movement which lends “personality” to an animation is at

1Simply stated, this is the problem of finding which pixels in one image correspond to which in a
second image. For motion analysis, this assumes that motion is such that both frames overlap.

FOREWORD TO THE VIDEO PAINTBOX 119

least as important as artistic style in which it is drawn [98]. However no existing

literature addresses the problem of emphasising motion within a video sequence;

in fact it could be argued that the efforts of previous video AR research have

concentrated upon mitigating against, rather than emphasising, the presence of

motion in the image sequence.

The temporally local nature of current video driven AR methods is a factor which limits

both the temporal coherence of animations, and the potential artistic styles in which

video may be rendered. Current techniques for artistic rendering of image sequences

operate on a per frame sequential basis; none of these existing techniques achieve satis-

factory levels of temporal coherence without manual correction. Furthermore, although

simplistic motion effects are possible using low-level temporal processing (motion blur

is one such operation — Figure 2-5), we show later in this chapter that most traditional

cartoon style motion cues such as streak-lines, or squash and stretch deformation ef-

fects, demand a higher level of temporal analysis for application to video. This is

because such cues not only depict and emphasise historic motion, but also anticipate

future movements. A much larger temporal window than two consecutive frames is

therefore required to correctly analyse motion and trajectories (in addition, consider

that some cues emphasise acceleration, and so require at least three temporal samples

for measurement via a finite difference scheme).

In Part III of this thesis we develop the Video Paintbox; a novel system for the au-

tomated synthesis of AR animations. Our paintbox accepts real world video as input

and outputs an animation rendered into some artistic style influenced by the setting

of user parameters (Figure 5-1). The results of the algorithms which comprise the

Video Paintbox serve as evidence to our argument that higher level temporal analysis

is of benefit to video driven AR; improving the diversity of animation rendering style

(facilitating novel non-realistic temporal effects such as cartoon-like motion emphasis)

and enhancing the temporal coherence of AR animations.

Throughout our Video Paintbox there is an underlying assumption that motion within

the video sequence is smooth, that is, free from scene changes (for example cuts and

cross-fades). A plethora of algorithms exist (mostly colour-histogram based) which can

segment a video sequence into such “cut-free” chunks; we use [181]. This segmentation

is a pre-processing step to our method.

Internally the system comprises three principal components: an intermediate represen-

tation provides an abstract description of the input video clip. This is parsed from the

video by a computer vision component which is responsible for video analysis. This

representation, together with any system parameters, forms the input to the computer

FOREWORD TO THE VIDEO PAINTBOX 120

H/L Spatial
Analysis

Salience−driven
painting & Cubism

Visual motion
emphasis

H/L Temporal
Analysis

Thesis

(5)

(6)
Salience−driven

paint by relaxation
Timing cues for

video shadingmotion emphasis (7)
Temporally coherent

(8)

Part III

Figure 5-2 Left: Reminder of the thesis structure, in particular the layout of Part III.
Chapter numbers are written in red. Right: Our motivation is to create an automated tool
which alleviates much of the tedium of the animation process — yet retains the ability for
the animator to direct the creative process at a high level (Photo credit: Frank Herrmann,
reproduced from [169]).

graphics component, which is responsible for all decisions relating to synthesis, subject

to animator control. The intermediate representation is in fact a suite of integrated

representations (Figure 5-1). Each component of the representation describes the video

content in a way that is useful to one or more tasks. Although we wish for a high de-

gree of automation within our system, we by no means wish to completely remove the

animator from the artistic process. Rather our aim is to develop tools for animators

with which they may use to render artistic effects in video, by creatively directing at

a high level. For example, in our system the animator might point to an object and

specify it to be rendered in watercolour, or move with streak-lines — whereas in the

traditional animation process (Figure 5-2, right) the animator would operate at a lower

level, laying down the individual strokes to create either effect.

Our work is motivated by a desire to render 2D image sequences in cartoon-like styles,

a problem that decomposes into two separable sub-goals, addressing each of the afore-

mentioned benefits respectively:

1. Emphasising motion in the image sequence

2. Producing temporally coherent shading effects in the video

Chapter 6 is primarily concerned with the former sub-goal, and specifically with the

problem of visually depicting motion through artistic rendering. Chapter 7 is also

concerned with motion emphasis, though using a different class of motion cues which

modify a subject’s pose over time to emphasise its motion. We are able to incorporate

both classes of motion cue into a single framework within our Video Paintbox. The

artistic rendering of motion within a video sequence is a novel contribution to AR, and

one that implies interesting new application areas for Computer Vision.

Chapter 8 is concerned with the latter sub-goal of producing temporally coherent artis-

tic shading in video. We describe “Stroke Surfaces”; a novel spatiotemporal approach to

FOREWORD TO THE VIDEO PAINTBOX 121

processing video, and demonstrate that by analysing the video sequence at a temporally

higher level, as a block of frames (rather than on a per frame, per pixel basis as with

current methods) we are able to generate artistically shaded video exhibiting a high

degree of temporal coherence. This framework integrates with our motion emphasis

techniques to form the completed Video Paintbox, capable of producing cartoon-style

animations directly from video.

A show-reel (with commentary) which summarises the Video Paintbox’s capabilities is

included in Appendix C, see /videos/vpshowreel. A systems paper giving an overview

of the Video Paintbox accompanies this show-reel, see /papers/VideoPaintbox.pdf.

Chapter 6

Cartoon-style Visual Motion

Emphasis from Video

In this chapter we describe the first of three subsystems comprising the Video Paint-

box; a framework capable of rendering motion within a video sequence in artistic styles,

specifically emulating the visual motion cues commonly employed by traditional car-

toonists. We are able to synthesise a wide range of augmentation cues (streak-lines,

ghosting lines, motion blur) and deformation cues (squash and stretch, exaggerated

drag and inertia) in this single encompassing framework. We also address problem-

atic issues such as camera motion and occlusion handling. Effects are generated by

analysing the trajectories of tracked features over multiple video frames simultane-

ously. Emphasis of motion within video, rather than mitigation against its presence

for the purpose of maintaining temporal coherence, is a unique contribution to AR

facilitated by the higher temporal level of analysis performed by the Video Paintbox.

6.1 Introduction

The character of an animation is influenced not only by the artistic style in which

it is drawn, but also by the manner in which the animated objects appear to move.

Although a number of video driven non-photorealistic animation techniques have been

proposed to address the former issue, the problem of automatically emphasising and

stylising motion within a 2D video sequence has not yet been addressed by the AR

community (Section 2.5.3). In this chapter we describe a novel framework capable of

rendering motion within a video sequence, and demonstrate the automated synthesis

of a wide range of visual motion emphasis cues commonly used by animators1.

1This work has been published in [27] and has been submitted to the journal “Graphical Models”.
An earlier version of this work was published as [25].

122

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 123

Figure 6-1 Examples of motion cues used in traditional animation (top) and the corre-
sponding cues inserted into a video sequence by our system (bottom). From left to right:
two examples of streak-line augmentation cues, the latter with ghosting lines. Two exam-
ples of deformation cues; squash and stretch and suggestion of inertia through deformation.

Animators have evolved various ways of visually emphasising the characteristics of a

moving object (Figure 6-1). Streak-lines are commonly used to emphasise motion,

and typically follow the movement of the tip of the object through space. The artist

can use additional “ghosting” lines that indicate the trailing edge of the object as it

moves along the streak-lines. Ghosting lines are usually perpendicular to streak-lines.

Deformation is often used to emphasise motion, and a popular technique is squash

and stretch in which a body is stretched tangential to its trajectory, whilst conserving

area [98]. Other deformations can be used to emphasise an object’s inertia; a golf club

or pendulum may bend along the shaft to show the end is heavy and the accelerating

force is having trouble moving it. The magnitude of deformation is a function of mo-

tion parameters such as tangential speed, and of the modelled rigidity of the object. In

this chapter we develop a system which processes real video to introduce these motion

cues; comparative examples of hand drawn and synthesised cues are given in Figure 6-1.

Recall that our aim is to develop tools for animators with which they may interact at a

high level, to render artistic effects in video. Users interact with our visual motion em-

phasis framework by drawing around objects in a single frame and specifying the type

of motion emphasis they would like to apply to those objects. This approach makes

the problem of tracking features tractable from a Computer Vision point of view, since

the general segmentation problem prohibits an automated solution to bootstrapping

our feature tracker. It is questionable whether we would prefer to use an automated

segmentation technique for this task, were one to exist. Animation by its very nature is

driven by an individual’s style and creative flair. Although putting traditional anima-

tion techniques into practice can be repetitive and tedious work (exhibiting potential

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 124

for automation), the imagination and direction governing the choice of techniques to

apply is better considered to be a function of individual taste. The same idea motivates

the well established use of teams of lesser skilled “inbetweeners” in commercial anima-

tion. These teams interpolate the key-frames of more experienced animators to cut

production times — a practice pioneered back in the 1940s. Thus we find it desirable

to allow artistic influence in our system through high level interaction; for example

specifying which objects should undergo motion emphasis, and with which techniques.

By contrast, automation should free the animator from the mechanics of how, for ex-

ample, such objects deform — these remain largely constant between animations, as

evidenced by the many animator’s handbooks (for example, [169]) which offer guidance

on motion emphasis techniques. However, these effects are not rigidly defined; their

behaviour can be modulated to fit the animators needs. Likewise, our system allows

performance parameters to be set on motion cues, for example constants controlling

rigidity in a squash and stretch deformation. We describe these parameters with their

respective effects in situ.

6.2 Overview of the Subsystem

We now describe the major components of the subsystem responsible for synthesising

visual motion cues, leaving detailed explanation to subsequent sections of the chapter.

The subsystem has two major components: the Computer Vision component which is

responsible for tracking motion of features (e.g. arm, leg, bat or ball), camera motion

compensation, and depth ordering of features; and the Computer Graphics component,

responsible for the generation of motion cues, and their rendering at the correct depth.

We wish for minimal user interaction with the Computer Vision component, which

must be robust and general; currently users draw polygons in a single frame to identify

features which are then tracked automatically. In contrast, the user is given control

over the graphics component via a set of parameters which influence the style in which

the motion cues are synthesised.

6.3 Computer Vision Component

The Computer Vision component is responsible for tracking features over the video

sequence. A camera motion compensated version of the sequence is first generated; we

do not desire camera motion to bias the observed trajectories of subjects. Features are

then tracked over this compensated sequence. By analysing occlusion during tracking

we determine a relative depth ordering of features, which is later used in the rendering

stage to insert motion cues at the correct scene depth.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 125

6.3.1 Camera Motion Compensation

The nature of the motions we wish to emphasise often demands a moving camera to

capture them, so necessitating a camera (ego) motion compensation step as the first

operation in our subsystem. Ego-motion determination allows the camera to move,

to pan, and even compensates for camera wobble. We model inter-frame motion by a

homography, and perform compensation by applying a robust motion estimation tech-

nique initially proposed by Torr [158].

A number of interest points are first identified within two given images (I and I ′) using a

variant of the Harris corner detector, refined to operate with sub-pixel accuracy (details

of this refinement are given in Appendix A.3). Correspondence between interest points

is estimated using cross-correlation of local image signal — however this produces

many erroneous correspondences. We thus search for an initial approximation to the

homographyH, between corresponding interest points, using RANSAC [47] to minimise

the forward-backward transfer error E(H):

E(H) =
4
∑

i=1

|Hp
i
− q

i
|+ |H−1q

i
− p

i
| (6.1)

where H is a putative homography proposed by a RANSAC iteration, and p
[1,4]

, q
[1,4]

are four pairs of potentially corresponding feature points chosen at random from the

complete set of correspondences identified during cross-correlation. On each iteration

H is computed by solving a homogeneous linear system, comprising two linear equations

for each inhomogeneous point correspondence p
i
= (xi, yi)

T 7→ q
i
= (x′i, y

′
i)

T :

x′i(h7xi + h8yi + h9)− h1xi − h2yi − h3 = 0 (6.2)

y′i(h7xi + h8yi + h9)− h4xi − h5yi − h6 = 0 (6.3)

Where h[1,9] represent the nine elements of the matrix transformation for the planar

homography (see equation 3.22). The homogeneous system is solved directly in matrix

form, using standard linear methods (SVD) to obtain h[1,9]:

















−x1 −y1 −1 0 0 0 x′1x1 x′1y1 x′1
0 0 0 −x1 −y1 −1 y′1x1 y′1y1 y′1

... ...

−x4 −y4 −1 0 0 0 x′4x4 x′4y4 x′4
0 0 0 −x4 −y4 −1 y′4x4 y′4y4 y′4

































h1

h2

...

h8

h9

















= 0 (6.4)

Having established an estimate for H using RANSAC, we refine that estimate using a

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 126

35,44 26 20 17 9 1

A

B

C

D

E

F

G

H I

J
L

K

Figure 6-2 Left: The camera compensated VOLLEY sequence sampled at regular time
intervals. The camera view-port at each instant is outlined in yellow, the tracked feature in
blue (see videos/panorama in Appendix C). Right: STAIRS sequence. (Top) markers are
required to track this more complex subject but are later removed automatically (middle).
Recovery of relative depth ordering permits compositing of features in the correct order
(bottom); labels A–K correspond to the graph of Figure 6-3.

Levenburg-Marquadt iterative search2 (after [154]) to minimise the mean squared RGB

error E′(H) between image pixels which overlap when transformed by H (we write the

subset of overlapping pixels within image I, as X):

E′(H) =
1

|X|
∑

x⊆X

∣

∣I ′(Hx)− I(x)
∣

∣

2
(6.5)

Frames are projected to a single viewpoint via homography to produce a motion com-

pensated sequence in which the tracking of features is subsequently performed. This

process assumes a static background against which camera motion may be judged.

This background should contribute over fifty percent of Harris points in the imaged

scene; in practice this is rarely a difficult target to obtain, since the background is often

reasonably well textured and occupies much of the imaged area.

6.3.2 Tracking Features through the Compensated Sequence

The general problem of tracking remains unsolved in Computer Vision and, like oth-

ers, we now introduce constraints on the source video in order to make the problem

tractable. Users identify features by drawing polygons, which are “shrink wrapped”

to the feature’s edge contour using snake relaxation [167], in an identical manner to

Section 3.4.1. We assume contour motion may be modelled by a linear conformal affine

transform (LCAT) in the image plane, a degenerate form of the affine transform con-

sisting of 4 parameters (uniform scale, orientation, and spatial position — represented

by the 4-tuple h(t)=[s(t), θ(t), x(t), y(t)]). This allows planar motion plus scaling

2The Levenburg-Marquadt algorithm is a general purpose, non-linear smooth function optimiser —
described in [123].

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 127

of features. Variation of these 4 parameters is assumed to well approximate a second

order motion equation over short time intervals:

h(t+ δ) ≈ h(t) +
dh

dt
δ +

d2h

2dt2
δ2 (6.6)

In homogeneous coordinates, a transform from time t to t′ is instantiated by:

M
tt′

(s, θ, x, y) = T (x, y)R(θ)S(s) (6.7)

A feature, F , comprises a set of points whose position varies in time; we denote a point

in the tth frame by the column vector xt = (x, y)T
t . In general these points are not

pixel locations, so we use bilinear interpolation to associate a colour value, I(xt) with

the point. The colour value comprises the hue and saturation components of the HSV

colour model; we wish to mitigate against variations in luminance to guard against

errors introduced by lighting changes. Although the LCAT can be derived from two

point correspondences we wish to be resilient to outliers, and therefore seek the LCAT

M̂
tt′

which minimises E[.]:

E[M
tt′

] =
1

|F |

|F |
∑

i=1

|I(xi
t′)− I(M tt′

xi
t)|2 (6.8)

where the tt′ subscript denotes the matrix transform from frame t to t′. In a similar

manner to camera motion correction (Section 6.3.1), the transformation M
tt′

is initially

estimated by RANSAC, and then refined by Levenburg-Marquadt search.

Note that this process assumes the animator is able to isolate an unoccluded example

of the feature, in a single video frame; a reasonably light restriction given that there

is no requirement for all features to be bootstrapped from within the same individual

frame.

By default, several well distributed interest points are identified automatically using

the Harris [68] operator (see sequences CRICKET, METRONOME). In some cases

a distinctively coloured feature itself may be used as a marker (see VOLLEY, Fig-

ure 6-2). In more complex cases where point correspondences for tracking can not be

found (perhaps due to signal flatness, small feature area, or similarity between closely

neighbouring features), distinctively coloured markers may be physically attached to

the subject and later removed digitally (see STAIRS, Figure 6-2). In these cases the

Harris interest points are substituted for points generated by analysis of the colour

distribution in a frame (see Appendix A.5) for full details).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 128

Noise and Occlusion

So far we have overlooked the impact of noise and occlusion upon our tracker. The

“best” M
tt′

measured will be meaningless in the case of total occlusion, and exact in

the case of neither noise nor occlusion. The likelihood Lt of the feature being occluded

at any time t may be written as a function of detected pixel error:

Lt = exp(−λE[M
tt′

]) (6.9)

where λ is the reciprocal of the average time an object is unoccluded (this is a data

dependent constant which can be varied to tune the tracker), and E[.] is the pixel-wise

difference defined in equation 6.8. Thus at any time t we know the estimated LCAT

M
tt′

, and the confidence in that estimate Ct = 1−Lt. We have incorporated a Kalman

filter [90] into our tracker which processes video frames sequentially, accepting the

LCAT estimate and confidence values over time, and outputting a best estimate value

for each instant’s LCAT. The Kalman filter “learns” a model of the tracked feature’s

motion over time; this motion model is factored in to the “best estimate” to output

at time t. The credence given to the model, versus that given to the observation, is

governed by the confidence in our observation at that time, Ct. We give further details

of our Kalman tracking approach in Appendix A.4, but summarise that central to

the filter is a 3 × 3 state transition matrix S which represents a second order motion

equation in the 4D parameter space of the LCAT. The coefficients c(.) of this equation

are continuously updated, according to the confidence of measurements submitted to

the filter, to learn the immediate history of the feature’s motion. For example, in the

case of a zero confidence (Ct = 0) input, the filter will produce an output based entirely

on this learnt motion:

c(t′) = Sc(t) (6.10)

c(t′) =







1 t′ − t (t′ − t)2/2
0 1 t′ − t
0 0 1













h(t)
dh(t)

dt
d2h(t)

dt2







Observe that if confidence Ct is low, then the object is likely to have been occluded,

because we cannot match the template to the image. If Ct > 0.5 we say the object is

more likely occluded than not. If the likelihood of occlusion is low, Ct < 0.5, and the

modelled and observed LCAT disagree then the estimate, due to the second order mo-

tion equation, is likely to be in error. We can therefore use a low Ct to detect collisions

(see Section 6.4.2).

The addition of a Kalman filter to the system permits the tracker to maintain a lock on

features moving under occlusion providing that motion, whilst occluded, approximately

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 129

G

F

I

A

J

L

E

D

H

B

K

C

occludes

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Figure 6-3 An occlusion graph constructed over 150 frames of the STAIRS sequence,
node letters correspond with Figure 6-2. Dotted lines indicate unoccluded nodes.

follows the second order model estimated by the Kalman filter; this approach has been

found sufficiently robust for our needs. However, although this lock is sufficient to

re-establish accurate tracking immediately following an occlusion, the predicted LCAT

during occlusion is often inaccurate. We refine the tracked motion by deciding at which

time intervals a feature is occluded and interpolating between the parameters of known

LCATs immediately before and after occlusion. Knowledge of the correct positions of

features during occlusion is important when rendering as, although a feature will not

be visible while occluded, any applied motion cues may be. Occlusion is also used to

determine relative feature depth, and a knowledge of collision events is important later

for squash-and-stretch effects.

6.3.3 Recovering Relative Depth Ordering of Features

We now determine a partial depth ordering for tracked features, based on their mutual

occlusions over time. The objective is to assign an integer value to each feature corre-

sponding to its relative depth from the camera. We introduce additional assumptions

at this stage: 1) the physical ordering of tracked features cannot change over time

(potential relaxation of this assumption is discussed later in Section 6.5) ; 2) a tracked

feature can not be both in front and behind another tracked feature; 3) lengthly spells

of occlusion occur due to tracked features inter-occluding.

For each instance of feature occlusion we determine which interest points were occluded

by computing a difference image between tracked and original feature bitmaps. A con-

tainment test is performed to determine whether occluded points lie with the bounding

contour of any other tracked features; if this is true for exactly one feature, then the

occlusion was caused by that feature. We represent these inter-feature relationships

as a directed graph, which we construct by gathering evidence for occlusion over the

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 130

whole sequence. Formally we have a graph with nodes G1..n corresponding uniquely

with the set of tracked features, where Gi 7→ Gj implies that feature Gi occludes Gj

(Figure 6-3). Each graph edge is assigned a weight; a count of how many times the

respective occlusion is detected.

This graph has several important properties. First, the graph is directed and should

also be acyclic (i.e. a DAG) since cycles represent planar configurations which cannot

occur unless our previous assumptions are violated or, rarely, noise can cause false

occlusion. Second, some groups of polygons may not interact via occlusion, thus the

resulting graph may not be connected (a forest of connected DAGs is produced). Third,

at least one node Gm must exist per connected graph such that ∀Gi=1..n¬∃Gi 7→ Gm.

We call such nodes “unoccluded nodes”, since they correspond to features that are not

occluded by any other feature over the duration of the video. There must be one or

more unoccluding node per connected graph, and one or more graph in the entire forest.

First we verify that the graph is indeed acyclic. If not, cycles are broken by removing

the cycle’s edge of least weight. This removes sporadic occlusions which can appear

due to noise. We now assign an integer depth code to each node in the graph; smaller

values represent features closer to the camera. The value assigned to a particular node

corresponds to the maximum of the hop count of the longest path from any unoccluded

node to that node (Figure 6-3). The algorithm proceeds as follows:

1: function determine depth coding(G1..n)

2: for i = 1 to n do

3: Find the connected graph g s.t. Gi ∈ g.
4: Identify the unoccluded nodes U ⊆ g.
5: code = 0

6: for each unoccluded node u ∈ U do

7: code=max(code,longestpath(u,Gi)).

8: end for

9: assign depth order of node Gi = code

10: end for

We note that since connected graphs are encoded separately, depth coding is only con-

sistent within individual connected graphs. By definition, features within disconnected

graphs do not occlude each other; thus it is not possible to determine a consistent

ordering over all connected graphs using occlusion alone. However since this data is

required later only to composit features in the correct order, such consistency is not

relevant.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 131

6.4 Computer Graphics Component

In this section we show how to construct correspondence trails, deformation bases,

and occlusion buffers, all of which are used when rendering motion cues within the

video. We begin with an object, which has been tracked over the full course of a

video, as already described. We analyse tracking data and show how to produce an

animated object which is a re-presentation of the original, subject to the placement of

augmentation cues (streak-lines and ghosting), deformation cues (squash and stretch

and other distortions), and suitable occlusion handling. We work entirely with two-

dimensional data. Each feature has two cels associated with it, one for augmentation

cues such as streak-lines, the other for deformation cues such as squash and stretch.

The cels are composited according to the depth ordering of features, from the furthest

to the nearest; for a given feature, deformation cels are always in front of augmentation

cels (Figure 6-11).

6.4.1 Motion Cues by Augmentation

Augmentation cues, such as streak-lines and ghosting, are common in traditional ani-

mation (Figure 6-1). Streak-lines can ostensibly be produced on a per frame basis by

attaching lines to a feature’s trailing edge, tangential to the direction of motion [80].

Unfortunately, such an approach is only suitable for visualising instantaneous motion,

and produces only straight streak-lines. In addition, these “lines” often exhibit distract-

Figure 6-4 Demonstrating that point trajectories do not generally form artistic streak-
lines. Corresponding the polygon vertices returned by the tracker for the ball in VOLLEY
creates unsightly bunching of lines; in fact, in this example such trajectories are ambiguous
due to symmetry. However the problem remains even in the case of unambiguous point
trajectories, for example that of the sheep (right) where streak-lines converge and cross.
We match trailing edges, form correspondence trails, and filter them using heuristics to
place streak-lines in a manner similar to that of traditional animators. Our correspondence
strategy produces a closer approximation the streak-lines drawn by an animator (bottom-
left, bottom-right).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 132

ing wobbles over time due to small variations in a feature’s trajectory. By contrast,

animators tend to sketch elegant, long curved streaks which emphasise the essence of

the motion historically. In Figure 6-4 we show that the trajectories generated by im-

aged points do not necessarily correspond to an animator’s placement of streak-lines.

Readily available techniques, such as optical flow [54], are thus infeasible for producing

streak-lines for two main reasons: (1) Optical flow algorithms tend to operate over

periods of time that are much shorter than typical streak-lines represent. This makes

them susceptible to noise, and they fail at occlusions. (2) In general, streak-lines do

not trace the motion of a single point on an object (as is the intent with optical flow),

but depict the overall “sense-of-motion” of an object.

Streak-line placement is therefore a non-trivial problem: they are not point trajecto-

ries, features tend to move in a piecewise-smooth fashion, and we must carefully place

streak-lines on features. To produce streak-lines we generate correspondence trails over

the trailing edge of a feature as it moves, we then segment trails into smooth sections,

which we filter to maximise some objective criteria. We finally render the chosen sec-

tions in an artistic style.

We begin by sampling the feature boundary at regular spatial intervals, identifying a

point as being on the trailing edge if the dot product of its motion vector with the

external normal to the boundary is negative. Establishing correspondence between

trailing edges is difficult because their geometry, and even connectivity, can vary from

frame to frame (as a function of motion). The full LCAT determined during tracking

cannot be used, as this establishes point trajectories (which we have observed are not

streak-lines); we wish to establish correspondence between feature silhouettes.

We establish correspondence trails by computing the instantaneous tangential velocity

of a feature’s centroid µ. A translation and rotation is computed to map the normalised

motion vector from µ at time t to time t′. Any scaling of the feature is performed using

the scale parameter of the LCAT determined during tracking. Points on the trailing

edge at time t are now translated, rotated, and scaled. Correspondence is established

between these transformed points at time t, and their nearest neighbours at time t′,

this forms a link in a correspondence trail. This method allows the geometry of the

trailing edge to vary over time, as required.

Animators tend to draw streak-lines over smooth sections of motion. Therefore the

correspondence trails are now segmented into smooth sections, which are delimited by

G1 discontinuities — knots in piecewise cubic curves. This results in a set of smooth

sections, each with a pair of attributes: 1) a function G(s) where s ∈ [0, 1] is an arc-

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 133

(a) (b)

(c) (d) (e)

(g)(f)

Figure 6-5 A selection from the gamut of streak and ghosting line styles available: Ghost-
ing lines may be densely sampled to emulate motion blur effects (b,c,f) or more sparsely for
ghosting (a,d). The feature itself may be ghosted, rather than the trailing edge, to produce
Futurist-like echos (e,g). Varying the overlap constant w influences spacing of streak-lines
(b,f). The decay parameters of streak and ghosting lines may be set independently (a).

length parameterisation of the curve trajectory; 2) a lookup table g(.) mapping from

an absolute time index t (from the start of the clip) to the arc-length parameter, i.e.

s = g(t), thus recording velocity along the spatial path G(s). The inverse lookup

function g−1(.) is also available. Clearly the curve exists only for a specific time period

[g−1(0), g−1(1)]; we call this interval the duration of the curve.

The association between each smooth section and its data points is maintained. These

data points are used to filter the set of smooth sections to produce a subset σ of man-

ageable size, which contains optimal paths along which streak-lines will be drawn.

Our filtering selects curves based on heuristics derived from the practice of anima-

tors [130] who favour placement of streak-lines on sites of high curvature and on a

feature’s convex hull. Long streak-lines and streak-lines associated with rapid motion

are also preferred, but close proximity to other co-existing streak-lines is discouraged.

We select streak-line curves using a greedy algorithm to maximise the recursive function

H(.), on each iteration i adding a new element to σ (initially empty).

H(0) = 0

H(i+ 1) = H(i) + (αv(x) + βL(x)−
γD(x)− δω(x, σ; η) + ζρ(x)) (6.11)

where x is the set of spatial points associated with a smooth section. L(x) is the length

of a smooth section, v(x) is the “mean velocity” defined as L(x)/t(x) in which t(x) is

the temporal duration of the smooth section. ρ(x) is the mean curvature of feature

boundary at points in x. D(x) is the mean shortest distance of points in x from the

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 134

s

s
Frame
Next

User parameters

A

E

Current
Frame

Convex
hull

B

C

D

P

Motion

sk_radminP

Psk_lag

P

opacity

Psk_faderate
Pgh_faderate
Pfadeout

P

Pgh_width

gh_lag

Pgh_rate

sk_radmax

Start streak radius
End streak radius

RGB cue colour
Base cue opacity

Ghost opacity rate of decay
Ghosting line width

Opacity fade rate for inactive cues
Ghosting uses edges or features
Max duration (lag) of streak lines
Max duration (lag) of ghosting lines

P
P
P
P
P

P
P
P
P
P
P

sk_radmax

sk_radmin

opacity

rgb

sk_faderate

gh_faderate

gh_width

gh_lag

sk_lag

gh_style

fadeout

Streak opacity rate of decay
Ghost line sample rategh_rateP

Figure 6-6 Left: User parameters used, in conjunction with weights of equation 6.11, to
influence augmentation cue placement.

convex hull of the feature. ω(x, σ; η) measures the maximal spatiotemporal overlap

between x and the set of streak-lines chosen on previous iterations. From each curve

we choose points which co-exist in time, and plot the curves with width η returning the

intersected area. Constant w is user defined, as are the constant weights α, β, γ, δ, and

ζ; these give artistic control over the streak-line placement (see Figure 6-5). Iteration

stops when the additive measure falls below a lower bound.

We are now in a position to synthesise two common forms of augmentation cue; streak-

lines and ghosting lines — both of which are spatiotemporal in nature. A streak-line is

made visible at some absolute time t and exists for a duration of time ∆. The streak-line

is rendered by drawing a sequence of discs along the smooth section with which it is as-

sociated, starting at spatial location G(g(t)) and ending at G(g(max (g−1(0), t−∆))).

The streak-line is rendered by sweeping a translucent disc along the smooth section

(backwards in time) which grows smaller and more transparent over time. These de-

cays are under user control.

Ghosting lines depict the position of a feature’s trailing edge along the path of the

streak-line, and are useful in visualising velocity changes over the course of the streak-

line. Ghosting lines are rendered by sampling the trailing edge at regular time intervals

as the streak-line is rendered, interpolating if required. The opacity of ghosting lines is

not only a function of time (as with streak-lines) but also a function of speed relative

to other points on the trailing edge; this ensures only fast moving regions of edge are

ghosted. Users may control the sampling rate, line thickness, and decay parameters to

stylise the appearance of the ghosting lines (Figure 6-6).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 135

6.4.2 Motion Cues by Deformation

Deformation cues are further tools available to an animator. They are routinely used

to depict inertia or drag; to emphasise the line of action through a frame; or to show

the construction or flexibility of an object. Features are cut from the current video

frame, and motion dependent warping functions applied to render the deformation cue

cel for each feature.

Deformations are performed in a curvilinear space, the basis of which is defined by

the local trajectory of the feature centroid, and local normals to this curve. This

trajectory has exactly the same properties as any smooth section (see Section 6.4.1). A

local time-window selects a section of the centroid trajectory, and this window moves

with the object. The instantaneous spatial width of this window is proportional to

instantaneous centroid velocity. At each instant, t we use the centroid trajectory to

establish a curvilinear basis frame. First we compute an arc-length parameterisation

of the trajectory: µ(r) in which r =
∫ t′

i=t

∣

∣

∣

˙µ(i)
∣

∣

∣
di. Next we develop an ordinate at

an arc-length distance r from the instant; the unit vector n(r) perpendicular to ˙µ(t).

Thus, at each instant t we can specify a point in the world-frame using two coordinates,

r and s:

xt(r, s) = µ(r) + sn(r) (6.12)

We can write this more compactly as xt(r) = C(r), where r = (r, s)T , and maintain

the inverse function rt(x) = C−1(x) via a look-up table. This mapping, and its inverse,

comprise one example of a deformation basis.

The above analysis holds for most points on the centroid trajectory. It breaks down

at collision points, because there is a discontinuity in velocity. We define a collision

point as one whose location cannot be satisfactorily predicted by a second order mo-

tion equation (constructed with a Kalman filter, see Section 6.3.2). This definition

discriminates between G1 discontinuities in trajectory which are formed by, say, simple

harmonic motion, and true collisions which are C1 discontinuous (see Figure 6-7).

At a collision point we establish an orthonormal basis set aligned with the observed

collision plane. We assume the angle of incidence and reflection are equal, and hence

the unit vector which bisects this angle is taken to be the ordinate. The abscissa lies

in the collision plane. We define this new basis set as an additional instance of a de-

formation basis, and write the mapping to and from the world frame using notation

consistent with the curvilinear basis. In addition, we compute the impact parameter

of the collision, which we define as the distance (D) from the object’s centroid to its

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 136

collision

collision

predicted
centroid

measured
centroid

no collision

predicted
centroid

measured
centroid

t+1

ϕ

F

Ft

ϕ

impact
parameter

instant of
collision

t

t+1µ

µ

(D)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

at impact
tangent

ordinate

collision
plane

Figure 6-7 Top: bounces are detected as collisions (left), whilst the simple har-
monic motion of the metronome is not (right). Predicted motions shown in green,
observed position in cyan. Bottom: Collision geometry of the first impact in the
BOUNCE sequence. The time lapse image (right) shows the resulting deformations (see
videos/bounce deformationonly).

boundary, in the direction of the negative ordinate. Note we compensate for temporal

sampling around the true collision instant by intersecting extrapolated impact and re-

bound trajectories (Figure 6-7).

An animated object is, in general, a deformed version of the original. Squash and

stretch tangential to instantaneous motion leads to visually unattractive results; it is

better to not only squash and stretch, but also to bend the object along the arc of its

centroid trajectory. Let x(t) be any point in the object. We transform this point with

respect to a single deformation basis into a new point y(t), given by

y(t) = C(At[C
−1(x(t))]) (6.13)

where At[.] is some deformation function at time t. In the case of squash and stretch

the deformation is an area-preserving differential scale that depends on instantaneous

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 137

Direction of travel

Frame 40

Follow through

Receipt

Release

Frame 1

Pull back

1 10 20 30 40 50
0

5

10

15

20

25

30

T
ra

ck
ed

 s
pe

ed
 (

pi
xe

ls
/s

ec
)

Time index (frames)

Ball release

Apex

Ball receipt

Follow through

Volley 1 Volley 2 (not shown)

Figure 6-8 Top left: Illustrating the squash and stretch effect; eccentricity varies as
a function of tangential speed (right). Bottom: Frames from the VOLLEY sequence
exhibiting squash and stretch. Observe the system handles both large scale camera motion,
and lighting variation local to the ball (videos/volley streaks).

speed |µ̇(t)|:

A =

[

k 0

0 1
k

]

(6.14)

k = 1 +
K

2
(1− cos(πv

2 + 1

2
))

v =











0 if |µ̇| < Vmin

1 if |µ̇| >= Vmax

(|µ̇| − Vmin)/(Vmax − Vmin) otherwise

(6.15)

However during collision animators tend to vary the amount of “stretch” in proportion

to acceleration magnitude, rather than speed. In addition, the deformation due to im-

pact takes place in the deformation basis defined about the collision site, as discussed

earlier in this Section.

We linearly interpolate between the deformation caused by a “standard” deformation

basis with that caused by a “collision” deformation basis. Suppose p(t) 7→ q(t) and

p(t) 7→ q′(t), respectively, then:

r(t) = f(d)q(t) + (1− f(d))q′(t) (6.16)

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 138

Figure 6-9 Examples of curvilinear warps used to create deformation cues in the VOLLEY
(left) and METRONOME (right) sequences.

where f(d) = sin(π
2 min(1, d/(sD)) in which D is the impact parameter of the collision

(defined previously), and s is a user parameter which controls the spatial extent over

which collision influences the deformation. This transfer function gives a suitably

smooth transition between the two deformation bases. As a note, the mapping to q ′(t)

not only has to scale the object but also translate it toward the impact point, so that

the edge of the deformed object touches the collision plane. This translation vector is

expressed within the collision basis as:

[

0

D(1− 1
k)

]

(6.17)

Non-linear deformations are also possible, and these can be used to create bending

effects. We can form warping functions which depend on each point’s velocity and

acceleration as well as its position. We write x′ = C(A[C−1(x); ẋ, ẍ]), where A(r; .) is a

functional used, for example, to suggest increased drag or inertia. A typical functional

operates on each component of r = (r1, r2)
T independently; to create effects suggesting

drag we use:

r1 ← r1 − F (
2

π
arctan(|ẋi|))P sign(ẋi) (6.18)

F and P are user defined constants which affect the appearance of the warp. For

example, large F give the impression of heavy objects and P influences the apparent

rigidity of objects. By substituting acceleration for velocity, and adding rather than

subtracting from r1 we can emphasise inertia of the feature (see Figure 6-10):

r1 ← r1 + F (
2

π
arctan(|ẍi|))P sign(ẍi) (6.19)

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 139

Figure 6-10 Top: Frames from METRONOME suggesting inertia (left) and drag (right)
effects through deformation, original feature outline in green. Bottom: Deforming a rigid
wand in the WAND sequence, using a velocity based “drag” effect — streak-lines are
warped along with the object, adding to the effect (videos/wand cartoon).

Finally, we ensure visual consistency by deforming not only features, but also their

associated augmentation cue cels containing streak-lines or ghost lines.

6.4.3 Rendering in the Presence of Occlusion

In any real video a tracked feature may become occluded by other elements of the

scene. Näively, all pixels inside the bounding contour of a feature will be included in

that feature and so are subject to deformation. Consequently, it is easy to mistakenly

warp parts of occluding objects; we now explain how to avoid producing these unwel-

come artifacts.

We begin our explanation with an illustrative example. Consider the BASKETBALL

video clip of Figure 6-12, in which a fast moving ball passes behind a hoop. We may

identify pixels as belonging to an occluding object, in this case the ring, by forming a

difference image (using the hue and saturation components in HSV space, again to affect

simple invariance to illumination changes) between the feature region in the current

frame and the feature itself. This yields a weighted mask of occluding pixels which are

re-textured by sampling from feature regions in neighbouring unoccluded frames. An

approximation to the unoccluded feature is thus reconstructed, and after deformation

occluding pixels may be recomposited to give the illusion of the ball passing ’behind’

occluding objects (Figure 6-11d).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 140

(a) (b) (c)

(d) (e)

deformation cel

foreground cel

background cel

augmentation cel

Figure 6-11 Left: (a) näive deformation creates artifacts, but our method does not (c).
An occlusion buffer is constructed over time (b), allowing augmentation cues to be handled
in the wake of the feature. The system breaks down (d) after impact erratic movement
of the netting causes the occlusion buffer to empty and cues to be incorrectly drawn in
front of that netting. Right: Frames are rendered as layers, in back-to-front order. In
this case a single object (the ball) is tracked to produce augmentation cues (streak-lines)
and deformations (squash and stretch). Occluding pixels are overlaid in the foreground to
produce the illusion of the ball deforming behind the hoop (videos/basket rendered).

The situation becomes more complicated when one considers that a feature may be

deformed (stretched, for example, as part of squash and stretch) outside its original

polygonal boundary. Similarly, augmentation cues should pass behind occluding ob-

jects; these cues are also drawn outside of the original boundary. Fortunately we can

make progress, since these cues traverse an identical path to that of the feature itself.

We construct an occlusion buffer by examining a small temporal window of frames

centred upon the current time instant, summing the difference images generated whilst

handling occlusion in the manner described in the preceding paragraph. Using this

buffer we may determine which pixels will occlude cues such as streak-lines, so long as

those pixels do not change in the time interval between the real feature passing and the

augmentation cues being drawn. The occlusion buffer contains a difference image for

occlusion and the RGB value of each pixel. Pixels in the buffer are deleted when the

difference between the stored colour for a pixel, and the measured colour of that pixel

at the current time is significant. In this case the occluding pixel has moved, obsoleting

our knowledge of it.

This algorithm works acceptably well over short time intervals, but in general we can

hope only to mitigate against artifacts generated by occluding objects which we have

not explicitly tracked. For example, Figure 6-11d demonstrates how streak-lines are

able to correctly pass behind complex netting, whilst that netting is stationary. The

system breaks down in Figure 6-11e when the netting moves erratically after ball im-

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 141

pact, causing the occlusion buffer to quickly empty and streak-lines to be incorrectly

drawn in front of the netting.

6.4.4 Compositing and Rendering

The graphics component composits cels to create each frame of the animation. To ren-

der a particular frame, a background cel is first generated by subtracting features from

the original video; determining which pixels in the original video constitute features by

projecting tracked feature regions from the camera-compensated sequence to the orig-

inal camera viewpoint. Pixels contributing to feature regions are deleted and absent

background texture sampled from locally neighbouring frames in alternation until holes

are filled with non-feature texture. This sampling strategy mitigates against artifacts

caused by local lighting changes or movement.

Once augmentation and deformation cels have been rendered for each feature, cels are

composited to produce an output video frame. Cels are projected by homography

to coincide with the original camera viewpoint, and composited onto the background

in reverse depth order. Finally, a foreground cel is composited, which contains all

pixels that occlude identified objects. These pixels are taken from the occlusion buffer

described in Section 6.4.4. Thus motion cues appear to be inserted into video at the

correct scene depth (Figure 6-11).

6.5 Summary and Discussion

We have described and demonstrated a subsystem, within the Video Paintbox, for the

artistic rendering of motion within video sequences. The subsystem can cope with a

moving camera, lighting changes, and presence of occlusion. Aside from some (desir-

able) user interaction when boot-strapping the tracker, and the setting of user param-

eters, the process is entirely automatic. Animators may influence both the placement

and appearance of motion cues by setting parameters at a high conceptual level; spec-

ifying the objects to which cues should be attached, and the type of motion emphasis

desired. Parameters may also be set on individual motion cues to stylise their appear-

ance, for example streak-line spacing or squash and stretch rigidity.

We have shown that through high level analysis of features (examining motion over

blocks of video with large temporal extent, rather than on a per frame basis) we may

produce motion cues closely approximating those used in traditional animation (Fig-

ure 6-1). For example, we have shown that streak-lines are generally poorly represented

by point trajectories [80], and should instead be rendered as smooth curves capturing

the essence of a trajectory over time. Although the former are obtainable via temporally

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 142

local processing, the latter require analysis which necessitates a higher level of tempo-

ral analysis for trajectory analysis. Likewise deformation effects such as squash and

stretch demand detection and localisation of collisions, the analysis of which requires

examination large temporal window around the collision instant. The spatiotemporal

occlusion buffer is another example of higher level temporal analysis performed by the

motion emphasis subsystem.

Further developments could address the relaxation of some of the assumptions made

in the design of the subsystem. For example, violations of depth assumptions in Sec-

tion 6.3.3 are detectable by the presence of heavily weighted cycles in the depth graph.

It may be possible to segment video into a minimal number of chunks exhibiting non-

cyclic depth graphs, and in doing so recover relative feature depth under more general

motion. The tracker could also benefit from more robust, contemporary methods such

as CONDENSATION [85], although this may involve imposing a more restrictive mo-

tion model than Kalman filtering requires, which is why we opted for the latter. We

can imagine a system that uses CONDENSATION tracker for common objects, such

as people walking, but defaults to a Kalman filter in more general cases. Further de-

velopments might evaluate the robustness of the algorithm using both ground truth

comparisons for measures such as velocity, as well as processing sequences exhibiting

distinctly non-planar motion.

Although these incremental changes would serve to enhance robustness, the most in-

teresting extensions of this work lie in an expansion of the gamut of motion cue styles,

and the incorporation of motion emphasis with the coherent artistic shading of video.

These two developments are documented in Chapters 7 and 8 respectively.

A selection of source and rendered video clips have been included in Appendix C.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 143

SOURCE BASKETBALL SEQUENCE

RENDERED BASKETBALL SEQUENCE

Figure 6-12 Stills from the original (videos/basket source) and rendered
(videos/basket rendered) versions of the BASKETBALL sequence. This sequence not
only demonstrates the use of squash and stretch deformations, streak-lines and ghosting,
but also serves to illustrate our occlusion handling.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 144

RENDERED BOUNCE SEQUENCE

Figure 6-13 Stills from the rendered BOUNCE sequence, demonstrating both augmenta-
tion cues and our squash and stretch deformation effect (see videos/bounce motiononly).
This sequence demonstrates the correct detection and handling of collision events.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 145

RENDERED VOLLEY SEQUENCE

Figure 6-14 Stills from the rendered VOLLEY sequence, demonstrating both augmenta-
tion cues and our squash and stretch deformation effect (see videos/volley motiononly).
This sequence demonstrates that the system is able to compensate for large scale camera
motion, and handle local lighting changes (on the ball).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 146

RENDERED BALLET SEQUENCE

Figure 6-15 Stills from the rendered BALLET sequence, demonstrating the in-
sertion of augmentation cues in to the sequences at the correct scene depth
(videos/ballet streaks).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 147

A. →

B. →

C. →

→

→

→

Figure 6-16 Ten stills taken simultaneously (time runs from left to right) over three
different renderings of the METRONOME sequence: (A) Augmentation cues only
(videos/metro streaks); (B) Deformation emphasising drag (velocity dependent warp)
with streak lines (videos/metro warp veloc); (C) Deformation emphasising inertia (ac-
celeration dependent warp) with streak lines (videos/metro warp accel). Approximately
one still per five frames.

Chapter 7

Time and Pose Cues for Motion

Emphasis

In this chapter we extend the gamut of motion emphasis cues in the Video Paintbox to

include animation timing effects; specifically, cartoon “anticipation” effects and motion

exaggeration. Our process begins by automatically recovering articulated “dolls” of

subjects moving in the plane. By fitting our previously tracked (Chapter 6) features

to this articulated structure we are able to describe subject pose, at any instant, as a

point in a high dimensional pose space. We then perform local and global distortions to

this pose space to create novel animation timing effects in the video. We demonstrate

that these timing cues may be combined with the visual cues of Chapter 6 in a single

framework.

7.1 Introduction

Although animators may emphasise the motion of a subject using an array of purely

visual tools (for example making marks, or performing deformations), they may also

choose to manipulate the timing of an action to stylise an animation — we term this

class of effects “time and pose” motion cues. In this Chapter we describe the subsystem

for inserting these cues in to the video sequence, and explain how this work may be

integrated with the motion cues of Chapter 6 to complete the motion emphasis frame-

work within the Video Paintbox.

A common “time and pose” cue used by animators is “anticipation”, which is used to

indicate the onset of motion. Typically, an object exhibiting anticipation is observed

to recoil briefly, as if energy is somehow being stored in preparation for a release into

motion; the resulting effect is sometimes referred to as “snap” by animators (Figure 7-

5). According to animator Richard Williams [169] (pp. 274–275) there are three rules

148

TIME AND POSE CUES FOR MOTION EMPHASIS 149

governing anticipation:

1. The anticipation is always in the opposite direction to where the main action is

going to go.

2. Any action is strengthened by being preceded by its opposite.

3. Usually the anticipation is slower than the action itself.

A further motion emphasis technique is “exaggeration”. Just as caricaturists often

draw faces by exaggerating their characteristics [98], in a similar vein animators often

exaggerate the individual characteristics of a subject’s movement. Such manipulations

of motion clearly demand large temporal windows for trajectory analysis. In the case

of anticipation, at any given instant the system must be aware of future motion that

may subsequently take place. Likewise the identification of patterns and characteris-

tics within a subject’s movement over time are a prerequisite to exaggerating those

motions within the video sequence. A per frame, sequential approach to video driven

AR therefore precludes the insertion of time and pose cues into the resulting animation.

The framework we propose operates by varying the pose of the subject over time,

manipulating the features tracked by the Computer Vision component of Section 6.3

prior to their rendering by the Computer Graphics component of Section 6.4. Our

initial experiments attempted to create time and pose cues by directly manipulating

the tracked LCATs of features; this did not synthesise motion cues of satisfactory

aesthetic quality for anything but the simplest of motions (for example a translating

ball). We instead opted to recover the articulated structure of tracked subjects, to

create a higher level description of subject motion — the subjects’ pose. Manipulation

of this pose over time allows us to augment the existing gamut of motion cues in the

Video Paintbox with convincing temporal effects.

We begin by automatically recovering an articulated “doll” from the set of features

tracked in Chapter 6. Once the “doll” structure has been recovered, the tracked poly-

gons for each frame are fitted to the articulated structure, creating a series of “pose

vectors”. These pose vectors are points in a high dimensional “pose space”, each of

which specify the configuration of the articulated subject at a particular instant in time.

As the articulated subject moves over time, the vectors can be thought of as tracing a

smooth trajectory in this high dimensional pose space. By performing judicious trans-

formations on the spatiotemporal trajectories within this space we may affect the pose

of the subject over time, and so introduce “time and pose” cues into the video sequence.

Our desire to process post-production video of general content (for example a person,

or a metronome) from a single view-point has restricted the range of literature we have

TIME AND POSE CUES FOR MOTION EMPHASIS 150

.. if the pivot point translates
during rotation ..

.. then the vector sum of this translation,
and the rotational field in (A), creates a
new minima in which the pivot appears
to have moved in a direction orthogonal
to the pivot translation. Blind separation
of fields (A) and (B) is not possible.

(C)

Rotation about a static pivot point
generates a vector field; the minima of
the vector norms indicates the centre
of rotation.

(A)

(B)

apparent motion of pivot

Figure 7-1 Illustrating the difficulty of recovering pivot point location from rotation, in
the case of a moving pivot. Under instantaneous motion, the combination of rotation and
pivot shift causes an apparent translation of pivot location orthogonal to the direction in
which the pivot have moved (see Appendix A.6 for a proof).

been able to draw upon for the recovery of articulated structure and pose. Most passive

motion capture systems assume provision of an a priori articulated model [17, 76], are

tailored to the specific problem of tracking humans [10, 89], or require multiple camera

viewpoints [11, 76, 88]. We have developed a technique for recovering articulated

structure and pose that does not require such constraints, but does make a number

of alternative assumptions which are more compatible with our application. First, we

assume that the subject exhibits a rigid, hierarchical articulated structure. Second, we

assume that the subject’s motion is planar within the camera compensated sequence

in which features are tracked (Section 6.3.1). Lastly, we assume that pivot points in

the structure are static relative to their attached features. This avoids the problem of

localising moving pivot points solely from polygonal data; this problem is intractable

in principle (see Figure 7-1 and Appendix A.6).

7.2 Recovery of Articulated Pose in the plane

Our process begins by recovering the articulated structure of a subject moving in the

plane; this is achieved by analysing the motion of the feature polygons tracked by

the Computer Vision component in Chapter 6. The basic technique is to estimate a

pivot point between each pair of tracked features, and then to assess the quality of

these pivot points to determine which feature pairs are truly articulated in the physical

world. These physically articulated feature pairs, and their associated pivot points,

form a hierarchical representation of the rigid articulated subject being tracked. At

each time instant we fit this articulated structure to the tracked feature polygons,

creating a set of joint configurations represented numerically by a “pose vector”. This

pose representation is manipulated to introduce cartoon-like motion cues (Section 7.4).

TIME AND POSE CUES FOR MOTION EMPHASIS 151

7.2.1 Four Algorithms for Recovering inter-feature pivot points

We now describe four different algorithms for determining the pivot point between

two, potentially articulated, features “A” and “B”. Each feature is considered be

static within its own reference frame. We write F
A(t)

and F
B(t)

as the affine transfor-

mations from each of these reference frames to world coordinates, respectively. In the

first frame (t = 1) the reference frames are coincident with the world basis, and these

transforms are the identity.

We have to assume a static pivot point in our work; by this we mean the pivot of A

about B will be static relative to both frames F
A(t)

and F
B(t)

— in world coordinates

the pivot can, of course, move freely.

In our descriptions of each algorithm we consider the motion of A about B, within

F
B(t)

; i.e. we assume feature B’s motion has been “subtracted” from feature A’s. We

denote the vertices of feature A as A
t

(a series of column vectors representing the

homogeneous world coordinates of each vertex at time t). Likewise we write B
t

for

feature B. In homogeneous form, we may express the motion of feature A in the frame

of B as A′
t
, where:

A′
t

= F−1
B(t)

A
t

(7.1)

= (B
1
(B

t
)+)A

t

where superscript + specifies the Moore-Penrose “pseudo inverse” [123]. We use the

notation A′
t
throughout our description of the four algorithms.

7.2.2 Closed Form Eigen-solutions

Algorithm 1: Decomposition of affine transform via SVD

Our first algorithm accepts two samples of the feature polygon at different time instants

[t, t + ∆] (where ∆ is a user defined temporal interval), and outputs a least squares

algebraic approximation to the pivot point location. This is achieved by decomposing

the compound affine transform for rotation about an arbitrary point in 2D. The motion

of A over time interval [t, t + ∆] may be described as A′
t+∆

= MA′
t
, where M is an

affine transform defined as follows:

M =

[

R
(θ)
−R

(θ)
p+ p

0 1

]

(7.2)

Where p denotes the pivot point, R
(θ)

the 2D rotation matrix and θ the degree of

TIME AND POSE CUES FOR MOTION EMPHASIS 152

rotation. Introducing the notation m = (m1,m2)
T :

m = −R
(θ)
p+ p (7.3)

M =







cos(θ) − sin(θ) m1

sin(θ) cos(θ) m2

0 0 1






(7.4)

Each of the unknowns in M is recovered by forming a homogeneous linear system, using

all n vertices of the feature A at time t ([x1..n, y1..n]T) and at time t+∆ ([x′1..n, y
′
1..n]T).

The system is solved using SVD:

















x1 −y1 1 0 −x′1
y1 x1 0 1 −y′1

... ...

xn −yn 1 0 −x′n
yn xn 0 1 −y′n

































cos(θ)

sin(θ)

m1

m2

1

















= 0 (7.5)

Rearrangement of m yields an expression for p:

m = (I −R)p (7.6)

p = (I −R)−1m (7.7)

In cases of small rotary motion the value for p becomes increasingly unreliable — very

small errors in the measurement of tracked feature vertices have a very large influence

on the estimated pivot location. If we write out the components of p = (px, py)
T then

this behaviour is explained by the large denominators that result as θ tends to zero:

px = (m2 sin θ −m1(1− cos θ))/2(cos θ − 1) (7.8)

py = (m1 − px(1− cos θ))/ sin θ (7.9)

With no rotational component at all, p is undefined.

Extension to Algorithm 1: Estimation over multiple frames

With only two frames (t and t+∆) to estimate a pivot point, we can do no better than

this single estimate. However, since we assume the pivot to be static in F
B(.)

, we can

perform several such estimates over the video sequence and compute an average for p

over all time. We have observed that large scale rotations produce a better estimate

for p than small scale rotations. We therefore take a weighted mean of the estimates

TIME AND POSE CUES FOR MOTION EMPHASIS 153

for p:

1

N

N
∑

t=1

ω(θ(t))p(t; ∆) (7.10)

Where N is the number of frame estimates, and ω(.) is a confidence weight for the pivot

estimate between time t and t+ ∆. We model this as a smoothly varying distribution

over θ — zero in the case of no rotation (or equivalently, a full rotation of θ = 2π), and

unity under maximum rotational shift (θ = π).

ω(θ) = | sin(2θ)| (7.11)

θ is obtained from the solution to equation 7.5 using arc-tangents.

Algorithm 2: Minimum of inter-frame motion field

Our second algorithm accepts two samples of the feature polygon at differing time

instants [t, t + ∆] (where ∆ is a user defined temporal interval). We obtain an affine

transformation M which maps polygon vertices at the former time instant to the latter:

M = A′
t+∆

(A′
t
)+ (7.12)

Now consider three non co-linear vertices of A′
t

at locations X = [x1 x2 x3] trans-

formed to locations Y =
[

y
1
y

2
y

3

]

:

MX = Y (7.13)

We define a static point p with reference to the feature, in barycentric coordinates as

α:

p = Xα (7.14)

Applying transformation M to the point p:

Mp = MXα (7.15)

Mp = Y α (7.16)

we observe that α remains constant relative to the feature reference frame, which has

changed. The distance d(p) which point p moves, relative to reference frame F
B(.)

is:

d(p) = |α1(x1 − y1
) + α2(x2 − y2

) + α3(x3 − y3
)| (7.17)

TIME AND POSE CUES FOR MOTION EMPHASIS 154

Consider a field d(.) ∈ < defined over all points. In cases of pure rotation, the minimum

should be zero valued and coincident with the location of the static pivot i.e. Mp = p:

Mp− p = 0 (7.18)

MXα−Xα = 0 (7.19)

(M − I)Xα = 0 (7.20)

Introducing the notation V = (M−I)X, we can solve the following homogeneous linear

system to locate the pivot point α in barycentric coordinates:

V α = 0 (7.21)

As with Algorithm 1, in noisy conditions angular velocity governs the accuracy of the

estimate. In the case of no rotation, for example pure scale or translation, there will

not be a single minimum. We therefore extend this algorithm to operate over multiple

frames as with Algorithm 1; averaging pivot estimates over each frame and weighting

these estimates according to the amount of rotary motion detected. Since a quantita-

tive estimate for the amount of rotary motion is unavailable using this algorithm, we

obtain an estimate of θ (equation 7.11) for this weighting using the algebraic technique

of Algorithm 1.

7.2.3 Evidence Gathering, Geometric Solutions

Algorithm 3: Circle fitting method

Our third algorithm accepts three samples of the feature polygon at different time in-

stants [t, t + ∆
2 , t + ∆] (where ∆ is a user defined temporal interval), to produce an

estimate of pivot point location.

If the motion of vertices A′
t
in frame F

B(t)
is approximately described by rotation about

a fixed pivot p, we may consider the trajectory of single vertex a′t of that feature to

follow a circular path. We sample the position of a′t at three distinct time intervals,

and fit a circle to interpolate those points; described by both a centre p = (i, j)T

and a radius r. The circle fitting method first computes the two chords of the circle,

H1 = a′t+∆− a′t+∆

2

and H2 = a′
t+∆

2

− a′t. We then intersect the perpendicular bisectors

of H1 and H2, to obtain p. Radius r is obtained as the L2 norm of the vector from p

to either of the midpoints on H1 or H2. The centre p of the fitted circle is the pivot

point. This process is repeated for each vertex a′t in A′
t

and an average pivot point

computed over all vertices.

TIME AND POSE CUES FOR MOTION EMPHASIS 155

As with the previous algorithms, this method extends to take into account multiple

temporal samples to compute an improved estimate for the pivot location. However

we found that averaging estimates for p over time did not give reliable results since

outliers, which occur frequently due to noise, greatly skew the average. These outliers

often exhibit very different radii from inlier estimates. Rather than throw away this

useful indicator, we use the information to help combine estimates for p using a Hough-

like accumulator approach.

By fitting multiple circles over different time intervals we accumulate “votes” for circle

parameters. We define a 3D accumulator space, and for every vote a 3D Gaussian of

constant standard deviation and mean is added to the space, centred at [pT r]T . An

associated “confidence” weight ω(θ) is assigned to each of these votes using an identi-

cal scheme to algorithms 1 and 2 (see equation 7.11). In this algorithm, we obtain θ

from the inner product of the normalised perpendicular bisectors. The values of each

vote’s distribution, in accumulator space, are weighted by ω(θ). Similar circle param-

eterisations accumulate votes to form heavily weighted distributions in local regions

of space. Outliers are separated from this distribution by their poor estimates for r.

After several temporal samples, the maximum vote in 3D space is deemed to represent

the best fit circle parameters. The centre of this circle corresponds to the pivot point

estimate. The use of Gaussians, rather than points, to cast votes in the accumulator

space enables rapid vote accumulation without demanding a large number of temporal

intervals to be sampled.

Algorithm 4: Linear accumulation method

Our fourth algorithm is an adaptation of algorithm 3, again requiring three temporal

samples of the feature polygon (at time instants [t, t + ∆
2 , t + ∆]). We reconstruct

the two chords of the circle as before, and compute the two perpendicular bisectors.

However we do not intersect the two bisectors to obtain a single pivot point centre

and radius as with algorithm 3. Rather, we densely sample the distribution of points

which lie both within the bounds of the video frame, and upon the infinitely long lines

congruent with the two perpendicular bisectors. Each of these points is regarded as a

potential pivot point, and cast into a 2D accumulator array. As with algorithm 3, the

votes are weighted according to the magnitude of rotary motion using the functional of

equation 7.11. Over multiple temporal samples, votes accumulate in this space creating

maxima around the best estimates for pivot point location.

7.2.4 Summary of Algorithms

We have described four algorithms for pivot point recovery: the former two driven

by the closed form solution of eigen-problems, and the latter two driven by iterative,

TIME AND POSE CUES FOR MOTION EMPHASIS 156

Hough-like evidence gathering procedures. All algorithms can be applied to estimate

motion between two instants t and t + ∆ (i.e. over a single interval). Under zero

noise (i.e. synthetic) conditions all algorithms recover the pivot point location exactly.

However the presence of such noise typically renders single interval estimates unusable,

and as we will show, performance of each of the four algorithms degrades differently as

noise increases.

To improve the accuracy of the estimate under noise, we have described how multiple

temporal intervals may be examined simultaneously using each of the four algorithms.

In the case of the eigen-problem solutions, we have described a method of combination

for multiple frame pairs using a weighted average (where greater credence is attributed

to pivot measurements resulting from larger rotary motion). This works well for algo-

rithms 1 and 2, however the approach is impractical for algorithms 3 and 4. In the case

of these evidence gathering approaches, the accumulator space is instead populated

with multiple “votes” to create an improved estimate over multiple temporal intervals.

We now present the results of comparing the performance of each algorithm, using both

real and synthetic data.

7.2.5 Comparison of Pivot Recovery Algorithms

For the purposes of algorithm comparison and evaluation we constructed a test rig

(shown in Figure 7-12), and used the Computer Vision component of Chapter 6 to

track the planar motion of the several coloured rectangles pivoting upon one another.

This assembly was mounted upon a sliding base, which allowed the rig to translate. We

filmed 800 frames of the rig being manipulated in a random fashion by a human oper-

ator; these form the CONTRAPTION sequence which we used as the sample of “real”

data when evaluating the four algorithms. The physical pivot points in the sequence

were also manually located via a point-and-click operation to provide a ground truth

for CONTRAPTION, which we used to compare the performance of the algorithms.

Behavioural Predictions

All the algorithms described use samples of either two or three frames in the sequence

(spanning a temporal interval [t, t+∆]), over which a single estimate of the pivot point

location is derived. Recall that in cases of slight rotary motion, the estimated pivot

is likely to be in error since very small movements of the polygons (perhaps, due to

noise) will cause large shifts in the predicated pivot positions. By contrast, we predict

large rotations should cause the estimated pivot location to be much more robust to

noise. Therefore, our first prediction is that the estimation of the static pivot should

improve in accuracy when we use larger temporal intervals (∆), which are more likely

TIME AND POSE CUES FOR MOTION EMPHASIS 157

to span movements with large rotary components. Second, when the estimates from

multiple temporal intervals are combined together, we predict the system will perform

with greater accuracy. Third, we predict that increasing levels noise in the positioning

of the tracked polygons will cause the estimated pivot location exhibit increasing levels

of error.

Our three test variables are therefore temporal interval size (∆), the number of temporal

intervals to be combined in producing the estimate, and the level of measurement noise

in the positions of polygon vertices.

Variation of temporal interval size (∆)

We first applied each of the algorithms to a synthetic data set, in which a polygon from

the STAIRS sequence was subjected to rotation within 70◦ over 100 frames. All four

algorithms recovered the pivot point exactly when examining single temporal intervals

(subject to some very small numerical error), regardless of the temporal interval size

(∆) used. Figure 7-3 gives a representative result.

We then assessed performance on real data, by applying each algorithm to features

corresponding to the white and pink slabs within the CONTRAPTION sequence. We

tested only a single temporal interval within this sequence, and examined the effect of

varying the temporal interval size (∆). For all algorithms, as we increased ∆, the esti-

mated location of the pivot point tended toward the manually specified ground truth.

Figure 7-4 (right) gives a representative plot showing algorithm two’s performance on

this sequence. An optimal value for ∆ is video dependent, since such a choice is de-

termined by the nature of motion within the temporal window spanned by [t, t + ∆].

However the trend suggests that higher values of ∆ produce improved results, and our

experimentation on other slab combinations in the CONTRAPTION sequence led to

similar conclusions. Our empirical evaluation suggests that a temporal interval size of

25 frames is suitable for accurate pivot point recovery on this sequence. Keeping the

interval constant at 25, we again applied each of the algorithms to the CONTRAP-

TION sequence. The resulting error (Euclidean distance between the estimated and

ground truth pivot locations) is shown in Figure 7-4, left. Algorithm 2 exhibited su-

perior performance (i.e. minimum Euclidean distance between estimated and ground

truth pivot points) relative to the other algorithms.

Combining multiple temporal intervals

The scattering of individual pivot estimates for real data clearly demonstrates the

need for combining estimates from multiple temporal intervals (Figure 7-4, bottom).

Individual estimations form an approximately Gaussian distribution of pivot points, the

TIME AND POSE CUES FOR MOTION EMPHASIS 158

mean of which closely approximates the ground truth location for the physical pivot.

As the number of temporal intervals used to create a pivot estimate increases, a smaller

error (Euclidean distance between the estimated and ground truth pivot points) was

observed for all four algorithms. However the improvement was most notable for the

evidence gathering algorithms (3 and 4). Algorithms 1 and 2 required fewer temporal

intervals than algorithms 3 and 4 to produce reliable mean estimates of the pivot

location. A likely explanation is that the vote accumulation approaches adopted by

the latter two algorithms require a larger number of temporal samples to be recorded

in the accumulator space before maxima begin to emerge above the level of noise.

Impact of tracker noise on performance

Although algorithm 2 exhibited superior accuracy for the CONTRAPTION real video

sequence, this is by no means conclusive since different video sequences may exhibit dif-

fering degrees of noise (so affecting the accuracy of pivot point recovery). We therefore

created a synthetic simulation of two articulated features — the positions of poly-

gon vertices in this simulation were subjected to zero centred, additive Gaussian noise

G(0, σ). The performance of each algorithm was compared under increasing standard

deviations σ of this additive noise. The temporal interval size (∆) was held constant at

25 frames (1 second) during these experiments, and the number of temporal intervals

tested was held constant at 74. Thus pivot point estimation was based on 100 frames

(4 seconds) of data.

Figure 7-2 (left) shows how increasing noise causes an increase in error (measured as

the Euclidean distance between measured and ground truth pivot locations) for all

four algorithms. By inspection we make the qualitative observation that algorithm

two exhibits superior robustness to such noise. We can quantify this robustness using

Student’s t-test (Figure 7-2, right). Student’s t-test [152] is a standard method used

to determine, to a specified level of significance, whether two distributions (in our case

the ground truth and estimated pivot distributions) are significantly different. The

process involves deriving a scalar “t-value” from the means and variances of both dis-

tributions. This “t-value” is compared with a corresponding value from a statistical

table representing a particular confidence level. If the measured “t-value” is greater

than the tabulated value, then the distributions are different.

In our experiments we increased the level of noise (σ) until we were “significantly sure”

(95% certain) that the distributions differed. We entered the t-table at this level of

certainty, and obtained a threshold t-value of 2.02. Thus the value of σ that caused the

measured t-value to rise above 2.02 (marked as a black line in Figure 7-2), corresponds

to the level of noise at which the algorithm became unreliable. The results confirm our

TIME AND POSE CUES FOR MOTION EMPHASIS 159

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

E
st

im
at

io
n

er
ro

r
(d

is
ta

nc
e

fr
om

 g
. t

ru
th

)

Magnitude of noise (standard deviation)

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Magnitude of noise (standard deviation)

S
tu

de
nt

 t−
te

st
 c

oe
ffi

ci
en

t

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

Cut−off

Figure 7-2 Comparing the performance of the four pivot point location algorithms us-
ing simulated data. The polygon vertices were subjected to zero mean Gaussian noise
of increasing standard deviation, resulting in increasing levels of estimation error when
recovering the pivot point — error measured as the Euclidean distance between estimated
and ground truth pivot (left). The trend is plotted as a solid line, measurements as a
dotted line. The test ran over one hundred simulated frames, sampling frame pairs at
time intervals of 25 frames (1 second). Student’s t-test (right) was employed to decide the
level of noise at which the distribution of estimated pivots differed from the ground truth
significantly (i.e. with 95% confidence). This threshold value (derived from statistical
tables) is plotted in black. Both graphs show algorithm 2 to out-perform the others, the
latter graph demonstrates tolerance of up to one standard deviation of noise.

180 190 200 210 220 230 240 250 260

210

220

230

240

250

260

270

180 190 200 210 220 230 240 250 260
210

220

230

240

250

260

270

Figure 7-3 Examples of pivot point recovery using algorithm two, forming part of the
synthetic test case used to generate Figure 7-2. A limb (feature E, original position in
red — see Figure 6-2) from the STAIRS sequence was subjected to synthetic rotation
within 70◦ for 4 seconds (100 frames). Left: polygon vertices perturbed by two standard
deviations of zero centred Gaussian noise, produces a small cluster of potential pivots the
mean of which closely corresponds to the ground truth (two standard deviations plotted
in magenta). Right: in the zero noise case the pivot is recovered exactly — this is true for
all four algorithms.

TIME AND POSE CUES FOR MOTION EMPHASIS 160

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm Number

E
st

im
at

io
n

er
ro

r
ov

er
 8

00
 fr

am
es

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temporal window size

A
lg

. 2
 −

 E
st

im
at

io
n

er
ro

r
(d

is
ta

nc
e

fr
om

 g
.tr

ut
h)

Figure 7-4 Applying the algorithms to 800 frames of the CONTRAPTION sequence,
specifically to determine the pivot point between the pink and white slabs. Bottom: The
estimated pivot points due to algorithm 2, between multiple frame pairs sampled at an
interval of ∆ = 25; the error distribution of estimated pivots about the ground truth
approximates a zero mean Gaussian. The estimated (weighted) mean pivot location is
very close to the ground truth (red star). Top left: per algorithm comparison of errors in
pivot position after 800 frames. Top right: Showing that pivot estimation error declines
as the sampling distance between frames in the frame pair increases (algorithm 2).

earlier observations; algorithm two exhibits superior robustness to noise — differing

from the ground truth significantly at around σ = 1. The values for σ at which the

other algorithms became unreliable were, at best, a third of this value.

7.3 Recovering Hierarchical Articulated Structure and Pose

Algorithm 2 appears to estimate pivot points with superior accuracy and robustness

than the other proposed algorithms. We therefore applied this algorithm to recover

one pivot point for each ordered pair of tracked features in the video (denoting a sin-

TIME AND POSE CUES FOR MOTION EMPHASIS 161

gle ordered pair as {A,B}). Observe that due to noise in the estimation process, the

computed pivot of A about B, and B about A, may not be identical; thus the pivots

resulting from pairing {A,B} 6= {B,A}. Computing a pivot for each ordered pair of

features requires 2Cn
2 ordered pairings for n tracked features; this is not a large number

for typical sequences (for example, 132 for the STAIRS sequence), and this computa-

tional load can be further reduced by only testing feature pairs whose polygons intersect

for a significant proportion of their lifetime.

Many of the computed pivots do not correspond to physically existing articulations

between feature pairs, and should be discarded. We decide which to discard by eval-

uating a “quality” metric for each estimated pivot, and discarding pivots that score

poorly. This filtering process leaves us only with true pivot points, and so with a

final articulated structure for the tracked subject. We can may then fit the original

tracked polygons to the derived articulated structure, so generating a pose vector for

each frame.

Quality Metric

If two features A and B are articulated, then in cases where we can observe those

features with no measurement noise, the following properties hold:

1. The world coordinate position of the pivot between features A and B should, at

all times, lie within the area of intersection of both features A and B.

2. The motion of feature A relative to feature B should be well described by a

rotation of A in the reference frames of B, about a static pivot.

3. The motion of feature B relative to feature A should, similarly, be well described

by a rotation of B in the reference frame of A, about a static pivot.

4. The world coordinate position of the pivot point of A on B and the pivot point

of B on A should at all times be coincident.

Our assumption is that if these properties are violated, then features are not articu-

lated. Of course estimation errors may cause violation of these properties, and so they

are better viewed as heuristics — compliance with these heuristics indicates a “good

quality” estimated pivot point, and so a likely articulation between A and B. We con-

struct the quality function for a potentially articulated feature pair {A,B} as follows.

For a well estimated pivot point p in F
B(t)

, the motion of A′
t
over time should be well

described by a rotation R
θ(t)

about p; thus we desire a small residual r1 averaged over

TIME AND POSE CUES FOR MOTION EMPHASIS 162

all n frames:

r1 =
1

n

n
∑

t=2

∣

∣

∣
A′

t−1
−R

θ(t)
(A′

t
− p1T) + p1T

∣

∣

∣
(7.22)

This r1 forms the first term in the quality function.

Now consider that the world coordinates of the pivot of A with respect to B at time t

(which we write as p
A(t)

) and the pivot of B with respect to A (which we write as p
B(t)

)

should be coincident under zero noise conditions. Thus we desire a small residual r2

averaged over all n frames:

r2 =
1

n

n
∑

t=1

∣

∣

∣p
A(t)
− p

B(t)

∣

∣

∣ (7.23)

The position of the pivot p
t

between features A and B at time t is computed as

p
t
= 1

2(p
A(t)

+ p
B(t)

).

Finally, we add a penalty term for the distance that the pivot lies outside the area of

intersection of A and B; specifically the Euclidean distance between p
t
and the closest

pixel within the intersection area. This distance is averaged over time to obtain penalty

term Φ. We write the complete quality function Q[A,B] as a sum of weighted terms:

Q[A,B] = exp(−k(r1 + r2 + Φ)) (7.24)

where k controls the decay of a pivot point’s viability as this sum of error terms in-

creases, we find a value of around k = 0.1 suitable for our source data.

Note that our system does not yet cater for cases where features are rigidly joined,

with little or no rotary motion present. Currently such features are classified as non-

articulated, and we assume for the time being that such groups of features have been

segmented as a single rigid component.

Recovering Pose Vectors

The algorithms described thus far are capable of recovering general articulated motion

of features in the plane. For ease of representation and later manipulation, we assumed

that such features form a hierarchical structure. Although this is a specialisation of

the system, most common subject matter, for example people, are admitted under this

model. It is a simple matter to detect the presence of cycles in the recovered articulated

structure, and currently we return an error in such situations, specifying that time and

pose cues can not be applied to that particular object.

TIME AND POSE CUES FOR MOTION EMPHASIS 163

Like most hierarchical pose representations, we specify the position of a node, say an

arm, in relation to a component higher in the hierarchy, which in turn may be specified

in relation to a component higher still in the hierarchy, and so on recursively to the

root node. This can produce positional inaccuracies in the leaf nodes due to a build

up of multiplicative errors as we descend the hierarchy. We therefore carefully choose

a feature to serve as a root node, such that this choice minimises the longest hop count

from the root node to a leaf node. In the case of the STAIRS sequence, the choice of

root feature is the torso. In the CONTRAPTION sequence, the root is the red slab.

We wish to construct a numerical representation of the subject’s pose at each time

instant t, by searching for a best fit of the recovered articulated structure to the set of

tracked features. Recall that each feature was tracked independently in Section 6.3.2

— the resulting tracked polygons each represent the “best” estimate obtainable for a

feature’s position in the raw footage, given that no global model or constraints were

available at the time. By combining the raw feature position estimates with the re-

covered articulated model, we not only produce a numerical “pose vector” for each

time instant, but also impose physical constraints to further refine the accuracy of

tracked polygons. We form an initial estimate for this “pose vector”, then search for

an “optimal” pose local to this using a Nelder-Mead search [114]. For our purposes,

the optimal pose is the configuration which minimises the Euclidean distance between

the tracked feature polygon vertices, and the vertices generated by re-synthesising the

feature polygon positions from the putative “optimal” pose.

The structure and initial estimate of the pose vector is formed as follows. The first

four elements of the vector are a representation of the four LCAT parameters which

transform the root feature from its initial position (in the first frame), to its current

position (in frame t). This is extracted directly from the feature tracker. The transla-

tional component of the LCAT is converted from Cartesian to polar form, thus the first

four elements of the pose vector are [φ, r, θ, s]; where φ is the direction of translation,

r is the translation magnitude, θ is the orientation of the root object and s is a uniform

scaling.

V (t) =
[

φ r θ s θ1 θ2 ... θn

]T
(7.25)

Features in the structure are visited via a pre-order traversal of the hierarchy. Each

subsequent entry in the pose vector specifies the angle at which the newly visited feature

is orientated, relative to its parent feature (i.e. about the parent-child pivot point).

This angle is relative to the child’s position in the first frame; at time t = 1 all such

angles will be zero — the angle in the pose vector encodes the change in orientation

between frame 1 and frame t. In our initial estimate, this angle is extracted from the

TIME AND POSE CUES FOR MOTION EMPHASIS 164

LCAT between the child’s position relative to the parent in frame 1 and frame t. In

equation 7.25 each of these angles is denoted θi where i = [1, n], n being the number of

features in the hierarchy, and i being an index into the ordering in which the feature

hierarchy is traversed.

7.4 Temporal Re-sampling

The process of Section 7.2 results in a series of vectors V (t) for each frame t. These

vectors form individual points in a high dimensional space, representing the subject’s

pose at a given instant. The trajectory of these points encode the pose of the subject

moving over time. Manipulating this pose space gives rise to novel time and pose cues

which may be used to emphasise motion in our system. We may choose to manipulate

only a local region of one dimension of this space; affecting the position of one joint

over a small temporal window. We term these “local” pose transformations, and show

in the next subsection that cartoon “anticipation” effects can be created by this class

of transformation. We may also choose to scale or deform one or more dimension of

this pose space globally, i.e. over all time. This has the effect of modifying the basis of

the pose space. We refer to these as “global” pose transformations, and discuss these

in subsection 7.4.2.

7.4.1 Temporally Local transformation (anticipation)

Anticipation is an animation technique applied to objects as they begin to move; the

technique is to create a brief motion in the opposite direction, which serves to empha-

sise the subsequent large scale movement of an object (Figure 7-5). The anticipation

cue communicates to the audience what is about to happen. Anticipation acts upon

a subject locally — only within a temporal window surrounding the beginning of the

movement to be emphasised, and only upon the feature performing that movement.

We have implemented anticipation as a 1D signal filtering process. Each individual,

time varying component of the pose vector V (.) (for example, the angle a metronome

beater makes with its base) is fed through an “anticipation filter”, which outputs an

“anticipated” version of that pose signal (Figure 7-5). The filter also accepts six user

parameters which control the behaviour of the anticipation motion cue. The filtering

process operates in two stages. First, the 1D signal is scanned to identify the temporal

windows over which anticipation should be applied. Second, the effect is applied to

each of these windows independently.

TIME AND POSE CUES FOR MOTION EMPHASIS 165

Figure 7-5 Illustrating how animators can apply anticipation to emphasise motion, in
this case a Disney-style facial animation (reproduced from [169]).

Identifying Temporal Windows for Anticipation

Given a 1D input signal, the filter first identifies temporal windows for application

of anticipation. These are characterised by the presence of high acceleration magni-

tudes (above a certain threshold), which exist for a significant number of consecutive

frames (a further threshold) in the signal. These two thresholds form part of the set

of user parameters that control the effect. This process allows us to identify a set of

temporal windows corresponding to large motion changes, which an animator would

typically emphasise using anticipation. A high acceleration magnitude may or may not

generate a change of direction in the signal and, after numerous conversations with

animators [130], we have determined that the manifestation of the anticipation cue

differs slightly between these two cases:

Case 1. First, consider the case where acceleration causes a change of direction in the 1D

signal; for example, a pendulum at the turning point of its swing. Regardless

of the acceleration magnitude of the pendulum beater (which may rise, remain

constant, or even fall during such a transition), the anticipation effect is localised

to the instant at which the beater changes direction i.e. the turning point of the

signal; the minimum of the magnitude of the first derivative with respect to time.

In the case of the METRONOME sequence (Figure 7-15), a brief swinging motion

would be made, say to the left, just prior to the recoil of the metronome beater

to the right. The object then gradually “catches up” with the spatiotemporal

position of the original, un-anticipated object at a later instant.

Case 2. Now consider the second case where acceleration does not cause change of direc-

tion in the 1D signal; for example, a projectile already in motion, which acquires

TIME AND POSE CUES FOR MOTION EMPHASIS 166

Recoil (/ r)ω

Skew (/ s)ω

working interval ()ω

Skew (/ s)ω

Recoil (/ r)ω

Anticipated Signal

Original Signal

Anticipated Signal

Original Signal

Pause (/)ρω

Pause (/)ρω1L 2L

3L

4L

5L

1,2L
3L

4L

5LSi
gn

al
 P

(t
)

Time (t)

temporal window

Emphasis (E)

original
turning
point

working interval
temporal window &

Emphasis (E)

Si
gn

al
 P

(t
)

Time (t)

(no pause.. =0)ρ

Figure 7-6 Schematic examples of the anticipation filter under case one (signal direction
of motion changes) and case two (signal direction of motion unaffected). Case two has
been illustrated with pause parameter ρ = 0. Section 7.4.1 contains an explanation of the
user parameters ρ, s, r, and ε which influence the behaviour of the effect.

a sudden burst (or decrease) in thrust, i.e. a change in acceleration magnitude.

The anticipation effect is manifested as a short lag just prior to this sudden ac-

celeration change; i.e. at the maximum in the magnitude of the third derivative

with respect to time. As with case 2, the projectile swiftly accelerates after antic-

ipation to catch up with the spatiotemporal position of the original, unaffected

projectile. Interestingly a projectile moving from rest is equally well modelled by

either the first or second case, since the locations of zero speed (minimum first

derivative) and maximum acceleration change (maximum third derivative) are

coincident.

Synthesising Anticipation within a Temporal Window

Each temporal window identified for application of the anticipation cue is processed

independently, and we now consider manipulation of one such a window. The first task

of the “anticipation filter” is to scan the pose signal to determine whether a change

of direction occurs within the duration of the temporal window. This test determines

which criterion from the respective case (1 or 2) is used to determine the instant at

which anticipated motion should be “inserted” into the sequence; we denote this time

instant by τ . We define a temporal “working interval” as the time window within

which we pose is varied from the original signal, in order to introduce anticipation.

This working interval extends from time τ to the end of the temporal window, which

we write as τ + ω. In all cases the direction of the anticipatory motion will be in

opposition to the direction in which acceleration acts. We refer the reader to Figure 7-

6 to assist in the explanation of the subsequent signal manipulation.

TIME AND POSE CUES FOR MOTION EMPHASIS 167

We create the anticipation effect by modifying the 1D pose signal to follow a new

curve, interpolating five landmark points in space [t, P (t)] ∈ <2, where P (t) indicates

the value of the pose signal at time t. Aside from the two parameters used to control

activation of the effect, there are four user parameters ρ, s, r, and ε (where ρ ≤ s ≤ r).
These influence the location of the five landmark points [L1...5], which in turn influences

the behaviour of the anticipation. We now explain the positioning of each of the five

landmarks and the effect the user parameters have on this process. Throughout, we use

notation p(t) to indicate the original (unanticipated) pose signal at time t, and p′(t) to

denote the new, anticipated signal.

L1. The first landmark marks the point at which the original and anticipated pose

signals become dissimilar, and so L1 = (τ, p(τ))T . Recall τ is the determined by

the algorithm of either case 1 or 2, as described in the previous subsection.

L2. At the instant τ , a short pause may be introduced which “freezes” the pose. The

duration of this pause is a fraction of the “working interval” — specifically ω/ρ

frames, where ρ is a user parameter. The second landmark directly follows this

pause, and so L2 = (τ + ω/ρ, p(τ))T .

L3. Following the pause, the pose is sharply adjusted in the direction opposite to

acceleration, to “anticipate” the impending motion. The magnitude (E), and so

the emphasis of, this anticipatory action is proportional to the magnitude of ac-

celeration: E = ε| ¨p(τ)|. Here ε is a user parameter (a constant of proportionality)

which influences the magnitude of the effect. A further user parameter, s, speci-

fies the instant at which the anticipation is “released” to allow the movement to

spring back in its original direction. We term s the “skew” parameter, since can

be used to skew the timing of the anticipation to produce a long draw back and

quick release, or a sharp draw back and slow release. Referring back to Williams’

guidelines for anticipation, one would typically desire the former effect (s > 0.5),

however our framework allows the animator to explore alternatives. The third

landmark is thus located at the release point of this anticipated signal, and so

L3 = (s, E)T .

L4. The rate at which the feature springs back to “catch up” with the unanticipated

motion is governed by the gradient between the third and fifth landmarks. This

can be controlled by forcing the curve through a fourth landmark L4 = (τ +

ω/r, p(τ))T .

L5. Finally the point at which the anticipated and original pose signals coincide is

specified by the final landmark, L5 = (τ + ω, p(τ + ω))T .

TIME AND POSE CUES FOR MOTION EMPHASIS 168

0 50 100 150 200 250 300

50

100

150

200

250

0

50

100

150

200

250

300

T
im

e

Y

X

0 50 100 150 200 250 300

50

100

150

200

250

0

50

100

150

200

250

300

T
im

e

Y

X

Catch up

Anticipation

Pause

0 20 40 60 80 100 120 140 160 180

−1

−0.5

0

0.5

1

Time (frames)

B
ea

te
r

or
ie

nt
at

io
n

(r
ad

s)

Pause

Anticipation

Catch−up

Figure 7-7 Top: Time lapse representation of the beater in the METRONOME sequence,
before (left) and after (right) application of the anticipation filter to the pose vectors.
Bottom: Visualisation of the 5th element of the METRONOME pose vector (encoding
the angle between metronome beater and body), before (blue) and after (black) passing
through the anticipation filter with ρ = 0, ε = 150, s = 0.8, r = 0.9. Green and red vectors
indicate the gradients at L

4
and L

5
used to interpolate those two control points.

The anticipated signal p′(t) at any time t within the temporal window is created by

interpolating these five landmarks, the following manner. In the first stage of the

anticipation, landmarks L1 and L2 are linearly interpolated to create a simple pause

in the signal. The pause component of the anticipation is created using the parametric

line π1(c) where c = [0, 1]:

π1(c) = L1 + c(L2 − L1) (7.26)

The second stage of the anticipation is the movement in the opposite direction to the im-

pending motion. We interpolate landmarks L2, L3 and L4 using a cubic Catmull-Rom

spline [51], creating a smooth transition between the pause stage and the anticipatory

TIME AND POSE CUES FOR MOTION EMPHASIS 169

action. Using notation π2(c) we have:

π2(c) =
[

L2 L2 L3 L4

]













−0.5 1 −0.5 0

1.5 −2.5 0 1

−1.5 2 0.5 0

1 −0.5 0 0

























c3

c2

c

1













(7.27)

where the 4 × 4 matrix term is the Catmull-Rom cubic blending matrix. Finally, we

interpolate between landmarks L4 and L5 using a cubic Hermite spline [51]. This family

of splines ensures C1 continuity at both landmarks, so blending the anticipated signal

smoothly with the original signal. The Hermite curve requires specification of position

and velocity at both landmarks. Again, using c as a dummy parameter, this segment

of the anticipation is described by π3(c):

π3(c) =
[

L4 L5 L̇4 L̇5

]













2 −3 0 1

−2 3 0 0

1 −2 1 0

1 −1 0 0

























c3

c2

c

1













(7.28)

where the 4× 4 matrix term is the Hermite cubic blending matrix. We can obtain the

velocity at L5 using a simple finite difference approach on the original, discrete signal

at p(τ +ω). The velocity at L4 is obtained from the partial derivative of equation 7.26

with respect to c.

Figure 7-6 gives two schematic examples of signals undergoing anticipation in cases 1

and 2. Figure 7-7 (bottom) shows the original and anticipated signals used for rendering

the METRONOME sequence, a time lapse representation of which is given in Figure 7-7

(top). The reader is referred to Appendix C for this and other rendered video clips.

7.4.2 Temporally Global transformation (motion exaggeration)

A portrait caricaturist will emphasise unusual or characteristic features of a subject’s

face. Likewise, cartoonists will emphasise unusual motion characteristics, for example

a limp, exhibited by their subjects [98]. Such characteristics may be considered to be

outliers in the cartoonist’s mental model, for example, of people; the more an individ-

ual’s characteristics diverge from the “norm”, the more those characteristics tend to

be emphasised.

Although our system is not equipped with a model of the population, we can learn the

pattern of simple repetitive motions made by a tracked subject, and exaggerate varia-

tions in this pattern. Periodic motion, such as human gait, causes pose vectors to trace

TIME AND POSE CUES FOR MOTION EMPHASIS 170

−1.5
−1

−0.5
0

0.5
1

1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

−0.4
−0.2

0
0.2
0.4
0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 7-8 Visualisation of the pose space for STAIRS before (blue) and after (red)
motion exaggeration with F = 2. Graphs produced by projecting the high dimensional
space down into first 3 (above) and 2 (below) principal axes, centring the mean upon the
origin. Arrowheads indicate the direction of time.

a cyclic trajectory within a subspace of the pose space (consisting of all dimensions

minus the first two, which represent translation of the root feature). If several cycles

of motion exist within the video sequence (for example, STAIRS), then it is possible

to reliably compute a mean point in the pose space. Performing a global scaling trans-

formation on the space, with centre of projection at the mean, serves as a basis for

exaggerating variations in the motion over time.

This simple approach not only emphasises variations, for example in gait, but also any

noise introduced by the tracking process. In our motion cartooning application we

desire exaggeration of only the important, principal, motions leaving noise components

unchanged. Our strategy is to perform a principal component analysis (PCA) of the

pose samples taken over duration of the video sequence, to isolate the sub-space within

which the motion principally varies. We produce an eigenmodel of all pose samples

V (t) over time (yielding a mean pose V µ, a collection of column eigenvectors U and

a diagonal matrix of eigenvalues Λ). By scaling the basis specified in each eigenvector

by a multiplicative factor F of its corresponding eigenvalue, we produce a novel set of

pose vectors V ′(t) in which motion appears to be exaggerated.

V ′(t) = U+FΛU(V (t)− V µ) + V µ (7.29)

TIME AND POSE CUES FOR MOTION EMPHASIS 171

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (frames)

F
ar

 h
ip

 jo
in

t a
ng

le
 (

ra
ds

)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

Time (frames)

F
ar

 k
ne

e
jo

in
t a

ng
le

 (
ra

ds
)

Figure 7-9 Visualisation of signal within two dimensions of the pose space for STAIRS,
corresponding to orientation of the far hip joint (left) and of the far knee joint (right).
Observe the periods of invariance between the original signal (blue) and exaggerated signal
(red), generated by the constraints imposed by the animator.

Figure 7-15, sequence A superimposes the modified positions of feature polygons when

F = 2 over the original video.

Introducing Physical Constraints

While sequence A in Figure 7-15 demonstrates exaggerated motion, the manipulation

of the pose does not yet take into account physical constraints upon the articulated

structure. For example, the feet appear to glide over the steps, and do not appear

to interact with the ground surface in a naturally plausible manner. Constraints to

counter this behaviour must be interactively specified by the animator; we allow users

to select temporal windows over which certain features (for example the feet), are to

remain coincident with the original sequence. Although a complete solution to the

problem of motion exaggeration under constraints lies within the realms of inverse

kinematics, we have found that our combination of localised input from the animator

with the global transformation of the motion exaggeration, to produce aesthetically

acceptable output.

To simplify matters we state that if, at a given instant, a feature is marked to be held

in its original position, then all features between that feature and the root feature must

also to match their original position. Thus we can derive a series of temporal windows

for each feature during which their motion should not be emphasised.

We encode these temporal windows in a matrix of weights, which we will write as ω.

This matrix is formed as a concatenation of column vectors ω(t), each corresponding

to the pose vector V (t) at time t ∈ [1, n].

ω =
[

ω(1) ω(2) ... ω(n)
]

(7.30)

TIME AND POSE CUES FOR MOTION EMPHASIS 172

A. →

B. →

→ →

→ →

→

→

Figure 7-10 Stills from the source STAIRS sequence, with the positions of the ex-
aggerated feature polygons overlaid. Motion has been exaggerated using physical con-
straints in sequence B, and without constraints in sequence A. Observe the improved
placement of the feet in B. Approximately one still per five frames (see animations
videos/stairs exaggerate and videos/stairs exaggerate polys).

TIME AND POSE CUES FOR MOTION EMPHASIS 173

Figure 7-11 Four stills from the videos/stairs exaggerate animation in Appendix C.
We have introduced motion exaggeration into the STAIRS sequence, and applied mous-
tache and pith helmet (using the rotoscoping features of the Video Paintbox, Section 8.4.3)
to produce an animation reminiscent of Monty Python’s Flying Circus [BBC 1969–74].

If, at particular instant t, we desire the ith component of the pose to follow its original

rather than exaggerated trajectory, we set the respective matrix element ωt,i to be zero.

Consecutive zero valued elements within a particular row of ω therefore correspond to

temporal windows during which the motion of a particular pose component should not

to be exaggerated. We iterate through each row of ω in turn. Elements in the row are

assigned values in proportion to their distance from the nearest zero valued element

on that row. These values are normalised to rise to unity halfway between two given

temporal windows. Each matrix element ωt,i now contains a scalar weight, representing

the degree of exaggeration to apply to each pose component i at each time t. To produce

our exaggerated, yet physically constrained pose V ′′(t) at time t we linearly interpolate

between the original pose (V (t)) and the unconstrained, exaggerated pose (V ’(t), see

equation 7.29) using:

V ′′(t) = V (t) + ω(t)(V ′(t)− V (t)) (7.31)

Figure 7-10 (sequence B) gives an example of the resulting animated sequence using the

STAIRS data. As with sequence A, feature polygons have been superimposed on the

original video to compare the two sequences. The animator has interactively specified

various temporal windows within which the feet should coincide with the original data

(whilst they are on the ground), and also specified that all features should start and

end coinciding with the original data.

7.5 Video Re-synthesis

Once the pose vectors have been manipulated to introduce motion cues, it remains to

re-synthesise the video sequence using the novel pose data. This involves painting each

feature polygon with a suitable texture sampled from the video (and then composit-

TIME AND POSE CUES FOR MOTION EMPHASIS 174

Figure 7-12 Pose recovery and manipulation. Left: A frame from the CONTRAPTION
sequence, with pivot points and articulated structure recovered automatically. The recov-
ered pose vector is shown inset. Right: Overwriting the last dimension (angle between
white and yellow slabs) of the first 50 frames with values from 0 to 2π in equal increments.

ing the polygons in the correct depth order, in accordance with the depth information

recovered in Section 6.3.3). This re-texturing may introduce difficulties, since the mod-

ified pose may expose regions of features that were occluded in the source video.

Our solution to sampling texture is similar to that used in the occlusion buffer of

Section 6.4.3. We sample as much unoccluded texture as possible at a time instant t,

and then fill in remaining “holes” in the texture by sampling neighbouring frames in

alternation, i.e. t−1, t+1, t−2, t+2, and so on. This gives a reasonable reconstruction

of the feature texture local to time t, so allowing for some variation in the reconstructed

texture due to temporally local illumination changes in the video. If any holes remain

in the texture they are filled using the mean RGB colour of the recovered texture.

All that remains is to decide the instant t from which to begin sampling texture. In the

occlusion buffer of Section 6.4.3, the feature to be re-textured invariably occupied the

same spatiotemporal position as in the original video. Thus if we wished to re-texture

an object in frame i, we began sampling texture at time t = i. In the case of time and

pose cues, this is not necessarily true; the spatiotemporal position of a feature may dif-

fer considerably from its position in the original video, due to our pose manipulations.

We therefore begin sampling texture from an instant t in the original video where the

feature is in approximately the same position as the feature in the manipulated pose,

to take into account local lighting changes. Furthermore, there may be many such

instants in the original video and we should sample from the instant closest in time to

the current frame being rendered; this permits local lighting to vary over time.

TIME AND POSE CUES FOR MOTION EMPHASIS 175

Motion Compn.
and Tracking

Feature Depth
Recovery

Visual Motion
Emphasis

Output
AnimationSequence

Source Image

Video Paintbox (Motion Subsystems)

Ch.6 (Vision Comp.)
Ch.6 (Gfx. Comp.)Ch.7

Time and Pose
Motion Emphasis

Figure 7-13 Schematic illustrating the flow of control and data in the Video Paintbox
subsystems dealing with motion emphasis.

Fortunately t is straightforward to determine, since we have access to pose vectors which

describe the feature’s position in both the original and motion emphasised sequences.

Suppose we wish to render a particular frame i. We first determine the feature’s position

at time i in the emphasised pose. We then examine each vector j of the original pose

computing a spatial distance measure dj — the mean Euclidean distance between the

vertices of the original and emphasised feature at time j. We choose the start instant

t as:

t = argmint(αdt + β|t− i|) (7.32)

Choice of α and β depend on the rate of lighting variation in the video; in rapidly

varying lighting conditions β should greatly outweigh α. For our data we have used α =

1, β = 0.1. Figure 7-12 demonstrates the results of re-texturing the CONTRAPTION

sequence following pose manipulation. We have simply overwritten the last dimension

(angle between white and yellow slabs) of the first 50 frames with values from 0 to 2π

in equal increments; this causes the slab to appear to spin about its pivot, whilst its

motion remains coherent with the remainder of the contraption. Occlusions between

the yellow and white slabs are correctly handled.

7.6 Integrating Time and Pose Cues within the Video

Paintbox

Time and pose motion cues are applied directly to the output of the Computer Vi-

sion (Chapter 6), which tracks objects within a camera motion compensated version of

the source video sequence. The result is a modified version of the video and associated

tracked features, which are then passed to the Computer Graphics component of Chap-

ter 6. Visual augmentation and deformation cues are then inserted into the animation

— so completing the motion emphasis framework of the Video Paintbox. The benefit

of this arrangement is that visual motion cues, such as object deformations, are seen

to react to the changes in pose caused by effects such as anticipation. Figure 7-15

gives such an example where the METRONOME sequence has been subjected to the

TIME AND POSE CUES FOR MOTION EMPHASIS 176

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time (t)

T
(t

)
−

 F
ut

ur
is

t t
ra

ns
fe

r
fu

nc
tio

n

Figure 7-14 Toward Futurist-like rendering via irregular temporal sampling of the Video
Paintbox output. Left: Duchamp’s “Nude Descending a Staircase II” [1912], and samples
of corresponding source photography by Muybridge [1872]. Middle: Our approximation to
Futurist art using a temporal sampling strategy modelled upon Duchamp’s work. Right:
The transfer function T (.) which created our artwork in blue, with the standard (identity)
transfer function in red.

anticipation process, after which a non-linear (velocity based) deformation has been

used to emphasise drag.

7.7 Varying the Temporal Sampling Rate

Our explanation so far has assumed that the animator desires only to render pose vec-

tors at uniform temporal intervals, and at precisely the same frame rate as the source

video. However there is no technical reason why the animator should be restricted to

this sampling strategy. As a final step we introduce a transfer function T (t) which

accepts a time instant (i.e. a frame) to be rendered (t), and outputs the time instant

of the animation to synthesise via our previously described framework. Standard ren-

dering would simply require T (t) = t. However, interesting effects can be created by

choosing an alternative T (.).

The Futurist art movement created static artworks, many of which depict motion

through the composition of time lapse images sampled at irregular intervals [81]. One

classic example of such a work is Marcel Duchamp’s “Nude Descending a Staircase II”

[1912], which took its inspiration from the photographic work of Edwaerd Muybridge

[1872] (see Figure 7-14, left). As an investigation to conclude our temporal motion

emphasis work, we considered whether it would be possible to combine our tracked

features (for example, arms and legs), with our temporal analysis to produce artwork

similar in spirit to Duchamp’s. To do so required the compositing of frames into a

single image (a minor modification) and a more general functional T (.).

We observe that, rather than painting regular temporal instants, Duchamp painted

TIME AND POSE CUES FOR MOTION EMPHASIS 177

salient key-frames of the subject descending the staircase (Figure 7-14, left). These

glimpses of motion are enough to suggest the full course of the movement, much as a

few salient lines are enough to suggest form in a well drawn piece of artwork. We say

the instants chosen by Duchamp are “temporally salient”.

With this observation in mind, consider the smooth sections of Chapter 6 which form

streak-line motion cues. The temporal regions around the start and end points of these

streak-lines have high temporal salience relative to the remainder of the cue. A few

points around each end of the streak-line are often sufficient for one to correctly predict

the smooth trajectory of the object. Temporal salience is high at the streak-line origin,

but decays as the streak-line progresses — falling to a minimum halfway along the

trajectory. Temporal salience then increases again as we approach the terminus of the

streak-line.

We have devised a non-linear transfer function T , which varies sampling rate according

to the magnitude of temporal salience at the current instant (i.e. proportional to

the minimum time difference between the start and end of a streak-line). A plot of

the resulting functional T (.) for the STAIRS sequence is shown in Figure 7-14, right.

By compositing frames to create a single still image (we have chosen to also assign

painting order in this composition to be proportional temporal salience), we obtain a

result such as that of Figure 7-14, middle. Although the aesthetics of this output do

leave something to be desired (static AR techniques could be applied to improve the

final rendering), the composition of the artwork is, ostensibly, of a similar genre to

that of Duchamp. We suggest that the notion of temporal salience warrants further

investigation, and that the ability to define a user functional T (.) as a final stage in

the motion emphasis pipeline serves as a simple, but interesting, means to access novel

temporal rendering effects.

7.8 Summary and Discussion

We have described a subsystem within the Video Paintbox for automatically intro-

ducing “time and pose” cues into a video driven AR animation. This class of cue

manipulates the timing of the animation, and includes traditional animation effects

such as motion anticipation and exaggeration (motion cartooning). The “time and

pose” subsystem integrates well with the visual motion emphasis work of the previous

Chapter, and serves to broaden the gamut of motion cues available through our Video

Paintbox.

We produce our time and pose cues by manipulating the positions of tracked features

TIME AND POSE CUES FOR MOTION EMPHASIS 178

Figure 7-15 Stills taken from a section of the rendered METRONOME sequence, ex-
hibiting the anticipation cue combined with a deformation motion cue emphasising drag
(described in Section 6.4.2). Approximately one still per five frames. Observe that the
visual deformation cues enable us to characterise movement in the scene, using only these
still frames (see videos/metro warp anticipate and videos/metro anticipate for an-
imations).

over time. Recall that our initial experiments manipulated features independently by

varying their LCAT transforms. The disappointing results which emerged motivated

us to manipulate features using a hierarchical articulated structure, resulting in aes-

thetically superior animations. It is likely that the conceptually high level model of

the articulated structure created more believable movement, because it more closely

matches our mental model of the manner in which objects move — a subject’s motion

TIME AND POSE CUES FOR MOTION EMPHASIS 179

is constrained by its inter-connecting joints, rather than allowing free motion of each

component. If we refer back to the hand-drawn example of anticipation in Figure 7-5 it

is clear that features of the face, for example eyebrows, are not anticipated using func-

tions of their rotation, translation, etc. but according to a mental model of how facial

parts move. This is again an example of how “time and pose” cues require a high level

underlying model, in this case a facial muscle model rather than a rigid hierarchical

structure. Future work might allow substitution of the current hierarchical articulated

model for other models, so improving the generality of the system. We have also shown

that the very nature of “time and pose” motion cues demands large temporal windows

for analysis of the video sequence. Both the use of high level spatial models, and large

temporal windows for motion analysis, are pre-requisites to synthesising time and pose

cues.

There are a number of ways in which we might improve the work in this Chapter. We

might seek to relax the assumptions on the nature of the motion, perhaps extending the

system to emphasise non-planar motion. Alternatively we might revisit the problem of

localising moving pivot points by allowing the animator to introduce a model of pivot

motion. It may also be possible to improve accuracy of the pivot recovery algorithm

(and so of subsequent pose recovery) using a Kalman filter to take advantage of the

Gaussian distribution of error in pivot estimates, and so refine the pivot estimate over

time.

A selection of source and rendered video clips have been included in Appendix C.

Chapter 8

Stroke Surfaces: Temporally

Coherent Artistic Animations

from Video

In this chapter we describe the third and final subsystem comprising the Video Paint-

box: a framework capable of creating artistically shaded animations directly from video.

We demonstrate that through automated analysis of the video sequence at a higher spa-

tiotemporal level — as a block of frames rather than on a per frame, per pixel basis

as with current methods — we are able to generate animations in a wide variety of

artistic styles, exhibiting a uniquely high degree of temporal coherence. In addition to

rotoscoping, matting and novel temporal effects unique to our method, we demonstrate

the extension of “traditional” static AR styles to video including painterly, sketchy and

cartoon shading effects. We demonstrate how our coherent shading subsystem may be

combined with the earlier motion emphasis subsystems (Chapters 6 and 7) to produce

complete cartoon-styled animations from video clips using our Video Paintbox.

8.1 Introduction

In this chapter we propose a solution to the long-standing problem of automatically

creating temporally coherent artistically shaded animations from video1. As observed

in Chapter 5, this problem has been sparsely researched. Existing video driven AR

methods [75, 96, 103] address only the problem of producing painterly effects in video,

and typically produce animations exhibiting poor levels of temporal coherence. AR

techniques are predominantly stroke based, and temporal incoherence occurs principally

when either:

1This work appeared in [26] and an overview presented at the BMVA Symposium on Spatiotemporal
Processing (March 2004). This work has also been submitted to BMVC 2004.

180

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 181

1. the motion of strokes, and so motion within the resulting animation, does not

agree with the motion of content within the source video sequence.

2. the visual attributes of strokes fluctuate rapidly, creating flicker in the animation.

The manifestation of temporal incoherence is as an uncontrolled motion and rapid

flickering in the animation, termed “swimming”. Swimming severely damages the aes-

thetics of an animation, and tends to produce perceptual cues which distract from the

content of the image sequence itself. This observation is supported by psychophysical

research. For example the Gestalt “common fate” cue [95], describes how objects mov-

ing in a similar manner become grouped. Conflicts between the motion of phantom

objects perceived due to grouping, and physical objects, contribute to the distracting

nature of swimming. Wong et al [172] observe that rapidly flickering dots are perceived

to “pop-out” from their neighbours; explaining the confused sense of depth appar-

ent in an animation with poor stroke coherence. Unfortunately, we observe that this

pop-out effect manifests most strongly at around 6Hz, close to the aesthetically optimal

frame rate for coherent painterly animations determined by Hertzmann and Perlin [75].

Swimming in AR animations is therefore a significant practical problem, and one that

can be solved only by smoothly moving strokes in a manner consistent with motion in

the scene. Numerous object-space AR techniques based upon this principal have been

published in recent years, and are capable of creating coherent AR animations from 3D

models [32, 65, 108, 111]. Broadly speaking, object-space methods operate by fixing

strokes to surfaces in the 3D geometry which move coherently when the object moves

relative to the camera (see Chapter 2 for details of specific approaches). As we observed

in Chapter 1, the problem statements of object-space and video driven AR are thus

somewhat different. With the former there is no requirement to recover structure and

motion prior to stroke placement, since scene geometry is supplied. With the latter,

we must analyse pixel data to recover missing structure and motion prior to rendering.

All existing automatic 2D video AR algorithms [75, 96, 103] largely disregard spatial

structure by moving brush strokes independently, and attempt motion recovery using

inter-frame comparisons; motion is estimated from one frame to the next, and brush

strokes translated accordingly. Both per frame optical flow [96, 103] and frame differ-

encing [75] approaches to motion estimation have been applied to AR (Section 2.5.2

contains details), however both approaches fall far short of producing temporally co-

herent animations. We have argued (Chapter 5) that there are in-principal difficulties

with analysing video on a temporally local, per frame progressive basis, when attempt-

ing to produce a globally coherent AR animation. These difficulties include the rapid

accumulation and propagation of error over subsequent frames due to poor motion

estimates, and the limitations of the motion estimate techniques employed (especially

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 182

Video
Segmentation

Video Object
Smoothing

Duplicate
Stroke Surfaces

Outlines

Render

Interior

Render

User Controls

Representation (IR)

Object
DbaseSurfaces

Stroke

Optional Interaction

Source Image
Sequence

Intermediate
Output

Animation
Composit

Frame

Parameter Space

Front End
Back end

Artistic Video Shading Subsystem

Figure 8-1 Illustrating the rendering pipeline of the artistic rendering subsystem. Video
is parsed into an intermediate representation (IR) by the front end, using Computer Vision
techniques. This representation is then rendered by the back end, under the influence of
user parameters which may be varied to stylise the output according to the animator’s
wishes.

when operating upon flat textured objects, or on objects undergoing occlusion). If one

were processing video for interaction or real-time animation then a frame by frame

approach would be justified (an example is Hertzmann’s “Living Painting” [75]). How-

ever the motivation of the Video Paintbox is primarily to create a tool for animators,

with which they are able to process video for post-production effects. A global analysis

over all frames available during offline rendering seems a more promising avenue for

producing temporally coherent animations.

We therefore argue for a higher level of spatiotemporal analysis than that employed

by existing automatic techniques. Spatially, we operate at a higher level by segment-

ing images into homogeneous regions, which correspond well with individual objects in

the scene. Using the novel approach we describe in this Chapter brush stroke motion

is guaranteed to be consistent over entire regions — contradictory visual cues do not

arise, for example where stroke motion differs within a given object. Temporally we

work at a higher level, automatically corresponding regions over time to carve smooth

trajectories through the video, and smoothing region attributes, such as colour, over

blocks of adjacent frames to mitigate swimming; this is in contrast to all existing AR

video methods. We believe the paradigm of automatically processing video at this

higher spatiotemporal level to be a novel and valuable approach to the problem of

synthesising AR animations from video.

The remainder of this chapter describes our novel framework for the production of

temporally coherent AR animations from video, which comprises the third and final

subsystem with the Video Paintbox. Our approach is unique (among automated AR

video methods) in that we treat the image sequence as a spatiotemporal voxel volume; a

stack of sequential frames in which time forms the third dimension. The interpretation

of video as a volume, rather than as a disjoint set of frames, is a powerful abstrac-

tive technique proposed as far back as the early eighties [86] simplifying analysis and

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 183

exploitation of frequency patterns in both the spatial and temporal dimensions. Ap-

plications of spatiotemporal processing have been identified both within the field of

Computer Vision, for example in motion estimation [139] and content based image re-

trieval [118], and in Computer Graphics for interactive video editing [6, 93] and more

commonly for visualisation [34, 128, 173]. We demonstrate that by manipulating video

in this representation we are able to synthesise a wide gamut of artistic effects, which

we allow the user to stylise and influence through a parameterised framework. The

diversity of artistic style, and level of temporal coherence, exhibited by our animations

further evidence our central argument for a higher level of spatiotemporal analysis in

image-space AR.

8.1.1 Overview and Capabilities of the Subsystem

In a similar manner to the motion emphasis subsystems (Chapters 6 and 7), the artis-

tic shading subsystem consists of a single rendering framework which may be broken

into a front and back end. The front end (Section 8.2) is responsible for parsing the

source video to create an “intermediate representation” (or “IR”, Section 8.3), and is

automated through application of Computer Vision techniques. This abstracted video

representation is then passed to the back end (Section 8.4), where it is rendered in one

of a range of artistic styles. The user is given control over the back end of the system

via a set of high level parameters which influence the style of the resulting animation

(Figure 8-1).

The artistic shading subsystem operates in the following manner. We begin by seg-

menting video frames into homogeneous regions, and use heuristics to create semantic

associations between regions in adjacent frames. Regions are thus connected over time

to produce a collection of conceptually high level spatiotemporal “video objects”. These

objects carve sub-volumes through the video volume delimited by continuous isosur-

face patches, which we term “Stroke Surfaces”. The video is encoded by a set of such

boundaries and a counter-part database containing various properties of the enclosed

video objects. The surfaces and database respectively form the two halves of the IR,

which is passed to the back end for rendering. To render a frame at time t the back end

intersects the Stroke Surfaces with the plane z = t, to generate a series of splines cor-

responding to region boundaries in that frame. By manipulating the IR (for example,

temporally smoothing the Stroke Surfaces), the back end is able to create temporally

coherent animations in a range of artistic styles, under the high level direction of the

animator.

Although our spatiotemporal framework was originally motivated by our goal of creat-

ing coherent, flat-shaded cartoons from video, it now encompasses many artistic styles.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 184

Figure 8-2 Top: Stills from the hand-illustrated music video to A-Ha’s “Take On Me”
[Barron, 1985]. A woman enters a world inside a comic strip and appears non-photorealistic
(sketchy), whilst interacting with a number of photorealistic and non-photorealistic beings
and objects. Bottom: Our automatic video AR framework is capable of similar “mixed
media” effects (left, we show photorealistic people against AR background; middle, vice
versa), as well as many other artistic styles such as oil paint, watercolour, flat shaded
cartoon (right), and can create a range of novel temporal effects too. Motion emphasis
cues from the previous two chapters may be readily combined with this subsystem to create
complete cartoon animations from video (right).

In addition to novel temporal effects unique to our framework, we demonstrate the

extension of numerous static AR styles to video including oil and watercolour paint,

sketchy, cartoon shading effects, as well the ability to create “mixed media” effects

(Figure 8-2). An application to rotoscoping and video matting is also identified, in fact

rotoscoping and stroke based AR techniques (such as painterly rendering) are unified

under our framework. A potential application to abstracted, low bandwidth transmis-

sion of video content is also identified, resulting from the compact, continuous vector

representation of the IR. Furthermore, we are able to combine our coherent shading

framework with our earlier motion cue work (Chapters 6 and 7) to produce polished

cartoon-styled animations from video clips using the completed Video Paintbox.

8.2 Front end: Segmenting the Video Volume

In this section we describe the video segmentation process of the front end. The front

end is responsible for the smooth segmentation of the video volume into sub-volumes in

a voxel representation, which describe the trajectories of features. These volumes are

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 185

then encoded in our “IR”, which is passed to the back end for rendering. We describe

the nature of this IR, and the encoding process, in Section 8.3.

There are three stages to the video segmentation algorithm, each of which we overview

briefly here, and describe in detail in subsections 8.2.1, 8.2.2, and 8.2.3 respectively.

We begin by independently segmenting video frames into connected homogeneous re-

gions using standard 2D Computer Vision techniques (we describe these momentarily).

The second stage of processing creates associations between segmented regions in each

frame, to regions in adjacent frames. A filtering process removes spurious associations.

The result of this second step is a set of temporally convex sub-volumes carved from

the spatiotemporal video volume; we introduce the term “video objects” to describe

these sub-volumes. These video objects are associated over time in a graph structure,

which we refer to as the “object association graph”. The third and final stage performs

a coarse temporal smoothing of the boundaries of video objects. This smoothing, com-

bined with the filtering process the second stage, mitigate temporal incoherence in the

video segmentation. The trajectory of a single feature through the video volume is

represented by a collection of one or more associated video objects; we describe the

union of video objects, which comprise such a trajectory, as a “feature sub-volume”.

8.2.1 Frame Segmentation

We now explain the first step of our process, which segments each video frame into

homogeneous regions. The criterion for homogeneity we have chosen for our sys-

tem is colour (after [38]). Many segmentation techniques also subscribe to this ap-

proach [5, 39, 42, 164], under the assumption that neighbouring regions are of differing

colour. Each frame is independently segmented to create a class map of distinct regions.

Associations between regions in adjacent frames are later created. Choice of segmen-

tation algorithm influences the success of this association step, as segmentations of

adjacent frames must yield similar class maps to facilitate association. Robustness is

therefore an important property of the segmentation algorithm chosen to drive our sub-

system: given an image I, a robust segmentation process S(.), and a resulting class map

of regions S(I), small changes in I should produce very similar class maps S(I). Al-

though most published 2D segmentation algorithms are accompanied by an evaluation

of their performance versus a ground truth segmentation, to the best of our knowledge

a comparative study of algorithm robustness, as we have defined it, is not present in

the literature. Consequently, we investigated the robustness of several contemporary

2D segmentation algorithms, with an aim of selecting the most robust algorithm to

drive our video segmentation process.

We evaluated the robustness of five contemporary algorithms on twenty short clips

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 186

(around 100 frames each) of artificial and natural scenes. For our purposes, a natural

scene is one of complex, cluttered content (such as Figure 8-5, SOFA), whilst an artificial

scene is typically an uncluttered, low complexity scene with few homogeneous colour

regions (such as Figure 8-5, POOHBEAR). In all clips the footage was of a static

scene, with a gradual change of camera viewpoint over time. We tested the following

algorithms in both RGB and HSV spaces:

1. Recursive histogram split (RHS) [145] A colour histogram of the image is built,

and the colour which corresponds to the largest peak in the histogram is identified.

The largest connected region of that colour is isolated, and “cut” from the image

to form one segmented region. This process is iterative, and “cut” regions do not

contribute to the histogram on subsequent iterations. The process terminates

when the height of the histogram peak falls below a threshold.

2. Split and Merge (SM) [78] A two stage algorithm, comprising a “split” and a

“merge” step. A tree T is constructed, initially with the whole image as the

only node (root). We iterate through each node, splitting the node’s region into

quarters (creating four children) if that region is not “sufficiently homogeneous”.

The “split” step terminates when all nodes have been tested, and will split no

further. Each leaf in T is a homogeneous region, though the image may be over-

segmented. The “merge” step mitigates the over-segmentation by examining each

leaf node in T , combining regions which are both homogeneous and spatially

connected.

3. Colour Structure Code (CSC) [127] A form of split and merge technique which

operates upon the image using small neighbourhoods with a hexagonal topol-

ogy. Hierarchies of hexagonal “islands” are grown and merged iteratively to form

homogeneous regions.

4. EDISON [19] A synergistic approach to segmentation which fuses boundary in-

formation from: 1) homogeneous regions produced by a colour based mean shift

segmentation [29]; 2) edges detected in the luminance channel of the image.

5. JSEG [42] A technique which first performs colour quantisation, and then pro-

ceeds to grow pixel clusters to form regions of homogeneous colour texture. These

clusters must exhibit low “J values”; these values are a novel texture variance de-

scriptor introduced in the paper.

Algorithms (1) and (2) are popular, classical segmentation techniques. The remain-

der are comparatively recent segmentation techniques, which are reported by their

authors [19, 42, 127] to perform well upon general images without the imposition of

additional models or constraints.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 187

RHS SM CSC/RGB CSC/HSV EDISON JSEG
0

5

10

15

20

25

30

Segmentation Algorithm

In
co

he
re

nc
e

(e
rr

or
 m

ea
su

re
)

Figure 8-3 Results of comparing the robustness of segmentation algorithms. The lower
the error measure on the ordinate, the more robust the algorithm. All algorithms operated
in the RGB colour space unless otherwise stated. This graph shows the six most robust
scenarios. Red and black plots indicate the results of processing ten “natural” and “arti-
ficial” scenes respectively. The crosses indicate the mean error measure for each scenario
over all ten clips, the error bars indicate one standard deviation.

We measured robustness between adjacent frames in the following manner. Distance

transforms [145] were computed for both frames’ class maps. This resulted in two

rasters whose individual pixel values correspond to the shortest distance from that

pixel to a region boundary in the respective class map. We then computed the absolute

difference between these distance transforms. The mean pixel value in this difference

map was used the metric for robustness of segmentation between the two frames. The

mean value of this inter-frame metric, computed over all consecutive frame pairs, was

used as the metric for measured robustness of segmentation over the entire sequences.

In practice the pixel values of the distance transform were thresholded at 30 pixels

distance to prevent large errors from skewing the mean value (such errors emerged in

cases of gross disparity between temporally adjacent class maps).

All segmentation algorithms operated in RGB colour space, but we also experimented

with processing in HSV colour space — although this produced worse results for the

most-part, results improved in the case of the CSC algorithm. Figure 8-3 summarises

the means and variances of the robustness error measure for the six most robust sce-

narios, computed over ten “natural” and ten “artificial” source clips. Results indicate

EDISON to be preferable in the case of natural scenes, and that artificial scenes were

best segmented using the CSC algorithm operating in HSV space. However the as-

sociated error bars imply that there is little significant difference in one algorithm’s

performance over the other.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 188

In our Video Paintbox we have chosen to use EDISON by default, but enable the user

to switch to CSC/HSV if results of the segmentation are poor. The chosen algorithm

is then independently applied to each frame in the source video clip to generate a set

of segmented regions in each frame. Associations are then created between regions

in adjacent frames to produce spatiotemporal video objects. We explain this process

in the subsection 8.2.2, but first briefly justify our decision to opt for this associative

approach to volume segmentation.

Choice of Video Segmentation Strategy: 2D plus time or 3D?

We have opted for a 2D segmentation followed by a temporal association step; this

approach is commonly referred to as a “2D plus time” (2D+ t) technique in Computer

Vision literature. However, our initial development work centred upon an alternative

methodology — performing a colour segmentation via a three dimensional flood-fill ap-

proach, and so processing the video as a single 3D volume (similar to [40]). Although

a volumetric methodology is, perhaps, more in keeping with our spatiotemporal ap-

proach, there are a number of reasons that we opted for a 2D + t heuristic driven,

associative approach over a 3D segmentation:

• Attributes such as the shape, colour or shading of a region are permitted to evolve

gradually over time by the heuristics of our 2D + t approach. Such variation

is difficult to accommodate within the framework of a single 3D segmentation

(without introducing complicated 3D models and constraints, encapsulating the

expected evolution of these attributes over time).

• Small, fast moving objects may form disconnected volumes in 3D, resulting in

temporal over-segmentation. However these discontinuities do not arise with our

proposed 2D+t association scheme between frames, providing an upper threshold

on search distance (parameter ∆, described later in Section 8.2.2) is set correctly.

• For pragmatic reasons. The problem of 2D image segmentation has received

extensive study from the Computer Vision community, in contrast to 3D segmen-

tation (exceptions lie within medical imaging, but do not deal with the problem

domain of video imagery). However the modular nature of our framework (Fig-

ure 8-1) is such that the rendering process is loosely coupled with the segmenta-

tion technology used; thus we allow for substitution of segmentation algorithms

as novel, improved technologies become available in the literature.

Alternative 2D+ t approaches which associate contours over time have been described

in the literature [53, 55, 92]; however we differ in that we create temporal association

using region based properties rather than edges alone (the unconstrained problem of

associating edge contours over time produces poor tracking solutions, and often requires

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 189

restrictive motion models to be imposed [84, 85]). We now explain the temporal region

association process in detail.

8.2.2 Region association algorithm

The problem of associating sets of regions, each within multiple frames, is combina-

torial in nature and an optimal solution can not be found through exhaustive search

for any practical video. We propose a two step heuristic solution to the association

problem, which we have found to perform well (that is, results in a locally optimal

solution where associated objects exhibit an acceptable level of temporal coherence)

and has quadratic complexity in the number of regions per frame. First, for each frame

we generate associations between regions in that frame and those in frames adjacent

to it. These associations are made according to heuristics based on mutual colour,

area, spatial overlap, and shape. Second, the resulting chains of associated regions are

filtered using a graph based search which removes sporadic associations. Association is

complicated by the fact that objects may merge or divide in the scene. For example, a

ball passing behind a post might appear to split into two regions, and then recombine.

In our system it is satisfactory to represent a single occluded object as multiple imaged

regions since, as we will describe, these regions become linked in a graph structure as

a product of the region association process.

We observe that in a robust video segmentation: 1) properties of regions such as

shape, colour, and area are typically subject only to minor change over short periods

of time. The exceptions are the instants at which regions merge or divide; 2) although

regions may appear or disappear, merge or divide over time, such events should be for

the relative long-term (given a video frame rate of 25 frames per second) and not be

subsequently reversed in the short-term. The first observations influences the choice

of heuristics for the first stage of processing (region association), whilst the second

observation governs the operation of the second stage (filtering).

Step 1: Iterative Association Algorithm

Consider a single region r ∈ Rt, where Rt denotes the set of segmented regions in frame

t. We wish to find the set of regions in adjacent frames with which r is associated. We

compute this by searching sets Rt−1 and Rt+1 independently — examining potential

mappings from r to Rt−1, and then from r to Rt+1. Thus r could potentially become

associated with zero or more regions in adjacent frames (Figure 8-4a). The suitability

for two regions in adjacent frames r ∈ Rt and ρ ∈ Rt±1, to be associated may be

evaluated using an objective function E(r, ρ). We describe this function momentarily,

but first complete our description of the association algorithm.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 190

For the purposes of illustration, let us consider the creation of associations between

r and regions in the set Rt+1. The area (in pixels) of r is first computed, to give an

“area-count”. A potential set of associating regions in Rt+1 is identified, whose cen-

troids fall within a distance ∆ of the centroid of r. These regions are sorted into a list

in descending order of their score E(.). Next a cumulative sum of their area counts is

computed, working from the start of the list and storing the cumulative sum with each

region. The area-count of r is subtracted from each cumulative area term in the list.

The resulting set associated regions extends down this list until either the score E(.)

falls below a lower bound, or the area measure becomes less than or equal to zero. It

is therefore possible for no associations to be created to past or future regions; in such

circumstances a feature appears or disappears in the video, perhaps due to occlusion

either by other objects or by the edge of the frame. The process is repeated for each

frame t independently. The final set of associations for the sequence is taken to be the

union of associations created for all frames.

Associated regions are thus semantically linked over time to create connected feature

sub-volumes such as that in Figure 8-5c,d. These sub-volumes are broken into, possibly

many, temporally convex video objects. Note we consider only the exterior boundary of

these objects, disregarding “holes” in a volume produced by other nested objects; these

are represented by their own external boundaries. A property of the temporally convex

representation is that two separate objects will merge to produce one novel object,

and an object division will produce multiple novel objects (see Figure 8-4b, Figure 8-5,

bottom left). This representation simplifies later processing. The associations between

video objects are also maintained; this mesh graph structure is also useful in later

processing stages, as we refer to it hereafter as the “object association graph”.

Heuristics for Association

We made use of a heuristic score E(r, ρ) in our association algorithm, which determines

the suitability of two regions in adjacent frames [r ∈ Rt, ρ ∈ Rt±1] to be associated.

This score may be written as a weighted sum of terms:

E(r, ρ) =











0 if δ(r, ρ; ∆) > 1

w1σ(r, ρ) + w2α(r, ρ)− ...
w3δ(r, ρ; ∆)− w4γ(r, ρ) otherwise

(8.1)

The function δ(.) is the spatial distance between the region centroids as a fraction of

some threshold distance ∆. The purpose of this threshold is to prevent regions that

are far apart from being considered as potentially matching; E(.) is not computed

unless the regions are sufficiently close. We have found ∆ = 30 pixels to be a useful

threshold. Constants w1..4 are user defined weights which tune the influence of each

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 191

of four bounded ([0, 1]) heuristic functions. It is through variation of these constants

that the user is able to “tune” the front end to create an optimal segmentation of the

video sequence; in practice less than an order of magnitude of variation is necessary.

We have found w1 = 0.8, w2 = 0.6, w3 = 0.6, w4 = 0.4 to be typical values for the

videos we present in this thesis. γ(.) is the the Euclidean distance between the mean

colours of the two regions in CIELAB space (normalised by division by
√

3). α(.) is

a ratio of the two regions’ areas in pixels. σ(.) is a linear conformal affine invariant

shape similarity measure, computed between the two regions. We now describe this

final, shape similarity measure in greater detail.

We wish to compare the shape of two regions A and B. This comparison should be

invariant to rotation, translation and uniform scale, since such transformations are com-

mon in imaged regions caused by an object undergoing motion relative to the camera.

Regions are first normalised to be of equal area (affecting uniform scale invariance).

We compute σ(A,B) by analysis of the external regions’ boundaries in the following

manner.

We begin by computing the Fourier descriptors [31] of the “angular description func-

tion” of each boundary. The angular description function discretises a region’s bound-

ary into n vectors of equal arc-length v1, v2, ..., vn , and encodes that boundary as a

series of variations in the angles between adjacent vectors. We write the angular de-

scriptions for each region, A and B, as the scalar functions ΘA(s) and ΘB(s), where

sin[0, n] is a continuous dummy parameter which iterates around the boundary. Ob-

serve that Θ(.) is periodic, and invariant to translation of the region. We compute

the Fourier transform of each Θ(.), to obtain spectral representations F [ΘA(.)] and

F [Θ)B(.)]. Shape similarity is inversely to proportional to Euclidean distance between

the magnitude vectors of these Fourier descriptors (disregarding phase for rotational

invariance):

σ = 1− 1

N

N
∑

ν=1

∣

∣

∣

∣

∣

|F [ΘA(ν)]| − |F [ΘB(ν)]|
(
∑n

s=1(ΘA(s)−ΘB(s))2)
1

2

∣

∣

∣

∣

∣

(8.2)

where the summation is over the N lowest frequency components of the signal |F [Θ(.)|.
We have found that only the first eight components are desirable for inclusion in the

summation (N = 8); the remaining high frequencies principally describe sampling

errors due to the discrete, raster origin of the boundary descriptions.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 192

.

. . .

time

. . .

time

. . .

. . .

. . .

. . .
. . .

. . .

(c)

. . .

. . .

(a)

space

1 2

3

4 5

video
sub−volume

temporally
convex objects

merge

objects

objects

(b)

divide

time

Figure 8-4 Illustrating the region association and filtering process (a) Nine cases of region
association. Associations are created between a region in the current frame and potentially
many regions in adjacent frames, through iterative evaluation of equation 8.1. (b) Example
of a single video-sub-volume split into five temporally convex objects (c.f. Figure 8-5d).
(c) An object association graph before and after graph filtering. Sporadic associations
(red) are removed, and object boundaries interpolated (green) from neighbours.

Step 2: Filtering Sporadic Associations

Sporadic associations are sometimes incorrectly created between regions due to noise.

We have observed that associations maintained over short time intervals may be cat-

egorised as noise, and filter out these artifacts by examining the object association

graph’s structure.

Since new objects are created for every merge or divide encountered in a feature sub-

volume, one can identify sporadic merges or divisions by searching the graph for short-

lived objects. We specify a short-lived object as an object which exists for less than

a quarter of a second (≤ 6 frames). This constant (as well as the search parameter

∆ in equation 8.1) may be adjusted according to the assumed maximum speed of

objects in the video. Short-lived objects deemed to correspond to false associations are

removed by “cutting” that object from the graph and filling the gap by extrapolating

an intermediate object from either neighbour (by duplicating the nearest neighbour,

see Figure 8-4c). A serendipitous effect of this process is that poorly segmented areas

of the video exhibiting high incoherence, tend to merge to form one large coherent

object. This is subsequently rendered as a single region, abstracting away detail that

would otherwise scintillate in the final animation.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 193

Figure 8-5 Above: Sample segmented frames from the POOHBEAR and SOFA sequences
with original footage inset. Below: Two visualisations from the POOHBEAR video volume,
corresponding to the head and the right hand section of the skirting board. Observe that
whilst the head produces a single video object, the skirting board is repeatedly occluded
by the bear’s hand during movement causing division of regions. This resulting volume
consists of a connected structure of several temporally convex video objects (coloured
individually for clarity of illustration).

8.2.3 Coarse Temporal Smoothing

The segmentation and association processes result in an object association graph, and

a number of video objects in a voxel representation. It is desirable that the boundaries

of these video objects flow smoothly though the video volume, thereby creating tem-

porally coherent segmentations of each video frame. Therefore, as a final step in our

video segmentation algorithm we perform a temporal smoothing of video objects.

We fit constrained, smooth surfaces around each video object, and then re-compute

the sets of voxels bounded by these surfaces to generate a new set of smoothed video

objects. We describe this process in the remainder of this subsection. Note that this

surface fitting process is a means to smooth the voxel video objects, and quite distinct

from the surface fitting operations we introduce in Section 8.3 to encode the results of

the front end in the IR.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 194

g

g

g
g

g

g

g

g
g

g

2,1

3,1
3,2

2,2

0,2

0,1

1,3
1,2

1,1

3,3

PP

P
P(0,0)

(0,1)

(1,0) (1,1)

0,0
g

g

1,0
g

g
2,0

g
3,0

g
0,3

Patch 1 (g to g)

Patch 2 (g to g)

0,i 3,i

1,i 4,i

Surface
Patch 2

Surface
Patch 1

Figure 8-6 Coarse smoothing: A piecewise bi-cubic surface is fitted around each tempo-
rally convex video object. Multiple bi-cubic Catmull-Rom patches are stitched together
with overlapping control points, to form a C2 continuous bounding surface [14, 51].

Surface fitting by relaxation

Each video object is temporally convex, and as such its external boundary may be

described by a continuous 2D surface — disregarding its“end caps”, i.e. planes of con-

stant time. These “end caps” are represented implicitly by the minimum and maximum

temporal coordinates of the bounding surface’s control points.

We fit a constrained 2D parametric surface to each segmented video volume, which we

describe piecewise with a series of bi-cubic Catmull-Rom patches [14]. Each individual

patch may be represented in a 2D parametric form P (s, t), where s and t are the spatial

and temporal parameterisations, as:2

P (s, t) = tTMT















g
0,0

g
0,1

g
0,2

g
0,3

g
1,0

g
1,1

g
1,2

g
1,3

g
2,0

g
2,1

g
2,2

g
2,3

g
3,0

g
3,1

g
3,2

g
3,3















Ms (8.3)

where t =
(

t3, t2, t, 1
)T

, s =
(

s3, s2, s, 1
)T

, and M denotes the Catmull-Rom cubic

blending matrix [14] (given in equation 7.27). This class of spline function was chosen

since it both interpolates all control points g
i,j

(allowing greater local control over the

2Equation 8.3 represents a mild abuse of notation (used in the text of Foley et al. [51]) to avoid
introduction of tensor notation. The 4×4 matrix of control points should be read as containing sixteen
vector valued points g

i,j
— rather than as an expansion of those points to create a 12 × 4 matrix of

scalars.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 195

surface during the fit), and ensures C2 continuity between adjacent patches, i.e. whose

control points overlap. We introduce the notation Q(s, t) to describe the entire 2D

bounding surface, consisting of multiple piecewise bi-cubic patches (see the example of

Figure 8-6).

The C2 continuity of the Catmull-Rom spline class is important to our application since

surface discontinuities in the first and second derivatives with respect to time (
∂Q

∂t ,
∂2Q

∂t2
) have been found to produce jerky and incoherent motion in resulting animations.

However, we note that spatial discontinuities in derivatives (
∂Q

∂s ,
∂2Q

∂s2) may be desirable

when, for example, representing sharp corners. Fitting is performed via a generalisation

of 1D active contours [91] to 2D surfaces (after [21]):

Esurf =

∫ 1

0

∫ 1

0
Eint(Q(s, t)) +Eext(Q(s, t))dsdt (8.4)

the internal energy is:

Eint = α

∣

∣

∣

∣

∂Q

∂s

∣

∣

∣

∣

2

+ β

∣

∣

∣

∣

∣

∂2Q

∂s2

∣

∣

∣

∣

∣

2

+ γ

∣

∣

∣

∣

∂Q

∂t

∣

∣

∣

∣

2

+ ζ

∣

∣

∣

∣

∣

∂2Q

∂t2

∣

∣

∣

∣

∣

2

(8.5)

and the external energy is:

Eext = ηf(Q(s, t)) (8.6)

Function f(.) is the Euclidean distance of the point Q(s, t) to the closest voxel of the

video object. Hence constant η controls the influence of the data in the fit (we present

this to unity). The pairs of constants [α, β], and [γ, ζ] bias the internal energy to-

ward certain spatial and temporal characteristics respectively. Reducing constants α

and γ cause more elastic spacings of control points, whilst reducing constants β and

ζ allow greater curvature between control points. We preset α and β at 0.5 and 0.25

respectively, to permit high curvatures (for example, sharp corners), and so close fits

in the spatial dimension. γ is set to 0.5 to maintain temporal spacing of control points.

Constant ζ is the most interesting, since this parameter dictates the energy penalties

associated with high curvatures in the temporal dimension. Recall that we observe

high curvatures in this dimension correlate strongly with temporal incoherence. Thus

by varying this parameter the we may vary the level of temporal smoothing in the

sequence; we have chosen to make the value of this temporal constraint available as a

user variable. In this manner the animator may tailor the degree of temporal smooth-

ing to the speed of motion in the sequence, or even chose to retain some of the noise

present as a consequence of the segmentation process; we draw analogy with presence

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 196

of film grain in a movie.

Surfaces are fitted within the video volume using an adaptation of Williams’ algorithm

to locate surface points [167] through minimisation of Esurf (equation 8.4). Note that

this algorithm relaxes penalties imposed due to high magnitudes in the second deriva-

tive during the final iterations of the fitting process. We inhibit this behaviour in

the temporal dimension to improve temporal coherence. Initial estimates for surface

control points are obtained by sampling the bounding voxels of the object at regular

intervals. The result of the process is a fitted 2D surface about each video object.

The video volume is then re-segmented using these fitted surfaces to create a set of

smoothed video objects in a voxel representation. At this stage, the fitted 2D surfaces

are discarded, since they have served their purpose in smoothing the video objects.

In practice, smoothing the surface of each video object independently is problematic.

If the position of the surface bounding a video object is adjusted, voxel “holes” may

appear in the video volume, that is, some voxels are no longer assigned to any video

object. Alternatively, a single voxel might now fall within the fitted, bounding surfaces

of more than one video object; we term these voxels “duplicates”. We take the following

simple steps to remove “holes” and “duplicates”. First, any “duplicate” voxels are re-

labelled as “holes”. Second, “holes” are filled by repeatedly “growing” video objects

via binary morphological dilation; only voxels marked as “holes” are overwritten during

this process. Video objects are dilated in random order to promote an unbiased, and

even filling of holes. The process terminates when all holes are filled.

8.3 Front end: Building the Representation

The results of the video segmentation process (Section 8.2) are a set of segmented,

smooth, video objects in a voxel representation, and an object association graph de-

scribing how video objects are connected over time. From this information we generate

an intermediate representation (IR) of the video, to be passed to the back end. This

IR consists of a series of “Stroke Surface” patches and a counter-part database. In this

Section we describe each of these components in turn, and explain how they are created.

In our IR, the spatiotemporal locations of objects are represented in terms of their in-

terfacing surfaces. This is preferable to storing each object in terms of its own bounding

surface as boundary information is not duplicated. This forms a more compact, and

more manipulable representation (which is useful later when we deform object bound-

aries, either for further fine smoothing, or to introduce temporal effects) see Figure 8-10.

By manipulating only these interfacing surfaces, we do not create “holes” as before.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 197

Intersect surfaces
with plane z=t, to
render frame ’t’.

spline generated
by intersection

Winged edge structure
references v.o. database

z
x

y

Spatiotemporal
video volume

Video
object

obj# mean colour shading... etc...

0.2, 0.3, 0.9

0.1, 0.2, 0.5

time

t

t

Counterpart (Object) Database

A stroke surface
representing part
of the boundary of
the video object

2

1

2

1

Figure 8-7 Illustrating the IR of the artistic shading subsystem, and the means by which
it is rendered. Video is parsed by the front end, and represented as a collection of Stroke
Surface patches — each accompanied by a winged edge structure which references the
counter-part database. The attributes of video objects are stored in this database during
parsing, here we demonstrate two objects, a yellow blob and a grey background. The back
end renders the IR by intersecting a time plane with Stroke Surfaces; intersected surfaces
form splines (holding lines) which bound regions. A region is rendered according to the
graphical database attributes referenced by its bounding Stroke Surface(s).

However, in this representation it is much harder to vary the topology of the scene, for

example the adjacency of the video objects. This motivated the coarse smoothing step

of subsection 8.2.3.

8.3.1 Stroke Surface Representation

When two video objects abut in the video volume, their interface (in planes non-parallel

to z) is represented in our IR in piecewise form by a collection of one or more discon-

nected surface patches. We introduce the term “Stroke Surface” to describe these

individual patches.

As in Section 8.2.3 we use a piecewise Catmull-Rom bi-cubic form to represent a Stroke

Surface, and a 2D parameterisation Q(s, t) to describe points upon it. Each Stroke

Surface is contiguous. However, under certain interface geometries it is possible that

internal holes may exist within the surface’s external boundary — as such, regions

of surface’s parameter domain (s, t ∈ [0, 1]) may be invalid. We address this repre-

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 198

sentational problem in a manner similar to binary CSG [51]. Each Stroke Surface is

described by a continuous, externally bounded “primary” surface, from which a set of

zero or more continuous secondary (or “hole”) surfaces are subtracted3 (Figure 8-8).

We specify these holes as 2D polygonal regions in the parameter space [s, t] ∈ <2.

To further illustrate the concept of Stroke Surfaces, consider the following two examples:

1. Consider two plasticine bricks (A and B). If the bricks were pressed together

around a long metal pole, A and B would touch on either side of the pole, but the

pole would ”split” the interfacing surface between A and B into two discontinuous

surfaces. The pole, A, and B are analogous to video objects. The interface

between A and B would be represented by two Stroke Surfaces.

2. Now consider two new plasticine bricks (C and D), which are pressed together to

completely surround a third object E. In this scenario, only one Stroke Surface is

required to represent the interface between C and D. However, that surface will

contain an internal “hole” where C touches E, rather than brick D. In fact the

C-E and D-E interfaces will be represented by two further Stroke Surfaces.

8.3.2 Fitting Stroke Surfaces

Stroke Surfaces are fitted to the voxel video objects in the following manner. Each

video object is systematically tested against each of its peers to determine whether the

pair are spatially adjacent, that is, if there is an interface non-parallel to the z plane

(temporal adjacency is not encoded via Stroke Surfaces, as this information is already

stored in the object association graph). If an interface exists between the two objects,

then that interface must be encoded in the IR by one or more Stroke Surfaces. We now

describe the process by which we fit a single Stroke Surface between two example voxel

video objects; we write the coordinate sets of voxels comprising these video objects as

O and P.

Fitting the primary surface

We begin by fitting the “primary” surface. This is accomplished in a manner similar

to Section 8.2.3, using Williams’ relaxation algorithm to fit a 2D parametric surface

to the voxels which represent the interface between the two video objects. Internal

parameters α′, β, γ, ζ and η are set as described in Section 8.2.3, as we desire similar

geometric properties in our fitted surface. However a new function f(.) is substituted

for the external energy term (see equation 8.6), which determines error between the

3Read “subtraction” in the context of binary constructive solid geometry (CSG). For example if
two objects are represented by sets of voxels A and B, then A subtract B may be written as A \ B.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 199

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	�

�	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	��	�	�	�	�	�

Base Surface Q(s,t)Stroke Surface

x

y

z

s

t

Polygonal regions in (s,t)

Figure 8-8 Stroke Surfaces are represented as a primary parametric surface Q(s, t) ∈ <3,

minus a collection of one or more polygonal regions in space [s, t] ∈ <2 which describe
“holes” in that surface.

fitted surface and the data:

Given two voxel video objects O and P, we compute a distance field | ~OP| ∈ <3 from

each voxel in O to the nearest voxel in P. Likewise we compute field | ~PO| ∈ |<3 from

each voxel in P to the nearest voxel in O. We generate a field F = min(| ~OP|, | ~PO|).
The manifold F = 0 now represents the interface between O and P, and points in

field F encode distance from this interface. We wish to fit our surface to the manifold

F = 0. Thus F forms the basis of the external function f(.), which measures distance

between points on the surface, and the interface to which that surface is to be fitted.

The distance field F is also useful later to identify “holes” within this fitted, primary

surface (see next subsection).

All that remains is to define an initial estimate for the surface control points. We thresh-

old field F at a distance of one voxel, and apply standard morphological thinning [182],

to obtain a field F ′. The binary voxel map that results is a good approximation to the

manifold F = 0. We sub-sample the voxels upon this manifold at equal temporal in-

stants, and at equal spatial arc-length increments, to establish initial estimates for the

control points. An optimal configuration of surface control points is then sought using

Williams’ algorithm, and so the primary surface Q(s, t) is fitted. We re-parameterise s

and t to be normalised arc-length parameters, using standard methods (linear approx-

imation, see [51]).

Fitting holes within the primary surface

We wish to find the set of polygons in space [s, t] ∈ <2, which describe holes within the

interior of the primary surface Q(s, t). Recall that these are the regions which do not

lie on the interface between video objects O and P. We sample the field F (Q(s, t)) to

create a 2D scalar field which denotes distance to the video object interface at point

(s, t); i.e. the error in the fit of the primary surface Q(s, t). In cases where (s, t) does

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 200

not lie close to the interface of video objects O and P, then F (Q(s, t)) will be large.

We threshold this field to obtain a collection of connected binary components which

correspond to regions of Q(s, t) which do not lie on the interface. We obtain the chain

codes [52] of the external boundaries of each component, and use a standard chain code

vectorisation technique [119] to obtain a polygonal description of each region.

Each Stroke Surface is thus represented as a single functionQ(s, t) (encoded in piecewise

bi-cubic form), and a series of 2D polygonal regions which describe “invalid regions”

of the parameter domain [s, t] ∈ <2. We store the complete set of Stroke Surfaces

for the video as one half of the IR. Each stroke surface holds an additional winged

edge structure which contains two pointers corresponding to the two objects which it

separates (one for each normal, Figure 8-7). These pointers reference records in the

counter-part database, as we now describe.

8.3.3 Counter-part Database

A database is maintained as the second half of the IR, containing one record per object

in the video volume. This counterpart database is referenced by the pointers held in the

Stroke Surfaces’ winged edge structure, and encapsulates the object association graph

created by the region association process (Section 8.2.2), as well as various graphical

attributes about each object at each frame of its existence. We now briefly summarise

the information stored in the counterpart database, describing how the database is

populated with this information in the next subsection (Section 8.3.4).

For each temporally convex video object (referenced by the Stroke Surfaces), the

database maintains a record containing the fields:

1. Born: The frame number (B) in which the video object comes into existence.

2. Died: The frame number (D) in which the video object determines.

3. Parent object list: A list of video objects which have either split, or merged

with other video objects, at time B to form the current video object. If this list

is empty, the video object “appeared” as a novel feature in the sequence — all

video objects in frame 1 will have be born in this manner, as will any regions

which were segmented in a frame but were too different to be associated to any

regions in previous frames (these often appear just after an occlusion).

4. Child object list: A list of video objects which the current video object will

become one of (possibly many) parents for at time D. If this list is empty, the

video object simply disappears (possibly due to occlusion, or because the end of

the video sequence has been reached).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 201

time

y

x

Figure 8-9 A visualisation (left) of the Stroke Surfaces generated from the SHEEP se-
quence (upper right), which when intersected by the a time plane generate a coherent
segmentation (lower right). Observe how a single video object, for example the sheep’s
body, may be described by multiple Stroke Surfaces; in the example of the sheep’s body
these are the blue surface meeting the background object, and the red surface meeting the
head object (see videos/sheep source and videos/sheep flatsegment).

5. Colour list: A list of B − D + 1 RGB colour vectors which encode the mean

colour of the region in the original video, during each frame of the video object’s

existence.

6. Homography list: A list of B − D + 1 3 × 3 matrices which describe the

projective transform mapping the texture within the region, at each frame of the

video object’s existence, to the texture within the region in the previous frame.

The first element in this list is the identity matrix, and is redundant.

7. Shading list: A list of B−D+ 1 triples, containing the linear gradient shading

parameters described in Section 8.3.4.

Attributes (1-4) encode the object association graph generated by the region association

process of Section 8.2.2). Attributes (5-7) encode graphical information for each time

instant t (B ≤ t ≤ D) useful to the back end during rendering. This signal in these

graphical attributes is low-pass filtered (smoothed) over period [B,D] by the front

end to improve temporal coherence within the animation. For clarity of reading, we

have deferred justification of this smoothing process to Section 8.4.2 of the back end,

where the benefits of smoothing are more easily demonstrated in the context of cartoon

flat-shading.

8.3.4 Capturing Interior Region Details in the Database

We begin by computing the mean colour of each region for each frame of the video.

This information is stored in the respective video object record of the counterpart

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 202

database. At this stage in our explanation, each feature within the video is therefore

stored in our representation only in terms of a series of linked, coherent spatiotempo-

ral object boundaries and their mean interior colours. This is sufficient to recreate a

basic, flat shaded animation, but can prove insufficient to render some artistic styles

— the internal texture that has been abstracted away often forms perceptually impor-

tant visual cues (for example, the cross-hatching marks sketched by artists to represent

illumination, and so depict depth in a scene). We now describe two approaches we

have developed to introduce internal detail into the animation in a temporally coher-

ent manner.

First, we fit a linear shading gradient to each object on a per frame basis. The gradient

at time t over an object may be described as a triple Gt = [g0, g1, θ], where g0 and g1

are the start and end shading intensities respectively, and θ specifies the direction of

shading over the region (as an angle). An optimal Gt is computed by a search [114]

aiming to minimise the error E(.):

E(Gt, Ft) =
1

|P |
∑

p∈P

|I(Gt)− Ft|2 (8.7)

Where I(Gt) is a image created from the gradient tripleGt, using the hue and saturation

components of the object mean colour from the database and varying the luminance

as defined by Gt. Ft is the video frame at time t, and P is the set of pixels inside the

object region at time t. The application of this gradient alone, when rendering, can

dramatically improve the sense of depth in an image (Figure 8-14).

Second, images of the original object in a small temporal window around t are dif-

ferenced with the optimal I(Gt); the result is a difference image containing the detail

thus far abstracted away by our representation. We pass these images through our

salience measure (described in Section 3.2), which correlates salience and rarity; these

maps indicate the salient marks in the interior of the region. We form a local motion

estimate for the object over the temporal window by assuming the object to be ap-

proximately planar, and so its motion relative to the camera to be well approximated

by a homography. Object regions over the window are projected to the reference frame

of the object at time t. A initial degenerate estimate of the homography is obtained

by taking the 2nd order moments of the two regions. This estimate is then refined

using a Levenburg-Marquadt iterative search to minimise mean square pixel error be-

tween the interiors of the regions, using an identical optimisation approach to that

described in Section 6.3.1. The computed salience maps are projected by homography

to the reference frame at t, and averaged to form a final map. This results in the

suppression of sporadic noise and reinforcement of persistent salient artifacts (under

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 203

Figure 8-10 Left: Early experiments applied to a synthetic (bouncing spheres) test scene
represented each video object individually in the IR by means of the individual bounding
surfaces. This led to duplication of surface information, causing boundaries to no longer
appear coincident following surface manipulation (for example after creating the sketch
rendering effect described in Section 8.4.4). This led to unappealing artifacts such as
the double edges between spheres (2nd image set on left). Right: Our IR now represents
video objects by means of their interfacing surfaces (Stroke Surfaces), which do not create
artifacts such as double edges or holes when they are manipulated in the video volume.

the assumption that noise obeys the central limit theorem). We threshold the map,

and apply morphological thinning. Stroke Surface patches are then fitted around each

disconnected artifact as before. Finally, the patches are transformed to their original

reference frames via the inverse homographies used to generate the map.

One shading gradient triple Gt and a homography are stored in the supplementary

database, per frame of the video object. The homographies are of additional use

later for rotoscoping and stroke based rendering. The new interior Stroke Surfaces are

added to those of the existing representation, but with both sides of their winged edge

structure set to point to the video object in which they originated. Thus interior edge

markings are also encoded in our representation.

8.4 Back end: Rendering the Representation

We now describe how the IR is rendered by the back end, to produce animations in a

variety of artistic styles.

Stroke Surfaces are first duplicated to produce two sets; one for the interior shading

stage, and one for the line rendering stage, of the back end (Figure 8-7). These sets of

surfaces may then be manipulated in some manner; for example, fine scale temporal

smoothing may be applied to boost temporal coherence, or novel frequency components

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 204

introduced to the surfaces to create “coherent wobbles” (Section 8.4.1).

To render a particular frame at time t, the sets of Stroke Surfaces embedded in the

video volume ([x, y, z] ∈ <3) are intersected with the plane z = t. The frame is then

rendered in a two stage process comprising: 1) shading of the object’s interior region

(processing the first set of surfaces); 2) rendering of the object’s outline (referred to by

animators as the holding line) and any interior cue lines also present (processing the

second set of surfaces) . This separation allows us to create many novel video effects,

such allowing interior shading to spill outside of the holding lines.

The remainder of this section is organised as follows. We first describe how Stroke

Surfaces may be smoothed, or otherwise manipulated in frequency space, to create

a number of temporal effects (subsection 8.4.1). We then describe how interior re-

gions bounded by these surfaces are rendered, by drawing on data in the graphical at-

tributes in the database component of the IR (subsection 8.4.2). Rotoscoping, matting

and stroke based AR styles are also obtainable within this single framework (subsec-

tion 8.4.3). Finally, we describe the mechanism for rendering holding and interior lines

in the animation (subsection 8.4.4).

8.4.1 Surface Manipulations and Temporal Effects

The representation of video as a set of spatiotemporal Stroke Surfaces simplifies manip-

ulation of the image sequence in both spatial and temporal domains, and enables us to

synthesise novel temporal effects which would be otherwise difficult to produce on a per

frame basis. In this subsection we describe a method for manipulating the geometry of

Stroke Surfaces in frequency space. We show that by applying a low-pass filter in the

temporal dimension we may further improve temporal coherence, and by introducing

novel frequency components we can produce coherent “wobbles” in the video remi-

niscent of popular commercial cartoons, for example “Roobarb and Custard” [Grange

Calveley, 1972].

Planar offset parameterisation

We now describe our mechanism for manipulating a Stroke Surface Q(s, t) to produce

small scale deformations, and so create spatiotemporal effects in the animation. We

subsample the fields s ∈ [0, 1], t ∈ [0, 1] at equal, user defined intervals, to obtain a grid

of well distributed points on the manifold Q(s, t). By creating a simple 3D triangular

mesh using these regular samples as vertices (see the geometry of Figure 8-11), we are

able to create a piecewise planar approximation to Q(s, t), which we write as P (s, t).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 205

z
y

x

Q(s,t)

P(s,t)

E(s,t) = Q(s,t) − P(s,t)

Figure 8-11 The planar offset parameterisation E(s, t) is derived by differencing corre-
sponding points on the Stroke Surface Q(s, t) with those on a piecewise planar approxi-
mation to the surface P (s, t). P (.) is created by sub-sampling and linking points on the
manifold of Q(.).

The error (offset) of this approximation is:

E(s, t) = Q(s, t)− P (s, t) (8.8)

Suppose we now hold P (.) constant, and allow manipulation of the offset field (we write

the modified field as E ′(.)). We obtain a modified Stroke Surface:

Q′(s, t) = P (s, t) +E ′(s, t) (8.9)

In our framework we allow manipulation of E ′(.) through variation of a 2D scalar field

S(.):

E′(s, t) = S(s, t)
E(s, t)

|E(s, t)| (8.10)

The identity in this framework is S(.) = |E(.)|. However alternative S(.) are possible,

and variation of this field forms the basis for temporal effects in our framework.

To maintain continuity between neighbouring Stroke Surfaces we must reduce the mag-

nitude of any deformations local to the surface’s boundaries (both the external surface

edges where either s or t are close to 0 or 1, and around the edges of any internal hole

within the Stroke Surface). We define a 2D field of weights in (s, t) space by producing

a binary map of these internal and external boundaries and performing a 2D distance

transform. We then raise values in this field to a user defined power ϕ and normalise

to obtain the weight field, which we write as W (s, t). Parameter ϕ may increased

by the animator to decrease the apparent rigidity of the Stroke Surface during these

deformations. We revise equation 8.9 to weight any change in Q(s, t) by W (s, t) :

Q′(s, t) = P (s, t) + (1−W (s, t))E(s, t) +W (s, t)E ′(s, t) (8.11)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 206

Frequency manipulation of the offset field

Manipulation of the 2D field S(s, t) is performed in the frequency domain by defining

a complex transfer function T (C2) such that:

S′(.) = F−1[T (F [S(.)])] (8.12)

where S′(.) is the modified scalar field, F [.] and F−1[.] specify the standard and inverse

discrete Fourier transforms respectively, and T (.) is a general 2D transfer function

which maps a 2D complex field to some other 2D complex field. The user is free to

develop custom transfer functions, however we now give two useful examples:

1. Temporal Smoothing:

We can apply a low-pass filter S(.) to remove any high frequency undulations

in the temporal dimension of the surface. A standard method to achieve this is

through convolution with a Gaussian of user defined size σ, i.e. the following

multiplicative transfer function in the frequency domain:

Tsmooth(F ;u, v) =
F (u, v)√

2πσ
e−

v−d

2σ2 (8.13)

where F [u, v] specifies a component in the 2D Fourier domain, and d is a scalar

such that the line v = d intersects the coordinates of the d.c. component in

F [u, v]. Depending on the implementation of the discrete Fourier transform, d

may be located at zero or at the centre of the v axis.

2. Coherent Wobbles:

We are able to introduce controlled wobbles and distortion effects by perturbing

Stroke Surfaces, producing a distinctive pattern of incoherence in the animation.

Such effects are easily generated by introducing several impulses in the frequency

domain. The ith impulse is defined by a randomly generated triple [fi, ai, ωi]; fi

is the frequency of the wobble effect; ai is the amplitude of the effect; ωi is the

angular speed of the effect (the rate at which crests and troughs in wobble appear

to “rotate” around a region’s perimeter over time). We write the modified signal

as:

T (F [x]) = F [x] + J(x) (8.14)

where F [x] represents a the frequency component x = (u, v)T in the 2D Fourier

domain, and J(x) the field containing impulses:

J(x) =
n
∑

i=1

{

ai if |x− (D + νi)| = 0

0 otherwise
(8.15)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 207

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

t

s

S
’(s

,t)
−

S
(s

,t)

Figure 8-12 Not only can we enforce temporal coherence, but also introduce novel
forms of incoherence. Left: example of a coherent wobbling effect in the gradient shaded
POOHBEAR animation (videos/pooh wobblygradshade). Middle: A example still from
SHEEP demonstrating how the animator may transform one set of Stroke Surfaces (used
to render holding and interior lines), yet leave the surfaces for interior regions unaffected
(videos/sheep wobblycartoon). Right: A visualisation of the random displacement field
(S′(.)− S(.)) for a single Stroke Surface from POOHBEAR.

introducing the notation F [D] to specify the d.c. component in the Fourier

domain, and n as the total number of impulses. Inside the summation, the term

νi is defined as:

νi =

[

cosωi − sinωi

sinωi cosωi

][

fi

0

]

(8.16)

This mechanism creates smooth, periodic displacements in the 2D signal S(.).

This in turn produces smoothly varying undulations upon the Stroke Surface. As

a result the wobbles of region boundaries appear to move coherently over time in

the animation.

Since adjacent objects are represented in terms of their interfacing surfaces, residual

temporal incoherences in those boundaries may be dampened by smoothing the sur-

faces. There is no danger of introducing “holes” into the video volume as with the

coarse smoothing step (Section 8.2.3) — if volume is lost from one video object, it is

gained by surrounding video objects. Similar consistency applies to all temporal effects

created by this mechanism.

Figure 8-12 contains stills from animations produced using the second of these transfer

functions, demonstrating that a simple periodic displacement function over Stroke Sur-

face patches can produce dramatic and novel temporal effects in the animation. The

random displacement field S ′(.)− S(.) for a single Stroke Surface in the POOHBEAR

sequence has has also been visualised.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 208

8.4.2 Rendering the Interior Regions

The process of intersecting the plane z = t with the spatiotemporal Stroke Surfaces in

the IR produces a series of splines which are scan converted into a buffer. Bounded

regions in this buffer correspond to the interiors of video objects. In this section we

describe how these interior regions are rendered to form part of the animation.

For a given region, we begin by determining exactly which video object that region is

a “slice” of. This information is obtained by examining the the winged edge structures

attached to the bounding Stroke Surfaces. Thus each region inherits a pointer refer-

encing a record in the database component of the IR, which contains all the rendering

information about that region at time instant t. This information may be used to

render regions in a number of artistic styles.

Cartoon-style Flat Shaded Animations

Arguably the most straightforward strategy for rendering a region interior is to flat

shade with a single, mean colour computed over that region’s footprint in the original

video. Recall that the front end recorded this colour information (at each time instant)

in the database component of the IR. The cartoon-like “flat shading” effect that results

goes some way to satisfying the second (shading) sub-goal of our original motivation —

the automated generation of cartoons from video. However as video objects divide and

merge over the course of the clip, the mean colour of their imaged regions can change

significantly from frame to frame (perhaps due to shadows). This can cause unnatural,

rapid colour changes and flickering in the video (see the left hand skirting board in

Figure 8-13).

Thus, it is not enough to obtain temporally smooth segmentation (Stroke Surface)

boundaries in an animation. One must also apply shading attributes to the bounded

regions in a temporally smooth manner. The flickering of region colour we demonstrate

is symptomatic of the more general problem of assigning the graphical attributes stored

in the IR database, to regions in a coherent way. We draw upon our spatiotemporal rep-

resentation to mitigate against this incoherence — specifically, by smoothing database

attributes over time, as previously alluded in Section 8.3.

Smoothing Database Attributes

Recall that objects are associated via a graph structure; pointers to each video object’s

child and parent objects are stored in the database component of the IR. We analyse

this graph to obtain a binary voxel map describing the union of all video objects within

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 209

b)

a)

Figure 8-13 Demonstrating the temporal coherence of our cartoon-style flat shading.
Top: Temporal incoherence (highlighted in blue), in the form of flickering colour, is caused
by shading on a per frame basis (videos/pooh incoherentshade). Bottom: Our spa-
tiotemporal representation allows us to mitigate against these incoherences by smoothing
attributes, such as colour, over the video volume (videos/pooh coherentshade). Right:
A volume visualisation of the left hand skirting board, comprised of a four associated video
objects. Smoothing attributes with respect to this, and other volumes in the sequence,
improves temporal coherence.

the subgraph containing the video object corresponding to the region being rendered.

By averaging graphical database attributes (5-7, see Section 8.4.2), such as colour, over

the volume we can create a smooth transition of those attributes over time (even if

objects appear disjoint in the current frame but connect at some other instant (in the

past or future). Such coherence could not be obtained using the per frame sequential

analysis performed by current video driven AR methods [75, 96, 103].

The size of the temporal smoothing window is defined by the user; the larger the

window size, the smoother the transitions of attributes over time; but consequently,

rapid motions or lighting changes may not be reproduced faithfully in the animation.

The animator thus varies the temporal window size until they are satisfied with the

result — typical window sizes range between five and ten frames.

Gradient Shaded Animations and Morphological effects

We observed in Section 8.3.4 that the highly abstracted nature of a flat shaded video

can be unappealing for certain applications; artists often make use of shading and cue

marks to add a sense of lighting and depth to a scene. We can augment the flat shaded

regions by rendering the gradient shading attributes fitted earlier, smoothing the pa-

rameters in a similar manner to colour to ensure coherence (Figure 8-14). Interior line

cues may also be added by rendering the interior Stroke Surfaces of the object (Fig-

ure 8-17) although the rendering of such cues occurs later in the line rendering stage

(Section 8.4.4).

We are also able to apply morphological operators to interior regions, prior to rendering.

Figure 8-18 demonstrates a water-colour effect (combined with a sketchy outline — see

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 210

Figure 8-14 Examples of the temporally coherent flat shaded (top) and linear
gradient shaded (bottom) interior rendering styles available in our framework (see
videos/bounce flatshade, videos/bounce gradshade).

Section 8.4.4 for details), in which we have applied an erosion operator to the region

prior to rendering; this gives the aesthetically pleasing impression of brush strokes

stopping “just short of the edges”. The effect is coherent over time (see Appendix

C, videos/pooh watercolourwash). The water-colour wash texture was produced via

multiplication of pixel values with pre-supplied texture map.

8.4.3 Coherent Reference Frames and Stroke Based Rendering

The labour saving technique of “rotoscoping” was pioneered by cartoonists in the late

1930s, and was instrumental in the production of Disney’s first feature length animated

movie “Snow White” [Disney, 1937] — we refer the reader to Section 2.5.2 for further

examples of rotoscoping. Traditionally, rotoscoping is the manual tracing over pho-

tographs, or film stills, to produce the stylised cels of an animation [169].

As with rotoscoping, AR algorithms draw over photorealistic footage to produce stylised

output. In this sense, we argue that image-space static AR methods (for example stroke

based renderers [27, 71, 103] or adaptive textures [65]) may be considered a form of

modern day rotoscoping. This parallel between AR and rotoscoping is of further rele-

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 211

vance to video driven AR when one considers that both share a common objective; to

produce stylised animations from video in which motion is coherent with the motion

of the underlying source image sequence.

In this subsection we demonstrate that rotoscoping, video matting, and static AR can

be unified in a single framework to produce temporally coherent animations from video.

Our system creates temporally coherent motion estimates of image regions, requiring

only a single key-frame to produce rotoscoping effects. The same framework may be

used to place coherently moving brush strokes on image regions, enabling us to produce

AR animations automatically from video.

Reference Frames and Rotoscoping

Recall the local motion estimate for video objects computed in Section 8.3.4, and stored

in the database component of the IR. This estimate models inter-frame motion as a

homography, and was previously used to create correspondence between region texture

in adjacent video frames to enable recovery of internal edge cues. However this same

motion estimate may be used to to implement automated rotoscoping in our framework.

Animators draw a design, and attach it to a key-frame in the original footage. The inter-

frame homography stored in the IR database is then used to automatically transform

the design from frame to frame — the design remains static within the reference frame

to which it is attached; it appears to be rigidly attached to the video object. Figure 8-15

demonstrates the attachment of this rigid frame using a synthetic chequerboard pattern.

There are many useful applications for this automated rotoscoping; for example, to add

personality to an animation by rotoscoping an expression on to a face (Figure 8-15,

bottom). Such rotoscoping is particularly useful in our Video Paintbox, since small

scale features such as eyebrows or mouths sometimes fail to be captured by the region

segmentation and association processes of the front end.

Video Matting

As a special case of rotoscoping, we may set the inter-frame homography estimates

for a region to the identity matrix (implying no region motion). By supplying these

regions with video as a texture, rather than hand-drawn animations, we are able to

replace shaded video objects with alternatively sourced video footage. This facilitates

video matting within our framework, as we demonstrate in Figure 8-15 (top right) by

substituting a novel background into the SHEEP sequence. We can also use the source

video footage itself as a texture, and so reintroduce photorealistic objects from the

original video back into the non-photorealistic animation. This technique produces the

“mixed media” effects demonstrated in Figure 8-2 (videos/bounce mixedmedia).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 212

Figure 8-15 Rotoscoping and matting effects are possible within our AR video frame-
work. Top left, middle: Rigid reference frames are attached to individual video objects via
inter-frame homography (demonstrated here by a synthetic chequerboard pattern which
moves coherently over time — videos/sheep refframe, videos/bounce refframe). Top
right: The attached reference frame allows us to place markings such as illustrations, upon
an object, and have those markings appear to move with the object: a form of automated
rotoscoping. We may also substitute video objects (for example the background) for al-
ternative textures to create matting effects videos/sheep rotomatte. Bottom: A further
example of rotoscoping, applying a new facial expression in the POOHBEAR sequence
(videos/pooh angrybear). Observe the green crosses on the chequerboard pattern; these
symbolise the paint strokes which we may also attach to reference frames to produce co-
herent painterly effects (videos/pooh refframe). Rotoscoping and stroke based AR are
closely related in our rendering framework.

Note that all the effects described in this subsection require external information in

addition to that stored in the IR — specifically, access to the relevant video source,

image, or animator supplied illustration depending on the effect desired.

Coherent Stroke Based Rendering

Using a similar principal to rotoscoping, we are able to extend static, image-space AR

methods to operate over video with a high level of temporal coherence. We observed

(Section 8.1) that temporal coherence requires that:

1. Strokes should move in a manner consistent with the video content.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 213

2. Strokes should not exhibit rapid fluctuations of their visual attributes, for example

colour.

The first of these criteria may be met by rigidly attaching strokes to the local reference

frames of video objects. From the viewpoint of the user, this causes stroke locations to

exhibit motion matching that of the object to which they are attached. In this manner,

strokes move coherently over time (see the green stroke centres in Figure 8-15). The

reference frame attached to a video object defines a 2D plane of infinite extent, on which

we place brush strokes. We subsample the plane at regular spatial intervals, to create

potential locations for brush stroke centres. Strokes are instantiated at locations upon

the sub-sampled plane when a potential stroke centre moves within the “footprint” of

a video object — the region generated by intersecting the video object with the time

plane at a given instant. We have found that, in contrast to rotoscoping, the full eight

degrees of freedom of the homography are superfluous to needs when produced stroke

based AR animations. A minimum least-squares error affine approximation to the ho-

mography produces aesthetically superior results.

The second criterion may be met by smoothing the visual attributes of strokes over

time, in a similar manner to how visual database attributes in the IR are smoothed.

Visual attributes, such as colour, are assigned to instantiated strokes; as with static

AR, these attributes are functions of pixel data in the neighbourhood of the stroke’s

centre. These attributes are updated from frame to frame by re-sampling image data,

causing the visual attributes of strokes to adapt to the video content. However, the

state of attributes are also functions of their state in past and future time instants. The

nature of this function is to constrain the values of attributes to evolve smoothly over

time, so mitigating against stroke flicker. Once instantiated, a stroke is never destroyed

— a record of the stroke’s attributes persists for the remainder of the video sequence,

even if the stroke moves out of the bounds of the footprint and becomes invisible. This

retention of stroke attributes helps reduce flicker caused when strokes move repeatedly

in and out of a footprint. However, note that visibility itself is one of many attributes

assigned to strokes, and is therefore smoothed such that strokes do not rapidly alter-

nate their visibility, but appear and disappear over lengthy time periods.

We now give an illustrative example of our coherent, stroke based rendering process by

extending our pointillist painterly rendering technique of Chapter 3 to video.

Recall that each brush stroke in the painterly method of Chapter 3 formed a z-buffered

conic of superquadric cross-section. Each stroke has seven continuous visual parame-

ters:

1. α – Superquadric form factor

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 214

2. a – Aspect ratio of stroke

3. b – 1/a

4. θ – Orientation of stroke

5. h – Height of stroke in z-buffer (implicit ordering of stroke)

6. c – Colour of stroke (an RGB triple)

7. r – Scale factor of superquadric base

In addition to these parameters each stroke also has two further attributes:

8. (x, y)T – the 2D location of the stroke’s centre, relative to the video object’s

reference frame.

9. v – a continuous “visibility” value v = [0, 1], where a value of v ≥ 0.5 implies

that the stroke is visible (i.e. should be painted)

The collection of attributes (1-9) represents the complete state of a stroke (written as

a vector, St) at some time offset t from that stroke’s creation. Upon instantiation (at

t = 0) we construct S0 as follows. Attributes 1-7 are determined from the footprint

texture, in exactly the same manner as described in Chapter 3. Attribute 8 (location)

is determined by the stroke’s location on the reference frame, and is constant relative

to this reference frame for the duration of the video. Attribute 9 (visibility) is set to 0.5.

At later instants (t > 0) we produce a vector of updated stroke attributes S t in a

similar manner. Attributes 1-6 are sampled from the footprint texture at time t. A

value “ρ” for attribute 7 (scale of base) is determined as before, but modified to take

into account any scaling applied to the reference frame. This is necessary, since if the

reference frame is scaled up by a large factor, then the fixed, regular spacing of stroke

could cause unpainted gaps to appear in the canvas. The scale component “s” of the

affine transformation applied to the reference frame can be obtained using SVD (s is a

product of the eigenvalues, computed for the transformation’s linear component). The

value r for attribute 7 is simply r = ρs. Attribute 8 is a constant, and so simply copied

from time St−1. Attribute 9 is set to 0 if the stroke’s centre is outside the footprint, or

1 if it is inside.

The state of each stroke St is computed for all t, prior to the synthesis of any ani-

mation frames. To mitigate against stroke flicker, for example small, rapid changes in

colour or visibility due to video noise, we smooth each stroke’s attributes over time by

independently low pass filtering each component of the signal St. By default we use a

Gaussian with a standard deviation of 3 frames, but allow the user to override this if

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 215

Figure 8-16 Illustrating the coherent painterly effect produced by extending our
pointillist-style painting algorithm (Chapter 3) to video. We have used false colour to
illustrate the coherence of individual strokes within the animation, however the reader is
referred to Appendix C where complete animations demonstrating this effect have been
included.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 216

desired. For example, smaller scale filters could be used where stroke visual attributes

must change at a faster rate — in these cases, rapid attribute changes are due to video

content rather than video noise.

Implicit in our decision to perform temporal smoothing on stroke attributes is the as-

sumption that video noise obeys the Central Limit Theorem. As the temporal window

over which we integrate increases, signals will be reinforced and sporadic noise will

be cancelled out. Similar assumptions regarding video noise have been by others; for

example Capel [13] registers and averages video frames to achieve noise reduction in

video surveillance images.

Rendering strokes with their smoothed attributes yields painterly animations exhibiting

a uniquely high level of temporal coherence. Figure 8-16 gives examples of painted

output generated by our system, including visualisations of strokes in false colour,

where attribute 6 (colour c) was fixed at a random, constant value for the duration of

the sequence. The reader is referred to the source videos and corresponding painted

animations available in Appendix C which demonstrate the temporal coherence of our

algorithm. We compare our approach with the state of the art in video painting [103],

in Section 8.6.

8.4.4 Rendering the Holding and Interior Lines

Having concluded our explanation of interior region rendering, we now describe the

edge rendering process of the back-end. Recall the surface intersection operation by

which we determine the Stroke Surfaces to be rendered a particular frame. The splines

which result from this intersection form trajectories along which we paint long, flowing

strokes, which are stylised according to a user selected procedural AR brush model.

This produces attractive strokes which move with temporal coherence through the video

sequence; a consequence of the smooth spatiotemporal nature of the Stroke Surfaces.

We have used an implementation of Strassman’s hairy brush model [150] (Section 2.2.1)

to render our splines, producing thick painterly strokes to depict the exterior (holding)

lines of objects (Figure 8-17, left).

Brush models (for example, Strassman’s model) often invoke a stochastic process to

simulate effects such as brush bristle texture. Without due care this non-determinism

can cause swimming in the animation. Such models require only the illusion of ran-

domness for aesthetics, and we have found that seeding the pseudo-random number

generator with a hash of the unique ID number of a stroke surface is a convenient way

of creating “reproducible” randomness for the duration of a Stroke Surface patch; a

simple manifestation of a “noise box” [51].

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 217

Figure 8-17 Examples of various line rendering styles available in our system. Left:
Thick painted brush strokes generated by sweeping Strassman’s [150] brush model over
spline trajectories produce by intersecting a time plane with Stroke Surfaces in the WAVE
sequence. Middle: A sketchy effect applied to the same video, generated by duplicating,
shattering and jittering Stroke Surfaces prior to intersection. Each resulting splines has
been rendered using a fine brush tip. Right: Combining the thick brush tip style on
exterior cue (holding) lines (Stroke Surfaces with heterogeneous winged edge pointers)
and a thin brush tip style on interior cue lines (Stroke Surfaces with homogeneous winged
edge pointers).

The Stroke Surfaces whose intersection results in the spline strokes may be manipulated,

prior to rendering, to produce a number of effects. In Section 8.4.1 we described

a coherent wobbling effect that may be applied to both outline and interior Stroke

Surface sets. However, effects specific to line rendering may also be applied, as we now

explain.

Sketchy stroke placement

Artists often produce sketchy effects by compositing several light, inaccurate strokes on

canvas which merge to approximate the boundary of the form they wish to represent.

We may apply a similar, coherent, sketchy effect to video using a similar, two stage,

technique applied to our Stroke Surfaces.

Stroke Surfaces are first shattered into many smaller individual Catmull-Rom [14] bi-

cubic patches (Figure 8-18). The spatial and temporal intervals for this fragmentation

are user parameters through which the appearance of the final animation may be in-

fluenced; small spatial intervals create many small sketchy strokes, and very large

temporal intervals can create time lag effects. Each of these bi-cubic patches becomes

a stroke in its own right when later intersected and rendered.

Second, each bi-cubic patch is subjected to a small “jitter” — a random affine transfor-

mation M — to introduce small inaccuracies in the positioning of patches. Specifically:

M = T (τ)T (−c)S(σ)R(ρ)T (c) (8.17)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 218

0

50

100

150

200

0
50

100
150

200
250

300
0

5

10

15

20

25

30

XY

ti
m

e

50

100

150

200

160180200220240260280300320
1

2

3

4

5

6

7

8

X
Y

tim
e

Figure 8-18 Left: A test sequence of bouncing spheres is segmented (top left). We
visualise the Stroke Surface about one sphere, prior to (bottom left), and following (top
right) surface shattering; we approximate surfaces here with piecewise linear patches for
ease of visualisation. When shattered patches are intersected, coherent sketchy effect is
formed (bottom right). Right: A still from a coherent animation produced from the
POOHBEAR footage. Here the sketch effect on the holding line has been combined with
a watercolour wash on the interior (videos/pooh watercolourwash).

where:

T (x) =

[

I x

0 1

]

, R(θ) =













cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1













, S(s) =













s 0 0 0

0 s 0 0

0 0 1 0

0 0 0 1













(8.18)

c is the centroid of the patch, and τ , σ, ρ are normal variates which control the jitter,

and are typically of low magnitude (the user is given control over their limits). Fig-

ure 8-18 gives a visualisation of the resulting, perturbed patches.

The bi-cubic patches are intersected with a time plane (z = t) as before, and the re-

sulting splines rendered with a fine tipped brush to yield a sketchy effect. Each stroke

is guaranteed to be coherent over its temporal extent, since it results from intersection

with a smooth bi-cubic patch embedded in the spatiotemporal volume. Finally, the

density of sketching may be increased by further duplicating the Stroke Surfaces prior

to shattering and jittering in the manner described.

It is a matter of artistic taste whether sketch lines should be re-sketched at a constant

rate for the duration of the video, or whether they should only be re-sketched as the

object moves. Currently our framework subscribes to the former point of view, but

could be easily modified to produce the latter. By substituting the normal variates

τ, σ, ρ for values picked from a noise-box parameterised by spatiotemporal location,

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 219

strokes would appear to be “re-sketched” only when the location of a Stroke Surface

changes i.e. during object motion.

Other line styles

We do not concern ourselves unduly with the stylisation of individual strokes. We defer

the problem of artistic media emulation to the literature, being concerned primarily

with stroke placement rather than stroke rendering. However we have found that

interesting results can be obtained by varying line weight according to some transfer

function. Some successful transfer functions we have experimented with vary the line

weight in proportion to:

• the maximum of the speed of the two objects it bounds.

• the maximum area of the two objects.

• the intensity gradient between the two objects.

The latter suggestion helps to mitigate against artifacts produced when a feature has

been over-segmented, leading to, say, a face broken into two features divided by a thick

black line. If there is little evidence for an edge in the image at that boundary, then

the stroke may be omitted.

Note that interior cue lines generated in Section 8.3.4 are naturally accommodated into

this framework, since they are simply further examples of Stroke Surfaces. Exterior

and interior lines can be easily discriminated if desired, by examination of the Stroke

Surfaces’ winged edge structure, and may be rendered in differential styles (see Figure 8-

17).

8.5 Interactive Correction

Feature sub-volumes may become over-segmented in the video volume, producing two

distinct graphs of video objects where one would suffice. This situation arises when the

initial segmentation algorithm consistently over-segments a feature over several video

frames, often because of local illumination variance, to the extent that the region asso-

ciation process does not recombine the over-segmented regions. Since Computer Vision

is unable to provide a general solution to the segmentation problem, such errors are

unavoidable in our system.

We therefore provide an interactive facility for the user to correct the system by merg-

ing video objects as required. This operation takes place directly after the region

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 220

b)

a)

c)

Figure 8-19 Users may create manual associations between objects to tune the segmen-
tation or composition. (a) User creates a physical link between over-segmented objects, a
single object replaces four. (b,c) User creates a semantic link between two objects. The
objects remain distinct, but associations are created in the object association graph; during
rendering attributes are blended between regions to maintain temporal coherence.

association and filtering process. Objects are linked by point-and-click mouse opera-

tions in a single frame, and those changes propagated naturally through to all other

frames in which the object exists (since objects are spatiotemporal in their nature).

We tend to bias the parameters to the EDISON [19] segmentation algorithm (see front

end, Section 8.2.2) slightly toward over-segmentation, since over-segmentation is much

more easily resolved via merging objects, than under-segmentation (which introduces

the complicated problem of specifying a spatiotemporal surface along which to split

video objects). The user may form two types of corrective link:

1. Soft Link:

The animator semantically links two objects by creating edges in the object as-

sociation graph. Objects remain as two distinct volumes in our representation,

but the graph is modified so that any smoothing of graphical attributes (such

as region colour) occurs over all linked objects (see Figure 8-19b,c). This type

of link is often used to encode additional, semantic knowledge of the scene (for

example, the continuity of the skirting board in Figure 8-19b).

2. Hard Link:

The animator physically links two adjacent video objects by merging their voxel

volumes. The objects to be merged are deleted from the representation and

replaced by a single object which is the union of the linked objects (see Figure 8-

19a). This type of link is often used to correct over-segmentation due to artifacts

such as shadow, or noise, and is preferable in this respect to “soft” linking, since

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 221

the merged volume will undergo subsequent coarse smoothing as a single video

object.

Interactive correction can also be used to control focus in the composition, for example

by coarsening the scale of chosen region in the video; this is similar to the process driven

automatically by our salience measure in the painterly rendering of Chapter 3. In the

future we would also like to drive this video process automatically using a perceptual

model.

Extensive correction of a sequence is rarely required, and correction itself takes little

time since one click can associate spatiotemporal objects over multiple frames. Simi-

larly, we allow the user to selectively chose rendering parameters for specific objects —

for example, in Figure 8-15 (top right) specifying a region should be photorealistically

matted rather than animated using the global specified settings. Again, such interac-

tion requires only a couple of mouse clicks to modify parameters for video objects, and

is a level of interaction which we wish to retain in our Video Paintbox to allow creative

direction of the artistic process by the animator.

8.6 Comparison with the State of the Art

The majority of artistic styles that may be synthesised by the Video Paintbox have no

parallel in the existing video driven AR literature; these techniques address only the

single, specific problem of producing temporally coherent painterly animations. This

improved diversity of style is one of the principal contributions of the Video Paintbox.

However, we also wish to demonstrate the contribution made due to the improvements

in temporal coherence available through our framework.

We begin by recapitulating and expanding on our description of existing video-driven

painterly algorithms, which make use of either inter-frame differencing (Section 8.6.1)

or inter-frame optical flow (Section 8.6.2) to improve temporal coherence. We then

perform a comparison (Section 8.6.3) between these and the technique we developed

in Section 8.4.3, which applied the coherent stroke based rendering component of our

proposed framework to produce painterly animations from video.

8.6.1 RGB Differencing

Hertzmann and Perlin [75] proposed a video-driven painterly technique which com-

putes the RGB difference between adjacent frames of video to locate regions of high

motion magnitude. Their contribution was to paint the first frame of video using

Hertzmann’s static technique [71], and then update, or “paint over”, regions with high

motion magnitude in the next frame. Recall that animations swim if each frame is

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 222

repainted individually. Hertzmann and Perlin thus attempt to localise swimming to

only the “moving” regions of the animation.

There is one clear advantage that this method holds over optical flow driven tech-

niques (Section 8.6.2). Real-time frame rates (reportedly up to 6 frames per second)

are possible on standard PC hardware, facilitating interactive applications. Without

specialised hardware, reliable optical flow estimation algorithms are still too slow to

facilitate real-time rendering. The same disadvantage applies to our artistic rendering

subsystem, primarily because of its high level temporal nature (examining both “past”

and “future” events in the video volume, rather than rendering on a per frame basis).

However there are three disadvantages to the frame differencing methodology:

1. First, although expedient to process, RGB differencing is a very poor method of

determining the motion magnitude of imaged objects in a scene. The approach

fails under varying lighting conditions, and assumes neighbouring objects are

highly contrasting. Slow moving objects are hard to detect, since the threshold

used to exclude small inter-frame differences caused by video noise, also exclude

low speed motions.

2. Second, there is no internal consistency of motion within an object, since motion

estimates are made on a per pixel rather than a per region basis — no higher level

spatial grouping is used to assist motion estimation (in contrast to the higher level

spatial analysis of our spatiotemporal method). As a result, moving flat-textured

objects tend to be detected as collections of moving edges with static interiors.

In Section 8.6.2 we will see that similar objections hold for optical flow.

3. Third, there is the problem discussed previously regarding the per frame sequen-

tial nature of processing. Errors in motion estimation accumulate and propagate

through subsequent frames. For example, a region of the video containing an

arm may move, but be misclassified as stationary by the differencing operation.

This leaves a “phantom image” of the arm at one location in the painting which

persists throughout the animation until something moves over the phantom arm’s

location causing “paint over” to occur again. The reduction in flicker is typically

at the cost of an inaccurate and messy painting.

Temporal coherence of painterly animations is improved using Hertzmann and Perlin’s

method, but only within static regions. Temporal coherence is not attainable within

moving regions, since these regions are repainted with novel strokes, laid down in

a random order. Unlike optical flow based methods [96, 103] it is not possible to

translate strokes with the video content, because frame differencing produces estimates

only for motion magnitude, rather than both magnitude and direction. Recognising

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 223

the improved accuracy (but non-interactive frames rates) of optical flow, Hertzmann

and Perlin describe how to adapt their system to use optical flow at the end of their

paper. This enables their system to be adapted for offline video processing.

8.6.2 Optical Flow

Litwinowicz [103] proposed the first optical flow driven painting algorithm for video4.

The algorithm paints short, linear brush strokes to produce a painterly effect on the

first frame of video. Brush strokes are then translated from frame to frame to produce

subsequent frames of animation. The vector field for the translation of strokes is de-

termined by an inter-frame motion field, computed using an optical flow technique [7].

As discussed in Chapter 5, the per frame sequential processing of video causes the

accumulation of large positional errors over time. This error is manifested either by

a rapid flickering, or by the motion and painted content of the animation becoming

non-representative of the underlying video.

Translation can cause dense bunching of strokes, or the density of strokes to thin caus-

ing holes to appear within the canvas (Figure 8-20, middle). Thus after the stroke

translation stage there is a further stroke density regulation stage. Strokes in areas

deemed too dense are culled at random, until the density falls below a preset “accept-

able” threshold. New strokes are inserted into sparsely populated regions until the

stroke density becomes acceptable. The order in which strokes are painted is preserved

between frames to mitigate against flickering. Any new strokes inserted into the se-

quence are “mixed in” with old strokes by inserting them at random into this ordering.

The principal advantage of the optical flow methodology is that the strokes move with

the content of the underlying video sequence — rather than moving regions being

repainted afresh, as with frame differencing. This yields a substantial improvement

in temporal coherence. However, there are also a number of disadvantages of this

methodology:

1. First, the non-determinism of the stroke insertion strategy (due stroke density

regulation) causes a significant level of flickering (Figure 8-20).

2. Second, the temporal coherence of the animation is only as good as the underlying

optical flow algorithm and, in general, optical flow algorithms perform poorly

on scenes exhibiting flat textures, occlusion, or lighting changes. No accurate,

general, optical flow algorithm exists since the task demands solution of an under-

constrained “correspondence problem”. The resulting errors accumulate over

4Kovacs and Sziranyi [96] published a similar optical flow driven algorithm some years later in the
Computer Vision literature (see Section 2.5.2 for a comparison of this and Litwinowicz’s algorithm).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 224

Figure 8-20 Identical frames four seconds into the BOUNCE sequence rendered with our
technique (right) and SoA (left, middle). The errors that have built up in the cumulative
optical flow estimate at this stage cause large scale distortion and flickering in the image.
We have omitted the stroke density regulation stage (SoA-) in the left-hand image; this im-
proves temporal coherence. However large holes are created in the canvas (red circle), and
elsewhere tight bunching of strokes causes the scene to tend back toward photorealism. The
reader is referred to the videos in Appendix C where the improved aesthetics and tempo-
ral coherence of our method are clearly demonstrated (see videos/bounce painterly SoA,
videos/bounce painterly SoA- and videos/bounce painterly ourmethod for left, mid-
dle and right respectively).

time, as a consequence of the per frame sequential processing model employed.

After only a short while (around 1 or 2 seconds depending on video content) this

causes a gross disparity between source video and animation in terms of both

content and motion.

3. Third, as with RGB differencing the motion of each brush stroke is estimated

individually. No higher level spatial grouping of strokes into semantic regions is

performed which could be exploited to improve temporal coherence (for example,

to ensure consistency of stroke motion within a single object).

8.6.3 Comparison Methodology

The intended application of our Video Paintbox is as a post-production video tool; real-

time frame rates are not required. Thus for our application, the more accurate optical

flow methodology (rather than RGB differencing) is regarded as the current state of the

art. We have implemented Litwinowicz’s optical flow driven algorithm [103] (hereafter

referred to as “state of the art”, or “SoA”) and now draw comparisons between the

temporal coherence of this, and our proposed, painterly technique5.

Recall our two criteria for a temporally coherent animation:

1. The locations and visual attributes of rendering elements should not vary rapidly

5For reference, the full paper detailing Litwinowicz’s method is included in Appendix C.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 225

(flicker) over time. Assessment of this criterion requires measuring the rate of

change of these properties in the rendered image sequence.

2. The motion of strokes should agree with motion of content with the source video.

Assessment of this criterion requires measurement, and comparison, of the motion

fields of both source and rendered image sequences.

The second criterion is problematic since it demands an error-free means to determine

the magnitude and direction of motion in the source video — if such a technique was

known, we would have already built it into our Video Paintbox! Thus we require an

externally supplied ground-truth motion field to evaluate this criterion.

We now describe two experiments which test each of these criteria respectively. We

document the results of these experiments separately in Section 8.6.4, and draw con-

clusions from the results.

Experiment 1: Measurement of Flicker in the Animation

Our first experiment quantifies the level of stroke flicker in the rendered animation.

Stroke flicker is a contributor to temporal incoherence, and is manifested as:

1. Rapid fluctuations in stroke location

2. Rapid fluctuations in stroke visual attributes

In both SoA and our algorithm, a stroke’s location is defined by a 2D vector; we write

Lt = (x, y)T to specify the normalised coordinates (x, y) of a brush stroke’s centre

within the frame. Likewise, a stroke’s visual attributes may be defined as a point in a

high-dimensional space. Each stroke in our painterly method has seven visual attributes

(see Chapter 3), in SoA there are two: colour and orientation. For the purposes of com-

parison we specify visual attributes as points in a 4D space At = (r, g, b, θ)T where the

triple (r, g, b ∈ [0, 1]) specifies stroke colour and θ ∈ [0, π] specifies a rotation from

the vertical (strokes are symmetrical about their principal axes) in both algorithms.

We concatenate both location and visual parameter vectors to form a single vector

representing the stroke state: V t = [LT
t AT

t]T . We normalise the space of V t so that

distance |(0, 0, 0, 0, 0, 0)T −(1, 1, 1, 1, 1, π)T | is unity; this normalises our flicker measure

to range [0,1].

For a single stroke, the absolute rate of fluctuation of V t at time t may be computed

using a finite difference scheme:

R(t) =
∣

∣|V t − V t−1| − |V t+1 − V t|
∣

∣ (8.19)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 226

This measure quantifies the absolute rate of change of visual state for a single, existing

stroke. For strokes that are created or destroyed due to the stroke density regulation

step of SoA, we set R(t) = 1. Note that this density equalisation step does not form

part of our painting algorithm.

We write R̂(t) as the absolute rate of change of visual state averaged over all strokes

present in frame t — hence quantifying the level of flicker present in frame t. Our ob-

jective measure of the average level of stroke flicker over all n frames of the animation

is the mean of R̂(t) over all t.

Additionally, we may obtain a qualitative estimate of the level of flicker by visual

inspection of the animation.

Experiment 2: Measuring the similarity between motion in the source and

rendered sequences

The smaller the error between the motion vector fields of the source video and target

animation, the greater the temporal coherence of the animation. We therefore produce

a source image sequence, for which we know the ground truth motion, and render that

image sequence using the algorithms under evaluation. The motion vector field for the

target animation is obtained from the motion vectors of the brush stroke centres. We

then perform a comparison of the ground truth and brush stroke motion vector fields.

A number of synthetic source test sequences are used for this experiment; examples of

both flat and textured image regions, which are independently subjected to translation,

rotation and scaling transformations. The ground truth motion vector field at time t,

which we write as St(i, j) = (r(t), θ(t)), is compared with the motion field of the target

animation at the identical instant T t(i, j) = (r(t), θ(t)) . These motion fields are in

polar form (r(.) is the magnitude of displacement, θ(.) is the direction of displacement

— both r(.) and θ(.) are normalised to range between zero and unity). The mean

squared error (MSE) between the two fields is computed to obtain a measure of the

similarity between the two motion fields at time t; we write this measure as C(t):

C(t) =
1

xy

x
∑

i=1

y
∑

j=1

|St(i, j)− T t(i, j)|2 (8.20)

where x and y are the frame width and height respectively. Our objective measure C
of the average level of motion dissimilarity for the animation is the mean of C(t) over

all time. As with experiment one, this measure can be verified by qualitative visual

inspection of the source and animated image sequences. In this manner qualitative

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 227

SoA SoA- Our method

SPHERES 0.62 0.45 0.05
BOUNCE 0.79 0.65 0.11
SHEEP 0.78 0.61 0.13

Table 8.1 Table summarising the “flicker level” (see experiment 1) present in an animation
produced by each of three algorithms (horizontal), over each of three source video sequences
(vertical). Flicker level ranges from zero (no flicker) to unity (severe flicker).

estimates may be made for real source video sequences, for which there is no available

ground truth.

8.6.4 Results and Discussion

Both experiments were conducted to compare the temporal coherence of animations

produced by both our algorithm and SoA. We now discuss the results.

Experiment 1: Flicker in synthesised animation

We applied both algorithms to one synthetic sequence (SPHERES) and two real se-

quences. Of these two real sequences, one (SHEEP) contained regions of predominantly

flat texture and the other (BOUNCE) was a natural scene containing moderately com-

plex texture. We also tested SoA with, and without, the stroke density regulation step

(we refer to SoA without this regulation step as SoA-). Table 8.1 summarises the levels

of flicker measured within the resulting animations. Note that this measure of flicker

quantifies the rate of change of stroke properties in the animation. By this definition,

all animations should exhibit some degree of “flicker”. However for a single video, this

measure will be comparatively large in the case of frequent, rapid changes in stroke at-

tribute and position (flicker), and lower in cases of smooth, less sporadic motion caused

by movement of content in the video.

Our results indicate that SoA exhibits about half an order of magnitude greater stroke

flicker than our method, on both real and synthetic video sources. All algorithms ap-

pear to perform consistently regardless of the level of texture in the video. This can

be explained, since although optical flow tends to produce worse motion estimates in

cases of flat texture, this experiment measures only flicker in the animation, not ac-

curacy of motion (this is addressed by experiment 2). Omission of the stroke density

regulation stage (SoA-) does reduce the level of flicker, but damages the aesthetics of

the animation as “holes” appear upon the canvas.

We conclude that our painterly approach produces animations exhibiting significantly

less flickering than the state of the art. Visual inspection of the resulting painterly

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 228

animations verifies these results (see Appendix C). The reduction in flicker can be

explained by:

1. Our use of a robust motion estimation technique, which takes advantage of spatial

grouping (segmentation) to move all strokes attached to objects in a similar way

— rather than moving each stroke in isolation of all others. Error in motion

estimation is spread over the entire region, making the approach more tolerant

to noise that per stroke optical flow techniques.

2. The absence of a stochastically driven “stroke insertion” step in our algorithm.

Unlike SoA, our approach does not require a “stroke insertion stage” since there

are potentially an infinite number of strokes rigidly attached to the planar ref-

erence frame that moves with video objects. The state of strokes on the plane

persists even whilst a stroke is not visible in a frame of the animation. This is

not true with SoA — when strokes disappear, for example due to occlusion, they

are deleted (as strokes bunch together), and then reinitialised after the occlusion

(triggered by strokes spreading too thinly) without taking into account their pre-

vious state. The strategy of inserting new strokes at a random order was chosen

in SoA to prevent regular artifacts from appearing in the video sequence during

stroke insertion. We observe that similar use of non-determinism has been used

elsewhere in Computer Graphics (for example the noise introduced by Cook’s [30]

distributed ray tracing), and also in many static AR algorithms to mask the regu-

lar, machine origins of the artwork produced. However non-determinism must be

used sparingly in the context of AR animations, since it introduces flicker. Since

our method does not require a stroke insertion step, stochastically driven or oth-

erwise, the temporal coherence of the resulting animations is greatly improved.

3. In our system the visual attributes of strokes, for example orientation and colour,

are sampled from each frame in the video, but smoothed over time under the

assumption that noise obeys the Central Limit Theorem. In SoA these attributes

are sampled from the video frame, and directly applied to strokes without taking

into account the state of those attributes in previous or future frames. Point-

sampling is highly susceptible to video noise (especially when sampling from

derivative fields — such intensity gradient to obtain orientation). With SoA

the sporadic fluctuations in sampled values result in the unsmoothed sporadic

fluctuation of visual stroke attributes. This is not so with our approach.

4. The thresholded Sobel edges used to clip strokes in SoA are prone to scintillation

over time. This in turn causes the lengths of strokes to fluctuate causing in-

creased flickering. This clipping mechanism is not a component of our approach,

and so introduces no such difficulty. Instead, we smoothly vary the continuous

“visibility” attribute of strokes over time.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 229

Experiment 2: Similarity between motion fields of source and animation

Experiment two measures the degree of similarity between the motion fields of both

source and rendered image sequences. We have used only synthetic source sequences

for this experiment, since we require an accurate ground truth motion estimate for the

input video. Both our algorithm and SoA were modified to output a vector field corre-

sponding to stroke motion in the animation, rather than an animation itself. We tested

both flat (SMILE) and textured (SPICES) image regions under translation, rotation

and scaling transformation, comparing the motion fields in both source and rendered

footage.

Figures 8-21 to 8-26 present the results of this experiment. In all figures the top row

shows the original and transformed images (i.e. the first and second frames of the video

sequence). The second row shows the ground truth motion field, and a colour visuali-

sation of motion magnitude. The third row shows the dense motion field used to move

strokes in our system. The fourth row shows the optical flow generated motion field

used by SoA. In all cases, we observe that the motion field generated by our method

closely matches the ground truth. The MSE (equation 8.20) between our field and the

ground truth is approximately 0.05 for all transformation classes. The MSE between

the optical flow derived stroke motion field and the ground truth varies between 0.5

and 0.7; an order of magnitude less accurate.

We draw attention to the false negative readings returned by optical flow for flatly

textured regions (regions of near constant intensity) within the images. By contrast

optical flow estimates around most of the edges appear to reasonably accurate. The re-

sults of this error can be seen most clearly in the resulting painterly animations, where

brush strokes in the centres of flat regions remain static, but strokes around the edges

move. This conveys contradictory motion cues to the viewer; strokes around the edges

of an object appear to move in the opposite direction relative to those in the middle of

the object. By contrast the homography based motion field generated by our method

is computed over the entire image region. This produces an accurate motion estimate

even within flatly textured regions, and ensures that stroke motion is consistent within

individual regions in the video.

In summary, the higher spatial level of processing performed by our technique per-

forms motion estimation on a per object, rather than per pixel basis. Errors in motion

estimation are thus distributed over the entire object, rather than individual strokes.

Similarly the higher level of temporal processing performed by our technique smooths

stroke attributes over time. Measurements of stroke attributes in adjacent frames com-

bine to reinforce each other and cancel out noise. Robustness to such errors, produced

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 230

ROTATION (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-21 Rotation of a highly textured example SPICES (12◦ anticlockwise). First
row: source and transformed image. Second row: ground truth motion vector field (left)
and colour temperature visualisation of ground truth vector magnitude (right). Third row:
Estimated vector field using our method, and visualisation of vector magnitude. Fourth:
Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 231

ROTATION (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-22 Rotation of an example with predominantly flat texture SMILE (12◦ anti-
clockwise). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 232

SCALING (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-23 Uniform scaling of a highly textured example SPICES (scale factor 1.3). First
row: source and transformed image. Second row: ground truth motion vector field (left)
and colour temperature visualisation of ground truth vector magnitude (right). Third row:
Estimated vector field using our method, and visualisation of vector magnitude. Fourth:
Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 233

SCALING (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-24 Uniform scaling of an example with predominantly flat texture SMILE (scale
factor 1.3). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 234

TRANSLATION (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-25 Translation of a highly textured example SPICES (shift by (−20,−50)T).
First row: source and transformed image. Second row: ground truth motion vector field
(left) and colour temperature visualisation of ground truth vector magnitude (right). Third
row: Estimated vector field using our method, and visualisation of vector magnitude.
Fourth: Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 235

TRANSLATION (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-26 Translation of an example with predominantly flat texture SMILE (shift by
(−20,−50)T). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 236

Frame 10

Direction of motion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-27 A synthetic test sequence (SPHERES, videos/spheres source) consisting
of two front lit, Lambertian shaded spheres (left). The spheres are of identical size but
at differing scene depths (relative proximity to camera is illustrated by the depth map on
the right). The spheres translate in planes parallel to the image plane, inter-occluding and
casting shadows; a ground truth motion vector field is also projected to the camera plane
for reference. We use this sequence to illustrate the limitations of the homography based
motion model (see text).

for example by camera noise, is especially important with modern day equipment such

as DV cameras whose compression algorithms often create artifacts in stored images.

Limitations of our technique

As with optical flow, our painterly rendering technique is governed by a number of

assumptions. These are principally:

1. that the video to be painted is segmentable (some video, for example crowd scenes

or water, are difficult to segment)

2. that the change of viewpoint of an object over time is well modelled by a homog-

raphy (plane to plane transformation) between imaged regions of that object

Violation of assumption (1) will prevent a video being rendered by the artistic render-

ing subsystem. Violation of assumption (2) is non-fatal, since the video may be still

processed into a painterly form, but one that exhibits a lesser level of temporal coher-

ence. However, as we now show in a final experiment, this reduced level of temporal

coherence can still represent a significant improvement over the coherence afforded by

optical flow based painting techniques.

The synthetic SPHERES sequence represents a situation where assumption (2) is vio-

lated. The sequence contains two diffuse shaded, spheres (Figure 8-27) which undergo

translation in planes parallel to the image plane. We rendered this sequence using both

our method and SoA to obtain two painterly animations (see spheres painterly SoA

and spheres painterly ourmethod in Appendix C). We obtained motion fields for

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 237

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-28 Top: Motion vector fields between frames one and two of SPHERES. From
left to right; ground truth field (true motion of 3D objects projected to the camera plane);
field for stroke motion determined via our method; field determined via optical flow [7].
Middle: Visualisation of motion magnitude, ordered as (top) and using identical colour
temperature scales. Bottom: Difference between ground truth motion magnitude and
that of our (left) and optical flow (right) using identical colour temperature scales for the
purposes of comparison. Observe optical flow performs poorly in interior regions, whereas
our method does not. Our method exhibits around half an order of magnitude less error
than optical flow. We have normalised (left) in Figure 8-29 to illustrate the distribution
of estimation error over the region.

brush strokes in the two animations, and modified our ray tracer to output a ground

truth motion field of the spheres, projected to the 2D image plane.

The resulting source and rendered motion fields, corresponding to the imaged spheres,

are shown in Figure 8-28 (first column). Observe that in the ground truth motion field,

distant points exhibit lesser motion magnitudes due to parallax.

Optical flow performs poorly when recovering this motion field (Figure 8-28, second

column). The computed fields suggest that the flat textured interiors of the spheres do

not move at all, whilst the edges perpendicular to the direction of motion are deemed

to have moved. Edges parallel to the direction of movement are not deemed to have

moved, since the spatially local nature of the optical flow algorithm can not determine

such motion due to the “aperture problem” [145].

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 238

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

Frame

M
ot

io
n

m
ag

ni
tu

de
 (

pi
xe

ls
)

10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2

3

4

Frame

M
ot

io
n

di
re

ct
io

n
(a

ng
le

 fr
om

 v
er

tic
al

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-29 Plots illustrating errors in both our, and optical flow’s, motion estimate
for the yellow sphere. The left graph shows the mean value of motion vector magnitude
within the yellow sphere region, at each time instant. The error bars show one standard
deviation. Blue is the ground truth, green is our motion estimate, red is the optical flow
estimate. Observe that our method produces a consistent, uniform vector field estimate
that closely matches the mean of the ground truth. The optical flow motion estimate is
inconsistent over the region, as evidenced by high standard deviation. Similar observations
apply to the middle plot, which shows mean direction of motion over time. The right-hand
figure is a normalised absolute difference map between ground truth motion magnitude,
and motion magnitude estimated by our system. Our method produces a single motion
estimate for each region, distribution estimation error over that region. In the case of the
yellow sphere, the result is a motion estimate corresponding to around middle distance on
the sphere; approximately the mean of all motion vectors.

Our method interprets the imaged spheres as translating planar discs, with a radial

shading pattern upon their surfaces. The resulting motion field is thus a uniform set of

vectors specifying a translation approximately equal to the mean of the ground truth

vectors (Figure 8-28, third column). Although this uniform vector field is erroneous, the

residual error due to our method is much lower than that of optical flow (see Figure 8-

28). The internal consistency of motion vectors generated by our method is also much

closer to that of the ground truth, whereas there is very little internal consistency

within the sphere according to optical flow (observe the error bars depicting standard

deviation in Figure 8-29, and Figure 8-28 top right).

8.7 Integration with the Motion Emphasis Subsystems

Our video shading subsystem meets the aims of the Video Paintbox’s second sub-goal,

generating temporally coherent artistic animations from video. We may combine this

subsystem with the earlier motion emphasis work of Chapters 6 and 7, to meet our

original aim of producing full, cartoon-like animations from video. Figure 8-30 contains

a schematic of the entire Video Paintbox, illustrating how we combine the shading and

motion emphasis work. We now describe the complete Video Paintbox rendering pro-

cess:

A camera motion compensated version of the video clip is first generated (Section 6.3.1).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 239

Motion Compn.
and Tracking

Feature Depth
Recovery

Visual Motion
Emphasis

Output
Animation

Time and Pose
Motion EmphasisSequence

AR shaded
animation

Source Image tracked features

video (for occlusion detection)

video

Ch.8Video Paintbox (Motion and Shading Subsystems)

Ch.6 (Vision Comp.) Ch.7 Ch.6 (Gfx. Comp)

Artistic Shading
Framework

Figure 8-30 Schematic of the complete Video Paintbox, showing where the artistic ren-
dering subsystem, described in this Chapter, fits into the rendering framework.

The user identifies features for the application of motion cues, and these features are

tracked through the camera compensated sequence. Their locations and relative depths

are recorded (Section 6.3.3). This processing is performing by the Computer Vision

component of Chapter 6.

Time and pose cues (Chapter 7) are then applied, synthesising a novel video (for exam-

ple, exhibiting anticipation) and altering the recorded locations of any tracked features.

At this stage we discard the source video clip, and use this “time and pose” emphasised

video as input to subsequent stages.

The “time and pose” emphasised video is passed to the artistic shading subsystem,

which synthesises an AR version of the video in the requested artistic style. We now

have three pieces of information: the tracked feature data, a photorealistic version of

the “time and pose” emphasised video, and an artistically rendered version of the “time

and pose” emphasised video.

As a final step we pass both the tracked feature data, and the AR version of the video,

to the Computer Graphics component of the visual motion cue subsystem (Section 6.4).

In our original description of that subsystem we stated that the Computer Graphics

component accepts as input:

1. tracker data output by the Computer Vision component

2. the original, photorealistic video

We have altered the rendering pipeline, so that the Computer Graphics component

accepts an artistically rendered version of the video sequence in place of (2) — see

Figure 8-30. The final output is an artistically shaded animation which also exhibits

motion cues. Stylisation of both the shading and motion cues is controlled by the ani-

mator at a high level (by requesting particular rendering styles and motion effects, and

by setting parameters upon those special effects).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 240

Figure 8-31 The artistic rendering subsystem is combined with the motion emphasis
work of the previous two chapters, to produce complete cartoon animations from video
(see bounce fullcartoon and wand cartoon).

As a practical note, we have observed the occlusion buffer system (Section 6.4.3) to

operate with markedly less precision when using the non-photorealistic video in the

manner described. We therefore make a small modification to the rendering pipeline,

as described, which allows the occlusion buffer system access to the photorealistic

version of the video sequence to perform its inter-frame differencing operations. This

access is represented by the dashed arrow of Figure 8-30.

8.8 Benefits of an Abstract Representation of Video Con-

tent

Recall the basic architecture of the artistic rendering subsystem — the Computer Vision

driven front end parses source video into an intermediate representation (IR), which

the back end subsequently renders into one of many artistic styles. The IR therefore

encodes an abstracted video representation, encapsulating semantic video content but

not instantiating that content in any particular artistic style.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 241

5 10 15 20 25 30 35 40 45 50

200

400

600

800

1000

1200

1400

1600

1800

2000

Duration (frames)

S
to

ra
ge

 (
K

b)

RGB raw (uncompressed)

MS RLE

Indeo 5

MPEG−4

Proposed Surface rep.

Figure 8-32 Demonstrating the comparatively low storage requirements of the surface
representation when transmitting cartoons. Our test comparison uses up to 50 frames of
the gradient shaded POOHBEAR sequence.

We draw an analogy with our IR and the popular XML data format. XML also divorces

content from presentation style, deferring the problem of visualising information to the

client who must process the XML content against an XSLT style-sheet to produce

a legible document. This separation of information (XML) and stylisation (XSLT)

creates a compact, and more manipulable format for information storage and exchange.

Likewise, the IR is a highly compact representation of video content. Video objects

are represented by a set of continuous spatiotemporal vector surfaces, and a small

supplementary database. These properties present a number of interesting directions

for future development of our IR and of the Video Paintbox system.

Hand-held mobile devices are no longer fundamentally limited by speed of CPU, or by

storage constraints. The primary challenge for the next generation of wireless (3G) de-

vices, at the time of writing, is to achieve a suitably high bandwidth wireless connection

over which video content may be delivered. We suggest that, with further development,

our IR could provide interesting new perspectives on both the issue of bandwidth, and

upon the nature of the content delivered over the network. Figure 8-32 summarises

details of a brief comparative investigation, contrasting the storage requirements of the

IR with those of common video compression technologies, to store a cartoon. Approx-

imately 150KB were required to store 50 frames of the POOHBEAR sequence. The

compact nature of the IR can be seen to compare favourably with the other video

compression algorithms tested; although we note that the spatiotemporal nature of

our representation prohibits real-time encoding of video. The caveat is that the video

must be abstracted and stylised in a cel animated fashion. However, the IR may be

rendered into a wide gamut of artistic styles once downloaded, creating a novel level of

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 242

abstraction for video in which the server (implementing the front end) determines the

video content, whilst the client-side (implementing the back end) determines the style

in which that video is rendered. Splitting the responsibilities of video content provision

and content visualisation between the client and server is a promising direction for

development of our Video Paintbox architecture.

Aside from the benefits of compact representation and abstraction, also of interest is

the continuous spatiotemporal nature of the Stroke Surfaces in the IR. This provides

a highly manipulable vector representation of video, akin to 2D vector graphics, which

enables us to synthesise animations at any scale without pixelisation. Indeed many

of the figures in this Chapter were rendered at a scale factor greater than unity to

produce higher resolution images than could be captured from a standard PAL video

frame. Future developments might investigate the use of temporal scaling to affect the

frame rate of animations.

8.9 Summary and Discussion

In this Chapter we have described a novel framework for synthesising temporally co-

herent non-photorealistic animations from video sequences. This framework comprises

the third and final subsystem of the “Video Paintbox”, and may be combined with the

previously described motion emphasis work to produce complete cartoon-style anima-

tions from video.

Our rendering framework is unique among automated AR video methods in that we

process video as a spatiotemporal voxel volume. Existing automated AR methods

transform brush strokes independently between frames using a highly localised (per

pixel, per frame) motion estimate. By contrast, in our system the decisions governing

the rendering of a frame of animation are driven using information within a temporal

window spanning instants before and after that frame. This higher level of temporal

analysis allows us to smoothly vary attributes such as region or stroke colour over time,

and allows us to create improved motion estimates of objects in the video. Spatially,

we also operate at a higher level by manipulating video as distinct regions tracked over

time, rather than individual pixels. This allows us to produce robust motion estimates

for objects, and facilitates the synthesis of both region based (e.g. flat-shaded cartoon)

and stroke based (e.g. traditional painterly) AR styles. For the latter, brush stroke

motion is guaranteed to be consistent over entire regions — contradictory visual cues

do not arise, for example where stroke motion differs within a given object. We have

shown that our high level spatiotemporal approach results in improved aesthetics and

temporal coherence in resulting animations, compared to the current state of the art.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 243

Much of the discussion of the relative merits of our approach over optical flow can be

found in Section 8.6.

We have demonstrated that automated rotoscoping, matting, and the extension of many

“traditional” static AR styles to video, may be unified in a framework. Although we

have experimented only with the extension of our own pointillist-style painterly method

(Chapter 3) to video, we believe this framework to be sufficiently general to form the

basis of a useful tool for the extension of further static stroke based AR techniques to

video. The application of our framework to other static AR styles is perhaps the most

easily exploitable direction for future work, though does not address the limitations of

our technique, which we now discuss.

Perhaps the most limiting assumption in our system is that video must be segmented

into homogeneous regions in order to be parsed into the IR (and so subsequently ren-

dered). As discussed in Section 8.6, certain classes of video (for example crowd scenes,

or running water) do not readily lend themselves to segmentation, and so cause our

method difficulty. Typically such scenes are under-segmented as large feature sub-

volumes, causing an unappealing loss of detail in the animation. This is not surprising;

the segmentation of such scenes would be a difficult task even for a human observer.

Thus although we are able to produce large improvements in the temporal coherence

of many animations, our method is less generally applicable than optical based flow

methods, which are able to operate on all classes of video — albeit with a lower degree

of temporal coherence. The problem of compromising between a high level model for

accuracy, and a lower level model for generality, is an issue that has repeatedly sur-

faced in this thesis, and we defer discussion of this matter to our conclusions in Part IV.

However we summarise that as a consequence we view our method as an alternative,

rather than a replacement, for optical flow based AR.

The second significant limitation of our system stems from the use of homographies to

estimate inter-frame motion from an object’s internal texture. We assume regions to be

rigid bodies undergoing motion that is well modelled by a plane to plane transforma-

tion; in effect we assume objects in the video sequence may be approximated as planar

surfaces. There are some situations where lack of internal texture can cause ambigui-

ties to creep in to this model; for example if an object moves in-front of an untextured

background, is that background static and being occluded, or is that background de-

forming around the foreground object? Currently we assume rigid bodies and so search

for the best homography to account for the shape change of the background. The worst

case outcome of poor motion modelling is a decrease in the temporal coherence of any

markings or brush strokes within the interiors of objects. Other artistic styles (such as

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 244

sketchy outlines or cartoon-style rendering) do not use the homography data in the IR,

and so are unaffected. As a work-around we allow the user to set the motion models of

video objects to be “stationary” if they deform in an undesirable manner. This single

“point and click” corrective interaction is necessary to introduce additional knowledge

into an under-constrained system, and is in line with the high level of creative inter-

active we desire with the animator. Future work might examine whether the planar

surface assumption could be replaced by an improved model; perhaps a triangulated

mesh, or replacement of the linear bases which form the plane with curvilinear bases

(adapting the recent “kernel PCA” technique of [137]). However, many of the video

sequences we have presented contain distinctly non-planar surfaces which neverthe-

less create aesthetically acceptable animations, exhibiting superior levels of temporal

coherence than the current state of the art. We therefore question whether the addi-

tional effort in fitting more complex models would pay off in terms of rendering quality.

We did not set out to produce a fully automated system — not only do we desire

interaction with the Video Paintbox for creative reasons (setting high level parameters,

etc.) but also, rarely, for the correction of the Computer Vision algorithms in the front

end. The general segmentation problem precludes the possibility of segmenting any

given video into semantically meaningfully parts. However we have kept the burden of

correction low (Section 8.5). Users need only click on video objects once, for example

to merge two over-segmented feature sub-volumes in the video, and those changes are

propagated throughout the spatiotemporal video volume automatically. In practical

terms, user correction is often unnecessary, but when needed takes no more than a cou-

ple of minutes of user time. This is in contrast to the hundreds of man hours required to

correct the optical flow motion fields of contemporary video driven AR techniques [61].

A selection of source and rendered video clips have been included in Appendix C.

Part IV

Conclusions

245

Chapter 9

Conclusions and Further Work

In this chapter we summarise the contributions of the thesis, and discuss how the

results of the algorithms we have developed support our central argument for higher

level spatiotemporal analysis in image-space AR. We suggest possible avenues for the

future development of our work.

9.1 Summary of Contributions

This thesis addressed the problem of image-space AR; proposing novel algorithms for

the artistic rendering of real images and post-production video.

We performed a comprehensive review of image-space AR, and argued that the low-level

spatiotemporal operations, used to drive the rendering process in existing automatic

algorithms, are a limiting factor in their development of image-space AR. In Section 1.2,

we identified three key areas where this was the case:

1. Aesthetic quality of rendering, specifically:

1a. Control of level of detail (emphasis)

1b. Temporal coherence of animations

2. Diversity of style

We have shown that application of Computer Vision methods, to perform higher level

spatiotemporal analysis of 2D source content, proves beneficial in terms of relaxing the

limitations identified in these areas. To support this argument we developed several

novel AR algorithms which operate at a higher spatial (Part II: Chapters 3 and 4) and

temporal (Part III: Chapters 5, 6, 7 and 8) level to render images and video sequences.

In order of appearance these are:

1. A single-pass, salience adaptive painting algorithm capable of rendering pointillist-

style paintings from photographs (later extended to video).

246

CONCLUSIONS AND FURTHER WORK 247

2. An algorithm for creating Cubist style compositions from sets of images, or from

video, with minimal interaction (and in certain cases, full automation)

3. A salience adaptive, genetic algorithm based relaxation scheme for creating im-

pasto style oil paintings from photographs (building upon our pilot algorithm of

(1.)).

4. A framework for inserting a range of visual motion cues into video to emphasise

motion, for example streak-lines, ghosting and deformations.

5. A framework for inserting “time and pose” cues into video, to create animation

timing effects for motion emphasis, for example anticipation and motion exagger-

ation.

6. A framework for creating a range of temporally coherent shading effects in video.

These included sketchy, painterly and cartoon shaded rendering styles, as well as

novel temporal effects unique to our approach. We unified rotoscoping, matting

and stroke based rendering styles in a single framework, and extended our earlier

painterly rendering technique (1.) to video.

7. A means to integrate frameworks (4–6) to create a single “Video Paintbox”,

capable of creating artistic animations directly from video with a high degree of

automation.

9.2 Conclusions

We now examine the algorithms that we have developed, and conclude as to how their

results contributed to our central argument for higher level analysis in AR. Specifically

we identify the improvements gained in each of the three areas (ability to control level

of emphasis in artistic renderings, temporal coherence of AR animations, and diversity

of AR style).

9.2.1 Control over Level of Detail in Renderings (aesthetic quality)

In Chapter 3 we described a novel pointillist-style painterly rendering algorithm which

automatically controlled visual emphasis by varying the level of detail in regions of

the painting, according to the salience or “importance” of those regions in the origi-

nal image. The resulting paintings exhibited a conservation of salient detail, and the

abstraction of non-salient detail — so mimicking the work of human artists. We also

demonstrated how automatic tonal variation could be created to draw attention toward

salient regions of a rendering, for example the eyes in a portrait (see Figure 9-2, left).

CONCLUSIONS AND FURTHER WORK 248

Figure 9-1 Recalling a result from Chapter 4 (full painting in Figure 4-14) illustrating the
improved aesthetics of our global salience adaptive painterly technique (Chapter 4), over
locally driven approaches. Left: Section of the original photograph exhibiting non-salient
background texture (shrubbery) and salient foreground (sign-post). Middle: All fine detail
is emphasised using existing automatic approaches [103], which place strokes using only
spatially local, low-level information (in this case Sobel edges). In this image, the high
frequency detail of the background leaf texture has caused strokes to be clipped at edges,
tending the process back toward photorealism. However attempts to mitigate this effect,
by reducing the edge threshold for clipping, will further degrade salient detail on the sign.
Right: Using our adaptive approach, salient detail is conserved, and non-salient detail
(as determined by our global rarity based measure) is abstracted away, yielding improved
aesthetics.

In Chapter 4 we presented an algorithm for creating impasto style painterly renderings

from photographs, which built upon our previous single-pass, salience adaptive pointil-

list technique. The new algorithm placed strokes using an iterative relaxation strategy

— explicitly searching for an “optimal” painting in which there is maximum correlation

between the salience map of the original image and the level of detail present in the

rendered painting. The resulting paintings exhibited improved aesthetics over those of

Chapter 3 — curved spline brush strokes were tightly fitted to salient contours in the

painting, and level of stroke detail closely correlated with the presence of salient detail

in the original image.

A salience adaptive approach to image-space painting is unique to our work, and

demands a global (rather than local, low-level) image analysis to determine relative

salience over the source image. By contrast, existing techniques operate by processing

small regions of pixels into brush strokes; each pixel region is treated independently,

and using only locally determined measures. The renderings of current automatic al-

gorithms do not exhibit variation in emphasis due to relative importance in the scene,

as with our approach. Rather, all fine detail is treated equally regardless of its salience

(see Figure 9-1). Interestingly, some recent publications [37, 149] have begun to con-

sider the problem of static object-space AR from a similar viewpoint to our work;

determining which silhouette edges or cusps of a 3D model to draw and which to omit

CONCLUSIONS AND FURTHER WORK 249

Figure 9-2 Temporal coherence and diversity of AR style. Left: A portrait generated
automatically by the Cubist rendering algorithm described in Chapter 3, which uses high
level, salient features to create abstract compositions. Middle: Still from an animation
produced by the framework of Chapter 6, capable of automatically synthesising motion
cues. Right: Still from a temporally coherent, sketchy cartoon generated directly from
video shot with a hand-held DV camera.

when rendering line drawings. Although such techniques may be viewed as similar in

spirit to our argument for salience driven artwork, the object-space and image-space

branches of AR continue to address very different problem domains, demanding distinct

approaches to their solution.

9.2.2 Temporal Coherence of Animations (aesthetic quality)

In Chapter 8 we introduced a novel spatiotemporal framework for rendering video

into a range of artistic animation styles. Existing video driven AR techniques oper-

ate by painting brush strokes on the first frame of the video, then translating those

brush strokes from frame to frame using an estimate of optical flow. The higher level

spatiotemporal approach of our framework allowed us to coherently segment video,

smoothly vary visual attributes such as region or stroke colour over time, and create

improved motion estimates of objects in the video. The animations generated by our

framework exhibit both quantitative and qualitative improvements in temporal coher-

ence over the current state of the art in video painting (for example, exhibiting around

half an order of magnitude less stroke flicker). These improvements are a direct conse-

quence of our higher level spatiotemporal approach to automatic video driven AR.

9.2.3 Diversity of AR Style

Many artistic styles are not characterised by spatially low-level characteristics such

stroke placement, but by the composition and arrangement of features in the scene —

for example eyes, or mouths in a portrait. In Chapter 3, we described a novel AR

algorithm which produced compositions in a Cubist style, using high level, salient fea-

tures identified across an image set. Control of the AR process was specified at the

compositional, rather than the stroke based level. We were able to create renderings in

CONCLUSIONS AND FURTHER WORK 250

styles inaccessible through the low-level stroke based rendering paradigm of automatic

image-space AR.

Existing video driven AR techniques process video on a per frame sequential basis.

Although we observed that this behaviour imposes limitations on temporal coherence,

there are also a large number of artistic effects whose synthesis demands a higher level

temporal analysis of video. In Chapter 6 we described how animators use visual motion

cues to emphasise the historic motion of objects; capturing and depicting the essence

of that motion using tools such as streak-lines and deformations (much as a sketch

captures the salient elements of a scene). Performing a higher level temporal analysis

of the video is a prerequisite to characterising this motion, and also allows us to deal

with problematic Computer Vision issues such as occlusion and depth ordering in the

scene. In Chapter 7, we presented a framework for synthesising “time and pose” cues;

a further class of motion cue which affects the timing of an animation. Specifically,

we describe how to generate cartoon “anticipation” effects and motion cartooning (ex-

aggeration). The former effect appears to “predict”, or anticipate motion prior to its

execution in the animation. Clearly processing video at a temporally low-level (per

frame sequential basis) precludes the analysis of future events in the video. Similarly,

the identification of the patterns and characteristics of a subject’s motion over time are

a prerequisite to exaggerating those motions within the video sequence.

The character of an animation is influenced not only by the artistic style in which it is

drawn, but also by the manner in which the animated objects appear to move. However,

until now this latter consideration has been overlooked by video driven AR research.

Through the successful insertion of motion cues into video we have demonstrated a

diversification of style in video driven AR that could not have been achieved within the

constraints of the temporally low-level, per frame processing paradigm of automated

video driven AR.

9.3 Discussion

Artistic renderings such as drawings or paintings (be they static or animated) are

stylised representations of the salient spatiotemporal information present in a scene.

The process of deriving artwork from a photograph or scene therefore demands the

visual interpretation, or “perception” of that original content. We have argued that

such a goal is challenging enough to warrant application of higher level image analy-

sis techniques, implying interesting new application areas for Computer Vision (and

motivating new Computer Vision research as a result). This thesis has demonstrated

improvements in several key areas of image-space AR, achieved by breaking away from

CONCLUSIONS AND FURTHER WORK 251

the current low-level spatiotemporal filtering paradigm of automatic image-space AR

techniques.

We can draw parallels between the early bottom-up development of Computer Vi-

sion, and the current low-level processing approach of image-space AR — a field very

much in its youth. The majority of Computer Vision research, during the eighties and

early nineties, followed the paradigm of “bottom-up” processing originally proposed by

Marr [109]. For example, to determine the position of a car licence plate one might

locate low-level features such as edges or corners, then examine the spatial relationships

between such artifacts to form candidate rectangles for the licence plate, and so on.

This bottom-up processing paradigm produced a number of a successful applications,

but was found to be limiting by the Vision community which has largely shifted its

focus towards model fitting or “top-down” approaches. Top-down approaches tend to

be more robust and more generally applicable, often because they do not rely upon the

accuracy of a battery of earlier feature extraction steps. Returning to our licence plate

recognition example, in a top-down approach a model of a typical licence plate would

be encoded as a priori information, and a search of a configuration space performed to

find the optimal fit for that model within the source image.

Similarly, most automated examples of image-space AR approach the problem of syn-

thesising artwork using simplistic image-processing operators such as Sobel edge detec-

tion. Some more recent methods attempt to piece together local neighbouring frag-

ments of edge, to form curved spline brush strokes [71]; a practice similar to the

bottom-up processing strategy of Marr. However existing image-space AR techniques

remain characterised by their low-level, highly localised approach to spatiotemporal

signal processing; local pixel regions are independently transformed into collections of

strokes without regard to the remainder of the image, and frames of animation rendered

without regard to the wider temporal extent of the clip.

The objectives of both image-space AR and Computer Vision are, to some extent, syn-

onymous; both desire extraction of information from visual content. Our argument for

a higher level of analysis in image-space AR is similar to the approach of top-down

Computer Vision, in that we have begun to impose externally defined models to govern

the AR process. In most cases these models have been “mid level” models designed for

generality. For example, our rarity based salience measure in Chapter 3, the objective

function used to “fit” paintings to photographs in Chapter 4, the LCAT motion model

for tracking features and the heuristics driving motion emphasis in both Chapters 6

and 7, and the spatiotemporal segmentation process and Stroke Surfaces in Chapter 8.

The choice of these models reflects our original motivation; to produce a series of tools

CONCLUSIONS AND FURTHER WORK 252

for artists animators which are both general and highly automatic.

The per frame, or per pixel neighbourhood, models employed by automatic image-space

AR are arguably among the lowest level form of representation for digital image-space

content — yet such representational forms do hold certain advantages. All image-space

content conforms to this low-level model, thus the associated AR methods exhibit high

generality and are also often simple to implement. However disadvantages arise from

the same properties; the lack of a structured model in low-level spatiotemporal process-

ing admits unfavourable situations where, for example, temporal incoherence may arise.

This is the case in optical flow based video renderers, where each stroke is permitted to

translate independently of its immediate neighbours (when we would intuitively expect

behaviour to conform to rules, for example, imposing local spatial coherence between

strokes). A higher level spatiotemporal model constrains the range of possible solutions

to fall within a more acceptable range, but potentially at the cost of generality. For

example, consider our video shading solution (Chapter 8), whose painterly animations

exhibit significant improvements in temporal coherence over the state of the art. These

improvements are primarily due to the grouping of pixels into segmented regions, and

the attachment of rigid planar reference frames to those regions which move coherently

over time. In this case our solution to determining a suitable “level of abstraction” was

to choose a mid-level description of video which was general enough to represent most

classes of video content, but simultaneously was sufficiently constrained to permit gen-

eration of temporally coherent animations. Consequently, our model does not admit

some classes of source footage (that which can not be easily segmented, for example

water or crowd scenes), but the footage that can be processed exhibits improved tem-

poral coherence relative to optical flow driven techniques.

A concern throughout this thesis has been to balance the desire for a high degree of

automation in our algorithms, with that of working at a higher level of abstraction. In

many cases it has been the level of technology in contemporary Computer Vision that

has forced interaction. This point is best illustrated by the Cubist rendering algorithm,

which creates compositions from salient features identified over several images. We

were able to automate the task of isolating these salient features for the case of faces,

which are well-studied in Computer Vision. However, producing a general solution to

the automatic segmentation problem remains a significant challenge to contemporary

Computer Vision and we were forced to defer to an interactive scheme in the general

case. Similarly, in Chapter 8 we allowed for interactive correction where video objects

became over-segmented in our video shading framework. In both cases the automated

system provided an objective basis for segmentation, so as to minimise user load during

interaction to a few mouse clicks. As new Computer Vision technologies develop,

CONCLUSIONS AND FURTHER WORK 253

we may be able to reduce the level of interactive correction required in automatic

AR systems. The fields of image-space AR and Computer Vision appear destined to

become highly interdependent in the future. However, it is likely that some level of

human creative direction will always be desirable.

9.4 Further Work

The techniques we have proposed in this thesis have raised a number of interesting

possibilities for future work. Many of these address specific incremental improvements

which could be made to particular algorithms, and were best discussed in the conclu-

sions sections of the relevant chapters. Here we highlight the directions for development

which appear to hold the greatest potential.

We have described two novel techniques for creating painterly renderings from pho-

tographs. These approaches are unique in that the focus, or emphasis, in the resulting

paintings is automatically controlled using a global measure of image salience. It is

clear that the notion of salience is highly subjective and task specific. In choosing our

rarity based models of salience (Section 3.2, Section 4.3) we are approaching the prob-

lem from a somewhat simplistic point of view — though one that has been shown to

give surprising good results, for example abstracting away repetitive fine background

texture in favour of rarer foreground edge structures (Figure 3-3). The development of

alternative salience measures is an area for future work, and one which continues to be

investigated both at Bath and elsewhere.

Our GA relaxation based painting algorithm currently searches for paintings which

minimise an objective function, measuring the discrepancy between level of detail in

the painting and the salience map of the original photograph. This objective function

forms a salience dependent model of painting, but there is no reason for us to be re-

stricted one such model. In Chapter 4 we suggested a further investigation in which

various styles of painting might be studied, and a library of style specific models built.

This “paint by model fitting” approach could potentially yield a single versatile system,

capable of generating many artistic styles. Other model driven approaches to AR could

be explored. For example, in Chapter 3 we suggested borrowing global search tech-

niques, such as the Hough transform, from Computer Vision to identify target shapes

within an image taken from a user defined “shape library”. The subsequent rendering

of those shapes might provide a basis for synthesising alternative abstract artistic styles

to complement our Cubist rendering algorithm.

The video driven AR algorithms presented in this thesis encompass a range of artistic

CONCLUSIONS AND FURTHER WORK 254

styles, the majority of which are novel to image-space AR. Further exploitation of the

coherent reference frames attached to video objects in Chapter 8 should facilitate the

extension of many other existing static stroke based AR styles to video (for exam-

ple [71, 140, 159]). Perhaps the most significant criticism of this aspect of the work

is that the homography, used to attach reference frames, assumes both planar motion

and rigid objects. However many artistic styles (such as cartoon shading, and sketchy

rendering) do not use this aspect of the system. Ideally our video shading subsystem

would be extended to increase generality of all artistic styles: three-dimensional de-

scriptions of objects, or curvilinear (rather than linear) bases [137] are two possible

directions for development.

Although we have consulted with artists and animators during the course of this project,

we have yet to explore the many interaction issues that are likely to arise from our pro-

posed frameworks. For example, tools are known to influence the artists that use them.

As the tools that we have described are developed and applied in the field, it will be

interesting to observe the effect that they have on the creative process, and what re-

strictions they may impose. Equally, it will be interesting to see if AR tools such as

the Video Paintbox will encourage experimentation in new forms of dynamic art.

Throughout our work we have strived to strike a balance between generality and our

desire for higher level content analysis, leading to the imposition of mid-level models on

the AR process. However by disposing of this desire for generality, it may be possible to

impose yet higher level models to driven the AR process. An example might be a high

level 3D facial model which could be registered to images or video using Computer Vi-

sion techniques [104, 183], as a means to a producing a specific AR system for portrait

rendering. As regards animation, we might be able to impose behavioural models on

motion in videos, to extract semantic information about the actions being performed;

perhaps drawing upon the automated video summarisation systems currently being

developed, for example to analyse sports footage [87]. This information could be used

to augment the results of our existing motion cue framework, for example adding car-

toon captions such as “Crash!”, “Zap!”, or maybe even sound effects, depending on the

semantic context of the action being performed rather than solely its trajectory.

Neither our work, nor existing AR research, has considered the influence of non-visual

stimuli upon the artistic process. One example of such a stimulus in human artwork is

emotional state. Modelling emotional state is an active research field within Artificial

Intelligence, and number of continuous “emotion spaces” have been developed (such as

the 2D space of [132], and 3D space of [110]). Points within these spaces correspond to

specific emotions such as happiness or despair. An interesting direction for future work

CONCLUSIONS AND FURTHER WORK 255

might consider the creation of associations between regions in these spaces and various

painting styles. An application might be an AR driven “interactive digital painting”,

the style of which could be manipulated by stating one’s mood.

9.5 Closing Remarks

The algorithms and solutions that we have developed form the first steps toward a new

paradigm for automated image-space AR, in which images and video clips are parsed,

analysed and then rendered to produce artwork — rather than being subjected to local

non-linear filtering operations. Consequently, there are many avenues open for future

work. These include not only the development of new algorithms for content analysis

and artistic rendering, but also for cross-fertilisation of ideas between Computer Vision

and AR communities — a convergence area which is only just starting to be explored.

Part V

Appendices

256

Appendix A

Miscellaneous Algorithms

We now give details of a number of algorithms whose explanations were deferred for

clarity. The first algorithm, applied to the Cubist work of Chapter 3, concerns the

adaptation of the Hough transform to detect superquadrics — in particular, a novel

implementation strategy is described to help cater for the large (6D) parameter space

of this class of shapes. The second algorithm is a P-time approximation to the graph

colouring problem, borrowed from [15], also used in Chapter 3. The third algorithm

is a sub-pixel accurate refinement of the Harris corner detector [68], used for camera

motion compensation and feature tracking in Chapter 6. The fourth algorithm is a

simple technique for identifying coloured physical markers for tracking, when Harris

corner detection fails. The fifth algorithm is an illustrative example of a Kalman filter

based tracker, as used in the feature tracker of Chapter 6. Finally, we have included a

short proof at the end of this appendix regarding pivot point recovery in Chapter 7.

A.1 A Sparse Accumulator Representation for the Hough

Transform

On two occasions in Chapter 3 our algorithms call for a method for automatically fitting

superquadrics to edge data. The first occasion arises when fitting to a single feature

boundary during deformation (Section 3.4.2), and the second arises when locating

candidate superquadrics amongst edge pixels for the identification of candidate facial

regions during portrait registration (Section 3.5.1). In this section we describe a novel

implementation strategy for fitting superquadrics using the Hough transform, which

makes use of a sparse representation to encode the accumulator space.

A.1.1 Introduction to the Hough Transform

The Hough transform [79] is a well studied technique for the location of geometric

forms within an image. The transformation has the benefit of being a global method,

257

APPENDIX A: MISCELLANEOUS ALGORITHMS 258

examining artifacts over the whole image to identify a target geometric structure. Lo-

cal noise and artifacts tend to be disregarded in favour of the global structure in the

image. The core principal behind the Hough transform is the mapping between param-

eter (“Hough”) space, and image space. Each point in parameter space maps uniquely

to a shape in image space; for example, long lines are often fitted using the polar rep-

resentation x cos θ + y sin θ = r. In this case the Hough space is two-dimensional; the

two dimensions map to free parameters θ and r respectively.

The classical Hough transform operates upon a thresholded, edge detected image. Each

edge pixel in the image contributes a certain amount of evidence toward the presence of

a target shape; specifically, the presence of an edge pixel contributes a small amount of

evidence toward the presence of all configurations of the target shape whose boundaries

intersect that edge pixel. Thus by processing all edge pixels, one may gather evidence

for the presence of the target within the whole image. This evidence is stored in an

“accumulator array”; each location in the high dimensional parameter (Hough) space

has an associated scalar which counts the number of times that evidence has been found

for the shape configuration to which that point corresponds. This evidence gathering

process, often termed “voting”, forms the first stage of the the Hough transform. Find-

ing maxima in the accumulator allows us to isolate the most likely locations of shapes

in the image. This search forms the second and final stage of the Hough transform.

The principal disadvantage of the Hough transform is that it does not scale well to

geometric figures with a large number of free parameters. Simple lines have two free

parameters, circles have three, and more complex shapes a greater number still; this

results in an exponential time and space requirement for exploration of the parame-

ter space, rendering the approach impractical to locate complex shapes. Accordingly,

much of the research in extending the Hough transform has concentrated upon heuristic

methods to refine the search of the parameter space. The Fast Hough transform [101]

recursively divides the accumulator space into quadrants, and concentrates on the quad-

rant exhibiting the greatest evidence. Other localisation strategies in accumulator space

include the Randomized Hough Transform [176], which uses a combination of pyramid

techniques and stochastic sampling, and the Adaptive Hough Transform [83] which

uses a small, fixed size accumulator space to iteratively examine potential maxima in

the space. Other application specific performance improvements involve mathematical

analysis of the target shape geometry to collapse the number of dimensions needed for

representation in a parameter space. An excellent review of such analysis for common

shapes can be found in Nixon and Aguado [116].

APPENDIX A: MISCELLANEOUS ALGORITHMS 259

A.1.2 Finding superquadrics with the Hough Transform

Given the set of thresholded edge pixels in an image, we wish to locate superquadrics

in that image. In the case of Section 3.4.2, we are only interested in the “best fit”

i.e. maximum likelihood superquadric. In the case of Section 3.5.1 we are interested

in locating candidate superquadrics, and select a fraction of superquadrics for which

there is the strongest evidence.

Recall from equation 3.2 that an origin centred superquadric has the Cartesian form:

(x

a

) 2

α
+
(y

b

) 2

α
= r

2

α (A.1)

and hence has three free parameters, a, r, α (note that due to the constraint a+ b = 1,

b is dependent on a). These parameters correspond to eccentricity, scale, and form

factor respectively. We also made use of a parametric form of this equation:

Ux(s) =
r cos(s)

(

|cos(s)/a| 2α + |sin(s)/b| 2α
)α

2

(A.2)

Uy(s) =
r sin(s)

(

|cos(s)/a| 2α + |sin(s)/b| 2α
)α

2

(A.3)

The parameter s ranges from [0, 2π] allowing us to iterate around the perimeter; note

this is not a degree of freedom defining the shape, so does not constitute a dimension

of the Hough space. The superquadric may, of course, be centred anywhere in the

image, and at any orientation; thus there exist three further free parameters Cx, Cy, θ,

corresponding to 2D centroid location and orientation.

x(s) = Cx + (Ux(s)cos(θ)− Uy(s)sin(θ)) (A.4)

y(s) = Cy + (Ux(s)sin(θ) + Uy(s)cos(θ)) (A.5)

The Hough parameter space for superquadrics is therefore six dimensional, and this

presents a number of practical problems. To search for a reasonable range of target

shape configurations requires examination of a reasonable range of parameters at suit-

able level of discretisation; typical values are given in table A.1. Clearly this would

require a large number of accumulator cells; for the typical example of table A.1, we

would require:

100× 20× 180× 360× 288× 15 = 5.6× 1011cells (A.6)

Assuming the use of standard 32 bit integer counters for votes, we would require ap-

APPENDIX A: MISCELLANEOUS ALGORITHMS 260

Parameter Min. Max. Step Interval required

r 100 200 1 100 pixels
a 0.1 0.5 0.025 20
θ 0◦ 180◦ 180◦ 180◦

Cx 0 360 1 360 pixels
Cy 0 288 1 288 pixels
α 0.5 7 0.5 15

Table A.1 Reasonable search intervals for each of the six free parameters, when fitting
superquadrics to edge pixels. A half-size PAL video frame of size 360x288 is assumed in
this example, which corresponds to the size of images processed in Chapter 3.

proximately 220GB of storage for the 6D accumulator array. Although innovations such

as virtual memory might make this target attainable on very high end machines, the

widely distributed memory access patterns across the accumulator array can slow pro-

cessing down severely due to paging, and existing Hough based accumulator approaches

become impractical.

A.1.3 Our Sparse Representation Strategy

Although the distribution of votes in accumulator space is dependent on the source

image, it is often the case that huge swathes of accumulator space typically gather

zero or very few votes. These correspond to highly unlikely shapes, which are typically

discarded when thresholding the accumulator array to find the best solutions. Our own

experimentation on stock photo images using a 3D accumulator for detecting circles,

and a 2D accumulator for detecting lines, has shown that on average 98 to 99 percent

of accumulator space entries contain vote totals of less than a couple of percent of

the maximum vote. It is intuitive that the storage required by this invalid space will

increase exponentially with the dimensionality of the Hough space, and so large chunks

of valuable memory are allocated, but are effectively redundant.

We therefore propose that a sparse accumulator space representation is preferable in

cases of high dimensional search, and have implemented such a system to search the 6D

parameter space for superquadrics. We have modified the classical Hough transform

approach in two ways. First, as votes are gathered we automatically determine those

solutions which are likely to be poor fits (that is, will accumulate few votes in the

long term), and refrain from contributing them to the accumulator array. Second,

the accumulator array is represented sparsely using a hash-table, which allows our

implementation to search the 6D parameter space using several orders of magnitude

less storage; typically only a few megabytes of memory.

APPENDIX A: MISCELLANEOUS ALGORITHMS 261

Evidence Gathering

For each edge pixel in the image, we identify which superquadrics (i.e. points in the

discrete 6D parameter space) produce boundaries which intersect that edge pixel. Our

approach is to exhaustively compute all combinations of a, r, α, and θ. For each 4-tuple

[a, r, α, θ] tested, we determine the values [Cx, Cy] that produce superquadrics whose

boundary intersects the edge pixel. Given the location of the edge point [Px, Py], we

can compute this by rearranging equations A.4 and A.5.

Cx(s) = Px − (Ux(s)cos(θ)− Uy(s)sin(θ)) (A.7)

Cy(s) = Py − (Ux(s)sin(θ) + Uy(s)cos(θ)) (A.8)

Recall that s is a dummy parameter in range [0, 2π], which iterates along the perimeter

of the superquadric. We can convert s to an approximate arc-length parameterisation

(which we write as s = C(s′), s′ = [0, 1]) by linear approximation; unfortunately, an

exact parameterisation in closed-form is known to be impossible in the general case.

The level at which we discretise s′ determines the resolution at which we can produce

centroids; we use a ratio of one step interval to each perimeter pixel, usually requiring

around 200 to 300 discrete intervals of s′. Thus around 200 to 300 potential centroids

are generated.

Typically we obtain around 5 to 10 million parameter 6-tuples (potential superquadrics)

for each edge pixel (again, referring to our typical values in Table A.1). Although this

is a large number of solutions the majority are immediately discarded by a computa-

tionally trivial sifting process, which we now describe.

Culling Poor Solutions

Most of these potential superquadrics are poor fits. To mitigate against the large

storage requirements needed to record these solutions in the accumulator, we disregard

poor superquadric solutions by determining the quality of their fit to the image data.

First, superquadrics whose centres fall outside the bounds of the image are culled.

Second, we plot each potential superquadric in image space, and count how many edge

pixels intersect its boundary. We set a heuristic stating that if less than K percent

of the edge pixels covered by the superquadric are lit, then that solution is to be

disregarded. We use K = 20. The remaining superquadric solutions are added to the

sparse accumulator, in a process we now describe.

APPENDIX A: MISCELLANEOUS ALGORITHMS 262

Cx

Cy

r

a

θ
α
vote counter

next pointer

Cx

Cy

r

a

θ
α
vote counter

(null)

Cx

Cy

r

a

θ
α
vote counter

(null)
0

1

2

3

4

5

6

n−2

n−1

(null)

(null)

(null)

(null)

(null)

(null)

(null)

pointer

pointer

Both superquadrics
hash to key ’1’

Accumulator / Hash Table
Linked list structure

Figure A-1 Left: Illustrating the hash table and linked list structures used to store the
sparse accumulator array. Right: Example source image, with a fraction of the most likely
superquadrics detected by our method overlaid.

Sparse Accumulator and Hash Table

The accumulator array is stored using a sparse representation in our implementation.

We initialise a hash-table prior to processing, with a predefined number of slots n (we

discuss choice of n momentarily). Each slot in the hash-table contains a linked-list of

7-tuples; each contains the superquadric parameter 6-tuple plus an integer count which

records the number of times that superquadric has been voted for by the evidence

gathering process (Figure A-1, left).

When a superquadric vote is to be registered in the accumulator during processing, an

integer hash key is created from that superquadric’s parameters [Cx, Cy, α, r, a, θ]. We

then traverse the linked list in the slot of the hash-table indexed by the hash key, to

determine if that superquadric has been previously stored. If it has, we increment its

vote count. Otherwise we append the superquadric to the end of the linked list, and

initialise its vote count to one.

The hash key is created by a hash function, which operates as follows. All superquadric

parameters are rounded to their integer values (some parameters such as a have a frac-

tional range < 1, and so are scaled by a power of ten) and these integer values are

concatenated as a string.

Cx Cy a θ αr
String Hash911201027015 1938

This string is converted back into an integer value modulo n to produce the hash

function. As Knuth points out [94], it is important to choose a prime hash-table size

APPENDIX A: MISCELLANEOUS ALGORITHMS 263

(n) when using modulo based hash functions, to promote uniform distribution of the

hash function over its range.

Performance

Our Pentium IV, 2GHz based implementation processes one edge pixel every 30 sec-

onds, over the full interval range of Table A.1. A typical deinterlaced PAL image

(Table A.1, Figure A-1, right) may contain around 5000 Canny edge pixels, requiring

150000 seconds, or almost two days for the evidence gathering process to complete.

With the relaxed memory requirements of our sparse representation this is an attain-

able albeit clearly unacceptable amount of processing time. However this falls quickly

if broad estimates are used to constrain the intervals of potential parameters, as we

now describe.

In the case of Section 3.4.2 we wish to fit a single superquadric to a set of boundary

edge points. We can obtain good estimates for a, θ and r through a PCA of points dis-

tributed evenly inside the shape boundary. For a we use the ratio between eigenvalues

of the principal axes, r the magnitudes of both eigenvalues, and θ takes into account

principal axis orientation. A narrow search window for each of these parameters re-

places the broad ranges in Table A.1, yielding a fit in about one second.

In the case of Section 3.5.1 we wish to return a collection of superquadrics most likely

to be present with the edge data. Again, estimates can be used to constrain this

search. The application of Section 3.5 is that of face location within commercial photo

booth, which is a controlled environment. Orientation θ (π
2) and scale r ([100,150]) fall

within reasonably tight constraints, as does eccentricity a which may assumed to be

0.5 ≤ a ≤ 0.8. The form factor of the superquadric may be assumed to vary between

[1, 6]. These constraints on the search space reduce execution time to less than a minute

using unoptimised code.

As regards storage, the hash-table is rarely written to (relative to the number of solu-

tions processed and discarded) due to the success of the culling step, and often contains

no more than around 10000 individual superquadrics. This gives a guide as to typical

values for n; in our implementation n = 10007 (a prime number in the neighbourhood

of 10000).

Results

Once evidence gathering is complete, it is a trivial matter to extract the relatively small

number of superquadric solutions from the hash table, and to sort them in order of

their vote count. The best solution (Chapter 3, Section 3.4.2) or a fraction of the best

APPENDIX A: MISCELLANEOUS ALGORITHMS 264

solutions (Chapter 3, Section 3.5.1) can be readily obtained from this list. Figure A-1,

right shows a number of identified superquadrics in a typical image.

A.1.4 Summary and Conclusion

We have described a simple implementation strategy for the Hough transform which

enables the location of geometric figures exhibiting a large number of free parameters.

Our approach centres around the implementation of the Hough space as a sparse data

field, which is indexed using a hash-table structured coupled with a secondary linear

search. This approach enables us to search the 6D parameter space of superquadrics

using a quantity of storage several orders of magnitude lower than required by existing

Hough based methods, which are impractical for application to this problem space.

Although computational overhead is still too high for practical exhaustive searches of

this space, sensible estimates can be used to reduce processing time to practical levels

for the specific application of Chapter 3 (Cubist rendering).

There is an underlying assumption behind our strategy, namely that the majority

of edge information for a superquadric will be present in the image. In order for a

superquadric to survive the culling process, at least K percent of its boundary must be

evidenced by edge pixels in the source image. If the image is very noisy (causing much

of the edge detail to be lost), then a classical Hough transform could eventually recover

shapes by slowly accumulating poorly evidenced solutions, whereas our approach could

not. This could be mitigated by reducing K, but this would require increased storage,

and ultimately whenK = 0, the method degenerates into the classical Hough transform.

Therefore the choice of K value must be decreased in proportion to the amount of edge

loss expected in the source image (for example, due to occlusion or noise). It would be

interesting to further study how the performance of this method deteriorates against

the classical Hough transform, as edge corrupting noise increases. However this work

falls outside the remit of this thesis and empirical investigation on matters such as

robustness, and choice of K are deferred for future investigation.

A.2 A P-time Approximation to the Graph Colouring

Problem

We give details of the P-time approximation used to colour our region adjacency graph

in Section 3.4.3. The algorithm is guaranteed to return a graph where no two directly

connected nodes are assigned the same colour. The algorithm may use a greater total

number of colours than the minimum possible solution. The algorithm trades accuracy

for speed of execution; a precise solution is known to be NP-hard. However, the heuris-

tics implicit in this approximation have been empirically shown to guide the algorithm

APPENDIX A: MISCELLANEOUS ALGORITHMS 265

toward a close approximation to the minimum colouring. In our application, adja-

cency graphs are often encoded using eight or fewer colours. The algorithm originates

in machine-language compilation literature, where a limited set of registers are allo-

cated to potential larger set of program variables using a graph colouring approach [15].

Require: graph G of n nodes denoted by Gi [1 ≤ i ≤ n]

1: Integer maxcols← n

2: Integer mincols← 4

3: for totalcols = mincols to maxcols do

4: Graph W ← G

5: Ordered List L← ∅
6: repeat

7: R ← index of node WR with greatest count of immediate neighbours, that

count not exceeding totalcols− 1

8: if R 6= ∅ then

9: remove node R from graph W

10: add node R to list L

11: end if

12: until W == ∅‖R == ∅
13: if W == ∅ then

14: Define empty sets Ci where [1 ≤ i ≤ totalcols]
15: for idx = n to 1 do

16: for i = 1 to totalcols do

17: if Gidx is not a direct neighbour of any nodes in Ci then

18: Ci ← Ci ∪Gidx

19: end if

20: end for

21: end for

22: end if

23: end for

The algorithm terminates with all members of Ci being assigned some colour i, such

that two directly connected nodes do not share the same i. The algorithm operates by

repeatedly “loosening” the graph; each iteration of the inner repeat loop eliminating

the colourable node with highest connectivity. This is the heuristic that guides the

algorithm, and seems intuitively correct. Were we to pursue the consequences of elimi-

nating each node at each iteration of the inner repeat loop, one branch of the resulting

decision tree would terminate at a minimal solution. However this would produce a

combinatorial search of all possible colourings.

APPENDIX A: MISCELLANEOUS ALGORITHMS 266

A.3 The Harris Corner Detector

We make use of the Harris corner detector in our motion emphasis work of Chapter 6,

and give details here of a refined detector which operates with sub-pixel accuracy.

A.3.1 Basic Algorithm

In Chapter 6 we identify interest points within an image using the corner detector

proposed by Harris and Stephens [68], which is an extension of a previous feature de-

tection technique due to Moravec [113]. Although the operator is dubbed a “corner”

detector, it is more accurately a means of robustly locating interest points which re-

main relatively stable over viewpoint change (i.e. if a “corner” is detected on an world

point imaged from one point of view, then that world point is likely to be detected as

a “corner” when imaged from a second point of view).

Corners are identified in an image I(x, y) by performing a local template operation upon

the horizontal and vertical first derivatives of the luminance channel. The operator is

based upon the Moravec operator which performs an auto-correlation of the image; this

may be written as a sum of squares:

∂I(∂x, ∂y) =
∑

i,j⊂template

|I(i+ ∂x, j + ∂y)− I(i, j)|2 (A.9)

The horizontal and vertical first derivatives are each generated by simple differencing

template operations; the size of the template effectively governs the scale at which

artifacts are detected, and so the level of low-pass filtering that occurs. Others [158]

have found a window width of 3 to be a good trade off between resolution and sus-

ceptibility to noise, and we accept this value. The Harris detector is based upon the

Taylor expansion of equation A.9, from which is obtained:

∂I(∂x, ∂y) = (∂x, ∂y)N(∂x, ∂y)T (A.10)

Where matrix N(x, y) characterises the signal in that window:

N(x, y) =





(

∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(

∂I
∂y

)2



 (A.11)

The eigenvalues of N(.) are proportional its principal curvatures, and Harris and

Stephens determined that analysis of N(x, y) may be used to decided if a “corner”

is present at point (x, y). Specifically, they observe that the trace of the matrix is large

when an edge is present, and the determinant of the matrix is large when an edge or

corner is present. Thus by subtracting these two signals, they propose a reasonable

APPENDIX A: MISCELLANEOUS ALGORITHMS 267

measure of “cornerness” to be:

C(x, y) = |N(x, y)| − κT (N(x, y)) (A.12)

where T (.) returns the trace of the matrix, and commonly the constant κ = 0.04.

For a given window, the pixel with maximum “cornerness” is picked as the interest

point within the template; the value of this pixel is the likelihood of that point being a

“corner”. Since the function C(.) is largely image dependent, the strongest n corners

are often isolated, rather than specifying a global threshold.

A.3.2 Extension to Sub-pixel Accuracy

Since the Harris process identifies the pixel with maximum “cornerness” within a small

template, the measure is accurate only to the level of one pixel. Several authors have

reported extension of this technique to operate with sub-pixel accuracy; simple ap-

proaches improve resolution by scaling up the image prior to applying the Harris op-

erator. We have developed a closed form solution to obtain sub-pixel accuracy within

the 3 × 3 neighbourhood of an identified corner C(x, y). Although we do not claim

novelty in describing a sub-pixel Harris operator, we have observed a distinct lack of

literature documenting a closed-form refinement, and include details of our approach

here for reference. We fit a quadratic surface to the 3× 3 neighbourhood centred upon

C(x, y), which we write as C ′(x, y).

C ′(x, y) = ax2 + by2 + cxy + dx+ ey + f (A.13)

The coefficients a–f are obtained through solution of the following homogeneous linear

system:

0 = A[a b c d e f 1]T (A.14)

A =





































x2 y2 xy x y 1 −C(x, y)

(x− 1)2 (y − 1)2 (x− 1)(y − 1) x− 1 y − 1 1 −C(y − 1, x− 1)

(x+ 1)2 (y − 1)2 (x+ 1)(y − 1) x+ 1 y − 1 1 −C(y − 1, x+ 1)

(x− 1)2 (y + 1)2 (x− 1)(y + 1) x− 1 y + 1 1 −C(y + 1, x− 1)

(x+ 1)2 (y + 1)2 (x+ 1)(y + 1) x+ 1 y + 1 1 −C(y + 1, x+ 1)

x2 (y + 1)2 x(y + 1) x y + 1 1 −C(y + 1, x)

x2 (y − 1)2 x(y − 1) x y − 1 1 −C(y − 1, x)

(x− 1)2 y2 y(x− 1) x− 1 y 1 −C(y, x− 1)

(x+ 1)2 y2 y(x+ 1) x+ 1 y 1 −C(y, x+ 1)





































We obtain an algebraic least squares fit via SVD of A. Once the coefficients have been

APPENDIX A: MISCELLANEOUS ALGORITHMS 268

fitted, the exact coordinates of the turning point (x′, y′)T corresponding to the interest

point, may be obtained by solving a further linear system:

[

x′

y′

]

=

[

2a c

c 2b

]−1 [−d
−e

]

(A.15)

Thus we obtain an exact pair of coordinates for the corner (x′, y′)T and an exact value

for its “cornerness” from C ′(x′, y′) as defined in equation A.13.

A.4 A 1D Illustrative Example of a Kalman Tracker

We give an illustrative example of tracking using the Kalman Filter [90]. This technique

was used in the Computer Vision component of Chapter 6 to track features through

video clips. In this example we consider a particle moving in 1D, modelled by a mo-

tion equation of 2nd order. This is representative of the system used in Section 6.3.2,

where a point is tracked within the 4D parameter space of the LCAT under a 2nd order

motion model. In that case, four independent Kalman filters were used; one for each

dimension of the space.

Considering our 1D example, the state of the particle (at position p in the 1D space)

may be written as a vector:

x̂ = [p ṗ p̈]T (A.16)

We will model the evolution of the particle’s state over equal, discrete time intervals,

each of length dt. Let A be the “state transition” matrix. Later, this matrix will be

multiplied with the state vector to update that state over the time interval dt. The

matrix thus encodes our 2nd order motion model:

A =







1 dt dt2

2

0 1 dt

0 0 1






(A.17)

Process noise, the error due to motion being inaccurately described by our motion

model, is written as q. We assume the expectation value of this noise to be zero. Q is

the process noise covariance:

Q = q2







dt6

36
dt5

12
dt4

6
dt5

12
dt4

4
dt3

2
dt4

6
dt3

2 dt2






(A.18)

Finally, let c = [1 0 0] be the “measurement vector” which is a projection describing

APPENDIX A: MISCELLANEOUS ALGORITHMS 269

which part of x corresponds to the p we are observing i.e. p = cx.

A.4.1 Initialisation

The internal state of the Kalman filter at time t is written as x̂t. We typically initialise

the first iteration x̂1 with a measurement of position from the tracker at the first frame.

In Chapter 6 we specified estimates of zero for initial velocity and acceleration; these

gave reasonable results for our application.

The covariance of prediction error for x̂t, at time t, is written as P
t
. P

t
represents the

filter’s confidence in its internal state. Initially we set P
1

= Q.

A.4.2 Iterative Process

The Kalman tracker runs as an iterative “predict–correct” process, tracking motion

from time t to time t+ dt as follows:

1. Let x+ be our advance prediction for the state of the system at time t+ dt:

x+ = Ax̂t (A.19)

2. Let P+ be our advance prediction for the covariance of prediction error of the

system at time t+ dt:

P+
t+dt

= AP
t
ATQ (A.20)

3. Let z be the noisy measurement of p made from the world at time t + dt. Let

r be the variance (i.e. our un-confidence) in this measurement at time t + dt.

In Chapter 6 our estimate for p was determined using RANSAC, and r was a

function of the MSE between the feature’s known appearance and the image

region bounded by the RANSAC-supplied contour.

4. Let s be the covariance of our prediction, taking into account r:

s = cP+cT + r2 (A.21)

5. Let the Kalman gain k be:

k = P+cT s−1 (A.22)

APPENDIX A: MISCELLANEOUS ALGORITHMS 270

6. The updated covariance of prediction error P
t+dt

for this iteration is:

P
t+dt

= (I − kc)P+ (A.23)

7. The updated state estimate x̂t+dt for this iteration is:

x̂t+dt = x̂+ + k(z − cx̂+) (A.24)

At this stage x̂t+dt is our best estimate for time t + dt, and the position of the

particle p = cx̂ may be extracted and used as a result of the tracking process at

this instant.

8. Repeat from step (1.) until all frames are tracked.

A.5 Identification of Markers for Substitution in Tracking

In Section 6.3.2, we describe the tracker within the Computer Vision component of

the motion emphasis subsystem. The default operation of the tracker is to identify

Harris interest points [68] within features, and by creating correspondence between

points in adjacent frames, produce an estimate for the motion of the feature over that

particular time interval. However, in more complex cases where point correspondences

for tracking can not be found (perhaps due to signal flatness, small feature area, or

similarity between closely neighbouring features), distinctively coloured markers may be

physically attached to the subject and later removed digitally (see STAIRS, Figure 6-2).

In these cases the Harris interest points are substituted for points generated by analysis

of the colour distribution in a frame. We now describe the marker identification process.

We first train a colour model for each marker type. Several frames of the stationary

subject are captured and an eigenmodel fitted to manually segmented observations of

each marker. In practice we make use of only the hue and saturation components.

Each marker’s pixels form distinct, tight clusters in HS space, justifying our use of a

single Gaussian based model (Figure A-2, left).

We apply our trained colour model to a novel image sequence containing the moving

subject, captured in similar lighting conditions. To locate markers of a particular

colour within a video frame, we compute the Mahalanobis distance of every pixel to

the mean of the relevant colour eigenmodel (specified by a mean µ, eigenvectors U

APPENDIX A: MISCELLANEOUS ALGORITHMS 271

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Marker Colour Clusters (Natural Light)

Hue

S
at

ur
at

io
n

Figure A-2 Marker based capture. Left: Four distinct marker colour clusters in HS
space; ellipses denote one standard deviation. Note the hue dimension is cyclic (modulo
1), thus the graph should be interpreted as cylindrical. Right: Markers identified within a
single video frame.

and eigenvalues Λ). The likelihood of a particular pixel at location x = (i, j)T , and of

colour c = (h, s)T belonging to a marker m may be given by:

L(c,m) =
[

(c− µ
m

)TU
m

Λ
m
UT

m
(c− µ

m
)
] 1

2

(A.25)

As with the skin colour clustering of Section 3.5 we refine this expression to take into

account ch = ch mod 1 (because hue is cyclic):

L′(c,m) = min(L(c,m), L((ch + 0.5, cs)
T ,m)) (A.26)

Simply thresholding this function can produce disjoint regions about a marker, and

does not yet take into account pixel location. We therefore refine our model to include

a spatial smoothness assumption; if a pixel is likely to belong to a marker, there is an

increased probability that its immediate neighbours do too. We model this influence

as a 2D Gaussian of constant deviation σ, which we implement via a convolution over

the likelihood field generated by equation A.26 for each pixel in the image:

L′′(x, c,m) = L′(c,m) ∗G(x, σ); (A.27)

We threshold the modified function, and perform morphological closure [145] within

connected regions to produce a binary map of markers for that frame. Potential mark-

ers are identified at the centroid of each connected region (Figure A-2b), and form

a substitute for the Harris points as input to the LCAT estimator described in Sec-

tion 6.3.2.

APPENDIX B: POINTS OF DEFINITION 272

A.6 On the Effects of Pivot Motion during Rotation in

2D

In Chapter 7 we address the problem of recovering the location of the pivot point be-

tween two polygons, exhibiting motion in the plane. We give a short proof demonstrat-

ing that any translation of the pivot in the plane will cause an orthogonal translation

in the motion field generated by rotation about that pivot.

Consider a point x(t) at time t, rotating about pivot p at a constant radius ρ. If ω is

the angular velocity of that rotation, then:

|ẋ(t)| = ρω (A.28)

When p is coincident with the origin, we may write:

ẋ(t) = ω(r(t)× n̂) (A.29)

where r(t) = x(t)− p is a position vector of length ρ, and n̂ is the vector normal to the

plane (i.e. parallel to the axis of rotation). If the pivot p undergoes translation, and is

no longer coincident with the origin, the system must now be written as:

ẋ(t) = ω((r(t)− p)× n̂) (A.30)

= ω(r(t)× n̂)− ω(p× n̂)

Thus the velocity of x(t) is the sum of two velocity vectors. The first term is angular

velocity about the origin, and invariant to pivot motion. The second term is a change

in velocity due to p, and is orthogonal to both the plane normal n̂ and to p itself. Thus

translation of the pivot p generates a change in ẋ(t) orthogonal to that translation.

If the pivot point translation is unknown, and we seek the pivot point (which is itself

unknown) then the sum of the two vector terms can not be uniquely decomposed.

Appendix B

Points of Definition

2D plus time, 188

accumulator array, 258

active contours, 56

angular description function, 191

anticipation, 148

anticipation filter, 164

articulated doll, 149

Artistic Rendering (AR)

animation systems, 28

definition of, 2

fully automatic systems, 23

image-space, 3

interactive systems, 19

object-space, 3

semi-automatic systems, 20

brush models, 15

camera motion compensation, 125

Catmull-Rom spline, 168

cel composition, 141

central limit theorem, 96

collision basis, 135

collision point, 135

convergence area, 3

correspondence problem, 118

correspondence trail, 132

Cubism, 54

curvilinear basis, 135

depth ordering, of features, 129

distributed computing, 102

EDISON, 186

eigenmodel, 46

feature sub-volume, 185

Fourier descriptors, 191

frame differencing, 222

Futurism, 176

Genetic Algorithm (GA)

cross-over, 100

definition of, 83

in Computer Graphics, 84

mutation, 101

objective function, 100

termination criteria, 101

ghosting, 123

Haeberli, painting (abstraction of), 20

Harris corner detector, 266

Hermite spline, 169

holding line, 216

homography, 74

Hough transform, 257

image salience

artistic behaviour, 41

273

APPENDIX B: POINTS OF DEFINITION 274

prescriptive definition, 45

trainable definition

basic measure, 86

scale extensions, 90

impact parameter, 135

intermediate representation (IR)

of video paintbox, 119

of video shading subsystem, 183

just noticeable difference (JND), 87

Kalman filter, 268

Levenburg-Marquadt search, 126

linear conformal affine transform (LCAT),

126

Mahalanobis distance, 46

mean squared error (MSE), 75

mixed media video, 184

motion cartooning (cartooning), 149

motion cues

augmentation cues, 131

deformation cues, 135

time and pose cues, 148

non-linear motion deformations, 138

Non-photorealistic rendering (NPR), 2

object association graph, 185

occlusion buffer, 140

optical flow, 117

paint-over, 31

painterly rendering, 24

Personal Picasso, 70

photorealism, 2

planar offset parameterisation, 204

pointillism, 48

pose space, 149

pyramid, 17

RANSAC, 125

robustness (of segmentation), 185

rotoscoping, 32

semi-automatic, 20

shower door effect, 30

singular value decomposition (SVD), 125

sketchy rendering, 217

smooth sections, 132

snakes, see active contours 56

Sobel operator, 6

squash and stretch, 123

Strassman, hairy brush model, 15

streak-lines, 123

stroke based rendering, 24

stroke flicker, 181

Stroke Surfaces, 183

Student’s t-test, 158

superquadric, 48

swimming, 5

temporal coherence, 180

tracking, of features, 126

trailing edge, 131

transputed, 2

video objects, 185

Video Paintbox, 117

video segmentation, 184

video volume, 183

Williams’ algorithm, 196

Appendix C

Supplementary Material: Images,

Papers and Videos (Electronic)

The enclosed DVD-ROM (affixed to the back cover) contains a collection of paintings,

papers and videos which support this thesis.

C.1 Paintings

High resolution versions of paintings presented in this thesis are contained in the

/paintings directory:

bathabbey.tif Bath Abbey (Figure 4-21)

chilepickup.tif Pickup Truck (Figure 4-14)

dragon best.tif Chinese dragon post-relaxation (Figure 4-1)

dragon gen1.tif Chinese dragon after 1 iteration of GA relaxation

dragon gen30.tif Chinese dragon after 30 iterations of GA relaxation

dragon gen70.tif Chinese dragon after 70 iterations of GA relaxation

modelface.tif Man on a rock (detail on face before sharpening)

relaxation.mpg Video of the GA relaxation process for dragon

rock.tif Man on a rock (Figure 4-13)

still-life.tif Still-life, kitchen (Figure 4-8)

sunflowers.tif Sunflowers (Figure 4-15)

cubist/CharlesClark.pdf Front page of the THES feat. Cubist portrait (Figure 3-18)

cubist/guitar.tif Cubist still-life (guitar) (Figure 3-17d)

cubist/portrait jpc.tif Cubist portrait (of author) (Figure 3-17b)

cubist/portrait pmh.tif Cubist portrait (of supervisor) (Figure 3-21)

275

APPENDIX C: SUPPLEMENTARY IMAGES AND VIDEOS 276

C.2 Papers

Copies of publications arising from this thesis [22, 23, 24, 25, 26, 27] and the state of

the art video painting algorithm used in the comparison of Chapter 8 [103] are included

in the /papers directory.

C.3 Videos

The following source videos and animations are included in the /videos directory:

ballet streak.avi BALLET sequence with streak-lines, demon-

strating depth ordering.

basket rendered.avi BASKETBALL sequence with augmentation

and deformation cues, demonstrating occlu-

sion handling.

basket source.avi Source BASKETBALL video sequence.

bounce deformationonly.avi BOUNCE sequence exhibiting only squash

and stretch deformation, illustrating collision

handling.

bounce flatshade.avi BOUNCE sequence, flat shaded with no out-

lines. Exhibits squash and stretch deforma-

tion.

bounce fullcartoon.avi BOUNCE sequence, full cartoon flat shaded

with sketchy outlines. Exhibits both aug-

mentation and deformation motion cues.

bounce gradshade.avi BOUNCE sequence, gradient shaded with no

lines.

bounce mixedmedia.avi BOUNCE sequence, mixed media effect —

actor photorealistic, background sketchy.

Exhibits both augmentation and deformation

cues.

bounce motiononly.avi BOUNCE sequence exhibiting both augmen-

tation and deformation cues, but no shading.

bounce painterly ourmethod.avi Our painterly video algorithm (Chapter 8)

applied to BOUNCE.

bounce painterly SoA-.avi State of the art painterly video algo-

rithm [103] (without stroke density regula-

tion) applied to BOUNCE.

APPENDIX C: SUPPLEMENTARY IMAGES AND VIDEOS 277

bounce painterly SoA.avi State of the art painterly video algo-

rithm [103] applied to BOUNCE.

bounce refframe.avi Demonstrating the attachment of a rigid ref-

erence frame for painting in BOUNCE.

bounce source.avi Source BOUNCE video sequence.

bounce watercolourwash.avi BOUNCE sequence with watercolour effect.

contraption.avi Tracked CONTRAPTION sequence, used to

test pivot point recovery algorithms. Here,

pivot points have been identified and articu-

lated pose recovered automatically (pose vec-

tor on right hand side of frame).

cricket mblur.avi CRICKET sequence exhibiting motion blur

(tightly packed ghosting lines).

cricket source.avi Source CRICKET video sequence.

cricket streakghost.avi CRICKET sequence exhibiting streak lines

and ghosting.

metro anticipate.avi METRONOME sequence exhibiting “time

and pose” cues (specifically, anticipation).

metro qmapped.avi METRONOME sequence exhibiting both

augmentation cues and coherent application

of Q-mapped textures [65].

metro source.avi Source METRONOME video sequence.

metro streaks.avi METRONOME sequence exhibiting streak-

lines and ghosting.

metro warp accel.avi METRONOME sequence exhibiting empha-

sised inertia by non-linear deformation.

metro warp anticipate.avi METRONOME sequence exhibiting both an-

ticipation, and deformation motion cues.

metro warp veloc.avi METRONOME sequence exhibiting empha-

sised drag by non-linear deformation.

panorama.avi Demonstrating how video frames are regis-

tered to one another via homography, so

producing a camera motion compensated se-

quence (uses VOLLEY footage).

pooh angrybear.avi Example of rotoscoping (an illustration is ro-

toscoped onto the head in POOHBEAR se-

quence).

APPENDIX C: SUPPLEMENTARY IMAGES AND VIDEOS 278

pooh cartoon.avi POOHBEAR sequence, cartoon flat shaded

with solid brush lines.

pooh coherentshade.avi POOHBEAR sequence, demonstrating co-

herent setting of interior region attributes

(colour). See Figure 8-13.

pooh flatshade.avi POOHBEAR sequence, flat shaded no lines.

pooh gradshade.avi POOHBEAR sequence, gradient shaded no

lines.

pooh incoherentshade.avi POOHBEAR sequence, demonstrating sim-

plistic (incoherent) setting of interior region

attributes (colour). See Figure 8-13.

pooh painterly falsecolour.avi POOHBEAR painterly rendering of head, in

false colour to demonstrate stroke coherence.

pooh painterly truecolour.avi POOHBEAR painterly rendering of head in

true colour.

pooh refframe.mpg Demonstrating the attachment of a rigid ref-

erence frame for painting in the POOHBEAR

sequence.

pooh source.avi Source POOHBEAR video sequence.

pooh watercolourwash.avi POOHBEAR sequence with watercolour

wash effect.

pooh wobblyflatshade.avi Introducing controlled incoherence into

the Stroke Surfaces in POOHBEAR (flat

shaded).

pooh wobblygradshade.avi Introducing controlled incoherence into the

Stroke Surfaces in POOHBEAR (gradient

shaded).

sheep flatsegment.avi Cartoon flat-shaded SHEEP sequence (no

lines).

sheep painterly falsecolour.avi SHEEP painterly rendering of sheep in false

colour to demonstrate stroke coherence.

sheep painterly SoA-.avi State of the art painterly video algorithm

(without stroke density regulation) applied to

SHEEP.

sheep painterly SoA.avi State of the art painterly video algorithm as

described in [103] applied to SHEEP.

APPENDIX C: SUPPLEMENTARY IMAGES AND VIDEOS 279

sheep painterly truecolour.avi SHEEP painterly rendering of sheep in true

colour.

sheep rotomatte.avi Demonstrating rotoscoping and video mat-

ting in the SHEEP sequence.

sheep sketchcartoon.avi SHEEP sequence, flat shaded with sketchy

lines.

sheep source.avi Source SHEEP video sequence.

sheep wobblycartoon.avi Introducing controlled incoherence into the

holding line in the SHEEP sequence, but

maintaining coherence in interior regions (flat

shaded with solid brush lines).

spheres painterly ourmethod.avi Our proposed painterly video algorithm ap-

plied to SPHERES.

spheres painterly SoA-.avi State of the art painterly video algorithm

(without stroke density regulation) applied to

SPHERES.

spheres painterly SoA.avi State of the art painterly video algorithm as

described in [103] applied to SPHERES.

spheres sketchywash.avi SPHERES with watercolour wash effect and

sketchy lines.

spheres source.avi source SPHERES video sequence (synthetic

test sequence used in Chapter 8).

spheres wobblyflatshade.avi SPHERES sequence, flat shaded and after in-

troduction of controlled incoherence into the

region boundary.

stairs exaggerate.avi STAIRS sequence with motion exaggeration

(filled feature polygons only)

stairs exaggerate polys.avi STAIRS sequence with motion exaggeration,

textured to produce Monty Python style an-

imation.

stairs source.avi Source STAIRS video sequence.

volley motiononly.avi VOLLEY sequence with augmentation and

deformation cues, demonstrates camera mo-

tion compensation.

volley source.avi Source VOLLEY video sequence, exhibits

large scale camera motion.

vpshowreel.avi Video Paintbox show-reel (uncompressed

RGB — very large, but full quality).

APPENDIX C: SUPPLEMENTARY IMAGES AND VIDEOS 280

vpshowreel lowres divx5.avi Video Paintbox show-reel (highly com-

pressed, 52Mb approx DIVX-5 compression).

wand cartoon.avi WAND sequence, begins with original

footage, then adds augmentation cues, then

adds deformations, then adds video shading

(flat shaded cartoon with sketchy lines).

wave sketchonly.avi WAVE sequence, sketchy lines only.

wave sketchycartoon.avi WAVE sequence, full cartoon flat shaded

with sketchy lines.

wave source.avi Source WAVE video sequence.

wave thicklinecartoon.avi WAVE sequence, cartoon flat shaded with

solid brush lines.

Bibliography

[1] Agarwala, A. (2002, June). Snaketoonz: A semi-automatic approach to creating cel an-

imation from video. In Proc. 2nd ACM Symposium on Non-photorealistic Animation and

Rendering, pp. 139–147.

[2] Armstrong, A. and J. Jiang (2002, June). Direct DCT indexing using genetic algorithm

concepts. In Proc. 20th Eurographics UK Conference, pp. 61–66.

[3] Bangham, J. A., S. E. Gibson, and R. Harvey (2003, September). The art of scale-space.

In Proc. 14th British Machine Vision Conference (BMVC), Volume 1, pp. 569–578.

[4] Baxter, B., V. Scheib, M. C. Line, and D. Manocha (2001). DAB: Interactive haptic

painting with 3D virtual brushes. In Proc. 28th Intl. Conference on Computer Graphics and

Interactive Techniques (ACM SIGGRAPH), pp. 461–468.

[5] Belongie, S., C. Carson, H. Greenspan, and J. Malik (1998). Color and texture-based

segmentation using EM and its application to content-based image retrieval. In Proc. of Intl.

Conference on Computer Vision (ICCV), pp. 675–682.

[6] Bennett, E. P. and L. McMillan (2003, November). Proscenium: A framework for spatio-

temporal video editing. In Proc. ACM Multimedia Systems, pp. 177–183.

[7] Bergen, J. R. and R. Hingorani (1990). Hierarchical motion-based frame rate conversion.

Technical report, David Sarnoff Research Centre, Princeton, N. J.

[8] Bregler, C., L. Loeb, E. Chuang, and H. Deshpande (2002). Turning to the masters: motion

capturing cartoons. In Proc. 29th Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), July, pp. 399–407.

[9] Buchanan, J. W. (1996). Special effects with half-toning. In Proc. Computer Graphics

Forum (Eurographics), pp. C97–108.

[10] Cai, Q. and J. K. Aggarwal (1996, August). Tracking human motion using multiple

cameras. In Proc. Intl. Conference on Pattern Recognition (ICPR), Vienna, Austria, pp.

68–72.

[11] Cai, Q., A. Mitiche, and J. K. Aggarwal (1995, October). Tracking human motion in an

indoor environment. In Proc. Intl. Conference on Image Processing, Washington, D.C., pp.

215–218.

281

BIBLIOGRAPHY 282

[12] Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI) 6 (8), 679–698.

[13] Capel, D. (2001). Image Mosaicing and Super-resolution. Ph. D. thesis, Oxford University,

Dept. of Engineering Science.

[14] Catmull, E. E. and R. J. Rom (1974). A class of local interpolating splines. Computer

Aided Geometric Design, 317–326.

[15] Chaitin, G. J., M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein (1981). Register allocation via colouring. Computer Languages 6, 47–57.

[16] Chen, A., K. Knudtzon, J. L. Stumpfel, and J. K. Hodgins (2000). Artistic rendering of

dynamic motion. In Proc. Computer Graphics (ACM SIGGRAPH Sketches), pp. 100.

[17] Chen, Z. and H. J. Lee (1992). Knowledge-guided visual perception of 3D human gait

from a single image sequence. IEEE Transactions on Systems, Man and Cybernetics 22 (2),

336–342.

[18] Chenney, S., M. Pingel, R. Iverson, and M. Szymanski (2002, June). Simulating car-

toon style animation. In Proc. 2nd ACM Symposium on Non-photorealistic Animation and

Rendering, pp. 133–138.

[19] Christoudias, C., B. Georgescu, and P. Meer (2002, August). Synergism in low level vision.

In 16th Intl. Conference on Pattern Recognition (ICPR), Volume 4, Quebec City, Canada,

pp. 150–155.

[20] Cockshott, T., J. Patterson, and D. England (1992, September). Modelling the texture of

paint. Computer Graphics Forum 11 (3), 217–226.

[21] Cohen, I., L. D. Cohen, and N. Ayache (1992, September). Using deformable surfaces to

segment 3-d images and infer differential structures. Journal on Graphical Models and Image

Processing (CVGIP) 56 (2), 242–263.

[22] Collomosse, J. P. and P. M. Hall (2002, June). Painterly rendering using image salience.

In Proc. 20th Eurographics UK Conference, pp. 122–128.

[23] Collomosse, J. P. and P. M. Hall. (2003, October). Cubist style rendering from pho-

tographs. IEEE Transactions on Visualization and Computer Graphics (TVCG) 4 (9), 443–

453.

[24] Collomosse, J. P. and P. M. Hall (2003, October). Genetic painting: A salience adaptive

relaxation technique for painterly rendering. Technical Report CSBU 2003–02, University of

Bath, UK.

[25] Collomosse, J. P., D. Rowntree, and P. M. Hall (2003a, July). Cartoon-style rendering of

motion from video. In Proc. 1st Intl. Conference on Vision, Video and Graphics (VVG), pp.

117–124.

BIBLIOGRAPHY 283

[26] Collomosse, J. P., D. Rowntree, and P. M. Hall (2003b, June). Stroke surfaces: A spatio-

temporal framework for temporally coherent non-photorealistic animations. Technical Report

CSBU 2003–01, University of Bath, UK.

[27] Collomosse, J. P., D. Rowntree, and P. M. Hall (2003c, September). Video analysis for

cartoon-like special effects. In Proc. 14th British Machine Vision Conference, Volume 2,

Norwich, pp. 749–758.

[28] Collomosse, J. P., D. Rowntree, and P. M. Hall (2004). Automatic rendering of cartoon-

style motion cues in post-production video. Journal on Graphical Models and Image Pro-

cessing (CVGIP). Submitted.

[29] Comanicu, D. and P. Meer (2002, May). Mean shift: A robust approach toward fea-

ture space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 24 (5), 603–619.

[30] Cook, R., L. Porter, and L. Carpenter (1984). Distributed ray tracing. In Proc. 11th

Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

pp. 137–145.

[31] Cosgriff, R. L. (1960). Identification of shape. Technical Report 820-11, ASTIA AD 254792,

Ohio State Univ. Research Foundation, Columbus, Ohio USA.

[32] Curtis, C. (1999). Loose and sketchy animation. In Proc. Computer Graphics (ACM

SIGGRAPH Sketches), pp. 317.

[33] Curtis, C., S. Anderson, J. Seims, K. Fleischer, and D. H. Salesin (1997). Computer-

generated watercolor. In Proc. 24th Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), pp. 421–430.

[34] Daniel, G. and M. Chen (2003, July). Visualising video sequences using direct volume

rendering. In Proc. 1st Intl. Conference on Vision, Video and Graphics (VVG), pp. 103–110.

[35] Daniels, E. (1999). Deep canvas in disney’s tarzan. In Proc. Computer Graphics (ACM

SIGGRAPH, Abstracts and Applications), pp. 200.

[36] de Jong, K. (1988). Learning with genetic algorithms. Machine Learning 3, 121–138.

[37] DeCarlo, D., A. Finkelstein, S. Rusinkiewicz, and A. Santella (2003, July). Suggestive

contours for conveying shape. In Proc. 30th Intl. Conference on Computer Graphics and

Interactive Techniques (ACM SIGGRAPH), Volume 22, pp. 848–855.

[38] DeCarlo, D. and A. Santella (2002). Abstracted painterly renderings using eye-tracking

data. In Proc. 29th Intl. Conference on Computer Graphics and Interactive Techniques (ACM

SIGGRAPH), pp. 769–776.

[39] Delignon, Y., A. Marzouki, and W. Pieczynski (1997). Estimation of generalized mixtures

and its application in image segmentation. IEEE Transactions on Image Processing 6 (10),

1364–1376.

BIBLIOGRAPHY 284

[40] DeMenthon, D. (2002). Spatio-temporal segmentation of video by hierarchical mean shift

analysis. In Proc. Statistical Methods in Video Processing (SMVP) Workshop at ECCV,

Copenhagen, Denmark.

[41] Dempster, A. P., N. M. Laird, and D. B. Rubin (1997). Maximum likelihood from incom-

plete data via the em algorithm. Royal Statistical Society Series B 39, 1–38.

[42] Deng, Y. and B. S. Manjunath (2001). Unsupervised segmentation of color-texture regions

in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 23 (8), 800–810.

[43] Deussen, O., S. Hiller, C. van Overveld, and T. Strothotte (2000). Floating points: A

method for computing stipple drawings. In Proc. Computer Graphics Forum (Eurographics),

Volume 19, pp. 41–50.

[44] Elber, G. (1998, January). Line art illustrations of parametric and implicit forms. IEEE

Transactions on Visualization and Computer Graphics (TVCG) 1 (4).

[45] Elber, G. (1999, September). Interactive line art rendering of freeform surfaces. Computer

Graphics Forum 3 (18), 1–12.

[46] Fekete, J., E. Bizouarn, T. Galas, and F. Taillefer (1995). Tictactoon: A paperless system

for professional 2D animation. In Proc. 22nd Intl. Conference on Computer Graphics and

Interactive Techniques (ACM SIGGRAPH), pp. 79–90.

[47] Fischler, M. A. and R. C. Bolles (1981). Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Communications of

the ACM 24 (6), 381–395.

[48] Fitzpatrick, K. (Ed.) (2002). Art: An A-Z Guide to the World’s Greatest Artists and their

Paintings. Flame Tree Publishing. ISBN: 1-903-81789-7.

[49] Fleck, M. M., D. A. Forsyth, and C. Bregler (1996). Finding naked people. In Proc.

European Conference on Computer Vision (ECCV), Volume 2, pp. 593–602.

[50] Fogel, D. B., K. Chellapilla, and P. J. Angeline (1999). Inductive reasoning and bounded

rationality reconsidered. IEEE Transactions on Evolutionary Computation 2 (3), 142–146.

[51] Foley, J., A. van Dam, S. Feiner, and J. Hughes (1992). Computer Graphics (2nd ed.).

Reading, Massachusetts: Addison Wesley. ISBN: 0-201-84840-6.

[52] Freeman, H. (1961). On the encoding of arbitrary geometric configurations. IEEE Trans-

actions on the Electronic Computer EC-10 , 260–268.

[53] Fuchs, H., Z. M. Kedmen, and S. P. Uselton (1977). Optimal surface reconstruction from

planar contours. Communications of the ACM 10 (20), 693–702.

[54] Galvin, B., B. McCane, K. Novins, D. Mason, and S. Mills (1998). Recovering motion

fields: An evaluation of eight optical flow algorithms. In Proc. 9th British Machine Vision

Conference (BMVC), Volume 1, pp. 195–204.

BIBLIOGRAPHY 285

[55] Ganapathy, S. and T. G. Dennehey (1982). A new general triangulation method for planar

contours. In Proc. 9th Intl. Conference on Computer Graphics and Interactive Techniques

(ACM SIGGRAPH), Volume 16, pp. 69–75.

[56] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA: Addison-Wesley. ISBN: 0-201-15767-5.

[57] Gooch, A. (1998). Interactive non-photorealistic technical illustration. Master’s thesis,

Department of Computer Science, University of Utah.

[58] Gooch, B., G. Coombe, and P. Shirley (2002, June). Artistic vision: Painterly rendering

using computer vision techniques. In Proc. 2nd ACM Symposium on Non-photorealistic

Animation and Rendering, pp. 83–90.

[59] Gooch, G. and A. Gooch (2001, July). Non-photorealistic rendering. A. K. Peters, U.S.A.

ISBN: 1-568-81133-0.

[60] Gray, H. and H. Carter (1994). Gray’s anatomy (20th century ed.). London: Longmans,

Green, and Co. ISBN: 1-859-58018-1.

[61] Green, S., D. Salesin, S. Schofield, A. Hertzmann, and P. Litwinowicz (1999). Non-

photorealistic rendering. In ACM SIGGRAPH ’99 Non-Photorealistic Rendering Course

Notes.

[62] Haeberli, P. (1990). Paint by numbers: abstract image representations. In Proc. 17th

Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

Volume 4, pp. 207–214.

[63] Haggerty, M. (1991, November). Almost automatic computer painting. IEEE Computer

Graphics and Applications 11 (6), 11–12.

[64] Halasz, G. (1949). Camera in Paris (quotation taken from pp.56). Focal Press.

[65] Hall, P. (1999). Non-photorealistic rendering by Q–mapping. Computer Graphics Fo-

rum 1 (18), 27–39.

[66] Hall, P. M., M. Owen, and J. P. Collomosse (2004). A trainable low-level feature detector.

In Proc. Intl. Conference on Pattern Recognition (ICPR). To appear.

[67] Hanrahan, P. and P. Haeberli (1990, August). Direct WYSIWYG painting and textur-

ing on 3D shapes. In Proc. 17th Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), Volume 24, pp. 215–223.

[68] Harris, C. J. and M. Stephens (1988). A combined corner and edge detector. In Proc. 4th

Alvey Vision Conference, Manchester, pp. 147–151.

[69] Harrison, H. (1996). How to Paint and Draw: A complete course on practical and creative

techniques. Select Editions. ISBN: 1-840-38524-3.

[70] Heitkoetter, J. and D. Beasley (1995, March). comp.ai.genetic faq. USENET. http://www-

2.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic.

BIBLIOGRAPHY 286

[71] Hertzmann, A. (1998). Painterly rendering with curved brush strokes of multiple sizes.

In Proc. 25th Intl. Conference on Computer Graphics and Interactive Techniques (ACM

SIGGRAPH), pp. 453–460.

[72] Hertzmann, A. (2001, May). Paint by relaxation TR2001–801. Technical report, New York

University.

[73] Hertzmann, A. (2002, June). Fast paint texture. In Proc. 2nd ACM Symposium on Non-

photorealistic Animation and Rendering, pp. 91–96.

[74] Hertzmann, A., C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin (2001). Image

analogies. In Proc. 28th Intl. Conference on Computer Graphics and Interactive Techniques

(ACM SIGGRAPH), pp. 327–340.

[75] Hertzmann, A. and K. Perlin (2000). Painterly rendering for video and interaction. In

Proc. 1st ACM Symposium on Non-photorealistic Animation and Rendering, pp. 7–12.

[76] Hicks, Y., P. M. Hall, and D. Marshall (2002). Tracking people in three dimensions using

a hierarchical model of dynamics. Image and Vision Computing 20, 691–700.

[77] Holland, J. (1975). Adaptation in Natural and Artificial Systems. An introductory analysis

with applications to biology, control, and artificial intelligence (1st ed.). Univ. Michigan

Press. ISBN: 0-472-08460-7.

[78] Horowitz, S. L. and T. Pavlidis (1976). Picture segmentation by a tree traversal algorithm.

Journal of the ACM 23, 368–388.

[79] Hough, P. V. C. (1962). Methods and means for recognizing complex patterns. U.S. Patent

3,069,654.

[80] Hsu, S. C. and I. H. H. Lee (1994). Drawing and animation using skeletal strokes. In Proc.

21st Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

Orlando, USA, pp. 109–118.

[81] Hughes, R. (1991). The Shock of the New. Art and the Century of Change. Thames and

Hudson. ISBN: 0-563-20906-2.

[82] Igarashi, T., S. Matsuoka, and H. Tanaka (1999, August). Teddy: A sketching interface

for 3D freeform design. In Proc. 26th Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), pp. 409–416.

[83] Illingworth, J. and J. Kitler (1987). The adaptive hough transform. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI) 5 (9), 690–697.

[84] Isard, M. and A. Blake (1996). Contour tracking by stochastic propagation of conditional

density. In B. Buxton and R. Cipolla (Eds.), Proc. European Conference on Computer Vision

(ECCV), pp. 343–356.

[85] Isard, M. and A. Blake (1998). Condensation – conditional density propagation for visual

tracking. Intl. Journal of Computer Vision (IJCV) 29 (1), 5–28.

BIBLIOGRAPHY 287

[86] Jähne, B. (1993). Spatio-temporal image processing, Volume 751 of Lecture Notes in Com-

puter Science. Springer-Verlag. ISBN: 3-540-57418-2.

[87] Jaser, E., J. Kittler, and W. Christmas (2003, June). Building classifier ensembles for

automatic sports classification. In R. F. Windeatt T (Ed.), Proc. 4th Intl. Workshop on

Multiple Clasifier Systems, Volume 2709 of Lecture Notes in Computer Science, pp. 366–374.

Springer-Verlag.

[88] Kakadiaris, I. A. and D. Metaxas (1995). 3D human body model acquisition from multiple

views. In Proc. Intl. Conference on Computer Vision (ICCV), pp. 618–623.

[89] Kakadiaris, I. A. and D. Metaxas (1996). Model based estimation of 3D human motion

with occlusion based on active multi-viewpoint selection. In Proc. Computer Vision and

Pattern Recognition (CVPR), pp. 81–87.

[90] Kalman, R. E. (1960, March). A new approach to linear filtering and prediction problems.

Transactions of the ASME – Journal of Basic Engineering 82, 35–45.

[91] Kass, M., A. Witkin, and D. Terzopoulos (1987). Active contour models. Intl. Journal of

Computer Vision (IJCV) 1 (4), 321–331.

[92] Keppel, E. (1975, January). Approximating complex surfaces by traingulation of contour

lines. IBM Journal of Research and Development 19, 1–96.

[93] Klein, A. W., P. J. Sloan, R. A. Colburn, A. Finkelstein, and M. F. Cohen

(2001, May). Video cubism. Technical report, Microsoft Research MSR-TR-2001-45.

http://research.microsoft.com/research/downloads/#video+cube.html.

[94] Knuth, D. (1998). The Art of Computer Programming (Sorting and Searching), Volume 3.

Addision-Wesley. ISBN: 0-201-89685-0.

[95] Koffka, K. (1935). Principles of Gestalt Psychology. New York: Harcourt Brace.

[96] Kovacs, L. and T. Sziranyi (2002). Creating video animations combining stochastic paint-

brush transformation and motion detection. In Proc. 16th Intl. Conference on Pattern Recog-

nition (ICPR), Volume II, pp. 1090–1093.

[97] Lansdown, J. and S. Schofield (1995, May). Expressive rendering: a review of non-

photorealistic rendering techniques. IEEE Computer Graphics and Applications 15 (3), 29–

37.

[98] Lasseter, J. (1987, July). Principles of traditional animation applied to 3D computer

animation. In Proc. 13th Intl. Conference on Computer Graphics and Interactive Techniques

(ACM SIGGRAPH), Volume 21, pp. 35–44.

[99] Lee, J. (1997). Physically-based modeling of brush painting. Computer Networks and

ISDN Systems 29, 1571–1756.

[100] Leister, W. (1994, March). Computer generated copper plates. Computer Graphics

Forum 13 (1), 69–77.

BIBLIOGRAPHY 288

[101] Li, H. and M. A. Lavin (1986). Fast hough transform: a hierarchical approach. Journal

on Graphical Models and Image Processing (CVGIP) (36), 139–161.

[102] Li, Y., M. Gleicher, Y. Xu, and H. Shum (2003). Stylizing motion with drawings. In

Proc. ACM Symposium on Computer Animation, pp. 309–319.

[103] Litwinowicz, P. (1997). Processing images and video for an impressionist effect. In Proc.

24th Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

Los Angeles, USA, pp. 407–414. A copy of this paper is included in Appendix C on DVD-

ROM.

[104] Lu, L., X. Dai, and G. Hager (2004). A particle filter without dynamics for robust 3D

face tracking. In Proc. IEEE Workshop on Face Processing in Video (at CVPR).

[105] Lu, Z. (2001). Perceptually Realistic Flower Generation. Ph. D. thesis, Department of

Computer Science, University of Bath, U.K.

[106] Maio, D. and D. Maltoni (2000, September). Real-time face location on gray-scale static

images. Pattern Recognition 33 (9), 1525–1539.

[107] Markosian, L., M. A. Kowalski, S. J. Trychin, L. D. Bourdev, D. Goldstein, and J. F.

Hughes (1997). Real-time nonphotorealistic rendering. In Proc. Computer Graphics (ACM

SIGGRAPH), Los Angeles, USA, pp. 415–420.

[108] Markosian, L. and J. D. Northrup (2000). Artistic silhouettes: a hybrid approach. In

Proc. 1st ACM Symposium on Non-photorealistic Animation and Rendering, pp. 31–37.

[109] Marr, D. (1982). Vision — A Computational Investigation into the Human Representa-

tion and Processing of Visual Information. New York: Freeman. ISBN: 0-716-71284-9.

[110] Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing

and measuring individual differences in temperament. Current Psychology: Developmental,

Learning, Personality, Social 14, 261–292.

[111] Meier, B. (1996). Painterly rendering for animation. In Proc. 23th Intl. Conference on

Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 447–484.

[112] Mohr, A. and M. Gleicher (2002). Hijackgl: Reconstructing from streams for stylized

rendering. In Proc. 2nd ACM Symposium on Non-photorealistic Animation and Rendering,

pp. 13–20.

[113] Moravec, H. (1980, September). Obstacle avoidance and navigation in the real world by

a seeing robot rover CMU-RI-TR-3. Technical report, Carnegie-Mellon University, Robotics

Institute.

[114] Nelder, J. and R. Mead (1965). A simplex method for function minimization. Computer

Journal 7, 308–313.

[115] Ngo, J. and J. Marks (1993). Space-time constraints revisited. In Proc. 20th Intl. Confer-

ence on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 343–350.

BIBLIOGRAPHY 289

[116] Nixon, M. S. and A. S. Aguado (2002). Feature Extraction and Image Processing (1st

ed.). Reed Elsevier plc. ISBN: 0-750-65078-8.

[117] Ostromoukhov, V. (1999, August). Digital facial engraving. In Proc. 26th Intl. Conference

on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 417–424.

[118] Pan, J.-Y. and C. Faloutsos (2002, July). Videocube: A novel tool for video mining and

classification. In Proc. 5th Intl. Conference on Asian Digital Libraries (ICADL), pp. 11–14.

[119] Parker, J. R. (1994). Algorithms for Image Processing and Computer Vision. Wiley and

Sons, USA. ISBN: 0-471-14056-2.

[120] Perlin, K. and L. Velho (1995). Live paint: Painting with procedural multiscale tex-

tures. In Proc. 22nd Conference on Computer Graphics and Interactive Techniques (ACM

SIGGRAPH), pp. 153–160.

[121] Pham, B. (1991, January). Expressive brush strokes. Journal on Graphical Models and

Image Processing (CVGIP) 1 (53), 1–6.

[122] Praun, E., H. Hoppe, M. Webb, and A. Finkelstein (2001). Real-time hatching. In Proc.

28th Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

pp. 581–586.

[123] Press, W. H. (1992). Numerical Recipes in C: the art of scientific computing. Cambridge

University Press. ISBN: 0-521-43108-5.

[124] Pudet, T. (1994). Real time fitting of hand-sketched pressure brushstrokes. In Proc.

Computer Graphics Forum (Eurographics), Volume 13, pp. 227–292.

[125] R-L. Hsu, M. Abdel-Mottaleb, A. K. J. (2002, May). Face detection in color images.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24 (5), 696–706.

[126] Rana, A. and A. Zalzala (1995). An evolutionary algorithm for collision free motion plan-

ning of multi-arm robots. In Proc. Genetic Algorithms in Engineering Systems: Innovations

and Applications, pp. 123–130.

[127] Rehrmann, V. (1994). Stabile, echtzeitfähige Farbbildauswertung. Ph. D. thesis, Dept.

Computer Science, University of Koblenz, Germany.

[128] Reinhart, M. The TX-transform. World-wide Web.

[129] Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioural model. In

Proc. 14th Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIG-

GRAPH), pp. 25–34.

[130] Rowntree, D. (2002). Personal correspondence.

[131] Rudolph, G. (1997). Handbook of Evolutionary Computation, Chapter Evolution Strate-

gies, pp. B1.3:1–6. Oxford University Press. ISBN: 0-750-30392-1.

BIBLIOGRAPHY 290

[132] Russell, J. A. (1997). Reading emotion from and into faces: Resurrecting a dimensional-

contextual perspective. In J. A. Russel and J. M. Fernández-Dols (Eds.), The Psychology of

Facial Expression, pp. 295–320. Cambridge University Press.

[133] Saito, T. and T. Takahashi (1990). Comprehensible rendering of 3-d shapes. In Proc.

17th Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

Volume 24, pp. 197–206.

[134] Salisbury, M. P., S. E. Anderson, R. Barzel, and D. H. Salesin (1994). Interactive pen-

and-ink illustration. In Proc. 21st Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), Florida, USA, pp. 101–108.

[135] Salisbury, M. P., M. T. Wong, J. F. Hughes, and D. H. Salesin (1997). Orientable

textures for image-based pen-and-ink illustration. In Proc. 24th Intl. Conference on Computer

Graphics and Interactive Techniques (ACM SIGGRAPH), Los Angeles, USA, pp. 401–406.

[136] Samaria, F. and A. Harter (1994, December). Parameterisation of a stochastic model

for human face identification. In Proc. 2nd IEEE Workshop on Applications of Computer

Vision, Sarasota FL.

[137] Scholkopf, B., A. Smola, and K. Muller (1998). Non-linear component analysis as a kernel

eigenvalue problem. Neural Computation 10 (5), 1299–1319.

[138] Schumann, J., T. Strothotte, and S. Laser (1996, April). Assessing the effect of non-

photorealistic rendered images in CAD. In Proc. Human Factors in Computer Systems

(CHI). http://www.acm.org/sigchi/chi96/proceedings/papers/Schumann/chi96fi.html.

[139] Seitz, S. (2003, July). Frontiers in 3D photography: Reflectance and motion. In Proc.

1st Intl. Conference on Vision, Video and Graphics (VVG), pp. 7.

[140] Shiraishi, M. and Y. Yamaguchi (2000). An algorithm for automatic painterly render-

ing based on local source image approximation. In Proc. 1st ACM Symposium on Non-

photorealistic Animation and Rendering, pp. 53–58.

[141] Sims, K. (1994). Evolving virtual creatures. In Proc. 21st Intl. Conference on Computer

Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 15–22.

[142] Small, D. (1991, February). Simulating watercolor by modeling diffusion, pigment and

paper fibres. In Proc. SPIE, pp. 70–76.

[143] Smith, A. R. (1984). Plants, fractals and formal languages. In Proc. 11th Intl. Conference

on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 1–10.

[144] Smith, S. M. and J. M. Brady (1997, May). SUSAN - a new approach to low level image

processing. Intl. Journal of Computer Vision (IJCV) 1 (23), 45–78.

[145] Sonka, M., V. Hlavac, and R. Boyle (1999). Image Processing, Analysis, and Machine

Vision (2nd ed.). P.W.S. Publishing. ISBN: 0-534-95393-X.

BIBLIOGRAPHY 291

[146] Sousa, M. C. and J. W. Buchanan (1999a). Computer-generated graphite pencil rendering

of 3D polygonal models. In Proc. Computer Graphics Forum (Eurographics), Volume 3, pp.

195–208.

[147] Sousa, M. C. and J. W. Buchanan (1999b, June). Observational models of blenders and

erasers in computer-generated pencil rendering. In Proc. Graphics Interface, pp. 157–166.

[148] Sousa, M. C. and J. W. Buchanan (2000, March). Observational models of graphite pencil

materials. Computer Graphics Forum 1 (19), 27–49.

[149] Sousa, M. C. and P. Prusinkiewicz (2003, September). A few good lines: Suggestive

drawing of 3D models. In Proc. Computer Graphics Forum (Eurographics), Volume 22, pp.

381–390.

[150] Strassmann, S. (1986). Hairy brushes. In Proc. 13th Intl. Conference on Computer

Graphics and Interactive Techniques (ACM SIGGRAPH), Volume 20, pp. 225–232.

[151] Strothotte, T., B. Preim, A. Raab, J. Schumann, and D. R. Forsey (1994). How to render

frames and influence people. In Proc. Computer Graphics Forum (Eurographics), Volume 13,

Oslo, Norway, pp. C455–C466.

[152] (Student), W. S. G. (1908). On the probable error of a mean. Biometrika 1 (6).

[153] Sutherland, I. (1963). SKETCHPAD: A man-machine graphics communication system.

In Proc. AFIPS Spring Joint Computer Conference, pp. 329–346.

[154] Szeliski, R. (1994). Image mosaicing for tele-reality applications. Technical report, Digital

Equipment Corporation.

[155] Sziranyi, T. and Z. Tath (2000). Random paintbrush transformation. In Proc. 15th Intl.

Conference on Pattern Recognition (ICPR), Volume 3, Barcelona, pp. 155–158.

[156] Takagi, S., M. Nakajima, and I. Fujishiro (1999, October). Volumetric modeling of colored

pencil drawing. In Proc. 7th Pacific Conference on Computer Graphics and Applications,

Seoul, Korea, pp. 250.

[157] Tang, W. and T. R. Wan (2002, June). Intelligent self-learning characters for computer

games. In Proc. 20th Eurographics UK Conference, pp. 51–58.

[158] Torr, P. H. S. (1995). Motion segmentation and outlier detection. Ph. D. thesis, University

of Oxford.

[159] Treavett, S. and M. Chen (1997, March). Statistical techniques for the automated syn-

thesis of non-photorealistic images. In Proc. 15th Eurographics UK Conference, pp. 201–210.

[160] Tu, X. and D. Terzopoulos (1994). Artificial fishes: Physics, locomotion, perception,

behaviour. In Proc. 21st Intl. Conference on Computer Graphics and Interactive Techniques

(ACM SIGGRAPH), pp. 43–50.

[161] van Bakergem, W. D. and G. Obata (1991). Free hand plotting: Is it life or is it digital?

CAAD-Futures, 567–582.

BIBLIOGRAPHY 292

[162] Veryovka, O. and J. Buchanan (1999, September). Comprehensive halftoning of 3D

scenes. Computer Graphics Forum 3 (18), 13–22.

[163] Walker, K. N., T. F. Cootes, and C. J. Taylor (1998). Locating salient object features.

In Proc. 9th British Machine Vision Conference (BMVC), Volume 2, pp. 557–567.

[164] Wang, J.-P. (1994). Stochastic relaxation on partitions with connected components and

its application to image segmentation. IEEE Trans. on Pattern Analysis and Machine In-

telligence (PAMI) 20 (6), 619–636.

[165] Watt, A. H. (1999). 3D Computer Graphics (3rd ed.). ISBN: 0-201-39855-9.

[166] Whitted, T. (1983, July). Anti-aliased line drawing using brush extrusion. In Proc. 10th

Intl. Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH),

Detroit, Michigan, pp. 151–156.

[167] Williams, D. and M. Shah (1992). A fast algorithm for active contours and curvature

estimation. Journal on Graphical Models and Image Processing (CVGIP) 55 (1), 14–26.

[168] Williams, L. (1983). Pyramidal parametrics. In Proc. 20th Intl. Conference on Computer

Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 1–11.

[169] Williams, R. (2001). The Animator’s Survival Kit. Faber and Faber Ltd. ISBN: 0-571-

21268-9.

[170] Winkenbach, G. and D. H. Salesin (1994). Computer-generated pen-and-ink illustration.

In Proc. 21st Intl. Conference on Computer Graphics and Interactive Techniques (ACM

SIGGRAPH), Orlando, USA, pp. 91–100.

[171] Winkenbach, G. and D. H. Salesin (1996, August). Rendering parametric surfaces in pen

and ink. In Proc. 23rd Intl. Conference on Computer Graphics and Interactive Techniques

(ACM SIGGRAPH), pp. 469–476.

[172] Wong, E. and N. Weisstein (1984). Flicker induces depth: Spatial and temporal factors

in the perceptual segregation of flickering and nonflickering regions in depth. Perception &

Psycophysics 35 (3), 229–236.

[173] Woodring, J. and H. Shen (2003). Chronovolumes: A direct rendering technique for

visualizing tie varying data. In I. Fujishiro and K. Mueller (Eds.), Proc. Volume Graphics.

[174] Wu, X. (1992, October). Colour quantization by dynamic programming and principal

analysis. ACM Transactions on Graphics 4 (11), 348–372.

[175] Wyszecki, G. and W. S. Stiles (1982). Color Science: Concepts and Methods, Quantitative

Data and Formulae (2nd ed.). John Wiley and Sons. ISBN: 0-471-02106-7.

[176] Xu, L., E. Oja, and P. Kultanen (1990). A new curve detection method: Randomised

hough transform. Pattern Recognition Letters (11), 331–338.

BIBLIOGRAPHY 293

[177] Xu, S., F. C. M. Lau, F. Tang, and Y. Pan (2003, September). Advanced design for

a realistic virtual brush. In Proc. Computer Graphics Forum (Eurographics), Volume 3,

Grenada, Spain, pp. 533–542.

[178] Xu, S., F. Tang, F. C. M. Lau, and Y. Pan (2002, September). A solid model based

virtual hairy brush. In Proc. Computer Graphics Forum (Eurographics), Volume 21, pp.

299–308.

[179] Zakaria, M. N. (2001). Interactive evolutionary approach to character animation. In

Proc. Winter School of Computer Graphics (WSCG).

[180] Zeleznik, R. C., K. P. Hemdon, and J. F. Hughes (1996). Sketch: An interface for

sketching 3D scenes. In Proc. 23rd Intl. Conference on Computer Graphics and Interactive

Techniques (ACM SIGGRAPH), pp. 163–170.

[181] Zhang, H., A. Kankanhalli, and S. W. Smoliar (1993, June). Automatic partitioning of

full-motion video. In Proc. ACM Multimedia Systems, Volume 1, pp. 10–28.

[182] Zhang, Y. Y. and C. Y. Suen (1985). A fast parallel algorithm for thinning digital

patterns. Communications of the ACM 3, 236–239.

[183] Zhu, Z. and Q. Ji (2004). Real time 3D face pose tracking from an uncalibrated camera.

In Proc. IEEE Workshop on Face Processing in Video (at CVPR).

