A DOMAIN-INDEPENDENT PATTERN RECOGNITION SYSTEM TO SUPPORT SPACE
MISSION PLANNING

Juan Manuel Delfa Victoria', Yang Gao', Nicola Policella’, and Alessandro Donati’

1 Surrey Space Centre, University of Surrey, Guildford (UK)
J.Delfa@surrey.ac.uk
Yang.Gao@surrey.ac.uk
2European Space Agency, Darmstadt (Germany)
Nicola.Policella@esa.int
Alessandro.Donati@esa.int

ABSTRACT

In the history of space exploration, the complexity of
spacecrafts and missions have never stopped growing.
This makes manual operations very challenging if not
impossible. As a result, space agencies have started to
move toward autonomous operation and mission plan-
ning systems for both on-ground and on-board scenarios.
A planetary rover represents a typical complex mission,
as the rover needs to directly interact with a dynamic en-
vironment that will introduce errors to any pre-designed
plan while direct telecommanding from human operators
is not possible due to communication delays, demanding
more intelligence from on-board software. In future sce-
narios like a permanent base on the moon or a manned
mission to Mars, robots and humans will need to collabo-
rate closely using a common natural language. The oper-
ators should be in charge of defining high level orders to
be executed by the robots, which will have to coordinate
their actions in order to achieve all the goals with the best
possible performance. The planner on-board each robot
is the final responsible of the generation and maintenance
of a valid plan, taking into consideration the set of goals
assigned and the changing conditions of the robot and
environment. The planner should as well be capable of
generating its own high level goals in case of unexpected
events.

This paper presents a planner, called QuijoteExpress,
which takes into consideration these concepts. Quijote-
Express uses a mixture of theoretical planning solutions
(like Hierarchical Task Networks or Temporal Planning)
and soft-computing techniques (like Pattern-Matching or
Fuzzy Logic). In particular the paper discusses the use
of pattern-recognition algorithms within QuijoteExpress
that can improve the planning performance as well as
synthesize robust solutions.

1. INTRODUCTION

In 1997, NASA conducted its Mars Pathfinder mission
with the Sojourner rover on-board. Above all, Sojourner
demonstrated the need for more autonomy in future mis-
sions. Currently MER! and upcoming MSL? and Exo-
Mars® missions represent a step forward in terms of au-
tonomy, but they still lack “intelligence”.

There are several reasons why more sophisticated au-
tonomous systems are desirable in space missions:

e No direct communication: Space missions use to
suffer frequent eclipses as the spacecraft goes be-
hind a celestial body. At the same time, communi-
cation delays for deep space missions make it im-
possible to operate the spacecraft from Earth. As
an example, the round-trip of a signal to Mars takes
between 6 and 40 minutes.

e Performance: In order to increase the science return,
the time a spacecraft spends in idle mode waiting
for instructions must be reduced. More autonomy
on-board would provide the spacecraft with the in-
telligence to make its own decisions, therefore im-
proving the performance.

e Cost: As missions are increasing in number and
longevity, autonomy can play a key role to decrease
costs. MER mission for example has been extended
from its nominal 90 days to far more than 2000 and
counting, with a cost around 1.2 Millions/month.

o Criticality: A lot of satellites have been lost because
they had no FDIR system on-board or it was incor-
rectly designed. It is important to endow a satel-
lite with autonomous capabilities to analyse its sta-
tus and initiate autonomous recovery procedures in
case of problems.

Thttp://marsrovers.jpl.nasa.gov/home/index.html
2http://marsprogram.jpl.nasa.gov/msl
3http://www.esa.int/esaMI/Aurora/SEM INVZKQAD_0.html

In terms of planning, real life problems (in contraposition
with synthetic problems) present some features that make
them particularly hard to be solved:

o Partial knowledge of the world: Some characteris-
tics of the world in our system might not be mod-
elled or have an insufficient representation. This will
affect the accuracy of the system estimation.

e Dynamic environments: The conditions of the envi-
ronment might change with time, introducing uncer-
tainty in the execution of the plan.

e Complex search spaces: Many real life problems
deal with infinite search spaces. Therefore, it might
not be possible to guarantee the soundness and com-
pleteness of the planner.

e Solution: Sometimes, it is difficult to specify what
is a good solution or even what is a solution.

To generate robust plans is particularly important in the
case of planetary rover missions. On the one hand, the
surface of a planet represents a dynamic, unknown envi-
ronment that introduce high levels of uncertainty in the
previsions of resources consumption, execution time and
even in the goal achievability, representing one of the
main factors that cause a plan to fail. On the other hand,
the complexity inherent to the systems and missions rep-
resent a challenge that might be solved with the help of
autonomous systems.

As previously stated, one of the main concerns in plane-
tary missions is the plan robustness. This paper presents
an approximation to increase it using the knowledge ac-
quired during previous plan executions. Once a plan is
successfully executed, its context is extracted together
with some information about the execution, and stored
as a pattern. In case the planner is requested to produce
a new plan, the knowledge database (KDB) is queried. If
some plans stored in the database have a similar execution
context, they are extracted and iteratively inserted in the
present problem until a solution is found. Whenever the
execution finishes, the plan (which might differ from the
original one due to replanning) is again compared with
the database. If no similar template is found, it is stored.
In case there is a matching, the matched template rating
is updated taking into account the execution performance
of the plan.

A planner called QuijoteExpress, is under development
using this technique. Its aim is twofold: to decrease the
planning time, reduced to find templates in the KDB and
fix the dependencies between templates; to increase the
plan robustness as the system is gathering more informa-
tion. QuijoteExpress is a problem-independent, timeline-
based planner. Although it has been designed for on-
ground space missions planning, it can be applied in any
scenario where time and constraints satisfaction are key
aspects of the problem. It is based on two fundamen-
tal pillars: (1) APSI Cesta and Fratini [1], Donati et al.

[3], a framework oriented to the development of Artifi-
cial Intelligence Planning and Scheduling technologies
for space missions and (2) the Hierarchical Timeline Net-
works theory (HTLN) intended to represent timelines as
hierarchies of goals and constraints.

Following sections present a short introduction to APSI
and two different concepts, hierarchy structures and ma-
chine learning, integrated in QuijoteExpress in order to
address the problems of complexity and robustness re-
spectively. Finally some conclusions are presented.

2. APSIREVIEW

QuijoteExpress extends the APSI framework to represent
the elements of the planning system. Even though a deep
analysis of APSI is out of the scope of the paper, it is
important to understand the main concepts that APSI in-
troduces, as they will be used along the whole paper.

APSI is composed of a set of plug-ins developed in JAVA
based in the Simple Temporal Problems (STP) theory
Dechter, Meiri, and Pear [2]. It is based on three prin-
ciples: model-based design Fesq et al. [6], goal-based
Dvorak et al. [4] and timeline planning.

A problem in APSI is decomposed in components over
which the system has to accomplish the P&S. Examples
of components in the rover scenario might be simple ele-
ments as the camera of the rover, complex as the locomo-
tion system (composed of wheels, motors, etc), external
elements as a rock in the surface, etc. The process of pro-
totyping a planning application is essentially composed
of the following steps:

1. Modelling (Components): The planning and
scheduling problem is modelled by identifying a set
of relevant features called components. APSI has 3
classes of components:

e StateVariable: Described by a set of allowed
values. Decisions assumed over a state vari-
able are value choices in specific instants or
intervals of time.

e Reusable Resource: Described by its maxi-
mum capacity, which limits the maximum con-
sumption of the resource. Decisions assumed
are activities that represents the utilisation of
certain amount of this resource in instants or
intervals of time.

o Consumable Resource: Described by the min-
imum and maximum capacity. The decisions
imposed are consumption or production.

The components can be described by means of the
DDL3 (Domain Description Language). A compo-
nent is described as a finite automaton (see 1) which
represents the valid state transitions. Each compo-
nent has a timeline associated which represents the

——camOff—»
camFocus
—camTakePic— Cam On
camOn—» (CPU, Ener,Mem)

Take picture Fé’g:r
(Pos2, Id1) (Pos1)

Figure 1. Automaton describing the state transitions of
the camera on-board a rover

Picture Rock g1
Timeline (Goal) "
! Decomposition
Unfold | Warm | Crientate | Take
Mast |Camera| Camera Pic
— >
t, Timeline (Plan) t

Figure 2. Timeline with the sequence of activities of the
camera on-board to take a picture

evolution of the state of the component along the
time, limited by a time horizon (see 2). Decisions
are posted along the timeline of the components:
choices over the set of values of the state variable
or consumption/production activities on a resource.

2. Synchronizing components (Domain Theory): Once
all the components are created, synchronisations be-
tween them are created. A synchronisation indicates
the way in which the different components should
collaborate. A component may require other com-
ponents to be in a specific state in order to change
its state.

3. Problem description: A problem description repre-
sents a specific instance of the domain with the ini-
tial state of the world (values of the components) and
the definition of the goals as a set of values that some
components must have in specific instants or periods
of time. A problem is described as a partial Decision
Network or DN. A DN is a graph composed of nodes
and edges:

e Node: Decision (valuechoice, activity, con-
sumption or production) assumed for a compo-
nent in some time instant/interval of its time-
line.

e FEdge: Relation (parameter constraints, tempo-
ral constraints or value constraints) between
two or more components.

In the solving process, the domain and problem represent
the inputs for the planner and scheduler. The planner will
be in charge of completing timelines that justify the initial
goals. To achieve it, new decisions should be posted in
the timelines of the different components until they have
no gaps (time periods where the action to accomplish is
still undecided). A decision is consistent if it fulfil the
constraints defined in the internal model (component au-
tomaton) and the external model (synchronizations be-
tween components). If the timelines of all components
of the problem present no gaps and all the decisions are
consistent, then the plan represents a solution.

3. HIERARCHICAL TIMELINE NETWORKS -
EXTENDING APSI THEORY

In the context of space missions, it is not sufficient to
merely generate valid plans: experts need to understand
the reasons leading the planner to generate a specific so-
lution.

This complexity can be addressed using high level goals,
that is, instructions easily understandable by human ex-
perts. A goal is then decomposed into a hierarchical
structure of sub-goals until all of them are operators un-
derstandable by the executive system. This hierarchical
structure is also used as learning units, as it is explained
in next section.

3.1. Hierarchical Timeline Networks (HTLN)

HTLN redefines a decision network as a graph where
each node is a tree of graphs (see description of Method
bellow) as depicted in Fig. 3. A DN evolves by decom-
posing each node into sub-networks. A sub-network
represents a possible route in which the goal might be
decomposed. A goal also has an associated context
with information about the situation of the goal within
the plan and about the expected execution conditions.
This context help the planner to decide which is the
best sub-network for an specific plan. The sub-network
selected is declared active, being the only one taken
into consideration during the planning phase. This

() (2 (=

Figure 3. Tree of graphs that represent the different op-
tions in which a high level goal might be decomposed

representation is similar to those based on hierarchies
of finite state machines, like XABSL Loetzsch, Risler,
and Jungel [8] Risler and Von Stryk [9], a framework

used to develop the behaviour of the TU Darmstadt
Robocup team, which won the world championship in
2010. The main difference between them is that APSI
is more oriented to constraint satisfaction problems than
XABSL. This is the reason why relations between nodes
of the same component (states of the automaton) or be-
tween different components (synchronizations between
components) are directly represented as the edges of a
graph. Therefore, HTLN use a tree of graphs instead
of a tree. At the same time, XABSL seems to be more
reactive oriented. Once the system has checked the status
of the world, it applies an action of the corresponding
automaton. In this case, planning is reduced to the
minimal expression, as it is assumed that the system
will have an automaton modelling the present situation.
In case there is no such automaton, or it has errors, it
can be reprogrammed without assuming any risk for
the system. In space missions, these dependence on the
models is inadmissible, as the consequences of an error
might lead to the loss of the spacecraft. That’s the main
reason why automaton does not play such an important
role. The templates of the KDB are used as guides to
help the planner, which might modify them (with the
help of human experts) to fulfill the requirements of the
mission. The automaton of each component is used to
check whether the plan fulfils the constraints, but never
as a plan to follow during execution time.

In the process of planning, the initial problem is repre-
sented as a DN which evolves until it represents a solu-
tion. The initial DN is defined by the user and composed
by the initial conditions and goals represented as meth-
ods. Each decomposition of a goal into sub-networks
represents an evolution of the DN in terms of granularity.
This process continues until the DN is fully decomposed,
that is, all the leafs of the network are operators (see bel-
low) and all constraints are satisfied. In other case, the
DN is partially decomposed. Picture 4 shows a represen-
tation of an HTLN.

Some important concepts related to HTLN are detailed in
the following paragraphs:

Definition 1 (Task (T')) Set of primitive (operators) and
non primitive actions (methods) available in the domain.

Definition 2 (Operator (0)) Primitive task that repre-
sents a single value choice for a state variable (concept
equivalent to the operators in classical planning) or a
resource activity, which can be a production or consump-
tion.

Definition 3 (Method (M)) Non primitive task which
can be decomposed into a HTLN. A method is represented
as a tree of graphs. The root of the tree is a node (a
decision) of the Decision Network. Each leaf is itself a
Decision Network containing a graph that represents a
possible way to execute the method. Each of the nodes of
this graph could represent again a method (to be further
decomposed) or an operator (see 4). This decomposition

continues until all the nodes of the Decision Network are
operators.

Definition 4 (Relevant) An operator o1 is relevant for a
method m if it belongs to any of the sub-networks in which
the method can be decomposed. A task ty is relevant for
other task to if it satisfies any of the constraints of 0. In
this case, t1 represents a supporting task of ts.

4. SUPPORTING PLANNING THROUGH PAT-
TERN RECOGNITION

Learning represents a flexible technique that allows to
“smooth” the weaknesses of planners. The only flex-
ibility provided in classical planning comes from non-
deterministic selections. If we run a deterministic planner
several times, or we explore the whole search space with
a non-deterministic planner providing always the same
inputs, the outputs will be always the same. In case the
procedure can not find a solution due to a “weakness” in
its conceptualization or implementation, it will never get
the solution, doesn’t matter how much time we give to
the planner. Learning helps to solve this problem. Pattern
recognition techniques are exploited in QuijoteExpress in
two main areas:

e Learning: Knowledge is gathered from the execu-
tion of a set of training examples. This technique
is known as EBL (Exampled-Based Learning). This
step is subdivided in another two:

— First of all the system is trained with a sub-
set of the examples in order to populate the
KDB. The training process consists of the ex-
ecution of plans (either in real or synthetic en-
vironments) and measuring the performance
of the system. In our rover example, some
heuristically-based metrics are provided to do
it (see Heuristics section). It is also important
to generate a wide spectrum of examples cov-
ering all the possibilities to make the database
as complete as possible.

— Some noise might be present in the first set
of examples. To eliminate it, a second set is
executed to check the validity of the informa-
tion in the database. In this case, each exam-
ple should match any of the templates already
stored in the database. In case of error, the
corresponding template of the database should
be checked as it might contain wrong informa-
tion.

e Exploitation: During planning, the KDB is queried
for coincidences either in the whole plan or just in
some goals. To speed up the process, the match-
ing algorithm only compares the contextual infor-
mation. In case some similarities are detected, the
coincident parts of the current plan are replaced by
the template stored in the database.

—Decomposition—»

Matching

Original plan

(c-@zmzze’\i

Decomposed plan

Figure 4. Decision Network generated after the decomposition of its HLGs into sub-goals. DNs are presented in red,

HLGs in blue and primitives in green

Learning has been widely used in search optimization
problems. However, planning problems present im-
portant differences requiring different approximations.
Some planning knowledge systems have focused in learn-
ing heuristics, like Yoon [11] applied to FF planner or
LaSO Xu, Yoon, and Fern [10], a more advanced ap-
proach based on discriminative-learning. But these ap-
proximations might fail in real problems, where the per-
formance of an heuristic and the planner must be analysed
taking into account the context in which the plan has been
executed.

In other relevant cases like Fox and Long [7], the system
tries to identify similarities between objects (taking into
account their initial and final state) and between actions,
based on the similarity of the objects involved. Even
though this approximation seems more appropriate for
real problems, it could be difficult to define manually all
similar objects if we deal with a large domain. In Qui-
joteExpress, similarities are analysed not only between
objects, but between contexts of execution for plans and
goals. These contexts are automatically discovered and
stored using a matching algorithm. Following three sub-
sections give a more detailed description of this process
in QuijoteExpress.

4.1. Problem Abstraction, Learning and Application

In QuijoteExpress, all the elements involved in the
learning process, problems (decision networks) and
goals (component decisions and relations), share the
same structure. This structure has been designed taking
into account the requirements of both the planner itself
and the KDB (relational database). This fact represent
an important advantage in terms of performance, as
conversions from and to the database are reduced to the
minimum.

The components of the KDB are the following::

e HTLN: The hierarchical network contains a tem-
plate of a plan that has been learnt by the system.

The fact that it is mandatory for a plan to be success-
fully executed in order to be stored in the database
assures that it will work next time the system faces
a similar context execution, being this similarity
heuristically determined. A plan might be composed
of several goals representing common tasks that use
to be executed together. These “building blocks”
can be reused to replace whole parts of the problem,
therefore saving time during the planning process.
The size and number of plans stored in the KDB is
only limited by memory constraints. There are spe-
cial types of templates, called units which contain
the HTLN of a single task (a method). At the mo-
ment it is mandatory to provide a fully decomposed
HTLN for each method in the system, although it is
foreseen to make the system in the future able to au-
tonomously discover such HTLN’s. In fact, one goal
or (more likely) one problem might present several
HTLN’s which represent different ways to achieve
the same objective. This is the reason why a HTLN
is represented as a tree of graphs, where each leaf
for a given node represents a different execution op-
tion to achieve this node. One node of the tree can
be decomposed in just one network at a time, that
means, only one leaf can be selected.

Context: Decision Networks and goals (component
decisions and relations) are provided with contex-
tual information. This information will allow the
system to determine which template in the database
better match the problem at hand. The contextual in-
formation is user-defined. Picture 5 shows the con-
textual information for a component decision, which
is distributed in two classes:

— Persistent: Contain all contextual information
needed during the process to find the appro-
priate template in the database. It also con-
tains a copy of the real object, with the HTLN
structure that will replace the part of the plan
in case the template match the plan. This infor-
mation is only available in the objects stored in
the database as it is not needed during planning
or execution.

— Context: Information relevant for both learn-

persistence::PersistentCompDec

id: int

label: String = null

distance: int

matching: float = Float.MIN_VALUE
fuzzyExecTime: String = null
systemStatus: String = null
envirenmentStatus: String = null
relatedHLG: Vector<String=
serialCompDec: byte {[]) = null

Fedk o ok

GontextGompDecAbziract

domain::ContextCompDec

contextType: String = null

score: float=10

relevance: float =0

uncertainty: float = Float MIN_VALUE
paramsUncert: ParamsUncertaintyGoal = null
isOperator: boolean = false

parents: Vector<DecisionMetwork> = null
children: Vector<DecisionMetwark= = null

F W I I W I

Figure 5. Contextual information of a component deci-
sion to support learning and planning

ing and planning system.

e Evaluation function: This function heuristically de-
termines which are the templates that better fit the
plan or some parts of the plan, according to the spe-
cial context of the plan and each of its goals. Heuris-
tic functions are discussed in section Heuristics.

Learning. Once the plan has been successfully exe-
cuted, some contextual information is extracted. In this
process, numeric variables will be ungrounded using
fuzzy logic, while the enumeration variables like f¢ or
fe (see description bellow) are defined by the user and
used by the heuristic to identify similar plans or goals.
As they are problem dependent, heuristics are defined
in a separate layer from the planner, but implement
standard interfaces defined in the planner layer that
describe the inputs they will receive and the outputs to
be generated. Afterwards, the learning system (using the
heuristic) compares the plan with those already stored in
the database. If there is no coincidence, the plan is stored
as a DN (called template). If there is a coincidence, then
the contextual information is updated. It is important to
notice that both Learning and Exploitation use the same
functions (presented bellow) in order to compare plan
and templates.

From the point of view of performance, this technique
helps to decrease the search space in cases where the
system has been properly trained. Once the template is
applied, only the constraints between high level goals
must be propagated to the sub-networks.

From the point of view of robustness, as the templates are
rated, the system helps to discover the “building blocks”,
that is, the strategies proved to give the best results for a
specific context in a similar way as genetic algorithms.

Exploitation. The process is depicted in Fig. 6.

Plan
Context

%poser

TLN Plan

Figure 6. Structure of the learning system

Given a partially decomposed problem, the contextual in-
formation from the decision network and each of its sub-
goals is extracted. This information is used to query the
KDB to retrieve a sorted vector with all coincident tem-
plates, each of which could cover the whole set of goals
of the problem, parts of them or just one specific goal.
The score function (see Heuristics section) is:

SCOT €template = f(uv U) (1)
being 1 the matching and v the uncertainty. In order to
make heuristics computationally efficient, all of them use
progressive functions. The score of the template is calcu-
lated as a function of the score of each of its goal. There-
fore, in case something changes in the plan, the template
score can be easily recalculated adding/subtracting the
score of the goals added/deleted respectively. As a re-
sult, a vector of templates is retrieved, ordered by their
score.

The approximation used to apply the templates to the
problem is presented in Algorithm 1.

Algorithm 1 applyNextBestTemplate(problem, tem-
plates, affected)

best = get NextBest(templates)
while (—problem.isFullyDecomposed or —best =
null) do
if (best C af fected) then
recalcScore(problem, best)
sort(templates, templatespest)
else
applyTemplate(problem, best)
af fected = get Af fectedT emplates(best)
end if
best = get NextBest()
end while
if (—problem.isFullyDecomposed) then
return error
end if
return problem

58 (Heuristic)
f(matching,uncertainty)

It receives as inputs the partial problem, the set of rele-
vant templates ordered by their score and the set of af-
fected templates containing the set of templates which
scores are not updated. The algorithm returns a fully de-
composed problem or error in case no pattern is found
for some goal. This algorithm is sound as the num-
ber of templates is finite and complete if our KDB is
provided with all the units of the domain. It starts se-
lecting the next best template from the list. In case a
previous template overlaps some of the goals with the
present one (best C af fected), the score should be
recalculated, deleting the effect of these goals (which
have been already decomposed by the previous template).
recalcScore is in charge of this activity. As all heuristics
used to calculate the score are progressive, this process
can be achieved without high computational cost. Once
the template score has been recalculated, the template is
ordered and the algorithm starts again selecting the best
template (that might be the same one). In case the tem-
plate has not been af fected, its decision network is ap-
plied to the problem. This action may affect the score
of next templates. Each goal has a pointer to all decisions
networks in which it is involved. In this way, it is straight-
forward to generate the list of affected templates. Finally,
the algorithm checks whether the problem has been fully
decomposed, returning error in other case.

A second algorithm is executed in case the planner is not
able to generate a solution. In this case, the planner back-
tracks to choose other templates that might lead to a valid
solution. The algorithm gets as inputs the problem, tem-

Algorithm 2 backtrackStrategic(problem, templates,
goalsFailed)
templateSrailed =
getFailedT emplates(goalspaiied)
templates = templates — templatespailed
af fected = get Af fectedT emplates(best)
return

applyN ext BestT emplate(problem, templates, af fected)

plates and the flawed goals detected by the planner. The
templates used to decompose the failed goals are then
eliminated of the templates list. The initial goals in the
plan decomposed by these templates are restored and a
new list of affected templates is calculated. As a conse-
quence, the templates in the affected list might increase
their scores, as there are new goals in the problem avail-
able to be decomposed. Finally, it calls back Algorithm 1
to generate a new fully decomposed problem.

Heuristics. Three heuristics are used to calculate the
score of a plan, one for each element of equation 1. They
are defined by the user in a mission-dependent layer of
the software. It helps to keep the planner isolated of the
details, as it only needs the list of templates and their
scores.

Matching value. The matching value of a template is
calculated as the aggregation of the matching value of

each goal of the template.

n
Htemplate = k * Hgoal;
g
i=1

m 2
+(1 - k) * Z Hhoper;
j=1

where:

e 1 is the number of goals in common between the
problem and template.

® [igoql; 1s the matching value of the ¢+ — th matching
goal.

e m is the number of “hoper” goals, that is, goals not
included in the problem but “nice to have”, which
are present in the template. In case there are re-
sources available after the planner obtains a solution
for the problem, it can add any of this “hopers” to
give more value to the plan.

® [lhoper, 18 the matching value of the j —th matching
hoper goal.

e [k is a constant that represents the relevance of goals
over hoper goals.

Another constant defined in the algorithm establish a
threshold for the number of matching goals of a template.
If this number is lower than the threshold, then the tem-
plate is discarded.

The matching value of a goal uses the variables specified
on its context.

Hgoal = kT * derZZ(ngoalp, ngoalt)
+ kg * def’LLZZ(f§goalp; fggoalt) (3)
+ ke x defuzz(fegoar,, f€goal,)

where:

e k.: Constants used to adjust the relevance of the dif-
ferent variables.

e goaly, goal:: Goal of the plan and template respec-
tively which matching value is calculated.

e f7: Fuzzy value of the type of execution requested
in terms of fime. It tries to represent the different
time situations in which the user might want to exe-
cute a goal. For example, in the rover example, it is
completely different for the rover to do an approx-
imation traverse to a science spot, which can take
minutes or hours, or doing a long traverse in order
to move to a new area, which can take several days.

e f¢: Fuzzy value that represents the status of the en-
vironment in which the goal must be executed. For
a rover, it is completely different to charge batteries
during the midday or the sunset.

e fe: Fuzzy value that represents the status of the sys-
tem. For example, if a rover has to take pictures,
it might take into consideration the status of energy
and memory resources to determine how many pic-
tures it can take and the quality of them.

Uncertainty value. The uncertainty (v) is measured
here in terms of time, as it is computationally fast and
because taking time into account, we also consider in an
indirect way other factors like resource consumption. The
equation is presented in 4

n
Utemplate = M (4)
n

Being n the number of matching goals between the plan
and the template. Now, the uncertainty of a single goal
is calculated as the standard deviation of the execution
time. Negative values, which mean that the execution of
a goal took less time than expected, are reassigned to zero
to make the heuristic more conservative.

T (timegoar,)2 ——
Vgoal; = \/ZZ:l(goall) - timez (5)

n

Score Finally, the score (o) is calculated taking into
consideration matching and uncertainty values. Many
other variables, like the frequency of execution of each
goal/template or the relative distance between goals
could be applied just modifying the heuristic, but it
might imply more computational cost.

G PLEPR XN
template U+1

(6)

where:

e p.: Represents the ratio of matching goals respect
the total amount of goals in the template

e p,: Represents the ratio of matching goals respect
the total amount of goals in the plan

In this way, we give better scores to those templates
which best cover the plan goals.

5. CONCLUSIONS

At present, planning theory has achieved sufficient matu-
rity to be in charge of the automatic generation of critical
plans for real applications like space missions ECS [5].

One concern might be the limited computational capa-
bilities on-board the spacecraft. However, taking into
consideration the long term schedules managed for space
missions, we should start now preparing the software to
be run in future hardware platforms. Even though it
is usually subject of discussion, there exists a big gap

between theoretical and practical planners. It is Space
Agencies duty to invest efforts in order to bridge this gap.

This paper goes in this direction, providing a fusion of
different theoretical technologies from planning and Al
worlds. Central ideas in the design of QuijoteExpress
like high level goals, parallelism and distributed systems
will represent key concepts in future space mission sce-
narios. At the same time, the use of Al techniques like
the pattern matching presented here will play an impor-
tant role in order to develop more informed planners and
heuristics required to address the increasing complexity
of plans and search spaces.

REFERENCES

[1] Cesta, A., and Fratini, S. 2008. The timeline rep-
resentation framework as a planning and scheduling
software development environment. In In PlanSIG-08,
Proceedings of the 27" Workshop of the UK Planning
and Scheduling Special Interest Group.

[2] Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:61-95.

[3] Donati, A.; Policella, N.; Cesta, A.; Fratini, S.; Oddi,
A.; Cortellessa, G.; Pecora, F.; Schulster, J.; Rabenau,
E.; Niezette, M.; and Steel, R. 2008. Science opera-
tions pre-planning & optimization using ai constraint-
resolution - the apsi case study 1. In Proceedings of the
10th International Conference on Space Operations.

[4] Dvorak, D. L.; Ingham, M. D.; Morris, J. R.; and
Gersh, J. 2007. Goal-based operations: An overview.
In Proceedings of AIAA Infotech@Aerospace Confer-
ence.

[5] ECSS-E-70-11c — Space engineering — Space seg-
ment operability. ESA Publications, Noordwijk,
The Netherlands, 31 Jul. 2008 (available from
http://www.ecss.nl/).

[6] Fesq, L.; Ingham, M.; Pekala, M.; Eepoel, J. V.; Wat-
son, D.; and Williams, B. 2002. Model-based auton-
omy for the next generation of robotic spacecraft. In In
proceedings of International Astronautical Congress.

[7] Fox, M., and Long, D. 1999. The detection and ex-
ploitation of symmetry in planning problems. In Pro-
ceedings of IJCAI-99, 956-961. Morgan Kaufmann.

[8] Loetzsch, M.; Risler, M.; and Jungel, M. 2006.
Xabsl- a pragmatic approach to behavior engineering.

[9] Risler, M., and Von Stryk, O. 2008. Formal behavior
specification of multi-robot systems using hierarchical
state machines. In In AAMASO8-Workshop on Formal
Models and Methods for Multi-Robot Systems, 12—-16.

[10] Xu, Y.; Yoon, S.; and Fern, A. 2007. Discrimina-
tive learning of beam-search heuristics for planning.

In Proceedings of the International Joint Conference
on Artificial Intelligence 2007, 2041-2046.

[11] Yoon, S. 2006. Learning heuristic functions from
relaxed plans. In Proceedings of the International
Conference on Automated Planning and Scheduling,
ICAPS-06. AAAI Press.

