Improved Spike-Timed Mappings using a Tri-Phasic
Spike Timing-Dependent Plasticity Rule

Scott V. Notley
Department of Computing
University of Surrey
Guildford, Surrey, U.K.
Email: S.Notley @surrey.ac.uk

Abstract—Reservoir computing and the liquid state machine
model have received much attention in the literature in recent
years. In this paper we investigate using a reservoir composed
of a network of spiking neurons, with synaptic delays, whose
synapses are allowed to evolve using a tri-phasic spike timing-
dependent plasticity (STDP) rule. The networks are trained to
produce specific spike trains in response to spatio-temporal input
patterns. The results of using a tri-phasic STDP rule on the
network properties are compared to those found using the more
common exponential form of the rule. It is found that each rule
causes the synaptic weights to evolve in significantly different
fashions giving rise to different network dynamics. It is also
found that the networks evolved with the tri-phasic rule are
more capable of mapping input spatio-temporal patterns to the
output spike trains.

Index Terms—Reservoir Computing, Liquid State Machine,
Spike Timing-Dependent Plasticity, Tri-Phasic, Spiking Neurons.

I. INTRODUCTION

There has recently been an interest in recurrent networks
and especially reservoir computing as the solution to com-
plicated computational tasks [1]. The Liquid State Machine
(LSM) [2] was introduced as a biologically plausible model of
cortical microcircuits that is capable of real-time computations
on continuous streams of data, such as spike trains [3], [4], and
is a highly recurrent network of spiking neurons coupled with
linear-readout neurons. The recurrent network or reservoir is
viewed as a generic structure and learning takes place by the
supervised training of linear readout neurons with no training
taking place in the reservoir.

Since learning only takes place at the linear readout neurons
training is relatively simple. However, a more biologically
realistic model would also contain some form of learning
within the reservoir such as Spike-Timing Dependent Plasticity
(STDP). The effects of intrinsic plasticity on the properties of
reservoirs have been studied by Steil [5] and Schrauwen et al
[6]. Triesch [7] has also studied the effects of intrinsic pla-
siticity and its synergies with synaptic plasticity in reservoirs.
However, in each of the studies the networks were composed
of rate based neurons instead of spiking neurons. Norton
and Ventura [8] have presented results investigating spike-
timing dependent plasticity (STDP) in reservoirs using spiking
neurons and found that in the presence of non-random inputs
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there was an improvement in the seperation properties of the
reservoirs. This work was extended to a learning scheme called
seperation driven synaptic modification [9] that is related to
Hebbian and reinforcement learning, however, the biological
plausibility of this method is not clear.

The work of Izhikevich [10], while not motivated from
the reservoir paradigm, investigated the effects of STDP on
random recurrent networks of spiking neurons. This work in-
troduced synaptic delays to the recurrent network and the con-
cept of time-locked neural firing patterns called polychronous
groups. Polychronous groups arise due to the network topology
coupled with the ongoing synaptic plasticity and were cited as
a possible mechanism for networks to store large amounts of
information and to exhibit working memory [11]. The work
also demonstrated that polychronous groups may be activated
in response to specific spatio-temporal input patterns although
there has not been much significant advances reported in the
literature exploiting this phenomenom.

In this work we investigate using a network of spiking-
neurons with synaptic delays as the reservoir for a LSM.
The networks are allowed to evolve using two different STDP
rules: the common exponential form and a tri-phasic form (TP-
STDP). The performance of the networks is assessed in terms
of its ability to produce two different spike-timed sequences
in response to two different spatio-temporal inputs. Network
properties are also investigated and it is found that the network
dynamics and the evolution of the synaptic weights differs
dependent on both the initial weights and the STDP rule that
is used. The ability of the network to map spatio-temporal
input patterns to specific output spike trains is assessed and
it is found that the the TP-STDP rule gives improved results
over the STDP rules.

II. NETWORK AND TRAINING
A. Architecture

The reservoir for the liquid state machine was based on
the network described by Izhikevich [10], implemented as a
network of 1000 neurons and fully connect to a single read-out
neuron. The neurons of the reservoir were randomly connected
with 100 efferent connections from each pre-synaptic neuron
to 100 post-synaptic neurons giving a connection probability



of 0.1. Each neuron was defined as either inhibitory or excita-
tory with a ratio of 80% excitatory to 20% inhibitory as found
in the mammalian cortex [12]. Each neuron was modelled
using Izhikevich neurons [13] [14] with excitatory neurons
being of the regular spiking type and inhibitory neurons
being of the fast spiking type. Only efferent synapses from
excitatory neurons are plastic and the weight allowed to evolve
according to the STDP rule used (weights are constrained to
be excitatory or inhibitory and thus may not change type).
Inhibitory synapses were initialised to -5mV !; initialisation of
excitatory weights is discussed in section II-D. Each excitatory
synaptic connection had an associated axonal delay initialised
uniformly over the range of 1ms to 20ms and each inhibitory
synapse had an associated 1ms axonal delay.

The read-out neuron was an Izhikevich neuron of the fast
spiking type and was fully connected to the liquid neurons.
The efferent synapses were initialised to a uniform distribution
with a range 4 to 8. The weight of these efferent synapses
are not dependent on the type of pre-synaptic neuron and are
allowed to change type from excitatory to inhibitory and vice-
versa.

B. Spike-Timing Dependent Rules

The basis of most models of learning in neural networks
is based on Hebbian plasticity [15]. Spike-Timing Dependent
Plasticity (STDP) is a form of Hebbian learning where changes
in synaptic efficacy is sensitive to the precise timing of pre-
and post-synaptic action potentials [16], [17]. The precise form
of the STDP rule depends on the neuron type but it is generally
assumed that a pre-synaptic spike preceeding a post-synaptic
spike i.e. a causal relationship, leads to long term potentiation
and that post- preceeding pre- leads to long term depression.

In this paper we consider two forms of STDP as shown in
Figure 1(a) & 1(b): (a) An exponentially decaying form and,
(b) A tri-phasic form of STDP (TP-STDP) [18], [19], [20].
Both forms of STDP were implemented as additive ( w; =
wy_1 + Aw) with a nearest neighbour approach [21]. Synaptic
weights were constrained to be within the range w,,;, = 0 and
Wazr = 10.

The change in synaptic efficacy, Aw, for the exponential
STDP rule is given by:
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where AT = 0.1, A= = 0.12, 7,,, = 20ms and At is the
time between pre- and post-synaptic spikes given by At =
tpost - tp'r‘e-

For the tri-phasic STDP rule the change in synaptic efficacy
is given by:
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'In the work of Izhikevich an incoming spike causes an instantaneous
increase in the membrane potential determined by the value of the efferent
synaptic weight, thus units are measured in millivolts

again where At = tp,c — tpost. As can be seen from figure
1(b) this rule leads to depression of synapses even with causal
spikes if they have a time interval of between approximately
30ms and 100ms. For both rules, time intervals of greater than
100ms cause no modification of the synapses.
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Fig. 1. Two forms of STDP rule used in this paper

C. Read-Out Training

The read-out neuron was trained using the ReSuMe algo-
rithm presented by Ponulak and Kasinski [22]. This algorithm
is a biolically plausible form of supervised learning that allows
a neuron to adapt its efferent synaptic weights to enable it to
learn arbitrary spike patterns in response to a given synaptic
stimuli. The algorithm is independent of the neuron model.

The work of Ponulak and Kasinski shows that for single
input spikes on each synapse the algorithm is guaranteed to
converge. However, with multiple spikes this is not the case
and they suggest that a low learning rate is employed to ensure
good performance. The ReSuMe learning equation is given by:

%woi(t) = [Sa(t) — So(?)] {ad + /000 aqi(s)Si(t — s)ds
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where w,;(t) is the i-th efferent synaptic weight of neuron o,
Sa(t) is the desired output spike train, S, is the actual output
spike train of neuron o, a4 is a learning rate that matches the
output firing rate to that of the desired spike train, S;(¢) is the
i-th input spike train and ag4; is a kernal given by:

aqi(s) = Agie” 7ai “4)

where Ag; is a learning rate constant and 7y; is a time con-
stant. In the simulations presented in this paper the parameters
used were ag = 5mV, Ag; = 1mV and 74; = 5ms.

D. Weight Initialisation and the STDP Rule

It has been shown that for additive exponential STDP the
final distribution of the synaptic weights in a single neuron
forms a bi-modal distribution [23], [21]. Cateau and Fukai
have also shown the same for a tri-phasic rule [18]. These
authors analysis shows this to be due to an unstable fixed point
in the Aw vs w phase space which drives weights towards their
maximum or minimum. In this sense there is a dependency
of the final synaptic weights on the initial conditions. If the
weights are all initialised well below the fixed point then all
of the weights will be driven towards the minimum producing
a uni-modal weight distribution and a network of minimal
activity. Similarly, if weights are initialised well above the
fixed point then all of the weights are driven toward their
maximum.

For the case of weights that are initialised near to the fixed
point then a bi-modal distribution of weights is produced.
As such the performance of the neuron is affected by the
initialisation of the weights with respect to the fixed point
of the STDP rule used. For example, even if the weights are
initialised to a uniform distribution across the full range of
weights, the position of the fixed point within the weight range
determines the proportion of weights being driven towards
either the maximum or minimum.

The fixed point analysis discussed above is for single
neurons with no form of feedback from output to input. For
the networks discussed in this arcticle the situation is more
complex with multiple recurrent connections amongst a large
number of neurons and a network fixed point may not even
exist. In practice the fixed points of the networks for each
rule were found experimentally by varying the initial weights
of the network across the maximum and minimum range and
observing the evolution of the network weight distributions as
described below.

1) Simulations: Based on the work of Izhikevich [10]
networks were allowed to ’settle’ for a period of 1 hour model
time. During this period the network was stimulated with
a random input giving each neuron a random firing rate of
approximately 1Hz. This random input allows the network
to self-organise and form groups of neurons that fire in a
polychronous fashion. During this settling period the network
was also repeatedly and evenly stimulated with two arbitrarily
chosen spatio-temporal input patterns via a single set of 10
input neurons.

Figure 2 shows examples of the final weight distributions
for varying initial weights for both the exponential STDP rule
and the TP-STDP rule. For the STDP rules, figures 2(a) &
2(c), the weights are driven towards a bi-modal distribution.
For initial weights below 5mV the distributions were unimodal
with the weights trending towards the minimum. For the TP-
STDP rule and initial weight of 5mV, figure 2(b), leads to a
unimodal distribution and an initial weight of 6mV, figure 2(d),
leads to a bi-modal distribution. This shows that the evolution
of the network weights is dependent on the STDP rule used
and on the initialisation of the network. Further to this it may
also be seen, from figure 2, that even when the TP-STDP
evolves to a bi-modal distribution the balance of the number
of synapses at maximum to minimum is different to that found
for the STDP rule. This suggests that there may be an unstable
network fixed point that is determined by the initial weights
and the STDP rule used.
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Fig. 2. Final weight distributions for varying weight initialisations and each
STDP rule

Figure 3 shows the average synaptic weight in the network
plotted as a function of synaptic delay for both STDP rules for
networks with initial weights of 6mV. It should be noted that
for each synaptic delay the distribution of weights is still bi-
modal but the ratio of maximum to minimum weight is varying
with synaptic delay. From this figure it is quite clear that
there is a distinct difference in the evolution of the synaptic
weights for each STDP rule. For the TP-STDP rule the ratio of
maximum to minimum weight reduces significantly with delay
with a delay of 1ms having a ratio of approximately 0.5. The
ratio for the STDP rule is small for middle delay values but
approximately 0.5 at the extremes of the delay range.

III. NETWORK PERFORMANCE

After settling each network was again repeatedly stimulated
with the two input patterns (used during settling) but with no
STDP and no random input. The read-out neuron was then
trained using the ReSuMe algorithm to produce two different
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Fig. 3. Average synaptic weight as a function of synaptic delay. Curves
averaged over 10 networks, error bars show the Standard Error.

but arbitrary spike trains based on the response of the network
to each input pattern. The ReSuMe algorithm was applied over
4000 one second epochs of input stimulus to allow a slow
convergence to take place.

A. Network Reponse

Figure’s 4(a) & 4(b) shows network responses to two input
patterns for a network allowed to settle with exponential
STDP and TP-STDP respectively. It can be seen that the
network allowed to settle with STDP produces and longer
but more sparse response than the network allowed to settle
using TP-STDP (the total number of spikes in the responses
were generally found to be of the same order). A possible
explaination of this may be found with respect to figure
3. The weight/delay curve for STDP achieves a balance of
weights where there is significant proportion of long delays
at maximum efficacy and enables the network to produce
responses that are longer in duration.The network response for
the STDP network also shows that there is a higer firing rate
for the inhibitory neurons (neurons greater than 799) which
may be leading to the sparseness in the excitatory neurons.

For network response of the TP-STDP may again be
explained in terms of figure 3 as in this case there is a
greater propertion of excitable synapses for short delays and
at long delays the is only a small number of synapses at
maximum efficacy. Thus, the network produces a response
that is constrained to shorter time periods but with a higher
firing rate producing a dense response. Since read-out neurons
are only capable of producing output spikes when there is
sufficient input energy, it follows that a more dense network
response may be more capable of driving the read-out neuron
to produce output spikes at arbitrary time intervals with a high
level of accuracy. In contrast to this and by the same argument,
the period of time for which the short dense responses may
produce output spikes is limited.
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Fig. 4. Typical network responses for networks initialised with weights=6.
(a) STDP and (b) TP-STDP

B. Read-Out Neuron Training

Figure 5 shows an example of the results found with a
network allowed to settle using the tri-phasic rule and a
readout neuron trained using the ReSuMe algorithm. Figure
5(a) shows the network response to each of the input patterns
at Oms and 500ms. Figures 5(b) & 5(c) show the response
of the read-out neuron to each input pattern after training. In
this case the desired responses are close to each other in that
they are both close in time and are composed of three spikes.
The main difference between the spike patterns is the relative
timing of the spikes. In both cases the read-out neuron was
able to produce a response that is closely matches the desired
output patterns.

The average performance of the networks was found by
calculating the distance between the desired responses and the
actual responses. In this work the spike distance suggested by
van Rossum [24] was used.

Figure 6 shows the results of applying the van Rossum
distance to the responses produced from networks allowed to
settle with STDP and TP-STDP for a range of initial starting
weights. For intial weights of 4mV and below both STDP rules
produce similar results in terms of the average van Rossum
distance and do not perform well and corresponds the regime
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Fig. 5. Example of results found for training the network to produce two
arbitrary spike trains in response to two spatio-temporal input patterns. (a) The
network response to each input. The boxes show the spatio-temporal input,
(b) & (c) The read-out responses to the first input and second input patterns
respectively (solid lines show the desired responses, the dotted linesand circles
show the actual responses)

where the initial weights are unimodal and decreasing towards
the minimum value. For an initial weight of 5SmV both sets
of networks perform at a similar level with low van Rossum
measures and it may be noted that at this value the networks

produce a weight distribution that is now bi-modal and thus
some weights have ’gravitated’ to the maximum. For initial
weights of 6mV and above it may be seen that networks settled
with the TP-STDP rule significantly outperforms the networks
settled using the standard STDP rule. It is also apparent that
the TP-STDP rule produces networks that perform well for a
greater range of initial starting weights.
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IV. DISCUSSION

This paper has investigated the use of two different STDP
rules applied to a reservoir of neurons with synaptic delays and
has further investigated the networks ability to produce specific
output spike trains in response to spatio-temporal inputs. It
was found that the evolution of the reservoir weights, and thus
the network dynamics, was dependent on the STDP rule used
and the initial conditions of the network. The STDP rule was
found to produce a set of weights that gave an even balance
for both short and long synaptic delays. In contrast, the TP-
STDP rule was found to give more weighting to the shorter
synaptic delays and reduce the amount of long synaptic delays.
As a consequence of this the STDP rule produces networks
that have long but sparse responses whereas the TP-STDP rule
generates networks that gives short dense responses.

It was also found that networks evolved with the TP-STDP
rule, in terms of the van Rossum distance between actual
output and desired output, performed significantly better than
those networks evolved with the STDP rule. One possible
reason for this is that the read-out neuron is only capable of
producing output spikes when there is sufficient input energy.
Thus a dense network response would more likely to be able
to drive the the read-out neuron at the required times. A sparse
response on the other hand, although capable of driving the
read-out neuron, may not be able to do this with the same
level of accuracy in time.



It should also be noted that the networks were driven with
two different spatio-temporal inputs and the single read-out
neuron trained to produce two different spike trains in response
to these inputs. This places a further condition on the networks
when using a linear read-out neuron to produce more than
one input-output mapping; the network dynamics in response
to each input pattern must be linearly separable from each
other. The production of network repsonses that are linearly
seperable is referred to as the seperation property [2]. Maass
et al also show that for the LSM to be able to produce robust
outputs the networks must have a fading memory property. The
fading memory property ensures that current network state at
the time of the input patterns arrival does not cause network
responses that are vastly different for similar spatio-temporal
input patterns. The weight/delay curves suggest that the TP-
STDP rule produces networks that may have shorter fading
memory properties enabling them to be robust to the residual
effects of previous inputs.
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