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Abstract

Despite the introduction of conjugated polysaccharide vaccines for many of the Neisseria meningitidis serogroups, neisserial
infections continue to cause septicaemia and meningitis across the world. This is in part due to the difficulties in developing
a, cross-protective vaccine that is effective against all serogroups, including serogroup B meningococci. Although
convalescent N. meningitidis patients develop a natural long-lasting cross-protective immunity, the antigens that mediate
this response remain unknown. To help define the target of this protective immunity we identified the proteins recognized
by IgG in sera from meningococcal patients by a combination of 2D protein gels, western blots and mass spectrometry.
Although a number of outer membrane antigens were identified the majority of the antigens were cytoplasmic, with roles
in cellular processes and metabolism. When recombinant proteins were expressed and used to raise sera in mice, none of
the antigens elicited a positive SBA result, however flow cytometry did demonstrate that some, including the ribosomal
protein, RplY were localised to the neisserial cell surface.
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Introduction

Neisseria meningitidis infection continues to cause considerable

disability and mortality throughout the world. Although polysac-

charide conjugate vaccines have been developed and used

successfully against many of the serogroups of N. meningitidis, such

a strategy has proved ineffective against group B meningococci.

This serogroup now represents the majority of cases in the UK [1].

Vaccines containing Outer Membrane Vesicle preparations

(OMVs) have been used to successfully to vaccinate against

specific outbreak strains of group B N. meningitidis [2,3,4], but such

preparations do not give sufficient cross protection to justify their

use as universal meningococcal vaccines. Although protein

antigens that are protective against serogroup B meningococci

have been identified by reverse vaccinology [5] there remains a

need to characterise the immune response to neisserial infection

and to identify further vaccine candidates for use in a cross

protective vaccine.

Classic studies performed in the 1960’s demonstrated the

importance of bactericidal antibody for protection against

meningococcal disease, as reviewed by Pollard and Frasch [6].

Several lines of evidence suggest that important and pan-reactive

determinants of immunity remain to be discovered. (i) In

immunocompetent individuals a single episode of meningococ-

caemia confers permanent immunity to all types of meningococci

[6,7,8]. (ii) Carriage of commensal species such as Neisseria lactamica

provides immunity to meningococcal disease [6,7,8]. (iii) Inocu-

lation of mice with attenuated mutant meningococcal strains

induces cross-reactive immune responses [9]. These findings

indicate that natural exposure (to either N. meningitidis or N.

lactamica) can provide long-term, cross-reactive protection, how-

ever the identity of the antigens involved remains unknown. They

are unlikely to be the well characterised class 1, 2 and 5 Outer

Membrane Proteins (OMPs) since these antigens do not induce a

cross-reactive bactericidal immune responses in immunized

volunteers [10].

The proteome of both the serogroup B strain, MC58 [11],

and the serogroup A strain, Z4970 [12], as well as the

composition of OMV preparations from both N. meningitidis

[13,14,15,16,17] and N. lactamica [13,14,17] have been cata-

logued using a combination of 2D SDS-PAGE gels and mass

spectrometry (reviewed by Wheeler et al. [18]). However, the

proteome itself does not provide information as to which proteins

are immunogenic. By combining proteomics with immunoblot-

ting it is possible to generate an immunoproteome that

catalogues those proteins that are recognized by the host

immune response. This immunoproteomics approach has been

applied to a wide of range of organisms including M. tuberculosis

[19], Streptococcus pneumonia [20], Staphylococcus epidermidis [21] and

Candida albicans [22]. In many cases this has led to the

identification of novel antigens that have been demonstrated to

be protective in animal models [20,21,22]. We here, apply

immunoproteomic approaches to N. meningitidis to identify

proteins that bind IgG from acute and convalescent meningo-

coccal patient’s sera with the aim of further understanding the

immune response to neisserial infection and to potentially

identify new cross-protective neisserial antigens.

Results

2D electrophoresis and Western blots
Proteins extracted from N. meningitidis L91543 were separated by

2D gel electrophoresis and western blotted with sera from acute

and convalescent patients (Table 1). Up to 473 separate protein

spots could be distinguished on the 2D gels (Fig 1). Eighty eight of
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Figure 1. 2D gels of total N. meningitidis proteins. Total N. meningitidis proteins separated by 2D gel electrophoresis using (a) a non-linear pI 4–7
1st dimension and (b) a non-linear pI 6–9 1st dimension. Gels were silver stained and replica gels western blotted with patient sera. Spots that were
recognised by one or more sera on western blots are circled. Spots whose identity was determined are numbered in black, those that remain
unidentified in grey.
doi:10.1371/journal.pone.0005940.g001
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these 473 spots bound sufficient IgG from one or more of the

patient sera to be detected on western blots (Fig 2).

Comparison of western blots immunoprobed with different

patient sera demonstrated clear differences in immune recognition

with individual patient serum recognising between one and 41

protein spots (Table 2). Many proteins were recognized by several

sera while others were specific to a single serum sample. As

expected, all the acute sera bound to fewer spots than their paired

convalescent sera. Unfortunately there was insufficient patient

information to attempt to relate immunogenic profiles to patient

details. No correlation to the infecting strain serotypes was

apparent, nor was there any obvious correlation to SBA titres

(most of the acute sera had high levels of complement independent

killing so an SBA titre could not be obtained). Replicate western

blots identified similar spot patterns.

Although 2D gels of OMVs clearly had different protein profiles

to gels with total protein preparations, no novel antigens were

identified when they were western blotted with the three mixed

convalescent sera (Table 2).

Identification of antigens
Immunogenic proteins were excised from the gels and identified

by mass spectrometry. Of the 88 spots that were detected on the

western blots, 54 were successfully identified by mass spectrom-

etry, representing 33 different proteins (Table 2, Table S1). Many

of the proteins were identified from more than one spot, often with

the same molecular weight but with differing pI values.

Presumably, these represent isoforms of the same protein that

retain their immunogenicity. Some of these isoforms appear to be

immunologically distinct from each other. For instance spots 105

and 106, both identified as SucC were recognized by IgG in

convalescent sera from patient 1, however the spot adjacent to 106

that was also identified as SucC, but did not bind IgG (Fig 1).

The immunogenic proteins identified (Table 2) represent a wide

range of functions, including chaperones, ribosomal proteins and

many that are involved in central metabolism. Most of these

proteins are predicted to be cytoplasmic and therefore are not

expected to be directly accessible to the immune system in intact

cells. This was despite the presence of many of the established

outer membrane antigenic proteins such as PorA, PorB, Opa, and

RmpM on the 2D gels.

Cloning, Expression and Confirmation of antigens
Genes encoding the protein antigens were PCR amplified and

cloned into the expression vector, pET101. Eighty two percent of

the proteins were successfully expressed. Most of these recombi-

nant proteins were demonstrated, by western blotting, to bind the

patient sera with which they were originally identified (Table 3),

confirming that the mass spectrometry identification was correct.

Of those tested only the putative nucleotidase NMB2015, 50S

Figure 2. An example western blot of a 2D gel of total protein. Total N. meningitidis proteins separated by 2D gel electrophoresis using a non-
linear pI 4–7 1st dimension, western blotted, and probed with convalescent sera from patient 3. Spots that were assigned protein identities are
indicated. Spots with no protein legend have not been identified. Longer exposures of this blot revealed more spots (Table 2).
doi:10.1371/journal.pone.0005940.g002
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ribosomal protein L4 (NMB0143) and a putative phosphate acetyl

transferase, NMB0631, did not bind the original patient sera

indicating that either the wrong spot was picked from the 2D gels,

that the protein was mis-identified or that the recombinant protein

has lost the epitopes that were present on the native protein.

ELISAs with recombinant proteins and cell lysates
Recombinant proteins were used to raise sera in mice. All of the

sera gave ELISA titers of .1:10,000 against recombinant protein

except for FtsZ which had a titer of 1:80. In ELISAs with cells that

had been heat killed and sonicated, all of the sera except for FtsZ,

PilT-2, Adk, AcnB and HisD recognized antigens from the

meningococcal cells, indicating that they were present in amounts

and in a conformation that could be recognized by the sera raised

against the recombinant protein.

Serum Bactericidal Assays
None of the successfully expressed antigens identified in this

study gave a positive SBA of $1:4. Control assays using OMVs

and recombinant fHBP consistently gave titres .1:512. No killing

was seen in control wells lacking either active complement, sera, or

both.

Flow cytometry
The subcellular location of antigenic proteins was investigated

by flow cytometry. Sera raised against the meningococcal surface

protein, fHBP was used as a positive control (Fig 3a), while sera

raised in mice immunised with PBS was used as a negative control.

Several of the recombinant proteins raised IgG that bound to the

surface of whole, live cells. RplY was clearly available on the

surface, with a significant shift in the fluorescence of the entire

population (p = 0.001) (Fig 3b). Sera raised against RmpM, CysK

and AcnB also showed small but significant shifts in fluorescence of

the total population as well as a small but significant subpopulation

of cells with relatively high levels of fluorescence (Fig 3). The

subpopulations with high fluorescence had similar side scatter and

forward scatter profiles to the whole population indicating that the

cells were intact.

Discussion

Our aim in this study was to begin to characterize the

meningococcal immunoproteome and possibly to identify novel

antigens that are the targets of natural cross-protective immunity.

By using a combination of 2D gels, western blots and proteomics,

we identified a set of proteins that were recognized by sera from

both acute and convalescent patients suffering from meningococ-

cal septicaemia. This approach contrasts with previous studies

aimed at identifying naturally occurring immunological responses

such as Litt et al. [47], in that preconceived criteria, such as in silico

predications of protein function, were not applied.

Both the number and identity of the proteins identified by each

sera varied considerable. No antigen was recognized by all the sera

and several antigens were recognised by only a small number of

patient serum samples. The origin of this diversity of immune

response is currently unknown. It is possible it represents innate

differences in immunological responsiveness to the antigens, or

variations in antigenic exposure in different patients due to

variations in treatment timings or disease severity.

The antigens that were identified are a diverse group of

proteins, ranging from known outer membrane proteins such as

RmpM, to enzymes of central metabolism and ribosomal proteins

(Table 2). Where possible the immunogenicity of the identified

proteins was confirmed by cloning, protein expression and by

demonstrating that the recombinant proteins were recognized by

patient sera (Table 3). Many of the proteins are predicted to be

located in the cytoplasm or inner membrane of the meningococcus

and so were not considered by Litt et al. [47] in their screen of

immunological responses to infection. Other studies that have used

similar 2D gel/western blot approaches to identify antigens have

been undertaken using a range of organisms including Helicobacter

pylori [30] Chlamydia trachomatis [25], Borrelia burgdorferi [37], and

Mycobacteria tuberculosis [19]. These have also generated lists of

antigenic proteins that contain large numbers of proteins with a

cytosolic function. For instance, DnaK, CysK, FumB and AtpA

have all been identified from Brucella abortus as immunoreactive by

Connolly et al. [42], while TufA, DnaK and RpsA have been

identified as immunoreactive in Chlamydia trachomatis [25]. The

most obvious explanation for these immune responses is that they

are generated during episodes of septicaemia when killed

meningococcal cells release their cytoplasmic contents into the

circulation. Such a scenario would suggest that although these

antigens may be involved in the immune response to septicaemic

meningococcal disease, they are unlikely to be good vaccine

candidates.

However, we have demonstrated that several of these

‘‘cytoplasmic’’ proteins were present on the surface of neisserial

cells and so may be involved in immune responses that are

relevant to live meningococcal cells. The presence of neisserial

‘‘cytoplasmic’’ proteins on the surface has been reported

previously, for example Ferrari et al. [48] found enolase, Hsp60,

TufA and glyceraldehyde 3-phosphate dehydrogenase on the

neisserial surface by flow cytometry while other researchers have

identified RplL [23,24], DnaK [41], and LpdA2 [45] as being

surface exposed. The flow cytometry data presented here

Table 1. Details of patient sera.

Patient Strain Patient History

1 C:NT:P1.5,2 Severe septicaemia

2 nda Mild septicaemia

3 B Not known

4 nda Severe septicaemia

5 B Severe septicaemia

6 B Mild septicaemia

7 B:4:P1.4 Not known

8 B:4:NT Not known

9 B:4:NT Not known

10 B:NT:P1.9 Not known

11 B:4:P1.4 Not known

12 B:4:P1.4 Not known

13 B:15:P1.7,16 Not known

14 B:4:P1.4 Not known

15 B:4:P1.4 Not known

16 B:4:P1.4 Not known

17 C Not known

18 C Not known

19 C Not known

20 W135 Not known

21 Y Not known

doi:10.1371/journal.pone.0005940.t001
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demonstrates that the ribosomal protein L25 (RplY) is available at

the cell surface with levels of fluorescence comparable to those

found with recognised surface antigens such as NMB1468 [49],

NMB2132 and NMB2091 [5], although considerably lower than

other surface antigens such as fHBP [5]. A different pattern of

surface localization was found for CysK and AcnB, were flow

cytometry indicated that the proteins were surface exposed at

relatively high amounts but only in a subpopulation of cells.

Similar results were obtained in these experiments with RmpM, a

known outer membrane protein. Such heterogeneity in surface

expression has been found with several proteins in Streptococcus

pneumoniae and has been attributed to variation in capsule

morphology [50]. As we used a capsulated strain it is possible

that variations in meningococcal capsule morphology may

similarly expose meningococcal antigens to recognition by the

host immune response in a proportion of the neisserial population.

Alternatively, surface exposure of these proteins may be transient,

only occurring during specific phase of the meningococcal cell

cycle, or be subject to phase variation.

None of the identified immunogenic proteins generated murine

immune sera with bactericidal activity. For those proteins not

expressed on the surface it is likely that the absence of SBA activity

is due to lack of accessibility of antibody to the antigens. For those

proteins with either low or transient surface expression it seems

likely that either the level of antigen on the surface is insufficient to

promote bactericidal killing or, for transiently expressed proteins,

only a fraction of the population may be killed. Such proteins

would be missed by the current bactericidal assays.

These data represent the first proteome wide investigation of the

naturally induced immune response to neisserial infection with

implications for the understanding of the immune response to

septicaemic infection. The antigens identified demonstrate that

meningococcal patients have highly variable immune responses

against a wide range of meningococcal antigens. All the sera tested

contain antibodies capable of binding a range of neisserial

proteins, including many ‘‘cytoplasmic’’ proteins, some of which

are for the first time shown to be available to IgG on the surface of

whole neisserial cells. Although not sufficient to promote

detectable complement mediated killing, immune responses

against these antigens may still be involved in the pathogenesis

and immunity to meningococcal disease.

Materials and Methods

Protein preparation
Neisseria meningitidis L91543 was used thoughout (obtained from

the Manchester Public Health Laboratory, UK), this is a group

C:2a:P1.2, and part of the ST-11, ET-37 complexes. Although

such a serogroup C strain is not suited to the identification of

vaccine antigens aimed at serogroup B Neisseria, it is applicable for

the identification of the cross reactive antigens which this study

aimed to discover. Protein for 2D gels was prepared from cultures

grown for 4 h on Columbia Agar Base supplemented with 6%

horse blood (CAB) at 37uC with 5% CO2. Cells were washed in

PBS and proteins prepared using a ProteoPrepH Sample

Extraction Kit (Sigma). Cells were resuspended in Reagent 4

and sonicated for 10 min. The cells were centrifuged for 5 min

and the pellet discarded, freshly prepared Tributylphosphine

(TBP) was added to the supernatant, and the mixture incubated

for 1 h at room temperature. The proteins were alkylated with

iodoacetamide (IAA) for 1.5 h at room temperature. OMVs were

prepared using sodium deoxycholate from 4 h old CAB plate

cultures according to Fredriksen et al. [51].
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Table 3. Proteins that bound IgG from one or more of the patients sera.

NMB Name Protein Confirmeda Literature

0052 Pilin retraction protein PilT-1 nd

0131 50S ribosomal protein L7/L12 RplL Y Evidence for a surface role in N. gonorrhoeae during cell invasion [23,24]

Immunoreactive in Chlamydia trachomatis [25]

Protective against Brucella abortus in mouse model [26]

Neisserial L7/12 shown to be immunogenic but with limited immunogenicity for T cells
[27]

Identified on the surface of Streptococcus oralis [28]

0138 Elongation factor G FusA Y Thermus thermophilus elongation factor G shown to be putatively membrane
associated [29]

Proposed as a diagnostic antigen in Helicobacter pylori [30].

Identified on the surface of Streptococcus oralis [28]

0139 Elongation factor Tu TufA Y Fibronectin binding in Mycoplasma pneumoniae [31]

Cell wall associated in Mycobacteria leprae [32]

Surface associated and associated with cell adhesion in Lactobacillus johnsonii [33]

Bovine IgG binds Ef-Tu on surface of Anaplasma marginale [34]

Surface located virulence factor on Pseudomonas aeruginosa, binding factor H and
plasminogen [35]

Immunoreactive in Chlamydia trachomatis [25].

0143 50S ribosomal protein L4 RplD N

0336 Enoyl reductase FabI Y

0382 OMP class 4 RmpM Y Well documented surface protein [36].

0427 FtsZ FtsZ Y Immunogen in convalescent Borrelia burgdorferi patients [37]

A structural homolog is antigenic in Bartonella bacilliformis [38]

0530 Beta-hexosaminidase NagZ nd

0546 Alcohol dehyrogenase AdhP nd Immuno-reactive in patients with systemic candidiasis [39]

0554 DnaK protein (hsp) DnaK nd Immunoreactive and partially protective in mouse model for Bruclla abortus [40]

Localized to the surface in Neisseria meningitidis [41]

Immunoreactive in Chlamydia trachomatis [25].

0574 Glycine cleavage system T protein GcvT Y

0631 Phosphate acetyltransferase Pta N

0671 Malate oxidoreductase SfcA Y Found in the immunoproteome of Brucella abortus [42]

Putative serodiagnostic with Mycobacterium tuberculosis [43]

0763 Cysteine synthase CysK Y Found in the immunoproteome of Brucella abortus [42]

0768 Pilin retraction protein PilT-2 Y

0823 Adenylate kinase Adk Y Identified on the surface of Streptococcus oralis [28]

0876 Ribosomal protein L25 RplY Y Antigens found in patients with borreliosis [44]

0959 Succinyl coA synthase SucC Y

1201 IMP dehydrogenase GuaB Y Immunoreactive and protective in mice infected with Candida albicans [22]

1301 30S ribosomal protein S1 RpsA Y Immunoreactive in Chlamydia trachomatis [25]

1344 OMP p64k, PDH, E3 component LpdA2 Y Outer membrane location in Neisseria [45]

Recognised by sera from convalescent neisserial patients [46]

1429 OMP PorA PorA nd Well documented OMP

1572 Aconitate hydratase 2 AcnB Y Immuno-reactive in patients with systemic candidiasis [39]

1581 Histidinol dehydrogenase HisD Y

1613 Fumarate hydrytase FumB nd Found in the immunoproteome of Brucella abortus [42]

1934 ATP synthase F1 beta chain AtpD Y

1972 Hsp60 GroEL Y Conserved proteins that are immunogenic in many bacterial pathogens

2002 Elongation Factor Ts Tsf nd Identified on the surface of Streptococcus oralis [28]

2015 Hypothetical - N

2155 e transfer flavoprotein, beta subunit EtfB nd

2156 Heptosyltransferase I RfaC nd

Immunity to Meningococcus
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2D gel electrophoresis
Protein concentrations were determined using RC DC Protein

Assay (BioRad). ZoomH 1st dimension strips (Invitrogen) were

rehydrated for 18 h with 20 mg protein in 155 ml rehydration

buffer (8 M urea, 2% CHAPS, 50 mM dithiothreitol (DTT), 0.5%

ZoomH carrier ampholytes of an appropriate pI range (GE

Healthcare), 0.002% bromophenol blue) and focused at 200 V for

15 min, 450 V for 15 min, 750 V for 15 min followed 2000 V for

140 min. Strips were alkylated with 1% DTT in equilibration

buffer (1.5 M Tris, 6 M urea, 30% glycerol, 2% SDS, 0.002%

bromophenol blue, pH 8.8) for 15 min, and then reduced with 4%

IAA in equilibration buffer for 15 min. Focused 1st dimension

strips were loaded onto 2nd dimension NuPAGEH Novex 4–12%

Bis-Tris ZOOMH gels (Invitrogen) and electrophoresed at 200 V

as recommended by the manufacturers. Gels were silver stained as

described by Mortz et al. [52].

Serum
Four pairs of acute and convalescent sera (patients 1, 2, 3 and

4); two single convalescent serum (patients 5 and 6) and three

samples of pooled serum, each containing five convalescent sera

(patients 7–11, 12–16, and 17–21), were used to probe 2D gels of

total neisserial proteins (Table 1). OMV preparations were only

probed with the three convalescent sera mixes.

Western blots
Replica 2D gels were western blotted onto PVDF membrane

(Roche). Blots were incubated in PBS containing 10% blocking

reagent (Roche) for 30 min at room temperature, and then with

patient sera at dilutions of between 1:100 and 1:500. Blots were

washed three times for 10 min each with PBS containing 0.1%

TweenH 20 (PBS-Tw), and then incubated with 1:10,000 dilution

of anti-human IgG conjugated with peroxidase (Sigma) for 30 min

at room temperature followed by three 10 min washes with PBS-

Tw. Blots were developed with CSPD (Roche) and exposed.

Developed films were overlain with replica silver stained 2D gels

and spots that aligned with spots on the western blot were

determined. These immunogenic spots were picked and washed

twice for 20 min each with 50% acetonitrile (ACN), 50% 400 mM

NH4HCO3 (ABC). Gel plugs were left in 100% ACN for 10 min

and then air dried. The plugs were incubated in 10 mM DTT in

50 mM ABC for 30 min at 60uC followed by 30 min at room

temperature in the dark with 100 mM IAA in 100 mM ABC. The

gel plugs were again washed twice in 50% ACN, 50% 400 mM

ABC and again incubated for 10 min in 100% ACN and air dried.

The pellet was digested for 3 h with 50 ng trypsin (Promega) in

5 ml 10 mM ABC.

Mass spectrometry
Proteins were identified by Matrix-assisted laser desorption

time of flight mass spectrometry (MALDI-TOF) using a Bruker

AutoflexH machine. Matrix solutions were freshly prepared by

dissolving a-cyano-a-hydroxycinnamic acid (a-CCA) in acetone

to saturation and spotted onto either a stainless steel or

AnchorChipTM target plates and allowed to dry. A 0.5 ml drop

of trypsin digested sample was placed on the matrix and the

peptides allowed to adsorb for 1–2 min before being removed

and the samples washed with 10% formic acid. Mass spectra

were acquired with between 300–1200 laser pulses in positive

reflective mode with an acceleration voltage of 19 kV. Samples

were calibrated with Peptide Calibration Standard (Bruker). The

peptide masses were obtained from the spectra using XMASS

5.1 (Bruker) and used to search the neisserial proteins in the

NCBI database using MASCOT (Matrix Science) with search

criteria of 50 ppm error, fixed modifications of carbamidomethyl

modified cysteine residues, variable modifications of oxidised

methionines and allowing 1 missed trypsin cleavage. Protein

identities were considered reliable if the expected probability was

,0.05 (details of methods are available in Document S1 and

Table S2).

Cloning and expression
Proteins that had been identified by MALDI analysis were

cloned and expressed using the pET101-TOPO system (Invitro-

gen). Primers for the N and C terminals of the annotated ORFs

from N. meningitidis MC58 genome (http://cmr.tigr.org) were

used to PCR amplify products from L91543 genomic DNA

prepared according to Bjorvatin et al. [53]. PCR reactions

contained 10 mM Tris pH 8.8, 25 mM KCl, 5 mM (NH4)2SO4,

2 mM MgSO4, 0.2 mM primers, 0.02 U ml21 Pwo (Roche) and

0.2 mM dNTPs. Cycle conditions were 94uC for 5 min, followed

by 35 cycles of 94uC for 30 sec, 58uC for 30 sec and 72uC for

2 min, followed by 5 min at 72uC. Products were mixed with

pET101-TOPO vector and transformed into TOP10 cells

(Invitrogen). The correct constructs were identified by PCR

and restriction digests, and the plasmids transformed in BL21

cells. The pET21b plasmid expressing factor H binding protein

(fHBP), NMB1870 was kindly supplied by Chris Tang (Imperial

College, London). Proteins were expressed by growing BL21

transformants to approximately OD600 0.6 and inducing with

IPTG to 1 mM. Cells were incubated for 3 h, the cultures

centrifuged and the pellet lysed by resuspending in BugBusterH
(Novagen) with 2 mg ml21 DNase and 50 mg ml21 lysozyme for

20 min. Lysates were centrifuged and the cleared supernatant

applied to a previously equilibrated HisSelectTM (Sigma) column.

The column was washed with 50 mM NaPO4, pH 8, 0.3 M

NaCl, 5 mM imadazole and the proteins eluted with 50 mM

NaPO4, pH 8, 0.3 M NaCl, 250 mM imadazole. Proteins were

dialysed against 10006 volumes of PBS and quantified using a

2D Quant kit (Amersham).

Mouse Immunizations
Recombinant proteins were used to generate serum according

to Giuliani et al. [5]. Briefly, female, NIH mice were immunised

subcutaneously on days 0, 21 and 35 with 20 mg protein each,

initially with Freund’s complete adjuvant and subsequently with

NMB Name Protein Confirmeda Literature

n/a Opa900(FAM18), not in MC58 n/a nd Well documented OMP

aRecombinant proteins that were confirmed as binding their identifying sera are indicated (Y), those that failed to bind their identifying sera are indicated (N) and those
that were not determined, either because no recombinant protein was generated or because no more sera was available are indicated (nd).

doi:10.1371/journal.pone.0005940.t003

Table 3. cont.
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Freund’s incomplete adjuvant. Blood was collected on day 49 and

the serum frozen. Animals were housed and cared for according to

UK Home Office codes of practice and experiments were

approved by the University of Surrey Ethics Committee.

ELISAs
For ELISAs with recombinant protein, 50 ml of 2 mg ml21 was

added to each MaxisorpTM (Nunc) microtiter well and incubated

overnight at 4uC. For whole cell ELISAs, bacteria were grown for

Figure 3. Flow cytometry of live N. meningitidis stained with mouse sera immunised with recombinant proteins. Flow cytometry data
for live N. meningitidis cells stained with sera from mice immunised with PBS alone (black) or with recombinant proteins (grey), fHBP has been used as
a positive control (Fig 3a). Values are means of fluorescence with standard deviations derived from triplicate experiments.
doi:10.1371/journal.pone.0005940.g003
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4 h on CAB, cells were resuspended in PBS and the OD600

adjusted to 0.05. Cells were heated at 56uC for 30 min, followed

by 5 min of sonication and 50 ml added to MaxisorpTM ELISA

wells and dried. All plates were washed three times in PBS-Tw and

blocked for 90 min at 37uC with 50 ml PBS containing 10%

blocking agent (Roche). A serial dilution of serum in PBS with

10% blocking agent was added to the wells and the plates

incubated for 2 h at 37uC. Plates were washed three times with

PBS-Tw and anti-mouse IgG peroxidase conjugate (Sigma) diluted

1:10,000 in PBS with 10% blocking agent added. Plates were

incubated for 1 h in the dark at 37uC and washed three times in

PBS-Tw. Colour reagent, 3,39,5,59-Tetramethylbenzidine (TMB)

was dissolved in 0.05 M phosphate-citrate buffer, pH 5 containing

10% DMSO and added to each well, the colour was allowed to

develop and the reaction stopped by adding H2SO4 to 0.4 M. The

OD450 of each well was measured. Titres were determined as the

last dilution at which the OD450 was greater than 0.1 and more

than twice the value for the equivalent dilution containing negative

sera (from mice immunised with PBS alone).

Serum Bactericidal Assays
Serum Bactericidal Assays (SBAs) were carried out according to

Borrow and Carlone [54]. Briefly, N. meningitidis, L91543, grown

overnight on CAB were inoculated into Mueller Hinton broth to

an OD600 0.1, and shaken at 35uC for 4 h. Cultures were diluted

to OD600 0.1 and then diluted a further 1:5,000, 10 ml was added

to microtiter wells containing a 10 ml of a 1:4 dilution of baby

rabbit complement (Serotech, UK) and 20 ml of a twofold serial

dilution of heat denatured (56uC for 30 min) sera. Plates were

incubated for 1 h and samples plated onto CAB media. Each assay

included control wells with either no sera, heat inactivated

complement, or neither sera nor active complement. Positive

wells were those containing 50% of the number of cells in the

control wells. SBA results for recombinant proteins were

compared to sera from mice immunised with PBS alone, OMVs

(as a positive control for the SBA), and the known bactericidal

antigen fHBP (assayed with N. meningitidis MC58, as a positive

control for the recombinant protein production and immunization

protocols)

Flow Cytometry
N. meningitidis for flow cytometry were grown for 4 h on CAB,

resuspended in PBS and adjusted to an OD600 of 1. A 20 ml

volume of cells was centrifuged, the pellet resuspended in 10 ml

heat denatured sera and incubated for 30 min at 37uC. The cells

were washed three times in 100 ml PBS-Tw and resuspended in

100 ml 4% paraformaldehyde for 18 h at 4uC. Cells were washed

three time in 100 ml PBS-Tw and resuspended in 20 ml anti-mouse

IgG conjugated to FITC (Sigma) diluted 1:50 in PBS. Cells were

incubated for 30 min at room temperature in the dark, washed

three times in PBS-Tw and resuspended in 1 ml PBS. Fluores-

cence was measured with a BD FACSCantoTM Flow Cytometer

recording 10,000 events and the data compared to samples

containing either no cells, or cells stained with sera from mice

immunised with fHBP, OMV preparations or PBS alone. Data

were analysed using WinMDI, recorded events were gated with

reference to the control samples and the population statistics

determined from triplicate experiments.

Supporting Information

Table S1 Mass Spectrometry Data

Found at: doi:10.1371/journal.pone.0005940.s001 (0.05 MB

XLS)

Table S2 MS exclusion list

Found at: doi:10.1371/journal.pone.0005940.s002 (0.03 MB

XLS)

Document S1 Parameters for MS data acquisition and database

searching

Found at: doi:10.1371/journal.pone.0005940.s003 (0.03 MB

DOC)
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