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Abstract Ensemble learning is a method of combining learners to obtain
more reliable and accurate predictions in supervised and unsupervised learn-
ing. However the ensemble sizes are sometimes unnecessarily large which causes
extra memory usage, computational costs and decrease effectiveness. To over-
come such side effects, pruning algorithms have been developed which are
combinatorial but finding the exact subset of ensembles is computationally
infeasible. Different types of heuristic algorithms are developed to obtain an
approximate solution but they are lacking of a theoretical guarantee. Error
Correcting Output Code (ECOC) is one of the well known ensemble tech-
niques for multiclass classification which combines the outputs of binary base
learners to predict the classes for multiclass data. In this paper, we propose a
novel approach for pruning ECOC matrix by utilizing accuracy and diversity
information simultaneously. All existing pruning methods need the size of the
ensemble as a parameter, so the performance of the pruning methods depends
on the size of ensemble. Our unparametrized pruning method is novel as be-
ing independent of the size of ensemble. Experimental results show that our
pruning method is mostly better than other existing approaches.
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1 Introduction

It is widely accepted that ensemble classifiers are more accurate than a single
classifier [47]. A number of effective ensemble methods have been developed
over the previous decades, e.g. bagging [6] and boosting [15]. There is no inte-
grated theory behind ensemble methods and several authors stated that there
is no available consistent and theoretically sound explanations for ensemble
classifiers [24]. Despite these negative reflections, at least three theories are
able to explain the effectiveness of ensemble learners. The first theory is based
on large margin classifiers [30]. It is shown that ensemble classifiers enlarge the
margins and improve the capability of generalization performance of Output
coding [1] which comes from Vapnik’s Statistical Learning Theory [40]. The
second theoretical argument is on bias-variance decomposition of error which
states that ensemble classifiers reduce the variance or both bias and variance
[7,23,35]. The last general theory is constructed upon a set theoretical point
of view to remove all algorithmic details of classifiers and training procedures
in which the classifiers are considered as sets of points [21,22].

The effectiveness of ensemble methods relies on the diversity of the clas-
sifiers and accurate learning models. Despite their effectiveness, they may re-
quire extensive memory to save all the learning models and it can be time
consuming to get a prediction on unlabeled test data. For small data sets,
these two costs can be negligible, but they may be prohibitive when ensemble
methods are applied to large scale data sets. Furthermore, the size of ensem-
ble may lead to inefficiency and selecting subsets of classifiers can improve the
generalization performance [47].

Several pruning algorithms have been developed such as ranking classifiers
according to their individual performance and picking the best one. The major
problem in selecting the best subset for the ensemble occurs when optimizing
some criteria of subsets since it turns out to be a greedy search algorithm which
has no theoretical or empirical quality guarantee [47]. In [10], a novel approach
is proposed to investigate a given base classifier’s effectiveness by measuring
its accuracy k times with respect to each individual class of a k class problem,
averaging the results. The proposed measure is used to prune the ensemble by
using ordered aggregation and referred to ACEC. Since pruning is performed
by ordered aggregation, as the size of ECOC matrix increase, running time of
ACEC increases. Like in the other ordered aggregation methods, pruning size
should be given as an input which leads the problem parameter dependent
in [10]. Evolutionary pruning methods for ensemble selection are developed
in [20]. Unlike the heuristic methods we mentioned above, ensemble prun-
ing may be formulated as quadratic integer programming problem and solved
by semi-definite programming which searches for optimal diversity-accuracy
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trade off [47]. This new approach differs from previous ensemble methods as it
consists of discrete variables and can be considered as the discrete version of
weighted ensemble optimization. The optimization problem contains a param-
eter k which is the ensemble size of the selected subset. Since it must be chosen
beforehand, the solution, here, also depends on this parameter and hence the
accuracy of the ensemble.

Similar optimization-based approach is proposed in [44] which considers ac-
curacy and diversity measures as in [47] by a continuous optimization model
with sparsity learning. The objective function in [44] is defined by a loss func-
tion and is chosen specifically to be the least square function. Weights for each
classifier are forced to be sparse by L1 norm regularization within the con-
straints to determine subset of an ensemble and weights of classifiers in the
ensemble are found out by minimizing the error rate by least square function
defined in the objective function. Diversity is taken into account with an addi-
tional diversity function defined by Yule’s Q statistics within the constraints of
the optimization problem. Since the model in [44] is defined by least squares
function which contains true label vectors, it cannot be applied to ECOC
framework directly. Because columns of ECOC matrix provide different prob-
lems with different relabellings. Yin et al. (2014) then further improved their
work by penalizing sparsity and diversity constraints within objective function
in [45]. In [45], error is minimized by the same idea by least square function.

In this paper, unlike pruning methods in [10] and [47], pruning size is not
required as an input in the problem. Our first contribution is the reformula-
tion of the quadratic integer formulation of [47] as an unconstrained problem
by approximating cardinality constraint which refers to the ensemble size de-
fined by zero norm approximation. Therefore, the problem becomes not only
parametric-free of ensemble size but also it results in a non convex continuous
optimization problem. The non convex problem here is reformulated by differ-
ence of convex functions as in [38] and solved by nonlinear programming solver
function fiminunc in MATLAB’s optimization toolbox [5]. In this paper, the
overall ensemble pruning problem is adapted to ECOC which is the second
novel contribution of this study. The performance of our proposed approach
ECOC with UP is compared with well known methods Reduced Error Prun-
ing, Random Guessing, Kappa Pruning and recent approaches ACEC in [10],
SDP in [47].

Unlike with the methods mentioned above, subclass technique (subECOC)
is developed in [3] on the ECOC framework where by splitting the initial
classes of the problem, larger but easier problem to solve ECOC configurations.
The multi-class problem’s decomposition is performed by discriminant tree
approach.

Our proposed method has common goals and optimization structure with
the method in [44] and [45] with its diversity and sparsity notions. However,
expression of accuracy, diversity and sparsity differs by their respective ob-
jective function and constraints. Furthermore it is developed to prune ECOC
matrix. One of the important aspect of our algorithm is that it can be applied
to ECOC framework but it is not possible to adapt objective function in [44]
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and [45] to ECOC framework because of the loss function term. It should be
noted that ECOC columns represent different labelings which constitute dif-
ferent binary problem and hence do not agree with the loss term in [44] and
[45].

The proposed framework is novel, since optimising the accuracy/diversity
trade-off for ECOC through pruning by using optimization has not previously
been attempted. The closest approach is [47], but that is restricted to two-class
problems, and is a discrete optimization. Furthermore our approach automat-
ically determines the optimal pruning rate as part of the optimisation, and
therefore does not need to be supplied as a parameter in advance. In [10],
ECOC is pruned by ordered aggregation which achieves high accuracy but on
the other hand it slows down the running time as the number of examples
and the number of class increase. The proposed approach in this work differs
from the method in [10] since prunning is modeled by continuous optimization
framework which gives exact number of classifiers in the subensemble unlike
by ordered aggregation in [10].

The rest of the paper is organized as follows. In section 2, ECOC and
accuracy/diversity trade-off will be reviewed. Section 3 describes our method
with the mathematical formulation and the solution technique. Section 4 is
devoted to the experiments and concludes with a discussion in Section 5.

2 Error Correcting Output Codes

The Error Correcting Output Codes (ECOC) [11] framework is a general
method for multiclass classification by embedding of binary classifiers. Given a
set of k classes, ECOC generates a coding matrix M of size k×n in which each
row corresponds to a codeword per class, i.e., ith row refers to the codeword
of length n for ith class. Each codeword consists of {−1,+1} binary entries. In
terms of learning, M is constructed by taking into account n binary problems
where each one corresponds to a column of M . Each of these binary prob-
lems (or dichotomizers) splits the multiclass problem into two class coded by
−1 or +1 (or 0 if the class is not considered) in M . Then at the decoding
step, applying each trained classifier will give a binary output on the test set
which will form a codeword for the test point. The class of the test point is
determined by finding the minimal distance between the codeword of the test
point and codeword of classes in M . The data point is assigned to the closest
codeword in M .There are different decoding strategies in the literature, for
a closer look please see [13]. In this paper, we will use Hamming distance1

as a distance measure between codewords. In Figure 1, an example of ECOC
coding/decoding is given.

The ECOC framework is independent of base classifiers and has been shown
to reduce bias and variance produced by the learning algorithms as mentioned

1 Hamming distance between codeword c1 and c2 is the number of places where c1 and
c2 are different



Title Suppressed Due to Excessive Length 5

Fig. 1 An example of ECOC framework with Support Vector Machine (SVM) base classi-
fiers.

in [23]. Because of these reasons, ECOC has been widely used for the multiclass
classification problems.

2.1 Accuracy Diversity Trade off

Diversity has long been recognised as a necessary condition for improving en-
semble performance, since if base classifiers are highly correlated, it is not pos-
sible to gain much by combining them. The individual classifiers may be very
accurate, and indeed the more accurate they become, the less diversity exists
between them [42]. This dilemma has become known as the accuracy/diversity
trade-off. There have been many attempts to define diversity [25], but the con-
sensus is that no matter how it is defined, there does not exist any measure
that can by itself predict generalisation error of an ensemble. Since there is
a lack of a general theory on how diversity impacts ensemble performance,
experimental studies continue to be an important contribution to discover-
ing whether a relationship exists and if so whether it can be quantified and
understood.

For solving multi-class problems using ECOC, considerations of the accu-
racy/diversity trade-off are even more complex. The original motivation for
ECOC was based on error-correcting theory, which assumes that errors are in-
dependent. However, when applied to multi-class machine learning problems,
the error correlation depends on the data set, base classifier as well as the
code matrix. In the original ECOC approach [11], heuristics were employed to
maximise the distance between the columns to reduce error correlation. There
have been other attempts to address error correlation. Hadamard matrices
maximise distance between rows and columns and were used as ECOC code
matrix in [16], in which an upper bound on probability of error correlation
was derived as a function of minimum distance between code words. In [1] it
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was shown that a high minimum distance between any pair implies a reduced
upper bound on the generalisation error, and in [17] it was shown for a random
matrix that if the code is equi-distant and long enough, then decision-making
is bayes-optimal. More recent approaches aim to introduce problem-dependent
designs to address error correlation [13].

Based on previous research, it is possible to summarise the main consider-
ations in designing ECOC matrices

– minimum Hamming Distance between rows (error-correcting capability)

– variation of Hamming Distance between rows (effectiveness of decoding)

– number of columns ( repetition of different parts of sub-problems )

– Hamming Distance between columns and complement of columns (inde-
pendence of base classifiers).

All these constraints make optimal design of coding and decoding strategies a
complex problem. Previous studies have attempted to address some of these
constraints experimentally. An accuracy/diversity study was carried out in
[42] using a random code matrix with near equal split of classes (approxi-
mately equal number of 1’s in each column), as proposed in [34]. It is proved
in [43] that optimal performance is attained if codes are equi-distant, and
an experimental comparison is made of random, equi-distant and non-equi-
distant code matrices. However, the proposed approach in this paper is the
first to incorporate pruning into ECOC and address the optimisation of the
accuracy/diversity trade-off in a principled fashion.

3 Pruning Methods

In this section, we introduce a family of pruning methods based on ordered
aggregation. The order of aggregation is determined according to the different
measures such as voting, accuracy and diversity in which the initial ensemble
starts with the optimal measures and iteratively adds new candidate classifiers
based on diversity/accuracy of the ensemble on the training set Ztraining.

As discussed in Section 2.1, a single measure of accuracy or diversity alone
is not a sufficient criterion to prune the ensembles. Both accuracy and the di-
versity must be considered together for selecting the classifiers in the ensemble.
Some rules that change the order of aggregation are Reduced Error Pruning
Method (REP) [26], Kappa Pruning (KP) [26], Complementarity Measure [27],
Margin Distance Minimization (MDSQ) [27], Orientation Ordering [28] and
Boosting Based Pruning [29]. In this section, we will give the idea of the first
two methods, namely REP and KP and continue with our method developed
for ECOC.
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3.1 Reduced Error Pruning (REP)

This method is first introduced in [26]. The result of combining the predictions
of the classifiers in an ensemble ET = {ht(x)}

T
t=1 using equally weighted voting

is

HET
(x) = argmax

y

T
∑

t=1

I (ht(x) = y) , y ∈ Y

where ht is the hypothesis and Y is the set of labels. The first classifier in the
ensemble is the one having the minimum classification error. The algorithm
searches for the second classifier which makes the classification error of the new
ensemble minimum. After it finds the new ensemble, it iteratively adds the rest
of the classifiers one by one and incorporates the one which gives the lowest
ensemble error for the new ensemble until it reaches the desired ensemble size.
The subensemble Su is constructed by adding to Su−1, the classifier

su = argmax
k

∑

x,y∈Ztraining

I
(

HSu−1∪hk
(x) = y

)

, k ∈ ET \ Su−1,

where k runs over the all classifiers which haven’t been selected up to that
iteration and y ∈ Y and I is the indicator function.

In this paper, we adapted REP algorithm to ECOC by the same manner.
SVM with Gaussian kernel is used as a base classifier for the ECOC learners.
Each base classifier is determined by 5 fold cross validation and REP is applied
on 10 different random folds in which each fold has its own ensemble. The size
of the subensemble is chosen to be the same size as the subensemble of the
pruned ECOC matrix proposed in this study.

3.2 Kappa Pruning (KP)

This method is based on selecting the most diverse classifiers by using κ statis-
tics [25]. As in REP, Kappa Pruning iteratively adds a new classifier to the
ensemble which gives the minimum pairwise κ measure. It starts with the pair
of classifiers which have the minimum pairwise κ diversity. Then, it adds the
classifier which makes the mean of the pairwise diversities minimum in the
ensemble. Likewise in REP, here the formula differs only with kappa measure

su = argmax
k

κZtraining

(

hk, HSu−1

)

, k ∈ ET \ Su−1,

where κ is the pairwise diversity measure given by κ = N00

N11+N10+N01+N00 in

[25]. Here Nab is the number of elements where yi = a or yj = b. In this study,
KP is adapted to ECOC by using exactly the same logic. As with REP, SVM
is used as base classifier for ECOC and CV is applied as in Section 3. The
method is tested on 10 different random folds in which each fold has its own
ensemble.
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3.3 Pruning of ECOC by using Optimization Model

It is known that as the number of classes increases, the number of base classi-
fiers in the ECOC matrix also increase for exhaustive search. Let us remember
that if k is the number of classes, the number of columns in ECOC can be

at most 2
k

2
− 1. As k increases the number of base classifiers in the ensemble

increases exponentially. Hence the running time and the efficiency of the algo-
rithm decreases. In this study we propose a pruning method to select the best
accurate and diverse classifiers from exhaustive ECOC coding by incorporating
the diversity measure of [47]. In order to get good mathematical formulation
of trade off, error structure of the problem is represented by a linear combina-
tion of base classifiers’ errors and diversities from the error analysis in [47]. It
is claimed that if the strength and diversity measurements for a classification
ensemble can be found, a linear combination of them should serve as a good
approximation of the overall ensemble error. Minimizing the approximate en-
semble error function will be the objective of mathematical programming. In
[47], the error of each base classifier is reported in the matrix P on the training
set as follows:

Pi,j = 0, if the jth classifier is correct on data point i,
Pi,j = 1, otherwise.
A matrixG is defined to be the error matrix byG = PTP since the diagonal

term Gii will be total error that classifier i makes, and the off diagonals Gij

will be the common errors that classifier i and j make so that off diagonals
correspond to the measure for diversity. The matrix G is then normalized to
put all the elements in the same scale as

G̃ii =
Gii

N
,

where N is the number of training points and

G̃ij,i6=j =
1

2

(

Gij

Gii

+
Gij

Gjj

)

. (1)

We note that pruning of the ECOC matrix in this study differs from choos-
ing the best columns of ECOC matrix since pruning here is based on both the
observed error rates and diversity measures on the training sets. As discussed
above, G̃ii represents the total error made by classifier i and G̃ij measures the
common errors made by pairwise classifiers i and j. Note that the new matrix
G̃ is symmetric by taking the average of

Gij

Gii
and

Gij

Gjj
. Furthermore,

∑

i G̃ii

measures the overall strength of the ensemble and
∑

ij,i6=j G̃ij measures the
diversity. The mathematical programming is formulated by quadratic integer
problem in [47] where a fixed subset of classifiers is searched as a constraint
by the following problem

min
x

xT G̃x (2)
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subject to
∑

i

xi = k,

xi ∈ {0, 1}.

Here, xi represents whether the ith classifier is in the ensemble or not. If
xi = 1, then it means ith classifier is chosen to be in the ensemble, if xi = 0
then it is not considered in the ensemble and k is the length of the ensemble
and should be chosen as a parameter beforehand. The problem (2) is NP hard
in general but it is approximated as a max-cut problem in [47] and solved
by semi-definite programming (SDP). The overall efficiency of the problem
depends on the ensemble size k since it is the parameter given before solving
the problem and the solution changes accordingly.

3.3.1 Unparametrized Pruning (UP)

In this study, we get rid of the parameter of ensemble size simply by adding
penalization term to the objection function with a regularization constant ρ.
Note that the constraint in equation (2) can be written as ‖x‖

0
= k. Here zero

norm is defined by the number of non zero elements which leads the sparsity
in the model. Instead of determining the pruning rate k in (2), finding the
indices of non zero entires of x corresponds to the pruning rate which refers
to the number of classifiers in the subensemble. Furthermore, by this way and
with the help of sparsity, we introduced the relaxation of the binary vector to
the real vector, i.e. x ∈ Rn. Then the equation (2) becomes an unconstrained
problem which is the regularized version of the problem (2).

min
x∈Rn

xT G̃x+ ρ ‖x‖
0

(3)

The first step to solve the continuous optimization problem (3) is to ap-
proximate the cardinality constraint, i.e. ‖x‖

0
. One can approximate it by

‖x‖
1
which is the usual heuristic. We approximated it as the negative log-

likelihood of a Student t-distribution, which is a tighter approximation than
‖x‖

1
and has been used in many different contexts [8,14,38,41]. There are

other approximations to ‖x‖
0
, e.g.,

∑n

i=1
(1− e−α|xi|) where α > 0 [4].

If we define the approximation of the zero norm as

‖x‖
0
:=

n
∑

i=1

1xi 6=0 = lim
ǫ→0

n
∑

i=1

log (1 + |xi| /ǫ)

log (1 + 1/ǫ)
,

then the problem (3) becomes

min
x∈Rn

xT G̃x+ ρ lim
ǫ→0

n
∑

i=1

log (1 + |xi| /ǫ)

log (1 + 1/ǫ)
(4)

Let us denote the set of symmetric matrices by Sn and denote positive
semidefinite and positive definite matrix by S+ and S++ respectively. Observe
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that the matrix G̃ is a symmetric matrix since G̃ij = G̃ji, and the indices
ij and ji refer to the common errors between ith and jth classifier. Note
that the problem (4) is a non convex unconstrained problem since the matrix
G̃ /∈ S+or R++. Then we can not use the well known property of convex
optimization (see Theorem below [31]) which states the following

Theorem 1 [31] Let x∗ be the feasible point of the problem

min
x

f(x), (5)

where f(x) is convex differentiable function. If ∇(f(x∗)) = 0 then x∗ is the
global minimum of (5).

We will model the problem (4) by difference of convex (DC) functions
since the objective function has the structure of DC. Note that the recent
formulation (4) is a continuous optimization problem unlike the problem (2)
which has a combinatorial term. Before giving DC formulation of the problem,
lets define DC program as below:

Definition 1 Let Ω be the convex set in Rn and f : Ω → R be a real valued
function. Then, f is a DC function on Ω if there exist two convex functions
g, h : Ω → R such that f(x) = g(x) − h(x), x ∈ Ω. Optimization problems of
the form

min
x∈Ω

f0(x) (6)

s.t.fi(x) ≤ 0, i = 1, . . . ,m (7)

where fi(x) = gi(x)− hi(x), i = 0, 1, . . . ,m is called DC programming.

In order to formulate (4) as DC program, let us choose τ ∈ R such that
G̃+τI ∈ S+. If G̃ ∈ S+, such τ exists trivially, choose τ > 0. If G̃ is indefinite,
choosing τ > −λmin(G̃) where λmin is the smallest eigenvalue of G̃ ensures
that G̃ + τI ∈ S+ . The similar approximation is performed for different
concepts such as solving generalized eigenvalue problem in [38]. Therefore, if
we choose τ > max(0,−λmin), then we will have positive semi definite matrix
for any G̃ ∈ Sn. Then the problem (4) can be written as

min
x

xT
(

G̃+ τI
)

x− τ ‖x‖
2

2
+ ρ lim

ǫ→0

n
∑

i=1

log (1 + |xi| /ǫ)

log (1 + 1/ǫ)
,

where ‖. ‖
2
is referred to Euclidean norm. The above problem can be approx-

imated further by neglecting the term lim and choosing ǫ > 0. Hence the
following convex unconstrained problem is obtained

min
x

xT
(

G̃+ τI
)

x− τ ‖x‖
2

2
+ ρ

n
∑

i=1

log (1 + |xi| /ǫ)

log (1 + 1/ǫ)
. (8)
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With this new formulation, the first model introduced by [47] is made inde-
pendent of the size of the subensemble k by penalizing the constraint in model
(2) with a regularization constant τ . The size of subensemble k changes the
accuracy of the model since the subensemble having small k can lack impor-
tant classifiers or having too large k can include redundant classifiers. Testing
for all k and choosing the best k by exhaustive search on the training set will
make the algorithm too slow, especially as the number of classes increases.
In the new formulation proposed in model (8), new parameters τ and ρ are
introduced where the first one is approximated by the minimum eigenvalue of
the matrix G̃ and the latter one is by well known statistical method cross val-
idation. Here we choose the number folds as 5. The algorithm of the proposed
method in this study is given by Algorithm 1 and is referred to ”ECOC with
UP”.

Algorithm 1 ECOC with UP

Input: a k class problem
Base classifier
ECOC matrix Mk×n

Output: error rates of Test Set

1: Partition data X into Training Set Xtr and Test Set Xtest

2: Run base classifier for each column of Mk×n on Xtr

3: Compute matrix G̃ defined by equation (1) on Xtr

4: Compute a solution x of

min
x

xT
(

G̃+ τI
)

x− τ ‖x‖2
2
+ ρ

n
∑

i=1

log (1 + |xi| /ǫ)

log (1 + 1/ǫ)
. (9)

5: Find all i′s such that xi ≥ 0.5, i = 1 . . .m to be the indices of new classifiers in subset
6: Construct new ECOC matrix M̃k×m by choosing columns from indices in Step 5.

7: Run ECOC framework with M̃ on test set Xtest

4 Experiments

We implemented our novel pruning method by MATLAB fminunc function
from optimisation toolbox which solves the unconstrained optimization prob-
lem [5]. The new parameters τ and ρ introduced in equation (8) are calculated
by τ = λmin(G̃) and by 5 fold cross validation respectively. First we derived
the matrix G̃ from the standard ECOC algorithm on the training set and
then performed pruning by solving the optimization problem (8). It has been
theoretically and experimentally proven that the randomly generated long or
equi-distant code matrices give close to optimum performance when used with
strong base classifiers [18,43]. Thus, in this study coding of the ECOC matrix
is performed by random generation such that each column of ECOC matrix
has approximately equal number of -1s and +1s. The solution set of the prob-
lem (8) constitutes the reduced number of base learners for ECOC. We used
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UCI machine learning repository data sets of ecoli, glass, dermatology, yeast,
wine and facial expression classification data 2. As a base learner we used SVM
with Gaussian kernels. Kernel parameters and regularisation constant of SVM
are chosen by 10 fold cross validation. In [47], pruning size is set beforehand
but in our formulation, it is part of the optimisation (8). Since the solution of
the problem (8) consists of continuous values, we approximated the solution to
binary values by well known heuristic rounding in combinatorial optimization.
From the experiments we observe that the solution converges if a threshold
is placed on the real output x of (8). The threshold is taken as x > 0.5 as
indicated in Step 5 in Algorithm 1 where the ith classifier is included to the
subensemble if xi > 0.5.

In Table 1, 2 and 3, error rates and running time in seconds (given in paren-
thesis) are compared with different pruning methods REP and KP, ACEC in
[10], SDP in [47] that are adapted to ECOC and further random guessing
results are reported. For statistical significance, student t-test is performed
to asses whether the error rate is in the confidence interval on 10 test folds
and it is found that the error rates reported in Table 1, 2 and 3 are in con-
fidence interval which are referred to CI. The statistical significance is found
to be p > 0.99 with a confidence level of 95% and H = 0 which indicates
that we should reject the null hypothesis. Our null hypthesis is ”Error rates
are random for 10 test folds”. The subensemle size k is determined from our
pruning method Algorithm 1 by Step 5 where k refers to the number of non
zero elements of vector x in equation (4) and it is fixed for the other pruning
methods in order to make a meaningful comparison. The method ”SDP” on
which our algorithm is based on is parametric on the subensemble size k. The
error rate highly depends on k. If k is too small it may give high error rate and
if k is too big it may contain redundant classifiers in the subensemble which
also affects error rate. So it is important to determine the best k. Finding k
heuristically will be time consuming since it is necessary to try all k values,
i.e., k = 1, 2, . . . n. Thus comparison of error rates of ”ECOC with UP” with
the method SDP is not strictly fair since k in SDP is found in ”ECOC with
UP” beforehand. Likewise, comparison with ACEC is not strictly fair since
it is an ordered aggregated method and cpu time of ACEC is higher than all
methods compared in this study. Thus for large data sets, ACEC is not an
efficient method although it gives higher accuracy.

On the other hand, k is replaced with a new regularization parameter ρ
introduced within penalization term of our approach ”ECOC with UP” is
determined by cross validation for values ρ = [1 10 100 500 1000] on
training set. Furthermore, it is important to observe that running time for
cross validation to determine ρ is less than carrying out heuristically to find
k.

We tested our algorithm on different size of pool of classifiers, i.e., different
size of ECOC matrices, such as 50, 100, 150 base classifiers on 5 data sets
from UCI machine learning repository [2] and Facial Expression Classification

2 Cohn Kanade Database, http://vasc.ri.cmu.edu/idb/html/face/facial expression/
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(FAC) data [19] which will be explained in next Section 4.1 . These results
show that ACEC performs better in terms of error rate but it is very slow
in running time since it is based on ordered aggregation. If we compare our
approach ”ECOC with UP” with other methods except ACEC, it performs
mostly better than other pruning methods. Note that, SDP and ACEC are
not applicable for large scale data as it can be seen on facial expression data
”FAC” on each table. Observe that when any other pruning method except
“ECOC with UP“ gives better results, it has always very slow running time.
For instance, In Table 1 for FAC data, Full ECOC and Random Guessing give
better error rate but the running time is greater than with ”ECOC with UP”.
KP is still better than our method but the running time increases significantly.
In Table 3, for the wine data, even though REP is significantly better than all,
the running time is twice as long as “ECOC with UP“ method which has the
second best error rate. Likewise, for the glass data in Table 3, “ECOC with
UP“ has the second best result with a lower running time than Full ECOC,
REP and KP. Especially, REP and KP can be very time consuming because
of the combinatorial structure of the algorithm, even though they give better
results in some cases, e.g., Table 3. As explained in Section 3.1 and Section
3.2, both of the algorithms go through all combinations to find the minimum
ensemble error which makes these algorithms very slow. It should be also noted
that pruning size must be determined as an input variable for all methods that
we compared in this section.

4.1 Facial Expression Classification

Automatic facial expression recognition has applications in areas such as human-
computer interaction, human emotion analysis, biometric authentication and
fatigue detection. However, the emotions characterised in these different appli-
cations can be quite varied. While it is possible to learn emotions directly from
features derived from raw images, an attractive and more generic approach is
to decompose the face into discrete facial features. A commonly used method
is the facial-action coding system (FACS) [12,39], in which facial features are
characterised as one of 44 types known as action units (AUs). The advantage
of FACS is that facial expressions of interest (e.g. emotions or fatigue) can be
learned by looking for particular groups of AUs so that the interpretation can
be de-coupled from their detection. Fig. 2 shows example AUs from the eye
region.

It is possible to define a series of two-class problems, in which a classifier is
trained to differentiate each AU from all other AUs (one versus rest). However,
the presence of one AU may affect the strengths of other AUs, in other words
not all AUs are linearly independent. In this paper, AU detection is posed as a
single multiclass problem, in which groups of AUs are assigned a single class.
Therefore a single AU may appear in more than one group.

In order to detect AUs, the images first need to be pre-processed. Multi-
resolution local binary patterns (MLBP) are used for feature extraction [37,
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Data k ACEC SDP ECOC with UP Full ECOC REP Random Guessing KP
ecoli 28 0.1613±0.0923(1820s) 0.1876±0.0780(169s) 0.1841±0.0718(250s) 0.2019 ±0.0633(692s) 0.2084±0.0838 (1099s) 0.2317±0.0662(403s) 0.1928±0.0723 (902s)

CI =[0.0952 0.2273] CI=[0.0966,0.2786] CI=[0.1004,0.2679] CI=[0.1280,0.2757] CI=[0.1106,0.3062] CI=[0.1544,0.3089] CI=[0.1083,0.2772]
glass 22 0.2503±0.1027(936s) 0.3829±0.1231(79s) 0.3448±0.0983 (224s) 0.4720±0.1604(204s) 0.3432±0.1209(626s) 0.3781±0.1281(89s) 0.4592±0.1615(511s)

CI=[0.1768 0.3238] CI=[0.2392,0.5265] CI=[0.2300,0.4595] CI=[0.2848,0.6592] CI=[0.2021,0.4843] CI=[0.2286,0.5275] CI=[0.2707,0.6477]
derm 37 0.0275±0.0259(4075s) 0.0332±0.0254(70s) 0.0338±0.0326(591s) 0.0247±0.0195(608s) 0.0280±0.0270(1778s) 0.0247±0.0195(443s) 0.0247±0.0273(1897s)

CI=[0.0090 0.0460] CI = [0.0036 0.0629] CI=[-0.0042,0.0718] CI=[0.0019, 0.0474] CI=[-0.0034,0.0595] CI=[0.0019,0.0474] CI=[-0.0072,0.0565]
yeast 28 0.4657±0.0425(33961s) 0.5197±0.0374(3708s) 0.4853±0.0574(3671s) 0.5062±0.0520(7840s) 0.5162±0.1035(18560s) 0.5136±0.0474(4013s) 0.5082±0.0631(19665s)

CI= [0.4353 0.4961] CI=[0.4760,0.5634] CI=[0.4183,0.5523] CI=[0.4455,0.5670] CI=[0.3955,0.6370] CI=[0.4583,0.5690] CI=[0.4345,0.5818
wine 32 0.0569±0.0558(737s) 0.0628±0.0590(81s) 0.0609±0.0485(302s) 0.0668±0.0436(140s) 0.0374±0.0430(341s) 0.0668±0.0436(88s) 0.0668±0.0436(455s)

CI=[ 0.0170 0.0968] CI=[-0.0060,0.1317] CI=[0.0044,0.1175] CI=[0.0159,0.1177] CI=[-0.0127,0.0875] CI=[0.0159, 0.1177] CI=[0.0159, 0.1177]
FAC 40 NA 0.4538±0.0616(9367s) 0.4538±0.0530(6099s) 0.4250±0.0466(14164s) 0.5038±0.0652(8070s) 0.4250±0.0457(11044s) 0.4346±0.0464(18299s)

NA CI=[0.3819, 0.5257] CI=[0.3920, 0.5157] CI = [0.3706,0.4794] CI=[0.4277, 0.5800] CI=[0.3716,0.4784] CI=[0.3805, 0.4887]

Table 1 Mean error values and running times of 10 fold cross validation with 50 base classifiers, here k is the ensemble size after pruning.

Data k ACEC SDP ECOC with UP Full ECOC REP Random Guessing KP
ecoli 75 0.1492±0.0811(3584s) 0.2809±0.0832(150s) 0.1517±0.0335(217s) 0.1867±0.0758(724s) 0.1765±0.0761(1262s) 0.1837±0.0711(523s) 0.1893±0.0889(2082s)

CI=[0.0911 0.2072] CI=[0.2213 0.3404] CI=[0.1101,0.1934] CI=[0.1325,0.2409] CI=[0.1220,0.2309] CI=[0.1328,0.2345] CI=[0.1257, 2528]
glass 27 0.2455±0.0859(1627s) 0.4720±0.1604(70s) 0.3558±0.1015(389s) 0.4720±0.1604(371s) 0.3663±0.1305(1361s) 0.3686±0.1314(106s) 0.4257±0.1458(1118s)

CI =[0.1841 0.3070] CI=[0.3572,0.5868] CI=[0.2832,0.4284] CI=[0.3572,0.5868] CI=[0.2730,0.4596] CI=[0.2746,0.4625] CI=[0.3215,0.5300]
derm 23 0.0275±0.0259(6094s) 0.0275±0.0259(173s) 0.0275±0.0259(1391s) 0.0304±0.0275(1107s) 0.1157±0.0675(1118s) 0.0275±0.0259(125s) 0.0275±0.0259(3058s)

CI=[0.0090 0.0460] CI=[0.0090,0.0460] CI=[0.0090,0.0460] CI=[0.0107,0.0501] CI=[0.0674,0.1640] CI=[0.0090,0.0460] CI=[0.0090,0.0460]
yeast 82 0.4306±0.0558(75645s) 0.4799±0.0493(12079s) 0.4730±0.0424(3601s) 0.4853±0.0515(8200s) 0.4961±0.0507(15462s) 0.4772±0.0531(1123s) 0.4745±0.0535(4310s)

CI=[0.3907 0.4705] CI=[0.4447,0.5152] CI=[0.4204,0.5256] CI=[0.4484,0.5221] CI=[0.4598,0.5323] CI=[0.4392,0.5152] CI=[0.4362,0.5128]
wine 47 0.0511±0.0435(1307s) 0.0628±0.0441(116s) 0.0609±0.0485(431s) 0.0628±0.0441(290s) 0.0433±0.0413(1012s) 0.0628±0.0441(217s) 0.0746±0.0690(397s)

CI=[0.0199 0.0822] CI=[0.0313,0.0943] CI=[0.0262,0.0956] CI=[0.0313,0.0943] CI=[0.0138,0.0728] CI=[0.0313,0.0943] CI=[0.0252,0.1239]
FACE 86 NA 0.4231±0.0435(19129s) 0.4596±0.0540(13752s) 0.4462±0.0413(27389s) 0.4558±0.0552(17828s) 0.4365±0.0544(24139s) 0.4308±0.0427(37900s)

NA CI=[0.3919,0.4542] CI=[0.4210,0.4982] CI=[0.4166,0.4757] CI=[0.4163,0.4953] CI=[0.3976,0.4755] CI=[0.4002,0.4613]

Table 2 Mean error values and running times of 10 fold cross validation with 100 base classifiers, here k is the ensemble size after pruning.

Data k ACEC SDP ECOC with UP Full ECOC REP Random Guessing KP
ecoli 88 0.1487±0.0920(6397s) NA 0.1751±0.0663(1431s) 0.1893±0.0842(2465s) 0.1902±0.0794(6373s) 0.1893±0.0725(1558s) 0.2044±0.0739(5686s)

CI=[0.0829 0.2145] NA CI=[0.1276,0.2225] CI=[0.1290,0.2495] CI=[0.1334,0.2470] CI=[0.1374,0.2411] CI=[0.1516,0.2573]
glass 62 0.2408±0.0817(2721s) 0.4720±0.1604(150s) 0.3876±0.1547(1132s) 0.4720±0.1604(589s) 0.3495±0.1278(2809s) 0.4720±0.1604(246s) 0.4625±0.1501(2157s)

CI=[ 0.1823 0.2992] CI=[0.3572,0.5868] CI=[0.2770,0.4983] CI=[0.3572,0.5868] CI=[0.2581,0.4409] CI=[0.3572,0.5868] CI=[ 0.3551,0.5698]
derm 119 0.0275±0.0259(14293s) 0.0275±0.0292(563s) 0.0309±0.0212(3704s) 0.0304±0.0275(2056s) 0.0280±0.0302(8264s) 0.0304±0.0275(1596s) 0.0304±0.0275(1077s)

CI=[0.0090 0.0460] CI=[0.0066,0.0484] CI=[0.0157,0.0461] CI=[0.0107,0.0501] CI=[0.0065,0.0496] CI=[0.0107,0.0501] CI=[0.0107, 0.0501]
yeast 77 0.4340±0.0573(93663s) 0.4779±0.0495(9371s) 0.4825±0.0423(9011s) 0.4745±0.0448(20945s) 0.4731±0.0565(68825s) 0.4813±0.0457(11267s) 0.4738±0.0496(60365s)

CI=[0.3931 0.4750] CI=[0.4424,0.5133] CI=[0.4523,0.5128] CI=[0.4424,0.5066] CI=[0.4327,0.5135] CI=[0.4486,0.5139] CI=[0.4383,0.5093]
wine 97 0.0569±0.0558(2246s) NA 0.0551±0.0442(1326s) 0.0668±0.0436(570s) 0.0374±0.0430(2471s) 0.0609±0.0398(411s) 0.0628±0.0441(7942s)

CI=[0.0170 0.0968] NA CI=[0.0234,0.0867] CI=[0.0356,0.0980] CI=[0.0067,0.0681] CI=[0.0325,0.0894] CI=[0.0313,0.0943]
FAC 110 NA NA 0.4577±0.0487(20039s) 0.4462±0.0460(42134s) 0.4885±0.0596(29218s) 0.4500±0.0490(30758s) 0.4404±0.0448(58412s)

NA NA CI=[0.4229,0.4925] CI=[0.4132,0.4791] CI=[0.4458,0.5311] CI=[0.4149,0.4850] CI=[0.4083,0.4725]

Table 3 Mean error values and running times of 10 fold cross validation with 150 base classifiers, here k is the ensemble size after pruning.
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AU1 + AU2 + AU5 AU4 AU4 + AU6 + AU7

Fig. 2 Some example AUs and AU groups from the region around the eyes. AU1 = inner
brow raised, AU2 = outer brow raised, AU4 = brows lowered and drawn together, AU5
= upper eyelids raised, AU6 = cheeks raised, AU7 = lower eyelids raised. The images are
shown after manual eye location, cropping, scaling and histogram equalisation.

Class number 1 2 3 4 5 6
AUs present None 1,2 1,2,5 4 6 1,4
No. examples 152 23 62 26 66 20

Class number 7 8 9 10 11 12
AUs present 1,4,7 4,7 4,6,7 6,7 1 1,2,4
No. examples 11 48 22 13 7 6

Table 4 Classes of action unit groups used in the experiments.

32], and the fast correlation-based filter (FCBF) algorithm [46] is employed
for feature selection. Further details of the pre-processing and normalisation
procedures may be found in [36].

Results are presented for the Cohn-Kanade face expression database [19],
which contains frontal video clips of posed expression sequences from 97 uni-
versity students. The last image has available ground truth in the form of a
manual AU coding by human experts. We focused on detecting AUs from the
upper face region as shown in Fig. 2. In order to avoid defining classes with
very few training patterns, AU groups with three or fewer examples were ig-
nored. This led to 456 images available for training and these were distributed
across the 12 classes shown in Table 4.

We applied the same procedure in ECOC and in pruning, as described in
Section 3. ECOC is performed with 200 base classifiers, for which we used
SVM with Gaussian kernel [9]. Each run was based on a different randomly
chosen stratified training set with a 90/10 training/test split. The ECOC code
matrices were randomly generated with balanced numbers of 1s and -1s in each
column, as proposed by [33]. Experimental results of FAC data are compared
with the proposed pruning algorithm in Tables 1,2 and 3, They show that
appropriate subset of base learners gives approximately same error rate, so
that fewer base learners leads to less training time, which is proportional to
number of base learners.

5 Discussion and Conclusion

In this study, we proposed a faster and more efficient pruning method for
ECOC by optimizing the accuracy and diversity simultaneously in the pro-
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posed cost function. Our new algorithm prunes the set of base classifiers by
solving a continuous optimization unlike in [47]. One of the important aspects
of the proposed method here is that the size of the pruned set comes directly
from the optimization problem. The unconstrained optimization formulation
given in equation (4) does not need the ensemble size and finds the optimum
subensemble on the training set. In [47] and [10], the pre-defined pruning size
determines the error rate, while here it is determined by searching optimality
conditions. For higher number of classes and higher number of base classifiers,
the pruning will lead to a more efficient solution for multiclass classification.
Different size of ECOC matrices are tested for 5 different pruning method and
for full ECOC matrix without pruning. For most of the data ECOC with UP
reduces the error in a smaller running time as shown in Table 1, 2 and 3.
It should be clarified that as decoding, we used Hamming distance and as a
future work, we will apply other decoding methods proposed in Section 2.2.
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