
7383317

UNIVERSITY OF SURREY LIBRARY

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d ep e n d e n t upon the quality of the copy submitted.

In the unlikely even t that the author did not send a com p le te manuscript
and there are missing p ag e s , these will be noted . Also, if materia! had to be rem oved ,

a note will indicate the deletion.

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

A n e f f i c i e n t g e n e t i c a l g o r i t h m a p p l i c a t i o n

i n a s s e m b l y l i n e b a l a n c i n g

UniS
T h e s is S u b m it t e d to th e U n i v e r s i t y o f S u r r e y

f o r th e D e g r e e o f

D o c t o r o f P h i lo s o p h y

b y

Duminda Thilakawardana

S c h o o l o f E n g in e e r in g

U n iv e r s i t y o f S u r r e y

G u i ld fo r d , S u r r e y G U 2 7 X H

E n g la n d

August 2002

T o m y p a r e n t s , m y w i f e , S h y a m a l i e a n d m y s o n s , J a n i t h a n d

C h a n u t h

This candle is for you, the beginner.
Turn it into a flame.

Samuel Taylor Coleridge, Table Talk

ABSTRACT

The main achievement o f this research is the development o f a genetic algorithm

model as a solution approach to the single model assembly line balancing problem

(S M A LB P), considered a difficult combinatorial optimisation problem. This is

accomplished by developing a genetic algorithm with a new fitness function and

genetic operators.

The novel fitness function is based on a new front-loading concept capable o f

yielding substantially improved and sometimes optimum solutions for the SM ALBP.

The new genetic operators include a modified selection technique, moving crossover

point technique, ranlc positional weight based repair method and dynamic mutation

technique. The moving crossover point technique addressed the issue of propagating

best attributes from parents to offspring and also supports the forward loading

process. The new selection technique was developed by modifying the original rank-

based selection scheme. This eliminates the high selective pressure associate with the

original rank-based technique. Furthermore, the modified selection technique allows

the algorithm to run long enough, i f required, without premature convergence and this

feature is very useful fo r balancing more complex real world problems. The repair

technique included in this model repairs a higher proportion o f distorted

chromosomes after crossover than previous methods. Moreover, a third innovative

feature, a moving adjacent mutation technique, strengthens the forward loading

procedure and accelerates convergence.

The p erformance o f the front-loading fitness function c urrently outperforms

the published fitness functions and fifty-four published test cases generated from

sixteen precedence networks are used to assess the overall performance o f the model.

Encompassing the new genetic algorithm concepts, forty-four test problems (81%)

achieved the best solutions obtained by published techniques and twenty-four

problems (44%) produced better results than the benchmark Hoffmann precedence

procedure, the closest non-genetic algorithm method. The superiority o f the genetic

model over other heuristics is identified in this research and future developments o f

this genetic algorithm application for assembly line balancing problems is evident.

iv

C O N T E N T S

C O N T E N T S v

L IS T OF F IG U R E S viii

L IS T OF T A B LE S xi

A C K N O W L W D G E M E N T S xiii

L IST OF P U B L IC A T IO N S xiv

A C R O N Y M S A N D N O T A T IO N xvi

1. IN T R O D U C T IO N 01

2. L IT R A T U R E R E V IE W 05

2.1 Assembly line manufacture 05
2.1.1 The assembly line and its origin 05
2.1.2 Manual assembly lines 06
2.1.3 Basic terms of assembly line manufacturing 08
2.1.4 Classification o f assembly line balancing problems 11
2.1.5 The simple assembly line balancing problem 12
2.1.6 Complexity o f SALBP 15
2.1.7 Performance measures 17
2.1.8 Line balancing approaches 19
2.1.9 Illustrative line balancing example 28
2.1.10 Assembly line balancing software 33
2.1.11 Summary 34

2.2 The genetic algorithm and its applications to line balancing 36
2.2.1 Principle behind the genetic algorithm 36
2.2.2 Background to genetic algorithms 37
2.2.3 Basic components of the genetic algorithm 39
2.2.4 Genetic algorithm programming environments 65
2.2.5 Summary 66

3. A G E N E T IC A L G O R IT H M L IN E B A L A N C IN G M O D E L 69

3.1 The front-loading theorem 69
3.2 Design of front loading fitness function 71

3.2.1 Fitness function design for infeasible chromosomes 73

ABSTRACT iv

v

3,2.2 Fitness function design for feasible chromosomes 76
3.3 Initial population 86

3.3.1 Population size 87
3.4 Genetic operators 87

3.4.1 Selection 87
3.4.2 Crossover 90
3.4.3- Mutation 96

3.5 Repair technique 99
3.6 Elitism 101
3.7 Termination 101
3.8 Complete algorithm 102

TEST P R O G R A M F O R G A L IN E B A L A N C IN G M O D E L 112

4.1 Test cases 112
4.2 Hardware and software environments and evaluation criteria ■114
4.3 Simulator control parameters 116

4.3.1 Fitness function comparison 116
4.3.2 The influence of population size and initial solutions 121
4.3.3 Comparison of selection techniques 122
4.3.4 Comparison o f crossover techniques 123
4.3.5 The effect o f repair techniques 123
4.3.6 Comparison o f mutation techniques 124
4.3.7 The influence of elitism 124

4.4 Test programme summary 124
4.5 Selection of factorial experiment parameters 126

4.5.1 Design of factorial experiment 127

R E SU LTS E V A L U A T IO N 130

5.1 Fitness function comparison' 130
5.2 The influence of fitness function parameters 142

5.2.1 Frontrioading constant
5.2.2 The influence of number o f generations permitted per

142

Workstation 146
5.2.3 The effect o f problem complexity on fitness model 152

5.3 The influence of population 153
5.3.1 Population size 153
5.3.2 The initial population 155

5.4 Comparison of selection techniques 159
5.4.1 The effect of selection pool size 161
5.4.2 Selective pressure 162

5.5 Comparison of crossover techniques and its control parameters 166
5.5.1 Crossover technique comparison 166
5.5.2 The effective crossover span ratio ‘ 168

vi

5.6 The effect of repair technique on feasible solutions 169
5.7 Comparison of mutation techniques and its control parameters 173

5.7.1 Comparison o f mutation techniques 173
5.8 The influence of elitism on the performance 174
5.9 Comparison with other heuristic techniques 176
5.10 Factorial design experiment 180

6. C O N C L U S IO N S 189

7. SU G G E ST IO N S F O R F U R T H E R R E SE A R C H 195

REFERENCES 199

APPEND IX A: Glossary - 210

APPEND IX B: Recent G A applications in the assembly line balancing
problem 213

APPEND IX C: Proof 215

APPEND IX D: Test problem specifications 218

vii

L I S T O F F I G U R E S

Figure 2.1 Manual assembly lines in which the work proceeds around a loop
Figure 2.2 Assembly lines for single and multiple products
Figure 2.3 Precedence diagram
Figure 2.4 Precedence matrixes
Figure 2.5 Classification o f assembly line balancing literature
Figure 2.6 Perfectly balanced five-workstation assembly line
Figure 2.7 - A ll stations not balanced
Figure 2.8 Maximum workstation times equal desired cycle time
Figure 2.9 Precedence network
Figure 2.10 Analogies o f two systems
Figure 2.11 Flow chart o f the classical genetic algorithm
Figure 2.12 Chromosome representation
Figure 2.13 Decoded solution
Figure 2.14 Generational genetic algorithm
Figure 2.15 Steady state genetic algorithm
Figure 2.16 Roulette wheel
Figure 2.17 Fitness assignment mechanism in sorted selection scheme (Baker,

1985)
Figure 2.18 Single point crossover
Figure 2.19 Two-point crossover
Figure 2.20 Partially mapped crossover
Figure 2.21 Order crossover
Figure 2.22 Positional based crossover
Figure 2.23 Classic mutation

Figure 3.1 Solution domains
Figure 3.2 Progressive loading o f workstations
Figure 3.3 A search space and its.feasible and infeasible parts
Figure 3.4 Chromosome representations
Figure 3.5 Feasible and infeasible chromosomes and the precedence network
Figure 3.6 Precedence matrix o f the above network
Figure 3.7 Workstation time distributions
Figure 3.8 Station weights variation against station number (a) R = 0.5, (b) R = 1.5
Figure 3.9 Element transferring possibilities
Figure 3.10 Minimum fitness change against R
Figure 3.11 Fitness change per unit element transferring between workstations a

and b.
Figure 3.12 Modified rank based selection scheme
Figure 3.13 Cumulative task time curve
Figure 3.14 Moving crossover zones and generation class intervals (for FBM CP)
Figure 3.15 Crossover boundaries and generation intervals (for V B M C P)

Figure 1.1 Passenger car assembly line.

Figure 3.16 Adjacent mutation operation
Figure 3.17 Duplicating elements after crossover operation
Figure 3.18 Flow chart o f the genetic algorithm line-balancing simulator
Figure 3.19 Genetic algorithm line balancing analysis (graphical)
Figure 3.20 Genetic algorithm line balancing analysis (text output)

Figure 4.1 Test case coding system
Figure 4.2(a) Positively skewed task time distribution
Figure 4.2(b) Negatively skewed task time distribution

Average line efficiency performances o f fitness functions FFi, FF2
and FF3

Average line efficiency performances o f fitness functions FFi, F F 4
and FF5 ' .
'Average line efficiency performances o f fitness functions FFi, FFe
and F F 7
Average line efficiency performances o f fitness functions FFi, FFg
and F F 9
Average balance efficiency performances o f fitness functions FFi,
F F 2 and F F 3
Average balance efficiency performances o f fitness functions FFi,
FF4 andFFs
Average balance efficiency performances o f fitness functions FFi,
FF6 and F F 7

Figure 5.8 Average balance efficiency performances o f fitness functions FFi,
FFg and FF9

Figure 5.9 Average line efficiency variations
Figure 5.10 Average balance efficiency variation
Figure 5.11 Maximum fitness and the number o f workstations against generations

for the W A 6g problem

Figure 5.12 Maximum fitness and the number o f workstations against generations

for the L U 20 problem

Figure 5.13 Maximum fitness and the number o f workstations against generations

for the M U 946 problem

Figure 5.14 Maximum fitness and number o f workstations against generations for
the ARfJ69 problem

Figure 5.15 Maximum fitness and the number o f workstations against generations

for the B A [J problem

Figure 5.16 Maximum fitness and the number o f workstations against generations

for the SH 2™7 problem

, Figure 5.17 Average number o f workstations above the optimum against R
Figure 5.18(a) Fitness change plot for R =1.5
Figure 5.18(b) Fitness change plot fori? = 2.0
Figure 5.18(c) Fitness change plot fori? = 10.0
Figure 5.18(d) Fitness change plot for R = 20.0

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.19 Average number o f workstations above the optimum against G
Figure 5.20 Average C PU time variation against the total number o f generations
Figure 5.21 Station time distribution after 1,1000,2000, and 3000 generations for

the problem K W ®

Figure 5.22 Station time distribution after 1,1000,2000, and 3000 generations for

the problem K W 4952

Figure 5.23 Station time distribution after 1,1000,2000, and 3000 generations for
the problem K W 4f

Figure 5.24 Station time distribution after 1,1000,2000, and 3000 generations for

the problem KW]J4

Figure 5.25 Average number o f workstations above optimum against m *
Figure 5.26 Average number o f workstations above optimum for different

population sizes
Figure 5.27 Average C PU time consumption for different population sizes
Figure 5.28 Average number o f workstation above optimum for different initial

populations
Figure 5.29 Average number o f workstations above the optimum for different

feasible solution levels
Figure 5.30 Average numbers o f workstations above the optimum against different

selection schemes
Figure 5.31 Average number o f workstations above the optimum against

different selection pool sizes

Figure 5.32 Selective pressure variation for test problem W A ^

Figure 5.33 Selective pressure plot for test problem LUgJ

Figure 5.34 Selective pressure plot for test problem M U

Figure 5.35 Selective pressure plot for test problem AR fff9

Figure 5.36 Selective pressure piot for test problem BA[Jg

Figure 5.37 Selective pressure plot for test problem SH 2™7

Figure 5.38 Average number o f workstations above the optimum against different
crossover techniques

Figure 5.39 Average number o f workstations above optimum against crossover
span ratio . '

Figure 5.40 Average number o f workstations above optimum against repair
technique

Figure 5.41 Number o f feasible solutions per generation for three repair techniques
Figure 5.42 Average C PU time per generation for the repair techniques
Figure 5.43 Average number o f workstations above optimum against mutation

technique
Figure 5.44 Average number o f workstations above optimum against number o f

elite chromosomes per selection pool
Figure 5.45 Number o f problems achieved m b and m * by heuristic techniques
Figure 5.46 Average line efficiency obtained by line balancing techniques

Figure 7.1 Existing and modified front-loading functions

L I S T O F T A B L E S

Table 2.1
Table 2.2
Table 2.3
Table 2.4 .
Jable 2.5
Table 2.6

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7

Table 5.1.
Table 5.2

Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7

Table 5.8

Table 5.9

Table 5.10

Table 5.11

Table 5.12

Table 1.1

Table 5.13.

Annual production and labour cost

Recent researches conducted on assembly line balancing problems
Positional weights
Element ranks according to positional weights
Workstation details and station times
Published fitness functions for line balancing
Fitness values and selection probabilities

Feasible links o f chromosome 3.5(a)
Feasible links o f chromosome 3.5(b)
Feeding population sizes '
Lower and upper mutation span boundaries
Lower and upper generation class boundaries

Test problem specifications
, G A control parameters
Modified fitness functions
Selected test cycle times
Test programme summary
Factors and levels
Treatment combination

Number o f workstations in the final solution
Number o f workstations in the final solution (for front-loading
constant)
Number o f workstations in the final solution for different G values
CPU time in seconds for different termination levels
Number o f workstations after 3000 generations
Number o f workstations in the final solution (for different m *)
Number o f workstations the final solution for different population
sizes
Number o f workstations in the initial and final solutions (for different
initial solutions)
Number o f workstations in the final solution (for different feasible
solution levels)
Number o f workstations in the final solution for different selection
schemes
Number o f workstation in the final solution for different selection pool
sizes
Number o f workstations in the final solution with different crossover
techniques
Number o f workstations in the final solution (for different crossover
span ratios)

Table 5.14.
Table 5.15
Table 5.16

Table 5.17
Table 5.18
Table 5.19
Table 5.20
Table 5.21

Number o f workstations in the final solution (for repair techniques)
Average number o f feasible solutions per generation
Number o f workstation in the final solution (for different mutation
techniques)
Number o f workstations in the final solution
Final solutions obtained by heuristic techniques
Number o f problems achieved m b by the heuristic techniques
Line efficiency data for W E53 problem
Analysis o f variation for genetic factors

Table 6.1 Recommended 7?-values

A C K N O W L E D G E M E N T S

I am indebted to many persons for their stimulating interactions and discussions

throughout this study.

Firstly, I would like to sincerely thank Dr John Driscoll for providing me with

the opportunity,of doing a PhD in the School o f Engineering, University o f Surrey.

Again, many thanks to my academic supervisors Dr John Driscoll and Dr Graham

Deacon for their constructive guidance, discussions, and support throughout this

study.

The financial support and assistance from the School o f Engineering is

gratefully acknowledged.

. I wish to thank Mrs. Shirley Hankers, the Departmental Secretary for her

continuous support in all aspects o f my stay here. -

Finally but not least, I would like to express my sincere gratitude to my wife,

Shyamalie and my son, Janith for being so supportive while I engaged in this study. -

L I S T O F P U B L I C A T I O N S

1. Thilakawardana D Driscoll J and Deacon G, A new assembly line balancing

technique - a modified version o f the Hoffmann procedure. 19th In tern a tio n a l

M a n u factu rin g C onference, Belfast, Ireland, August 2002.557-566.

2. Thilakawardana D Driscoll J and Deacon G, An efficient genetic algorithm

application in assembly line balancing. Submitted to the E u ropean J o u rn a l o f

P ro d u c tio n R esea rch , Special issue on assembly and transfer line balancing,

2002.

3. Driscoll J and Thilakawardana D, The definition o f assembly line balancing

difficulty and evaluation o f balance solution quality. In tern a tio n a l J o u rn a l o f

R o b o tic s a n d C o m p u ter In te g ra te d M an u fac tu rin g , 17,81 -86, 2001.

4. Driscoll J and Thilakawardana D and Deacon G, Cost function experimentation

in genetic algorithm line balancing. 16 th In tern a tio n a l C on feren ce on

P ro d u c tio n R esea rch , Prague, Czech Republic, August 2001.

5. Driscoll J and Thilakawardana D, M ixed model line scenarios using integrated

• software approach. 16 th In te rn a tio n a l C on feren ce on P ro d u c tio n R esearch ,

Prague, Czech Republic, August 2001.

6. Driscoll J and Thilakawardana D, Variable size multi-manned station assembly

line balancing analysis. 11 th In te rn a tio n a l F lex ib le A u tom ation a n d In te lligen t

M anufacturing , Dublin, Ireland, 2001'.

7. Driscoll J and Thilakawardana D, Definition and evaluation o f assembly line

solution. 10 th In tern a tio n a l C o n feren ce on F lex ib le A u tom ation a n d In te lligen t

M an u factu rin g , Maryland, U.S.A., 2000.1157-1166.

xiv

8. Driscoll J and Thilakawardana D, Using quantitative parameters to guide

assembly line balancing. In te rn a tio n a l C on feren ce on P ro d u c tio n R esearch ,

AIT, Bangkok, 2000.

xv

ACRONYMS AND NOTATION

Acronyms

TS Total Slack time
FR Flexibility Ratio
W R West Ratio
Tl Time Interval
OS Order Strength
LE Line Efficiency
BE Balance Efficiency
BD Balance Delay
SI ■ Smoothness Index
T V Time Variability ratio
N P Non deterministic Polynomial
RPW T Rank Positional Weight Technique
C O M SO A L COmputer Method o f Sequencing Operations for Assembly Lines
N U LIS P ft Nottingham University Line Sequencing Program
M U ST Multiple Solution Technique
IUFFD Immediately Updated First Fit Decreasing
B R P W Backward Recursive Positional Weight
FFD First Fit Decreasing
DP Dynamic Program
B & B Branch-and-Bound
W C Work Content
QS - Quant System
G A Genetic Algorithm
PM X Partially Mapped Crossover
ORD ORder Crossover
C Y C CYclic Crossover
FRG FRaGment reordering crossover
HSX Heuristic Structural crossover
TPC Two Point Crossover
SPC Single Point Crossover
POS Positional Based crossover
U N I UNIform Crossover
SX Structural crossover
DP A * Dynamic PArtitioning crossover
H SM Heuristic Structural Mutation
FBM CP Fixed Boundary Moving Crossover Point
V B M C P Variable Boundary Moving Crossover Point
G U I Graphic User Interface
R A M RAndom Mutation
A D M ADjacent Mutation
FBR M Fixed Boundary Random Mutation
V B R M Variable Boundary Random Mutation
F B A M Fixed Boundary Adjacent Mutation

xvi

V B A M Variable Boundary Adjacent Mutation
CSR Crossover Span Ratio

General notation

Set o f natural numbers (= {1 ,2 , 3, . . . })
Set o f real numbers

i g I i is element o f the set I
I c J I is a subset o f J
|x|+ Smallest integer larger or equal to x

Notation for Assembly Line Balancing

T Total work content
C Cycle time
TS Total slack time
m Number o f workstations
Sj Station time
u Task time
n Number o f elements
m * Theoretical minimum number o f workstations
Ulmax Maximum number o f workstations

bm "Minimum number o f workstations achieved by any balancing technique
r Number o f arks in the precedence network
P Total number o f precedence relationships
tmim Minimum task time
I max Maximum task time
P jJ Project index
Cp Number o f precedence columns
Cpav Average column position
tav Average task time
tsd Task time variance
Sav Average workstation time
Smax Maximum workstation time
h Assigned element time
ts Slack time
V Number o f precedence violations

Notation for Genetic Algorithm

da, @a> fa, K ,h> k ,h J fitness function constants
S,nax Slowest station time
SmaX2 Second slowest station time
N V‘ Number o f precedence violations
z i Mean squared idle time

xvii

Z2 Mean idle time

ck Fuzzy cycle time

Sjk Fuzzy completion time

SNj Number o f connected networks
cr Confidence coefficient
c

mean Sum of station time means

^ v a r Sum o f station time variance

Pj Probability of a station not exceeding cycle time
RN i Non negative random integer
N r Random number between zero and one
ei ith Gene (element) in the chromosome

*J Elements succeeding e,-
np Number o f elements immediately succeeding element e3

f t Fitness function for infeasible chromosomes

I f Fitness function for feasible chromosomes
F F Overall Fitness Function
X, Y Components o f front-loading fitness function
Z, E Components o f front-loading fitness function
R Front-loading constant
K Workstation shifter
I Number o f feasible links
P Total number o f precedence links
mi Number o f workstations in the initial solution
a f i Fitness function constants
G w Number o f generations permitted per workstation
g ■Number o f generations
A Z Total change o f fitness
Nt Number o f identical chromosomes in the selection pool
Npop Population size
NpoPF Feeding population size .
nt Number o f iterations (selection technique)
P c Crossover probability
Sn Number o f crossover spans
I o Crossover span overlapping index
Cs Crossover span size
cl Left crossover boundary (for FBM C P)
Cr Right crossover boundary (for FBM CP)
gn Number o f overlapping genes(for FBM CP)
G d Number o f generations per span
G Total number o f generations
Si Span index
Gl Lower generation class boundary
G u Upper generation class boundary
Ej Number o f genes in j th workstation
c l - Left crossover boundary (for V B M C P)
Pm Mutation probability
ms Mutation span

xviii

b Mutation span constant
N m Number o f mutation points
m i Left mutation span boundary
m R Right mutation span boundary
pw ic Positional weights o f kth element(gene)
Nd Number o f duplicated elements (repair technique)
N e Number o f elite chromosomes
Ni, Number o f best chromosomes in the population

xix

C H A P T E R

INTRODUCTION

An assembly line is an industrial arrangement o f workers, equipment and machinery

for putting together components in a continuous flow process. It is generally used for

mass production o f a wide range o f consumer goods. Assembly lines come in

different shapes and sizes depending on the product being assembled. Consumer

goods including furniture, electronic items, toys, ‘white goods’ such as freezers,

washing machines, dryers and the most substantial, automobiles are a few examples.

Aircraft-manufacturing assembly lines are the most complex assembly lines as far as

the number o f components involved in the assembly process, whereas automotive

assembly lines are the most difficult lines to balance because o f small cycle times

(less than one minute).

Most cars manufactured today are a combination o f start-stop lines during

body build (robot lines) and continuous movement for final assembly (figure 1.1). A

modem car manufacturing line produces around 400,000 cars annually, and costs

approximately £110 millions. Table 1.1 shows the annual production and assembly

labour cost o f a few leading car manufactures in 1997 and indicates that the cost o f

direct labour involving in automobile manufacturing lines is enormous. Nevins and

Whitney (1980) found that the direct labour cost o f assembly was about 10-30 % of

the total cost and replacing human operators with advanced automatic assembly lines

is not cost effective due to huge capital investment. Therefore, the availability o f

relatively inexpensive and unskilled labour is still an attractive management choice

for most assembly lines.

Chapter 1: Introduction

Figure 1.1. Passenger car assembly line
(http//www.autofacts.com)

Toyota Nissan Honda Ford
Daimler

Chrysler

General

Motors

Annual Volume

(in thousands)
647 309 695 4,299 2,906 4,946

Labour hours per vehicle

(assembly, stamping)
30.38 30.76 30.84 34.79 44.25 45.60

Total labour cost per vehicle

(£)
1,063 1,077 1,079 1,556 1,991 2,052

Annual labour cost

(£ million)
687 332 749 6,689 5,785 10,149

Table 1.1. Annual production and labour cost
(http://www.ai-online.com: The Detroit News)

In manual or semi automatic assembly lines, every manufacturer’s prime

intention is to make the most out o f the line in terms o f least overall assembly cost.

The most effective way o f saving millions o f pounds is to decrease the number of

workstations in the line. According to the figures issued by the Toyota Corporation,

Japan, in 1977, the average saving per workstation per annum is £0.5 million! This

implies, the fewer the operators in the line the lower the labour cost and the less the

space required, giving a more cost effective production plan.

2

http://www.autofacts.com
http://www.ai-online.com

Chapter 1: Introduction

Generally, the best line length is achieved by grouping tasks into workstations

along the production line and the grouping problem is known as the a ssem b ly line

p ro b le m . This comprises two separate sub problems, the line length p ro b le m and the

c y c le tim e p ro b lem , which are solved sequentially.

The cycle time problem is minimising the cycle time when the number o f

workstations or production employees is fixed. This will maximise the production rate

and generally occurs, when the organisation wants to produce the optimum number o f

items using a fixed number o f workstations without purchasing new machines or

without expansion.

The line-length problem is minimising the number o f workstations when the

required production rate, assembly tasks, task times and precedence requirements are

given. This results in cost effective production plans and generally occurs when

designing new assembly lines to achieve the forecast demand.

The line-length problem is more common than the cycle time problem. A large

number o f techniques have been developed since 1954 to solve this problem and,

these techniques can be broadly categorized into three groups: exact algorithms,

heuristic procedure and metaheuristic approaches. Exact algorithms become

intractable when the problem size is large. Although heuristic procedures do not

guarantee optimal solutions, they provide good near optimal solutions. Therefore,

they have become increasingly popular among both practitioners and researchers in

the late 60s and onwards.

The assembly line balancing problem was identified as an NP-hard

combinatorial optimisation problem that cannot be solved in traditional ways. In

1975, John Holland introduced a simple but powerful metaheuristic technique called

the ‘ G en etic A lgo rith m ' which has become more popular among researchers because

o f its excellent capability o f addressing hard class combinatorial optimisation

problems. This dissertation extends the use o f the genetic algorithm in the area of NP

hard line balancing.

3

Chapter 1: Introduction

The fist application o f the genetic algorithm to the assembly line balancing

was reported by Anderson and Ferries (1990) and has been followed by a number o f

procedures. Interestingly, none o f the genetic algorithm methods were able to

outperform solutions obtained by the benchmark Hoffman matrix procedure

developed by Thomas Hoffmann in 1963.

Within this thesis a new genetic algorithm model is created to generate

optimal or near optimal solutions that outperform the Hoffmann precedence matrix

approach.. This will be accomplished by modelling a new genetic algorithm line-

balancing model, which includes a brand new fitness function, crossover and mutation

techniques plus a modified selection scheme.

This thesis is divided in to seven chapters: Chapter 2 covers two main

sections, firstly a detailed description o f basic types o f assembly lines; its complexity

and standard performance measures, and previously published exact line-balancing

heuristic and techniques. Secondly, the definitions and a conceptual framework o f the

classic genetic algorithm plus published applications o f the algorithm to the assembly

line balancing problem are given.

Chapter 3 starts with introducing the new frontloading theorem on which the

novel fitness function is based. The design concepts o f the fitness function and the

theoretical proof are described in detail. The new crossover and mutation techniques

with moving locus characteristics, plus the modified rank selection scheme are

explained here.

The test programmes, the selected benchmark problems and performance

evaluation criteria are the main theme o f Chapter 4. Chapter 5 is the critical chapter

representing the test results and discussion. Chapter 6 and Chapter 7 contain

conclusions and future research directions respectively.

4

C H A P T E R

LITER A TU R E R EV IEW

This chapter will review the literature relevant to assembly lines and the Genetic

Algorithm. Section one comprises five parts, with the first two introducing the origins

and classifications o f assembly lines. The third and forth parts present the complexity

o f assembly lines and their performance measures respectively. The last part reviews

published line-balancing techniques. Section two mainly discusses the concepts, o f the

Genetic Algorithm and its previous applications to the assembly dine balancing

problem.

2.1 ASSEMBLY LINE MANUFACTURE

2.1.1 THE ASSEMBLY LNE AND ITS ORIGIN

Assembly lines are an important class o f manufacturing systems when large quantities

o f identical or similar products are to be made. The basic concept behind assembly

lines is to break down the assembly process into-individual stages and to allocate each

stage to an operator, group o f operators or a machine. A product passes along the line

from stage to stage, reaching the end o f the line flilly assembled.

The assembly line was a vital development in the growth o f U.S. industry in

the first half o f the 20th century and is still important today in manufacture o f

assembled products including automobiles, consumer electronics products, kitchen

and laundry appliances (white goods), power tools and other discrete products made

in large quantities.

5

Chapter 2: Literature review

Manual assembly lines are based largely on two fundamental work principles.

The first is division o f labour, argued by Adam Smith in England in his book W ealth

o f N a tio n s published in 1776 (Smith and Sunderland, 1982). The second principle is

interchangeable parts based on the work o f Eli Whitney and others at the beginning o f

the 19th century.

Modem production lines can be traced back to the meat packing industry in

Chicago, Illinois, and Cincinnati, Ohio, where overhead (un-powered) conveyors

were used to move carcasses from one worker to the next. These conveyors were later

replaced by powered chain conveyors to create “d isa sse m b ly lin es” - the predecessor

to the assembly line.

American automotive industrialist Henry Ford observed the meatpacking

industry. Together with colleagues, he designed an assembly line in 1913 in Highland

Park, Michigan, for producing magneto flywheels. Ford later applied the assembly

line technique to chassis fabrication and productivity was increased by a factor o f

eight, compared to previous single-station assembly methods. The success o f the

Ford Motor Company resulted in a drastic reduction in the cost o f the model T Ford,

the principal product o f the company at the time. This forced his competitors and

suppliers to imitate his method, and the manual assembly line became intrinsic to U.S.

industry.

2.1.2 M A N U A L A S S E M B L Y L IN E S

A manual assembly line consists o f multiple workstations arranged sequentially, at

which human assembly workers perform operations (figure 2.1). The usual procedure

on a manual line begins with the launching o f a base part onto the front end o f the

line. A work carrier is often required to hold the part during its movement along the

line. The base part travels through each workstation, where workers perform tasks that

progressively build the product. Components are added to the base part at each station

so that the entire work content has been completed when the product exits the final

station.

6

Chapter 2: Literature review

Figure 2.1. Manual assembly line in which the work proceeds
around a loop (Courtesy o f Jervis B. W ebb Co.)

2.1.2.1 M O D E L V A R IA T IO N

Today assembly lines are used to manufacture a large variety o f products in diverse

industrial environments. These products are different in shape, size and complexity;

therefore, various production lines are used accordingly. In terms o f the capacity o f a

production line to cope with model variations, three types o f line can be distinguished:

s in g le m o d e l lines, m u lti m o d e l lin es and m ix ed m o d e l lines. Figure 2.2 illustrates the

basic types o f assembly lines used in industry.

1 S in g le -m o d e l lines. These are specialized lines dedicated to the production o f a

single model or product. A ll workstations repeatedly have to perform the same

tasks on identical work pieces. The workloads o f all workstations remain

constant over time.

2 M u lti-m o d e l lines. These lines are used for the production o f two or more

models. Each model is produced in batches on the line. The models or

products are usually similar in the sense o f requiring a similar sequence of

processing or assembly operations. It is for this reason that the same line can

7

Chapter 2: Literature review

be used to produce the various models with rearrangement o f the line

equipment. Line speed may be variable between models.

A A A A A A A A A A
1. Single-model line.

A A A Set-up G Q Q Q Set-up

2. Multi-model line

A 0 A § © 0 0 § A 0
3. Mixed-model line

®|f|p Different models or products

Figure 2.2. Assembly lines for single and multiple products

3 M ix e d -m o d e l lines. They are also used for the production o f two or more

models, but the various models are intermixed on the line so that several

different models are being produced simultaneously rather than in batches.

Automobile and truck assembly lines are examples o f this case.

2.1.3 _ BASIC TERMS OF ASSEMBLY LINE MANUFACTURING

The design and operation o f assembly lines makes use o f a number o f specialised

management terms. It is well worth defining these terms before the review o f existing

work and development o f the balancing techniques.

1. A ssem b ly . Is the process o f collecting and joining two or more parts together

in order to produce assembly or finished product (end product). It is

characterized by the components used and the operation necessary to combine

them. Components can be subdivided into p u rc h a se d item s and su b -a ssem b lies

(intermediate goods). The relationships between components and the flow of

material can be visualized by a sse m b ly ch arts (Buffa, 1983, p. 196). The

unfinished units o f the product are called w o rk -p ieces .

2. O p e ra tio n . Is a portion o f the total work content in an assembly process. The

time necessary to complete an operation is called o p era tio n (task) tim e.

Operations are indivisible, which means they cannot be further subdivided

without creating unnecessary additional work (Barnes, 1980).

3. W orksta tion . A workstation is an assigned location in the assembly line where

a given amount o f work is performed. Its dimensions, the machinery and

equipment used, as well as the type o f work assigned to it, characterize a

workstation. One hum an o p e ra to r generally mans an assembly line

workstation, however, on short runs an operator may man more than one

workstation. In lines manufacturing large products (e.g. aircrafts),

workstations are frequently manned by several operators. The work content of

a station (set o f assigned tasks) is referred to as sta tio n lo a d ; the time

necessary to perform the work is called w o rk sta tio n tim e.

4. C ycle tim e. Is the time the product spends at each workstation on the line

when the line is moving at a standard pace. The cycle time is therefore the

amount o f time elapsing between arrival o f successive units as they moved

down the line at a standard pace. Extending this definition, the cycle time is

the maximum operation time for closed stations. The pace at which the line

operates (line speed) and the cycle time, together determines the rate at which

products flow from the line. A positive difference between the cycle time and

the workstation time is called id le tim e. The sum o f idle times for all

workstations o f the line is known as b a la n ce delay.

5. P re c e d e n c e d ia g ra m . A graphical description o f any ordering in which work

elements must be performed in achieving the total assembly o f the product.

Prenting and Battaglin (1964) introduced the precedence diagram (precedence

graph) and figure 2.3 displays a typical precedence diagram o f a 10-element

Chapter 2: Literature review

9

assembly line balancing problem. The circles represent task elements and the

corresponding operation times are denoted as node weights. In this example,

task A must be performed before tasks B and C and tasks D and E prior to task

F etc.

Chapter 2: Literature review

3 4 2

6. P re c e d e n c e m atrix . This is a square matrix, containing ones and zeros, in

which rows are labelled with consecutive letters (or numbers) and the columns

are labelled in the same order. Entries in the matrix are as follows:

1. I f the task element o f row i immediately precedes.the element of

column j , a one (1) is placed in row i and column j . .

2. A ll other entries are zero.

j

A B c -D E F G H I J
A 0 1 0 0 0 0 0 0 0
B 0 0 0 • 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0
D 0 0 0 0 0 1. 0 0 0 0
E 0 0 0 0 0 .1 0 0 0 0
F 0 0 0 '0 0 0 1 .1 1: 0
G 0 0 0 0 0 0 0 0 0 1
H 0 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 1
J 0 0 0 0 0 0 0 0 0 0

Figure 2.4. Precedence matrix

Figure 2.4 shows the corresponding precedence matrix o f the above
precedence diagram given in figure 2.3.

10

Chapter 2: Literature review

7. L ine ba lan cin g . Is the assignment o f task elements to workstations in order to

satisfy a given set o f objectives within precedence and cycle time constraints.

Typical objectives are to minimise the number o f stations and maximise

efficiency.

2.1.4 CLASSIFICATION OF ASSEMBLY LINE BALANCING PROBLEMS

Research in assembly line balancing has been in existence since 1954. When Biyton

(1954) pioneered the original study o f the assembly line balancing problem. Over the

last fifty years a large volume o f literature has been published on this topic. Gagnon

and Ghosh (1991) studied the historical growth and decay pattern (life cycle) o f

assembly line research publications and concluded that the number o f publications is

still on the increase.

According to the Ghosh and Gagnon (1989) classification, the Assembly Line

Balancing (A L B) literature can be classified into two main groups: single model and

miilti/mixed model. Each group can be further divided into categories, such as

deterministic and stochastic. Finally each category may be further sub-divided into

two classes: simple and general (figure 2.5). Scholl (1999) presented the latest

classification o f assembly line balancing problems, taking into account characteristics

including line speed and inventory buffers.

A S S E M B L Y LINE B A L A N C IN G L IT E R A T U R E

Single Model

Deterministic
(SMD)

Simple General
(SALB) (GALB)

Stochastic
(SMS)

Simple
(SALB)

General
(GALB)

Multi/Mixed Model

i_________

Deterministic
(MMD)

r - H

\
Stochastic

(MMS)

Simple General Simple General
(SALB) (GALB) (SALB) (GALB)

Figure 2.5. Classification o f assembly line balancing literature (Ghosh and
Gagnon, 1989)

11

The Single Model Deterministic (S M D) version o f the assembly line balancing

problem is the original and the simplest category o f line-balancing problem.

Introducing other restrictions including parallel workstations and zoning restrictions

in to the model converts the problem into a General Assembly Line Balancing

(G A L B) problem.

The Single Model Stochastic (SM S) category introduces the concept o f task

time variability. This is more realistic for manual assembly lines, where workers’

operation times are seldom constant. Introducing stochastic task times cause many

other issues to become relevant, including station time exceeding the cycle time,

pacing effects on work’s operation times, station length, size and location of inventory

buffer and launch rate.

The Multi/Mixed model Deterministic (M M D) category assumes deterministic

task times, but introduces the concept o f the assembly line producing multiple

products. Model selection, model sequencing, launching rate(s) and model lot sizes

become more critical issues in this category o f models.

The Multi/Mixed Stochastic (M M S) category respectively differs from its

M M D counterpart in that stochastic times are allowed. A ll parameters arising from

stochasticity that are relevant in the SMS problem are also present here. This category

includes the most complicated assembly line balancing problems and not much

research has been done so far in this area.

2.1.5 THE SIMPLE ASSEMBLY LINE BALANCING PROBLEM (SALBP)

The simple assembly line balancing problem has been intensively studied during the

last five decades and the classical single model problem contains the following main

characteristics:

1. Mass production o f one homogeneous product by performing n operations

over a set o f workstations;

2. Paced line with fixed cycle time;

3. Deterministic operation times;

Chapter 2: Literature review

12

4. N o assignment restrictions besides the precedence constraints;

5. Serial line layout, one -sided stations;1

6. A ll stations are equally equipped with respect to machines and workers;

7. Fixed rate launching, launch interval equals cycle time;

The two most important parameters in production line design are the output

rate and the cost o f obtaining the output rate. It is possible to maximize the output rate

o f a production line at a fixed cost by changing the line configuration.

A substantial amount o f research has been concerned with- production line

configurations, especially with the configuration along the length o f the line (number

o f workstations). The classic study o f this is called a ssem b ly line ba lan cin g . In

general, assembly line balancing concerns allocating an equal amount o f work to each

station. Lack of such balance leads to a certain amount o f line inefficiency,

consequently a loss o f production output, time wastage and increase in production

costs (Chow, 1990, Downey and Leonard, 1992).

According to both Tonge (1961) and Prenting and Thomopoulos (1974),

Bryton (1954) was the first to give an analytical statement o f the assembly line

balancing problem. However, the first published line balancing work was by Salveson

(1955). In his pioneering work, Salveson noted that T ota l S la ck (TS) is a function o f

the number o f workstations m along the line. So,

m
re (m) = £ (c - s ,)

n
= m C ~ Y l t ,

1=1
= m C - T (2.1)

Where C is the cycle time, n is the number o f tasks and Sj is the workstation time. T is

the total work content and is a problem dependent constant. Since both C and T are

constants, TS is a linear function o f m, and therefore, it is minimized if the number o f

workstations along the line is minimized.

Chapter 2: Literature review

13

Chapter 2: Literature review

Also note that

T_

C
< m < n

Where ra* is the optimal (minimum) number o f workstations needed and [x]+ is the

smallest integer larger than or equal to x. These bounds are referred as th eo re tica l

m inim um (m min) and m axim um (m ma.x), respectively, o f the number o f stations required.

T
ram,n >min

C
and m < nmaX

Therefore, perfect balance, as shown in figure 2.6, is rarely achieved in practice. A

more common situation is that neither the workstation times are balanced (figure 2.7)

nor is the maximum workstation time equal to the desired cycle time (figure 2.8).

Generally, imperfect balance (figures 2.7 and 2.8) arises mainly due to two constraints

to be taken in to account in assembly lines: c y c le tim e co n stra in ts and p re c e d e n c e

co n stra in ts .

a Workstation time

Station number

Figure 2.6. Perfectly balanced five-workstation assembly line

ft
£
H

60

50

40

30

20

10

0
r-k
?!

■N —

>

1 /'V.V
> ? •

1 2 3 4
Station number

n Idle time loss
a Workstation time

14

Chapter 2: Literature review

Figure 2.7. A ll stations not balanced

□ Idle time loss
□ Workstation time

1 2 3 4 5

Station number

Figure 2.8. Maximum workstation time equals desired cycle time

2.1.6 COMPLEXITY OF THE SIMPLE ASSEMBLY LINE BALANCING
PROBLEM

Simple assembly line balancing problems are members o f the general class o f

combinatorial optimisation problems (Domschke and Drexl,1998, p. 113). They are

NP-hard because they may be reduced to the partition problem which is known to be

NP-complete (Karp, 1972). These problems are related to various assignment,

sequencing, grouping and selection problems and it is unlikely that a polynomially

bounded optimal algorithm exists.

The most obvious correspondence results from omitting the precedence

constraints. Then the simple assembly line balancing problem reduces to the well-

known b in -p a ck in g p ro b le m , which is to pack a given collection o f items into a

minimum number o f equal-sized bins. (W ee and Magazine, 1982).

In general, the complexity of a problem concerns the requirements of

resources like computation time and storage space needed for solving the problem

with a computer program (representing a particular algorithm). Most commonly, the

computation time requirements are considered as the dominant factor deciding

whether or not an algorithm is efficient enough to solve a problem and depends upon

a variety o f factors including problem size, cycle time, number o f workstations in the

line, precedence diagram, processing speed o f the machine and the method used.

15

Depending on the precedence diagram, there may be an enormous number o f

feasible sequences with only one or a few o f them optimal solutions. Theoretically, an

optimal solution can be obtained by scanning all these feasible solutions, however it is

not always practical, especially when the problem is large. I f there are n tasks in a job

and if these tasks are independent, then the total number o f feasible sequences

generated is n! However if these are dependent (i.e., there exists precedence

requirements), and there are r arcs in the precedence diagram, then approximately,

there would be n! /2 r distinct sequences (Buzacott and Shanthikumar, 1993).

A number o f numerical measures (besides the num ber'of elements n) have

been published in the assembly line balancing literature for measuring problem

complexity. They are as follows:

1. O rd er S tren gth (Mastor, 1970, Bhattachaijee and Sahu, 1990): the Order

Strength (O S) measures the relative number o f precedence relations in the

precedence diagram. Problems with large order strength are basically expected

to be more complex than those with small OS values.

2 P
O rd e r S tren g th = — — (2.2)

Where P . is the number o f precedence relationships and n is the number of

elements

2. F lex ib ility R a tio (FR): Dar-El (1973) defined flexibility ratio AT? e [0,1] and it

is the number o f zero entries in the (transitive) precedence matrix divided by

the total number o f entries. This measure is equivalent to the order strength

because F R —'1-O S (Elmaghraby and Herroelen, 1980).

3. W est R a tio (Dar-El, 1973): The west ratio WR = n/m is the average number of

tasks per workstation and problems with small values o f W R tend to be more

complex than those with larger values.

4. Tim e In te rv a l (W ee and Magazine, 1981b): The time interval 77 = ,/C,

tmax/C] e [0,1] is a measure o f the interrelation between the cycle time and the

Chapter 2: Literature review

16

task times. A small T l length indicates that the task times vary only in a small

range. Furthermore, the position o f T l in the interval [0,1] shows if the task

times are large or small relative to the cycle time C. Following the above

argument, problems with small T l and having a position near the right border

o f [0,1] are expected to be relatively complex.

5. Tim e V a riab ility ra tio (TV): A measure similar to the time interval is defined

as follows:

Chapter 2: Literature review

In contrast to Tl, only one value is used to characterize a problem instance.

the time structure o f the precedence diagram rather than single problem

instance. The complexity o f problem instances is expected to grow with

decreasing values o f TV.

6, P ro je c t In dex (P jtl): It seems that none o f these measures represents the true

complexity o f the problem due to omitting either precedence or task time

distribution. However, Driscoll and Tbilakawardana (2000c) defined a new

compound measure called P r o je c t In dex considering both task and precedence

distributions and, mathematically expressed as follows:

Where cp is number o f precedence columns, cpav is average column position,

tav represents the average task time and tsd is the task time variance.

2.1.7 P E R F O R M A N C E M E A S U R E S

Two main measures o f solution quality have been defined to support line-balancing

modelling: L in e E ffic ien cy (LE) and B a la n ce E ffic ien cy (BE), (Kilbridge and Westter,

1961b). Both measures are dimensionless and scaled between zero and one hundred

(2.3)

Furthermore, this measure is independent o f the cycle time, therefore, reflects

P j t l = - Cj— l + ± l + ± + (l - ^ t) x 100%
4 n - 1 c p C C

(2.4)

17

percent, with one hundred percent representing excellence. Line Efficiency represents

positive achievement in line utilization and is the key measure of economic

performance. Balance Efficiency is representative o f the distribution o f work with

consequent personnel satisfaction combined with increased opportunities for greater

output. The mathematical expressions for these measures are as follows:

n

2 ?
L E = — — x 100% (2.5)

m x C

Chapter 2: Literature review

B E = 1 - 7=1

m x S „
x 100% (2.6)

In addition to the above two main measures the following measures also can

be found in assembly line balancing literature. Kilbridge and Wester (1961b)

proposed B a la n ce D e la y (B D), a measure o f assembly efficiency, and is the ratio o f

the total idle time and the total time spent by the product in moving from the

beginning to the end o f the line. ,

m x

B D (=1
m x C

(2.7)

Moodie and Young (1965) introduced another measure called S m ooth n ess Index (SI),

which measures the equality o f the distribution o f work among the workstations.

(2.8)

Both these measures are noted as weak because o f data sensitivity and non-linearity.

18

Chapter 2: Literature review

2.1.8 L IN E B A L A N C IN G A P P R O A C H E S

Since the pioneering study of Bryton (1954) a large number o f heuristic and exact

algorithms have been suggested to solve the NP-hard assembly line balancing

problem. In the early 1950’s, researchers suggested analytical techniques including

linear and integer programming but later on they realized that these techniques would

fail when the problem size is large. As a consequence practitioners developed

heuristic approaches, solving assembly line balancing problems at a low cost of

computation time and low volume o f computer storage. Although, these techniques

would not guarantee optimal solutions, significantly good results were reported. This

section will review the previously published heuristic and exact algorithms for the

single model deterministic assembly line balancing problem. .

2.1.8.1 E X A C T (O PT IM U M -SE E K IN G) ALG O R ITH M S

Baybas (1986a) provided a comprehensive survey o f optimum seeking assembly line

balancing techniques and showed most o f the methods are based on the well known

Branch-and-Bound (B & B) technique. The Branch and Bound technique has received

particular research attention and is widely used as an optimal procedure for larger

problems. In general, when the number o f tasks is large, all exact algorithms fail, in

the sense that the CPU time grows exponentially.

The early linear programming and dynamic programming models have been

replaced by the more realistic Integer Programming (IP) formulations and solution

techniques. Neither integer programming nor the recently introduced goal

programming has been used on other than single product line studies. The shortest

path technique, perhaps due its added computational efficiency, has been popular for

obtaining optimal solutions for the smaller assembly line balancing formulations.

Salveson (1955) formulated the single assembly line balancing problem as a

liner-programming problem encompassing all possible combinations o f station

assignments. His model, by definition can result in split tasks and therefore, may

result in infeasible solutions. Bowman (1960) was first to provide a ‘n o n d iv is ib ility ’

constraint, by changing the linear-programming formulation to one o f integer

19

Chapter 2: Literature review

programming. White (1961) showed that those constraints are redundant and

constructed a new zero-one program based on Bowman’s formulation.

Klein (1963) proposed an approach to solve the assembly line' balancing

problem based on integer programming. It requires the solution o f a series o f

assignment problems. Klein proposed to generate all feasible sequences o f tasks for

the given precedence diagram and then, the assignment minimising the total idle time

can be determined by solving the associated assignment problem. This has to be

repeated for each feasible sequence and the optimal solution would be among the

solutions to the series o f the assignment problems.

Thangavelu and Shetty (1971) applied general integer programming for the

simple assembly line balancing problem. Their zero-one programs were solved by

applying the additive algorithm o f Balas (1965), as presented by Geoffrion (1967).

Since this method is a general integer programming method and it relies on integer

programming theory and codes.

Patterson and Albracht (1975) developed a specialised method, which also

relies on IP (Integer Programming) techniques for solving line-balancing problems.

This method examines sequences o f 0-1 programs for feasible solutions.

Schrage and Baker (1978) proposed an efficient method for generating all

feasible sets and a method for assigning to each feasible set a label that can be used as

a physical address for storing information about the set within the framework o f a

dynamic programming approach to sequencing problems with precedence constraints.

Using a Jackson (1956) type o f enumeration tree, Van Assche and Herroelen

(1979) constructed a frontier search method but one that is not based on IP theory or

codes. They represent a tree search procedure, dominance rules, bounding arguments

and branching heuristics with a node representing the assignment o f tasks to a single

workstation.

20

Chapter 2: Literature review

Wee and Magazine (1981a) also reported a branch-and-bound method, not

based .on general IP codes or theory. They used simple heuristics termed IUFFD

(Immediately Updated First Fit Decreasing) and backward recursive positional weight

(B R P W) and immediately updated to generate m max. The first one is a variation o f the

well-known bin p a c ld n g heuristic based on the F irs t-F it-D e c re a s in g (FFD) rule,

which is one o f the most efficient heuristics for the bin-packing problem.

Talbot and Patterson (1984) proposed a new formulation, one not involving binary

decision variables. The decision variable in this formulation is defined to be the

number o f the workstation a particular task is assigned to.

In the recent past, a few exact methods based on branch-and-bound techniques

have been reported in the literature. F A B LE developed by Johnson (1988) and

EU R E K A developed by Hoffmann (1992) have gained much attention due to

excellent performance. Scholl (1999, p. 118) described that F A B LE and EU R EK A

may be seen as prototypes for future developments.

2.1.8.2 HEURISTIC PR OCEDURES

Talbot et al (1986) published an excellent comparative evaluation o f heuristic line

balancing techniques and showed that published heuristic decision rules vary from

simple list processing procedures, which consider a single attribute o f each work task

to optimal seeking procedures that have had the amount o f computation time to

devote to each search limited by an externally imposed time limit.

To analyse these heuristic procedures, they are grouped into three categories.

These categories allow capturing salient features o f each approach, and to emphasize

the similarities and differences among them. The first category consists o f single-pass

decision rule procedures which implement list processing prioritising schemes for task

assignment based on a single attribute o f each task. The second category consists o f

procedures that produce multiple single-pass solutions and select the most attractive

solution. The last category consists o f procedures that attempt to improve a solution or

a station assignment by some iterative backtracking methods.

(a) Single-pass decision rule procedures

21

Helgeson and Birnie (1961) proposed the well-known and popular ‘Ranked Positional

Weight technique’ (R PW T). In this technique, each task is given a weight equal to its

task time plus the sum o f all the task times o f all the elements that follow it on the

precedence diagram. A Complete description o f the technique and an illustrative

example is given in section 2.1.9. Since the method is very popular in the literature, it

appears in almost every comparative study and in several textbooks. Ignall (1965)

reported that the method results in solutions far from the optimum. Mastor (1970) also

supported Ignall (1965), showing that the technique performs worse than almost all o f

the other techniques compared in his study. _

Tonge (1960, 1961) developed a heuristic technique for the problem

consisting o f three phases: (a) simplification o f the initial problem by grouping

adjacent tasks into compound tasks, (b) solution o f the more simple problems by

assigning tasks to stations at the least complex level possible, breaking up the

compound tasks into their elements only when necessary for a solution; and (c)

smoothing the resulting balance by transferring tasks among stations until the

distribution of assigned time is as even as possible.

Kilbridge and Wester (1961a) proposed a technique developed primarily to

balance lines without the aid o f computers. The main feature o f the technique is to

group tasks into columns in the precedence diagram where tasks are placed as far left

as possible without violating the precedence relations. In such a diagram, tasks can be

permuted among themselves in each column and some o f the tasks can be -moved

laterally from their columns to positions to their right without violating the

precedence relations. Then, two properties o f the tasks in the diagram, p e rm u ta b ility

with column and la te ra l tra n sfe ra b ility , are exploited in an attempt to achieve

optimum balance.

As Kilbrige and Wester (1961b) stated, the technique is not a mere mechanical

procedure, since a fair amount o f judgement and intuition must be used to derive a

meaningful solution. It is a simple, powerful technique, especially for large cycle

times, when one station crosses several columns. On the other hand, for low cycle

Chapter 2: Literature review

22

times, where one column may require two or more stations, a fair amount o f

adjustment is necessary.

Kilbridge and Wester (1962a) applied the technique to a problem taken from

industry in which fixed facilities and positional restrictions exist. They also examined

the relation o f balance delay (equation 2.7) with various problem parameters, e.g. the

range o f task time,-cycle time and degree o f precedence relation flexibility. They

report that balance delay is very sensitive to the right selection o f cycle time.

Agrawal (1985) developed a procedure utilising a decision rule called ‘largest

set rule’ for allotting the work to stations.- The procedure computes the cumulative

time for each task, which is the time for performing the task and all the tasks

preceding it. Then, the largest cumulative time, which is less than the cycle time, is

selected and the associated tasks are assigned to the workstation. The procedure is

repeated on the truncated precedence diagram until all the tasks are assigned. After

the work is allotted to workstations, the designer should decide on the sequence in

which these operators should be positioned on the line. Although the procedure is

computationally efficient, there is no apparent guarantee o f yielding a good solution.

Baybars (1986b) suggested a procedure that consists o f five phases. The first

four phases reduce the size o f the problem by utilizing various properties o f the

problem and the last phase is a- single-pass heuristic procedure applied on the

reduction problem. The procedure starts with the last tasks in the precedence diagram

and proceeds backwards. The tasks with the most unassigned immediate predecessors

among the tasks with no unassigned followers are assigned first. Detailed

computational results on the 70-task problem o f Tonge (1961) as well as results o f

other problems reported in the literature indicate that the procedure finds the optimal

solution in most cases with minimal computational time.

(b) Multiple single pass solution procedures

Tonge (1965) proposed a procedure, which assigns tasks to stations by randomly

selecting a heuristic procedure for choosing the next task to add to the current station.

Based on his studies, it is reported that random selection o f heuristics for choosing the

Chapter 2: Literature review

23

Chapter 2: Literature review

next task does as well as or better than, using an individual heuristic procedure alone,

and randomly choosing the tasks without an intervening choice o f heuristic

procedures.

Arcus (1966) developed a technique called ‘Computer Method o f Sequencing

Operations for Assembly Lines’ (C O M S O A L), in which the main idea is the random

generation of a feasible sequence. The .technique assigns the same probability o f

selection to the tasks with no unassigned predecessors and fits the remaining station

time. Judging on the basis o f the yield o f good balances, Arcus has explored methods

o f biasing the tasks available for selection producing the best results with a compound

selection models. .

Buxey (1974) improved C O M S O A L further with paralleling o f workstations

leading to possible reductions in total idle time. He applied the same approach to the

R PW T o f Helgeson and Bimie (1961). Each workstation that is duplicated is assumed

to have an effective cycle time o f C times the station multiple. Thus, a rage o f times

becomes available ancl there is more likelihood o f a better fit. Multiple stations also

enable the production to be greater than the limitation imposed by tmax,.

Pinto et al (1978) presented a heuristic network procedure based on the

shortest-route formulation o f Gutjahr and Nemhauser (1964) in which the nodes

represent a collection or subset o f tasks that can be performed in some order without

prior completion o f any task not in the subset. Pinto et al (1978) utilized other

heuristic procedures, including RPW T, largest task time, smallest task time and

random task assignment, to generate the nodes. The set o f nodes generated is

combined to form a composite network.

Schofield (1979) developed a procedure called ‘Nottingham University Line

Sequencing Program’ (N U L ISP) which is similar to C O M SO AL. This technique can

solve both line b a la n c in g and cy c le tim e p ro b le m s, handling various zoning

constraints and task times larger than the cycle time. The details o f the feasible

sequence generation are not reported due to copyright reasons; however, it is stated

that a weighted random selection procedure is utilized to generate solutions. The

major advantage o f N U LISP is the feature o f considering various factors, including

24

C ha pter 2: L ite ra tu re rev iew

grouping o f tasks for a variety o f reasons, separation of one group o f tasks from others

for reasons o f skill differences, safety considerations, and fixing o f tasks at certain

workstations to account for fixed facilities on the line.

Akagi et al (1983) proposed a method, which allows the assignment o f more

than one worker to a workstation. Tasks are assigned to workstations according to a

couple o f rules reported in the literature. The procedure was repeated for a different

number o f workers at each workstation. In the second phase o f this two-phase

technique, tasks are assigned to workers within each workstation.

Nakasu and Leung (1995) developed procedure similar to C O M SO A L in the

sense that the best design is selected among the several generated via simulation.

Performance measures o f minimizing the number o f workstations, cycle time, balance

delay and a combination of these are considered. The procedure allows the task times

and cycle time to be sampled from various probability distributions. Neither

experimental results nor comparison o f the procedure with the others in the literature

are given; thus, it is impossible to comment on the performance o f the procedure.

(c) Backtracking procedures

Hoffmann (1963) developed an enumeration method, by generating all feasible station

assignments that do not exceed cycle time and selects the best arrangement from

among these by use o f a triangular precedence matrix. The procedure selects as the-

first workstation the feasible subset o f tasks that leaves the least idle time, then selects

from the remaining tasks that subset that leaves the least idle time in the second

workstation, etc. the method is coded in FO R T R A N that can solve problems with up

to 99 elements. Although the method may be computationally very, expensive,

Gehrlein and Patterson (1978) demonstrated that by suitably modifying the method it

could be used to solve problems o f moderate sizes.

Moodie and Young (1965) suggested a two-phase procedure. In the first

phase, selecting the task with no unassigned predecessors and fitting the remaining

station time in the order of largest performance time obtain a preliminary balance. In

the second phase, tasks are shifted between stations in an attempt to reduce idle time

25

C hapter 2 : L ite ra tu re rev iew

and distribute the idle time equally to all workstations. Similar to this procedure,

Sarker and Shanthikumar (1983) developed another procedure that enables the

balancing o f lines, some involving task times greater than the cycle time.

Nevins (1972) introduced a general purpose heuristic program called the ‘best

bud search’ that does not attempt to minimize number o f workstations directly;

instead, an upper bound on the number o f workstations is imposed and the problem is

solved for that many workstations. I f the attempt is successful, the number o f

workstations is decremented by one, and another attempt is made until it is either

impossible or computationally impractical to get a smaller number o f workstations.

Nevins (1972) tested the problems solved by Tonge (1961) and obtained as good or

better results.

Dar-El (1973) developed a method called M A L B for the cycle time problem

starting with the minimum theoretical cycle time and proceeds with the generation o f

a feasible sequence o f tasks, which are grouped into workstation assignments. If a

feasible sequence cannot be extended, the method applies a backtracking procedure,

which either partitions the tasks correctly or results in an increase o f one time unit o f

the cycle time. The method is further improved by imposing rules which limit the

backtracking iterations. This method performs better than C O M S O A L and 10-SPP (a

method selecting the best o f 10 solutions, each obtained by using a different ranking

system, e.g. as with R PW T) in the problems tested.

Bennett and Byrd (1976) presented a two-stage ‘trainable heuristic procedure’.

In the first stage, the procedure is trained by accumulating experience on the

effectiveness o f several heuristic rules on small problems for which the optimum is

known. In the second stage, the findings o f the stage are used to provide near optimal

solutions, which is fed to an optimisation procedure as a starting point. The authors

have used several empirical rules and values with no apparent justification.

Dar-El and Rubinovitch (1979) developed another method that generates

alternative solutions o f equal quality by employing exhaustive enumeration to

generate all or some subset o f the solutions. However, the computational requirements

o f the exhaustive enumeration grow exponentially with the number o f subsets saved.

26

This method is called ‘Multiple Solutions Technique’ (M U S T) and performs better

than or gives equal quality results with M A L B (Dar-El, 1973) in every case.

Hackman et al (1989) suggested a branch and bound procedure that

incorporates several heuristic fathoming rules to reduce the size o f the tree. The

authors reported that the procedure outperforms the other branch-and-bound

procedures in the literature. This procedure can also be adapted to solve the cycle time

problem.

Shtub and Dar-El (1990) utilized M A L B for a multi-objective approach for

both line balancing and cycle time problems. The objective functions consist o f the

traditional objective o f minimizing the total idle time and minimizing the number of

sub assemblies handled at each workstation.

C hapter 2 : L ite ra tu re rev iew

Reference Year Solution methodology

Buxey 1979 Monte Carlo simulation
Agrawal 1985 Single-pass similar to R PW T
Lau and Shtub 1987 Procedure based-on a hybrid line concept
Hackman et al 1989 Branch-and-bound algorithm with
Yano and Bolat 1989 Heuristic branch-and-bound procedure
Easton 1990 DP with relaxation and fathoming
Hoffmann 1990 An enumeration procedure based on
Shtub and Dar-El 1990 Procedure utilizing assembly chart
Faland et al 1992 Heuristic shortest-path
Leu et al 1994 Genetic Algorithm
Miltenburg and 1994 DP and heuristic for U -Line problem
Wijngard
Anderson and Ferris 1994 Genetic Algorithm

Hoffmann's heuristic
Kim et al 1996 Genetic Algorithm
Scholl and VoB 1996 Priority-ranking heuristic and tabu search

Exact method in the literature

. Table 2.1. Recent researches conducted on assembly line balancing problems.

27

C ha pter 2 : L ite ra tu re rev iew

Easton (1990) presented a dynamic programming (DP)-based approach with

relaxation and fathoming that relies on dynamic upper bound. The dynamic

programming formulations o f the assembly line balancing problems with realistic

sizes however require excessive storage and computation time.

Driscoll et al (2002) developed a heuristic approach based on the Hoffman’s

precedence matrix procedure. This approach generates feasible task assignments

randomly unlike the Hoffman procedure for a number o f times (user defined) for each

workstations and the best combination (combination with least idle time) o f tasks are

assigned to the workstation. Starting with the first workstation, the procedure is

repeated for the next workstation and so on until all the tasks are assigned to

workstations. Experiments with a number o f benchmark problems in the literature

showed that this technique outperforms the Hoffman procedure and solved most

small-medium problems with optimal solutions.

Concluding this group o f approaches, Erel and Sarin (1998) presented the

most recent survey o f the assembly line balancing procedures and are listed with some

basic information on the approaches in table 2.1. Considering the large number o f

studies reported in the literature, it was concluded that the development o f procedures

for single model deterministic versions o f the problem still continue to be an attractive

research area.

2.1.9 ILLUSTRATIVE LINE BALANCING E X A M P L E
An example problem with 12 tasks and a cycle time o f 10 time units is considered for

illustration. The problem network is shown in figure 2.9. The well-known Rank

Positional Weight (R P W) technique developed by Helgeson and Bimie (1961) is used

for balancing and the step-by-step computation is shown below.

The largest cycle time for doing this work would be equal to the total work content

(JVC) that is:

W C = £ l t l (2.9)

28

C ha pter 2: L ite ra tu re rev iew

In this example this is equal to 50 time units, and involves only one workstation. The

smallest cycle time for doing the work is equal to the largest element time (tmax). In

the example, this is 7 time units and would require 8 workstations, which is calculated

from:

Total element times ,
-------------------------------- (Rounded where necessary to the next integer up)

cyle time

In practice there is a limitation on the feasible number o f workstations, which can be

calculated using the following guide.

1. Each workstation time must be less than or equal to the cycle time.

2. The minimum number o f work stations m * is

tn .

m* = — — (Rounded where necessary to the next integer up)
C

3. The feasible number o f workstations is equal to the number o f elements where

the element time is greater than half the cycle time.

Figure 2.9. Precedence network

The steps involved in the Rank Positional Weight method are as follows:

1. Develop the precedence network in the normal manner.

2. Determine the positional weight for each work element (a positional weight o f

an element is defined as the element’s time plus the time o f all elements that

C h a p ter 2 : L ite ra tu re rev iew

must follow according to precedence relationships). The positional weights for

the problem are shown in table 2.2.

3. Rank the work elements based on the positional weight in step2. The work

element with the highest positional weight is ranked first (table 2.3).

4. Assign the element with the highest positional weight to workstation 1.

n
5. Calculate the remaining time (C -^ T ^), where tk is the assigned element times

k=I

and k is the number o f elements assigned to the workstation.

6. Assign the element with next highest positional weight which fulfils:

a. Precedence restrictions

n

b. Element time < (C - £ t k),
k-[

n
7. Calculate remaining slack time t s = C -),

i

8. Repeat steps 6 and 7 with decreasing ts values until one o f the following

conditions apply:

a. Precedence restrictions prohibit further assignment

b. ts = 0
c. Remaining element times are greater than t5

9. Start second workstation selecting first unassigned element with highest

positional weight.

10. Continue until all elements have been assigned

Rank Element P W

1 A 34
2 C 29
3 B 27
4 E 25
5 D 24
6 F 20
7 G 15
8 I 15
9 ' J 13
10 IC 11
11 H 8
12 L 7

Table 2.3 Element ranks according to positional weights.

30

C h a p ter 2 : L ite ra tu re rev iew

Referring to the above procedure and using the following standard layout on the

example the solution would be:

Cycle time C = 10 units

, Element
Rank XT .

Number
Check on Element

precedence time (c - I U
Comment

W orkstation 01

1 A S 5 5 Assigned
2 C y 3 2 Assigned
3 B y 3 -1 Not assigned
4 E y 6 -4 Not assigned

Elements B and subsequent elements fail on time restriction

W orkstation 02

3 B y 3 7 Assigned
4- E y 6 2 Assigned
5 D y 4 -2 Not assigned
6 F X Not assigned

Element F and subsequent elements fail on precedence restrictions

W orkstation 03

5 D y 4 6 Assigned
6 F y 5 1 Assigned
7 G y 2 -1 Not assigned
8 I y 4 . -3 Not assigned
9 J X Not assigned
10 K X Not assigned
11 H y 1 0 Assigned
12 L X Not assigned

N o time remaining".

W orkstation 04

7 G A 2 8 Assigned
8 1 Z 4 4 Assigned '

31

C ha pter 2 : L ite ra tu re rev iew

9 J V 6 -2 Not assigned
10 K V 4 0 Assigned

No time remaining

W orksta tion 05

9 J V 6 4 Assigned
12 L V 7 -3 Not assigned

Fail on time restriction

W orkstation 06

12 L 7 3 Assigned

The final solution to the above problem is summarized in table 2.4.

Workstation Elements Station time Slack time

01 A, C 08 02
02 B, E 09 01
03 D, F, H 10 00 .
04 G,T, K 10 00
05 J 06 04
06 L 07 03

Table 2.4 Workstation details and station times

Performance measures:

Line Efficiency(LE) = x 100% = 83.3%
6x10

Balance Efficiency= f 1 1 x 100% = 83.33%
 ̂ 6 x 0.83 J

C ha pter 2 : L ite ra tu re rev iew

Chase (1975) revealed that only five percent (5%) o f companies used the published

techniques to balance their lines! Later Milas (1990) showed the situation has not

changed much. The main reason for this dilemma was identified as the practitioner’s

unfamiliarity with the published algorithms; the complexity o f the algorithms, making

their comprehension by practitioners difficult; the inflexibility o f the algorithms to

model the actual conditions o f assembly lines and the non-availability o f user friendly

ready to use software packages for assembly line balancing. However, two software

packages have been reported in the literature.

Chang and Sullivan (1991) developed a software package called QS (Quant

Systems) for assembly line balancing. The software was based on five sets o f

heuristics having objectives o f maximizing line efficiency and providing a balanced

workload. It solves the assigned problem using the five techniques and overall the

best is considered as the solution.

A~Line is a second integrated software package developed recently at the

University of Surrey. It is capable o f project organization, data management, problem

analysis, and balancing and results evaluation. A~line 1.4, has been released for

review and demonstrator versions and an initial description o f the software models

published (Driscoll and Thilakawardana, 2000a and 2000b)).

The default random generator model was used as a comparator to new

balancing approaches, and to validate and test the new software enhancements. There

are a number o f supportive features in the package. Data validation is included and

has been revised to identify both critical and non-critical errors. Redundant

precedence restraints are an example o f non-critical errors that can be removed

automatically by software identification.

Automated drafting o f precedence diagrams is included along with the ability

to manually adjust a diagram for clarity. Test cases o f over two hundred elements can

be handled by the package and following data validation plots o f theoretical line

2.1.10 ASSEMBLY LINE BALANCING SOFTWARE

33

efficiency, often refereed to, as 4sa w -to o th d ia g ra m s ’ are available for cycle time

selection.

Balancing is in two forms, individual balance investigations and balance

scanning. Balance scanning will automatically manage and process a continuous

series o f balances over a range o f acceptable cycle times and installed balancing

models. The results are then available for presentation in the form o f line efficiency

and balance efficiency graphs plotted against theoretical results.

Individual detailed balances at prescribed cycle times can be processed on a

station-by-station basis with a display o f current element, all current station

assignment attempts and total assignment history. Statistics are recorded on individual

balance model performance when best solutions are found.

2.1.11 S U M M A R Y

The single model deterministic assembly line balancing problem continues to generate

interest both due to its practical and theoretical nature as evidenced by recent

publications. These publications have addressed four types o f line balancing

problems. The single model deterministic is the simplest version o f an assembly line

and the most researched. A limited number o f papers have been published on
V

multi/mixed deterministic and multi/mixed stochastic.

Determining the optimal solution or set-up o f an assembly line for least cost is

considered as the assembly line balancing problem and it comprises two separate sub

problems: the cyc le tim e p ro b le m and lin e b a la n c in g p r o b le m , which must be solved

sequentially. Assembly line- balancing problems are combinatorial optimisation

problems, which are considered as NP-hard problems. They are very complex in

nature and cannot be solved in polynomial time.

During the last four decades a large number o f exact and heuristic techniques

have been developed to solve the problem, but none o f them guarantee a 100%

optimal solution. It can be seen that very early techniques are based on mathematical

programming optimisation techniques and later it was realised that these exact

C ha pter 2 : L ite ra tu re review

34

techniques become prohibitive beyond limited problem dimensions. As a result o f

this, researchers started focusing on heuristic approaches and they later gained much

attention over exact methods. Therefore, heuristic techniques will remain the only

computationally efficient and sufficiently flexible methodologies capable . o f

addressing large scale, real-world assembly line balancing problems, particularly for

the multi/mixed models and general assembly line balancing categories.

After the introduction o f a metaheuristic approach called the Genetic

Algorithm (G A), by John Holland in 1975, its applications to NP-hard combinatorial

optimisation problems were studied and an excellent capability o f solving the N P -

hard class o f problems efficiently in short convergence times was identified. The

application o f the Genetic Algorithm tp assembly line balancing problems has been

explained in the second part of this literature review.

C ha pter 2 : L ite ra tu re rev iew

35

C hapter 2: L ite ra tu re rev iew

2.2 THE GENETIC ALGORITHM AND ITS APPLICATION TO
LINE BALANCING

This section consists of two main sub-sections. The first section explains the basic

mechanisms underlying the classic Genetic Algorithm and its key components

including coding, fitness functions, initialisation, genetic operators and termination,

and its applications to the assembly line balancing problem The second section

reviews p revious application o f Genetic Algorithms t o the assembly 1 ine b alancing

problem, identifies the drawbacks o f the existing models and consequently the

contribution possible from this research. Genetic Algorithms are biologically inspired

computational models and much o f the terminology has been borrowed from the field

o f genetics, mathematics and computer science, therefore, a glossary is provided in

appendix A to help the reader with the terminology.

2.2.1 PRINCIPLE BEHIND THE GENETIC A L G O R I T H M

A Genetic Algorithm is a set o f procedures which, when repeated, enables solutions to

be found for specific problems. To accomplish the desired objectives, Genetic

Algorithms create successive populations o f different solutions until an acceptable

solution is reached. Within the generation o f each successive population,

improvements in the quality o f chromosome solutions are achieved. In such a manner,

a Genetic Algorithm can quickly move to a successful outcome without examining

every possible solution in the search domain. The concept used is based upon the

fundamental processes that control the evolution o f biological organisms, namely

natural selection and reproduction. These two processes together improve an

organism’s ability to survive within its environment in the following manner:

1. Natural selection determines which organisms have the opportunity o f

reproduction and survival within a population. .

2. Reproduction involves genes from two separate individuals combining to form

offspring that inherit the survival characteristics o f their parents.

36

C hapter 2 : L ite ra tu re rev iew

The Genetic Algorithm seeks to imitate the way in which beneficial genes

reproduce themselves through successive populations and hence contribute to the

ability o f an organism to survive.

2.2.2 B A C K G R O U N D T O GENETIC A LGORITHMS

The beginnings o f Genetic Algorithms can be traced back to the early 1950s when

several biologists used computers for simulation o f biological systems (Fisher

(1958)). Inspired by the principle o f natural genetics and the theory o f evolution the

research completed in the late 1960s and early 1970s at the University o f Michigan

under the direction o f John Holland led to Genetic Algorithms.

Deoxyribo Nucleic Acid (D N A) is the basic building block o f chromosomes

present in every living organism that determines many traits o f the organism. The

growth o f the organism, from the first fertilized egg up to the adult individual, is

carried out by highly complex physicochemical processes, which are governed by

D N A that constitutes the ‘recipe’ how to ‘make’ the individual. Each chromosome is

composed of g en es, which can be though o f as the basic ‘Unit’ o f information. The

order o f genes appearing in the chromosome decides the characteristic features of

individual species in a population. The different traits o f one generation are passed on

to the next through various genetic operators. Combining this process with the

survival o f the fittest, leads to a population well adapted to the environment.

In the Genetic Algorithm, the basic building block is also the gene. These

genes represent problem elements and their values are known as a lle les . A number o f

gene's arranged in an order make a s tr in g (ch rom osom e). Theses strings represent

feasible or infeasible solutions in the problem search space. A group of strings are

collectively known as sch em a ta , representing different solutions o f the problem.

Figure 2.10 shows the analogy between the Genetic Algorithm and the principle o f

natural genetics.

Goldberg (1989a) and Liepins and Hillard (1989) presented detailed insights

into different aspects o f Genetic Algorithms, In Genetic Algorithms each solution is

37

C ha pter 2: L ite ra tu re review

stored in the form o f an artificial chromosome and is represented by a string o f bits,

numbers etc. The search proceeds in parallel in the neighbourhoods o f the better

solutions due to the multiplicity o f solutions. The trials become less random as the

number of generations progress, since the number o f desirable chromosomes

increases in the population. Thus Genetic Algorithms are intrinsically parallel. New

candidate solutions are obtained from the current population by applying artificial

genetic operators. Efficient solutions to large combinatorial optimisation problems at

a very low computational cost are possible by the application o f judicious

combinations o f these operators.

In Genetic Algorithm In Genetics

Schemata (different solutions)

Allele

Population (different individuals)

Gene

Chromosome

Gene
D N A

Figure 2.10. Analogies o f two genetic systems

The application o f Genetic Algorithms to the assembly line balancing problem

can be traced back to Anderson and Ferries (1990), who applied the Genetic

Algorithm technique to solve the assembly line balancing problem for the first time.

Early research on these problems tended, naturally, to use classical operations

research techniques. Conventional search techniques, including integer programming

(Graves and Lamar, 1983), dynamic programming (Held et al, 1963) and hill climbing

(Ackley, 1987) are often incapable o f optimising the assembly line balancing

problem. On the other hand, the branch and bound technique (Pinto et al, 1981)

enabled researchers to continually find global solutions, but tended to be highly

computationally expensive.

Current research interests focuses on the Genetic Algorithm advantages, which

include:

1. Optimises with continuous or discrete parameters;

2. Does not require derivative information;

3. Simultaneously searches from a wide sample o f the cost surface;

4. Deals with a large number o f parameters;

5. Is well suited for parallel computers;

6. Optimises parameters with extremely complex cost surfaces; it can jump out

o f a local minimum;

7. Provides a list o f optimum parameters, not just a single solution;

8. Works with numerically generated data, experimental data or analytical

functions;

These advantages are intriguing and produce quality results where traditional

optimisation approaches have failed, whilst acknowledging the Genetic Algorithm is

not the best way to solve every problem. For example, traditional methods have been

well tuned to quickly find the solutions o f a well-behaved convex analytical function

o f only few variables. For such a problem, calculus-based methods outperform a

Genetic Algorithm, quickly finding the optimal solution while a Genetic Algorithm is

still analysing the fitness o f the initial solution. However, many realistic problems do

not fall into this category.

The large population o f solutions that gives the Genetic Algorithm its power is

also its bane when it comes to speed on a serial computer, because the fitness function

o f each o f these solutions must be evaluated. However, if a parallel computer is

available, each processor can evaluate a separate function at the same time. Therefore,

the Genetic Algorithm is optimally suited for such parallel computations.

2.2.3 BASIC C O M P O N E N T S OF THE GENETIC A L G O R I T H M

The Genetic Algorithm begins like other optimisation algorithms, by defining the

optimisation parameters including fitness function, crossover and mutation techniques

and probabilities etc. It ends like other optimisation algorithms too, by testing for

C ha pter 2 : L ite ra tu re rev iew

39

C ha pter 2: L ite ra tu re review

convergence. In between, however, a Genetic Algorithm is very different from other

search algorithms. The basic components o f the classical Genetic Algorithm are

illustrated in figure 2.11 and the corresponding steps are described below:

1. Define Genetic Algorithm parameters and fitness function.

2. Create initial population.

3. Evaluate the current population.

(start)
1

r i
2

Figure 2.11. Flow chart o f the classical Genetic Algorithm

4. If the termination criterion is met, go to step 5, otherwise go to step 6.

5. End.

6. Select two parents and go to step7.

40

C ha pter 2 : L ite ra tu re review

7. Undergo crossover operation according to crossover probability and generate

offspring.

8. Undergo mutation according to mutation probability.

9. Copy the offspring to the new population.

10.' I f the number o f chromosomes in the new population is the same as the

current population, go to step 11, otherwise go back to step 6 and repeat steps

6-9.

11. Replace the current population with the new population.

2.2.3.1 E N C O D IN G

A Genetic Algorithm starts with an initial population o f chromosomes representing

different possible solutions to the problem. These chromosomes will produce new

chromosomes undergoing genetic operations such as crossover and mutation.

Representing the actual problem by chromosomes is consequently the first step when

starting to solve problems with the Genetic Algorithm. The mapping o f the real

problem to artificial chromosomes is known as encoding.

The method o f representation (encoding) has a major impact on the

performance o f the Genetic Algorithm. Different coding schemes may cause different

performances in terms o f accuracy and computation time. Liepins and Vose (1990)

discuss t he i ssue o f s olution e ncoding i n d etail a nd s ho wed that t he e xistence o f a

good representation makes a problem easily solvable by Genetic Algorithm. However,

defining good technique is a challenge.

Several encoding techniques have been developed over the last two decades

including binary encoding, permutation encoding, value encoding and tree encoding.

Binary encoding is the most common, mainly because the original work by Holland

(1975) used this type o f encoding. Binary encoding gives many possible

chromosomes even with a small number o f alleles. On the other hand, this encoding is

often not natural for many problems.

Two chromosome representations applicable to the assembly line balancing

problem are introduced.

41

C ha pter 2: L ite ra tu re review

1. Sequence- oriented representation (Fox and McMahon, 1991).

2. Partition-oriented representation (Bruns, 1993).

Falkenauer (1992) examined both representation schemes, and concluded that

the sequence-oriented representation is the best for the assembly line balancing

problem representation. One o f the advantages o f using this scheme is that it provides

considerable flexibility in choosing genetic operators (Kim et al, 1996). Many genetic

operators that have been developed for sequencing problems are available, and the

representation makes it possible for them to be adapted to the assembly line balancing

problem.

(a) Sequence-Oriented encoding

The most natural representation o f the assembly line balancing problem solution is

sequence-oriented encoding, consisting o f mapping a possible solution o f the problem

in the search space into finite chromosomes. In assembly line balancing, the number

o f workstations in the solution, determining line efficiency (equation 2.5), depends

significantly on the element assignment sequence.

Chromosome

A B C D G F E H J

Transforming this sequence-oriented task assignment into a chromosome is

simple and straightforward. The letter placed in a chromosome represents each task

element, and therefore, the length o f the chromosome is equal to the total number of

42

elements in the problem («). Tasks are ordered in the chromosome from left to right

relative to their order o f processing. Figure 2.12 illustrates this coding scheme for the

9-element problem considering the element assignment order [A B C D G F E H J] .

C hapter 2: L ite ra tu re review

2.2.3.2 D EC O D IN G

Decoding is exactly the reverse o f encoding. When the order o f elements in a

sequence-oriented representation does not violate precedence constraints, it is called a

fe a s ib le sequ en ce. The feasible sequence carries many possible assignments rather

than one fixed assignment. In order to determine the best assignment, the

chromosome should be properly decoded.

S2

D H

3 4
Station number

Figure 2.13. Decoded solution

When the cycle time is given, the procedure used by Fox and Mahon (1991) is

employed for decoding. A workstation is created, and tasks are assigned to the

workstation in the order they appear in a feasible sequence while not exceeding the

cycle time. This process is repeated until all the tasks are allocated. This decoding

method is straightforward, and is used for type I (line balancing problem) and type II

43

(cycle time problem) projects. Figure 2.13 shows the decoded solution o f the

illustrating chromosome in figure 2.12, with a sample ten unit cycle time.

2.2.3.3 FITNESS F U N C T IO N '

A fitness function plays a key role in a Genetic Algorithm. It forces the algorithm to

search for optimal solutions based on its numerical value and serves as the only link

between the problem and the algorithm. A fitness function ranks chromosomes in the

population, so better individuals have a better chance for survival and reproduction

and it must be defined cautiously to deal with the engineering realities o f the problem.

The first attempt to apply the Genetic Algorithm to the assembly line balancing

problem was made in 1990 and since then several fitness functions have been

introduced for line balancing. The recent applications and the fitness functions

developed for line balancing are listed in table 2.5.

Anderson and Ferris (1990) pioneered the application o f the Genetic

Algorithm for the assembly line balancing problem and suggested that the fitness

function must include an element corresponding to the total time for the operations

assigned to the lowest station. Furthermore, infeasible solutions violating precedence

constraints are avoided by assigning a large penalty cost. The fitness function

developed is shown inequation 2.10. Smax is the highest station time, S maX2 is the

second highest station time, is the 1 owest station time and V is the number o f

precedence violations. The constants d a ,e a ,f a , and k„ are chosen as follows: d a >1 in

order that the precedence violations are removed as quickly as possible. ea is chosen

so that the second slowest is taken into account.The constant ka is chosen so that the

values o f the fitness function lie within reasonable bounds.

Minagawa and Kalcazu (1992) proposed a fitness function (equation 2.11) for

single model deterministic task times type line-balancing problems. Minimization o f

cycle time is adopted as the evaluation criterion for the line balancing performance.

C ha pter 2: L ite ra tu re review

44

C ha pter 2 : L ite ra tu re rev iew

Reference Fitness function

Anderson & Ferris
(1990)

Minagawa and Kakaz
(1992)

Falkenauer & Dechmbre
(1992)

Anderson & Ferris
(1994)

Leu et al
(1994)

Tsujimuya et al
(1995)

Kim et al
(1996)

Suresh et al
(1996)

Kim et al
(1998)

Ponnambalam et al
(2000)

Sabuncuoglu et al
(2000)

e x p (- k ' (S m + (d a x F) +

ft

Z ' l
(•=]

C x m

Z
> i

m

exp (- h v q

L

1

m m

£ (S , - C) 2 2 + c - s , .)
7=1 + 7=1

m m

Z j (ca # *)
7=1

m
m —

S ^ 7 -
7=1

(1 - r R y)
7=1

7TZ v 1

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

wi f M + w2/ 2 (jc) +.... + w,/((x) + (V) (2.20)

7=1 7=1 (2.21)

Table 2.5. Published fitness functions for line balancing

The 1 ine b alancing p roblem i s NP-complete and c an b e r educed t o the N P-

complete bin packing problem (Garey and Johnson, 1979) which it contains as a

special case. Falkenauer and Delchambre (1992) pointed out the close connection

45

between the line balancing problem and the bin-packing problem and developed a

cost function suitable for the bin-packing problem (equation 2.12). This cost function

was then applied to the line-balancing problem with efficient crossover and-mutation

operations. The constant k expresses the concentration on the well-filled ‘elite’ bins in

comparison to the less filled ones. Several values o f k have been experimented with

and it was found that k = 2 give g ood results. L arger values o f k seem to lead to

premature convergence o f the algorithm, as local optima, due to a few well-filled bins,

are too hard to escape.

Following the previous application in 1990, Anderson and Ferris (1994)

proposed a new cost function (equation 2.13), which .is less, complicated than the

earlier one. In this cost function, the value o f a solution is defined as follows:

v .=m a:x (S j) + k bN , (2.22)

C hapter 2: L ite ra tu re review

Where Sj is the total time for operations assigned to station j , N v- is the number

o f precedence violations, and k is a constant which is set equal to the largest single

operation time, h is chosen to make the fitness lie in a particular range. One o f the

drawbacks o f this scheme is that they alter the relative fitness o f different

chromosomes in a quite complicated way. Scaling o f fitness values was suggested to

overcome this problem and this scaling procedure was used to achieve some degree o f

control over the speed o f convergence o f the algorithm.

Leu et al (1994) claimed that most o f the assembly line balancing heuristics

listed in the literature had not simultaneously considered more than one objective.

Consequently, they developed a cost function with multiple evaluation criteria. This

cost function consists o f two objectives. The first objective is to be taken to be the

minimization o f mean-squared idle times that is the minimization o f z j.

A O S . - C) 2
z, = J } — ---------- (2.23)

>1 m

46

C ha pter 2 : L ite ra tu re rev iew

This objective would tend to provide workload balance, thereby mitigating

concerns o f inequity among workers. The second objective (z2) is to minimize man

idle time. Since the first objective is measured in squared time units and the second in

(linear) time units, assuming the first objective is more critical than the second. So the

over all objective function + z 2) is given in equation 2.14.

Tsujimura et al (1995) solved the fuzzy assembly line balancing problem

using Genetic Algorithms representing the imprecise data using fuzzy numbers. The

balance delay definition is used as the evaluation function (equation 2.15). c k and s Jk

are the fuzzy cycle times and fuzzy completion times required to complete all jobs

assigned to workstations o f each chromosome respectively.

A Genetic Algorithm for solving assembly line balancing Type-I problems

with multiple objectives was developed by Kim et al (1996). In Type-I problems, the

objective is to minimize the number o f workstations, used in many line-balancing

problems to give lower labour cost and reduced space requirements. The proposed

cost function is given by equation 2.16. SNj is the number o f connected networks in Gj

representing precedence relations o f tasks assigned to workstation j . The performance

comparison between the proposed algorithm and the known algorithms showed this

approach is promising

Suresh et al (1996) made use two different fitness functions for solving both

deterministic as well as stochastic assembly line balancing problems with varying

objectives by making corresponding changes in the cost function. In the first model,

the smoothness index proposed by Moodie and Young (1965) was used as the cost

function (equation 2.17). The objective o f this is to reduce the balance delay and

distribute the idle times at each station by arranging the work elements subject to

cycle time and precedence constraints in such a way that the smoothness index o f the

balance is minimized. The station time Sj o f each station is calculated using the

following relation.

S j ~ ^mean + ^var (2.24)

47

C h a p te r 2: L ite ra tu re re v ie w

a is the confidence coefficient for normally distributed work elements times and Smax

and Svar are the sum o f the means and the sum o f the variances, respectively, o f all the

tasks allocated to those particular workstations.

The second evaluation function is based on the trade and transfer method

proposed by Reeve (1971). The objective o f this was to minimize the probability o f a

line stopping by rearranging the jobs, subject to all constraints. The probability o f a

station not exceeding the cycle time is given by P j . It is the area under the normal

curve corresponding to the value o f z r given by

(2.25)

Therefore, the probability o f the line stopping is given by equation 18 and was used as

the second cost function. Suresh et al (1996) concluded that both the cost functions

gave improvements.

Workload smoothing in assembly lines has many beneficial features: it

establishes the sense o f equity among operators, and more importantly, contributes to

increasing the output. Kim et ai (1998) suggested a heuristic-based Genetic Algorithm

to solve an assembly line balancing problem with workload smoothness as the

objective. The workload smoothness was evaluated by using the Mean Absolute

Deviation (M A D) proposed by Rachamadugu and Talbot (1991) and used as the cost

function (equation 19) for this model. This model was compared with the existing

heuristics and with an existing Genetic Algorithm. The results confirmed that this

algorithm .outperforms the existing heuristics and in many cases, it also improved

cycle time.

Ponnambalan et al (2000) proposed a multi-objective Genetic Algorithm to

solve assembly line balancing problems. The following four-performance criteria

were used as objective functions

1. The number o f workstations (/} (x)).

2. The line efficiency (f2 (x)).

C E mean
V^var

48

3. The smoothness index before trade and transfer (/} (x)).

4. The smoothness index after trade and transfer (fi (x)).

The weighted sum approach proposed by Murata et al (1996) was used for

combining multiple objective functions into a scalar fitness function (equation 2.20).

f i x) is the z'th objective function, w , is a constant weight for f i x) , and u is the number

o f objective functions. The w t terms are randomly generated using the following

relation:

R N .
0 = h 2 , . . . , u) (2.26)

Z R N j
M

Where R N t and RN j are non-negative random integers. It was concluded that this

multi-objective Genetic Algorithm performed better than the other six heuristic

methods. An interesting challenge exists however the Hoffman enumeration

procedure performed better than those genetic models.

Sabuncuoglu et al (2000) developed a fitness function (equation 2.21) to

minimize the number o f workstations taking in to account better balance of

workstations. The cost function consists o f two objectives. That is, minimizing the

number o f workstations and obtaining balanced stations. The first part o f the fitness

function aims to find the best balance among the solutions that have the same number

o f stations in the solution assuming the first objective is more critical than the second.

2.23.4 TH E PO PU LA T IO N

The classic Genetic Algorithm developed by Holland (1975) is what has become

known as the g en era tio n a l G en etic A lg o rith m , keeps two populations most of the

time: the current population and the future one.

In the generational Genetic Algorithm, each iteration (generation) proceeds by

constructing the new population through genetic operators application on to

chromosomes in the current population, and then the populations are swapped, the

population just constructed becomes the current population in the next generation.

Chapter 2: Literature review

49

Chapter 2: Literature review

The chromosomes in the new generation come from three sources: some are

produced by recombination (i.e. crossover); a few are produced by crossover and

mutation. The rest, if necessary, is simply copied unchanged from the current

population (elitism). In some implementations the mutation is applied after the

crossover and reproduction to chromosomes selected at random from the new

population. Figure 2.14 illustrates this process.

The other Genetic Algorithm model is called s te a d y s ta te . It always keeps only

one population. The generations proceed by modifying some o f its members. The

offspring obtained by performing crossover on the best chromosomes in the

population and replacing the worst ones. This process is shown in figure 2.15. The

order is obtained by a selection technique (roulette wheel, tournament etc.). The other

operators (mutation and inversion) are applied to chromosomes selected at random

from the resulting population.

Current population N ew population

Figure 2.14. Generational Genetic Algorithm (Holland 1975)

50

C ha pter 2: L ite ra tu re review

The maximum number o f individuals that can be generated by crossover in the

steady state Genetic Algorithm is half the population size. That is the maximum

crossover rate is 0.5. Moreover, since at least half a current population is carried over

into the next generation, the maximum reproduction rate is 0.5 (except for mutation).

The main advantage o f the steady state Genetic Algorithm over orthodox generational

model is that the steady state model reduces the memory requirement.

Syswerda (1989) and Falkenauer (1992) both used the above steady state

Genetic Algorithm for their models. Syswerda used proportional selection technique

to select parents, and always performed crossover on and replaced ju s t tw o

chromosomes at each generation, and always applied the mutation to the new

chromosomes. However, Falkenaure used the tournament selection method to obtain

parents.

The size o f the population to use for a Genetic Algorithm has always been an

interesting question for researchers. It is clear that the more the chromosomes in the

population the faster the convergence. Maintaining a larger sample o f the search

space will improve the chance o f finding the regions containing the best solutions,

without being misled by local optima. However, larger populations require larger

processing time on evaluating the fitness function and applying the genetic operators.

Parents
L. ‘

!■ " yi 1 •
k "
\ >■ „ » ••

i 11!

— —

Offspring

Figure 2.15. Steady state Genetic Algorithm

51

C ha pter 2: L ite ra tu re review

A small population would lead to high sampling errors and could more easily

lead to premature convergence. The studies done by Goldberg (1989b) indicated that

the size o f the population in a Genetic Algorithm using binary strings grows

exponentially with the length o f the chromosome.

In parallel Genetic Algorithms, (one chromosome per processor, as in Talbi

and Bessiere (1991)) fitness function evaluations and the operator applications are

performed in parallel. In this case, the bigger the population, the better.

2.2.3.5 IN IT IA L ISA T IO N

At the beginning o f optimisation, a Genetic Algorithm requires a group o f initial

solutions. Anderson and Ferris (1994) mentioned the performance o f the Genetic

Algorithm scheme is not as good from the reselected starting population as it is from a

random start. There are two basic ways o f generating this initial population. The first

consists o f using randomly produced solutions created by a random number generator.

This method is preferred for problems about which no prior knowledge exists or when

assessing the performance o f an algorithm.

The second method employs a priori knowledge about the given optimisation

problem. Using this knowledge, a set o f requirements is obtained and solutions, which

satisfy those requirements, are collected to form an initial population.

Appendix B summarizes the previous initial populations used with published

Genetic Algorithms for line balancing problems. In every model, it consists o f a

population containing randomly generated solutions plus a few solutions generated by

heuristic techniques. Anderson and Ferris (1990) included a solution generated by the

C O M S O A L method, which was developed by Arcus (1966). Suresh et al (1996)

introduced a modified Genetic Algorithm working with two populations, one o f which

consisted o f infeasible solutions, and the other containing both random solutions and

few solutions generated by a heuristic technique, exchanging specimens between

populations at regular intervals.

52

C h a p te r 2: L ite ra tu re re v ie w

2.2.3.6 GENETIC OPERATORS
\

hi the classical Genetic Algorithm there are two basic genetic operators: selection and

reproduction, which can be further divided into crossover, mutation and inversion*

Some o f these operators were inspired by nature and, in the literature, many versions

o f these can be found. It is not necessary to employ all these operators in a Genetic

Algorithm because each one functions independently o f the others. The choice or

design o f operators depends on the problem and the representation scheme employed.

For example, operators designed for binary strings cannot be directly used on

chromosomes coded with integers or real numbers.

2.2.3.6.1 S election

The main goal o f the selection procedure is to reproduce more copies o f chromosomes

whose fitness values are higher. In a Genetic Algorithm, the selection is based on the

natural law o f the survival o f the fittest among the chromosomes. It has a significant

influence on driving the search towards a promising area and finding good solutions.

There are two parameters associated with selection schemes (Whitley, 1989):

se le c tiv e p r e s s u r e , the probability o f the best chromosome being selected compared to

the average probability o f selection o f ail chromosomes, and p o p u la tio n d ive rs ity

which is the portion o f chromosomes o f a population that is selected during the

selection phase. These two parameters have great influence on the performance o f the

Genetic Algorithm, and a good selection scheme must have a balance between these

two. If selective pressure is too great, the population diversity decreases and this may

result in a premature convergence. Weak selective pressure makes the search

ineffective. Cavicchio (1970) adopted an innovative mechanism, the so-called pre

selection scheme, to maintain population diversity and a similar scheme' was used

later by De Jong (1975) in an optimisation study.

Since 1975, a number o f selection schemes have been suggested for Genetic

Algorithms. Some o f the techniques relevant to the assembly line balancing problem

are described in the following sections.

53

C h a p te r 2: L ite ra tu re re v ie w

(a) Roulette wheel selection

The simplest selection scheme is the roulette-wheel or proportional selection proposed

by Holland (1975). Its mechanism is based on the operation o f a roulette wheel and

runs as follows.

The chromosomes are first mapped to roulette wheel slices, such that each

chromosome’s slice is equal in size to its fitness. A random number is generated and

the individual whose slice contains the random number is selected. The process is

repeated until the desired number o f individuals is obtained. Table 2.6 shows the

selection probability and cumulative probability for 11 individuals. Chromosome one

is the fittest chromosome and occupies the largest slice, whereas chromosome ten as

the second least fit chromosome has the smallest slice in the roulette wheel (figure

2.16). Chromosome 11, the least fit slice, has fitness value zero and gets no chance for

reproduction.

Number

Fitness
Value

Selection
Probability Cumulative

probability

f (x)
m

Z / w
01 2.0 0.18 0.18
02 1.8 0.16 0.34
03 1.6 0.15 0.49
04 1.4 0.13 0.62
05 1.2 0.11 0.73
06 1.0 0.09 ‘ 0.82
07 0.8 0.07 0.89
08 0.6 0.06 0.95
09 0.4 0.03 0.98
10 0.2 0.02 1.00
11 0.0 0.00 1.00

Total 11

Table 2.6. Fitness values and selection probabilities

54

The following algorithm can be used to simulate the roulette wheel process:

1. Calculate the cumulative probability o f each chromosome;

2. Generate a random number (N r) between zero and one;

3. Go through the population and the cumulative probabilities from zero to one,

find the chromosome in which the cumulative probability is equal or just

greater than N r. Stop and return the chromosome where you are.

Step 1 is performed only once for each population.

11

C hapter 2: L ite ra tu re review

4 4
13% 15%

Figure 2.16. Roulette Wheel

One o f the drawbacks o f roulette wheel selection is that extraordinary

chromosomes would take a significant portion o f the roulette wheel resulting

premature convergence. Davis (1991) overcame this problem by ranking or linear

normalizing. It gives all the chromosomes a better chance to be selected.

(b) Rank-based fitness assignment

The nature o f scaling procedures associated with classical roulette wheel selection led

Baker (1985) to consider a nonparametric procedure for selection called ran k-based

f i tn e s s assign m en t. In this technique, the population is sorted according to the fitness

values. Chromosomes are then assigned a number dependant only its position in the

chromosome’s rank and not on the actual fitness value. Figure 2.17 shows one of the

ways Baker allocated trials according to rank.

Rank-based fitness assignment overcomes the scaling problems of the

proportional fitness assignment. (Stagnation in the case where the selective pressure is

too small or premature convergence where selection has caused the search to narrow

down too quickly.) Since the reproductive range is limited, no chromosomes generate

an excessive number o f offspring. Ranking introduces a uniform scaling across the

population and provides a simple way o f controlling selective pressure.

C hapter 2: L ite ra tu re review

Figure 2.17. Fitness assignment mechanism in sorted selection
scheme (Baker, 1985)

2.2.3.6.2 Reproduction

The Genetic Algorithm can be roughly described as proceeding from one population

to another, the new population being obtained by application o f c ro sso ver and

m u ta tion to the chromosomes in the current- population. This section describes more

about these two operators and their respective roles in Genetic Algorithms. Since the

, actual implementation o f each o f these operators can vary widely from one Genetic

Algorithm to another, they are discussed under two sections: the classic operators and

those proposed for assembly line balancing applications.

56

Chapter 2: Literature review

(a) Crossover

Crossover is the genetic operator that combines (mates) two chromosomes (parents)

to produce new chromosomes (children). The idea behind crossover is that the new

chromosomes may be better than both o f the parents if it takes the best characteristics

from each parent. Generally, crossover occurs during evolution according to a user-

definable crossover probability.

Crossover probability (P c) defines how often crossover will be performed. If

P c = 0, then there is no crossover and the entire new population is made from exact

copies o f chromosomes from the old population. When P c > 0, a part o f the new

population is formed by crossover and i f the crossover probability is one, then all the

new offspring are made by crossover.

The C la ss ic C ro sso ver

There are two classic crossover techniques: single point crossover and two-point

crossover. They are the oldest crossover techniques, having been presented and

studied by Holland (1975).

1. S in g le -p o in t o r one p o in t c ro sso v e r

The simplest crossover is called the one-point crossover. Frantz (1972) defined this

generalized, single-parameter crossover operator in his study o f positional non-

linearity. As the name implies, a crossover point is randomly selected and then the

two chromosomes are interchanged at this point to produce two new offspring. Figure

2.18 illustrates this process. ’

2. T w o -p o in t c ro sso v e r

Cavicchio (1970) defined two-point crossover operator. In this operation, two

crossover points are selected randomly and then, the genes between successive

crossover points are exchanged between the two parents to produce two new offspring

(figure 2.19). The segment between the first gene and the first crossover point is not

exchanged between chromosomes. The disruptive nature o f two point crossover

appears to encourage the exploration o f the search space, rather than favouring the

57

convergence to highly fit chromosomes early in the search, thus making the search

more robust.

Chapter 2: Literature review

Crossover point

A B C C E F G H I J

E H F J G I A D B C

(a) Before crossover

A B C E G I A D B C

E H F J E F G H I J

(b) After crossover

Figure 2.18. Single point crossover

It is difficult to make a firm comparison o f the effect o f two-point crossover

against single-point crossover. The experience with Genie (Chambers, 1995) suggests

that there is not much to choose between them. However, two-point crossover is more

disruptive on longer chromosomes, since the segment being swapped is longer, and

more likely to be substantially different (Frantz, 1972, De Jong, 1975).

Crossover point 1 Crossover point 2

r ir
A B c L E F G H I J

E H F J G I A D B C

(a) Before crossover

A B F J G I A H I J

E H C D E F G D B C

(b) After crossover

Figure 2.19. Two-point crossover

58

Good performance o f a Genetic Algorithm requires the correct choice o f

Crossover probability (P c). De Jong (1975) also experimented with crossover

probabilities and generation gap values. As a result o f these studies he suggested a

crossover probability P c - 0.6 as a reasonable compromise between good-on-line and

off-line performance; later studies by Mercer (1977) and Grefenstette (1986)

suggested that higher crossover rates (0.9 > P c > 0.8) are better with more accurate

selection procedures.

C ro sso v e r O p era tion F or A ssem b ly Line B a la n c in g A p p lica tio n s

In addition to the classic genetic operators, a number o f crossover techniques have

been developed for assembly line applications. Appendix B lists some the new

techniques and their applications to the assembly line balancing problem and are

described in this section.

Chapter 2: Literature review

I. P a r tia lly M a p p e d C ro sso v e r (PM X)

This operation was suggested by Goldberg and Lingle (1985) and is aimed at

maintaining inheritance o f adjacency and relative order o f elements in the solution

structure. First, all the elements from parent 1 are copied to the same positions o f the

child; then using pair wise exchange some elements o f the child are being relocated in

order to make a random fragment o f child to be an exact copy o f the same fragment o f

parent 2 (figure 2.20).

A B C D E F G H I J

E H F J G I A D B C

Parent 1

Parent 2

(a) Before crossover

1” ▼

A B C D E F G H I J
.

A B C J G I E H F D Child 1

(b) After crossover
□ Random fragment

Figure 2.20. Partially Mapped Crossover (P M X) (Goldberg and Lingle, 1985)

59

C h a p ter 2: L itera tu re rev ie w

2. O rd er c ro sso ver (O R D)

Davis (1985a) defined the order crossover operator. This operator preserves the

order, adjacency and absolute positions o f part o f the elements and the relative order

o f the remaining elements. A child chromosome inherits elements o f a random

fragment from parent 1, in the same order and position. The remaining elements are

inherited from parent 2 in the same order they appear in parent 2, beginning with the

first position following the end o f the random fragment and skipping over all elements

already present in the child. Figure 2.21 illustrates this operation.

Parent 1

Parent 2

Child 1

Child 2

Figure 2.21. Order crossover (Davis, 1985a)

3. P o sitio n b a se d c ro sso v e r (PO S)

This crossover procedure was proposed by Syswerda (1989) and is intended to

preserve inheritance o f positional information. A randomly chosen number of

locations are selected in parent 1 and the child chromosome inherits the elements in

these positions. The remaining elements are inherited in the order, in which they

appear in parent 2, skipping over all elements already included into the child

chromosome (figure 2.22). Although this operator is similar to order crossover

(except the requirement o f adjacency o f elements being copied from parentl),

Staekweather et al (1991) showed that it has significantly different properties.

4. C yc le c ro sso v e r (C YC)

Oliver et al (1978) suggested this crossover technique. It allows inheriting the

absolute positions o f elements from parent structures. The Starting element of parent

1 (first or randomly defined) is inherited by a child. The element, which is in the same

A B C D. E F G H I J

E I B D F A J G C H

(a) Before crossover

I B C D Ekvi.s’-iiv, F A J G H

A C B D Fi Vi.! E G H I J

(b) After crossover

position in parent 2, cannot consequently be placed in this position. The position o f

this element is found in parent 1, and the element is inherited by a child to the same

position. This continues until the cycle is completed by encountering the initial

element from parent 1 in parent 2. A ll elements, which were not yet copied to the

child, are copied from the same positions o f parent2.

Chapter 2: Literature review

Parent 1

Parent 2

Child 1

Child 2

Figure 2.22. Position based crossover (POS) (Oliver et al., 1987)

5. F ra g m en t reo rd er in g c ro sso v e r (F R G)

This procedure was proposed by Rubinovitz (1995) particularly for assembly line

balancing problems. A ll the other crossover operators, when applied on the assembly

line balancing solution vector, results in loss o f feasibility o f the offspring structure.

The fragment reordering crossover operator is aimed at maintaining the inheritance o f

positions and the relative order o f elements in the structure, providing changes within

the fragment, which do not violate the precedence constraints.

The fragment reordering crossover procedure may be considered as a special

case o f position based crossover and reversed version o f order crossover. First, all the

elements from parent 1 are copied to the same positions o f a child chromosome. Then

all the elements o f a random fragment in the child chromosome are reallocated within

the fragment according to the order in which they appeared in parent 2. Precedence

relations within the fragment are inherited from parent 2. Consequently, if parent 1

and parent 2 are feasible sequences, the child inherits this feasibility.

A B
r nC
... ...

E E F
1 °

H I J
1

E I B D F A J G C H

(a) Before crossover

A I B C F D E G H J

I B G
.—1_-—

D
...

F A H
....

J G

(b) After crossover

61

Chapter 2: Literature review

Rubinovitz compared this technique with a selection o f five crossover methods

used in previous studies o f Genetic Algorithms (Goldberg, 1985, Davis, 1985, Oliver

et al, 1978, Syswerda, 1990, Starkweather et al, 1991) and concluded that cycle

crossover and fragment reordering crossover procedures dominated.

In addition to the above crossover operators, a number o f other crossover

techniques have been defined in the literature including uniform cro sso ver developed

by Syswerda (1989), h eu ris tic s tru c tu ra l c ro sso v e r (HSX) suggested by Kim et al

(1998) based' on the structural crossover (SX) proposed by Laszewski (1991) and the

most recent method called dyn a m ic p a r ti t io n in g (D P A) technique developed by

Sabuncuoglu et al (2000). Appendix B lists a selection o f the crossover t echniques

applied for assembly line balancing models. Other than the specific crossover

technique developed by researchers for their models, both single point and two point

crossover methods are generally employed.

(b) Mutation

Mutation is a genetic operator that alters one or more genes in a chromosome from its

initial state. This can result in entirely new genes being added to the gene pool. With

these new genes, the Genetic Algorithm may be able to arrive at a better solution than

was previously possible. Mutation is an important part o f genetic search as it helps to

prevent populations from stagnating at any local optima. Mutation occurs during

evolution according to a user-specified mutation probability.

Mutation probability (P m) defines the probability o f mutation o f chromosome.

I f there is no mutation, offspring are formed by crossover or copy without any change.

I f mutation is performed, part o f the chromosome is changed. One hundred percent

mutation probability means the whole chromosome is changed and zero percent

indicates no change at all. Mutation is generally used to prevent a Genetic Algorithm

falling into local extrema, but it should not occur very often, because then a Genetic

Algorithm will in fact change into a random search.

A n umber o f m utation t echniques a re available and d escribed f ollowing for

assembly line balancing problems.

62

Chapter 2: Literature review

C la ss ic M u ta tion

This is the smallest possible random modification o f a chromosome. According to the

mutation probability, one or more pairs o f genes are selected randomly and they are

swapped to produce new offspring. Figure 2.23 illustrates this process and genes F

and I are randomly selected and they are swapped to produce the new chromosome.

E H p m J G I A D B C

(a) Before mutation

E H g t | J G ill A D B C

(b) After mutation

Figure 2.23. Classic mutation

M u ta tion O p era tio n s F o r A ssem b ly L ine B a la n c in g

1. Leu et al (1994) suggested the scramble mutation. A random cut-point is selected

and the genes after the cut-point are randomly replaced (scrambled), whilst

assuring feasibility.

2. Tsujimura (1995) defined the following mutation operator as follows:

a. Generate an integer number p in the range [1, (n /m *)] randomly. Where n

is the number o f genes in the chromosome and m is the theoretical

minimum number o f workstations.

b. Generate randomly a position p o s in the chromosome.

c. Replace the element at the position p o s within the defined neighbourhood

which is within [p o s - p , p o s + p \ .

Example:

Chromosome = [A B C D E F G] n= 10 m = 3 p = [1.. .3]

Generate p o s and p randomly. p o s =3 and p - 2.

[A B C D E F G] r t [A B C D E F G] or [A B C D E F G]

63

Chapter 2: Literature review

3. Kim et al (1998) developed a mutation technique called Heuristic Structural

Mutation (H SM) that randomly chooses some genes according to the mutation

rate and marks those genes for reassignment. The reassignment is performed by

the same adaptation procedures as used in the Heuristic Structural Crossover.

According to the table in appendix B, The classic mutation technique is the one

most employed in line balancing models and mutation probability was set to fairly

low values. (Between .01 and 0.03).

(c) Inversion

The third classic operator is inversion. It proceeds by inverting the order of genes on

a randomly selected segment o f the chromosome. This technique can be seen in

classical Genetic Algorithms where chromosomes are represented by binary values.

Consequently applications cannot be seen in assembly line balancing models because

o f the violation o f precedence constraints.

2.2.3.7 ELITISM

Convergence o f Genetic Algorithm solutions is one o f the most challenging

theoretical issues in evolutionary computation. Several researchers have explored this

problem from different perspectives. Rudolph (1994) proved that a classical Genetic

Algorithm never converges to the global optimum, but a modified version, which

maintains the best chromosomes in the population, does. This is because, when

creating new populations by crossover and mutation, there is substantial chance, that

the best chromosome may be lost. Elitism is the name o f a method which first copies

the best chromosome (or a few best chromosomes) to the new population. The rest o f

the population is generated in a classical way. Elitism rapidly increases the

performance o f the Genetic Algorithm.

2.2.3.8 T E R M IN A T IO N

Termination is the criterion by which the Genetic Algorithm decides whether to

continue or stop searching. Researchers have developed several termination criteria

64

and each o f the termination criteria are checked after each generation to see i f it is

time to stop. A selection o f termination criteria include:

1. G en era tion num ber. This method stops the evolution when the user specified

maximum number o f evolutions have been run and it is always active.

2. E volu tion tim e. A termination method that stops the evolution when the elapsed

evolution time exceeds the user-defined maximum evolution time. By default, the

evolution is not stopped until the evolution o f the current generation has

completed, but this behaviour can be changed so that the evolution can be stopped

within a generation.

3. F itn ess th re sh o ld . A termination criterion that stops the evolution when the best

fitness in the current population becomes less than the user specified fitness

threshold and the objective is set to minimize the fitness.

4. P o p u la tio n co n verg en ce . A termination method that stops the evolution when the

population is deemed as converged.

As far as assembly line balancing applications are concerned, generation number

criterion is used as the termination method. (Appendix B).

2.2.4 GENETIC A L G O R IT H M PR O G R A M M IN G ENVIRO NM ENTS

Following Holland’s original Genetic Algorithm concept, many variations o f the basic

algorithm have been introduced. However, the important and distinctive feature o f all

Genetic Algorithms is the p o p u la tio n h a n d lin g technique. The original Genetic

Algorithm adopted a Generational replacement policy (Davis, 1991) and later many

subsequent Genetic Algorithms used the S tea d y -S ta te policy (Davis, 1991). Filho et al

(1993) reviewed software environments for programming Genetic Algorithms and

classify them into three main categories as follows.

Chapter 2: Literature review

65

1. A p p lic a tio n -o r ie n te d s y s te m s : they are designed for use by business professionals

who wish to utilize Genetic Algorithms in specific application domains, without

having acquired detailed knowledge o f the working o f Genetic Algorithms.

PC/BEAGLE is software developed by Forsyth (1989) supporting scheduling,

telecommunication etc. The O M E G A Predictive Modelling System is a powerful

predictive model exploiting advanced Genetic Algorithms techniques for use in

the financial domain.

2. A lg o rith m -sp ec ific sy s te m s: They embody a single powerful used by developers

requiring a general-purpose Genetic Algorithm for their applications and

researchers interested in the development and testing o f a specific algorithm and

genetic operators. The most well known system in this category is the pioneering

GENESIS (Davis, 1991, Grefenstette, 1981, Grefenstette, 1987), which has been

used to implement and test a variety o f new genetic operators in Europe.

G ENITOR developed by Whitley (1989), is another well-known software package

in the Genetic Algorithm field, containing examples o f floating-point, integer and

binary representations.

3. G en era l-p u rp o se s y s te m s : these are the ultimate in flexible Genetic Algorithm

programming systems. Not only do they allow the user to develop their own

Genetic Algorithm applications and algorithms, but also provide users with the

opportunity to customise the system to suit their own purposes. These systems

provide a comprehensive tool kit, including: a sophisticated graphic interface; a

high level language for programming Genetic Algorithms and an open

architecture. EnGENEer (Robbins, 1992) and G A M E (Alippi and Treleaven,

1991) are two substantial examples.

2.2.5 S U M M A R Y

Anderson and Ferris (1990) pioneered the application o f Genetic Algorithms for the

assembly line balancing problem. Since then, a number o f Genetic Algorithm models

have been developed to address this problem by modifying the classical Genetic

Algorithm proposed by Holland (1975). These modifications include the

Chapter 2: Literature review

66

Chapter 2: Literature review

development o f new fitness functions, genetic operators (crossover and mutation

techniques) and selection methods.

The first cost function developed by Anderson and Ferris (1990) was very

complex and it consisted o f a number o f parameters and constants. But, the fitness

functions suggested in the late 1980s seemed to be simple and most o f them are based

on the assembly line balancing performance measures (Line efficiency, smoothness

index, balance delay, mean absolute deviation). Subsequent every published has

introduced a new fitness function, and some papers have suggested new genetic

operators and selection techniques in addition to a cost function.

A number o f crossover techniques have been developed besides the classic

genetic operators and several repair techniques being introduced to maintain the

feasibility o f t he n ew o ffspring. T he n ecessity o f p ropagating t he b est p ortion o f a

chromosome during genetic operation has been highlighted by several researches for

better performances o f the algorithm (Falkenauer, 1992 and Davis et al, 1991). No

crossover technique has been developed to address the issue.

The classic roulette wheel selection has been the most employed selection

scheme for many Genetic Algorithm models. The tournament selection and the rank-

based selection schemes are employed in a few cases. High selective pressure is a

major problem in all the selection techniques and several procedures are proposed to

eliminate this problem and introduce diversity to solutions.

The performance o f the Genetic Algorithm depends upon a number o f key

factors, including population size, initial population, crossover and mutation

probabilities, number o f elite chromosomes, and problem complexity. Developing a

general-purpose Genetic Algorithm model with a more efficient selection o f these

factors appropriate for the assembly line balancing problem, is the challenge within

this work. From the review o f existing literature, acknowledging a specialist interest

in assembly line balancing, a new Genetic Algorithm approach improving fitness

function and genetic operators is identified as the way forward.

67

Several researchers have claimed that their techniques outperformed the

existing heuristic techniques but have not finally yielded the optimum solution. In

many cases, the solution obtained by the Hoffman matrix procedure seemed to be

better than those obtained by the Genetic Algorithm (Ponnambalam eta l 2000). It

seems that the current research on the application o f Genetic Algorithms to the

assembly line balancing problem is promising and not too far from the end goal. The

next chapter describes the new Genetic Algorithm model developed to address some

o f the above problems by introducing a new fitness function, crossover and mutation

techniques and a m odified r anlc-based se lection scheme t o d eal with h igh s elective

pressure problems.

Chapter 2: Literature review

68

A G ENETIC A LG O R ITH M LINE
B A LA N C IN G M O DEL

The previous chapter reviewed advantages and limitations o f existing Genetic

Algorithm models and indicated the potential for line balancing. The design details o f

the new Genetic Algorithm model for the single model deterministic assembly line-

balancing problem are presented in this chapter. The model consists o f a new fitness

function, a modified selection scheme, novel genetic operators for crossover and

mutation and a repair technique. The new fitness function, which is the key

component o f the model, introduces and uses a front-loading theorem, and described

at the beginning o f the chapter.

3.1 THE FRONT-LOADING THEOREM

Since the single model assembly line balancing problem is a combinatorial

optimisation problem, there exist a large number o f feasible solutions. Therefore, in

the majority o f the instances, finding optimal solutions within a polynomial time is

very hard. However, the front-loading theorem describes a theoretical approach for

yielding optimal or near optimal solutions in polynomial time.

T heorem : an o p tim a l so lu tion o r th eo re tica lly m inim um
nu m ber o f w orlcsta tions (m *) can b e fo u n d by p a c k in g
w o rk sta tio n s p r o g r e s s iv e ly (w o rk sta tio n Wj+j a fte r Wj f o r
j f r o m 1 to m * - l) to th e ir f u l l ca p a c ity .

Chapter 3: A genetic algorithm line balancing model

Proof: Casel - At least one perfectly balanced solution exists

Figure 3.1. Solution domain

Let x (x = (X | perfectly balanced solution(s)}) be the perfectly balanced

solution(s), and they are represented by the set X. Similarly, lety (y = (Y | fully front-

loaded solutions (figure 3 .2 (y)}) be the theoretically fully front-loaded solution(s),

representing the set Y. To explain the theorem, consider an arbitrary solution a (figure

3.1) in the feasible set A (a = (A | a solution with number o f workstations < m * + 2 }).

Where m* is the theoretical minimum number o f workstations. Moving elements

progressively from latter workstations to early workstations reduces the number of

workstations and results in the solution leaping from set A to set B (b = {B | a solution

with number o f workstations < m*+ 1 }) and eventually to set Y. The station time

distribution o f these solutions are represented by a, b, andy respectively in figure 3.2.

The solution a consists o f three fully packed workstations (1, 4 and 5). The

progressive loading process improves this solution by packing four workstations (1 ,2 ,

3 and 5) including the first three, and then further loading results in the perfect

balance where all the stations are fully packed to capacity.

Therefore, if there is at least one optimum solution;

Y = X

70

Chapter 3: A genetic algorithm line balancing model

Figure 3.2. Progressive loading o f workstations: solution (a) first station is packed;
solution (b) first three stations are packed; solution (y) all the stations are fully packed
and total number o f stations equal to eight.

Proof: Case2- A perfectly balanced solution does not exist

In instances where there is no perfectly balanced solution(s), solutions yielding

theoretically minimum number o f workstations are considered as optimal solutions.

Generally, several such solutions exist, and let them be represented by, d (d ={D|

solutions with theoretically minimum number o f workstations (w *)}) . In such cases, it

is obvious that, the theoretically fully front-loaded solution(s) is one of them.

Therefore;

Y c D

Generally, generating a fully front loaded solution from a single pass heuristic

decision rule may not be possible. However, a technique evaluating multiple solutions

with back tracking incorporated could easily slip into this solution. Driscoll et al

(2002) verified the above theorem and the possibility o f generating front loaded

solutions by developing a multi-pass heuristic technique for simple assembly line

balancing problems. This technique is a modification o f the original Hoffman (1963)

procedure, attempting to fill front workstations as early as possible by considering

many feasible combinations at sub-workstation level. The new fitness function is

defined based on this concept and the complete design procedure is described next.

3.2 DESIGN OF THE FRONT-LOADING FITNESS FUNCTION
The fitness function is the key component in the Genetic Algorithm and the only link

between the algorithm and the actual problem being solved. The fitness function

71

Chapter 3: A genetic algorithm line balancing model

distinguishes the better and the worst chromosomes in the population and provides an

important feed back for the search process. This section illustrates the development of

the front-loading mathematical model.

Solving the assembly line balancing problem involves searching for feasible

sequence(s) ending up with a minimum number o f workstations. Throughout the

searching, the algorithm assesses both feasible and infeasible chromosomes and at any

stage o f the evolution process, a population could consist o f some feasible

chromosomes (<a , b, c) and infeasible chromosomes (p , q, r), whilst the global

optimum solution is x (figure 3.3).

Figure 3.3. A search space and its feasible and infeasible parts

The design o f the fitness function answers the question o f how to evaluate

both feasible and infeasible chromosomes. It is almost certain that these feasible and

infeasible chromosomes in the population influence the other parts o f the Genetic

Algorithm; some genetic operators might be applicable to feasible chromosomes only.

However, many search algorithms start with a population containing both feasible and

infeasible chromosomes. Infeasible chromosomes allow the system to explore the

search space in different directions.

There are two basic ways o f designing fitness functions: developing a single

fitness function to evaluate both feasible and infeasible chromosomes or designing

two separate independent evaluation functions and establish some relationship

between them. The second option was employed in this research and the design

72

C ha p ter.3: A g en e tic a lg o rith m line b a la n c in g m odel

concepts for evaluation o f infeasible and feasible is described in the following

sections.

3.2.1 F IT N E SS F U N C T IO N D E S IG N F O R IN F E A S IB L E C H R O M O S O M E S

The issue o f handling infeasible chromosomes and extending a fitness function to

evaluate infeasible chromosomes is a difficult problem and has been debated for years.

Since these chromosomes are adding diversity to the search process, their contribution

is vital and should not be discarded. Powell and Skolniclc (1993) and Michalewicz and

Xiao (1995) reported good results o f their evolutionary algorithms, which worked

under the assumption that any feasible chromosome is better than an infeasible

solution and the proposed fitness function is designed based on the same assumption.

The total number o f feasible links in a chromosome is a good measure of

comparing two infeasible chromosomes. The higher the number o f links the better the

chromosome and the closer it is to a feasible chromosome. Therefore, it is used to

evaluate infeasible solutions and the procedure for finding the number o f feasible

links is described here.

Consider a chromosome shown in figure 3.4 having n elements. The elements in the

chromosome are represented by et (i = 1 to n).

ei S2 e3 e4 es et ei+l

Figure 3.4. Chromosome representation

Procedure:

1. Select an element et from the chromosome.

2. Find all the elements (ej) that immediately succeed the element selected in step

1 from the corresponding precedence diagram (/= 1 to np). Where np is the total

number of immediately succeeding elements.

73

3. I f the locus o f the ey in the chromosome is to the right o f e-h this link is

considered as a feasible link. Repeat this step for all elements ej (/'=1 to np)

and record the total number o f feasible links corresponds to each element eu

4 . Repeat steps 1 to 4 for all the elements in the chromosome (7=1 to h).

The following illustration shows the application o f the above procedure. The

selected feasible and infeasible chromosomes and the precedence are shown in figure

3.5. The corresponding precedence matrix o f the test problem shown in figure 3.5 is

given in figure 3.6. The immediate successors o f a selected element (step2) are found

using the precedence matrix in which, entries in the first column (i) are the task

element and, in the corresponding row, the elements heading the column (j) in which

are ones (1), are the immediate successors.

C hapter 3: A g en e tic a lgorith m line ba lancing m od el

A C B E D F G H I J

(a) Feasible chromosome

E A C B F D G H I J

(b) Infeasible Chromosome

3 4 2

Figure 3.5. Feasible and infeasible chromosomes and the precedence network

Table 3.1 and 3.2 are prepared to find the total number o f feasible links for the

feasible and infeasible chromosomes respectively, for the example shown in figure

3.5. The first column indicates the element locus (position) and the second shows the

74

corresponding element. The elements to the right of the selected element are shown in

the third column and, the immediate successors and number o f feasible links are

shown in the fourth and last columns respectively.

C hapter 3: A gen e tic a lg o rith m line ba la n cin g m odel

j

\ A B C D E F G H I J

A - I I 0 0 0 0 0 0 0

B - 0 1 0 0 0 0 0 0

C - 0 1 0 0 0 0 0

D - 0 1 0 0 0 0

E 1 0 0 0 0

F L 1 I

G - 0 0 1

H - 0 1

I I

J -

Total number o f links = 12

Figure 3.6. Precedence matrix o f the above network

For a chromosome to be feasible, the total number o f feasible links (I) must be

equal to the total number o f precedence relationships (P). The chromosome shown in

figure 3.5(a) satisfies this condition and therefore, it is a feasible chromosome.

However, for the chromosome shown in figure3.5 (b) the number o f feasible links (/ =

10) is less than P (=12) and therefore, it is not a feasible chromosome.

Locus e-i Elements
Successors

(ej)

Number of
feasible

links
1 A CBEDFGHIJ BC 2
2 C BFDFGHIJ E 1
3 B EDFGHIJ D 1
4 E DFGHIJ F 1
5 D FGHIJ F 1
6 F G H B GHI J
7 G HI J J 1
8 H IJ J 1
9 I J J 1
10 J - - 0

Total 12

Table 3.1. Feasible links o f chromosome 3.5(a)

75

Chapter 3: A genetic algorithm line balancing model

Locus ei Elements
Successors

(ej)

Number o f
feasible

links
1 E A C B iD G H IJ F 1
2 A CBFDGHIJ BC 2
3 C BFDGHIJ E 0
4 B FDGHIJ D 1
5 F D G H B GHI 3
6 D GHIJ F 0
7 G H I/ J' 1
8 H I J J 1
9 I J J 1
10 J - - 0

Total 10

Table 3.2. Feasible links o f chromosome 3.5(b)

For infeasible chromosomes, the number o f feasible links (J) can be used

design the fitness function (fi) and, one having higher number o f links receives higher

fitness value than that o f a lower number o f links. Since the number o f feasible links

are less than or equal n , the fitness generated by the function always lies between one

and n. This value is extremely low when compared to the fitness o f feasible solutions.

Therefore, a problem dependent constant is integrated to overcome this problem. So

the complete fitness function for infeasible solutions is expressed as follows:

f i = n3/3l V l < P (3.1)

Where n is the number o f e lements in the problem an d / is a test problem

constant which will be defined in the next section.

3.2.2 F ITN E SS F U N C T IO N D E S IG N F O R F E A S IB L E C H R O M O S O M E S

The issue o f comparing two feasible chromosomes is complicated. The number o f

feasible links cannot be used as the fitness function, because all feasible chromosomes

generate the same fitness value, which is equal to n. Therefore, a different approach

should be used to compare two feasible, chromosomes. The proposed fitness function

76

for feasible chromosomes (fy consists o f three basic components X, Y, Z and is

expressed as follows.

ff = X + Y + Z (3.2)

In order to generate higher fitness values for feasible frontloaded solutions than fully

frontloaded infeasible solutions, terms X, Y and Z are designed as max (A) > m ax(f) >

max(Z).

3.2.2.1 THE C O M P O N E N T X

This evaluates the feasibility o f chromosomes. Feasible chromosomes receive higher

fitness values than that o f infeasible ones and thereby clearly distinguish them from

infeasible chromosomes.

X = n3l/3 (3.3)

a = nCR'"*+l

C ha pter 3: A gen e tic a lg o rith m line b a la n c in g m odel

Where / is the number o f feasible links in the chromosome, n is the number o f

elements (tasks), C is the cycle time, a and (3 is constants that depend on the test

problem and the cycle time. R is the front-loading constant described in section

3.2.2.4 and m * is the theoretical minimum number o f workstations.

3.2.2.2 THE C O M PO N E N T Y

This takes into account the gradual (progressive) filling o f workstations and preserves

filled stations dining the evolutionary process, and can be stated as:

K (S \
Z

Y = rfpi A - f i (3.4)
m - m * + 1

Sj - workstation time C = C ycle time j = workstation m = number o f workstations

At the beginning o f the evaluation, K = 1 and if (S /C) = 1 or generation number (g)

equals to G w *K, the value o f K is incremented by one unit. Where G w is the number of

generations permitted for a workstation and, is obtained by dividing the total number

o f generations (G) by the number o f workstations in the initial heuristic solution.

77

Chapter 3: A genetic algorithm line balancing model

3.2.2.3. THE C O M PO N E N T Z

This is the key component o f the p roposed fitness function, which is based on the

front-loading theorem. It forces the algorithm to shift elements from later to early

workstations to accomplish fully filled workstations, and is mathematically expressed

as follows:

a
Z
7=1

(S A

l £ j

mR

R m - j

«i+l = a
z
7=1

f s , V

c
R 1-7

m
(3.5)

Where m is the number o f workstations, C is the cycle time, Sj is the workstation time

and k is constant and the best choice o f k will be covered later. The other constants are

as defined before.

The front-loading concept is integrated in to the component Z by designing the

fitness function to assign higher fitness values for early packed workstations than for

late packed (R 1'J , wherey=l,2,...m)). A fully packed first workstation (S i = C) will

received the highest fitness weight (R°) and this maximum is scaled exponentially to

give higher weight to early workstations and lower values to later workstations (R°, R'

1, R '2, , R hm). The value R controls the degree o f scaling, and it should be selected

appropriately, which will be dealt with later in this section. Suffix k in the fitness

function provides a family o f fitness curves, but the following analysis verifies that

when k equals to unity, shifting o f an element to an early from latter workstation

increments the fitness value to support front-loading (property 1). Furthermore, the

decreasing number o f workstations (m) increases fitness value (property 2, proof

given in Appendix C)

Figure 3.7 shows a typical line balancing solution in the g th generation. It

consists o f m workstations with station times Sa and Sb for workstations a and b
respectively. Assume in the next generation (g+1), genetic operators have modified

the chromosome representing the above solution by shifting a unit element from

workstation b to workstation a. Zg and Zg+i give the corresponding fitness values

before and after reproduction respectively.

C h a p ter 3: A gen e tic a lg o rith m line ba la n c in g m odel

z = £ 1
7=1

r s p -

T j
R m - j

(3-6)

Where E =
a

mR w+l

From equation 3.6, fitness (Z) o f the chromosome in the g th generation is given as

(s (s h V
p + a R n,~a + Q + _ L * *

I c . I c J

/=i v ̂ y
Where / > = £ [- £ ■ R " " ' , Q = Z 77 ’ = £

/=a+l V E J i=b+l V ^ /

S,
c

R'

After crossover and mutation operations, in the (g+/)th generation, the fitness o f the

chromosome is given by,

’S „ + 1

c
Z g+l = E { P + -2----- J?— + g + R m~b + R)

k s b - b k

V ^ / Cv ^ y

D£
c

. 0

re
GO

1 2 cr a +1 6 b +1 m
Station number

Figure 3.7. Workstation time distribution

79

C h a p te r 3: A g e n e tic a lgorith m lin e b a la n c in g m o d e l

Therefore, change o f fitness component (AZ) that is,

A Z = Z , - Zg +1 " g

A Z = E (f j . + n
k

R ,n-a + (A - 0
k

R m - t f s)a
k

R m-a

C J c J U J U J
R m-b)

AZ =
ER'

C
(3.7)

Similarly, it can be shown that change o f fitness component (AT) due to

transferring elements from workstation b to a equals to zero and will have no effect

on fitness change. Equally, the change o f fitness component (AA) is zero too, because

it is a constant for all feasible chromosomes -and does not has any influence on

transferring.

Therefore, total change o f fitness is as follows:

4// = AZ (3.8)

It can be seen from the equation 3.7 that, AZ is a function o f k and to find the

optimum value, lets consider three k values including 1,2 and 0.5.

(a) Case 1

Substituting /c=l in equation (3.7);

E R '
A/} =

C

J 1_

R a R b
(3.9)

AZ is positive for all values b > a subject to the condition that R>1. Therefore when k

=1; shifting an element to an early workstation results in an increase in fitness

component

80

C h a p ter 3: A g e n e tic a lgorith m lin e b a la n c in g m o d el

(b) Case 2

Substituting k =2 in equation 3.7;

A / } =

E R m ' 1

C 2 _R tt

E R m ~ 1

C 2 _ R a

ER"‘ ' 1

C 2 i

R l

R l

R
(3.10)

It can seen from the equation 3.10 that A ffis positive only i f the following condition is

satisfied.

2 5 + 1 1 - 2 S ,
+

R a R l
> 0

This occurs only when R b a >
2 5 , -1

, and this condition is not true for all Sa and Sb.
2 S a +1

therefore, when k = 2, the proposed fitness function may violate the front-loading

concept. Similarly, it can be proved that higher orders o f k will introduce more

constraints to the fitness function.

(c) Case3

Substituting /r = 0.5 in equation 3.7,

ER
AZ =

C

E R ,n K 1) 1 + —

1
2

-1 r . - j - i 4C R" R b I Sb J
i j

81

C hapter 3 : A g en e tic a lgorith m line ba la n c in g m odel

2 Mand
S .)

are infinite series when
i

< 1 and <1

respectively. Expanding and substituting in the above equation

(\ / \ f \
ER"‘ 1 1 1 1 1 1 1

1-
1 i

c

1 C'J
t KR mS } R bS ? ,

I
OO

1

R bs j ,

t ^ T
16

KR ms } R % #

(3.11)

It can be seen that the right hand side o f the equation 3.11 consists o f both positive

and negative terms and therefore AZ may not be positive for every case.

Based on the above finding the component Z that supporting front loading concept

can be expressed as follows.

Z = a
Z
7=1

R

mR m+1 (3.12)

3.2.2.4 D E TE R M IN A T IO N OF F R O N T -L O A D IN G C O N ST A N T (R)

The constant R plays a vital role in the new fitness function and it must be determined

cautiously. It was shown that for front loading, R must be greater than unity (equation

3.9). Higher values o f R will increase station weights exponentially and decrease the

weight difference among latter workstations, and involves very large numbers. On the

other hand, lower values reduce the weight difference between front and back

workstations. Figure 3.8(a) and figure 3.8(b) show weights for a twenty workstation

solution fori? = 5.0 and R = 1.25 respectively.

hi order to transfer elements from latter workstations to early workstations, the

change o f fitness (Af f) must be significant, hi a problem having m workstations,

82

C ha pter 3: A gen e tic a lg o r ith m line b a la n c in g m od el

there will be (m 2 - m) number o f possible ways to shift elements among workstations,

and all o f these possibilities are shown in figure 3.9.

x 10
13

-C
CT)
'<D

flj

JZ
CT)
'0
£
C
.2V*CO
co

Station number Station number

(a) (b)

Figure 3.8. Station weights variation with station number (a) R - 0.5 (b) R = 1.25

In fact, moving a unit element from workstation m to m-1 results the minimum

change o f fitness. This value can be calculated from the equation 3.9.

Aff(m-
ER'

/(»i—I—>m)
c

1 1

R m~l R"

Substituting E =
a

and a - n C R m*+l in the above equation
m R m+l

m R y

Where y = (m *-m)

(R - 1)

This value (i.e., Af/(m̂ m.ij) must be significant (say greater than some value 6) to

force the algorithm to perform better forward loading. Therefore,

C hapter 3: A gen e tic a lg o rith m line ba la n cin g m odel

A/mm = — - (A -1) - # > 0
m R y

(3-13)

m
m-l

-o m-2
rj
o
03
to
uO
£

s '.

i . i -
m

■

■' •P f
■

- ?U

' . L"-:.

Forward loading

] Backward loading

m —► m- l

1 2 3 4 5 . . m-2 m-l m
Workstation a

Figure 3.9. Element transferring possibilities

The above inequality (equation 3.13) gives R values for minimum Af f to

greater than a particular 6 . For example let’s consider a problem where n = 45, m =

10, y = 2 and #=1 (KW4659, Chapter 4). Substituting these values in equation 3.13 gives,

(3.14)

Figure 3.10. Minimum fitness change against R

84

Figure 3.10 shows the minimum change of fitness (that is A/mjn) against R. It

can be seen from the graph that between 1.5 and 3.0 A/min is positive and satisfies

equation 3.14, implying the minimum change o f fitness is greater than 0 (=1). This

determine the best range o f R and therefore,

1.5 < £ < 3 . 0

The change o f fitness due to shifting a unit element between any two

workstations can be calculated using equation 3.9 and figure 3.11 displays the change

for all possible cases for the above problem having 10 workstations with R =2.

C hapter 3: A gen e tic a lg o r ith m line ba la n cin g m odel

W orkstation b
W orkstation a

Figure 3.11. Fitness change per unit element transferring
between workstations a and b.

Therefore, the complete overall global fitness function (FF) can be express as follows
and it consists o f f f and fi.

F F = <

n l J3
K

O B S n I P + rf-(3 -DL
m - m * + 1

I
' s p -

R' (3.15)

m R m+1 l = P

Where, / is the number o f feasible links in the chromosome, and P is the total number

o f precedence constraints (links) in the problem.

85

3.3 INITIAL POPULATION

At the start o f evolution, a Genetic Algorithm requires an initial population. A good

initial population will certainly increase the performance o f the algorithm and speed

up its convergence. This type o f population is known as a w e ll-s e e d e d population and

the proposed model can generate an initial population in three ways.

The first method consists o f generating n permutations. This population is

known as bin-packing population, and there is no guarantee that the generated

chromosomes will be feasible.

The second method generates feasible chromosomes by the random task

assignment technique. As the name implies, this technique assigns elements to

workstations randomly from a feasible list and the list is constructed using the

precedence matrix described in chapter 2. The procedure can be repeated to generate

different solutions and is ideal for the initialisation process. The steps involving in the

algorithm are as follows: -

Stepl. Construct list A , showing all work elements in one column and the total

number o f elements that immediately precede each element in an

adjacent column.

Step2. Construct list B, showing all elements from list A that have no

immediate predecessors.

Step3. Select at random one o f the elements from list B. The computer is

programmed to perform this random selection process. The only

constraint is that the element selected must not cause the cycle time to

be exceeded.

Step4. Eliminate the element selected in step 3 from the lists A and B and

update both lists, if necessary. Updating may be needed because the

selected element was probably an immediate predecessor for some

other element(s). Hence, there may be changes in the number of

immediate predecessors for certain elements in list A ; and there may. be

C hapter 3: A g en e tic a lg o rith m lin e b a la n c in g m od el

86

C ha pter 3: A gen e tic a lgorith m lin e ba la n cin g m odel

some new elements having no immediate predecessors that should be

added to list B.

Step5. Again select one o f the elements from list B that is feasible for cycle

time. <

Step6. Repeat steps 4 and 5 until all the elements have been allocated to

stations within the cycle time constraint.

The third method employs a priori knowledge about the given optimisation

problem. Previously published deterministic algorithms include C O M SO AL, the

Hoffman precedence matrix procedure and Rank Positional Weight (R PW) technique.

These methods plus the above two methods are employed to generate an initial

population and is the default method for the model. Since the Genetic Algorithm starts

the optimisation with a set o f approximately known solutions, convergence is quick

and consumes less C PU time.

3.3.1 POPULATION SIZE

The population size has direct effect on the convergence o f the algorithm and should,

be selected carefully. General wisdom dictates that a larger population will work more

slowly, but will eventually achieve better solution than a smaller population. However,

experience indicates, that this rule o f thumb is not always true, and that the most

effective population size is dependent on the problem being solved, the representation

used, and the operations manipulating the representation. Suresh et al (1996) showed

that a population o f 30-50 was effective for Genetic Algorithm assembly line

balancing problems and, in this model it was set to 40 chromosomes.

3.4 GENETIC OPERATORS

3.4.1 SELECTION

Selection is the process o f choosing chromosomes for the next generation from the

current generation. A number o f selection schemes have been reported in the literature

and most have not addressed the two common problems: high selective pressure and

loss o f population diversity. Population diversity is representing a variety o f

C ha pter 3 : A g en e tic a lg o rith m lin e b a la n c in g m od el

chromosomes o f the population that were selected during the selection phase, whereas,

selective pressure is the probability o f the best chromosome being selected compared

to the average probability o f selection o f all chromosomes. I f selective pressure is too

high, the population diversity decreases and this could result in a premature

convergence, on the other hand weak selective pressure makes the search ineffective.

The standard rank-based selection technique, in which the population is sorted

according to the fitness values depending only on its rank and not on the actual fitness

value, is used in the new model with modifications to overcome the above two main

problems. Figure 3.12 illustrates the modified rank-based selection scheme. First,

once and for all, a population o f N POPF chromosomes (feed in g p o o l) consisting o f 85%

feasible chromosomes and 15% o f bin packing chromosomes are generated at the

beginning o f the evolution process. The value o f N P0PF depends upon the number o f

elements (n) in the problem and the following values are recommended for better

performance. The feasible, chromosomes are generated by the random task assignment

technique and the bin packing chromosomes by random permutation.

Number o f elements Feeding population size

(n) (NpoPF)

n <20 25

20 <rc <50 50

50 > n 100

Table 3.3. Feeding population sizes

Secondly, all the chromosomes in the current population are ranked according

to their fitness values and the first N b (user defined) chromosomes are selected to

create a se lec tio n p o o l . Then, choosing chromosomes from the selection pool and

performing crossover and mutation generates the rest o f the new population. I f any

chosen chromosomes are identical, the currently selected pair will be discarded and a

new pair o f chromosomes will be selected and this will continue for maximum user

specified times (n j. If the technique is still unable to find two different chromosomes,

the selected chromosomes are copied to the new population undergoing high mutation.

Current population N ew population

C ha pter 3: A g en e tic a lg o rith m line b a la n c in g m odel

14-

Figure 3.12. Modified rank based selection scheme

Selection
pool

Nb chromosomes

Selection Crossover

Crossover +
mutation

Feeding pool

Eggssa Feasible random solutions
Bin packing solutions

Elite chromosomes

N ew population

89

After constructing the new population, the number o f identical chromosomes

in the selection pool is counted and i f they are greater than the specified value, all the

chromosomes excluding the elite chromosomes in the new population are replaced

with randomly selected chromosomes from the feeding pool. This reduces high

selective pressure and adds population diversity.

3.4.2 CROSSOVER
The Crossover is a genetic operator that combines two chromosomes to create a new

chromosome. The idea behind crossover is that new chromosome(s) m ay be b etter

than both the mating chromosomes if it takes the best characteristics from each o f the

clu'omosome. Several crossover techniques have been developed since 1975, and they

are reviewed in the literature survey (Rubinovits and Levitin, 1995). Falkennaure

(Chambers, 1999, p.67) writing on application o f Genetic Algorithms to real-world

problems stated that:

“The problem is that we never really know which part(s) o f a good
solution are the ones that make it a good solution, because we only
have a measure o f worth o f the whole o f it (the objective function).
The parts must thus be tested”

None o f the crossover techniques developed so far has addressed this issue.

The proposed new techniques, Fixed Boundary Moving Crossover Point (FBM C P)

and Variable Boimdary Moving Crossover Point (V B M C P) mainly focus on the

above issue and transferring best attributes o f both parents to their o ffsp ring 's the

evolution progresses. The proposed Genetic Algorithm model consists o f six standard

crossover techniques described in Chapter 2 plus the two new crossover techniques

with ability to adjust crossover probability (P c) to suit clarity requirement.

3.4.2.1 FIXED B O U N D A R Y M O V IN G C R O SSO VER PO IN T (FBM C P)

hi FBM C P technique, a chromosome is divided equally in to a number o f spans (s„),

depending upon a user defined crossover span-overlapping index (l 0) and crossover

span size (cs). The crossover point is selected randomly within the left (cL) and right

(c r) locus o f the specified span and the classic single point crossover technique is then

C ha pter 3 : A g e n e tic a lgorithm , lin e b a la n c in g m od el

90

applied to generate offspring. Both loci (boundaries) are incremented in a defined way

at set generation intervals as the evolution progresses. The following illustrative

example (figure 3.13) shows its application and the corresponding parameters are

given below:

1. C ro sso v e r o v e r la p p in g index (I0): This index determines the number o f

overlapping genes between two adjacent crossover spans. Overlap is very

essential to explore the whole chromosome in the reproduction process.

Without this some o f the genes may not be selected at all, during the

evolution especially at the margins.

2. C ro sso v e r sp a n (cs) : is the number o f elements for which the total work

content is less than or equal to the cycle'time. This is determined by,

arranging all the task elements in ascending order o f their task times, and

then calculating the cumulative task time. Figure 3.13 shows a typical

cumulative task time curve where the abscissa corresponds to the cycle

time given the crossover span. It is the size o f the crossover zone and

depends on the cycle time and the task time distribution.

C ha pter 3: A g en e tic a lg o rith m line b a la n c in g m odel

E lem en t num ber

Figure 3.13. Cumulative task time curve

91

C ha pter 3: A g en e tic a lg o rith m line ba la n cin g m odel

3. N u m ber o f o v e r-la p p in g g e n e s (gn) is given by

S n
L

(3.16)

Where [x]+ is the smallest integer larger or equal to x.

4. N u m ber o f sp a n s (s„): can be calculated by the following formula:

s.. - n ~ S n

c s - S n

+1 (3.17)

Where n is the number o f elements.

5. N u m b er o f g en era tio n s p e r c ro sso v e r sp a n (G o): is a test problem constant,

C D = (3.18)

Where G is the total number o f generations.

6. Span index (sj): which identifies the span number and determines both left

and right loci o f the crossover zone. Initially, s { is equals to one and, if

number o f generations, is equal to the product o f G p and s t, ' then it is

incremented by one unit.

Where G t
G

G is the total number o f generations and s„ is the number of crossover

spans.

7. L eft c ro sso v e r locu s (c f

(s i ~ g n) cl < n - c s

(cl) (3.19)
n-c. cl > n-cs

92

C ha pter 3: A g en e tic a lg o rith m line ba la n cin g m odel

Chromosome

GO
<D
c
O
N

<D
>
O
GO
GO
Ou.

CJ

s, = 1 . -J ;■? * . J :

= 2

CO
— 4
c3
>
ba>

. s
■ , c

o• f-H
CS

2c
CD

o

J j = 3

5,

j , - 3

—

Gd

G d

Cd

0
CL

Generations

Figure 3.14. Moving crossover zones and generation class intervals (for FBM CP)

8. R igh t c ro sso v e r locu s (C r)

0cr) = (3.20)

Where s, is Span index. (1< s, < s n) , and n is the number o f elements in
the problem

93

9. G en era tion c la ss in te rva l [G i G J\: is the range o f generations where a

particular crossover span is active. This normally represented by two

boundaries: the lower (G l) and upper (G u) generation boundaries

respectively and are determined as follows:

G , = G 0(.s , . - l)+ l (3.21)

G v = G 0s , (3.22)

Figure 3.14 illustrated the moving crossover span concept and the variable generation

intervals for different crossover zones.

3.4.2.2 V A R IA B L E B O U N D A R Y M O V IN G CRO SSOVER PO INT (V B M C P)

The V B M C P t echnique is a more advanced version o f the fixedboundary moving

crossover technique. Unlike FBM C P method, the left crossover boundary (c£) is

dynamically determined by taking into account the number o f elements in the

previous fully filled wofkstation(s). In the case where, a fully filled workstation

cannot be achieved, after a user-defined number o f g enerations (G o) the lower left

boundary is incremented, and depending upon the number o f elements in the previous

workstation (equation 3.24) and crossover-overlapping index (I0). The crossover span

(cs) is fixed in this technique and calculated by considering the cycle time and the task

element times. Once a crossover span is selected, a random point is selected within

the boundaries o f the span and the single point crossover operation is employed to

generate offspring. The V B M C P technique can be applied with any fitness function,

but good results can be achieved with the front-loading fitness function. This

technique is superior to the FBM CP in the way that it changes the boundary point

when workstations are fully filled, leading to faster convergence. The following

illustrative example (figure 3.15) shows 'its application and the corresponding

parameters are given below.

Chapter 3: A genetic algorithm line balancing model

94

Chapter 3: A genetic algorithm line balancing model

IH/M . If;fh ; M/k
Cs

, ' ■ ' :

m ,
■ M / / . : '

N u m b er o f e lem ents assigned to w orkstation 1 (E/)

Snl

Cs

A./ a ■' #r
■

‘ ,:n . ' ' H '' .

T o ta l e lem ents ass igned to

W orksta tion s 1 & 2 (E/+EI

S, Sn

Si — s„

Go
< ►

32
a
feO S'

G D

s
£
O

mxx

2
CD
C

CT "

Go

= 1 .* *s

o Generations

Gu

Figure 3.15. Crossover boundaries and generation intervals (for VBMCP)

95

Chapter 3: A genetic algorithm line balancing model

1. N u m ber o f o v e r-la p p in g g en es (g n)

8 n,. (3.23)

Where 10 is the crossover overlapping index and Esi is the number of

genes in the j,- workstation.

2. V ariable le ft c ro sso v e r b o u n d a ry (cl '): is the lower crossover boundary

depending upon the number o f elements in the previous workstations (> 1)

and span index sr_ and is defined as follows:

0
j,-i

Si =1 & CL’< n - c s

(CL’f i = \ Z Y S i> 1 & cL ■ < n -c s
j =1
n - cs S i> 1 & c l <> n -c s

(3.24)

Where Ej is the total number o f elements in the j th workstation and n is the

total number o f elements in the problem.

3. V ariable r ig h t c ro sso v e r b o u n d a ry (cr•)

(q Y / + <A if (cR) si < n

n i f (cR) si > n
(CjR ')si < (3.25)

3.4.3 MUTATION

Mutation is a genetic operator that alters one or more gene values in a chromosome

from its initial state. This can result in an entirely new gene added to the gene pool.

With these new gene combinations, the Genetic Algorithm may be able to arrive at a

better solution than was previously possible. Only a few mutation techniques have

been published for the assembly line balancing problem and they are reviewed in

Chapter 2. The proposed model consists o f four new mutation techniques plus

previously published standard techniques and the mutation probability (pm) is kept at a

low value such as 0.01.

96

Chapter 3: A genetic algorithm line balancing model

All four techniques are based on the moving mutation zone approach where mutation

points are selected randomly from the corresponding zone. This approach lets the

algorithm scan more feasible chromosomes and converge faster. The left and right

boundaries o f the mutation zone {m i, md) are varied with generation class interval [G i,

G jj\, as in the FBM CP and V B M C P techniques, keeping the mutation span size (m s)

constant. This is a problem dependent constant and equals to b times cs (Where b is a

constant and can be fixed by the user).

3.4.3.1 FIXED B O U N D A R Y AD JAC EN T M U T A T IO N (FBA M):

The concept behind this is similar to the FBM CP technique. As the name applies, N m

number o f mutation points is selected randomly within the corresponding mutation

zone and they are swapped with the adjacent genes to their right. If the selected point

lies on the right hand boundary o f the zone, then it is swapped with the gene to its left.

Figures 3.16 (a) and (b) illustrate the mutation operation before and after respectively

ms
■ ■ W

E H F J G I A D B C

E H F J G I A D B C
........

(a) Before crossover

(b) A fter crossover

Figure 3.16. Adjacent mutation operation

3.4.3.2 FIXED B O U N D A R Y R A N D O M M U T A T IO N (FBRM):

This technique is similar to the above; one or more pairs o f genes are selected

randomly within the mutation span and they are swapped to produce new offspring.

97

Chapter 3: A genetic algorithm line balancing model

3.4.3.3 V A R IA B L E B O U N D A R Y A D JA C E N T M U T A T IO N (V B A M):

In this procedure, the lower or left boundary (m e) o f the mutation span is changed

according to the filling o f workstations. This allows the algorithm to explore the

whole chromosome more rapidly than FBR M technique. Mutation points are selected

randomly and swapped as for F B A M

Mutation

technique
Mutation span boundaries

Left boundary (md) Right boundary (md)

F B A M

FBRM

f + \

m
m, - -----L-

7
V

0
/

(3.26) (3.27)

V B A M

V B R M
4-i

2 X -
7=1

£ ,-i
j,> 1 (3.28)

s,-\

7=1

Esi - l +m s (3.29)

For all cases if m i > n then m i ~ n and mR = n -cs

Table 3.4. Lower and upper mutation span boundaries

Mutation Generation class boundaries

technique Lower boundary (G l) Upper boundary (G d)

FSAM

FSRM

M S A M

M SR M

G
(s , - l) + l (3.30) (3.31)

(3.33)

Table 3.5. Lower and upper generation class boundaries

98

Chapter 3: A genetic algorithm line balancing model

3.4.3.4 V A R IA B LE B O U N D A R Y R A N D O M M U T A T IO N (V BR M).

This technique is similar to the V B A M in determining the mutation boundaries and

similar to the FBRM in mutation operation. Left and right mutation boundaries (,

mR) and lower and upper generation class boundaries (G l,G u) o f mutation zones for

the above four techniques are shown in tables 3.4 and 3.5.

3.5 REPAIR TECHNIQUE
Applying standard genetic operators in the assembly line balancing problem can

rarely ensure offspring feasibility. Duplication o f genes in offspring is the main cause

o f infeasibility. Figure 3.17 illustrates this problem using two feasible chromosomes

generated from the problem in figure 3.5. After a crossover operation, genes B and C

are duplicated in child 1 and 2 respectively whilst genes C and B are missing in child 1

and 2 respectively, violating the assembly line design concept.

Crossover
point 1

Crossover
point 2

1r i r

A B D C E F G H I J •v Duplicated
Elements

A C B E D F I G H J

(a) Before crossover

D H Child 1

A
• -

v •/' D
- E

F G H I J

(b) A fter two point crossover

Figure 3.17. Duplicating elements after crossover operation

3.5.1 R A N D O M B A SE D R E P A IR T E C H N IQ U E

This technique removes all the duplicated elements from both offspring and creates a

gene pool. Then, missing genes are selected from the pool and reassigned randomly

by the following procedure:

99

Chapter 3: A genetic algorithm line balancing model

1. Remove duplicated genes from both chromosomes and prepare a list. The

number o f genes in the list is equal to

2. Using a random number generator, generate a random integer between one

and Nd and select the corresponding gene from the list and reassign to the

first empty position towards the left.

3. Remove the assigned gene from the list and update the value Nd.

4. Go to step 2, and repeat the procedure until all the duplicated genes are

reassigned.

3.5.2 O R D E R B A SE D R E P A IR T E C H N IQ U E

hi the order based repair technique, the genes are reassigned to empty spaces based on

their order in the precedence diagram. For example (1 ,2 , 3, 4 ...} or (A , B, C, D .. . } .

Assigning early elements in the precedence diagram first tends to increase the

feasibility o f the chromosome and the complete procedure is described as follows:

1. Remove duplicated genes from both chromosomes and prepare a list. The

genes in the list are arranged in the order that they appear in the

precedence diagram.

2. Select the first gene from the list and reassigned to the first empty position

in the chromosome towards the left.

3. Remove the assigned gene from the list and update the list.

4. Go to step 2, and repeat the procedure until all the duplicating genes are

assigned.

3.5.3 R A N K P O S IT IO N A L B A SE D R E P A IR T E C H N IQ U E

This technique is similar to the above technique except for step 1. The element list is

arranged according to their positional weights, instead- o f their order o f appearance.

The positional weight (p w k) o f the klh element (gene) is calculated using the formula

below:

p w k = ‘k + Y . t i‘ (3-34)
hsF(

Where F k* consists a set o f immediate transitive followers o f task k.

100

Chapter 3: A genetic algorithm line balancing model

Once the positional weights are calculated the list is rearranged according to the ranks

o f the positional weights. The highest rank first and so on. The rest o f the procedure is

same as the order based repair technique (steps 2-4).

3.6 ELITISM

The convergence o f generic algorithms is one o f the most challenging theoretical

issues in the evolutionary computation area. Several researchers explored this

problem from different perspectives. Recently Rudolph (1994) proved that the

classical Genetic Algorithm never converges to a global optimum, but a modified

version, which maintains the best chromosomes in the population, does. This is

because.when crearing new p opulations b y crossover and mutation there is a good

chance that the best chromosome may be lost.

Elitism is the name o f a method which first copies the best chromosome (or a

few best chromosomes) to the new population. The rest o f the population is generated

in a classical way. Elitism very rapidly increases the performance o f the Genetic

Algorithm, because it prevents losing the best-found solution. In the genetic model,

the user can define the number o f elite chromosomes (N e) in the population. It is given

as a percentage o f the total population.

3.7 TERMINATION

Termination is the criterion by which the Genetic Algorithm decides whether to

continue searching or stop the search. Two termination criteria are used in the

proposed model. The default criterion is the theoretical minimum number o f

workstations and, if this condition is not satisfied, then the evolution will stop when

the user-defined maximum number o f generations has been run.

101

3.8 COMPLETE ALGORITHM

The classic Genetic Algorithm described by Holland (1975) is what has become

known as the g enerational Genetic Algorithm. The proposed algorithm is based on

this concept and it keeps two populations all the time, the current and the future (new).

Each iteration (generation) proceeds by constructing the new population, and finally

the one just constructed becomes the current one in the next generation.

The chromosomes in the new generation come from three sources: some are

the offspring o f recombination (i.e. crossover); others are products o f mutation o f the

chromosomes in the current population. The rest are simply copied unchanged from

the current population (elilism). Mutation is normally applied after crossover selecting

random chromosomes from the new population.

The overall fitness function (equation 3.15) is used for chromosome

evaluation and then, they are sorted for the rank-based selection. The best 75% o f the

population is used as the selection pool and chromosomes are selected from the pool

randomly for genetic operations.

After crossover, the new chromosomes are examined for any duplication o f

elements. These chromosomes are then rectified by a repair technique. In case o f

identical parents, the algorithm will search for new parents for a fixed number o f

times and afterwards they are copied to the new population undergoing heavy

mutation. The number o f mutated pairs is three times the normal mutation. When the

termination criterion is met, the best chromosome is selected from the current

population and it is decoded to obtain the solution.

Row vectors and matrices are used to represent chromosomes and populations

respectively. The high level, user-friendly programming environment M A T L A B is

used for programming. Its built-in functions to handle matrix algebra provided the

power for large-scale number crunching and permits writing source code (m. files)

that can be directly executed in the M A T L A B workspace. Easy to build, data

visualization, menu driven G U I interface modules are used for interaction. The flow

Chapter 3: A genetic algorithm line balancing model

102

chart o f the proposed G A line-balancing simulation model with the above features is

shown in figure 3.18 and the corresponding steps are given below.

1. Start.

2. Read task time and precedence data.

3. Input Genetic Algorithm parameters.

4. Generate initial population.

5. Select fitness function.

6. Evaluate each chromosome in the population using the selected fitness

function.

7. I f the termination criterion is met, go to step 8, otherwise go to step 11.

8. Select the best chromosome(s) from the population.

9. Decoding.

10. Display solution and other graphical representations and stop.

11. Sort the chromosomes in the population according to their fitness values.

12. Copy best chromosome(s) to the next population.

13. Select two chromosomes (parents) for genetic operations.

14. I f the selected chromosomes are identical, discard them and go to step 13,

otherwise go to step 15.

15. Apply crossover operation to the selected chromosomes and generate new

offspring.

16. I f the offspring contain duplicate element(s) go to step 17, otherwise go to step

18.

17. Remove duplicate element(s) using the repair technique.

18. Apply mutation

19. Copy chromosomes to the new population.
‘ -as-3*#'

20. I f the number o f chromosomes in the new population is less than Npop go to

step 13 and repeat steps 13 to 19 until number o f chromosomes equals Npop.

Go step 6 and replace the current population with the one generated in step 19.

Chapter 3: A genetic algorithm line balancing model

103

Chapter 3: A genetic algorithm line balancing model

Start A - Task time and precedence data
B - Deterministic assembly line

balancing heuristic techniques library
C - Decoding operation
D - Fitness function library
E - Selection techniques library
F - Crossover techniques library
G - Repair techniques library
H - Mutation techniques library

c#___##

L b J
D

A+C “R ‘1 T Iprr #,. I'd vsy E
+, (■ """if - (Tif A,■; > : I • ' a r i ■ a -r.Sto 4* .

\ Y es_ _

-■■■ a s ia l________

18

19 ■*------

\ 20 /

10

Stop

Figure 3.18. Flow chart of the Genetic Algorithm line-balancing model

104

Chapter 3: A genetic algorithm line balancing model

Some o f the basic features associate with software design and development are

described below:

1. L o a d in g a n d sa v in g d a ta : the software starts with the reading o f two text'

files, namely precedence data and task time data written in two separate

directories:

D :\data\precedence\prob 1 emID. txt and D : \data\taslctime\prob lemID. txt

respectively. After reading these files, they are assigned to two matrices [P]

and [T] respectively. The output o f the algorithm, that is all the data and

variables created during computation are saved in M A T L A B binary format in

to the file (D:\gamodel\problemID\results.mat).

2. In pu t D a ta : the following test problem data and Genetic Algorithm

control parameters are entered manually.

a. Cycle time

b. Number o f evolutions

c. Population size

d. Initial heuristic solution techniques

e. Crossover and mutation techniques and their probabilities.

f. Optimisation criterion

g. Fitness function model

h. Selection method

3. C o d in g a n d in itia lisa tio n : chromosomes are assigned to row vectors, and

these vectors collects together constitutes the initial population matrix.

Two population matrices are maintained in the model. The current

population [G] and next population [G N] respectively. During the

evolution new offspring are copied into the matrix [G N] and after each

generation, matrix [G] is replaced by [G N] and the entries o f matrix [G N]

are cleared to make room for new offspring.

4. M a th em a tica l P ro c e d u re s : these procedures in the Genetic Algorithm

model include coding, fitness evaluation, crossover, mutation, selection

and stopping procedures. They are normally accomplished using random

number generators, sorting algorithms and several other built-in functions

such as exponential and algorithmic functions. The normal distribution is

used to generate random numbers

5. N u m e r ic a l v a lu es: C omparing t wo f easible c hromosomes m ight r equire

the comparison o f two fitness values which are very close to each other.

Real numbers with 16 digits plus exponent are used to differentiate

chromosomes.

6. D a ta ou tput: the powerful Graphic User Interface (G U I) properties o f

M A T L A B provide data visualization. The line balancing solution, element

assignments, problem complexities and line balancing measures are

tabulated and displayed in the M A T L A B co m m a n d window. A ll the

relevant graphs, bar charts and statistical plots are displayed in f ig u r e

w in d o w s .

A graphical and text output o f the model for the 58-element Warnecke (W A 56)

problem (cycle time =56) are shown in figure 3.19.

Chapter 3: A genetic algorithm line balancing model

106

Chapter 3: A genetic algorithm line balancing model

#lFiguie No 1
File £di» loots Window Help

WARNECKE 58

1000 1500 2000
Generation noGeneration no

Generation no Generation no

LE = Line E fficiency BE = Balance E ffic iency

1 + i Figure No. 2 ■ H B ' . h l x l
File £dit look Wndow Help r ? ' fa- "

g? o a ;> a

11300 1500 2000

No of generations

1000 1500 2000

No of generations

1000 1500 2000
No of generations

No of generations

Figure 3.19 Genetic Algorithm line balancing analysis (graphical)

107

Chapter 3: A genetic algorithm line balancing model

File £dk Tooli W n dow Help

 ̂ A /* / JS> £>

Station numberStation number

Station numberStation number

i Figure No. 4
File £di» Tool* Window {Help

fi? Q & ifV A > / ! 0 y& O

GENETIC ALGORITHM GA0023 Number of optimal solutions

500 1000 1500 2000 2500
Generation no

Fitness function ID . FFl

Front loading constant(R) 15

No. of generations/station(K) 120

Initial population 10-feasible +■ 30 binpackmg

Population size : 40

Selection technique Modified rank based

Crossover technique Fixed boundary Moving crossover point

Mutation method . Fixed boundarymoving adjacent;mutation

2500

Crossover probability . 0.8

Mutation probability 0.01

Termination ; 2100 gen.

Elitism : 06

Figure 3.19 Genetic Algorithm line balancin^analysis (graphical)

108

Chapter 3: A genetic algorithm line balancing model

GENETIC ALGORITHM UNE BALANCING SIMULATOR

PROBLEM SPECIFICATIONS

Problem ID : WARNECXE SB
Cyde time :56

FITNESS FUNCTION SPECIFICATIONS

Fitness (Unction ID : FFI
Front loading constant(R) : 1.5

INITIAL POPULATION

Random task assignment method
Number of random solutions : 01
Population size : 40

GENETIC OPERATORS

SELECTION

Selection technique : Modified rank based method
Selective pressure : 30%
Selection population size: 100

CROSSOVER

Crossover technique : Fixed boundary moving crossover point
Crossove probability : 80%

MUTATION

Mutation technique : Fixed Boundary moving adjacent mutation
Mutation proballlty : 1%
Repair technique(l/2/3) : I

TERMINATION
Number of generations : 2000

RESULTS

NO EVOLUTIONS LE BE CPU NO STATIONS

0.00 0.79 0.82 0.00 35.00
100.00 81.30 33.86 3.24 34.00
200.00 81.30 84.12 3.oa 34.00
300.00 81.30 83.99 2.91 34.00
400.00 81.30 84.05 3.02 34.00
500.00 83.77 84.91 3.24 33.00
600.00 83.77 85.04 3.35 33.00
700.00 83.77 84.91 3.73 33.00
800.00 86.33 87.31 3.29 32.00
900.00 86.38 87.31 3.07 32.00
1000.00 86.38 87.56 3.02 32.00
1100.00 86.33 86.11 2.86 32.00
1200.00 86.38 86.24 3.02 32.00
1300.00 86.38 86.11 2.97 32.00
1400.00 86.38 86.11 2.58 32.00
1500.00 89.17 89.12 2.97 31.00
1600.00 89.17 90.03 3.03 31.00
1700.00 89.17 68.98 3.40 31.00
1800.00 89.17 88.98 3.19 31.00
1900.00 89.17 88.97 4.07 31.00
2000.00 92.14 92.58 3.79 30.00

Figure 3.20. GA line balancing analysis (text output)

109

Chapter 3; A genetic algorithm line balancing model

Station breakdown

7 28 1

33 6

9 16

35 18 11

24

12
3 13

4

10
5
8 19

32

1 4 ’

22 27

30

2
34

23 IS

17

20 21
44 26

29

31

36

37 39

25 40 41

38 42

43

45

49 48 46

50 47

51 52

53

54 56

55 57 58

Figure 3.20. GA line balancing analysis (text output)

110

Chapter 3: A genetic algorithm line balancing model

rta.no staion time no. i
1 56 3
2 51 2
3 47 2
4 52 3
5 23 1
6 34 1
7 53 2
8 36 1
9 52 1
10 35 1
11 38 2
12 47 1
13 52 1
14 53 2
15 22 1
16 53 1
17 23 1
18 55 2
19 44 i
20 42 2
21 46 2
22 26 1
23 51 1
24 52 1
25 56 2
26 46 3
27 46 2
28 29 1
29 ■ 43 1
30 48 3

Maximum station time : 56
Average station time : 44.2286
Standard deviation : 10.4039

Max line efficiency : 78.9796
Balance efficiency : 80.5943
Optimum no of stations :28
Min no of stations :30
Max no of stations :35

COMPLEXITY MEASURES

Order Strength : 0.042347
Time Interval : 0.125 0.94643
Time variability ratio : 7.5714
Task Complexity Index : 0.27683

Date (start) : 21-Jun-2001 10:33:39
Date (finish) : 21-Jun-2001 12:19:04

Figure 3.20. GA line balancing analysis (text output)

111

C H A P T E R

TEST PR O G R AM M E FO R GA
LINE BA LA N C IN G M O DEL

The proposed genetic algorithm model consists o f four new approaches related to

fitness function, dynamic crossover and mutation techniques, repair method and a

modified rank based selection scheme. Each o f these components has its own control

parameters and, they have significant impacts on the performance o f the model. These

new components are designed to outperform the existing line balancing genetic

algorithm models, and to support this hypothesis a series o f test programmes have

been prepared using six previously published benchmark problems. This chapter

explains the logic behind the test and the experiments proposed for evaluation o f the

above new components.

4.1 TEST CASES
The selected problems represent a spread o f problem sizes ranging from 58 to 297

elements including the largest published test problem in the literature. The cycle time

o f each problem was selected to allow a theoretical minimum number of workstations

(ra*) equals to twenty-five. This is because, firstly, equal numbers o f workstations

show the same front-loading characteristics on each problem and, secondly, these

cycle times represent hard problems and exhibit a significant difference in the number

o f workstations between the initial and the final solution. This can be used to assess

the algorithm’s capacity for improving the quality o f solutions. Table 4.1 describes

112

Chapter 4 Test program for GA line balancing model

the characteristics o f the selected precedence networks by specifying the original

reference, the number o f tasks, the minimal and maximal task time as well as the sum

o f task times, in each case. Two single-valued complexity measures for precedence

networks including Order Strength (equation 2.2) and Time Variability ratio (equation

2.3) are shown. The task time distributions o f the problems are shown in Appendix D.

These characteristics show that the selected problems cover a reasonably good

spectrum without any bias.

In this research, the following coding system was used for problem

identification (figure 4.1). Two upper case letters and a subscript indicate the problem

reference and the number o f elements in the problem respectively. A superscript

denotes the cycle time o f the particular test case.

975 < Cycle time
A R

j, . 295 a Number o f elements

Problem Reference

Figure 4.1. Test case coding system

In addition to the above problems,-48 challenging test cases o f Scholl’s data

set (Scholl, 1999) containing 12 precedence networks, including the well known 45-

element Kilbridge and Wester problem with four cycle time assigmnents

(KW469 , K W j , K W jf and KWjJ4), which have been used in the literature to evaluate

and compare algorithms, were balanced using the model to assess its overall

performance. The characteristics o f the additional test problems and their task time

distributions are also shown in Appendix D.

The precedence network details and corresponding task times were down

loaded from the following World Wide W eb site.

(h ttv ://w w w . b w l tn darm atad t. d e /b w 13 /fo rsch /v ro iek te /a lb /a lb d a ta . h tm).

113

Chapter 4 Test program for GA line balancing model

ID
Reference n C

Min.
task
time

Max,
task
time

Order
Strength

Time
variability

ratio

qtt2787
297 Scholl (1993) 297 2787 5 1386 58.2 277.2

B A 170148
Bartholdi
(1993) modified

148 170 1 83 25.8 83.0

ARfff9
Arcus (1963)

111 6269 10 5689 40.4 568.9

M U ‘7/ Mukheijee and
Basu (1964)

94 176 8 ' 171 44.8 21.4

l u 29°
Lutz (1974)
modified

89 20 1 10 77.6 10.0

W A S
Wameke (1,971)
modified

58 65 7 53 59.1 7.6

Table 4.1. Test problem specifications

4.2 HARDWARE AND SOFTWARE ENVIRONMENT AND
EVALUATION CRITERIA

In order to perform fair comparisons o f different genetic algorithm models, the

influence o f the programming language, the way o f coding or the data structures have

to be eliminated. Therefore, all algorithms are coded using the M A T L A B (version

5.3) high-level language (M A T L A B , 1998) and the same data structure was used for

all the compared algorithms. A ll computations described in this chapter were

performed on a single IBM-compatible personal computer in order to achieve

comparable results. The specifications o f the used computer system are given below.

1. Central processing unit: Intel Pentium III

2. Processing speed: 550 M H z

3. Available memory: 64MB R A M

114

Chapter 4 Test program fo r GA line balancing model

The proposed experiments were earned out with the selected six test cases

varying only one parameter, to examine its true impact on the performance, hi all the

experiments the following genetic algorithm parameters were maintained at the values

shown in table 4.2 unless otherwise specifically stated.

Control parameter Values and techniques

Fitness function F F j (fron t lo ad in g)

Population size 40

Initial population

Selection criterion

10 random task assignment solutions plus 30 bin-

packing solutions

Modified rank-based selection scheme

Selection pool size 20 chromosomes

Crossover method Variable boundary moving crossover technique

Crossover rate 0.80

Repair criterion Rank positional based technique

Mutation technique Variable boundary moving mutation technique

Mutation rate 0.01

Number o f elite chromosomes 06

Termination criterion (Number

generations)
Number o f generations (3000)

able 4.2. G A control parameters

The following performance measures and data were recorded at each one

hundredth interval up to three thousand generations for evaluation.

1. Maximum and average line efficiency

2. Maximum and average balance efficiency

3. Maximum and average population fitness

4. Number o f feasible solutions in each generation

5. Optimal number of solutions in each generation

6. Processing time per generation

7. Population selective pressure

115

These data sets were plotted against number o f generations plus average Line

and Balance Efficiency, average increase above the theoretical minimum number o f

workstations were used for evaluation and comparison o f performances. Finally, the

quality o f solutions obtained by the model was compared against the following

heuristic techniques.

1. Rank positional weight technique (Helgeson and Bimie, 1961).

2. Hoffman precedence matrix procedure (Hoffmann, 1963).

3. C O M SO A L (Arcus, 1966).

4. Modified Hoffman technique (Thilakawardana et al, 2002)

4.3 MODEL CONTROL PARAMETERS
4.3.1 FITNESS FUNCTION COMPARISON
The novel front-loading fitness function is the key component o f the new model. It

was designed using the front-loading concept (described in Chapter 3) to outperform

existing fitness models and have proved theoretically that it yields the optimum

solution or theoretical minimum number o f workstations in a. multi solution

environment. In order to support this hypothesis, eight' fitness function models

including seven previously published plus one based purely on balance efficiency

were compared against the proposed model.

The original fitness functions are listed in table 2.5. Depending on the fitness

function, a genetic algorithm model becomes a maximization or minimization

problem. Four o f the selected fitness functions including the front-loading fitness

function fall into the maximization category and the others into the minimization

category. The minimization models were modified into maximization models as

shown in table 4.3 to make the comparison fair and meaningfiil.

Each modified overall fitness function (FF 2...9) consists o f parts for evaluating

feasible and infeasible chromosomes. I f the number o f feasible precedence links in a

chromosome is less than the total number o f precedence links (P), the chromosome is

in fea sib le and, the number o f feasible precedence links (/) becomes the overall fitness

Chapter 4 Test program fo r GA line balancing model

116

function. On the other hand, if the total number o f feasible links equals the total

number o f precedence constraints (i.e., I = P) the chromosome is a feasible

chromosome and, therefore, the overall fitness function is given by f + (f/)k ; where f i

is the fitness function evaluating infeasible chromosomes and iff)k is the secondary

fitness function evaluating feasible chromosomes and generally different from model

to mode. Therefore, the complete overall fitness function is given in equation 4.1.

Chapter 4 Test program for GA line balancing model

f t K P
F F k = -j (4.1)

f + l - P

Where f = /

4.3.1.1 THE IN FLU E N C E OF FITNESS F U N C T IO N PARAM ETER S

It can be seen from the equations 3.8 and 3.9, that the change o f fitness (AZ) is

exclusively dependent on the front-loading constant R . A high value o f R decreases

the change o f fitness, particularly transferring elements among latter workstations in

problems with a large number o f workstations. Low front-loading constants do not

create enough fitness change however to force the algorithm to perform forward

loading, consequently this constant should be selected carefully by examining the

approximate number o f workstation in the final balance. To examine this point the

proposed fitness function (Equation 3.15) was run with five different front-loading

constants (1.5, 2.0, 10, 20 and 40) to examine its effect on forward loading

performance.

The number o f generations permitted per workstation (G) is the second control

parameter, which has a major impact on the performance. and the convergence.

Allocating more generations per workstation will allow the algorithm to search for

better workstation assignments, but an excessive number o f generations per

workstation would increase the computational time unnecessarily. Five different

levels o f G (40, 80,120,160 and 200) were examined by terminating simulations at

1000, 2000, 3000, 4000, and 5000 generations. The influence o f different levels o f G

117

on average C PU time was also analysed to develop a relationship between the two

parameters.

C hapter 4 Test p ro g ra m fo r. G A line b a la n c in g m od e l

Fitness
Function

ID
Reference Modified fitness function

F F 2

Minagawa and
ICakaz (1992)
(L ine E ffic ien cy) I ' i

f + J ± ~
' m C

1 < P

I = P

(4.2)

F F 3

f f 4

f f 5

f f 6

Falkenauer &
Dechmbre (1992)

Tsuiimuya et al
(1995)

/<

/ , +

X
j -1

t

Leu etal (1994) f , +

1

/</>

/ = ?

/ < p

•/ = />

Z (S y - C) 2 X t c - s j
y=l + 1

/l

/,+■

//

f Z (c - Y) +1

Suresh et al (1996) // + r™ ■
(S m ooth n ess index) J E (C - S ,) 2 + 1

m

1 < P

l = P

l < f

l = P

(4.3)

(4.4)

(4.5)

(4.6)

7=1

Kim et al (1998)
(M ean a b so lu te
d ev ia tio n)

f .

/,+■

/</>

/ = P

+1
tn m

(4.7)

Table 4.3. Modified fitness functions

118

Where f = I

Chapter 4 Test program for GA line balancing model

Fitness
Function

ID
Reference Modified fitness function

F F 8
Sabuncuoglu et ai
(2000)

f ,

h +

1 < P

■l = P
t/f in

7=1

m
+ 7=1 + 1

m

F F 9 (B a lan ce E ffic iency)

f i

f + n

r m ^

7=1

m x S „

1 < P

l = P
(4.9)

Where f i — I

4.3.1.2 THE EFFECT OF THE PR O BLEM C O M PLE X IT Y O N FITNESS
M O D E L

Generally, cycle times, task time distributions and the structure o f the precedence

network govern the problem complexity, and have a major impact on the balancing

problem. Previous studies (Talbot et al, 1986) showed that heuristic performances

less affected by network structure, however it significantly varies with the magnitude

o f the cycle time. Cycle times close to the maximum task time and multiples o f cycle

times (2C, 3C) are relatively hard to balance. Equally task time distributions

positively skewed (figure 4.2(a)) towards the cycle time are harder than negatively

skewed (figure 4.2(b)).

119

Chapter 4 Test program fo r GA line balancing model

Task tim e

Figure 4.2(a). Positively skewed Figure 4.2(b). Negatively skewed

Moreover, precedence networks with low height to breadth ratio are generally

considered as difficult problems. To find the real effect o f cycle time on the proposed

genetic algorithm model, a set o f four-cycle times were selected from each problem

consisting o f both hard and easy problems. They were categorized according to

Hoffmann’s classification, that is, cycle times where the number o f workstations (m)

falling between the following limits is considered as hard problems, and the selected

cycle times are shown in table 4.4.

n n

2>, 2 7
(=i

2 /
< m < M

Where tmax is the maximum task time

Problem Cycle time

s h 279 14215 7035 4675 3500

CO > -to 00 865 430 285 to o

AR|ti 30695 15195 10095

■ i

7560

m u 94 859 426 283 212

l u 89 98 50 35 25

w a 98 316 157 104 -j oo

Table 4.4. Selected test cycle times

Hard problems

120

The effect o f problem complexity on the performance and the variation o f

computational time with the number o f generations and problem size were also

analysed.

4.3.2 T H E IN F L U E N C E O F P O P U L A T IO N S IZ E A N D IN IT IA L
S O L U T IO N S

The number o f chromosomes in the population has a strong influence on the

convergence o f the algorithm and the computational time. A large population

increases the computational time unnecessarily and, conversely, a small size o f

population would restrict the convergence and shows poor performance. To study this

issue five populations having sizes 20, 40, 60, 80 and 100 were examined.

The characteristics o f the initial population have a significant influence on the

convergence. It was reported that a well seeded, or in other words, a starting

population with good solutions, quickly converges to the global optimum compared to

that o f a poorly seeded population. Five sets o f initial populations, consisting o f a

single solution generated by the following popular heuristic algorithms plus 39 bin-

packing solutions were generated and studied.,

1. Random task assignment heuristic (section3.3).

2. Rank positional weight heuristic (Helgeson and Bimie, 1961). ,

3. Hoffman precedence matrix procedure (Hoffmann, 1963).

4. C O M SO A L (Arcus, 1966).

5. Bin packing

The default initial population o f the model consists o f solutions generated by

the random task assignment technique and bin packing solutions.. Five levels o f

random solutions per population (1, 5 10, 20, and 40) were examined to find the

optimum ratio, keeping the population size to 40. Furthermore, the variation o f CPU

time with respect to population size was also studied to find the extra computational

time needed due to increasing population size and also to establish a relation ship

between C PU time and population time.

Chapter 4 Test program for GA line balancing model

121

C h a p ter 4 Test p ro g ra m f o r GA lin e b a la n c in g m o d el

4.3.3 C O M P A R IS O N O F S E L E C T IO N T E C H N IQ U E S

A number o f selection techniques have been defined in the literature over the last

twenty-five years and some o f them experienced high selective pressure and loss o f

diversity as generations progress, mainly in latter part o f the simulation. The number

o f identical chromosomes in the selection pool determines the selective pressure and

the more the number o f identical chromosomes the higher the selective pressure and

the lower the population diversity. It also affects the selection process indirectly by

consuming extra time on selecting different chromosomes for the mating process and,

generally ends up with poor quality solutions.

The new s election s cheme in the model w as developed b ased on the rank-

selection scheme. It was designed to overcome the above problems. In order to

compare the performance o f the new selection scheme, the following five previously

published selection schemes including the original rank based were experimented

with against the proposed technique.

1. Rank-based technique

2. Roulette wheel

3. Toumament selection

4. Random selection

5. Good and bad selection

The selective pressure o f the original rank-based technique and the modified

method were compared to confirm the effectiveness o f the modified selection scheme.

In the modified selection scheme, the best twenty chromosomes were selected

to create the selection pool and then the chromosomes were selected from the

selection pool for mating. The size o f the selection pool is very important for better

performances. A small selection pool restricts the search to small neighbourhoods and

would not allow the algorithm to explore the whole search domain and also results in

high selective pressure. H owever, a large selection pool contains both superior and

inferior chromosomes resulting in low quality solutions due to scattering. To study

.this issue four different sizes o f selection pools containing 10, 20, 30 and 40

chromosomes were investigated to find the best selection pool size.

122

4.3.4 COMPARISON OF CROSSOVER TECHNIQUES
Crossover is the main reproductive operation in the model that generates new

offspring. Transferring the best attributes o f parent chromosomes in the assembly line

balancing problem has been discussed in the literature and most o f the published

methods could not overcome this. However, the proposed Fixed Boundary and

Variable Boundary Moving Crossover Point techniques (FBM CP, V B M C P)

addressed this issue successfully. To verify this claim, the proposed techniques were

tested against the following six published methods (section 2.2.3.6.2).

1. Two point crossover (TPC)

2. Single point crossover (SPC)

3. Order crossover (O R D)

4. Positional based crossover (PO S)

5. Fragment crossover (FR G)

6. Uniform crossover (U N I)

The new crossover technique is not limited to the front-loading fitness

function, it could be used with any fitness model developed for line balancing. To

examine the validity o f this statement, the fixed boundary moving crossover technique

was experimented with two previously published fitness functions (F F 3, F F 3).

In both FBM CP and V B M C P techniques, the size o f the crossover span (cs) is

constant. Small crossover spans would prevent transferring good attributes to

offspring and, 1 arge crossover spans w ill c arry b oth good and b ad attributes o f the

parents to their offspring resulting in low quality s olutions. Five different sizes o f

crossover spans (0.5q, Iq., 1.5q, 2cs, and 2 .5 cs) were studied to find the overall best

crossover span ratio (i.e., crossover span size/cy) for generating quality solutions.

4.3.5 THE EFFECT OF REPAIR TECHNIQUES
After the crossover operation, duplicate elements in the chromosomes violate the line

balancing constraint assumptions. This problem has been addressed by several

researchers proposing different repair procedures. Some o f the procedures may

consume extra computational time searching for feasible combinations. In this

research the three repair procedures described in the previous chapter were studied.

The number o f feasible solutions in the population was found in each generation and

Chapter 4 Test program fo r GA line balancing model

123

the average number o f feasible solutions created per generation was considered for

comparison.

4.3.6 COMPARISON OF M U T A T I O N TECHNIQUES
Mutation is the other genetic operation, which prevents the algorithm converging on a

local optimum. This model includes two new mutation methods called Fixed

Boundary Adjacent Mutation (F B A M) and Variable Boundary Adjacent Mutation

(V B A M). The performances o f the new techniques were compared with the following

mutation techniques (section 3.3.3).

1. Random (Classic) Mutation (R A M)

2. Adj acent Mutation (A D M)

3. Fixed Boundary Random Mutation (FBR M) ■

4. Variable Boundary Random Mutation (V B R M)

5. Fixed Boundary Adj acent Mutation (F B A M)

6. V ariable Boundary Adj acent Mutation (V B A M)

4.3.7 THE INFLUENCE OF ELITISM
Rudolph (1994) showed that classical genetic algorithm would never converge

without elitism. The number o f elite chromosomes copied to the new population has a-

great influence on the convergence. Alternatively, copying more elite chromosomes

will decrease population diversity and leads the algorithm to settle in local optima. A

set o f four different elite chromosomes to total number o f chromosomes ratios

(0.025,0.25,0.50,and 0.75) are experimented with to find the best ratio giving a high

performance.

4.4 TEST PROGRAMME SUMMARY

The complete summary o f the test programme is presented in table 4.5. Sixty-five test

experiments were conducted with the selected six problems to generate results for

evaluation and they are presented and analysed in the next chapter to draw

conclusions.

Chapter 4 Test program fo r GA line balancing model

124

Chapter 4 Test program for GA line balancing model

Control parameter
Number o f
experiments

Fitness functions 9

Front loading fitness function constant(R) 5

Generations per workstation (G) 5

Initial populations 5

Number o f random solutions/population 5

Population size 5

Selection techniques 5

Crossover techniques 8

Crossover zone size 5

Mutation techniques 6

Repair techniques 3

Number o f elite chromosomes per A
population

q

Total 65

Table 4.5. Test programme summary

125

4.5 SELECTION OF FACTORIAL EXPERIMENT
PARAMETERS

The single factor design experiments, varying one experimental condition at a time

repeated under the same conditions (section 4.3) has been applied in this research to

identify and examine the leading parameter combinations.

To complete the experimental programme planned for this application o f the

Genetic Algorithm, single factor analysis is extended in this section to a multi-

variable analysis. Experimentation with multi-variable analysis can make use o f the

factorial design approach, in which factors (significant major independent variables or

parameters) are varied in levels or ‘sub-divisions’. An experimental design with

factors a 11 wo 1 evels i s c ailed t wo-factor f actorial e xperiment, t he t wo 1 evels b eing

either quantitative or qualitative. Examples o f qualitative factor variation can include

‘high and low ’, and ‘presence and absence’. A complete two-level replicate factorial

analysis requires 2k observations, generating for example the need for four thousand

and ninety six tests per replicate in a 2k factorial design (/c =12) for the assembly line

Genetic Algorithm review.

To manage an initial detailed examination in the application o f the Genetic

Algorithm to assembly lines,, the starting point is to separate and identify the

significant factors and interactions. The literature helps to identify six significant

parameters including the number o f generations. Five parameters, fitness function,

selection method, crossover and mutation techniques, initial population appear in the

leading references as significant factors worthy o f examination, (Dasgupta &

Michalewicz(1997), Falkenauer (1998), Haput (1998)).

During the single parameter experimentation, the number o f iterations was

also found to generate interesting results (Chapter 5.2.2), with an identification o f

convergence o f results at around three thousand generations. The effect o f number of

generations as a factorial analysis parameter is considered therefore worth examining

and is added to the list of significant parameters, creating six in total. For analysis in

section 5.10 section o f the next chapter.

Chapter 4 Test program fo r GA line balancing model

126

Chapter 4 Test program for GA line balancing model

The remaining six out o f twelve parameters examined at the single parameter

analysis stage (front-loading constant, crossover and mutation span size, repair

technique, the number o f elite chromosomes and feasible solutions in the initial

population) are problem specific and therefore have been held back from the factorial

analysis, being identified in the further research section (Chapter 7).

4.5.1 Design of factorial experiment
The selections o f appropriate levels for the six factorial parameters are based on

highest and second highest results. Table 4.6 identifies parameters, levels and

nomenclatures used in the remainder o f this chapter.

A complete replicate o f the 2k factorial analysis requires would have required

sixty four runs, examining six o f the 63 degrees o f freedom correspond to main

effects plus fifteen degrees o f freedom correspond to two-factor interactions. The

remaining forty two degrees o f freedom are associated with three-factor and higher

interactions.

The single parameter investigation and review o f factorial experiment design

test cases supports the use however o f a half-fraction o f the 26 design, an approach

consistent with the concepts o f experimental design (Montgomery, 2001). The

construction o f the 26"1 design is shown in table 4.7. The design was constructed by

writing down the basic design having 32 runs (25 design in A, B, C, D and E),

selecting A B C D E F as the generator, and then setting the levels of the sixth factor

F = A B C D E . The defining relation for this design is I = A B C D E F and every main

effect is aliased with a single five-factor interaction, and every two-factor interaction

is aliased with a single four-factor interaction. Thus, the design is o f resolution V I (the

degree to which estimated main effects are aliased or confounded).

The W E 58 problem (cycle time = 56) is selected for the experiments,

exhibiting a suitable size and complexity o f precedence relationship. This is supported

by previous experimentation with this problem, which identified a considerable

change in the number o f solution stations (Chapter 3, figure 3.19).

127

C hapter 4 Test p ro g ra m f o r G A lin e ba la n c in g m od e l

Factor Highest

(+)

Next High

(-)

Reference

Fitness function
(A)

FFi (Front
loading fitness
function) [a]

FF5
(Tsujimuya et al.,

199.5)

Chapter 5.1
(Figure 5.9)

Crossover
technique

(B)

Variable
Boundary
Moving

Crossover Point
(V B M C P) [b]

Uniform
Crossover(UNI)
Positional based
crossover (POS)

Chapter 5.5.1
(Figure 5.38)

Selection method

(Q

Modified Rank
Based Selection
method (M R BS)

M

Rank-based
selection method

(R BS)

Chapter 5.4
(Figure 5.30)

Number o f
generations

CD)

2000 [d \ 6000
Chapter 5.2.2
(Figure 5.19)

Mutation
technique

(E)

Variable
Boundary
Adjacent
Mutation
technique

(V B A M) 0]

Fixed Boundary
Adjacent

Mutation(FBAM)

Chapter 5.7.1
(Figure 5.43)

Population size

(F)
40 [/] 60

Chapter 5.3.1
(Figure 5.26)

[x] Shows the treatment w ith factors X. at the high level

Table 4.6. Line Balancing G A Parameters and Levels

The analysis o f variance (A N O V A) is used for data analysis and all terms with

a p-value higher than 0.05 are rejected as their effects are negligible. With more than

four parameters under investigation, the widely available M IN ITAB® software

package is employed to support analysis o f results.

128

Chapter 4 Test program for GA line balancing model

Run
Basic Design

F ^ A B C D E

Treatment

CombinationA B C D E

1 - - - - - - 1
2 + - - - - + a f
3 - + - - - + b f
4 + + - - - - cb
5 - - + - - + c

6 + _ + _ _ _ a c
7 - + + - - be
8 + + + ■ - - + a b e f
9 - - - + - + d f
10 + - - + - - ac

11 _ + + _ a d
12 + + - + - + a b d f
13 - - + + . - - cd
14 . + - + + - + a c d f
15 - + + + - + b e d f

16 + + + + _ _ a b e d
17 - - - - + -t* ef
18 + - - - + - ae
19 - + - - + - be
20 + + - - + + a b e f

21 - - + _ + _ ce
22 + - + - + + a cd e
23 - + + - + + b e e f
24 + + + - + - a b ce
25 - - - T* + - de

26 + - - + + + a d e f
27 - + - + + + b d e f
28 + + - + + - a b d e
29 - - + + + c d e f
30 + - + + + - acd e
31 - + + + + - bed e
32 + + + + + + a b e d e f

Table 4.7. A 2 6'* Design and treatment combination

129

R ESU LTS EV A LU A TIO N

The experiments performed to evaluate the applicability and effectiveness o f the

proposed model for simple assembly line balancing problems are presented in this

chapter. Comparison is made between the proposed genetic algorithm features with

existing ones to confirm their superiority.

Thirteen test experiments have been conducted on 65 parameters and, the

simulation results have been recorded at one hundred generation intervals up to three

thousand generations generating total 11,7.00 test data (6 problems x 65 parameters x

30 generations), eventually, 48 previously published test problems were solved to

show its applicability to a wide range o f problems. The test results are presented in

the form o f tables and graphs in the order presented in Chapter 4. The results are

discussed and specific comments are made after each evaluation.

An overall discussion o f results and the final conclusions drawn on the genetic

algorithm line-balancing model for solving generalized simple assembly line

balancing problems are presented in the next chapter.

5.1 FITNESS FUNCTION COMPARISON
High line efficiency signifies positive achievement in line utilization and is the key

indication o f economic performance, with one hundred percent representing the best

achievable. The average line efficiency performance o f the nine fitness functions

(FFi,FF2,...,FF9) over the number o f generations is shown in figures 5.1, 5.2, 5,3 and

5.4.

130

Av
er

ag
e

LE
(%

)
Av

er
ag

e
LE

(%
)

C ha pter 5: Results eva lua tion

Generations

Figure 5.1. Average line efficiency performances o f fitness
functions FFi, FF2 and FF3

Generations

Figure 5.2. Average line efficiency performances of
fitness functions FFi, FF4 and FF5

131

Av
er

ag
e

LE
(%

)
A

ve
ra

9e
LE

<%
>

Chapter 5: Results evaluation

Generations

Figure 5.3. Average line efficiency performances o f
fitness functions FFj, FF6 and FF7

Generations

Figure 5.4. Average line efficiency performances o f
fitness functions FFi, FFg and FF9

132

Chapter 5: Results evaluation

All fitness functions have improved the initial solution as the evolution

proceeds. In all c ases, a significant increase o f average line e fficiency can be seen

over the first one hundred generations. The Fitness function FFi showed the highest

average line efficiency, and its increase was substantial mainly during first the 1,200
generations. However, the improvement was gradual thereafter, and finally reached

just under 93%. The second best performance was shown by FF5 (just over 90%), and

there was hardly any increase in average line efficiency beyond 750 generations.

Fitness functions FF2, F F 3, F F 4, FFs and F F 9 all converged to the same value (89+%)

after initial steep increases.

The fitness functions FF6 and FF7 improved the initial solution over 100 and

200 generations respectively but subsequently decrease the quality o f the solution.

One possible explanation is both these fitness functions are trying to achieve the

primary line:balancing objective (i.e., minimizing the number o f workstations) by

reducing the station time variation.

Graphs shown in figures 5.5, 5.6, 5.7, and 5.8 display the average balance

efficiency performances. Balance efficiency is representative o f the distribution o f

workload with consequent personnel satisfaction combined with increased

opportunities for greater output, and is considered as the secondary objective o f line

balancing.

A ll fitness functions showed a marked increase in average balance efficiency

over the first 50-100 generations. Fitness function F F 7 showed the highest

performance and FFg, which is based on a pure balance efficiency definition, shows

the second best. Fitness functions, F F 2, F F 5, F F 7, FF§ and F F 9 displayed similar

characteristics and after steep initial increases, they all showed gradual increases in

average balance efficiency up to 2000 generations. However, beyond 2,500

generations, the increase was marginal in FFg and F F 9 and the others remained

constant.

133

Chapter 5: Results evaluation

Generations

Figure 5.5. Average balance efficiency performances o f
fitness functions FFi, FF2 and FF3

Generations

Figure 5.6. Average balance efficiency performances o f
fitness functions FFi, FF4 and FF5

134

Av
er

ag
e

BE

(%
)

Av
er

ag
e

BE

(%
)

Chapter 5: Results evaluation

Generations

Figure 5.7. Average balance efficiency performances o f
fitness functions FFi, FF6 and FF7

Generations

Figure 5.8. Average balance efficiency performances o f
fitness functions FFb FF§ and FF9

135

Chapter 5: Results evaluation

Fitness function FFi, which is based on the front-loading concept generally

showed low balance efficiency. After an initial boost in average balance efficiency,

there was a gradual increase with ± 1% fluctuation (between 50-2,000 generations).

This is mainly because the front loading process forces the algorithm to assign

elements to early workstations if possible, leading to significant variation of workload

particularly in the last few workstations. The improvement after 2,500 generations

was negligible. The lowest balance efficiency was obtained by fitness function FF3
and it showed gradual decrease in balance efficiency after 50 generations.

A summary o f average line efficiency obtained by the fitness functions is

shown in figure 5.9. As can be seen from the bar chart, the proposed front-loading

fitness function showed the highest o f 92.96%. Fitness function F F 5 developed by

Tsujimura et al (1 9 9 5) exhibited the best among the published fitness function models

(90.16%). The lowest average line efficiency was obtained by FF7, which is based on

mean absolute deviation. Thus, findings indicate that the proposed fitness model

outperformed selected the published fitness models with an average improvement o f

2.80% more than F F 5 (second best).

Fitness function

Figure 5.9. Average line efficiency variation

136

Figure 5.10 summaries the average balance efficiency obtained by the fitness

models. The highest average was obtained by fitness function FF7, (95.77%) which is

0.16% above the second best obtained by the fitness function FFs, developed on a

pure balance efficiency definition. Five fitness function models showed a high

average, over 95.5%, at the expense o f average line efficiency. The front-loading

fitness function displayed a low average o f 92.80% and it is 4.08% above the lowest.

FF3 proposed by Falkenauer and Delchambre (1992) obtained the lowest o f 88.72%.

Chapter 5: Results evaluation

Fitness function

Figure 5.10. Average balance efficiency variation

Table 5.1 shows the number o f workstations in the final solution obtained by

nine fitness models. A ll the six test problems have the same theoretical minimum

number o f workstations (ra*) o f 25. In cases where the number o f workstations is

greater than the ra*, the difference is specified following the t+’ sign.

The fitness function FFi showed the least number o f workstations above ra*.

bi cases, M U 9!6 and A R ®69 it obtained the theoretical minimum number o f

workstations and, in cases LUg° ,B A ™ and SH ^?7 it was one workstation above the

137

C ha pter 5: Results eva lua tion

m * The total number o f workstations above the m * obtained by all the other fitness

functions was twice or more that obtained by FFi. These findings show the new

model’s power and applicability for solving simple assembly line balancing problems.

Fitness
function

Test problem

W A S L U 20-U U 89 M U ™ A R .T RA'™ S H g f

FF[27+2 26+l 25 25 26+l 26+1

f f 2 29+4 27+2 27+2 27+2 27+2 27+2

f f 3 29+4 26+1 26+l 28+3 27t2 27+2

f f 4 29+4 27+2 27+2 27+2 27+2 27+2

f f 5 29+4 27+2 26+1 26+1 27+2 27+2

f f 6 30+s 27+2 27+2 28+3 27+2 27+2

f f 7 30+5 27+2 26+1 28+3 27+2 27+2

f f 8 29+4 27+2 27+2 27+2 27+2 27+2

f f 9 29+4 27+2 27+2 27+2 27+2 27+2
Number o f workstations above the optimum is specified follow ing the t+ sign.

Theoretical minimum number o f workstations

Table 5.1. Number o f workstations in the final solution

Maximum fitness o f a population is a good measure o f assessing the

performances and convergence o f the genetic algorithm. In the proposed model,

forward and backward loading results in increasing and decreasing fitness

respectively, and decreasing the number o f workstations shows a significant increase

in fitness. Figures 5.11 to 5.16 show the performance o f the front-loading fitness

function on individual test cases. The change in the number o f workstations is also

shown below each fitness curve to illustrate its effect on maximum fitness. For all

cases, FFi showed a stepwise increase in maximum fitness. Small increases were due

138

Chapter 5: Results evaluation

to a station filling up and large step increases appeared when the number o f stations in

the solution decreased.

Generations

Generations

Figure 5.11. Maximum fitness and the number o f workstations

against generations for the W A fs problem

X 10 '

1000 1500 2000 2500 3000
Generations

Generations
Figure 5.12. Maximum fitness and the number o f workstations

against generations for the L U ^ problem

139

No

of
w

or
ks

ta
tio

ns

M
ax

im
um

fit

ne
ss

Chapter 5: Results evaluation

x 10

in <i> 0) c

E3
E

.2
ro

o

Generations

Generations

Figure 5.13. Maximum fitness and the number o f workstations

against generations for the M U ^ 6 problem

x 10

1000 1500 2000 2500 3000
Generations

Generations

Figure 5.14. Maximum fitness and number o f workstations

against generations for the A R 6269 problem

140

Chapter 5: Results evaluation

Generations

Generations

Figure 5.15. Maximum fitness and the number o f workstations

against generations for the BAj™ problem

Generations

Generations

Figure 5.16. Maximum fitness and the number o f workstations

against generations for the SH 2™7 problem

After about 2,500 generations there was hardly any change in maximum

fitness, indicating the further shifting o f elements to earlier workstations was

restricted. This suggests that, 2500 generations is the best termination value for the

selected test cases irrespective o f the number o f elements in the problem.

5.2 THE INFLUENCE OF FITNESS FUNCTION PARAMETERS

5.2.1 F R O N T L O A D IN G C O N S T A N T

The value o f the front-loading constant (R) determines the propensity o f elements to

be shifted to front stations. It was shown that this value must be greater than unity, in

order to satisfy the front-loading concept (equation 3.9). Theoretically, increasing R

can force the algorithm for heavy front loading, but its upper bound must be less than

a certain value, for good performance. This upper bound is normally dependent on the

approximate number o f workstations in the final solution. Table 5.2 shows the

number of workstations obtained in the final solution for different front-loading

constants. Figure 5.17 displays the average number o f workstations above the

optimum solution.

Chapter 5: Results evaluation

Front
loading
constant

Test problem

W A S L U g M U ™ A R “

O
00

C-~< q t t 2787
297

1.5 26+1 26+l 25 ■ 25 26+l 26+1

2.0 I I *2 27+2 25 26+l 26+1 I t 2 ,

10.0 29m
27+2 27+2 27+2 27+2 28+3

20.0 29+4 27+2 27+2 27+2 I t 1 28+3

40.0 2 9 44 28+3 28+3 27+2 27+2 28+3

Number o f workstations above the optimum is specified following the ,+ sign.

Theoretical minimum number o f workstations

Table 5.2. Number of workstations in the final solution

142

Chapter 5: Results evaluation

4

3.5 -

Front loading constant (R)

Figure 5.17. Average number o f workstations above the optimum

When R = 1.5, the fitness model indicated the lowest average above the

optimum o f 0.66 and, in problems M U ^ 6 and A R 6269, it yielded the optimum

solutions. The other four problems reported one stations above the optimum. As the

front-loading constant increases, the quality o f the solutions became poorer and, after

R >10 the number o f workstations in the final solution were about 3-4 workstations

above the optimum.

The above results can be explained by considering the fitness change per unit

element plot shown in figures 5.18(a)-(d) for different R-values. A ll possibilities o f

transferring elements between two stations are considered for the problem BA [™ , and

the fitness change (A Z) was plotted against relevant workstations. It can be clearly

seen that, for higher values o f R, the change o f fitness, even after the first few

workstations, was constant (figure 5.18(d)), resulting in a very low force on the

algorithm for forward loading, but within the first few stations, it showed a significant

change. A small R eliminates this problem (figure 5.18(a)) and, therefore is

recommended for test problems with a large number o f workstations in the final

solution. However, high front-loading constant values also show excellent

143

performance for test cases with small number o f workstations. These results are

consistent with the values suggested in section 3.2.2.4.

Chapter 5: Results evaluation

Figure 5.18(a). Fitness change plot fo r£ = 1.5

Figure 5.18(b). Fitness change plot for R = 2.0

W orkstation(a)
W orkstation(b)

144

Fi
tn

es
s

ch
an

ge

Fi
tn

es
s

ch
an

ge

Chapter 5: Results evaluation

Figure 5.18(c). Fitness change plot for R = 10.0

= 10

change

W orkstation(a) W orkstation(b)

Consta

; r

nt fitness

: R = 20

Fitriessjchnge is alm ost-constani

W orkstation(a) W orkstation(b)

Figure 5.18(d). Fitness change plot for R = 20.0

145

Chapter 5: Results evaluation

5.2.2 T H E IN F L U E N C E OF N U M B E R O F G E N E R A T IO N S P E R M IT T E D PE R
W O R K S T A T IO N

As described in the previous chapter, the number o f generations permitted per

workstation (G) is the second most significant parameter, which influences the

performance. Table 5.3 shows the number o f workstations in the final solution after

running the algorithm for five different termination levels. These results are

summarized and presented in the figure 5.19.

Figure 5.19 shows that for the number o f generations per workstation on and

above 120, the algorithm showed the lowest average above the optimum o f 0.66. Both

test problems M U 946 and A R #69 obtained optimal solutions after 120 generations per

workstation and all the other four problems reported one workstation above the

optimum indicating a sufficient number o f iterations is required for reaching better

solutions. The highest average above the optimum was obtained for 40 generations

per workstation and this is mainly due to an insufficient number o f generations for the

algorithm to do enough forward loading. ,

Number o f
generations
per station

Test problem

W A “ L U ”
M U]# AR fff9 B A 170148

C TJ 2787
297

40 28+3 27+2 26+1 27+2 26+1 27+2

80 27+2 27+2 25 I T 2 26+1 27+2

120 26+1 26+1 •25 25 26+1 26+1

160 26+l 26+1 25 25 26+1 26+l

200 26+1 26+1 25* 25< 26+l 26+l

Number o f workstations above the optimum is specified following the e+’ sign.
Table 5.3. Number o f workstations in the final solution

146

Chapter 5: Results evaluation

3

2 . 5 -

C
o

Figure 5.19. Average number o f workstatiJ^iabcrvepfla©t©|j(iiinium

Table 5.4 shows the CPU time taken for different levels o f G (40, 80, 120, 160

and 200). Running the algorithm for 1000, 2000, 3000, 4000 and 5000 generations

(considering 25 workstations in the final solution) obtained the above G values.

Figure 5.20 displays the average C PU time for different termination levels.

Total
number o f
generations

(G)

Test problem

W A 6g L U " m u 1746 AR fff9 R A 170C A 148
CTT 2787
oJri297

1000(40) 19.72 30.0 32.0 35.6 49.5 122.3

2000(80) 70.1 54.0 113.2 71.3 96.5 248.9

3000(120) 62.2 . 87.5 183.8 107.9 135.6 260.7

4000(160) 82.7 113.2 236.8 138.57 187.1 478.3

5000(200) 94.4 146.1 290.5 173.3 231.3 584.3

Table 5.4. CPU time in seconds for different termination levels

147

Chapter 5: Results evaluation

Total number of generations
Figure 5.20. Average C PU time variation against the total
number o f generations

From figure 5.20 it can be seen that the termination level was correlated with

average C PU time showing a linear relationship. This implies that the model could be

run for a long time if needed, without the C PU time growing exponentially. Based on

the above findings, it can be concluded that, the overall best number of generations

for the studied test problems (where m * < 25) is 3000 generations and running the

algorithm beyond would hardly improve the quality o f the solution.

Additionally, the capability o f the new fitness model in addressing the primary

objective o f the assembly line balancing problems is confirmed by solving the well-

known four test cases (K W 469, K W 4952 , K W j f , and K W " 4) from the 45-element

Kilbridge and Wester problem. Eight selected fitness functions and the proposed

fitness function (FFi) were applied to solve the above four problems, and after 3000

generations the number o f workstations in the final solution were recorded and they

are shown in table 5.5.

148

Chapter 5: Results evaluation

c ra*

Fitness function

FFi f f 2 f f 3 f f 4 f f 5 f f 6 f f 7 f f 8 f f 9

69 8 8:? 9 9 9 9 9 9 9 9

92 6 0 0 : 7 7 7 7 7 7 7 7

138 4 . 4 5 5 * 5 5 5 ' 5 5 5

184 3 • 3 4 4 4 4 4 4 4 4

C is the cycle time and m* is the optimum number o f workstations

Theoretical minimum number o f workstations

Table 5.5. Number o f workstations after 3000 generations

Table 5.5 identifies the power o f the proposed fitness function FFi by solving

all four problems optimally, whereas the other eight fitness models solved the

problems with an extra cost o f a workstation. Figures 5.21-24 represent the station

time distributions at generations 1, 1000, 2000 and 3000 for the four problems with

the fitness function FF i.

1000

1 2 3 4 5 6 7 8 91 0
Station number

. 2000

1 2 3 4 5 6 7 8 910
Station number

• 3000

co 20

1 2 3 4 5 6 7 8 9
Station number

1 2 3 4 5 6 7
Station number

Figure 5.21. Station time distribution after 1,1000,2000, and 3000

generations for the problem K W 4659

149

Chapter 5: Results evaluation

1000
100

to

100

Station number
2000

Station number
3000

100 100

to

Station number Station number

Figure 5.22. Station time distribution after 1,1000,2000, and 3000

generations for the problem K W 492

1000
150

100

as 50

150

100

as 50
to

1 2 3 4 5
Station number

20Q0

1 2 3 4 5
Station number

3000
150

100

2 50
to

150

100

2 50

1. 2 3 4 5
Station number

1 2 3 4
Station number

Figure 5.23. Station time distribution after 1,1000,2000, and 3000

generations for the problem KWjJ8

Chapter 5: Results evaluation

1000
200

150

100

to 50

200

150

100

to 50

Station number
2000

200

150

100

to 50

200

to 50

Station number
3000

Station number
1 2 3

Station number

Figure 5.24. Station time distribution after 1,1000,2000, and 3000

generations for the problem KW#84

Figures 5.21-23 can be used to illustrate the forward loading mechanism o f

the proposed fitness function. Consider the problem K W 4659 , which is the hardest

problem among those selected. As can be seen from figure 5.21, after one generation

the first workstation was packed to its capacity (cycle time = 69), but after one

thousand generations, workstations 1 and 2 were packed, and after 2000 generations

the first five workstations were packed to the cycle time. Between 2000 and 3000

generations the number o f workstations was reduced from nine to eight and all the

workstations were packed to capacity yielding the optimal solution.

The same progressive filling mechanism can be seen in all the other three

problems and they achieved optimal solutions between 2000-3000 generations.

However, in ICW4184, optimum solution was reached between 1000-2000 generations.

151

Chapter 5: Results evaluation

5.2.3 THE EFFECT OF PROBLEM COMPLEXITY ON FITNESS
MODEL

Talbot et al (1986) claimed that the performance o f heuristic line balancing methods

were significantly effected by the cycle time. To find out the influence o f problem

complexity on the performances o f the new model 24 cycle times consisting of both

hard and easy problems were solved. Table 5.6 summarizes the number o f

workstations yielded after 3000 generations, where m * denotes the theoretical

minimum number o f workstations for the particular set o f test cases.

The proposed fitness model could not solve any o f the hard problems

optimally, however as problems become easy, in other words, when the cycle time is

larger, more optimal solutions were achieved. For, example, five out o f six cases o f

the group where m * = 5, reached the optimal solutions and only one optimal solution

was recorded in the second and third groups.

Figure 5.25 shows the average number of workstations above the optimum in

each group (m * = 5, 10, 15 and 20). The lowest o f 0.16 were obtained by problems in

group I (m * = 5) where all the problems are considered as easy problems and their

average cycle times are far away from the maximum task times.

Test problem

m *

W A sj L U 89 M U 94 A R m B A 148 SH 297

Table 5.6. Number o f workstations in the final solution

20

Number o f workstations above the optimum is specified following the i+ sign,

i l l Hard problems Theoretical minimum number o f workstations

152

Chapter 5: Results evaluation

2

1.8

1.6
c O
g 1.4
0vj
£ 1.2 3
£
1 1
$
Z 0.8ns
OJ
S’ 0.6
I
< 0.4

0.2

0

Theoriticai minimum number of stations (m*)

Figure 5.25. Average number o f workstations above optimum

From the above findings it can be concluded that Talbot et af’s claim is also

valid for the proposed model and, generally, cycle times closer to the maximum task

times are hard problems.

)

5.3 THE INFLUENCE OF POPULATION
5.3.1 POPULATION SIZE

The population size o f the genetic algorithm must be selected to increase its

efficiency and arrive at good solutions within a reasonable time. Table 5.7 shows the

number o f workstations obtained in the final solution for different sizes o f

populations and figure 5.26 displays the average number o f workstations above the

optimum. The populations o f size 40 obtained the lowest average increase above the

optimum. Populations o f size 40 and 60 obtained optimal solutions in the problems

M U # 6 and A R ff® , but the average increase above the optimum in populations o f 60

was 0.17 above the population o f 40. Larger populations (80, 100) showed

considerable deviation from the best and this is mainly due to scattering the genetic

153

search all over the solution domain. However, small populations will restrict the

search around small neighborhoods resulting in poor quality solutions.

Chapter 5: Results evaluation

Population
size

Test problem

W A 6g T U 20. u u 89
M U ™

AR fff9 R A 170 QTT 2787On ygj

30 26+l 27 42 25 2 6 +{ 28+3 2T 2

40 28+3 26+1 25 25 27+2 26+1

60 28+3 26+1 25 ■25. 28+3 26+l

80 29+4 26+l 26+I 26+1 2843 27+2

100 29+4 26+1 26+1 27+2 28+3 27+2

Number o f workstations above the optimum is specified following the ‘+ sign.

,v Theoretical minimum number o f workstations

Table 5.7. Number o f workstations the final solution for different
population sizes

2.16

Population size

Figure 5.26. Average number o f workstations above optimum
for different population sizes

Chapter 5: Results evaluation

Figure 5.27 shows the average C PU time consumption for different population

sizes. The CPU time grows rapidly as the size o f population increases. Clearly, on the

above findings, it can be concluded that the best population size for the proposed 1

genetic algorithm model is 40 for the problem studied irrespective o f the size o f the

problem.

I

Population size

Figure 5.27. Average C PU time consumption for different
population sizes

5.3.2 THE IN IT IA L PO PU LA T IO N

Generally, a well-adapted (feasible) initial population guarantees faster convergence

and reduces the computational time. Table 5.8 shows the number o f workstations in

the initial and final solutions: the initial solutions obtained by the heuristic techniques

are shown within square brackets. The number o f workstations above the optimum in

the final solution is specified by the number following the t+’ sign.

Out o f the four heuristic techniques, the initial solutions generated, by the

Hoffman matrix procedure (Hoffmann, 1963) were closer to the optimum solutions

and solutions generated by Rank Positional Weight (Helgeson and Bimie, 1961)

155

showed the highest increase above the optimum. The bin packing population

consisted of random permutations o f numbers between 1 to n , where n is the number

of elements in the problem and none o f these chromosomes represented a feasible

solution.

Chapter 5: Results evaluation

Solution

Test problem

technique
W A 5g l u 29°

M U ™ ARfff9 B A 170 c n 2-787
297

C O M SO A L
[291
27+“

[27]
26+1

[28]
26+l

[281
26+1

[281
2 1+i

[271
27

Hoffman
[291
27+"

[26]
26+1

[26]
26+1

[271
27+"

[261
26

[26]
26+1

Random
[321
2 7 +i

[281
26

[28]
25

[30]
25

[291
26

[271
.26

RPW
[311
28

[291
27+"

[301
27+"

[301
27

[291
27

[271
27

Bin Packing N o feasible solutions

Theoretical minimum number o f workstations

Table 5.8. Number o f workstations in the initial and final solutions

Figure 5.28 displays the average number of workstations above the optimum

for each initial population. The lowest average was obtained by the population

consisting o f solutions generated by the random feasible task assignment technique

(section 3.3), and the highest average was recorded with R PW technique (Rank

Positional Weight). Moreover, in problems M U 976 andARff69, random initial

solutions finally converged into optimum solutions. Populations with the Hoffman

solutions gave the next best, but none o f the problems yielded optimun^solutions.

Even after 3000 generations, bin-packing solutions could not generate a single

feasible solution.

156

Chapter 5: Results evaluation

3

2 . 5

co 2 . 1 6

COMSOAL Hoffrnan Random RPW
Solution technique

Figure 5.28. Average number o f workstation above optimum
for different initial populations

It can be seen from the findings that initial populations consisting o f random

feasible solutions is ideal for the new fitness model. Theses solutions are normally far

from the optimal and give enough room for forward loading rather than closely

packed solutions like the Hoffmann solutions.

As pointed out earlier, the best initial population is the one with solutions

created by the random task assignment technique. The number o f such solutions in

the population increases the convergence rate and the quality o f the final solution.

Table 5.9 shows the number o f workstations in the final solution for initial

populations consisting o f a number o f feasible solutions per initial population.

Populations with 20 random solutions achieved optimum solutions in

problems M U 946 and A R f269 and one with 10 solutions reached the optimum solution

.in the problem M U I,76. Figure 5.29 shows the average number o f workstations above

the optimum for different level; o f feasible solutions in the initial population. Once

more, a population o f 20 solutions showed the least average o f 0.83 above the

optimum and it was 0.50 below the second best, which consistinglO solutions.

157

Chapter 5: Results evaluation

Random
solutions per
population

Test problem

WA-J L U g
M U ™

A R “ 5 B A ™ o-rr2787
297

1 28+3 26+1 26+l 27+2 28+3 27+2

5 28+3 26+l 26+l 21*1 28+3 /y/j+2

10 28+3 26+1 25 26+l ■ 27+2 26*'

20 26+l 26+1 25 25 27+2 26*'

40 27+2 26+l 26+1 26+1 27+2 2 1 *2

Number o f workstations above the optimum is specified following the ‘+ sign.
Theoretical minimum number o f workstations

Table 5.9. Number o f workstations in the final solution

3 --- — ----------------------------

2.5 -

co

Number of random solutions

Figure 5.29. Average number o f workstations above the
optimum for different feasible solution levels

A small number o f feasible solutions in the population generally slow down

the convergence and restrict the searching process around a few neighborhoods. On

158

the other hand, an initial population with a large number o f solutions (well-seeded

initial population) accomplishes a faster convergence by searching more solutions per

population in different neighborhoods. Therefore, It can be concluded that,

populations with number o f random solutions is better for the genetic algorithm

model. The number o f solutions for better overall performance depends on the test

problem and for the problems studied, populations with a number o f random solutions

equal to half o f the total population provide the best overall performance.

5.4 COMPARISON OF SELECTION TECHNIQUES

The first genetic operation in the genetic algorithm is selection and a good selection

scheme avoids both high selective pressure and premature convergence. Table 5.10

shows the number o f workstation obtained in the final solution by six selection

methods, and the average number o f workstations above the optimum solutions is

presented in figure 5.30.

Chapter 5: Results evaluation

Table 5.10. Number o f workstations in the final solution for different
selection schemes.

Selection
Test problem

Technique
W A S L U “

M U ™
A R f jf BA ™148

CTLt27870N 297

Random 28+3 27+2 27+2 i t 2 27+2 I t 2

Rank-Based
(Modified)
Roulette
Wheel

26+l

i t 1

26+1

26+l

25

26+l

25-

26+1

26+1

i t 2

2 t 2

28+3

Good + Bad i t 2 26+l 25 27+2 28+3 29+4

Tournament 28+3 26+1 26+1 27+2 27+2 2 t 2

Rank-Based i t 2 26+1 26+1 26+1 27+2 it2

Number o f workstations above the optimum is specified following the <+ sign.
Theoretical minimum number of workstations

159

Chapter 5: Results evaluation

Random Rank-based Roulette G ood+BadTournam ent Rank-Based
(Modified)

Selection technique

Figure 5.30. Average numbers o f workstations above the optimum

The modified rank-based selection scheme obtained optimum solutions in

problems M U 946 and A R # 59, showing the overall best o f 0.83 average increases

above the optimum. The second best was achieved by the classic rank-based

technique and, it was a 0.67 worse than modified selection scheme.

The classic rank-based selection method showed the best performance among

the published selection techniques, and agrees with Whitley’s (1989) findings (the

rank-based selection technique achieves faster convergence and produces better

solutions than other published methods). The roulette wheel selection, the most used

technique in genetic algorithms (Appendix B) reported a 0.16 average above the

classic rank based and a 0.83 average increase above the modified selection technique

respectively. The random selection technique showed the worst overall performance

(2.16 above the average), an increase o f 1.33 above the best average.

160

Chapter 5: Results evaluation

5.4.1 TH E EFFECT OF SELECTIO N PO O L SIZE

In the modified rank-based selection scheme, the chromosomes are selected from the

selection pool for mating. The performances obtained by different sizes o f pool are

presented in table 5.-11 and the average number o f workstations above the optimum is

shown in figure 5.31.

Table 5.11. Number o f workstation in the final solution

Selection
pool size

Test problem

W A S L U g
m u 176 AR®?9 R A 170D A 148

CTJ2787
297

10 29+4 2rf 1 27+2 27+2 28+3 27+2

20 29+4 26+1 26+1 27+2 27+2 21*2

30 27+2 26+1 '25::;; fafa 25 26+1 26+1

40 28+3 21*1 26+1 28+3 26+l 26+1

Number o f workstations above the optimum is specified follow ing the ‘+ sign.
Theoretical minimum number o f workstations

3

Selection pool's ize

Figure 5.31. Average number o f workstations above the optimum

161

A selection pool o f size 30 achieved the best overall performances, an average

o f 0.83 above the optimum and reaching optimality in problems M U # and A R 6269.

The second best was achieved by size o f 40 and small pool sizes showed relatively

poor quality solutions displaying higher averages above the optimum. Generally, a

small size o f pool consists o f only a few best solutions and allows limited mating.

However, a large selection pool contains both good and bad solutions and normally

generates low quality solutions after mating.

5.4.2 SELECTIVE PRESSURE

As W hitely (1989) p ointed o ut, h.igh se lective p ressure i n t he r ank-based s election

technique increased the number o f identical solutions and decreases the p opulation

diversity. The modified rank-based selection scheme addressed this issue very

effectively and figures 5.32 to 5.37 display the selective pressure plot as the number

o f generations increase for both rank based and modified rank based techniques for

the six selected problems.

Chapter 5: Results evaluation

Generations

Figure 5.32. Selective pressure variation for test problem W A 65

162

Se
le

ct
iv

e
pr

es
su

re

Se
le

ct
iv

e
pr

es
su

re

Chapter 5: Results evaluation

Generations

Figure 5.33. Selective pressure plot for test problem L U

35

30

25

20

15

10

MU
176I
94

rttmt Wutrw! ii; simmi icrzmhytt!! 4m sMrtiWwrr

Rank-Based Technique
Modified Rank-Based
Technique

iimWMiMpai:

500 1000 1500 2000 25 0 0 3000
Generations

Figure 5.34. Selective pressure plot for test problem M U ^ 6

163

Se
le

ct
iv

e
pr

es
su

re

Se
le

ct
iv

e
pr

es
su

re

Chapter 5: Results evaluation

35

30

25

20

15

10

AR
6269)
111

0 J
500

iElIIiitiLiiiiiiliilLwliiaii!
1000

Modified rank-based
technique
Rank-based technique

1500 2000 2500 3000
Generations

Figure 5.35. Selective pressure plot for test problem A R „6269

35

30

25

20

15

10

0

BA
170

148

JQ OD a

Modified rank -based
techique
Rank-based technique

0 500 1000 1500 2000 2500 3000

Generations

Figure 5.36. Selective pressure plot for test problem B A

164

Chapter 5: Results evaluation

mmmmsmmmm •kiwi.®>Rt >

1000

Rank-based technique
Modified rank-based
technique

I tt luti:

1500 2000 2500 3000
Generations

Figure 5.37. Selective pressure plot for test problem SH 2787
297

As can be seen from the figures, except A R 6269, in all the other test problems,

the classic rank-based selection technique showed high selective pressure between

1000-2000 generations (more than 95% o f the population containing the same

chromosome). Problem A R 6269 showed an early rise in selective pressure and

thereafter it was maintained throughout the genetic process.

However, the modified rank-based selection scheme showed low selective

pressure (less than or equal to 15 identical solutions) throughout the genetic process.

In all test problems, within the first 1000 generations, it was maintained at a low

value (<10). After 2000 generations, it displayed slightly higher selective pressure,

but fluctuating peaks in the plot indicated that after each high selective pressure, there

was a significant drop in selective pressure. Therefore, It can be concluded that, the

new selection technique has eliminated the high selective pressure issue in the
p

ordinary rank-based technique, and could be applied to all test problems irrespective

o f their size and complexity.

165

Chapter 5: Results evaluation

5.5 COMPARISON OF CROSSOVER TECHNIQUES AND ITS
CONTROL PARAMETERS

5.5.1 C R O S S O V E R T E C H N IQ U E C O M P A R IS O N

In the proposed genetic algorithm model, about 80% (p c - 0.8) o f the offspring in

the new population are created by a crossover operation. Table 5.12 shows the final

number o f workstations obtained by eight crossover techniques including two

proposed techniques and six published methods. The average increase o f workstations

above the optimum is illustrated in figure 5.38.

Table 5.12. Number o f workstations in the final solution with different
crossover techniques

Crossover
Technique

Test problem

W A 6g L U “ M U ™ A R " B A 170148
C T T 2787

297

V B M C P 2 7 + 2 26+l 25 ; 27+2 26+l

FBM CP 29+4 26+1 26+1 26+1 • 27+2 2 7 + 2

SPC 28+3 26+1 25 ; 26+I ' 28+3 2 7 + 2

TPC 28+3 26+I . 25 ■ 26+l 28+3 2 7 + 2

ORD 28+3 29+4 28+3 IT *1 28+3 28+3

POS 27+2 26+1 25. 261 27+2 2 7 + 2

FRG 29+4 27+2 27+2 27+2 2 7 + 2 27+2

U N I 27+2 26*' 25 26+1 27+2 27+2

Theoretical minimum number o f workstations

V B M C P = Variable Boundary
M ovin g Crossover Point

F B M C P = F ixed Boundary M oving
Crossover Point

SPC = Single Point Crossover

T P C = T w o Point Crossover
O RD = Order Crossover
POS = Position Based Crossover
FRG = FRaGment Reordering

Crossover
U N I = Uniform Crossover

166

Chapter 5: Results evaluation

The proposed V B M C P method showed the lowest average increase above

optimum (1.00) and both POS and U N I techniques displayed the second best, an

average 0.33 above the VB M CP. Problems M U # and A R f269 reached the optimum

solutions with the new crossover technique and all the other problems performed with

the least number o f workstations above their optimum solutions.

4 -

3.5 -

Crossover technique

Figure 5.38. Average number o f workstations above the optimum

The classic two point crossover (TPC)V and single point crossover (SPC) also

achieved optimum solutions in problem M U # , and showed the same average above

the optimum (1.66). Rubinovitz (1995) developed the Fragment Reordering

Crossover (FRG) method especially for the assembly line balancing problem and

claimed that it was the best among the published techniques. However, It seems that

this technique does not perform well with the new front-loading fitness function.

167

Chapter 5: Results evaluation

5.5.2 T H E E F F E C T IV E C R O S S O V E R SPA N R A T IO

In the variable boundary moving crossover point technique, the crossover span where

the crossover point is> selected is the key parameter and controls the overall

performances. The size o f the crossover span is determined by the Crossover Span

Ratio (CSR) and is the maximum number o f elements (c j) that could pack in to a bin

o f capacity equals to the cycle time and is generally a constant for a particular cycle

time. Table 5.13 shows the number o f workstations obtained in the final solution for

five crossover spans and figure 5.39 displays the average increase in number o f

workstations above the optimum.

Crossover spans with size equal to half o f cs (CSR=0.5) showed the best

performance obtaining the least average above the optimum (1.16). The second best

was achieved by a span with CSR = 1.0 and both o f these reached the optimum

solutions in problem M U # and

Crossover Span Ratio (CSR) = Crossoverspansize
c.

Table 5.13. Number o f workstations in the final solution

Crossover
span ratio

Test problem

W A S L U 2089 M U ™ A R “ ’ B A 170148
q t t 2787297

7 14 17 41 23 45

0.5 I t 1 26+1 25- 26+1 26+1 27+2

1.0 27+2 26+1 25 27+2 27+2 27+2

1.5 27+2 26+1 26+l 28+3 26+l 28+3

2.0 28+3 26+l 26+1 28t3 26+l 28+3

2.5 " 28+3 26+1 26+l 28+3 27+2 28+3

Number o f workstations above the optimum is specified follow ing the ‘+ sign.
Theoretical minimum number of workstations

168

Chapter 5: Results evaluation

0.50 1.00 ' 1.50 2.00 2.50

Crossover span ratio

Figure 5.39. Average number o f workstations above optimum

Increasing crossover span size resulted in decreasing. performance. Large

spans allow the recombination process to propagate both good and bad attributes

(feasible and infeasible links) o f parents to offspring resulting in inferior quality

solutions. Small crossover spans allow largely good parts o f the solutions to transfer

in to offspring increasing its solution quality. However, very small spans would not

transfer enough characteristics to make good solutions. Therefore, it can be concluded

that for the problems studied the best' crossover span ratio for overall best

performance is spans with CSR = 0.5.

5.6 THE EFFECT OF REPAIR TECHNIQUE ON FEASIBLE
SOLUTIONS.

Distortion o f feasibility in chromosomes after a crossover operation is inevitable.

Generally, a repair technique must be used to mend these chromosomes in order to

restore its feasibility. Two new repair techniques were developed in this research and,

the number o f workstations obtained in the final solution by each repair technique is

169

Chapter 5: Results evaluation

shown in table 5.14. The average number o f workstations above the optimum is

illustrated in figure 5.40.

Table 5.14. Number o f workstations in the final solution

Repair
technique

Test problem

W A S LU g
M U ™ a r r R A 170D A 148

QT_r 2787
297

REP1 27+2 2 6 n 25° 25°' 26+1 27+2

REP2 2 7 + 2 26+1 25° 27+2 2 7 + 2 to <1
A

REPS 26+I 26+l 25° 25° 26+1 26+1

Number o f workstations above the optimum is specified following the <+ sign.
Y Theoretical minimum number o f workstations

REP1 REP2 REP3
Repair technique

Figure 5.40. Average number o f workstations above optimum

The repair technique that re-assigning duplicating elements taking into

account its rank positional weight (REP3) (the highest rank available element first,

170

Chapter 5: Results evaluation

section 3.3.4.3) showed the least average above optimum and it solved both M U 176
94

and AR.J’f69 problems optimally. The second best was achieved by the random based

repair technique (REP1, section 3.3.4.1) and the worst performances were displayed

by the order based repair technique (REP3, section 3.3.4.2). Table 5.15 illustrates the

average number o f feasible solutions created per generation by the three repair

techniques.

Table 5.15. Average number o f feasible solutions per generation

Repair
technique

Test problem

W A 65
T T T 20
f t U 89

m u 1746 AR®®9 B A 170148 S F lg f

REP1 16.00 13.46 26.61 25.20 29.65 38.02

REP2 21.50 15.76 30.80 36.10 38.62 38.23

REP3 20.38 16.64 28.93 27.00 28.90 38.20

REP1 REP2 REP3'

Repair technique

Figure 5.41. Number o f feasible solutions per generation for three repair techniques

171

Chapter 5: Results evaluation

Figure 5.41 displays the overall average number o f feasible solutions created

per generation by each repair technique. The order based repair technique showed the

highest average and second best was generated by the rank positional based repair

technique. The worst performances were displayed by the random based repair

technique and it was 5.34 solutions per generation less than the best.

40 J--

35 -

Repair technique

Figure 5.42. Average C PU time per generation for the repair techniques

The average C PU consumption per generation by the three repair techniques

is shown in figure 5.42. It seems that, although the order based repair technique

(REP2) generate more feasible solutions, it consumes more computational time. The

REP3 (rank-based) consumes less average CPU time than REP2 and showed the

lowest average above the optimum.

172

Chapter 5: Results evaluation

5.7 COMPARISON OF MUTATION TECHNIQUES AND ITS
CONTROL PARAMETERS

5.7.1 C O M P A R IS O N O F M U T A T IO N T E C H N IQ U E S

Mutation is the other genetic operation that generates new chromosomes away from

the current neighborhood allowing the algorithm to explore a wider region. Five new

mutation techniques were considered in this research and they are compared with the

classic mutation. Table 5.16 shows the number o f workstations obtained after each

mutation technique and figure 5.43 indicates the average number o f workstations

above the optimum.

Table 5.16. Number o f workstation in the final solution

Mutation
Technique

Test problem

W A S L U “ m u £6 ARff® B A ™° n I48
CTT 2787

297

FBR M 27+2 26+I 25 26+l I t 2 '2843

V B A M 27+2 26+l 25 25 26+I 27+2

V B R M 28+3 28+3 26+1 28+3 27+a 28+3

F B A M 28+3 26+1 26+1 27+2 26+l 28+3

R A M 28+3 28+3 28+3 28+3 27+2 28+3

A D M 27+2 2 T 2 27+2 28+3 27+2 27+2

Number o f workstations above the optimum is specified following the t+' sign.
Theoretical minimum number o f workstations

FBRM = Fixed Boundary Random Mutation VBAM = Variable Boundary Adjacent Mutation
FBAM = Fixed Boundary Adjacent Mutation RAM = Random Mutation
VBRM =VariabIe Boundary Random Mutation ADM = Adjacent Mutation

Chapter 5: Results evaluation

The variable boundary adjacent mutation (V B A M) showed the lowest average above

the optimum and reached optimum solution in problems M U 946 and A R 6269. The

second best performance was obtained by the fixed boundary random mutation

technique (FBRM). The classic random mutation displayed the highest average

number o f workstations above the optimum. Therefore, it can be concluded that the

V B A M technique seems to be the best for the problems studied.

4 1------------------------

3.5 -

FBRM VBAM VBRM FBAM RAM ADM

M utation technique

Figure 5.43. Average number o f workstations above optimum

5.8 THE INFLUENCE OF ELITISM ON THE PERFORMANCE

Propagation o f best chromosomes from current population to the next population is

crucial for convergence. The number o f elite chromosomes copying to the next

generation is a vital factor for faster convergence but, copying more chromosomes

may decrease population diversity. Table 5.17 shows the number o f workstations in

the final solution for four elitism levels and figure 5.44 illustrates the average increase

o f workstations above the optimum.

174

Chapter 5: Results evaluation

Propagation o f 6 and 10 chromosomes showed the best performances and, the

first level o f elitism (6 chromosomes) yielded optimum solutions in three problems

(LUgg ,M U # and A R # 69). Increasing the number o f elite chromosomes decreases

the overall performance and, 6-10 elite chromosomes that is 3-5% o f the selection

pool, seems to be a good choice for the test cases studied.

Table 5.17. Number o f workstations in the final solution

Number o f
elite

strings

Test problem

V) oo
vo

trt
<£

L U ” M U # A R # 69 R A 17013 A 148
o y 2787 OIT297

6 27*1 25 ; ■ '+25 : ; ■ 25 # 27+2 i t 2

10 i t 2 26+I ' 2 5 # •*++■.25+# 26+1 27+2

20 27+2 26+1 25+ 26+1 27+2 27+2

30 28+3 I t 2 26+1 26+1 27+2 28+3

Number o f workstations above the optimum is specified following the ‘+ sign.
C+ Theoretical minimum number o f workstations

3

2.5

co
3
o 2

1 1-5
S0XI ro
ro 1 o> 1 ro
1
<

Num ber'o f elite chrom osom es/se lection pool

Figure 5.44. Average number o f workstations above optimum

0.5

0

175

5.9 COMPARISON WITH OTHER HEURISTIC TECHNIQUES
In order to draw general conclusions about the new genetic algorithm model, it was

compared with four heuristic line balancing procedures and the number of

workstations obtained in the final solution for fifty-four test problems are shown in

table 5.18. The first column o f the table represents the test problem reference and

eighth and ninth columns display the theoretical number o f workstations and the best

performance that have been achieved by any technique. These results are further

categorized into four groups depending on the theoretical minimum number of

workstations and they are shown in table 5.19. The results are summarized and

presented in figures 5.45 and 5.46.

Table 5.18. Final solutions obtained by heuristic techniques

Q J csX e < T3 c n S

Reference J £ ^ *3 J c '§ ft m* m b
-s © s o o re a 38 X O S X ° Xft o ^ <

Chapter 5: Results evaluation

Scholl

Bartholdi (1993)

Arcus (1963 b)

Mukherjee and Basu
(1964)

B A 29 33 29 30 33 28 28

b a ;s 29 31 27 29 31 27 27

B A 163148 28 30 27 27 30 26 26

R A 170 26 29 26 27 29 25 25
* -p 6269

XJUlv j j | 27 29 26 25 30
-

24 25

M U 946 26 31 25 25 30 24 25

M U 222 21 23 20 20 22 19 20

M U 2481 16 17 16 16 18 15 16

M U 3Sl 15 16 15 15 17 14 15

M U 351 13 13 13 13 13 12 13

R P W -Rank Positional W eight Technique, m* is the theoretical minimum number o f workstations and
mb is the best performance has been achieved by any technique.

Theoretical minimum number o f workstations

176

Chapter 5: Results evaluation

Table 5.18. Final solutions obtained by heuristic techniques (cont..)

Reference

Pr
ob

le
m

ID

H
of

fm
an

C
O

M
S

O
A

L

M
od

if
ie

d
H

of
fm

an

G
en

et
ic

A
lg

or
it

h
m

R
P

W

m* m b

L U 1SLU g9 30 31 30 29 32 27 27

Lutz (1974)
L U 1989
L U 2089

28

27

30

28

27

26

27

25

30

29

26

25

27

25

l u 2<; 25 26 25 24 29 24 24

A R 5985 21 23 20 20 23 20 20

Arcus (1963b) A R 5408 15 16 15 14 16 14 14

a r X7' 11 11 11 10 12 10 10

Tonge(1961)
T O 2511 70

TO I f

16

12

17

13

15

12

15

12

18

13

14

11

15

12

W A 'i1 14 16 14 14 16 14 14

w a : 16 17 16 15 19 15 15

Wamecke(1971) W A S 17 20 17 16 21 16 16

W A S 19 20 18 m n 22 17 17

W A S 21 23 20 19 24 18 19

k w ‘59 9 10 8 8 9 8 8

Kilbridge and Wester
(1962)

k w 4S

K W ™

7

4

7

5

6

4

6
.
4.

7

5

6

4

6

4

K W if rSJ 4 3 4 *sJ 3

G U S 16 17 15 14 17 12 14

Gunther et al (1983)
o u s 11 12 11 11 12 10 11

o u “ 10 11 9 11 9 9

G U " 7 7 7 7 7 6 7

S A ” 14 17 14 14 19 14 14

Sawyer (1970) S A ”

s a JJ

12

9.....

14

9

12

8mmamm

12

8

14

10

11

8

12

8

B U S 13 16 13 13 14 12 13

B U S 11 12 11 11 13 10 11

Buxey(1974) B U S 10 11 10 10 12 9 10

B U S 9 9 8 8 10 8 8

B U S 8 8 8 8 9 7 7

RPW -Rank Positional Weight Technique, m * is the theoretical minimum number of workstations and
rn is the best performance has been achieved by any technique. ? Theoretical minimum number of workstations

177

N
um

be
r

of
pr

ob
le

m
s

Chapter 5: Results evaluation

Table 5.18. Final solutions obtained by heuristic techniques (cont.)

Reference

Q
<—*Ga?

Gre
eg

nJ
<
O
CO

-a cu re
& £

-G
<D
C q

£
CG m* m h

X> o s O o JH COo•—
CG

— O
CJ

2 ffi <

R A : R 0 24S 11 12 10 10 12 9 10
Rosenberg and ROj, 9 9 9 8 9 8 8
Ziegler (1992) r o 2J 6 7 6 6 7 6 6

R ° 2S 4 4 4 4 4 4 4

Mitchell(1957)
Ml'/,

M I”

9 9 9 8 8
5 5 5 | | p 5 j 5

7

5

8

5
.

. 5 Y ' •Vr#:̂ +|| % ## M O “ 4 4

Mansoor (1964) M Off 4 4 4 4 4 3 4

M O ” 2 2 2 2 2 2 2
Bowman (1960) B O f 5 6 6 5 6 4 5

R P W -Rank Positional W eight Technique, m* is the theoretical minimum number o f workstations and
mb is the best performance has been achieved by any technique.
§| Theoretica l m inimum number o f workstations

T o ta l num ber o f w orksta tion s ach ieved mh
| T o ta l num ber o f w orkstations a ch ieved m

50 -

40 -

30 -

20 -

10 -

0

Figure 5.45. Number o f problems achieved m b and m * by heuristic techniques

MOD. HOFF HOFF

Technique

COMSOAL RFW

178

Chapter 5: Results evaluation

100

GA MOD.HOFF HOFF COMSOAL RPW

Technique

Figure 5.46. Average line efficiency obtained by line balancing techniques

Table 5.19. Number o f problems achieved m b by the heuristic techniques

Theoretically
minimum
number o f

workstations

Hoffman C O M SO A L
Modified
Hoffman

Genetic
Algorithm

Rank
positional

weight

m* < 10
10 5 16 21 4

10 < ra* < 20
10 1 12 17 1

20 < m* < 25
0 0 2 5 0

m* > 25
0 0 2 1 0

For forty-four test problems (81%), the new algorithm achieved the best

performance that has been achieved by any heuristic technique and it is

approximately twice that achieved by the original Hoffman precedence technique, hi

none o f the instances did the Hoffman technique outperform the genetic model! In

twenty-three instances (42%), the proposed technique achieved the theoretical

minimum number o f workstations.

The genetic algorithm achieved the highest average line efficiency (93.58%)

and is 4.87% above the Hoffman technique and it balanced the four test cases (69, 92,

179

Chapter 5: Results evaluation

138 and 184 cycle times) o f the Kibridge and Wester problem producing zero idle

time optimal solutions, confirming its ability to achieve excellent solutions. The

second best is obtained by the modified Hoffman heuristic and is 1.52% less than the

genetic algorithm.

The model indicated excellent performance in test cases where ra* < 10 and

for larger m * it showed good performances by obtaining near optimum solutions

(table 5.19) either better or the same as that obtained by the Hoffmann procedure.

Therefore, It can be finally concluded that the new genetic model seems better than

the Hoffman precedence procedure irrespective o f problem size and its complexity,

accepting the main hypothesis o f this research at a very high confidence level.

5.10 FACTORIAL DESIGN EXPERIMENT

As previously discussed, to enable experimentation on the main interaction between

variables, a half fraction factorial experimental analysis is to be completed, comparing

six significant parameters optimising the performance o f the G A line balancing

model. The widely available M IN ITAB® software package is employed to support

analysis o f results.

Run Line
Efficiency

Run Line
Efficiency

Run Line
Efficiency

Run Line
Efficiency

1 79.00 9 74.70 17 74.70 25 79.00

•2 86.40 10 86.40 18 86.40 26 86.40

3 74.70 11 76.80 19 76.80 27 74.70

4 86.40 12 86.40 20 86.40 28 86.40

5 81.00 13 86.40 21 83.80 29 83.80

6 86.40 14 89.20 22 89.20 30 86.40

7 89.2 15 83.80 23 86.40 31 86.40

8 89.2 16 89.20 24 89.20 32 92.10

Table 5.20 Line efficiencies for the experiment

180

The purpose o f using M IN IT A B is to analyse the planned thirty two parameter

settings (section 4.5.1) and resultant line efficiencies as given in table 5.20. The effect

estimates and the sum o f squares for the thirty two treatment combinations are shown

in table 5.21. Figure 5.47 presents the normal probability plot o f the estimated effects.

Chapter 5: Results evaluation

Variable
Estimated

Effect
Sum o f
Squares

Variable
Estimated

Effect

Sum o f
Squares

A 6.931 384.31 C E 0.181 0.26

B 0.931 6.93 C F 0.656 3.44 -

C . 5.631 253.66 D E 0.106 0.08

D 0.181 0.26 D F 0.206 32.19

E 0.181 0.26 E F 0.856 5.86

F -0.944 7.12 A B C -0.419 1.40

A B 0.131 0.137 ..A B D 0.856 5.86

A C -3.169 80.34 A B E 0.206 0.33

A D 0.181 0.26 A B F -0.444 1.57

A E 0.181 0.26 A C D 0.181 0.26

A F 2.006 32.19 A C E 0.181 . 0.26

B C 1.481 17.52 A C F 0.406 1.31

B D -0.494 1.95 A D E -0.444 1.57

. B E 0.156' 0.19 A D F 0.156 0.19

B F 0.106 0.08 A E F -0.494 1.95

C D 0.181 0.26

Table 5.21 estimated effects, sum o f squares for the experiment

A - Fitness function B- Crossover technique C- Selection method
D - Number o f Generations E - Mutation technique F - Population size

For the majority o f effects, the result clusters close the center (zero)

line, confirming a low level o f interaction. The single factor A, fitness function has the

largest estimated effect o f 6.931 (furthest from the center line), identifying this

parameter as the most significant parameter o f the model. The next highest o f 5.631 is

shown by single factor C (selection method). The two single parameters have been

shown to create a significance level substantially higher than any other single or

181

Chapter 5: Results evaluation

combination set. With interest continuing to examine the interaction results, the

interactions o f A C , AF, CF, and E F are also reasonably substantial and require

interpretation.

A; A
B: B
C: C
D: D
E: E
F: F

Effect

Figure 5.47 Normal probability plot o f effects for experiment

Table 5.22 examines the analysis o f variance obtained from experimentation.

The total sum o f squares (SSf) and the model sum o f squares (SSm) for all parameters

is 842.27 and 797.23 respectively. Examining the lower significance levels and

selecting a threshold-of 2.00 for sum o f squares, twenty two o f the thirty-two effects

and interactions can be excluded, leaving ten single or multiple variable combinations

that cover 94% o f the total variability as shown. The main effects A and C are

confirmed as dominant, accounting for over 75% o f the total variability. Interactions

A C , A F and B C provide 15% o f the total variability. Main effects B ,F and the other

three interactions (C F , E F and A B C) accounts for less than 3.5% in total.

For a given confidence level a, all factors or interactions with value o f P < a

are statistically significant, whilst other factors may be disregarded. The two main

factors, the fitness function and the selection technique, have values o f P < 0.05 (at

95% confidence level) and therefore statistically significant. The factor A , the fitness

182

function has a large effect on the performance and it has significant interactions with

two other factors, selection technique and number o f generations.

Chapter 5: Results evaluation

Source o f

Variable

Sum o f

Squares

Degrees o f

Freedom

Mean

Square
F 0 P -Value

A 384.31 1 382.31 187.83 0.0001

B 6.93 1 6.93 3.38 0.0756

C 253.66 1 253.66 123.97 0.0001

F 7.12 - 1 7.12 3.49 0.0712

A C 80.34 1 80.34 39.38 - 0.0001

A F 32.19 1 32.19 ' 15.77 0.0004

B C 17.52 1 17.52 8.58 0.0063

C F 3.44 1 3.44 1.68 0.2045

E F 5.86 1 5.86 . 2.86 0:1008
A B D 5.86 1 5.86 2.86 0:1003
Error 45.02 22 2.04

Total 842.25 32

Table 5.22 Analysis o f Variance for the Line Efficiency data for W E 58 problem

Figures 5.48(a) and 5.48(b) display the main effects o f the six factors. Fitness

function and selection method show significant positive effect, indicating both the

front loading fitness function and the modified rank based selection technique are

better than either the alternative fitness function FF5 or the original rank based

selection technique. The variable boundary moving crossover technique shows a

marginal improvement over the uniform crossover technique for the problem.

Increasing population size from forty to sixty shows a negative effect.

Knowing the process o f assigning elements to stations by the GA, the negative effect

can be explained by noting the need to consider changes in population size at the

183

Lin
e

Ef
fic

ie
nc

y
(%

)

Chapter 5: Results evaluation

same time as examining changes in the number o f initial solutions, again proposed in

future work.

Variab le

Uniform Boundary M om rig Rank B ased Modified Rank

p p 5 FF+(Front loading) C rossover C rossover Point Selection Based Selection

Figures 5.48(a) Main effect plots o f factors A, B and C

Fixed Variab le

Boundary Boundary

Adjacent Adjacent
2000 6000 Mutation Mutation 40 60

Figures 5.48(b) Main effect plots o f factors D , E and F

Iii' addition to crossover technique, number o f generation and mutation

technique show negligible effects on overall performance for the test set. The results

show that for the chosen test set, increasing the number o f generations above 3000

iterations did not have any effect on performance (table 4.7 and table 5.20). Future

184

Chapter 5: Results evaluation

work can examine the possible existence o f an iteration limit for a wider set of test

cases.

-1 -j .1 -j .1 1 - 1 -) - i 1

(A) Fitness
Function

(B) Crossover
Technique

(C) Selection
Method

(D) Number of
Generations

(E) Mutation
Technique

(F) Number of
Generations

Figure 5.49(a) all possible interactions o f the six factors.

Figure 5.49 (a) shows all the possible interactions o f the selected six factors.

Twelve interaction plots out o f fifteen show, almost parallel lines indicating no

interactions even if they go up or down. The interactions A C , B C and A F show non

parallel lines and they need interpretations. Figures 5.49 (b), 5.49(c) and 5.49(d)

display the significant interactions o f A C , B C and A F respectively.

Figure 5.49 (b), drawn from figure 5.49(a), exhibits a strong interaction

between fitness function and selection method. Both fitness functions FFi and FF5
display better performances with the modified rank based selection technique.

Notably, the front loading fitness function (FFi) and modified selection method

combination, shows better line efficiency o f over 88% , a superior result to the FF5
and modified selection method combination.

9 0

8

§0
9 0

8 5

8 0

9 0

8 5

8 0

9 0

8 5

8 0

9 0

8 5

8 0

185

(

(C) Selection Method

Figure 5.49(b) interaction diagram for selection and fitness function

. . (C) Selection Method
Figure 5.49(c) interaction diagram for selection method and crossover technique

A significant interaction between selection method and crossover technique

can be seen in figure 5.49(c). Both crossover techniques display positive interaction

when combined with the selection methods. Rank based selection technique combined

with the uniform crossover method . produced better results than the Variable

Boundary Moving Crossover Point (V B M C P) technique plus rank based selection

combination. Modified rank based selection technique combined with V B M C P shows

186

Chapter 5: Results evaluation

a significant improvement over the alternative modified rank based technique plus

uniform crossover.

0 c 0)
'o
1
<DC

(F) Population Size

Figure 5.49(d) interaction diagram for population size and fitness fimction

The interaction between population size and fitness function is complex

(figure 5.49(d)). The front loading fitness function shows a slight increase o f

performance with a larger population o f 60. Whereas, the fitness function (FFs) shows

substantial negative effect with a larger population. The conclusion is to revisit this

parameter combination with a wider range.

Summarising the results o f the half fractional factorial analysis, the

conclusions possible are:

A. Main effects: The front loading fitness function and the modified rank

based selection technique have significant positive effect on the model

performances.

B. The remaining four single variables have no significant main effect.

C. Cross variables: T he interaction between the front-loading fitness (FFi).

function and modified rank selection method is important. However, the

interaction between the front loading fitness function and the variable

187

boundary crossover point method is marginal. This was significant in the

single factor experiment.

D. The remaining combination effects were o f minor significance for the test

case programme.

Chapter 5: Results evaluation

188

C H ilT E R
% J P

C O N C LU SIO N S

The main objective o f this research was to develop a Genetic Algorithm line-

balancing model for the single model assembly line balancing problem capable o f

outperforming existing G A models and the Hoffmann precedence matrix technique.

This was accomplished by defining a new fitness function (based on the front-loading

theory), crossover and mutation techniques, and modifying an existing selection

technique. The main objectives o f the research have been achieved and the

performance o f the model was interesting. The following conclusions can be made

based upon the results o f the study.

The findings in Chapter 5 appear to indicate that the Genetic Algorithm model

achieved the overall best performance irrespective o f problem size and complexity.

Forty-four test problems out o f fifty-four (81%) achieved the best solutions obtained

by any technique so far which is twenty-four problems (44%) more than that obtained

by the Hoffmann procedure. In twenty-three instances, the Genetic Algorithm model

achieved the optimum solutions, which are seventeen instances more than that'

achieved by the Hoffmann precedence procedure.

The modified Hoffman heuristic technique developed based on the front-

loading t heory a chieved t he s econd o verall b est, w hich i s n ine c ases 1 ess t han t hat

achieved b y t he G enetic A lgorithm m odel. 0 nly i n p roblems, SH H f , BAJJJ, BA|52

and B U j were the solutions obtained by the model one workstation more than that

generated by the modified Hoffmann technique. For test problems with a large

189

Chapter 6: Conclusions

number o f elements (n >100) with task time distribution skewed towards the

minimum element time (S H 297 an d B A 148) and cycle time just above the maximum

task time, the modified Hoffman technique outperformed the genetic model.

However, for hard problems, in which task time distribution skewed towards the

maximum element time and cycle time just above the maximum- element time,

(W A 58 and L U 89) the solutions obtained by the model is superior to both the

Hoffmann and Modified Hoffmann methods.

Therefore, it can be concluded that the new Genetic Algorithm model is better

than the Hoffmann precedence matrix procedure and it is more suitable for complex

assembly line balancing problems for which other heuristic methods generate

solutions far away from optimality.

The key feature o f the genetic model is the front-loading fitness function. This

fitness function preformed well in obtaining optimum solutions for the assembly line

balancing problem and outperformed all the existing G A fitness models. The

simulation results, particularly those obtained from test cases K W 4659 , K W 4S2 , K W 4lf

and K W 484, verified the front-loading theorem, and the propensity to achieve one

hundred percent balanced solutions.

The proposed fitness function that drives the algorithm towards forward

loading demonstrated excellent performance, predominantly in test cases where m * <

20. However, in cases where the theoretical minimum number o f workstations is

greater than 25, the function is not powerful enough for forward loading especially in

latter workstations (>20). This is mainly due to the characteristics o f the negatively

exponential (i?'x) fitness function, which shows almost constant values where x > 20,

resulting in a marginal fitness, change for elements transferring among latter

workstations

This limitation was eliminated to a certain extend by controlling the front-loading

constant (R) in the fitness function and following values are recommended for better

performance. ' —

190

Chapter 6: Conclusions

Theoretical number of
workstations (m*)

R

m* < 10 1.5

10 < < 20 1.3

m* > 20 1.1

Table 6.1. Recommended J?-values

The second control parameter is the number o f generations permitted for a
(

workstation (G). It seemed that most o f the selected problems achieved very good

solutions running the algorithm for 3000 generations (i.e., 120 generations per

workstation) and is recommended irrespective o f the complexity o f the problem for

test cases where m* < 25.

The C PU time variation against G showed a linear relationship and therefore

the model does not become especially Time consuming when increasing the number o f

generations per workstation. This property is very useful for solving very bard

problems and the model can be left to run for long enough to find better solutions.

The most economical population size for the model was 40 for the problems

studied and increasing population size decreases the diversity and consumes extra

C PU time. On the other hand, too low populations showed premature convergence.

Different initial populations were e xamined and a well-seeded population is

favoured for the genetic.model. It was confirmed that a population containing all bin-

packing solutions would hardly generate a feasible solution even after 10,000

generations. Anderson and Ferries (1990) claimed stating with a solution generated by

the C O M SO A L algorithm increases the convergence, but this model achieved

excellent results with solutions generated by the random task assignment technique.

One possible explanation is that solutions obtained by this technique are not closely

191

packed unlike the Hoffmann and C O M S O A L procedures, and therefore give enough

room for the forward loading process.

Whitley (1989) claimed the rank-based selection technique is superior to all

the other selection techniques and the findings reported in this thesis are consistent

with his claim. The main drawbacks o f this technique are high selective pressure and

low p opulation d iversity. T he m odified r ank-based s election t echnique u sed i n t his

research overcame this problem effectively and it performed well on all the selected

problems irrespective o f the problem size and complexity. The user control the

maximum number o f identical chromosomes in the selection pool and it is seems that

one third o f the selection pool size is a typical value for the test problems studied.

A new crossover technique called Variable Boundary Moving Crossover Point

(V B M C P) was developed for the model to propagate the bulk o f the good attributes o f

the parents to their offspring. The crossover probability was set to 0.80 based on the

findings o f De Jong (1975). The technique was compared with six existing techniques

developed for the assembly line balancing problem and the performance was

encouraging. It outperformed reported techniques and also enhanced the progressive

filling o f workstations in the front-loading process.

The main control parameter o f the above technique, other than the crossover

probability, is the crossover span size. The results showed that the overall

performance o f the model significantly depend on the crossover span size, which is a

test problem constant. In this research, the crossover span size was fixed to 0.5 cs

(where cs is the maximum number o f elements that can be packed in to a bin size o f

the cycle time), and increasing it resulted in propagation o f both good and bad

attributes o f parents to offspring. It is apparent that as workstations are filled, the

number o f elements available for filling will decrease and therefore, cs should vary

accordingly. But this aspect w as not considered in this research and 1 eft for future

research work.

Generally, duplicating elements in chromosomes after crossover is inevitable

and these chromosomes must be repaired. Two new repair techniques were

Chapter 6: Conclusions .

experimented with in this research and the one using rank positional weights o f

elements in the reassigning o f elements gave better results. It generated more feasible

solutions than the other techniques without consuming extra C PU time.

The model consists o f the Variable Boundary Adjacent Mutation technique for

the mutation operation. This technique was compared with five other mutation

techniques and it showed good overall performance. The main idea behind the

technique is to progressively move the mutation zone with the crossover span and

select adjacent elements for mutation. This process strengthens the progressive filling

o f workstations s as the Variable Boundary Moving Crossover Point technique

(V B M C P). The key controlling parameter is the mutation span size and experimental

results showed that a mutation span o f 2cs gives better performance for the test cases

considered. A part from that, the mutation probability p m was set to 0.01 based upon

previous findings o f other researchers.

As Rudolph (1994) pointed out, copying the best chromosomes to the next

generation is vital for rapid convergence and achieving near optimum solutions.

However, the number o f elite chromosomes must be determined c arefully, copying

more elite chromosomes leads to low diversity and premature convergence. Based on

the test results 20-25% o f the best chromosomes are recommended.

This study has taken a step in the direction o f developing a Genetic- Algorithm

Chapter 6: Conclusions

integrating a number o f Genetic Algorithm components including fitness function,

genetic operators etc., and these components have their own control parameters which

give the best performances. Therefore, as a whole, there are a large number o f

parameters in the model that have to be evaluated for optimum performance. These

they vary significantly from problem to problem. For example, two cycle times o f the

same precedence network could have a marked difference in complexity; therefore, it

is worth stating that these significant parameters should be properly tuned before

actually being used to solve a real assembly line balancing problem by conducting a

number o f pilot runs.

model for the assembly line balancing problem. The model

parameters are closely linked with the complexity o f the line-balancing problem and

Chapter 6: Conclusions

In general, the Genetic Algorithm model consumes more C PU time than

heuristic procedures although it mainly depends on the number o f generations.

However, it can be minimized by distributing computations to a number o f processors

(parallel processing), which will be discussed in the next Chapter.

The single factor design experiments, varying one experimental condition at a

time repeating under the same conditions has been applied in this research to identify

and examine the leading parameter combinations. The follow-on half fractional

factorial design, included to establish the cross variable effects has been added.

Further conclusions in relation to both individual parameters and combined parameter

interaction is summarised as follows.

The half fractional factorial design experiment confirmed the two most

significant individual p arameters as front 1 oading fitness function and the modified

rank based selection technique. For combinations o f parameters, new conclusions

confirm, the main feature o f the G A model, the front loading fitness function has a

high 1 evel o f interaction with the modified ranlc b ased s election method and a 1 ow

level o f interaction with the variable boundary moving crossover technique. This

crossover technique was originally designed to support the forward loading process;

however the results show that the support is marginal for the selected test case.

Overall results from the half fractional factorial design support the conclusion that the

new features o f the G A line balancing model collectively show better performance

than the previously published line balancing G A models.

194

C H A P T E R

SU G G ESTIO N S FO R
FU R T H E R R ESEA R C H

It was stated in the previous chapter that the new fitness function is not powerful

enough in the forward loading o f elements, especially for problems with workstations

o f more than twenty. This is mainly due to the levelling o ff o f the front-loading

weights in latter workstations (because o f the negative exponential characteristics o f

the loading curve (R'xj). In order to maintain the same strength o f loading among

latter workstations, the characteristics o f the fitness curve must be modified.

Changing the loading weight curve every 20 workstations could be one possible

modification and the modified curve can be mathematically expressed as follows.

* , = ■(

+ R m-j

R m -y+20

K < 2 8

20 < K < 40

At the beginning o f the evaluation, K = 1, and if
k C j

= 1 or the generation number

equals to G *K , the value o f AT is incremented by one unit. Where G is the number of

generations per workstation, a is a loading function constant depends upon the cycle

time (C), the number o f elements (n) and the theoretical minimum num ber-of

workstations (m *) , Rj is the loading weight o f the y'th workstation and the other

parameters are as defined before. . .

195

Chapter 7: Suggestions for further research

The modified loading weight curve for a =1000 and R = 2.0 is displayed in

figure 7.1, which shows a marked difference o f loading weights among later

workstations. Further research must be carried out with the modified function to

verify its power o f forward loading for test problems of workstations more than 20;

Workstation number

Figure 7.1 Existing and modified front-loading functions

The complexity o f the test problem has a significant impact on the

performance and the need (o f more time to explore larger domains has been indicated.

I f the model was left to run for long enough, the solutions would have been much

more closer to the optimum solution. The proposed model is not intelligent enough to

make a decision on the number o f generations per workstation required according to

the complexity. Therefore, an index must be defined and integrated into the model to

guide the number o f generations by analysing the current sector o f the precedence

network where front-loading takes place.

196

Chapter 7: Suggestions fo r further research

Since the genetic algorithm is considering a large number o f solutions in the

search domain, the computational time o f the genetic model is relatively high

compared to that o f heuristic techniques. However, as genetic algorithms are good

candidates for effective parallelization, implementing parallel genetic algorithms can

significantly increase computational power and thus reduce C PU time consumption.

Additionally, evaluating a number o f subpopulations at the same time and swapping

best chromosomes among the populations allows faster convergence. Therefore,

implementing parallel genetic algorithms for the genetic model would certainly

improve its computational power and extend its applicability for real world problems.

The surveys o f Chase (1974) and Milas (1990) showed only a few companies

utilizing the published techniques to balance their lines. The reason for this were

reported to be the practitioner’s unfamiliarity With the published techniques, the

complexity o f algorithms and the inflexibility to model the actual conditions o f

assembly lines. Additionally, the need o f complete, user friendly and ready to use

software f or p ractitioners w as h ighlighted i n e ach s urvey. T he m odel i n t his t hesis

utilises M A T L A B software, with problem specifications and control parameters

entered using a command window. Since M A T L A B offers Graphical User Interface

(G U I) tools, this feature can be used to' develop a powerful, user-friendly genetic

algorithm model for line balancing.

With regard to test case coverage, by starting with a small, totally enumerable

problem (30-element, Sawyer 1970), the effect on processing time, solution

generation and solution quality o f problem size can be examined up to the largest

known published problem (297-element, Scholl 1999).

Extending the review o f parameters is also an area of-future interest. Six

parameters were identified asproblem dependent (front-loading constant, crossover

and mutation span size, repair technique, the number o f elite chromosomes and

feasible solutions in the initial population). An added test case programme would

further enhance the analysis o f effect on the six remaining parameters.

197

Research in this dissertation has shown the frontloading fitness function and

modified selection technique have a definable contributing relationship. Confirming

this further with a set o f test cases at the extremes o f line balancing conditions will

lead to interesting further publications. The extreme conditions would include Order

Strength (from 20.00 to 75.00, noting1 the current test ease was 59.1), task time

variation (distributions with positively and negatively skewed towards the cycle time)

and finally problem size variation (from 30 to 295 elements).

The use o f M IN IT A B proved a powerful support to the detailed half fractional

analysis. The opportunity to further use the software to add a full fractional analysis

should not be missed.

Chapter 7: Suggestions fo r further research

198

REFERENCES

Ackley, D, 1987. A con n ection m ach in e f o r g e n e tic h ill c lim bing . Kluwer Academic

Publisher, Boston, USA .

Agrawal, P K, 1985. The related activity concept in assembly line balancing.

In tern a tio n a l J ou rn a l o f P ro d u c tio n R esearch , 23(2), 403 - 421.

Akagi, F, Osaki, H and Kikuchi, S, 1983. A method for assembly line balancing with

more than one worker in each station. In tern a tio n a l J o u rn a l o f P rodu ction

R esearch , 21 (3),755-770.

Alippi, C, and Treleaven, P, 1991. G AM E : A Genetic Algorithm Manipulation

Environment in In tern a l R e p o r t D e p a r tm e n t o f C om p u ter Science, UCL.

Anderson, E, and Ferris, M C, 1990. A genetic algorithm for the assembly line

balancing problem. C o m p u ter S c ien ce T ech n ica l R e p o r t #926, Cambridge,

England.

Anderson, E, and Ferris, M C, 1994. Genetic algorithms for combinatorial

optimisation: the assembly line balancing problem. ORSA J o u rn a l on C om puting,

6,2,161-173.

Arcus, A L, 1963. An a n a ly s is o f a co m p u ter m e th o d o f seq u en c in g a ssem b ly line

op era tion s. Ph.D. dissertation, University o f California, Berkeley, CA, USA.

Arcus, A L, 1966. C O M SO AL: A computer method o f sequencing operations for

assembly lines. In tern a tio n a l J o u rn a l o f p ro d u c tio n research , 4(4), 259-277.

Baker, L E, 1985. Adaptive selection methods for genetic algorithms. P ro ceed in g s o f

the F irs t In tern a tio n a l C on feren ce on G en e tic A lg o rith m s a n d th e ir A pp lica tion s.

Lawrence Erlbaum Associates, Hillsdale, NJ, USA .421-439.

Balas, E, 1965. An additive algorithm for solving linear programs with zero-one

variables. O pera tio n R esearch , 113, 517-546

Barnes, R M , 1980. M otion a n d tim e stu dy: D es ig n a n d m easu rem en ts o f work. 7th

ed.* Wiley, N ew York. U SA A .

Bartholdi, J J, 1993. Balancing two sided assembly lines: a case study. In tern a tion a l

Jou rn a l o f P ro d u c tio n R esearch , 31 (2), 2447-2461.

Baybars, I, 1986a. A survey o f exact algorithms for the simple assembly line

balancing problem. M a n a g em en t Science, 32(8), 909-932.

199

Baybars, I, 1986b. An efficient heuristic method for the simple assembly line

balancing problem. In tern a tio n a l J o u rn a l o f P ro d u c tio n research , 24(1), 149-166.

Bennett, G B, and Byrd, J, 1976. A trainable heuristic procedure for the assembly line

balancing problem. APLE T ra n sa c tio n .8, 195-201.

Bhattacharjee, T IC, and Sahu, S, 1990. Complexity o f single model assembly line

balancing problems. E n g in eerin g C o sts a n d P ro d u c tio n E con om ics, 18, 203 -214.

Bowman, E H, 1960. Assembly Line Balancing Liner Programming, O pera tion

R esearch , 8, 385-389.

Bruns, R , 1 993. Direct chromosome representation and advanced genetic operation

scheduling. P ro c e e d in g s o f the 5th In tern a tio n a l C on feren ce on G enetic

A lgorith m s, Morgan Kaufmann, San Mateo, CA, U SA , 352-359.

Bryton, B, 1954. B a la n c in g o f a con tin u ou s p ro d u c tio n line. M.Sc. Thesis, North

western University, Evanston, ILL, U SA .

Buffa, E S, 1983. M o d ern p ro d u c tio n o p e ra tio n s m anagem ent. Wiley, N ew York.

Buxey, G M , 1974. Assembly line balancing with multiple stations. M an agem en t

S c ien ce , 29(6), 1010-1021.

Buxey, G M , and Sadjadi, D , 1976. Simulation studies o f conveyor-paced assembly

lines with buffer capacity. In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 14(3),

607-624.

Buxey, G M , 1979.The nature o f manual, moving belt flow lines with o verlapping

stations. In tern a tio n a l J o u rn a l o f P ro d u c tio n R esea rch , 17, 143-154.

Buzacott, L A , and Shanthikumar, L G, 1993. S to ch a stic m o d e ls o f m anufacturing

system s. Prentice Hall, Englewood Cliffs, NJ, USA .

Cavicchio, D J, 1970. A d a p tiv e sea rch u sin g s im u la te d evo lu tion .- Doctoral

dissertation, University o f Michigan, Ann Arbor, MI, USA .

Chambers, L D, 1999. P ra c tic a l h a n d b o o k o f g e n e tic a lgorith m s, applications Volume

I, CRC Press.

Chang, Y L, and Sullivan, R S, 1991. Q S (Q u an t S ystem s), Version2, Englewood

Cliffs, NJ, USA.

Chase, R B, 1975. Survey o f paced assembly lines. The J o u rn a l o f In du stria l

E n gin eerin g . 6, February.

Chow, W M , 1990. A ssem b ly line d esig n : m e th o d o lo g y a n d ap p lica tio n s. Dekker,

New York, USA.

200

Dar-El, E M , 1973. M A L B - A heuristic techniques for balancing large single-model

assembly line.' A IIE T ra n sa c tio n .5, 343-356.

Dar-El, E M and Rubinovitch, Y , 1979. M U ST - A multiple solutions technique for

balancing single model assembly lines. M a n a g em en t S cience. 25(11), 1105-1114.

Davis, L, 1985a. Applying adaptive algorithms to epistemic domains. P ro ceed in g s o f

the 9 th In tern a tio n a l J o in t C on feren ce on A r tif ic ia l In te lligen ce , 162-164.

Davis, L, 1985b. Job shop scheduling with genetic algorithms. P ro ceed in g s o f the

F irs t In tern a tio n a l C on feren ce on G en etic A lg o rith m s a n d th e ir A pp lica tion s.

Lawrence Erlbaum Associates, Hillsdale, NJ, USA , 136-140.

Davis, L, 1991. H a n d b o o k o f g e n e tic a lgorith m s, Van Nostrand Reinhold, N ew York,

USA.

De John, IC A, 1975. A n a n a lys is o f the b eh a v io u r o f c la ss o f g e n e tic a d a p tive

s y s te m s / .Doctoral dissertation, University o f Michigan).Dissertation abstract

international 36(10), 5 HOB (University Microfilms no. 76-93).

Domschke, W , and Drexl, A , 1998. E infuhrun g in O p era tio n s R esearch . 4th ed.,

Springer, Berlin, Germany.

Downey, B S, and Leonard, M S, 1992. Assembly line with flexible work-force.

In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 30(3), 469-483.

Driscoll, J, and Thilakawardana, D, 2000a. Definition and evaluation o f assembly line

solution. 10th In tern a tio n a l co n feren ce on F lex ib le A u tom ation a n d In te lligen t

M anufacturing, Maryland, U SA , 1157-1166.

Driscoll, J, and Thilakawardana, D, 2000b. Using quantitative parameters to guide

assembly line balancing. In tern a tio n a l C on feren ce on P ro d u c tio n R esearch , AIT,

Bangkok.

Driscoll, J, and Thilakawardana, D, 2000c. The definition o f assembly line balancing

difficulty and evaluation o f balance solution quality. In tern a tio n a l J ou rn a l o f

R o b o tic s a n d C om p u ter In te g ra te d M anufacturing . 17,81-86.

Driscoll, J, Thilakawardana, D, and Deacon G, 2001, Cost function experimentation

in genetic algorithm line balancing. P ro c e e d in g s o f the 16th In tern a tion a l

C on feren ce on P ro d u c tio n R esea rch , Prague, Czech Republic.

Easton, F F, 1990. A dynamic program with fathoming and dynamic upper bounds for

the assembly line balancing problem. C om pu ters a n d O p era tio n s R esearch ,

17,163-175.

201

Elmaghraby, S E, and Herroelen, W S, 1980. On the measurement o f complexity in

active networks. E u ro p ea n J o u rn a l o f O pera tio n R e sea rch , 5, 223-234.

Erel, E, Sarin, S C, 1998. A survey o f the assembly line balancing procedures,

P ro d u c tio n P la n n in g a n d C on tro l, 9, 414-434.

Faland, B H., Klastorin, T D, Schmitt, T G, and Shtub, A, 1992. Assembly line

balancing with resource dependent task times. D ec is io n Sciences, 23, 343-364.

Falkenauer, E, 1992. G en eric a lg o r ith m s a n d g ro u p in g p r o b le m s .. John W iley & Sons,

Chichester, England.

Falkenauer, E, and Delchambre, A , 1992. A generic algorithm for bin packing and

line balancing. P ro c e e d in g s o f th e 1 9 9 2 IE E E In tern a tio n a l C onference on

R o b o tic s a n d A u tom ation , Nice, France-May 1992.

Filho, J L R, Alippi, C, and Treleaven, P, 1993. G en etic a lg o rith m p ro g ra m m in g

en viron m en t in Parallel Genetic Algorithm: theory and applications, IOS Press. -

Fisher, R A, 1958. The g e n e tic th eo ry o f n a tu ra l se lec tio n . N ew York: Dover-.

Forsyth, R S, 1989. M a ch in e lea rn in g p r in c ip le s a n d techn iques. Chapman & Hall.

Fox, M S, and McMahon, M B , 1991. Genetic operators for sequencing problems.

F irs t w orksh op on the F ou n da tion o f G en etic A lg o rith m s a n d C la ss ifie r System s,

Morgan Kaufmann Publishers, San Mateo, CA, U SA .

Frantz, D R, 1972. N o n -lin ea ritie s in g e n e tic a d a p tiv e search . Doctoral dissertation,

University o f Michigan, MI, U SA .

Gagnon, R J, and Ghosh, S, 1991. Historical roots: research life cycle and future

directions. O M EG . 19.

Garey, M R, and Johnson, D S, 1979. C om pu ters a n d in tra c ta b ility - A g u id e to the

th eory o f N P -co m p le ten ess . W.H.Freeman, San Fransisco, U SA .

Geoffrion, A M , 1967. Integer Programming by Implicit Enumeration and Balancing

Method. SIA M R ev., 9,178-190.

Gehrlein, W V , and Patterson, H, 1978. Balancing single-model assembly lines:

comments on a paper by E M Dar-El. A L L E T ransactions, 10, 109-112.

Ghosh, S and Gagnon R L, 1989. A comprehensive literature review and analysis o f

the design, balancing, and scheduling o f assembly systems. In tern a tio n a l Jou rn al

o f P ro d u c tio n R esearch , 27, 637-670.

Goldberg, D E, 1989a. G en etic a lg o r ith m s in search , o p tim isa tion , a n d m achine

learning, Addison-Wesley, Reading, M A .

202

Goldberg, D E , 1989b. Sizing populations for serial and parallel genetic algorithms,

P ro ceed in g s o f the th ird In te rn a tio n a l C on feren ce on G en etic A lgorith m s, George

Manson University, Morgan Kaufmann, San Mateo, CA, USA .

Goldberg, D E and Lingle, R, 1985. Alleles, loci, and travelling salesman problem,

P ro ceed in g s o f an In tern a tio n a l con feren ce on G en etic A lg o rith m a n d th e ir

A pp lica tio n s, Camegie-Mellon University, Pittsburgh, PA, Lawrence Erlbaum

Associates, Hillsdale, NJ, USA.154-159.

Graves, S C and Lamar, B W , 1983. An integer programming procedure for assembly

system design problems. O p era tio n s R esearch . 31, 522-545.

Grefenstette, J J, 1981. GENESIS: A system for using genetic search procedures.

P ro ceed in g s o f the C on feren ce on In te llig en t S ystem s a n d M ach in es, 161-165.

Grefenstette, J J, (Editer), 1986. Optimisation o f control parameters for genetic

algorithms. IE E E T ra n sa c tio n s on System s, Man and Cybernetics, vol.

16,1,122-128.

Grefenstette, J J, 1987. P ro c e e d in g s o f the S eco n d In tern a tio n a l C onference on

G en etic A lgorith m s, Lawrence Erlbaum Associates, Hillsdale, NJ.323-342.

Gutjahr, A L and Nemhauser, G L, 1964. An algorithm for the line-balancing

problem. M a n a g em en t Science. 11(2), 308-315.

Gunther, R E, Johnson, G D and Peterson, R S, 1983. Currently practised

formulations for the assembly line balance problem, J o u rn a l o f O pera tio n s

M an agem en t, 3, 209-221.

Hackman, S T, Magazine, M L and Wee, T S, 1989. Fast, Effective algorithms for

simple assembly line balancing problems. O p era tio n s R esearch . 37, 916-924.

Held, M , Karp, R M., and Shareshian, R , 1963. Assembly line balancing dynamic

programming with precedence constraints. O p era tio n s research . 11, 442-459.

Helgeson, W B and Bimie, D P , 1961. Assembly line balancing using the Ranked

Positional Weight technique. The J o u rn a l o f In d u str ia l E n g in eerin g . 12, 394-398.

Hoffmann, T R, 1963. Assembly line balancing with a precedence matrix.

M a n a g em en t S cience. 9(4), 551-562.

Hoffmann, T R., 1990. Assem bly line balancing: a set o f challenging problems.

In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 28, 1807-1815.

Hoffmann, T R, 1992. EUREKA: A hybrid system for assembly line balancing.

M an agem en t S c i e n c e 38(8), 39-47.

203

Holland, J H, 1975. A d a p ta tio n in N a tu ra l a n d A r tif ic ia l System s. The University of

Michigan Press, Ann Arbor, M I, USA.

Ignall, E J, 1965. A review o f assembly line balancing. J o u rn a l o f in du stria l

E ngineering, 16, 244-254.

Jackson, J R, 1956. A computing procedure for line balancing problem. M an agem en t

Science. 2, 261-271.

Johnson, R V, 1988. Optimally balancing large assembly lines with “F A B LE ” on

Hoffmann’s data sets. M a n a g em en t S c ien ce , 39, 1190-1193.

Karp, R M , 1972. Reducibility among combinatorial problems. In com plex ity o f

Computer Applications, R E Miller and J W Thatcher (eds.), Plenum, New York,

85-104.

Kilbridge, M D and Wester, L, 1961a. A heuristic method o f assembly line

balancing. The J o u rn a l o f In d u str ia l E n gin eerin g , 12, 292-298.

Kilbridge, M and Wester, L, 1961b. The Balancing Delay. M a n a g em en t Science. 8(1),

69-84.

Kilbridge, M, and Wester, L, 1962. A review o f analytical systems o f line balancing.

O p era tio n s research . 10(5),626-638.

Kim, Y K, Kim, Y J, and Kim, Y , 1996. Generic algorithms for assembly line

balancing with various objectives, C o m p u ter a n d In d u str ia l E ngineering , 30(3),

397-409.

Kim ,Y J, Kim, Y K, and Cho, Y ,1998. A heuristic based genetic algorithm for

workload smoothing in assembly lines. C om pu ters O p era tio n s R esearch . 25,

99-111.

Klein, M , 1963. On assembly line balancing. O p era tio n s research . 11, 274-281.

Laszewski, V G, 1991. Intelligent structural operators for k-way group partitioning

problem.- P ro c e e d in g s o f the 4th In tern a tio n a l C on feren ce on G en etic A lgorith m s,

R Belew and L Booker, Morgan Kaufmann, 492-497.

Lau, H S and Shtub, A , 1987. An exploratory study on stopping a paced line when

incompletion occur. IE E E T ransactions, 19, 463-467.

Leu, Y Y , Matheson, L A , and Rees, L P, 1994. Assembly line balancing using

genetic algorithms, with heuristic generated initial populations and multiple

evaluation criteria. D e c is io n Sciences, 25, 581-606.

Liepins, G E, and Hilliard, M R, 1989. Genetic algorithms: foundations and

204

applications. A n n a ls o f O p era tio n s R esearch , 21,31-58.

Liepins, G E, and Vose, M D, 1990. Representational issues in genetic optimisation.

J o u rn a l o f E x p erim en ta l a n d T h eo re tica l A r tif ic ia l In te lligen ce , 2, 101-115.

Lutz, L, 1974. A btak ten von m o n ta g e lin ie n .K ra u ssk o p f Mainz.

Mastor, A A , 1970. An experimental investigation and comparative evaluation of

production line balancing techniques. M a n a g em en t Science, 16(11),728-746.

M A T L A B , 1998. V ersion 5 U s e r ’s G u id e , Prentice Hall.

Mansoor, E M , 1964. Assembly line balancing -an improvement on the Ranked

Positional Weight technique. Journal o f Industrial Engineering, 15, 73-77 and

322-323.

Mercer, R E, 1977. A d a p tiv e sea rch u sin g a re p ro d u c tive m eta -p lan . Master's thesis,

University o f Alberta, Edmonton, Canada.

Mertens, P, 1967. Flibbandabstimmung mit dem Verfahren der begrenzten

Enumeration nach Muller-Merbach. Ablauf-und Planungsforschung, 8,429-433.

Milas, G H, 1990. Assembly line balancing, let's remove the mystery. In d u str ia l

E n gin eerin g , (May), 31-36.

Mitchell, J, 1957. A computational procedure for balancing zoned assembly lines.

Research report 6-9480l-lR3,Westinghouse Research Laboratories, Pittsburgh.

Miltenburg, L and Wijngard, L, 1994. The U-line balancing problem. M an agem en t

Science, 40, 1378-1388.

Michalewicz, Z and Xiao, J, 1995. Evaluation o f paths in evolutionary

planner/navigator. P ro c e e d in g s o f the In tern a tio n a l W orkshop on B io lo g ic a lly

in sp ire d E vo lu tio n a ry S ystem s. Tokyo. Japan.45-52.

Minagawa, M and Kakazu, Y , 1992. A genetic approach to line balancing. H um an

A sp e c ts in C o m p u ter In te g ra te d M an u factu rin g , 73 7-743.

Moodie, C L, and Young, H H, 1965. A heuristic method o f assembly line balancing

for assumptions o f constant or variable work element times, J o u rn a l o f In d u str ia l

E n gin eerin g , 16.

Mulcherjee, S K and Basu, S IC, 1964. An application o f heuristic method o f assembly

line balancing in an Indian industry. P ro c e e d in g s o f In stitu tion o f M ech a n ica l

E ngineers, 178/1/11,277-292.

Murata, T, Ishibuchi, H, and Tanaka, H, 1996. Multi objective genetic algorithm and

its application to shop flow scheduling. C o m p u te rs a n d I n d u s tr ia l E n g in eerin g ,

205

30, 4,957-968.

Nakasu, M M , and Leung, KH, 1995. A stochastic approach to assembly line

balancing. In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 33(5), 975-991.

Nevins, A J, 1972. Assembly line balancing using best bud search. M an agem en t

Science, 18(9), 529-539.

Nevins, J L and Whitney, D E, 1980. Assembly research. A u tom atica , 16,595-613.

Oliver, I M , Smith, D J, and Holland, J R C, 1978. A study o f permutation crossover

- operators on the travelling salesman problem. P ro c e e d in g s o f the seco n d

In tern a tio n a l C on feren ce on G en etic A lgorith m s, Lawrence Erlbaum Associates,

Hillsdale, NJ. 224-230.

Patterson, J H and Albracht, J, 1975. Assembly line balancing :zero-one programming

with Fibonacci search. O p era tio n s R esearch , 23, 166-172.

Pinto, P A , Dannenbring, D G and Khumawala, B M , 1978. A heuristic network

procedure for the assembly line balancing problem. N a v a l R esea rch L o g is tic s

Q u arterly , 25, 299-307.

Pinto, P A , Dannenbring, D G and Khumawala, B M , 1981. Branch and bound and

heuristic procedures for assembly line balancing with paralleling o f stations.

In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 19(2), 565-576.

Ponnambalam, S G , Aravindan, P, and Naidu, G M , 2000. A multi-objective genetic

algorithm for solving assembly line balancing problem. In tern a tio n a l J o u rn a l o f

M an u fa c tu rin g Technology, 16(5), 341-3 52.

Powell, D, and Skolnick, M W , 1993.Using genetic algorithm in engineering design

optimisation with non-linear constraints. Proceedings o f the fifth International

Conference on Genetic Algorithm, Morgan Kaufmann. San Mateo, CA.424-430.

Prenting, T O and Battaglin, M , 1964. The precedence diagram: a tool for analysis in

assembly line balancing. J o u rn a l o f In d u s tr ia l E n gin eerin g , 15, 208-213.

Prenting, T O and Thomopoulos, N , 1974. H u m anism a n d tech n o lo g y in a ssem b ly line

systems. (Hayden Book Company).

Rachamadugu, R M V, and Talbot, B, 1991. Improving the equality o f workload

assignments in assembly lines. In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch ,

,29(6),755-768.

Reeve, N R, 1971. B a la n c in g con tin u ou s a ssem b ly lines. PhD dissertation, State

University o f New York at Buffalo, N Y , U SA .

206

Robbins, G, 1992. EnGENEer-The Evolution o f solutions in P ro c e e d in g s o f the 5th

A n n u a l S em in ar on N eu ra l N e tw o rk s a n d G en etic A lgorith m s.

Rosenberg, 0 and Ziegler, H, 1992. A comparison o f Heuristic algorithms for cost-

oriented assembly line balancing. Z eitsh rift f u r O p era tio n s'R esea rch , 36, 477-495.

Rubinovitz, J and Levitin, G, 1995. Genetic algorithm for assembly line balancing.

In tern a tio n a l J ou rn a l o f P ro d u c tio n E con om ics, 419(5),343-354.

Rudolph, G, 1994. Convergence analysis o f canonical genetic algorithms, IE E E

T ran sac tion s on N eu ra l N etw orlzs, s p e c ia l issu e on e vo lu tio n a ry com putation ,

volume 1.

Sabuncuoglu, I, Erlel, E and Tanyer, M , 2000. Assembly line balancing using

genetic algorithms. J o u rn a l o f In te llig en t M an u factu rin g , 11(3), 295-310.

Salveson, M E, 1955. The assembly line balancing problem. The Jou rn a l o f In du stria l

E n gin eerin g , 6(3), 18-25.

Sarlcer, B R and Shanthikumar, J G, 1983. A generalized approach for serial or

parallel line balancing. In te rn a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 21,109-133.

Sawyer, J H F, 1970. Line balancing. The Machinery Publishing, Brighton.

Schofield, N A, 1979. Assembly line balancing and the application o f Computer

techniques. C om p u ter a n d In d u str ia l E n gin eerin g . 3(1), 53-69.

Scholl, A , 1993. D a ta o f a ssem b ly lin e b a la n c in g p ro b le m s. Schriften zur

Quantitativen Betriebswirtschaftslehre, 16/93,TH Dannstadt.

Scholl, A and Vob, S, 1996. Simple assembly line balancing-heuristic approaches.

J o u rn a l o f H eu ristics, 2 , 217-244.

Sholl, A and Klein, R , 1999. B alancing assembly 1 ines effectively-a computational

comparison. E u ropean J o u rn a l o f O p e ra tio n a l R esearch , 114(2), 50-58.

Scholl, A , 1999.Balancing and sequencing o f assembly lines.2nd ed., Physica-Verlag.

Scharge, L and Baker, K R, 1978. Dynamic programming solution o f sequencing

problems with precedence constraints, O p era tio n s R esea rch 2 6 , 444-459.

Shtub, A. and Dar-E l, 1990. An assembly chart oriented assembly line balancing

approach. In tern a tio n a l J o u rn a l o f P ro d u c tio n R esearch , 28(8), 1137-1151.

Smith, A . 1982. Wealth o f Nations, L ib e r ty F u n d Inc.

207

Starkweather, T ,Mcdaniel, S, Mathias, K, Whitly, D and Whitly, C, 1991. A

comparison o f genetic sequencing operators. P ro c e e d in g s o f the 4th In tern a tion a l

C on feren ce o f G en etic A lg o rith m s a n d th e ir A p p lica tio n s. 69-76.

Suresh, G , Vinod, V V , and S ahu, S , 1 996. A g enetic a lgorithm for assembly line

balancing, P ro d u c tio n p la n n in g a n d C on trol, 7, 38-46.

Syswerda, G, 1989. Uniform crossover in genetic algorithm, P ro c e e d in g o f the th ird

In tern a tio n a l C on feren ce o n g en e tic A lg o r ith m s, G eorge M ason U niversity, 4 -7

June, CA, Morgan Kaufmann, San Mateo.

Syswerda, G, 1990. Schedule optimisation using genetic algorithms. Davis (Ed),

H a n d b o o k o f G en etic A lgorith m s, Van Nostrand Reinhold, N ew York, N Y , USA.

Talbi, E G and Bessiere, P, 1991. A parallel genetic algorithm for the graph-

partitioning problem. P ro c e e d in g s o f A C M -IC S 91 (In tern a tion a l C onference on

S u per-com pu tin g), Koln, Germany.

Talbot, F B and Patterson, J H-, 1984. An integer programming algorithm with

network cuts for solving the assembly line balancing problem. M an agem en t

Science, 30, 85-99.

Talbot, F B, Patterson. J H and Gehrlein, W V, 1986. A comparative evaluation o f

heuristic line balancing techniques. M a n a g em en t Science, 32, 430-454.

Thangavelu, S R and Shetty C M , 1971. Assembly line balancing by zero-one integer

programming. A IIE Trans, 3, 61-68.

Thilakawardana, D, Driscoll, J, and Deacon, G, 2002. A new assembly line balancing

technique- A modified version o f Hoffmann's procedure, Belfast, Ireland.557-566.

Tonge, F M , 1960. Summary o f heuristic line balancing procedure. M an agem en t

Science, 7, 2139.

Tonge, F M , 1961. A h eu ris tic p ro g ra m f o r a ssem b ly line ba lan cin g . Prentice Hall

Englewood Cliffs, NJ, USA .

Tonge, F M , 1965.Assembly line balancing using probabilistic combinations o f

heuristics. M a n a g em en t Science, 11,727-735.

Tsujimuya, Y , Gen, M and Kubota, E, 1995. Solving fuzzy assembly line balancing

problem with genetic algorithms. C o m pu ters a n d In d u str ia l E ngineering , 1(4),

543-547.

208

Van Assche, F and Herroelen, W S , 1979. A n optimal procedure for the single

model deterministic assembly line balancing problem. E u ropean Jou rn a l o f

O p era tio n a l R esearch , 3(4), 142-149.

Wamecke, H J, 1971. Anwendung mathematischer methoden bei der

leistungsabstimmung von montagelinien. X P R -A n n a ls 20, 99-100, and Fertigung

2/5, 1,73-177.

Wee, T S and Magazine, M J , 1981a. A n effic ien t branch a n d b o u n d a lgorith m f o r

an a ssem b ly lin e b a la n c in g p ro b le m - p a r t I M in im ize the n u m ber o f w o rk sta tio n s .

Working paper No. 150, University o f Waterloo, Waterloo, Ontario, Canada.

Wee, T S and Magazine, M J , 1981b. An effic ien t branch a n d b o u n d a lgorith m f o r

an a ssem b ly lin e b a la n c in g p ro b le m - p a r t II. M a x im ise the p ro d u c tio n rate.

Working paper No. 15 1, University o f Waterloo, Waterloo. Ontario, Canada.

Wee, T S and Magazine, M J, 1982. Assembly line balancing as generalized bin

packing. O p era tion R esea rch le tters, 1/2,56-58.

White, W W , 1961. Comments on a paper by Bowman. O pera tio n R esearch , 9,

274-276.

Whitley, D, 1989. The GENITO R algorithm and selection pressure: why rank-based

allocation o f reproductive trials is best. P ro c e e d in g s o f the th ird In te rn a tio n a l

C on feren ce on G en etic A lgorith m s. Palo Alto, CA. Morgan Kaufmann

Publishers, 116-122.

Yano, C A and Bolat, A , 1989. Survey, development and application o f algorithms

for sequencing paced assembly lines. J o u rn a l o f M an u fa c tu rin g a n d O pera tion s

M an agem en t, 2, 172-198.

209

GLOSSARY

Genetic algorithms are biologically inspired computational models and the
terminology has been borrowed from different disciplines including biology,
mathematics, and computer science. S o m e of the terminology used in this report is
described below:

Allele: The-value of a gene.
Building Block: A group of genes that give a chromosome a high fitness.
Chr om o so m e: A n array of parameters or genes that is passed to the fitness function.
Converge: To arrive at the solution. A gene is said to have converged w he n 9 5 % of

the chromosome contain the same allele for that gene. Genetic algorithms are'
considered converged w h e n they stop finding better solutions for a specified
period of operation.

Cost: Output of the cost function
Cost function: Function to be optimised.
Crossover: A n operator that forms a n e w chromosome from two parent chromosomes

by combining part of the information from each.
Crossover rate: A number between zero and one that indicates h o w frequently

crossover is applied to a given population.
Darwinism: Theory founded by Charles Darwin that evolution occurs through

random variation of heritable characteristics, coupled with natural selection
(survival of the fittest).

Elitism: The chromosome with the best cost is kept from generation to generation.
Evolution: A series of genetic changes in which living organisms acquire the

characteristics that distinguish it from the other organisms.
Fitness: Opposite of cost. A value associated with a chromosome that assigns a

relative merit to that chromosome.
Fitness function: Has the negative output of the cost function. A mathematical

subroutine that assigns a value or fitness to a set of parameters.
Gene: A unit of heredity that is transmitted in a chromosome and controls the

development of a trait.

210

Genetic Algorithm: A type of evolutionary computation devised by John Holland. It
models the biological genetic process by including crossover and. mutation
operators.

Genotype: the genetic composition of an organism. The information contained in the
genome.

Global M i n i m u m : True m i n i m u m of the entire search space.
Hill climbing: Investigates adjacent points in the search space, and moves in the

direction giving the greatest increase in fitness. Exploration technique that is good
at finding local extrema.

Inversion: A reordering operator that works by selecting two cut points in a
chromosome, and reversing the order of all the genes between those two. points.

Local m i n i m u m : A m i n i m u m in a subspace of the search space.
Mating pool: A set of the population selected for potential parents.
Mutation: a reproduction operator that randomly alters the values of genes in a

parent chromosome.
Mutation rate: percentage of bits in a population mutated in each iteration of the

Genetic Algorithm.
Natural selection: Fit individuals’ reproduce, passing their genetic information on to

their offspring.
Offspring: an individual generated by any process of reproduction.
Optimisation: the process of iteratively improving the solution to a problem with

respect to a specified objective function.
Parallel Genetic algorithm: A genetic algorithm written to n m on a parallel-

processing computer.
Parent: A n individual that produces to generate one or more other individuals, k no wn

as offspring, or children.
Phenotype: the environmentally and genetically determined traits of an organism.

That trait actually observed.
Population: A group of individuals that interact (breed) together.
Permutation problem: A problem that involves reordering a list
Recombination: Combining the information from two parent chromosomes via

crossover.

211

Reproduction: The creation of offspring from two parents (sexual reproduction) or
from a single parent (asexual reproduction)

Search space: All possible values of all parameters under consideration.
Selection: The process of choosing parents for reproduction (usually based on fitness)
Simulation: The act of modelling a process.
Species: A group of organisms that interbreed and are reproductively isolated from all

other groups. A subset of the population.
Survival of the fittest: Only the individuals with the highest fitness value survive.

212

A P P E N D IX

G A A P P L IC A T IO N S IN
A S S E M B L Y L IN E B A L A N C IN G

Tab
le

1: R
ece

nt
gen

eti
c

alg
ori

thm

app
lic

ati
ons

 in
the

ass
emb

ly
line

 b
ala

nci
ng

pro
ble

m

£.2
<0

« i-H

a

<3H

a.23
3

CD>OCOCOOtou

£o
(D■*
CD00

£.233
O ho Ph

.....(<0

CD
Ofl
<Dto
CD04

ton g
2 § VH • f—4
O 03

0 h *-<S ft
30 <d Y bfl

Cl
O• r-H

0Sa*550U

f—{ (D2 >
0 h O

P CO

2 2 -I ft

0ft3ft0ftbo
a0
1 K

tot O
?—4 - i—<V 10 _ o P

CO0
O

a

:§
0

_ o

td
3

0to
O00

toft0ftbo

0O
ft
g-0 * r-H3 1o0 <uPh -i->• to toft

0
>oCOtoOQ a

ft10ft3
(S

o
0r !

0
O• rH

3“ -4

3
to

• 3
3

0
D h
O
D h

’ §
<d

P f t

0

ft
ĉd2d

_Q

1 -2 ©
i t

CO0
O

• <—ito33
ooo
CN

bflo 0 o 0 0 , Q 0 00

to. g° oT"»4 • 1“Hft 03 20 ft § 0to ft3 DA

0
2o

to0ftffi
23to0
•toft
s
° I •10 > to O

a o

g

I
ioH
0
O

23
D ho
Dh

to0ft

OO
o n
ON

0ft
a

a

p §toft
' a

3 |■ o
sft3 00 ft

toft
a

0 to ft3 03 ft/ w r*jz; bfl jZ; bi)

0p
• r—Hcd

Ift
■ HCOCO0o

oH
+

©©
O n

0ft
a

a

COCO0u

t o . a0 • to toft o0H tofto > >04 o oP COCO to
3 b

coco
5 OtoO 0 • rHCO Otoft

CO 0CO .2
§ * W r—H

1 s

I g >
0Q W<u M3 %'co
f t . a

Pft 0

0ft0oP4
ft

• t o^ rSco co ‘55
0 0 bO 0.2 .2- .S <2

3 .S3 to3 o 0 +CO DhO 0 0
£ a S 3> 0 to 3H r2 'fe O V—# Ph © co

VO
ON
O n

0O• toH100304
O 04

ft000

<to0toftx>
13

0o
• r-H3
3
ao

*55CO0u

CO0
O• rH3§30ftbfl

0 0 .2ft •j"-to
co + O0 «Dh a bflo 0 v *0 -3bfl to P4S "0 2• t o Q CdW m ft

>ftJ000
Nto*>
.1 G? 3 o3 OnO

0
OU

on
CN

R
e

fe
re

n
c

e

In
it

ia
l

P
o

p
u

la
ti

o
n

S

el
ec

ti
o

n

C
ro

s
s

o
v

e
r

M
u

ta
ti

o
n

T

e
rm

in
a

ti
o

n
<4-1O toGO

i—(QJ G <D bO

g 2
2 1 qj rt-9 S £ £ rt A

3 bO

2
2 §• r—4113 %-9 £
£ 9g G

3 <d 3 oo

<+Ho
QJ
£G3

G
.2
"5

1
.2"toto23
a

G.2
33
SQJ
rtOCD

GO» r-HtsrtG£
o• r-H<73OQcd(-HCJ OOh

totocd
U

G.2
3G-£
o
‘totort
U

nd 'QJa,
££ ^

^ grt »>rt
1Ph O

3• r—< QJ
33Oft QJO > >Oft O 3 Op toto To toto> o G oH fHo • r-H 00 fHCJ

QJ
>

P &
I o
G Srt oCQ frt 1-r-l rtQJ A IB S To 3 PS £rt .G Qh QJ•a o S g00 ft rt cd

rt frt • G QJ2 >
P h O

O tn

H o

.£
'oOhJtfTo
.£CD

W

s
-23
o

p2

QJQJ
r f l

QJts22
f§

QJQJjG
QJ
1GQJ
3oP4

QJQJX5
&QJts223
o

p4

OJQJ+G
QJtsQJ3
o

02

QJ
3rt &o ’rt
1 :§ IG .QJ

£ JD
• i 3

QJG -j_cr• r-H to£ G3 Oo ‘rtQJ 3.G 3"rt to
OftQJMjrt to ■ rG fl rt S P2 <2 £

GO
ogo
boG

rt cj ftO COS ‘to Oft rt rjo? .£ Ph ftO

toG
+ *sQJ GG 3nd to
8 a>
2 d
r t CJ to rt G Oft2 G*3 3

+toGO
toGO

bOG
-2 or-O COS
C3 rrtQJ .£ Ph ftb

+toGO O _
Oto ,rt QJ M3 rt ‘to Oftrt rft QJ .5 Ph rO

+QJVhG"GQJOofHOfttoGo
<

ir>OnOn

GtoH

rt*ONON
rt
QJGQJ>-!

oo
'£QJPhndGrtGOtofHQJ rt*nd OnG On
< f-H

NrtOirt
rG

rt
rt

£ A /2Ph C~3 An
de

rs
on

and

Fe

rr
is

bin

pa
ck

in
g

so
lu

tio
ns

cr

os
so

ve
r

(V
er

y
low

m

ut
at

ion

ge
ne

ra
tio

ns

(1
99

0)

ra
te

)

A P P E N D I X

P R O O F

The novel fron t-load ing fitness function (equation 3 .1 5) consists o f the fo llo w in g

properties:

1. Decreasing num ber o f workstations (m) increases the overa ll fitness.

2. M o v in g an element from a latter w orksta tion to an earlier workstation

increases.the overa ll fitness.

The second property has already been discussed in Chapter3 and the p ro o f o f the firs t

property is g iven here.

Consider the overa ll fitness func tion given in equation 3.15,

FF = <

n Ip I < P

X + Y + Z l=P

(3.15)

IV
Z

W here X = n2ip Y = n~p 7=1
m ~m * + 1 Z = a

(S j ' k
Rm - j

mR»i+i

m a x (X) > m ax(7) > m ax(Z) V X , Y, Z

I t can be seen that, component X is independent o f the num ber o f workstations (m)

and therefore, decreasing or increasing the num ber o f workstations does not effect the

fitness through X. H ow ever both Y and Z terms consist o f variable m and they are

sensitive to any change in num ber o f workstations.

Consider component T in equation 3.14,

Y = n2p

(s A
(c . l)

m - m * +1
Expanding the r igh t had side o f equation c. 1,

215

V S, (c.2)

Where K is the workstation index, which varies according to the following
relationship, g is the number of generations and G is the number of generations per
workstation (test problem constant).

I f g = l ; K = l

Else if g = G*K; then K:=K+1

Without loss of generality, in order to illustrate the properties of this relationship,
setting n = 58, m = 25 generates a family of curves (depending on K), and figure (a)
shows the fitness variation of Y while the number of workstations decrease from 30
to 25 in the solution.

180 00

.16000

14 0 0 0

12000
> 10000 </)</)0)
- 8 0 0 0
LU

6000

4 0 0 0

2000
0
25 2 5 .5 26 2 6 .5 27 2 7 .5 28 2 8 .5 29 2 9 .5 30

N um b e r o f w o rks ta tio n s

Figure a. Fitness variation against number of
workstations for K= 1,2 and 5.

y < -- ---- K since 1 > f o \

216

F r o m figure (a) it can be seen that, decreasing the number of workstations in the
solution increases the fitness Y irrespective of the value of K.

Next, consider the Z component of the overall fitness function that is responsible for
forward loading.

_ £
(c.3)

mR;n+l

Expanding the right hand side of the above equation c.3, and substituting k=l, gives

a s o
m I C R + V C ; R +

t r + \ C j R ~5 + " " (c r +°

Since — C R (V+I) < R (JC+1), the above expansion can be simplified in to the following

expression.

Z < a
m R

+ v ^ y + _1_
v * y

(j
R

(c.4)

Rearranging the expression c.4,

Z < a
m

(i V
i1 + u J + u + I

\Rj
+

R

^ v „-r
R

The first m terms in the above expression represents a geometric series and the
summation of the progression is given by (Ssum)

2 1 7

Substituting a = nCRm*+i and, further simplifying gives,

Z <
(nCR‘ — |l-- l—

m I Rm~[
(c .5)

Without loss of generality, in order to illustrate the properties of this relationship,
setting n = 58, m = 25, and C = 65, generates a family of curves (depending on R),

and figure (b) displays the fitness variation o f Z w he n the number of workstations
decrease from 30 to 25 in the solution for R = 1.2.

x 105

Number of workstations

Figure (b). Variation of fitness against number of workstations

So, both Y and Z fitness components increase as the number of workstations decreases
, proving the second property of the overall fitness function.

A P P E N D I X

T E S T P R O B L E M
S P E C I F I C A T I O N S

I

c ° ro o 40 60 80 100
Task time

u - - - - - -0 500 1000 1500
Task time

Reference Problem
ID n hiim tmax 'sum OS TV Cycle times

Wamecke(1971) w a 58 58 1 53 1548 59.1 7.6 65
Lutz (1974) l u 89 89 1 10 485 77.6 10.0 20
Mukeheijee and
Basu (1964) m u 94 94 8 171 4208 44.8 21.4 176,301,

351
Arcus (1963) A R 1U 111 10 5689 150339 40.4 568.9 6269
Bartholdi (1993)
Sholl (1999)

B A i48
s h 297

148
297

1
5

83
1366

4234
69655

25.8
58.2

83.0
277.2

170,425,
1000 ■
2787,7000,
14000

n : number of task elements
tmax: maximum task time
OS: Order Strength

tmi„: minimum task time
tmm dotal work content
TV : time variability ratio

2 1 9

o 4c<u=3cr ca o
£ 2

Mertens 7 b Bowman 8
. o 4co3 mm

a 2 1 ' ■

■
LL

. . i1 2 3 4 '5 5 ■ °(3 8 10 12 1Task time
m Task time

10 20 30 40 50
Task time

10 15
Task time

10 15
Task time 5 10 15 20 25

Task time

Reference Problem
ID n t/nim Licix t-sum OS TV Cycle times

Mertens (1967) m e 7 1 1 6 29 52.4 6.0 6,8,10,15
B o w m a n (1960) b o 3 8 3 . 17 75 75.0 5.7 20
Mansoor(1964) m a u 11 2 45. 185 60.0 22.5 48,62,94
Mitchell (1957) m i 21 21 1 13 105 71.0 13.0 15,26
Rosenberg and
Ziegler (1992) r o 25 25 1 13 125 71.7 13.0 14,16,21,32

Buxey (1974) b u 29 29 - 1 25 324 50.7 25.0 27,33,36, 41
n : number of task elements tmin: minimum task time
t,nax '■ maximum task time tsm :total work content
OS: Order Strength TV : time variability ratio

220

Task time
3000 4000
Task time

Reference Problem
ID n t/nim tmax tsum OS TV Cycle

times
Sawyer (1970) S A J0 30 1 25 324 44.8 25.0 25,30,41
Gunther et al (1983) g u 3S 35 1 40 483 59.5 40.0 41,49,

54,81
Kilbridge & Wester
(1962) i c w 45 45 3 55 552 44.6 18.3 69,92,

138,184
Tonge (1961) T O , 0 70 1 156 3510 59.4 156 251,320
W e e and Magazine
(1981b) w m 75 75 7 53 1548 59.1 7.6 97,104,

350
Arcus (1963b) a r 83 83 233 3691 75707 59.1 15.8 5408

7571
n : number of task elements
tnmx: maximum task time
OS: Order Strength

tmin: minimum task time
tsum dotal work content
TV : time variability ratio

221

