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ABSTRACT

The main achievement o f this research is the development o f a genetic algorithm 

model as a solution approach to the single model assembly line balancing problem 

(S M A LB P ), considered a difficult combinatorial optimisation problem. This is 

accomplished by developing a genetic algorithm with a new fitness function and 

genetic operators.

The novel fitness function is based on a new front-loading concept capable o f  

yielding substantially improved and sometimes optimum solutions for the SM ALBP. 

The new genetic operators include a modified selection technique, moving crossover 

point technique, ranlc positional weight based repair method and dynamic mutation 

technique. The moving crossover point technique addressed the issue of propagating 

best attributes from parents to offspring and also supports the forward loading 

process. The new selection technique was developed by modifying the original rank- 

based selection scheme. This eliminates the high selective pressure associate with the 

original rank-based technique. Furthermore, the modified selection technique allows 

the algorithm to run long enough, i f  required, without premature convergence and this 

feature is very useful fo r balancing more complex real world problems. The repair 

technique included in this model repairs a higher proportion o f distorted 

chromosomes after crossover than previous methods. Moreover, a third innovative 

feature, a moving adjacent mutation technique, strengthens the forward loading 

procedure and accelerates convergence.

The p erformance o f  the front-loading fitness function c urrently outperforms 

the published fitness functions and fifty-four published test cases generated from 

sixteen precedence networks are used to assess the overall performance o f the model. 

Encompassing the new genetic algorithm concepts, forty-four test problems (81%) 

achieved the best solutions obtained by published techniques and twenty-four 

problems (44%) produced better results than the benchmark Hoffmann precedence 

procedure, the closest non-genetic algorithm method. The superiority o f the genetic 

model over other heuristics is identified in this research and future developments o f  

this genetic algorithm application for assembly line balancing problems is evident.
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C H A P T E R

INTRODUCTION

An assembly line is an industrial arrangement o f workers, equipment and machinery 

for putting together components in a continuous flow process. It is generally used for 

mass production o f a wide range o f consumer goods. Assembly lines come in 

different shapes and sizes depending on the product being assembled. Consumer 

goods including furniture, electronic items, toys, ‘white goods’ such as freezers, 

washing machines, dryers and the most substantial, automobiles are a few examples. 

Aircraft-manufacturing assembly lines are the most complex assembly lines as far as 

the number o f components involved in the assembly process, whereas automotive 

assembly lines are the most difficult lines to balance because o f small cycle times 

(less than one minute).

Most cars manufactured today are a combination o f start-stop lines during 

body build (robot lines) and continuous movement for final assembly (figure 1.1). A  

modem car manufacturing line produces around 400,000 cars annually, and costs 

approximately £110 millions. Table 1.1 shows the annual production and assembly 

labour cost o f a few leading car manufactures in 1997 and indicates that the cost o f 

direct labour involving in automobile manufacturing lines is enormous. Nevins and 

Whitney (1980) found that the direct labour cost o f assembly was about 10-30 %  of 

the total cost and replacing human operators with advanced automatic assembly lines 

is not cost effective due to huge capital investment. Therefore, the availability o f  

relatively inexpensive and unskilled labour is still an attractive management choice 

for most assembly lines.



Chapter 1: Introduction

Figure 1.1. Passenger car assembly line 
(http//www.autofacts.com)

Toyota Nissan Honda Ford
Daimler

Chrysler

General

Motors

Annual Volume 

(in thousands)
647 309 695 4,299 2,906 4,946

Labour hours per vehicle 

(assembly, stamping)
30.38 30.76 30.84 34.79 44.25 45.60

Total labour cost per vehicle

(£)
1,063 1,077 1,079 1,556 1,991 2,052

Annual labour cost 

(£ million)
687 332 749 6,689 5,785 10,149

Table 1.1. Annual production and labour cost 
( http://www.ai-online.com: The Detroit News)

In manual or semi automatic assembly lines, every manufacturer’s prime 

intention is to make the most out o f the line in terms o f least overall assembly cost. 

The most effective way o f saving millions o f pounds is to decrease the number of 

workstations in the line. According to the figures issued by the Toyota Corporation, 

Japan, in 1977, the average saving per workstation per annum is £0.5 million! This 

implies, the fewer the operators in the line the lower the labour cost and the less the 

space required, giving a more cost effective production plan.

2
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Chapter 1: Introduction

Generally, the best line length is achieved by grouping tasks into workstations 

along the production line and the grouping problem is known as the a ssem b ly  line  

p ro b le m . This comprises two separate sub problems, the line length  p ro b le m  and the 

c y c le  tim e p ro b lem , which are solved sequentially.

The cycle time problem is minimising the cycle time when the number o f 

workstations or production employees is fixed. This will maximise the production rate 

and generally occurs, when the organisation wants to produce the optimum number o f 

items using a fixed number o f workstations without purchasing new machines or 

without expansion.

The line-length problem is minimising the number o f workstations when the 

required production rate, assembly tasks, task times and precedence requirements are 

given. This results in cost effective production plans and generally occurs when 

designing new assembly lines to achieve the forecast demand.

The line-length problem is more common than the cycle time problem. A  large 

number o f techniques have been developed since 1954 to solve this problem and, 

these techniques can be broadly categorized into three groups: exact algorithms, 

heuristic procedure and metaheuristic approaches. Exact algorithms become 

intractable when the problem size is large. Although heuristic procedures do not 

guarantee optimal solutions, they provide good near optimal solutions. Therefore, 

they have become increasingly popular among both practitioners and researchers in 

the late 60s and onwards.

The assembly line balancing problem was identified as an NP-hard 

combinatorial optimisation problem that cannot be solved in traditional ways. In 

1975, John Holland introduced a simple but powerful metaheuristic technique called 

the ‘ G en etic  A lgo rith m  ' which has become more popular among researchers because 

o f its excellent capability o f addressing hard class combinatorial optimisation 

problems. This dissertation extends the use o f the genetic algorithm in the area of NP  

hard line balancing.

3



Chapter 1: Introduction

The fist application o f the genetic algorithm to the assembly line balancing 

was reported by Anderson and Ferries (1990) and has been followed by a number o f 

procedures. Interestingly, none o f the genetic algorithm methods were able to 

outperform solutions obtained by the benchmark Hoffman matrix procedure 

developed by Thomas Hoffmann in 1963.

Within this thesis a new genetic algorithm model is created to generate 

optimal or near optimal solutions that outperform the Hoffmann precedence matrix 

approach.. This will be accomplished by modelling a new genetic algorithm line- 

balancing model, which includes a brand new fitness function, crossover and mutation 

techniques plus a modified selection scheme.

This thesis is divided in to seven chapters: Chapter 2 covers two main 

sections, firstly a detailed description o f basic types o f assembly lines; its complexity 

and standard performance measures, and previously published exact line-balancing 

heuristic and techniques. Secondly, the definitions and a conceptual framework o f the 

classic genetic algorithm plus published applications o f the algorithm to the assembly 

line balancing problem are given.

Chapter 3 starts with introducing the new frontloading theorem on which the 

novel fitness function is based. The design concepts o f the fitness function and the 

theoretical proof are described in detail. The new crossover and mutation techniques 

with moving locus characteristics, plus the modified rank selection scheme are 

explained here.

The test programmes, the selected benchmark problems and performance 

evaluation criteria are the main theme o f Chapter 4. Chapter 5 is the critical chapter 

representing the test results and discussion. Chapter 6 and Chapter 7 contain 

conclusions and future research directions respectively.
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C H A P T E R

LITER A TU R E R EV IEW

This chapter will review the literature relevant to assembly lines and the Genetic 

Algorithm. Section one comprises five parts, with the first two introducing the origins 

and classifications o f assembly lines. The third and forth parts present the complexity 

o f assembly lines and their performance measures respectively. The last part reviews 

published line-balancing techniques. Section two mainly discusses the concepts, o f the 

Genetic Algorithm and its previous applications to the assembly dine balancing 

problem.

2.1 ASSEMBLY LINE MANUFACTURE

2.1.1 THE ASSEMBLY LNE AND ITS ORIGIN

Assembly lines are an important class o f manufacturing systems when large quantities 

o f identical or similar products are to be made. The basic concept behind assembly 

lines is to break down the assembly process into-individual stages and to allocate each 

stage to an operator, group o f operators or a machine. A  product passes along the line 

from stage to stage, reaching the end o f the line flilly assembled.

The assembly line was a vital development in the growth o f U.S. industry in 

the first half o f the 20th century and is still important today in manufacture o f  

assembled products including automobiles, consumer electronics products, kitchen 

and laundry appliances (white goods), power tools and other discrete products made 

in large quantities.
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Manual assembly lines are based largely on two fundamental work principles. 

The first is division o f labour, argued by Adam Smith in England in his book W ealth  

o f  N a tio n s  published in 1776 (Smith and Sunderland, 1982). The second principle is 

interchangeable parts based on the work o f Eli Whitney and others at the beginning o f 

the 19th century.

Modem production lines can be traced back to the meat packing industry in 

Chicago, Illinois, and Cincinnati, Ohio, where overhead (un-powered) conveyors 

were used to move carcasses from one worker to the next. These conveyors were later 

replaced by powered chain conveyors to create “d isa sse m b ly  lin es” -  the predecessor 

to the assembly line.

American automotive industrialist Henry Ford observed the meatpacking 

industry. Together with colleagues, he designed an assembly line in 1913 in Highland 

Park, Michigan, for producing magneto flywheels. Ford later applied the assembly 

line technique to chassis fabrication and productivity was increased by a factor o f  

eight, compared to previous single-station assembly methods. The success o f the 

Ford Motor Company resulted in a drastic reduction in the cost o f the model T Ford, 

the principal product o f the company at the time. This forced his competitors and 

suppliers to imitate his method, and the manual assembly line became intrinsic to U.S. 

industry.

2.1.2 M A N U A L  A S S E M B L Y  L IN E S

A  manual assembly line consists o f multiple workstations arranged sequentially, at 

which human assembly workers perform operations (figure 2.1). The usual procedure 

on a manual line begins with the launching o f a base part onto the front end o f the 

line. A  work carrier is often required to hold the part during its movement along the 

line. The base part travels through each workstation, where workers perform tasks that 

progressively build the product. Components are added to the base part at each station 

so that the entire work content has been completed when the product exits the final 

station.

6
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Figure 2.1. Manual assembly line in which the work proceeds 
around a loop (Courtesy o f Jervis B. W ebb Co.)

2.1.2.1 M O D E L V A R IA T IO N

Today assembly lines are used to manufacture a large variety o f products in diverse 

industrial environments. These products are different in shape, size and complexity; 

therefore, various production lines are used accordingly. In terms o f the capacity o f a 

production line to cope with model variations, three types o f line can be distinguished: 

s in g le  m o d e l lines, m u lti m o d e l lin es and m ix ed  m o d e l lines. Figure 2.2 illustrates the 

basic types o f assembly lines used in industry.

1 S in g le -m o d e l lines. These are specialized lines dedicated to the production o f a 

single model or product. A ll workstations repeatedly have to perform the same 

tasks on identical work pieces. The workloads o f all workstations remain 

constant over time.

2 M u lti-m o d e l lines. These lines are used for the production o f two or more 

models. Each model is produced in batches on the line. The models or 

products are usually similar in the sense o f requiring a similar sequence of 

processing or assembly operations. It is for this reason that the same line can

7
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be used to produce the various models with rearrangement o f the line 

equipment. Line speed may be variable between models.

A A A A A A A A A A
1. Single-model line.

A A A Set-up G Q Q Q Set-up

2. Multi-model line

A 0 A § © 0 0 § A 0
3. Mixed-model line 

®|f|p Different models or products

Figure 2.2. Assembly lines for single and multiple products

3 M ix e d -m o d e l lines. They are also used for the production o f two or more 

models, but the various models are intermixed on the line so that several 

different models are being produced simultaneously rather than in batches. 

Automobile and truck assembly lines are examples o f this case.

2.1.3 _ BASIC TERMS OF ASSEMBLY LINE MANUFACTURING

The design and operation o f assembly lines makes use o f a number o f specialised 

management terms. It is well worth defining these terms before the review o f existing 

work and development o f the balancing techniques.

1. A ssem b ly . Is the process o f collecting and joining two or more parts together 

in order to produce assembly or finished product (end product). It is 

characterized by the components used and the operation necessary to combine 

them. Components can be subdivided into p u rc h a se d  item s and su b -a ssem b lies



(intermediate goods). The relationships between components and the flow of 

material can be visualized by a sse m b ly  ch arts (Buffa, 1983, p. 196). The 

unfinished units o f the product are called w o rk -p ieces .

2. O p e ra tio n . Is a portion o f the total work content in an assembly process. The 

time necessary to complete an operation is called o p era tio n  (task) tim e. 

Operations are indivisible, which means they cannot be further subdivided 

without creating unnecessary additional work (Barnes, 1980).

3. W orksta tion . A  workstation is an assigned location in the assembly line where 

a given amount o f work is performed. Its dimensions, the machinery and 

equipment used, as well as the type o f work assigned to it, characterize a 

workstation. One hum an o p e ra to r  generally mans an assembly line 

workstation, however, on short runs an operator may man more than one 

workstation. In lines manufacturing large products (e.g. aircrafts), 

workstations are frequently manned by several operators. The work content of 

a station (set o f assigned tasks) is referred to as sta tio n  lo a d ; the time 

necessary to perform the work is called w o rk sta tio n  tim e.

4. C ycle  tim e. Is the time the product spends at each workstation on the line 

when the line is moving at a standard pace. The cycle time is therefore the 

amount o f time elapsing between arrival o f successive units as they moved 

down the line at a standard pace. Extending this definition, the cycle time is 

the maximum operation time for closed stations. The pace at which the line 

operates (line speed) and the cycle time, together determines the rate at which 

products flow from the line. A  positive difference between the cycle time and 

the workstation time is called id le  tim e. The sum o f idle times for all 

workstations o f the line is known as b a la n ce  delay.

5. P re c e d e n c e  d ia g ra m . A  graphical description o f any ordering in which work 

elements must be performed in achieving the total assembly o f the product. 

Prenting and Battaglin (1964) introduced the precedence diagram (precedence 

graph) and figure 2.3 displays a typical precedence diagram o f a 10-element

Chapter 2: Literature review
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assembly line balancing problem. The circles represent task elements and the 

corresponding operation times are denoted as node weights. In this example, 

task A  must be performed before tasks B and C and tasks D  and E prior to task 

F etc.

Chapter 2: Literature review

3 4 2

6. P re c e d e n c e  m atrix . This is a square matrix, containing ones and zeros, in 

which rows are labelled with consecutive letters (or numbers) and the columns 

are labelled in the same order. Entries in the matrix are as follows:

1. I f  the task element o f row i immediately precedes.the element of 

column j ,  a one (1 ) is placed in row i and column j . .

2. A ll other entries are zero.

j

A B c -D E F G H I J
A 0 1 0 0 0 0 0 0 0
B 0 0 0 • 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0
D 0 0 0 0 0 1. 0 0 0 0
E 0 0 0 0 0 .1 0 0 0 0
F 0 0 0 '0 0 0 1 .1 1: 0
G 0 0 0 0 0 0 0 0 0 1
H 0 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 1
J 0 0 0 0 0 0 0 0 0 0

Figure 2.4. Precedence matrix

Figure 2.4 shows the corresponding precedence matrix o f the above 
precedence diagram given in figure 2.3.
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7. L ine ba lan cin g . Is the assignment o f task elements to workstations in order to 

satisfy a given set o f objectives within precedence and cycle time constraints. 

Typical objectives are to minimise the number o f stations and maximise 

efficiency.

2.1.4 CLASSIFICATION OF ASSEMBLY LINE BALANCING PROBLEMS

Research in assembly line balancing has been in existence since 1954. When Biyton

(1954) pioneered the original study o f the assembly line balancing problem. Over the 

last fifty years a large volume o f literature has been published on this topic. Gagnon 

and Ghosh (1991) studied the historical growth and decay pattern (life cycle) o f 

assembly line research publications and concluded that the number o f publications is 

still on the increase.

According to the Ghosh and Gagnon (1989) classification, the Assembly Line 

Balancing (A L B ) literature can be classified into two main groups: single model and 

miilti/mixed model. Each group can be further divided into categories, such as 

deterministic and stochastic. Finally each category may be further sub-divided into 

two classes: simple and general (figure 2.5). Scholl (1999) presented the latest 

classification o f assembly line balancing problems, taking into account characteristics 

including line speed and inventory buffers.

A S S E M B L Y  LINE  B A L A N C IN G  L IT E R A T U R E

Single Model

Deterministic
(SMD)

Simple General 
(SALB) (GALB)

Stochastic
(SMS)

Simple
(SALB)

General
(GALB)

Multi/Mixed Model

i_________

Deterministic
(MMD)

r - H

\
Stochastic

(MMS)

Simple General Simple General
(SALB) (GALB) (SALB) (GALB)

Figure 2.5. Classification o f assembly line balancing literature (Ghosh and 
Gagnon, 1989)
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The Single Model Deterministic (S M D ) version o f the assembly line balancing 

problem is the original and the simplest category o f line-balancing problem. 

Introducing other restrictions including parallel workstations and zoning restrictions 

in to the model converts the problem into a General Assembly Line Balancing 

(G A L B ) problem.

The Single Model Stochastic (SM S ) category introduces the concept o f task

time variability. This is more realistic for manual assembly lines, where workers’ 

operation times are seldom constant. Introducing stochastic task times cause many 

other issues to become relevant, including station time exceeding the cycle time, 

pacing effects on work’s operation times, station length, size and location of inventory 

buffer and launch rate.

The Multi/Mixed model Deterministic (M M D ) category assumes deterministic 

task times, but introduces the concept o f the assembly line producing multiple 

products. Model selection, model sequencing, launching rate(s) and model lot sizes 

become more critical issues in this category o f models.

The Multi/Mixed Stochastic (M M S ) category respectively differs from its 

M M D  counterpart in that stochastic times are allowed. A ll parameters arising from 

stochasticity that are relevant in the SMS problem are also present here. This category 

includes the most complicated assembly line balancing problems and not much 

research has been done so far in this area.

2.1.5 THE SIMPLE ASSEMBLY LINE BALANCING PROBLEM (SALBP)

The simple assembly line balancing problem has been intensively studied during the 

last five decades and the classical single model problem contains the following main 

characteristics:

1. Mass production o f one homogeneous product by performing n operations

over a set o f workstations;

2. Paced line with fixed cycle time;

3. Deterministic operation times;

Chapter 2: Literature review
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4. N o assignment restrictions besides the precedence constraints;

5. Serial line layout, one -sided stations;1

6. A ll stations are equally equipped with respect to machines and workers;

7. Fixed rate launching, launch interval equals cycle time;

The two most important parameters in production line design are the output 

rate and the cost o f obtaining the output rate. It is possible to maximize the output rate 

o f a production line at a fixed cost by changing the line configuration.

A  substantial amount o f research has been concerned with- production line 

configurations, especially with the configuration along the length o f the line (number 

o f workstations). The classic study o f this is called a ssem b ly  line ba lan cin g . In 

general, assembly line balancing concerns allocating an equal amount o f work to each 

station. Lack of such balance leads to a certain amount o f line inefficiency, 

consequently a loss o f production output, time wastage and increase in production 

costs (Chow, 1990, Downey and Leonard, 1992).

According to both Tonge (1961) and Prenting and Thomopoulos (1974), 

Bryton (1954) was the first to give an analytical statement o f the assembly line 

balancing problem. However, the first published line balancing work was by Salveson

(1955). In his pioneering work, Salveson noted that T ota l S la ck  (TS) is a function o f  

the number o f workstations m along the line. So,

m
re (m ) =  £ ( c - s , )

n
=  m C ~ Y l t ,

1=1
=  m C - T  (2.1)

Where C  is the cycle time, n is the number o f tasks and Sj is the workstation time. T  is 

the total work content and is a problem dependent constant. Since both C  and T  are 

constants, TS is a linear function o f m, and therefore, it is minimized if the number o f  

workstations along the line is minimized.

Chapter 2: Literature review
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Also note that

T_

C
< m < n

Where ra* is the optimal (minimum) number o f workstations needed and [x]+ is the 

smallest integer larger than or equal to x. These bounds are referred as th eo re tica l  

m inim um  (m min) and m axim um  (m ma.x), respectively, o f the number o f stations required.

T
ram,n >min

C
and m < nmaX

Therefore, perfect balance, as shown in figure 2.6, is rarely achieved in practice. A  

more common situation is that neither the workstation times are balanced (figure 2.7) 

nor is the maximum workstation time equal to the desired cycle time (figure 2.8). 

Generally, imperfect balance (figures 2.7 and 2.8) arises mainly due to two constraints 

to be taken in to account in assembly lines: c y c le  tim e co n stra in ts  and p re c e d e n c e  

co n stra in ts .

a Workstation time

Station number

Figure 2.6. Perfectly balanced five-workstation assembly line
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Figure 2.7. A ll stations not balanced

□ Idle time loss
□ Workstation time

1 2 3 4 5

Station number

Figure 2.8. Maximum workstation time equals desired cycle time

2.1.6 COMPLEXITY OF THE SIMPLE ASSEMBLY LINE BALANCING
PROBLEM

Simple assembly line balancing problems are members o f the general class o f 

combinatorial optimisation problems (Domschke and Drexl,1998, p. 113). They are 

NP-hard because they may be reduced to the partition problem which is known to be 

NP-complete (Karp, 1972). These problems are related to various assignment, 

sequencing, grouping and selection problems and it is unlikely that a polynomially 

bounded optimal algorithm exists.

The most obvious correspondence results from omitting the precedence 

constraints. Then the simple assembly line balancing problem reduces to the well- 

known b in -p a ck in g  p ro b le m , which is to pack a given collection o f items into a 

minimum number o f equal-sized bins. (W ee and Magazine, 1982).

In general, the complexity of a problem concerns the requirements of 

resources like computation time and storage space needed for solving the problem 

with a computer program (representing a particular algorithm). Most commonly, the 

computation time requirements are considered as the dominant factor deciding 

whether or not an algorithm is efficient enough to solve a problem and depends upon 

a variety o f factors including problem size, cycle time, number o f workstations in the 

line, precedence diagram, processing speed o f the machine and the method used.
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Depending on the precedence diagram, there may be an enormous number o f 

feasible sequences with only one or a few o f them optimal solutions. Theoretically, an 

optimal solution can be obtained by scanning all these feasible solutions, however it is 

not always practical, especially when the problem is large. I f  there are n tasks in a job  

and if  these tasks are independent, then the total number o f feasible sequences 

generated is n! However if  these are dependent (i.e., there exists precedence 

requirements), and there are r  arcs in the precedence diagram, then approximately, 

there would be n! /2 r distinct sequences (Buzacott and Shanthikumar, 1993).

A  number o f numerical measures (besides the num ber'of elements n) have 

been published in the assembly line balancing literature for measuring problem 

complexity. They are as follows:

1. O rd er  S tren gth  ( Mastor, 1970, Bhattachaijee and Sahu, 1990): the Order 

Strength (O S ) measures the relative number o f precedence relations in the 

precedence diagram. Problems with large order strength are basically expected 

to be more complex than those with small OS values.

2 P
O rd e r  S tren g th  =  —  — (2.2)

Where P . is the number o f precedence relationships and n is the number of 

elements

2. F lex ib ility  R a tio  (FR): Dar-El (1973) defined flexibility ratio AT? e [0,1] and it 

is the number o f zero entries in the (transitive) precedence matrix divided by 

the total number o f entries. This measure is equivalent to the order strength 

because F R  —'1-O S  (Elmaghraby and Herroelen, 1980).

3. W est R a tio  (Dar-El, 1973): The west ratio WR =  n/m  is the average number of 

tasks per workstation and problems with small values o f W R  tend to be more 

complex than those with larger values.

4. Tim e In te rv a l (W ee and Magazine, 1981b): The time interval 77 =  ,/C, 

tmax/C] e  [0,1] is a measure o f the interrelation between the cycle time and the

Chapter 2: Literature review
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task times. A  small T l length indicates that the task times vary only in a small 

range. Furthermore, the position o f T l in the interval [0,1] shows if  the task 

times are large or small relative to the cycle time C. Following the above 

argument, problems with small T l and having a position near the right border 

o f [0,1] are expected to be relatively complex.

5. Tim e V a riab ility  ra tio  (TV): A  measure similar to the time interval is defined 

as follows:

Chapter 2: Literature review

In contrast to Tl, only one value is used to characterize a problem instance.

the time structure o f the precedence diagram rather than single problem 

instance. The complexity o f problem instances is expected to grow with 

decreasing values o f TV.

6, P ro je c t In dex  (P jtl): It seems that none o f these measures represents the true 

complexity o f the problem due to omitting either precedence or task time 

distribution. However, Driscoll and Tbilakawardana (2000c) defined a new 

compound measure called P r o je c t In dex  considering both task and precedence 

distributions and, mathematically expressed as follows:

Where cp is number o f precedence columns, cpav is average column position, 

tav represents the average task time and tsd is the task time variance.

2.1.7 P E R F O R M A N C E  M E A S U R E S

Two main measures o f solution quality have been defined to support line-balancing 

modelling: L in e  E ffic ien cy  (LE) and B a la n ce  E ffic ien cy  (BE), (Kilbridge and Westter, 

1961b). Both measures are dimensionless and scaled between zero and one hundred

(2.3)

Furthermore, this measure is independent o f the cycle time, therefore, reflects

P j t l  =  -  Cj— l  +  ± l  +  ±  +  ( l - ^ t )  x 100% 
4 n - 1  c p C  C

(2.4)
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percent, with one hundred percent representing excellence. Line Efficiency represents 

positive achievement in line utilization and is the key measure of economic 

performance. Balance Efficiency is representative o f the distribution o f work with 

consequent personnel satisfaction combined with increased opportunities for greater 

output. The mathematical expressions for these measures are as follows:

n

2 ?
L E  =  — — x 100% (2.5)

m x C
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B E  = 1 - 7=1

m x S „
x 100% (2.6)

In addition to the above two main measures the following measures also can 

be found in assembly line balancing literature. Kilbridge and Wester (1961b) 

proposed B a la n ce  D e la y  (B D ), a measure o f assembly efficiency, and is the ratio o f  

the total idle time and the total time spent by the product in moving from the 

beginning to the end o f the line. ,

m x

B D (=1
m x C

(2.7)

Moodie and Young (1965) introduced another measure called S m ooth n ess Index (SI), 

which measures the equality o f the distribution o f work among the workstations.

(2.8)

Both these measures are noted as weak because o f data sensitivity and non-linearity.
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2.1.8 L IN E  B A L A N C IN G  A P P R O A C H E S

Since the pioneering study of Bryton (1954) a large number o f heuristic and exact 

algorithms have been suggested to solve the NP-hard assembly line balancing 

problem. In the early 1950’s, researchers suggested analytical techniques including 

linear and integer programming but later on they realized that these techniques would 

fail when the problem size is large. As a consequence practitioners developed 

heuristic approaches, solving assembly line balancing problems at a low cost of 

computation time and low volume o f computer storage. Although, these techniques 

would not guarantee optimal solutions, significantly good results were reported. This 

section will review the previously published heuristic and exact algorithms for the 

single model deterministic assembly line balancing problem. .

2.1.8.1 E X A C T  (O PT IM U M -SE E K IN G ) ALG O R ITH M S

Baybas (1986a) provided a comprehensive survey o f optimum seeking assembly line 

balancing techniques and showed most o f the methods are based on the well known 

Branch-and-Bound (B & B ) technique. The Branch and Bound technique has received 

particular research attention and is widely used as an optimal procedure for larger 

problems. In general, when the number o f tasks is large, all exact algorithms fail, in 

the sense that the CPU  time grows exponentially.

The early linear programming and dynamic programming models have been 

replaced by the more realistic Integer Programming (IP ) formulations and solution 

techniques. Neither integer programming nor the recently introduced goal 

programming has been used on other than single product line studies. The shortest 

path technique, perhaps due its added computational efficiency, has been popular for 

obtaining optimal solutions for the smaller assembly line balancing formulations.

Salveson (1955) formulated the single assembly line balancing problem as a 

liner-programming problem encompassing all possible combinations o f station 

assignments. His model, by definition can result in split tasks and therefore, may 

result in infeasible solutions. Bowman (1960) was first to provide a ‘n o n d iv is ib ility ’ 

constraint, by changing the linear-programming formulation to one o f integer
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programming. White (1961) showed that those constraints are redundant and 

constructed a new zero-one program based on Bowman’s formulation.

Klein (1963) proposed an approach to solve the assembly line' balancing 

problem based on integer programming. It requires the solution o f a series o f 

assignment problems. Klein proposed to generate all feasible sequences o f tasks for 

the given precedence diagram and then, the assignment minimising the total idle time 

can be determined by solving the associated assignment problem. This has to be 

repeated for each feasible sequence and the optimal solution would be among the 

solutions to the series o f the assignment problems.

Thangavelu and Shetty (1971) applied general integer programming for the 

simple assembly line balancing problem. Their zero-one programs were solved by 

applying the additive algorithm o f Balas (1965), as presented by Geoffrion (1967). 

Since this method is a general integer programming method and it relies on integer 

programming theory and codes.

Patterson and Albracht (1975) developed a specialised method, which also 

relies on IP (Integer Programming) techniques for solving line-balancing problems. 

This method examines sequences o f 0-1 programs for feasible solutions.

Schrage and Baker (1978) proposed an efficient method for generating all 

feasible sets and a method for assigning to each feasible set a label that can be used as 

a physical address for storing information about the set within the framework o f a 

dynamic programming approach to sequencing problems with precedence constraints.

Using a Jackson (1956) type o f enumeration tree, Van Assche and Herroelen 

(1979) constructed a frontier search method but one that is not based on IP theory or 

codes. They represent a tree search procedure, dominance rules, bounding arguments 

and branching heuristics with a node representing the assignment o f tasks to a single 

workstation.
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Wee and Magazine (1981a) also reported a branch-and-bound method, not 

based .on general IP codes or theory. They used simple heuristics termed IUFFD  

(Immediately Updated First Fit Decreasing) and backward recursive positional weight 

(B R P W ) and immediately updated to generate m max. The first one is a variation o f the 

well-known bin p a c ld n g  heuristic based on the F irs t-F it-D e c re a s in g  (FFD) rule, 

which is one o f the most efficient heuristics for the bin-packing problem.

Talbot and Patterson (1984) proposed a new formulation, one not involving binary 

decision variables. The decision variable in this formulation is defined to be the 

number o f the workstation a particular task is assigned to.

In the recent past, a few exact methods based on branch-and-bound techniques 

have been reported in the literature. F A B LE  developed by Johnson (1988) and 

EU R E K A  developed by Hoffmann (1992) have gained much attention due to 

excellent performance. Scholl (1999, p. 118) described that F A B LE  and EU R EK A  

may be seen as prototypes for future developments.

2.1.8.2 HEURISTIC  PR OCEDURES

Talbot et al (1986) published an excellent comparative evaluation o f heuristic line 

balancing techniques and showed that published heuristic decision rules vary from 

simple list processing procedures, which consider a single attribute o f each work task 

to optimal seeking procedures that have had the amount o f computation time to 

devote to each search limited by an externally imposed time limit.

To analyse these heuristic procedures, they are grouped into three categories. 

These categories allow capturing salient features o f each approach, and to emphasize 

the similarities and differences among them. The first category consists o f single-pass 

decision rule procedures which implement list processing prioritising schemes for task 

assignment based on a single attribute o f each task. The second category consists o f  

procedures that produce multiple single-pass solutions and select the most attractive 

solution. The last category consists o f procedures that attempt to improve a solution or 

a station assignment by some iterative backtracking methods.

(a) Single-pass decision rule procedures

21



Helgeson and Birnie (1961) proposed the well-known and popular ‘Ranked Positional 

Weight technique’ (R PW T ). In this technique, each task is given a weight equal to its 

task time plus the sum o f all the task times o f all the elements that follow it on the 

precedence diagram. A  Complete description o f the technique and an illustrative 

example is given in section 2.1.9. Since the method is very popular in the literature, it 

appears in almost every comparative study and in several textbooks. Ignall (1965) 

reported that the method results in solutions far from the optimum. Mastor (1970) also 

supported Ignall (1965), showing that the technique performs worse than almost all o f 

the other techniques compared in his study. _

Tonge (1960, 1961) developed a heuristic technique for the problem 

consisting o f three phases: (a) simplification o f the initial problem by grouping 

adjacent tasks into compound tasks, (b ) solution o f the more simple problems by 

assigning tasks to stations at the least complex level possible, breaking up the 

compound tasks into their elements only when necessary for a solution; and (c) 

smoothing the resulting balance by transferring tasks among stations until the 

distribution of assigned time is as even as possible.

Kilbridge and Wester (1961a) proposed a technique developed primarily to 

balance lines without the aid o f computers. The main feature o f the technique is to 

group tasks into columns in the precedence diagram where tasks are placed as far left 

as possible without violating the precedence relations. In such a diagram, tasks can be 

permuted among themselves in each column and some o f the tasks can be -moved 

laterally from their columns to positions to their right without violating the 

precedence relations. Then, two properties o f the tasks in the diagram, p e rm u ta b ility  

with column and la te ra l tra n sfe ra b ility , are exploited in an attempt to achieve 

optimum balance.

As Kilbrige and Wester (1961b) stated, the technique is not a mere mechanical 

procedure, since a fair amount o f judgement and intuition must be used to derive a 

meaningful solution. It is a simple, powerful technique, especially for large cycle 

times, when one station crosses several columns. On the other hand, for low cycle
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times, where one column may require two or more stations, a fair amount o f  

adjustment is necessary.

Kilbridge and Wester (1962a) applied the technique to a problem taken from 

industry in which fixed facilities and positional restrictions exist. They also examined 

the relation o f balance delay (equation 2.7) with various problem parameters, e.g. the 

range o f task time,-cycle time and degree o f precedence relation flexibility. They 

report that balance delay is very sensitive to the right selection o f cycle time.

Agrawal (1985) developed a procedure utilising a decision rule called ‘largest 

set rule’ for allotting the work to stations.- The procedure computes the cumulative 

time for each task, which is the time for performing the task and all the tasks 

preceding it. Then, the largest cumulative time, which is less than the cycle time, is 

selected and the associated tasks are assigned to the workstation. The procedure is 

repeated on the truncated precedence diagram until all the tasks are assigned. After 

the work is allotted to workstations, the designer should decide on the sequence in 

which these operators should be positioned on the line. Although the procedure is 

computationally efficient, there is no apparent guarantee o f yielding a good solution.

Baybars (1986b) suggested a procedure that consists o f five phases. The first 

four phases reduce the size o f the problem by utilizing various properties o f the 

problem and the last phase is a- single-pass heuristic procedure applied on the 

reduction problem. The procedure starts with the last tasks in the precedence diagram 

and proceeds backwards. The tasks with the most unassigned immediate predecessors 

among the tasks with no unassigned followers are assigned first. Detailed 

computational results on the 70-task problem o f Tonge (1961) as well as results o f  

other problems reported in the literature indicate that the procedure finds the optimal 

solution in most cases with minimal computational time.

(b ) Multiple single pass solution procedures

Tonge (1965) proposed a procedure, which assigns tasks to stations by randomly 

selecting a heuristic procedure for choosing the next task to add to the current station. 

Based on his studies, it is reported that random selection o f heuristics for choosing the
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next task does as well as or better than, using an individual heuristic procedure alone, 

and randomly choosing the tasks without an intervening choice o f heuristic 

procedures.

Arcus (1966) developed a technique called ‘Computer Method o f Sequencing 

Operations for Assembly Lines’ (C O M S O A L ), in which the main idea is the random 

generation of a feasible sequence. The .technique assigns the same probability o f  

selection to the tasks with no unassigned predecessors and fits the remaining station 

time. Judging on the basis o f the yield o f good balances, Arcus has explored methods 

o f biasing the tasks available for selection producing the best results with a compound 

selection models. .

Buxey (1974) improved C O M S O A L  further with paralleling o f workstations 

leading to possible reductions in total idle time. He applied the same approach to the 

R PW T  o f Helgeson and Bimie (1961). Each workstation that is duplicated is assumed 

to have an effective cycle time o f C  times the station multiple. Thus, a rage o f times 

becomes available ancl there is more likelihood o f a better fit. Multiple stations also 

enable the production to be greater than the limitation imposed by tmax,.

Pinto et al (1978) presented a heuristic network procedure based on the 

shortest-route formulation o f Gutjahr and Nemhauser (1964) in which the nodes 

represent a collection or subset o f tasks that can be performed in some order without 

prior completion o f any task not in the subset. Pinto et al (1978) utilized other 

heuristic procedures, including RPW T, largest task time, smallest task time and 

random task assignment, to generate the nodes. The set o f nodes generated is 

combined to form a composite network.

Schofield (1979) developed a procedure called ‘Nottingham University Line 

Sequencing Program’ (N U L ISP ) which is similar to C O M SO AL. This technique can 

solve both line b a la n c in g  and cy c le  tim e  p ro b le m s, handling various zoning 

constraints and task times larger than the cycle time. The details o f the feasible 

sequence generation are not reported due to copyright reasons; however, it is stated 

that a weighted random selection procedure is utilized to generate solutions. The 

major advantage o f N U LISP  is the feature o f considering various factors, including
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grouping o f tasks for a variety o f reasons, separation of one group o f tasks from others 

for reasons o f skill differences, safety considerations, and fixing o f tasks at certain 

workstations to account for fixed facilities on the line.

Akagi et al (1983) proposed a method, which allows the assignment o f more 

than one worker to a workstation. Tasks are assigned to workstations according to a 

couple o f rules reported in the literature. The procedure was repeated for a different 

number o f workers at each workstation. In the second phase o f this two-phase 

technique, tasks are assigned to workers within each workstation.

Nakasu and Leung (1995) developed procedure similar to C O M SO A L  in the 

sense that the best design is selected among the several generated via simulation. 

Performance measures o f minimizing the number o f workstations, cycle time, balance 

delay and a combination of these are considered. The procedure allows the task times 

and cycle time to be sampled from various probability distributions. Neither 

experimental results nor comparison o f the procedure with the others in the literature 

are given; thus, it is impossible to comment on the performance o f the procedure.

(c) Backtracking procedures

Hoffmann (1963) developed an enumeration method, by generating all feasible station 

assignments that do not exceed cycle time and selects the best arrangement from 

among these by use o f a triangular precedence matrix. The procedure selects as the- 

first workstation the feasible subset o f tasks that leaves the least idle time, then selects 

from the remaining tasks that subset that leaves the least idle time in the second 

workstation, etc. the method is coded in FO R T R A N  that can solve problems with up 

to 99 elements. Although the method may be computationally very, expensive, 

Gehrlein and Patterson (1978) demonstrated that by suitably modifying the method it 

could be used to solve problems o f moderate sizes.

Moodie and Young (1965) suggested a two-phase procedure. In the first 

phase, selecting the task with no unassigned predecessors and fitting the remaining 

station time in the order of largest performance time obtain a preliminary balance. In 

the second phase, tasks are shifted between stations in an attempt to reduce idle time
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and distribute the idle time equally to all workstations. Similar to this procedure, 

Sarker and Shanthikumar (1983) developed another procedure that enables the 

balancing o f lines, some involving task times greater than the cycle time.

Nevins (1972) introduced a general purpose heuristic program called the ‘best 

bud search’ that does not attempt to minimize number o f workstations directly; 

instead, an upper bound on the number o f workstations is imposed and the problem is 

solved for that many workstations. I f  the attempt is successful, the number o f  

workstations is decremented by one, and another attempt is made until it is either 

impossible or computationally impractical to get a smaller number o f workstations. 

Nevins (1972) tested the problems solved by Tonge (1961) and obtained as good or 

better results.

Dar-El (1973) developed a method called M A L B  for the cycle time problem 

starting with the minimum theoretical cycle time and proceeds with the generation o f  

a feasible sequence o f tasks, which are grouped into workstation assignments. If a 

feasible sequence cannot be extended, the method applies a backtracking procedure, 

which either partitions the tasks correctly or results in an increase o f one time unit o f  

the cycle time. The method is further improved by imposing rules which limit the 

backtracking iterations. This method performs better than C O M S O A L  and 10-SPP (a 

method selecting the best o f 10 solutions, each obtained by using a different ranking 

system, e.g. as with R PW T ) in the problems tested.

Bennett and Byrd (1976) presented a two-stage ‘trainable heuristic procedure’. 

In the first stage, the procedure is trained by accumulating experience on the 

effectiveness o f several heuristic rules on small problems for which the optimum is 

known. In the second stage, the findings o f the stage are used to provide near optimal 

solutions, which is fed to an optimisation procedure as a starting point. The authors 

have used several empirical rules and values with no apparent justification.

Dar-El and Rubinovitch (1979) developed another method that generates 

alternative solutions o f equal quality by employing exhaustive enumeration to 

generate all or some subset o f the solutions. However, the computational requirements 

o f the exhaustive enumeration grow exponentially with the number o f subsets saved.
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This method is called ‘Multiple Solutions Technique’ (M U S T ) and performs better 

than or gives equal quality results with M A L B  (Dar-El, 1973) in every case.

Hackman et al (1989) suggested a branch and bound procedure that 

incorporates several heuristic fathoming rules to reduce the size o f the tree. The 

authors reported that the procedure outperforms the other branch-and-bound 

procedures in the literature. This procedure can also be adapted to solve the cycle time 

problem.

Shtub and Dar-El (1990) utilized M A L B  for a multi-objective approach for 

both line balancing and cycle time problems. The objective functions consist o f the 

traditional objective o f minimizing the total idle time and minimizing the number of 

sub assemblies handled at each workstation.
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Reference Year Solution methodology

Buxey 1979 Monte Carlo simulation
Agrawal 1985 Single-pass similar to R PW T
Lau and Shtub 1987 Procedure based-on a hybrid line concept
Hackman et al 1989 Branch-and-bound algorithm with
Yano and Bolat 1989 Heuristic branch-and-bound procedure
Easton 1990 DP with relaxation and fathoming
Hoffmann 1990 An enumeration procedure based on
Shtub and Dar-El 1990 Procedure utilizing assembly chart
Faland et al 1992 Heuristic shortest-path
Leu et al 1994 Genetic Algorithm
Miltenburg and 1994 DP and heuristic for U -Line problem
Wijngard
Anderson and Ferris 1994 Genetic Algorithm  

Hoffmann's heuristic
Kim et al 1996 Genetic Algorithm
Scholl and VoB 1996 Priority-ranking heuristic and tabu search 

Exact method in the literature

. Table 2.1. Recent researches conducted on assembly line balancing problems.
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Easton (1990) presented a dynamic programming (DP)-based approach with 

relaxation and fathoming that relies on dynamic upper bound. The dynamic 

programming formulations o f the assembly line balancing problems with realistic 

sizes however require excessive storage and computation time.

Driscoll et al (2002) developed a heuristic approach based on the Hoffman’s 

precedence matrix procedure. This approach generates feasible task assignments 

randomly unlike the Hoffman procedure for a number o f times (user defined) for each 

workstations and the best combination (combination with least idle time) o f tasks are 

assigned to the workstation. Starting with the first workstation, the procedure is 

repeated for the next workstation and so on until all the tasks are assigned to 

workstations. Experiments with a number o f benchmark problems in the literature 

showed that this technique outperforms the Hoffman procedure and solved most 

small-medium problems with optimal solutions.

Concluding this group o f approaches, Erel and Sarin (1998) presented the 

most recent survey o f the assembly line balancing procedures and are listed with some 

basic information on the approaches in table 2.1. Considering the large number o f 

studies reported in the literature, it was concluded that the development o f procedures 

for single model deterministic versions o f the problem still continue to be an attractive 

research area.

2.1.9 ILLUSTRATIVE LINE BALANCING E X A M P L E
An example problem with 12 tasks and a cycle time o f 10 time units is considered for 

illustration. The problem network is shown in figure 2.9. The well-known Rank 

Positional Weight (R P W ) technique developed by Helgeson and Bimie (1961) is used 

for balancing and the step-by-step computation is shown below.

The largest cycle time for doing this work would be equal to the total work content 

(JVC) that is:

W C  =  £ l t l (2.9)
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In this example this is equal to 50 time units, and involves only one workstation. The 

smallest cycle time for doing the work is equal to the largest element time (tmax). In 

the example, this is 7 time units and would require 8 workstations, which is calculated 

from:

Total element times ,
--------------------------------  (Rounded where necessary to the next integer up)

cyle time

In practice there is a limitation on the feasible number o f workstations, which can be 

calculated using the following guide.

1. Each workstation time must be less than or equal to the cycle time.

2. The minimum number o f work stations m * is

tn .

m* =  — —  (Rounded where necessary to the next integer up)
C

3. The feasible number o f workstations is equal to the number o f elements where 

the element time is greater than half the cycle time.

Figure 2.9. Precedence network

The steps involved in the Rank Positional Weight method are as follows:

1. Develop the precedence network in the normal manner.

2. Determine the positional weight for each work element (a positional weight o f 

an element is defined as the element’s time plus the time o f all elements that
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must follow according to precedence relationships). The positional weights for 

the problem are shown in table 2.2.

3. Rank the work elements based on the positional weight in step2. The work 

element with the highest positional weight is ranked first (table 2.3).

4. Assign the element with the highest positional weight to workstation 1.

n
5. Calculate the remaining time (C -^ T ^  ), where tk is the assigned element times

k=I

and k  is the number o f elements assigned to the workstation.

6. Assign the element with next highest positional weight which fulfils:

a. Precedence restrictions

n

b. Element time < (C - £ t k ),
k-[

n
7. Calculate remaining slack time t s =  C - ),

i

8. Repeat steps 6 and 7 with decreasing ts values until one o f the following 

conditions apply:

a. Precedence restrictions prohibit further assignment

b. ts =  0
c. Remaining element times are greater than t5

9. Start second workstation selecting first unassigned element with highest 

positional weight.

10. Continue until all elements have been assigned

Rank Element P W

1 A 34
2 C 29
3 B 27
4 E 25
5 D 24
6 F 20
7 G 15
8 I 15
9 ' J 13
10 IC 11
11 H 8
12 L 7

Table 2.3 Element ranks according to positional weights.
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Referring to the above procedure and using the following standard layout on the 

example the solution would be:

Cycle time C =  10 units

, Element 
Rank XT .

Number
Check on Element 

precedence time ( c - I U
Comment

W orkstation  01

1 A S 5 5 Assigned
2 C y 3 2 Assigned
3 B y 3 -1 Not assigned
4 E y 6 -4 Not assigned

Elements B and subsequent elements fail on time restriction

W orkstation  02

3 B y 3 7 Assigned
4- E y 6 2 Assigned
5 D y 4 -2 Not assigned
6 F X Not assigned

Element F and subsequent elements fail on precedence restrictions

W orkstation  03

5 D y 4 6 Assigned
6 F y 5 1 Assigned
7 G y 2 -1 Not assigned
8 I y 4 . -3 Not assigned
9 J X Not assigned
10 K X Not assigned
11 H y 1 0 Assigned
12 L X Not assigned

N o time remaining".

W orkstation  04

7 G A  2 8 Assigned
8 1 Z  4 4 Assigned '
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9 J V 6 -2 Not assigned
10 K V 4 0 Assigned

No time remaining

W orksta tion  05

9 J V 6 4 Assigned
12 L V 7 -3 Not assigned

Fail on time restriction

W orkstation  06

12 L 7 3 Assigned

The final solution to the above problem is summarized in table 2.4.

Workstation Elements Station time Slack time

01 A, C 08 02
02 B, E 09 01
03 D, F, H 10 00 .
04 G,T, K 10 00
05 J 06 04
06 L 07 03

Table 2.4 Workstation details and station times

Performance measures:

Line Efficiency(LE) =  x 100% =  83.3%
6x10

Balance Efficiency= f  1   1 x 100% =  83.33%
 ̂ 6 x 0.83 J
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Chase (1975) revealed that only five percent (5% ) o f companies used the published 

techniques to balance their lines! Later Milas (1990) showed the situation has not 

changed much. The main reason for this dilemma was identified as the practitioner’s 

unfamiliarity with the published algorithms; the complexity o f the algorithms, making 

their comprehension by practitioners difficult; the inflexibility o f the algorithms to 

model the actual conditions o f assembly lines and the non-availability o f user friendly 

ready to use software packages for assembly line balancing. However, two software 

packages have been reported in the literature.

Chang and Sullivan (1991) developed a software package called QS (Quant 

Systems) for assembly line balancing. The software was based on five sets o f 

heuristics having objectives o f maximizing line efficiency and providing a balanced 

workload. It solves the assigned problem using the five techniques and overall the 

best is considered as the solution.

A~Line is a second integrated software package developed recently at the 

University of Surrey. It is capable o f project organization, data management, problem 

analysis, and balancing and results evaluation. A~line 1.4, has been released for 

review and demonstrator versions and an initial description o f the software models 

published (Driscoll and Thilakawardana, 2000a and 2000b)).

The default random generator model was used as a comparator to new 

balancing approaches, and to validate and test the new software enhancements. There 

are a number o f supportive features in the package. Data validation is included and 

has been revised to identify both critical and non-critical errors. Redundant 

precedence restraints are an example o f non-critical errors that can be removed 

automatically by software identification.

Automated drafting o f precedence diagrams is included along with the ability 

to manually adjust a diagram for clarity. Test cases o f over two hundred elements can 

be handled by the package and following data validation plots o f theoretical line

2.1.10 ASSEMBLY LINE BALANCING SOFTWARE
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efficiency, often refereed to, as 4sa w -to o th  d ia g ra m s ’ are available for cycle time 

selection.

Balancing is in two forms, individual balance investigations and balance 

scanning. Balance scanning will automatically manage and process a continuous 

series o f balances over a range o f acceptable cycle times and installed balancing 

models. The results are then available for presentation in the form o f line efficiency 

and balance efficiency graphs plotted against theoretical results.

Individual detailed balances at prescribed cycle times can be processed on a 

station-by-station basis with a display o f current element, all current station 

assignment attempts and total assignment history. Statistics are recorded on individual 

balance model performance when best solutions are found.

2.1.11 S U M M A R Y

The single model deterministic assembly line balancing problem continues to generate 

interest both due to its practical and theoretical nature as evidenced by recent 

publications. These publications have addressed four types o f line balancing 

problems. The single model deterministic is the simplest version o f an assembly line 

and the most researched. A  limited number o f papers have been published on
V

multi/mixed deterministic and multi/mixed stochastic.

Determining the optimal solution or set-up o f an assembly line for least cost is 

considered as the assembly line balancing problem and it comprises two separate sub 

problems: the cyc le  tim e p ro b le m  and lin e  b a la n c in g  p r o b le m , which must be solved 

sequentially. Assembly line- balancing problems are combinatorial optimisation 

problems, which are considered as NP-hard problems. They are very complex in 

nature and cannot be solved in polynomial time.

During the last four decades a large number o f exact and heuristic techniques 

have been developed to solve the problem, but none o f them guarantee a 100%  

optimal solution. It can be seen that very early techniques are based on mathematical 

programming optimisation techniques and later it was realised that these exact
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techniques become prohibitive beyond limited problem dimensions. As a result o f  

this, researchers started focusing on heuristic approaches and they later gained much 

attention over exact methods. Therefore, heuristic techniques will remain the only 

computationally efficient and sufficiently flexible methodologies capable . o f 

addressing large scale, real-world assembly line balancing problems, particularly for 

the multi/mixed models and general assembly line balancing categories.

After the introduction o f a metaheuristic approach called the Genetic 

Algorithm (G A ), by John Holland in 1975, its applications to NP-hard combinatorial 

optimisation problems were studied and an excellent capability o f solving the N P - 

hard class o f problems efficiently in short convergence times was identified. The 

application o f the Genetic Algorithm tp assembly line balancing problems has been 

explained in the second part of this literature review.
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2.2 THE GENETIC ALGORITHM AND ITS APPLICATION TO 
LINE BALANCING

This section consists of two main sub-sections. The first section explains the basic 

mechanisms underlying the classic Genetic Algorithm and its key components 

including coding, fitness functions, initialisation, genetic operators and termination, 

and its applications to the assembly line balancing problem The second section 

reviews p revious application o f  Genetic Algorithms t o the assembly 1 ine b alancing 

problem, identifies the drawbacks o f the existing models and consequently the 

contribution possible from this research. Genetic Algorithms are biologically inspired 

computational models and much o f the terminology has been borrowed from the field 

o f genetics, mathematics and computer science, therefore, a glossary is provided in 

appendix A  to help the reader with the terminology.

2.2.1 PRINCIPLE BEHIND THE GENETIC A L G O R I T H M

A  Genetic Algorithm is a set o f procedures which, when repeated, enables solutions to 

be found for specific problems. To accomplish the desired objectives, Genetic 

Algorithms create successive populations o f different solutions until an acceptable 

solution is reached. Within the generation o f each successive population, 

improvements in the quality o f chromosome solutions are achieved. In such a manner, 

a Genetic Algorithm can quickly move to a successful outcome without examining 

every possible solution in the search domain. The concept used is based upon the 

fundamental processes that control the evolution o f biological organisms, namely 

natural selection and reproduction. These two processes together improve an 

organism’s ability to survive within its environment in the following manner:

1. Natural selection determines which organisms have the opportunity o f 

reproduction and survival within a population. .

2. Reproduction involves genes from two separate individuals combining to form 

offspring that inherit the survival characteristics o f their parents.
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The Genetic Algorithm seeks to imitate the way in which beneficial genes 

reproduce themselves through successive populations and hence contribute to the 

ability o f an organism to survive.

2.2.2 B A C K G R O U N D  T O  GENETIC A LGORITHMS

The beginnings o f Genetic Algorithms can be traced back to the early 1950s when 

several biologists used computers for simulation o f biological systems (Fisher 

(1958)). Inspired by the principle o f natural genetics and the theory o f evolution the 

research completed in the late 1960s and early 1970s at the University o f Michigan 

under the direction o f John Holland led to Genetic Algorithms.

Deoxyribo Nucleic Acid (D N A ) is the basic building block o f chromosomes 

present in every living organism that determines many traits o f the organism. The 

growth o f the organism, from the first fertilized egg up to the adult individual, is 

carried out by highly complex physicochemical processes, which are governed by 

D N A  that constitutes the ‘recipe’ how to ‘make’ the individual. Each chromosome is 

composed of g en es, which can be though o f as the basic ‘Unit’ o f information. The 

order o f genes appearing in the chromosome decides the characteristic features of 

individual species in a population. The different traits o f one generation are passed on 

to the next through various genetic operators. Combining this process with the 

survival o f the fittest, leads to a population well adapted to the environment.

In the Genetic Algorithm, the basic building block is also the gene. These 

genes represent problem elements and their values are known as a lle les . A  number o f  

gene's arranged in an order make a s tr in g  (ch rom osom e). Theses strings represent 

feasible or infeasible solutions in the problem search space. A  group of strings are 

collectively known as sch em a ta , representing different solutions o f the problem. 

Figure 2.10 shows the analogy between the Genetic Algorithm and the principle o f 

natural genetics.

Goldberg (1989a) and Liepins and Hillard (1989) presented detailed insights 

into different aspects o f Genetic Algorithms, In Genetic Algorithms each solution is
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stored in the form o f an artificial chromosome and is represented by a string o f bits, 

numbers etc. The search proceeds in parallel in the neighbourhoods o f the better 

solutions due to the multiplicity o f solutions. The trials become less random as the 

number of generations progress, since the number o f desirable chromosomes 

increases in the population. Thus Genetic Algorithms are intrinsically parallel. New  

candidate solutions are obtained from the current population by applying artificial 

genetic operators. Efficient solutions to large combinatorial optimisation problems at 

a very low computational cost are possible by the application o f judicious 

combinations o f these operators.

In Genetic Algorithm In Genetics

Schemata (different solutions)

Allele

Population (different individuals)

Gene

Chromosome

Gene
D N A

Figure 2.10. Analogies o f two genetic systems

The application o f Genetic Algorithms to the assembly line balancing problem 

can be traced back to Anderson and Ferries (1990), who applied the Genetic 

Algorithm technique to solve the assembly line balancing problem for the first time. 

Early research on these problems tended, naturally, to use classical operations 

research techniques. Conventional search techniques, including integer programming 

(Graves and Lamar, 1983), dynamic programming (Held et al, 1963) and hill climbing 

(Ackley, 1987) are often incapable o f optimising the assembly line balancing 

problem. On the other hand, the branch and bound technique (Pinto et al, 1981) 

enabled researchers to continually find global solutions, but tended to be highly 

computationally expensive.



Current research interests focuses on the Genetic Algorithm advantages, which 

include:

1. Optimises with continuous or discrete parameters;

2. Does not require derivative information;

3. Simultaneously searches from a wide sample o f the cost surface;

4. Deals with a large number o f parameters;

5. Is well suited for parallel computers;

6. Optimises parameters with extremely complex cost surfaces; it can jump out 

o f a local minimum;

7. Provides a list o f optimum parameters, not just a single solution;

8. Works with numerically generated data, experimental data or analytical 

functions;

These advantages are intriguing and produce quality results where traditional 

optimisation approaches have failed, whilst acknowledging the Genetic Algorithm is 

not the best way to solve every problem. For example, traditional methods have been 

well tuned to quickly find the solutions o f a well-behaved convex analytical function 

o f only few variables. For such a problem, calculus-based methods outperform a 

Genetic Algorithm, quickly finding the optimal solution while a Genetic Algorithm is 

still analysing the fitness o f the initial solution. However, many realistic problems do 

not fall into this category.

The large population o f solutions that gives the Genetic Algorithm its power is 

also its bane when it comes to speed on a serial computer, because the fitness function 

o f each o f these solutions must be evaluated. However, if  a parallel computer is 

available, each processor can evaluate a separate function at the same time. Therefore, 

the Genetic Algorithm is optimally suited for such parallel computations.

2.2.3 BASIC C O M P O N E N T S  OF THE GENETIC A L G O R I T H M

The Genetic Algorithm begins like other optimisation algorithms, by defining the 

optimisation parameters including fitness function, crossover and mutation techniques 

and probabilities etc. It ends like other optimisation algorithms too, by testing for
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convergence. In between, however, a Genetic Algorithm is very different from other 

search algorithms. The basic components o f the classical Genetic Algorithm are 

illustrated in figure 2.11 and the corresponding steps are described below:

1. Define Genetic Algorithm parameters and fitness function.

2. Create initial population.

3. Evaluate the current population.

( start )
1

r i ......
2

Figure 2.11. Flow chart o f the classical Genetic Algorithm

4. If the termination criterion is met, go to step 5, otherwise go to step 6.

5. End.

6. Select two parents and go to step7.
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7. Undergo crossover operation according to crossover probability and generate 

offspring.

8. Undergo mutation according to mutation probability.

9. Copy the offspring to the new population.

10.' I f  the number o f chromosomes in the new population is the same as the 

current population, go to step 11, otherwise go back to step 6 and repeat steps 

6-9.

11. Replace the current population with the new population.

2.2.3.1 E N C O D IN G

A  Genetic Algorithm starts with an initial population o f chromosomes representing 

different possible solutions to the problem. These chromosomes will produce new 

chromosomes undergoing genetic operations such as crossover and mutation. 

Representing the actual problem by chromosomes is consequently the first step when 

starting to solve problems with the Genetic Algorithm. The mapping o f the real 

problem to artificial chromosomes is known as encoding.

The method o f representation (encoding) has a major impact on the 

performance o f the Genetic Algorithm. Different coding schemes may cause different 

performances in terms o f accuracy and computation time. Liepins and Vose (1990) 

discuss t he i ssue o f  s olution e ncoding i n d etail a nd s ho wed that t he e xistence o f  a 

good representation makes a problem easily solvable by Genetic Algorithm. However, 

defining good technique is a challenge.

Several encoding techniques have been developed over the last two decades 

including binary encoding, permutation encoding, value encoding and tree encoding. 

Binary encoding is the most common, mainly because the original work by Holland 

(1975) used this type o f encoding. Binary encoding gives many possible 

chromosomes even with a small number o f alleles. On the other hand, this encoding is 

often not natural for many problems.

Two chromosome representations applicable to the assembly line balancing 

problem are introduced.
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1. Sequence- oriented representation (Fox and McMahon, 1991).

2. Partition-oriented representation (Bruns, 1993).

Falkenauer (1992) examined both representation schemes, and concluded that 

the sequence-oriented representation is the best for the assembly line balancing 

problem representation. One o f the advantages o f using this scheme is that it provides 

considerable flexibility in choosing genetic operators (Kim et al, 1996). Many genetic 

operators that have been developed for sequencing problems are available, and the 

representation makes it possible for them to be adapted to the assembly line balancing 

problem.

(a) Sequence-Oriented encoding

The most natural representation o f the assembly line balancing problem solution is 

sequence-oriented encoding, consisting o f mapping a possible solution o f the problem 

in the search space into finite chromosomes. In assembly line balancing, the number 

o f workstations in the solution, determining line efficiency (equation 2.5), depends 

significantly on the element assignment sequence.

Chromosome

A B C D G F E H J

Transforming this sequence-oriented task assignment into a chromosome is 

simple and straightforward. The letter placed in a chromosome represents each task 

element, and therefore, the length o f the chromosome is equal to the total number of
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elements in the problem (« ). Tasks are ordered in the chromosome from left to right 

relative to their order o f processing. Figure 2.12 illustrates this coding scheme for the 

9-element problem considering the element assignment order [ A B C D G F E H J ] .

C hapter 2: L ite ra tu re  review

2.2.3.2 D EC O D IN G

Decoding is exactly the reverse o f encoding. When the order o f elements in a 

sequence-oriented representation does not violate precedence constraints, it is called a 

fe a s ib le  sequ en ce. The feasible sequence carries many possible assignments rather 

than one fixed assignment. In order to determine the best assignment, the 

chromosome should be properly decoded.

S2

D H

3 4
Station number

Figure 2.13. Decoded solution

When the cycle time is given, the procedure used by Fox and Mahon (1991) is 

employed for decoding. A  workstation is created, and tasks are assigned to the 

workstation in the order they appear in a feasible sequence while not exceeding the 

cycle time. This process is repeated until all the tasks are allocated. This decoding 

method is straightforward, and is used for type I (line balancing problem) and type II
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(cycle time problem) projects. Figure 2.13 shows the decoded solution o f the 

illustrating chromosome in figure 2.12, with a sample ten unit cycle time.

2.2.3.3 FITNESS F U N C T IO N  '

A  fitness function plays a key role in a Genetic Algorithm. It forces the algorithm to 

search for optimal solutions based on its numerical value and serves as the only link 

between the problem and the algorithm. A  fitness function ranks chromosomes in the 

population, so better individuals have a better chance for survival and reproduction 

and it must be defined cautiously to deal with the engineering realities o f the problem. 

The first attempt to apply the Genetic Algorithm to the assembly line balancing 

problem was made in 1990 and since then several fitness functions have been 

introduced for line balancing. The recent applications and the fitness functions 

developed for line balancing are listed in table 2.5.

Anderson and Ferris (1990) pioneered the application o f the Genetic 

Algorithm for the assembly line balancing problem and suggested that the fitness 

function must include an element corresponding to the total time for the operations 

assigned to the lowest station. Furthermore, infeasible solutions violating precedence 

constraints are avoided by assigning a large penalty cost. The fitness function 

developed is shown inequation 2.10. Smax is the highest station time, S maX2 is the 

second highest station time, is the 1 owest station time and V is the number o f  

precedence violations. The constants d a ,e a ,f a ,  and k„ are chosen as follows: d a >1 in 

order that the precedence violations are removed as quickly as possible. ea is chosen 

so that the second slowest is taken into account.The constant ka is chosen so that the 

values o f the fitness function lie within reasonable bounds.

Minagawa and Kalcazu (1992) proposed a fitness function (equation 2.11) for 

single model deterministic task times type line-balancing problems. Minimization o f  

cycle time is adopted as the evaluation criterion for the line balancing performance.
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Reference Fitness function

Anderson &  Ferris 
(1990)

Minagawa and Kakaz 
(1992)

Falkenauer &  Dechmbre 
(1992)

Anderson &  Ferris 
(1994)

Leu et al
(1994)

Tsujimuya et al
(1995)

Kim et al
(1996)

Suresh et al 
(1996)

Kim et al 
(1998)

Ponnambalam et al 
(2000)

Sabuncuoglu et al 
(2000)
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18) 

(2.19)

wi f  M  +  w2/ 2 (jc) +.... +  w,/( (x ) +  (V) (2.20)

7=1 7=1 (2.21)

Table 2.5. Published fitness functions for line balancing

The 1 ine b alancing p roblem i s NP-complete and c an b e r educed t o the N P- 

complete bin packing problem (Garey and Johnson, 1979) which it contains as a 

special case. Falkenauer and Delchambre (1992) pointed out the close connection
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between the line balancing problem and the bin-packing problem and developed a 

cost function suitable for the bin-packing problem (equation 2.12). This cost function 

was then applied to the line-balancing problem with efficient crossover and-mutation 

operations. The constant k  expresses the concentration on the well-filled ‘elite’ bins in 

comparison to the less filled ones. Several values o f k  have been experimented with 

and it was found that k  =  2  give g ood results. L  arger values o f k  seem to lead to 

premature convergence o f the algorithm, as local optima, due to a few well-filled bins, 

are too hard to escape.

Following the previous application in 1990, Anderson and Ferris (1994) 

proposed a new cost function (equation 2.13), which .is less, complicated than the 

earlier one. In this cost function, the value o f a solution is defined as follows:

v .=m a:x ( S j )  +  k bN ,  (2.22)
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Where Sj is the total time for operations assigned to station j ,  N v- is the number 

o f precedence violations, and k  is a constant which is set equal to the largest single 

operation time, h is chosen to make the fitness lie in a particular range. One o f the 

drawbacks o f this scheme is that they alter the relative fitness o f different 

chromosomes in a quite complicated way. Scaling o f fitness values was suggested to 

overcome this problem and this scaling procedure was used to achieve some degree o f 

control over the speed o f convergence o f the algorithm.

Leu et al (1994) claimed that most o f the assembly line balancing heuristics 

listed in the literature had not simultaneously considered more than one objective. 

Consequently, they developed a cost function with multiple evaluation criteria. This 

cost function consists o f two objectives. The first objective is to be taken to be the 

minimization o f mean-squared idle times that is the minimization o f  z j.

A O S . - C ) 2
z, =  J } — ----------  (2.23)

>1 m
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This objective would tend to provide workload balance, thereby mitigating 

concerns o f inequity among workers. The second objective (z2) is to minimize man 

idle time. Since the first objective is measured in squared time units and the second in 

(linear) time units, assuming the first objective is more critical than the second. So the

over all objective function + z 2) is given in equation 2.14.

Tsujimura et al (1995) solved the fuzzy assembly line balancing problem 

using Genetic Algorithms representing the imprecise data using fuzzy numbers. The 

balance delay definition is used as the evaluation function (equation 2.15). c k and s Jk

are the fuzzy cycle times and fuzzy completion times required to complete all jobs 

assigned to workstations o f  each chromosome respectively.

A  Genetic Algorithm for solving assembly line balancing Type-I problems 

with multiple objectives was developed by Kim et al (1996). In Type-I problems, the 

objective is to minimize the number o f workstations, used in many line-balancing 

problems to give lower labour cost and reduced space requirements. The proposed 

cost function is given by equation 2.16. SNj is the number o f connected networks in Gj 

representing precedence relations o f  tasks assigned to workstation j .  The performance 

comparison between the proposed algorithm and the known algorithms showed this 

approach is promising

Suresh et al (1996) made use two different fitness functions for solving both 

deterministic as well as stochastic assembly line balancing problems with varying 

objectives by making corresponding changes in the cost function. In the first model, 

the smoothness index proposed by Moodie and Young (1965) was used as the cost 

function (equation 2.17). The objective o f this is to reduce the balance delay and 

distribute the idle times at each station by arranging the work elements subject to 

cycle time and precedence constraints in such a way that the smoothness index o f the 

balance is minimized. The station time Sj o f each station is calculated using the 

following relation.

S j ~  ^mean + ^var (2.24)
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a is the confidence coefficient for normally distributed work elements times and Smax 

and Svar are the sum o f the means and the sum o f the variances, respectively, o f all the 

tasks allocated to those particular workstations.

The second evaluation function is based on the trade and transfer method 

proposed by Reeve (1971). The objective o f this was to minimize the probability o f a 

line stopping by rearranging the jobs, subject to all constraints. The probability o f a 

station not exceeding the cycle time is given by P j . It is the area under the normal 

curve corresponding to the value o f z r given by

(2.25)

Therefore, the probability o f the line stopping is given by equation 18 and was used as 

the second cost function. Suresh et al (1996) concluded that both the cost functions 

gave improvements.

Workload smoothing in assembly lines has many beneficial features: it 

establishes the sense o f equity among operators, and more importantly, contributes to 

increasing the output. Kim et ai (1998) suggested a heuristic-based Genetic Algorithm 

to solve an assembly line balancing problem with workload smoothness as the 

objective. The workload smoothness was evaluated by using the Mean Absolute 

Deviation (M A D ) proposed by Rachamadugu and Talbot (1991) and used as the cost 

function (equation 19) for this model. This model was compared with the existing 

heuristics and with an existing Genetic Algorithm. The results confirmed that this 

algorithm .outperforms the existing heuristics and in many cases, it also improved 

cycle time.

Ponnambalan et al (2000) proposed a multi-objective Genetic Algorithm to 

solve assembly line balancing problems. The following four-performance criteria 

were used as objective functions

1. The number o f workstations (/} (x)).

2. The line efficiency (f2 (x)).

C  E mean 
V^var
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3. The smoothness index before trade and transfer (/} (x)).

4. The smoothness index after trade and transfer (fi (x)).

The weighted sum approach proposed by Murata et al (1996) was used for 

combining multiple objective functions into a scalar fitness function (equation 2.20). 

f i x )  is the z'th objective function, w , is a constant weight for f i x ) ,  and u is the number 

o f objective functions. The w t terms are randomly generated using the following 

relation:

R N .
0 = h 2 , . . . , u )  (2.26)

Z R N j
M

Where R N t and RN j are non-negative random integers. It was concluded that this 

multi-objective Genetic Algorithm performed better than the other six heuristic 

methods. An interesting challenge exists however the Hoffman enumeration 

procedure performed better than those genetic models.

Sabuncuoglu et al (2000) developed a fitness function (equation 2.21) to 

minimize the number o f workstations taking in to account better balance of 

workstations. The cost function consists o f two objectives. That is, minimizing the 

number o f workstations and obtaining balanced stations. The first part o f the fitness 

function aims to find the best balance among the solutions that have the same number 

o f stations in the solution assuming the first objective is more critical than the second.

2.23.4 TH E PO PU LA T IO N

The classic Genetic Algorithm developed by Holland (1975) is what has become 

known as the g en era tio n a l G en etic  A lg o rith m , keeps two populations most of the 

time: the current population and the future one.

In the generational Genetic Algorithm, each iteration (generation) proceeds by 

constructing the new population through genetic operators application on to 

chromosomes in the current population, and then the populations are swapped, the 

population just constructed becomes the current population in the next generation.

Chapter 2: Literature review
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The chromosomes in the new generation come from three sources: some are 

produced by recombination (i.e. crossover); a few are produced by crossover and 

mutation. The rest, if necessary, is simply copied unchanged from the current 

population (elitism). In some implementations the mutation is applied after the 

crossover and reproduction to chromosomes selected at random from the new 

population. Figure 2.14 illustrates this process.

The other Genetic Algorithm model is called s te a d y  s ta te . It always keeps only 

one population. The generations proceed by modifying some o f its members. The 

offspring obtained by performing crossover on the best chromosomes in the 

population and replacing the worst ones. This process is shown in figure 2.15. The 

order is obtained by a selection technique (roulette wheel, tournament etc.). The other 

operators (mutation and inversion) are applied to chromosomes selected at random 

from the resulting population.

Current population N ew  population

Figure 2.14. Generational Genetic Algorithm (Holland 1975)
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The maximum number o f individuals that can be generated by crossover in the 

steady state Genetic Algorithm is half the population size. That is the maximum 

crossover rate is 0.5. Moreover, since at least half a current population is carried over 

into the next generation, the maximum reproduction rate is 0.5 (except for mutation). 

The main advantage o f the steady state Genetic Algorithm over orthodox generational 

model is that the steady state model reduces the memory requirement.

Syswerda (1989) and Falkenauer (1992) both used the above steady state 

Genetic Algorithm for their models. Syswerda used proportional selection technique 

to select parents, and always performed crossover on and replaced ju s t  tw o  

chromosomes at each generation, and always applied the mutation to the new 

chromosomes. However, Falkenaure used the tournament selection method to obtain 

parents.

The size o f the population to use for a Genetic Algorithm has always been an 

interesting question for researchers. It is clear that the more the chromosomes in the 

population the faster the convergence. Maintaining a larger sample o f the search 

space will improve the chance o f finding the regions containing the best solutions, 

without being misled by local optima. However, larger populations require larger 

processing time on evaluating the fitness function and applying the genetic operators.

Parents
L. ‘

!■ " yi 1 •
k "
\ >■ „ » ••

i 11!

— —

Offspring

Figure 2.15. Steady state Genetic Algorithm
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A  small population would lead to high sampling errors and could more easily 

lead to premature convergence. The studies done by Goldberg (1989b) indicated that 

the size o f the population in a Genetic Algorithm using binary strings grows 

exponentially with the length o f the chromosome.

In parallel Genetic Algorithms, (one chromosome per processor, as in Talbi 

and Bessiere (1991)) fitness function evaluations and the operator applications are 

performed in parallel. In this case, the bigger the population, the better.

2.2.3.5 IN IT IA L ISA T IO N

At the beginning o f optimisation, a Genetic Algorithm requires a group o f initial 

solutions. Anderson and Ferris (1994) mentioned the performance o f the Genetic 

Algorithm scheme is not as good from the reselected starting population as it is from a 

random start. There are two basic ways o f generating this initial population. The first 

consists o f using randomly produced solutions created by a random number generator. 

This method is preferred for problems about which no prior knowledge exists or when 

assessing the performance o f an algorithm.

The second method employs a priori knowledge about the given optimisation 

problem. Using this knowledge, a set o f requirements is obtained and solutions, which 

satisfy those requirements, are collected to form an initial population.

Appendix B summarizes the previous initial populations used with published 

Genetic Algorithms for line balancing problems. In every model, it consists o f a 

population containing randomly generated solutions plus a few solutions generated by 

heuristic techniques. Anderson and Ferris (1990) included a solution generated by the 

C O M S O A L  method, which was developed by Arcus (1966). Suresh et al (1996) 

introduced a modified Genetic Algorithm working with two populations, one o f which 

consisted o f infeasible solutions, and the other containing both random solutions and 

few solutions generated by a heuristic technique, exchanging specimens between 

populations at regular intervals.
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2.2.3.6 GENETIC  OPERATORS
\

hi the classical Genetic Algorithm there are two basic genetic operators: selection and 

reproduction, which can be further divided into crossover, mutation and inversion* 

Some o f these operators were inspired by nature and, in the literature, many versions 

o f these can be found. It is not necessary to employ all these operators in a Genetic 

Algorithm because each one functions independently o f  the others. The choice or 

design o f operators depends on the problem and the representation scheme employed. 

For example, operators designed for binary strings cannot be directly used on 

chromosomes coded with integers or real numbers.

2.2.3.6.1 S election

The main goal o f the selection procedure is to reproduce more copies o f chromosomes 

whose fitness values are higher. In a Genetic Algorithm, the selection is based on the 

natural law o f the survival o f the fittest among the chromosomes. It has a significant 

influence on driving the search towards a promising area and finding good solutions.

There are two parameters associated with selection schemes (Whitley, 1989): 

se le c tiv e  p r e s s u r e , the probability o f the best chromosome being selected compared to 

the average probability o f selection o f ail chromosomes, and p o p u la tio n  d ive rs ity  

which is the portion o f chromosomes o f a population that is selected during the 

selection phase. These two parameters have great influence on the performance o f the 

Genetic Algorithm, and a good selection scheme must have a balance between these 

two. If  selective pressure is too great, the population diversity decreases and this may 

result in a premature convergence. Weak selective pressure makes the search 

ineffective. Cavicchio (1970) adopted an innovative mechanism, the so-called pre

selection scheme, to maintain population diversity and a similar scheme' was used 

later by De Jong (1975) in an optimisation study.

Since 1975, a number o f selection schemes have been suggested for Genetic 

Algorithms. Some o f the techniques relevant to the assembly line balancing problem 

are described in the following sections.
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(a) Roulette wheel selection

The simplest selection scheme is the roulette-wheel or proportional selection proposed 

by Holland (1975). Its mechanism is based on the operation o f a roulette wheel and 

runs as follows.

The chromosomes are first mapped to roulette wheel slices, such that each 

chromosome’s slice is equal in size to its fitness. A  random number is generated and 

the individual whose slice contains the random number is selected. The process is 

repeated until the desired number o f individuals is obtained. Table 2.6 shows the 

selection probability and cumulative probability for 11 individuals. Chromosome one 

is the fittest chromosome and occupies the largest slice, whereas chromosome ten as 

the second least fit chromosome has the smallest slice in the roulette wheel (figure 

2.16). Chromosome 11, the least fit slice, has fitness value zero and gets no chance for 

reproduction.

Number

Fitness
Value

Selection
Probability Cumulative

probability

f (x )
m

Z / w
01 2.0 0.18 0.18
02 1.8 0.16 0.34
03 1.6 0.15 0.49
04 1.4 0.13 0.62
05 1.2 0.11 0.73
06 1.0 0.09 ‘ 0.82
07 0.8 0.07 0.89
08 0.6 0.06 0.95
09 0.4 0.03 0.98
10 0.2 0.02 1.00
11 0.0 0.00 1.00

Total 11

Table 2.6. Fitness values and selection probabilities
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The following algorithm can be used to simulate the roulette wheel process:

1. Calculate the cumulative probability o f each chromosome;

2. Generate a random number (N r) between zero and one;

3. Go through the population and the cumulative probabilities from zero to one,

find the chromosome in which the cumulative probability is equal or just

greater than N r. Stop and return the chromosome where you are.

Step 1 is performed only once for each population.

11
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4 4
13% 15%

Figure 2.16. Roulette Wheel

One o f the drawbacks o f roulette wheel selection is that extraordinary 

chromosomes would take a significant portion o f the roulette wheel resulting 

premature convergence. Davis (1991) overcame this problem by ranking or linear 

normalizing. It gives all the chromosomes a better chance to be selected.

(b ) Rank-based fitness assignment

The nature o f scaling procedures associated with classical roulette wheel selection led 

Baker (1985) to consider a nonparametric procedure for selection called ran k-based  

f i tn e s s  assign m en t. In this technique, the population is sorted according to the fitness 

values. Chromosomes are then assigned a number dependant only its position in the



chromosome’s rank and not on the actual fitness value. Figure 2.17 shows one of the 

ways Baker allocated trials according to rank.

Rank-based fitness assignment overcomes the scaling problems of the 

proportional fitness assignment. (Stagnation in the case where the selective pressure is 

too small or premature convergence where selection has caused the search to narrow 

down too quickly.) Since the reproductive range is limited, no chromosomes generate 

an excessive number o f offspring. Ranking introduces a uniform scaling across the 

population and provides a simple way o f controlling selective pressure.
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Figure 2.17. Fitness assignment mechanism in sorted selection 
scheme (Baker, 1985)

2.2.3.6.2 Reproduction

The Genetic Algorithm can be roughly described as proceeding from one population 

to another, the new population being obtained by application o f c ro sso ver  and 

m u ta tion  to the chromosomes in the current- population. This section describes more 

about these two operators and their respective roles in Genetic Algorithms. Since the 

, actual implementation o f each o f these operators can vary widely from one Genetic 

Algorithm to another, they are discussed under two sections: the classic operators and 

those proposed for assembly line balancing applications.
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(a) Crossover

Crossover is the genetic operator that combines (mates) two chromosomes (parents) 

to produce new chromosomes (children). The idea behind crossover is that the new 

chromosomes may be better than both o f the parents if  it takes the best characteristics 

from each parent. Generally, crossover occurs during evolution according to a user- 

definable crossover probability.

Crossover probability (P c) defines how often crossover will be performed. If  

P c =  0, then there is no crossover and the entire new population is made from exact 

copies o f chromosomes from the old population. When P c  >  0, a part o f the new 

population is formed by crossover and i f  the crossover probability is one, then all the 

new offspring are made by crossover.

The C la ss ic  C ro sso ver

There are two classic crossover techniques: single point crossover and two-point 

crossover. They are the oldest crossover techniques, having been presented and 

studied by Holland (1975).

1. S in g le -p o in t o r  one p o in t  c ro sso v e r

The simplest crossover is called the one-point crossover. Frantz (1972) defined this 

generalized, single-parameter crossover operator in his study o f positional non- 

linearity. As the name implies, a crossover point is randomly selected and then the 

two chromosomes are interchanged at this point to produce two new offspring. Figure 

2.18 illustrates this process. ’

2. T w o -p o in t c ro sso v e r

Cavicchio (1970) defined two-point crossover operator. In this operation, two 

crossover points are selected randomly and then, the genes between successive 

crossover points are exchanged between the two parents to produce two new offspring 

(figure 2.19). The segment between the first gene and the first crossover point is not 

exchanged between chromosomes. The disruptive nature o f two point crossover 

appears to encourage the exploration o f the search space, rather than favouring the
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convergence to highly fit chromosomes early in the search, thus making the search 

more robust.
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Crossover point

A B C C E F G H I J

E H F J G I A D B C

(a) Before crossover

A B C E G I A D B C

E H F J E F G H I J

(b ) After crossover

Figure 2.18. Single point crossover

It is difficult to make a firm comparison o f the effect o f two-point crossover 

against single-point crossover. The experience with Genie (Chambers, 1995) suggests 

that there is not much to choose between them. However, two-point crossover is more 

disruptive on longer chromosomes, since the segment being swapped is longer, and 

more likely to be substantially different (Frantz, 1972, De Jong, 1975).

Crossover point 1 Crossover point 2

r ir
A B c L E F G H I J

E H F J G I A D B C

(a) Before crossover

A B F J G I A H I J

E H C D E F G D B C

(b) After crossover

Figure 2.19. Two-point crossover
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Good performance o f a Genetic Algorithm requires the correct choice o f  

Crossover probability (P c). De Jong (1975) also experimented with crossover 

probabilities and generation gap values. As a result o f these studies he suggested a 

crossover probability P c -  0.6 as a reasonable compromise between good-on-line and 

off-line performance; later studies by Mercer (1977) and Grefenstette (1986) 

suggested that higher crossover rates (0.9 > P c >  0.8) are better with more accurate 

selection procedures.

C ro sso v e r  O p era tion  F or A ssem b ly  Line B a la n c in g  A p p lica tio n s

In addition to the classic genetic operators, a number o f crossover techniques have 

been developed for assembly line applications. Appendix B lists some the new 

techniques and their applications to the assembly line balancing problem and are 

described in this section.
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I. P a r tia lly  M a p p e d  C ro sso v e r  (PM X)

This operation was suggested by Goldberg and Lingle (1985) and is aimed at 

maintaining inheritance o f adjacency and relative order o f elements in the solution 

structure. First, all the elements from parent 1 are copied to the same positions o f the 

child; then using pair wise exchange some elements o f the child are being relocated in 

order to make a random fragment o f child to be an exact copy o f the same fragment o f 

parent 2 (figure 2.20).

A B C D E F G H I J

E H F J G I A D B C

Parent 1 

Parent 2

(a) Before crossover

1” ▼

A B C D E F G H I J
. . .  . . .

A B C J G I E H F D Child 1

(b) After crossover
□  Random fragment 

Figure 2.20. Partially Mapped Crossover (P M X ) (Goldberg and Lingle, 1985)
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2. O rd er c ro sso ver  (O R D )

Davis (1985a) defined the order crossover operator. This operator preserves the 

order, adjacency and absolute positions o f part o f the elements and the relative order 

o f the remaining elements. A  child chromosome inherits elements o f a random 

fragment from parent 1, in the same order and position. The remaining elements are 

inherited from parent 2 in the same order they appear in parent 2, beginning with the 

first position following the end o f the random fragment and skipping over all elements 

already present in the child. Figure 2.21 illustrates this operation.

Parent 1 

Parent 2

Child 1 

Child 2

Figure 2.21. Order crossover (Davis, 1985a)

3. P o sitio n  b a se d  c ro sso v e r  (PO S)

This crossover procedure was proposed by Syswerda (1989) and is intended to 

preserve inheritance o f positional information. A  randomly chosen number of 

locations are selected in parent 1 and the child chromosome inherits the elements in 

these positions. The remaining elements are inherited in the order, in which they 

appear in parent 2, skipping over all elements already included into the child 

chromosome (figure 2.22). Although this operator is similar to order crossover 

(except the requirement o f adjacency o f elements being copied from parentl), 

Staekweather et al (1991) showed that it has significantly different properties.

4. C yc le  c ro sso v e r  (C YC )

Oliver et al (1978) suggested this crossover technique. It allows inheriting the 

absolute positions o f elements from parent structures. The Starting element of parent 

1 (first or randomly defined) is inherited by a child. The element, which is in the same

A B C D. E F G H I J

E I B D F A J G C H

(a) Before crossover

I B C D Ekvi.s’-iiv, F A J G H

A C B D Fi Vi.! E G H I J

(b ) After crossover



position in parent 2, cannot consequently be placed in this position. The position o f 

this element is found in parent 1, and the element is inherited by a child to the same 

position. This continues until the cycle is completed by encountering the initial 

element from parent 1 in parent 2. A ll elements, which were not yet copied to the 

child, are copied from the same positions o f parent2.

Chapter 2: Literature review

Parent 1 

Parent 2

Child 1 

Child 2

Figure 2.22. Position based crossover (POS) (Oliver et al., 1987)

5. F ra g m en t reo rd er in g  c ro sso v e r  (F R G )

This procedure was proposed by Rubinovitz (1995) particularly for assembly line 

balancing problems. A ll the other crossover operators, when applied on the assembly 

line balancing solution vector, results in loss o f feasibility o f the offspring structure. 

The fragment reordering crossover operator is aimed at maintaining the inheritance o f 

positions and the relative order o f elements in the structure, providing changes within 

the fragment, which do not violate the precedence constraints.

The fragment reordering crossover procedure may be considered as a special 

case o f position based crossover and reversed version o f order crossover. First, all the 

elements from parent 1 are copied to the same positions o f a child chromosome. Then 

all the elements o f a random fragment in the child chromosome are reallocated within 

the fragment according to the order in which they appeared in parent 2. Precedence 

relations within the fragment are inherited from parent 2. Consequently, if parent 1 

and parent 2 are feasible sequences, the child inherits this feasibility.

A B
r nC
... ...

E E F
1 °

H I J
1

E I B D F A J G C H

(a) Before crossover

A I B C F D E G H J

I B G
.—1_-—

D
...

F A H
....

J G

(b ) After crossover
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Rubinovitz compared this technique with a selection o f five crossover methods 

used in previous studies o f Genetic Algorithms (Goldberg, 1985, Davis, 1985, Oliver 

et al, 1978, Syswerda, 1990, Starkweather et al, 1991) and concluded that cycle 

crossover and fragment reordering crossover procedures dominated.

In addition to the above crossover operators, a number o f other crossover 

techniques have been defined in the literature including uniform  cro sso ver  developed 

by Syswerda (1989), h eu ris tic  s tru c tu ra l c ro sso v e r  (HSX) suggested by Kim et al 

(1998) based' on the structural crossover (SX ) proposed by Laszewski (1991) and the 

most recent method called dyn a m ic  p a r ti t io n in g  (D P A ) technique developed by 

Sabuncuoglu et al (2000). Appendix B lists a selection o f the crossover t echniques 

applied for assembly line balancing models. Other than the specific crossover 

technique developed by researchers for their models, both single point and two point 

crossover methods are generally employed.

(b ) Mutation

Mutation is a genetic operator that alters one or more genes in a chromosome from its 

initial state. This can result in entirely new genes being added to the gene pool. With 

these new genes, the Genetic Algorithm may be able to arrive at a better solution than 

was previously possible. Mutation is an important part o f genetic search as it helps to 

prevent populations from stagnating at any local optima. Mutation occurs during 

evolution according to a user-specified mutation probability.

Mutation probability (P m) defines the probability o f mutation o f chromosome. 

I f  there is no mutation, offspring are formed by crossover or copy without any change. 

I f  mutation is performed, part o f the chromosome is changed. One hundred percent 

mutation probability means the whole chromosome is changed and zero percent 

indicates no change at all. Mutation is generally used to prevent a Genetic Algorithm 

falling into local extrema, but it should not occur very often, because then a Genetic 

Algorithm will in fact change into a random search.

A  n umber o f  m utation t echniques a re available and d escribed f  ollowing for  

assembly line balancing problems.
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C la ss ic  M u ta tion

This is the smallest possible random modification o f a chromosome. According to the 

mutation probability, one or more pairs o f genes are selected randomly and they are 

swapped to produce new offspring. Figure 2.23 illustrates this process and genes F 

and I are randomly selected and they are swapped to produce the new chromosome.

E H p  m J G I A D B C

(a) Before mutation

E H g t | J G ill A D B C

(b ) After mutation 

Figure 2.23. Classic mutation

M u ta tion  O p era tio n s F o r A ssem b ly  L ine B a la n c in g

1. Leu et al (1994) suggested the scramble mutation. A  random cut-point is selected 

and the genes after the cut-point are randomly replaced (scrambled), whilst 

assuring feasibility.

2. Tsujimura (1995) defined the following mutation operator as follows:

a. Generate an integer number p  in the range [1, (n /m *)] randomly. Where n 

is the number o f genes in the chromosome and m  is the theoretical 

minimum number o f workstations.

b. Generate randomly a position p o s  in the chromosome.

c. Replace the element at the position p o s  within the defined neighbourhood 

which is within [ p o s - p , p o s + p \ .

Example:

Chromosome =  [A  B C D  E F G ] n=  10 m  =  3 p =  [1.. .3]

Generate p o s  and p  randomly. p o s  =3 and p -  2.

[A  B  C  D  E F G ] r t  [A  B  C D  E F G ] or [ A B C D E F G ]

63



Chapter 2: Literature review

3. Kim et al (1998) developed a mutation technique called Heuristic Structural 

Mutation (H SM ) that randomly chooses some genes according to the mutation 

rate and marks those genes for reassignment. The reassignment is performed by 

the same adaptation procedures as used in the Heuristic Structural Crossover. 

According to the table in appendix B, The classic mutation technique is the one 

most employed in line balancing models and mutation probability was set to fairly 

low values. (Between .01 and 0.03).

(c) Inversion

The third classic operator is inversion. It proceeds by inverting the order of genes on 

a randomly selected segment o f the chromosome. This technique can be seen in 

classical Genetic Algorithms where chromosomes are represented by binary values. 

Consequently applications cannot be seen in assembly line balancing models because 

o f the violation o f precedence constraints.

2.2.3.7 ELITISM

Convergence o f Genetic Algorithm solutions is one o f the most challenging 

theoretical issues in evolutionary computation. Several researchers have explored this 

problem from different perspectives. Rudolph (1994) proved that a classical Genetic 

Algorithm never converges to the global optimum, but a modified version, which 

maintains the best chromosomes in the population, does. This is because, when 

creating new populations by crossover and mutation, there is substantial chance, that 

the best chromosome may be lost. Elitism is the name o f a method which first copies 

the best chromosome (or a few best chromosomes) to the new population. The rest o f  

the population is generated in a classical way. Elitism rapidly increases the 

performance o f the Genetic Algorithm.

2.2.3.8 T E R M IN A T IO N

Termination is the criterion by which the Genetic Algorithm decides whether to 

continue or stop searching. Researchers have developed several termination criteria
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and each o f the termination criteria are checked after each generation to see i f  it is 

time to stop. A  selection o f termination criteria include:

1. G en era tion  num ber. This method stops the evolution when the user specified 

maximum number o f evolutions have been run and it is always active.

2. E volu tion  tim e. A  termination method that stops the evolution when the elapsed 

evolution time exceeds the user-defined maximum evolution time. By default, the 

evolution is not stopped until the evolution o f the current generation has 

completed, but this behaviour can be changed so that the evolution can be stopped 

within a generation.

3. F itn ess th re sh o ld . A  termination criterion that stops the evolution when the best 

fitness in the current population becomes less than the user specified fitness 

threshold and the objective is set to minimize the fitness.

4. P o p u la tio n  co n verg en ce . A  termination method that stops the evolution when the 

population is deemed as converged.

As far as assembly line balancing applications are concerned, generation number 

criterion is used as the termination method. (Appendix B).

2.2.4 GENETIC  A L G O R IT H M  PR O G R A M M IN G  ENVIRO NM ENTS

Following Holland’s original Genetic Algorithm concept, many variations o f the basic 

algorithm have been introduced. However, the important and distinctive feature o f all 

Genetic Algorithms is the p o p u la tio n  h a n d lin g  technique. The original Genetic 

Algorithm adopted a Generational replacement policy (Davis, 1991) and later many 

subsequent Genetic Algorithms used the S tea d y -S ta te  policy (Davis, 1991). Filho et al 

(1993) reviewed software environments for programming Genetic Algorithms and 

classify them into three main categories as follows.
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1. A p p lic a tio n -o r ie n te d  s y s te m s : they are designed for use by business professionals 

who wish to utilize Genetic Algorithms in specific application domains, without 

having acquired detailed knowledge o f the working o f Genetic Algorithms. 

PC/BEAGLE is software developed by Forsyth (1989) supporting scheduling, 

telecommunication etc. The O M E G A  Predictive Modelling System is a powerful 

predictive model exploiting advanced Genetic Algorithms techniques for use in  

the financial domain.

2. A lg o rith m -sp ec ific  sy s te m s: They embody a single powerful used by developers 

requiring a general-purpose Genetic Algorithm for their applications and 

researchers interested in the development and testing o f a specific algorithm and 

genetic operators. The most well known system in this category is the pioneering 

GENESIS (Davis, 1991, Grefenstette, 1981, Grefenstette, 1987), which has been 

used to implement and test a variety o f new genetic operators in Europe. 

G ENITOR  developed by Whitley (1989), is another well-known software package 

in the Genetic Algorithm field, containing examples o f floating-point, integer and 

binary representations.

3. G en era l-p u rp o se  s y s te m s : these are the ultimate in flexible Genetic Algorithm 

programming systems. Not only do they allow the user to develop their own 

Genetic Algorithm applications and algorithms, but also provide users with the 

opportunity to customise the system to suit their own purposes. These systems 

provide a comprehensive tool kit, including: a sophisticated graphic interface; a 

high level language for programming Genetic Algorithms and an open 

architecture. EnGENEer (Robbins, 1992) and G A M E  (Alippi and Treleaven, 

1991) are two substantial examples.

2.2.5 S U M M A R Y

Anderson and Ferris (1990) pioneered the application o f Genetic Algorithms for the 

assembly line balancing problem. Since then, a number o f Genetic Algorithm models 

have been developed to address this problem by modifying the classical Genetic 

Algorithm proposed by Holland (1975). These modifications include the

Chapter 2: Literature review

66



Chapter 2: Literature review

development o f new fitness functions, genetic operators (crossover and mutation 

techniques) and selection methods.

The first cost function developed by Anderson and Ferris (1990) was very 

complex and it consisted o f a number o f parameters and constants. But, the fitness 

functions suggested in the late 1980s seemed to be simple and most o f them are based 

on the assembly line balancing performance measures (Line efficiency, smoothness 

index, balance delay, mean absolute deviation). Subsequent every published has 

introduced a new fitness function, and some papers have suggested new genetic 

operators and selection techniques in addition to a cost function.

A  number o f crossover techniques have been developed besides the classic 

genetic operators and several repair techniques being introduced to maintain the 

feasibility o f  t he n ew o ffspring. T he n ecessity o f  p ropagating t he b est p ortion o f  a 

chromosome during genetic operation has been highlighted by several researches for 

better performances o f the algorithm (Falkenauer, 1992 and Davis et al, 1991). No  

crossover technique has been developed to address the issue.

The classic roulette wheel selection has been the most employed selection 

scheme for many Genetic Algorithm models. The tournament selection and the rank- 

based selection schemes are employed in a few cases. High selective pressure is a 

major problem in all the selection techniques and several procedures are proposed to 

eliminate this problem and introduce diversity to solutions.

The performance o f the Genetic Algorithm depends upon a number o f key 

factors, including population size, initial population, crossover and mutation 

probabilities, number o f elite chromosomes, and problem complexity. Developing a 

general-purpose Genetic Algorithm model with a more efficient selection o f these 

factors appropriate for the assembly line balancing problem, is the challenge within 

this work. From the review o f existing literature, acknowledging a specialist interest 

in assembly line balancing, a new Genetic Algorithm approach improving fitness 

function and genetic operators is identified as the way forward.
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Several researchers have claimed that their techniques outperformed the 

existing heuristic techniques but have not finally yielded the optimum solution. In 

many cases, the solution obtained by the Hoffman matrix procedure seemed to be 

better than those obtained by the Genetic Algorithm (Ponnambalam eta l 2000). It 

seems that the current research on the application o f  Genetic Algorithms to the 

assembly line balancing problem is promising and not too far from the end goal. The 

next chapter describes the new Genetic Algorithm model developed to address some 

o f the above problems by introducing a new fitness function, crossover and mutation 

techniques and a m odified r anlc-based se lection scheme t o d eal with h igh s elective 

pressure problems.

Chapter 2: Literature review

68



A  G ENETIC A LG O R ITH M  LINE  
B A LA N C IN G  M O DEL

The previous chapter reviewed advantages and limitations o f existing Genetic 

Algorithm models and indicated the potential for line balancing. The design details o f 

the new Genetic Algorithm model for the single model deterministic assembly line- 

balancing problem are presented in this chapter. The model consists o f a new fitness 

function, a modified selection scheme, novel genetic operators for crossover and 

mutation and a repair technique. The new fitness function, which is the key 

component o f the model, introduces and uses a front-loading theorem, and described 

at the beginning o f the chapter.

3.1 THE FRONT-LOADING THEOREM

Since the single model assembly line balancing problem is a combinatorial 

optimisation problem, there exist a large number o f feasible solutions. Therefore, in 

the majority o f the instances, finding optimal solutions within a polynomial time is 

very hard. However, the front-loading theorem describes a theoretical approach for 

yielding optimal or near optimal solutions in polynomial time.

T heorem : an o p tim a l so lu tion  o r  th eo re tica lly  m inim um  
nu m ber o f  w orlcsta tions (m *) can b e  fo u n d  by  p a c k in g  
w o rk sta tio n s  p r o g r e s s iv e ly  (w o rk sta tio n  Wj+j a fte r  Wj f o r  
j  f r o m  1 to  m * - l)  to  th e ir  f u l l  ca p a c ity .
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Proof: Casel -  At least one perfectly balanced solution exists

Figure 3.1. Solution domain

Let x  (x =  (X  | perfectly balanced solution(s)}) be the perfectly balanced 

solution(s), and they are represented by the set X. Similarly, lety (y  =  (Y  | fully front- 

loaded solutions (figure 3 .2 (y )}) be the theoretically fully front-loaded solution(s), 

representing the set Y. To explain the theorem, consider an arbitrary solution a (figure 

3.1) in the feasible set A  (a  =  (A  | a solution with number o f workstations <  m * + 2 }). 

Where m* is the theoretical minimum number o f workstations. Moving elements 

progressively from latter workstations to early workstations reduces the number of 

workstations and results in the solution leaping from set A  to set B (b =  {B  | a solution 

with number o f workstations <  m*+ 1 }) and eventually to set Y. The station time 

distribution o f these solutions are represented by a, b, andy respectively in figure 3.2. 

The solution a consists o f three fully packed workstations (1, 4 and 5). The 

progressive loading process improves this solution by packing four workstations (1 ,2 , 

3 and 5) including the first three, and then further loading results in the perfect 

balance where all the stations are fully packed to capacity.

Therefore, if there is at least one optimum solution;

Y  = X
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Figure 3.2. Progressive loading o f workstations: solution (a) first station is packed; 
solution (b ) first three stations are packed; solution (y) all the stations are fully packed 
and total number o f stations equal to eight.

Proof: Case2- A  perfectly balanced solution does not exist

In instances where there is no perfectly balanced solution(s), solutions yielding 

theoretically minimum number o f workstations are considered as optimal solutions. 

Generally, several such solutions exist, and let them be represented by, d  (d  ={D| 

solutions with theoretically minimum number o f workstations (w * )} ) .  In such cases, it 

is obvious that, the theoretically fully front-loaded solution(s) is one of them. 

Therefore;

Y c  D

Generally, generating a fully front loaded solution from a single pass heuristic 

decision rule may not be possible. However, a technique evaluating multiple solutions 

with back tracking incorporated could easily slip into this solution. Driscoll et al 

(2002) verified the above theorem and the possibility o f generating front loaded 

solutions by developing a multi-pass heuristic technique for simple assembly line 

balancing problems. This technique is a modification o f the original Hoffman (1963) 

procedure, attempting to fill front workstations as early as possible by considering 

many feasible combinations at sub-workstation level. The new fitness function is 

defined based on this concept and the complete design procedure is described next.

3.2 DESIGN OF THE FRONT-LOADING FITNESS FUNCTION
The fitness function is the key component in the Genetic Algorithm and the only link 

between the algorithm and the actual problem being solved. The fitness function
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distinguishes the better and the worst chromosomes in the population and provides an 

important feed back for the search process. This section illustrates the development of 

the front-loading mathematical model.

Solving the assembly line balancing problem involves searching for feasible 

sequence(s) ending up with a minimum number o f workstations. Throughout the 

searching, the algorithm assesses both feasible and infeasible chromosomes and at any 

stage o f the evolution process, a population could consist o f some feasible 

chromosomes (<a , b, c ) and infeasible chromosomes (p , q, r), whilst the global 

optimum solution is x (figure 3.3).

Figure 3.3. A  search space and its feasible and infeasible parts

The design o f the fitness function answers the question o f how to evaluate 

both feasible and infeasible chromosomes. It is almost certain that these feasible and 

infeasible chromosomes in the population influence the other parts o f the Genetic 

Algorithm; some genetic operators might be applicable to feasible chromosomes only. 

However, many search algorithms start with a population containing both feasible and 

infeasible chromosomes. Infeasible chromosomes allow the system to explore the 

search space in different directions.

There are two basic ways o f designing fitness functions: developing a single 

fitness function to evaluate both feasible and infeasible chromosomes or designing 

two separate independent evaluation functions and establish some relationship 

between them. The second option was employed in this research and the design
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concepts for evaluation o f infeasible and feasible is described in the following 

sections.

3.2.1 F IT N E SS  F U N C T IO N  D E S IG N  F O R  IN F E A S IB L E  C H R O M O S O M E S

The issue o f handling infeasible chromosomes and extending a fitness function to 

evaluate infeasible chromosomes is a difficult problem and has been debated for years. 

Since these chromosomes are adding diversity to the search process, their contribution 

is vital and should not be discarded. Powell and Skolniclc (1993) and Michalewicz and 

Xiao (1995) reported good results o f their evolutionary algorithms, which worked 

under the assumption that any feasible chromosome is better than an infeasible 

solution and the proposed fitness function is designed based on the same assumption.

The total number o f feasible links in a chromosome is a good measure of 

comparing two infeasible chromosomes. The higher the number o f links the better the 

chromosome and the closer it is to a feasible chromosome. Therefore, it is used to 

evaluate infeasible solutions and the procedure for finding the number o f feasible 

links is described here.

Consider a chromosome shown in figure 3.4 having n elements. The elements in the 

chromosome are represented by et (i =  1 to n).

ei S2 e3 e4 es et ei+l

Figure 3.4. Chromosome representation

Procedure:

1. Select an element et from the chromosome.

2. Find all the elements (ej) that immediately succeed the element selected in step 

1 from the corresponding precedence diagram (/= 1 to np). Where np is the total 

number of immediately succeeding elements.
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3. I f  the locus o f the ey in the chromosome is to the right o f e-h this link is 

considered as a feasible link. Repeat this step for all elements ej (/'=1 to np) 

and record the total number o f feasible links corresponds to each element eu

4 .  Repeat steps 1 to 4  for all the elements in the chromosome (7=1 to h).

The following illustration shows the application o f the above procedure. The 

selected feasible and infeasible chromosomes and the precedence are shown in figure

3.5. The corresponding precedence matrix o f the test problem shown in figure 3.5 is 

given in figure 3.6. The immediate successors o f a selected element (step2) are found 

using the precedence matrix in which, entries in the first column (i) are the task 

element and, in the corresponding row, the elements heading the column (j) in which 

are ones (1), are the immediate successors.

C hapter 3: A  g en e tic  a lgorith m  line  ba lancing  m od el

A C B E D F G H I J

(a ) Feasible chromosome

E A C B F D G H I J

(b ) Infeasible Chromosome

3 4  2

Figure 3.5. Feasible and infeasible chromosomes and the precedence network

Table 3.1 and 3.2 are prepared to find the total number o f feasible links for the 

feasible and infeasible chromosomes respectively, for the example shown in figure

3.5. The first column indicates the element locus (position) and the second shows the
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corresponding element. The elements to the right of the selected element are shown in 

the third column and, the immediate successors and number o f feasible links are 

shown in the fourth and last columns respectively.

C hapter 3: A  gen e tic  a lg o rith m  line ba la n cin g  m odel

j

\ A B C D E F G H I J

A - I I 0 0 0 0 0 0 0

B - 0 1 0 0 0 0 0 0

C - 0 1 0 0 0 0 0

D - 0 1 0 0 0 0

E 1 0 0 0 0

F L 1 I

G - 0 0 1

H - 0 1

I I

J -

Total number o f  links = 12

Figure 3.6. Precedence matrix o f the above network

For a chromosome to be feasible, the total number o f feasible links (I) must be 

equal to the total number o f precedence relationships (P).  The chromosome shown in 

figure 3.5(a) satisfies this condition and therefore, it is a feasible chromosome. 

However, for the chromosome shown in figure3.5 (b ) the number o f feasible links (/ =  

10) is less than P  ( =12)  and therefore, it is not a feasible chromosome.

Locus e-i Elements
Successors

(ej)

Number of 
feasible 

links
1 A CBEDFGHIJ BC 2
2 C BFDFGHIJ E 1
3 B EDFGHIJ D 1
4 E DFGHIJ F 1
5 D FGHIJ F 1
6 F G H B GHI J
7 G HI J J 1
8 H IJ J 1
9 I J J 1
10 J - - 0

Total 12

Table 3.1. Feasible links o f  chromosome 3.5(a)
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Locus ei Elements
Successors

(ej)

Number o f  
feasible 

links
1 E A C B iD G H IJ F 1
2 A CBFDGHIJ BC 2
3 C BFDGHIJ E 0
4 B FDGHIJ D 1
5 F D G H B GHI 3
6 D GHIJ F 0
7 G H I/ J' 1
8 H I J J 1
9 I J J 1
10 J - - 0

Total 10

Table 3.2. Feasible links o f chromosome 3.5(b)

For infeasible chromosomes, the number o f  feasible links (J) can be used 

design the fitness function (fi) and, one having higher number o f links receives higher 

fitness value than that o f a lower number o f links. Since the number o f feasible links 

are less than or equal n , the fitness generated by the function always lies between one 

and n. This value is extremely low when compared to the fitness o f feasible solutions. 

Therefore, a problem dependent constant is integrated to overcome this problem. So 

the complete fitness function for infeasible solutions is expressed as follows:

f i =  n3/3l V l < P  (3.1)

Where n is  the number o f e lements in  the problem an d /  is a test problem  

constant which will be defined in the next section.

3.2.2 F ITN E SS  F U N C T IO N  D E S IG N  F O R  F E A S IB L E  C H R O M O S O M E S

The issue o f comparing two feasible chromosomes is complicated. The number o f  

feasible links cannot be used as the fitness function, because all feasible chromosomes 

generate the same fitness value, which is equal to n. Therefore, a different approach 

should be used to compare two feasible, chromosomes. The proposed fitness function
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for feasible chromosomes (fy  consists o f three basic components X, Y, Z  and is 

expressed as follows.

ff  =  X + Y + Z  (3.2)

In order to generate higher fitness values for feasible frontloaded solutions than fully 

frontloaded infeasible solutions, terms X,  Y  and Z  are designed as max (A ) >  m ax(f) >  

max(Z).

3.2.2.1 THE C O M P O N E N T X

This evaluates the feasibility o f chromosomes. Feasible chromosomes receive higher 

fitness values than that o f infeasible ones and thereby clearly distinguish them from 

infeasible chromosomes.

X  =  n3l/3 (3.3)

a = nCR'"*+l

C ha pter 3: A  gen e tic  a lg o rith m  line b a la n c in g  m odel

Where / is the number o f feasible links in the chromosome, n is the number o f  

elements (tasks), C is the cycle time, a  and (3 is constants that depend on the test 

problem and the cycle time. R  is the front-loading constant described in section

3.2.2.4 and m *  is the theoretical minimum number o f workstations.

3.2.2.2 THE C O M PO N E N T  Y

This takes into account the gradual (progressive) filling o f workstations and preserves 

filled stations dining the evolutionary process, and can be stated as:

K ( S  \
Z

Y  =  rfpi A - f i  (3.4) 
m - m *  + 1

Sj -  workstation time C  =  C ycle time j  =  workstation m =  number o f  workstations

At the beginning o f the evaluation, K =  1 and if  (S /C )  =  1 or generation number (g) 

equals to G w *K, the value o f K  is incremented by one unit. Where G w is the number of 

generations permitted for a workstation and, is obtained by dividing the total number 

o f generations (G ) by the number o f workstations in the initial heuristic solution.
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3.2.2.3. THE C O M PO N E N T  Z

This is the key component o f  the p roposed fitness function, which is based on the 

front-loading theorem. It forces the algorithm to shift elements from later to early 

workstations to accomplish fully filled workstations, and is mathematically expressed 

as follows:

a
Z
7=1

( S A

l £ j

mR

R m - j

«i+l =  a
z
7=1

f s ,  V

c
R 1-7

m
(3.5)

Where m is the number o f workstations, C  is the cycle time, Sj is the workstation time 

and k  is constant and the best choice o f k  will be covered later. The other constants are 

as defined before.

The front-loading concept is integrated in to the component Z  by designing the 

fitness function to assign higher fitness values for early packed workstations than for 

late packed (R 1'J , wherey=l,2,...m )). A  fully packed first workstation (S i =  C) will 

received the highest fitness weight (R°) and this maximum is scaled exponentially to 

give higher weight to early workstations and lower values to later workstations (R°, R'

1, R '2, ....... , R hm). The value R  controls the degree o f scaling, and it should be selected

appropriately, which will be dealt with later in this section. Suffix k  in the fitness 

function provides a family o f fitness curves, but the following analysis verifies that 

when k  equals to unity, shifting o f an element to an early from latter workstation 

increments the fitness value to support front-loading (property 1). Furthermore, the 

decreasing number o f workstations (m ) increases fitness value (property 2, proof 

given in Appendix C )

Figure 3.7 shows a typical line balancing solution in the g th generation. It 

consists o f m  workstations with station times Sa and Sb for workstations a and b 
respectively. Assume in the next generation (g+1), genetic operators have modified 

the chromosome representing the above solution by shifting a unit element from 

workstation b to workstation a. Zg and Zg+i give the corresponding fitness values 

before and after reproduction respectively.
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z  = £ 1
7=1

r s p -  

T j
R m - j

(3-6)

Where E  =
a

mR w+l

From equation 3.6, fitness (Z ) o f the chromosome in the g th generation is given as

( s ( s h V
p  + a R n,~a + Q  + _ L  * *

I c . I c J

/=i v ̂  y
Where / > = £ [ - £ ■  R " " ' , Q = Z  77 ’ = £

/=a+l V E  J i=b+l V ^  /

S,
c

R'

After crossover and mutation operations, in the (g+/)th generation, the fitness o f the 

chromosome is given by,

’S „ + 1

c
Z g+l = E { P +  -2-----  J?— + g +  R m~b + R )

k s b -  b k

V ^  / Cv ^  y

D£
c

. 0

re
GO

1 2 cr a +1 6 b +1 m
Station number

Figure 3.7. Workstation time distribution
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Therefore, change o f fitness component (AZ) that is,

A Z  = Z  , -  Zg +1 "  g

A Z  =  E ( f j . + n
k

R ,n-a + ( A - 0
k

R m - t f s  )a
k

R m-a

C  J c  J U J U J
R m-b )

AZ  =
ER'

C
(3.7)

Similarly, it can be shown that change o f fitness component (AT) due to 

transferring elements from workstation b to a  equals to zero and will have no effect 

on fitness change. Equally, the change o f fitness component (AA ) is zero too, because 

it is a constant for all feasible chromosomes -and does not has any influence on 

transferring.

Therefore, total change o f fitness is as follows:

4// =  AZ  (3.8)

It can be seen from the equation 3.7 that, AZ is a function o f k  and to find the 

optimum value, lets consider three k  values including 1,2 and 0.5.

(a) Case 1

Substituting /c=l in equation (3.7);

E R '
A/} =

C

J  1_

R a R b
(3.9)

AZ is positive for all values b >  a subject to the condition that R>1. Therefore when k  

=1; shifting an element to an early workstation results in an increase in fitness 

component
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(b ) Case 2

Substituting k  =2 in equation 3.7; 

A / }  =

E R m ' 1

C 2 _R tt

E R m ~ 1

C 2 _ R a

ER"‘ '  1

C 2 i

R l

R l

R
(3.10)

It can seen from the equation 3.10 that A ffis  positive only i f  the following condition is 

satisfied.

2 5 + 1  1 - 2  S ,
+

R a R l
> 0

This occurs only when R b a >
2 5 , -1

, and this condition is not true for all Sa and Sb.
2 S a +1

therefore, when k  =  2, the proposed fitness function may violate the front-loading 

concept. Similarly, it can be proved that higher orders o f k  will introduce more 

constraints to the fitness function.

(c) Case3

Substituting /r =  0.5 in equation 3.7,

ER
AZ =

C

E R ,n K 1 )  1 +  —

1
2

-1 r . - j - i 4C R" R b I  Sb J
i j
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2 Mand
S . )

are infinite series when
i

<  1 and <1

respectively. Expanding and substituting in the above equation

( \ / \ f \
ER"‘ 1 1 1 1 1 1 1

1-
1 i

c

1 C'J
t KR mS } R bS ? ,

I
OO

 
1

R bs j ,

t ^ T 
16

KR ms } R % #

(3.11)

It can be seen that the right hand side o f the equation 3.11 consists o f both positive 

and negative terms and therefore AZ  may not be positive for every case.

Based on the above finding the component Z  that supporting front loading concept 

can be expressed as follows.

Z  = a
Z
7=1

R

mR m+1 (3.12)

3.2.2.4 D E TE R M IN A T IO N  OF F R O N T -L O A D IN G  C O N ST A N T  (R)

The constant R  plays a vital role in the new fitness function and it must be determined 

cautiously. It was shown that for front loading, R  must be greater than unity (equation 

3.9). Higher values o f R will increase station weights exponentially and decrease the 

weight difference among latter workstations, and involves very large numbers. On the 

other hand, lower values reduce the weight difference between front and back 

workstations. Figure 3.8(a) and figure 3.8(b) show weights for a twenty workstation 

solution fori? =  5.0 and R =  1.25 respectively.

hi order to transfer elements from latter workstations to early workstations, the 

change o f fitness ( Af f ) must be significant, hi a problem having m workstations,
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there will be ( m 2 -  m ) number o f possible ways to shift elements among workstations, 

and all o f these possibilities are shown in figure 3.9.

x 10
13

-C
CT)
'<D

flj

JZ
CT)
'0
£
C
.2V*CO
co

Station number Station number

(a) (b)

Figure 3.8. Station weights variation with station number (a) R -  0.5 (b ) R =  1.25

In fact, moving a unit element from workstation m  to m-1 results the minimum 

change o f fitness. This value can be calculated from the equation 3.9.

Aff(m-
ER'

/(»i—I—>m)
c

_1  1_

R m~l R"

Substituting E  =
a

and a  -  n C R m*+l in the above equation
m R m+l

m R y

Where y  =  (m  *-m)

( R - 1)

This value (i.e., Af/(m̂  m.ij) must be significant (say greater than some value 6 ) to  

force the algorithm to perform better forward loading. Therefore,
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A/mm =  — - (A  -1 )  -  # >  0 
m R y

(3-13)

m 
m-l 

-o  m-2
rj
o
03
to
uO
£

s '.

i . i -
m

■

■' •P f
■

- ?U

' . L"-:.

Forward loading 

] Backward loading 

m —► m- l

1 2 3 4 5 . .  m-2 m-l m
Workstation a  

Figure 3.9. Element transferring possibilities

The above inequality (equation 3.13) gives R values for minimum Af f  to

greater than a particular 6 . For example let’s consider a problem where n = 45, m =  

10, y  = 2 and #=1 ( KW4659, Chapter 4). Substituting these values in equation 3.13 gives,

(3.14)

Figure 3.10. Minimum fitness change against R
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Figure 3.10 shows the minimum change of fitness (that is A/mjn) against R. It 

can be seen from the graph that between 1.5 and 3.0 A/min is positive and satisfies 

equation 3.14, implying the minimum change o f fitness is greater than 0  (=1). This 

determine the best range o f R and therefore,

1.5 < £ < 3 . 0

The change o f fitness due to shifting a unit element between any two 

workstations can be calculated using equation 3.9 and figure 3.11 displays the change 

for all possible cases for the above problem having 10 workstations with R =2.
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W orkstation  b
W orkstation  a

Figure 3.11. Fitness change per unit element transferring 
between workstations a  and b.

Therefore, the complete overall global fitness function (FF) can be express as follows 
and it consists o f f f  and fi.

F F =  <

n l  J3
K

O B  S  n I P  + rf-(3 -DL
m - m * + 1

I
' s p -

R' (3.15)

m R m+1 l = P

Where, / is the number o f feasible links in the chromosome, and P  is the total number 

o f precedence constraints (links) in the problem.
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3.3 INITIAL POPULATION

At the start o f evolution, a Genetic Algorithm requires an initial population. A  good 

initial population will certainly increase the performance o f the algorithm and speed 

up its convergence. This type o f population is known as a w e ll-s e e d e d  population and 

the proposed model can generate an initial population in three ways.

The first method consists o f generating n permutations. This population is 

known as bin-packing population, and there is no guarantee that the generated 

chromosomes will be feasible.

The second method generates feasible chromosomes by the random task 

assignment technique. As the name implies, this technique assigns elements to 

workstations randomly from a feasible list and the list is constructed using the 

precedence matrix described in chapter 2. The procedure can be repeated to generate 

different solutions and is ideal for the initialisation process. The steps involving in the 

algorithm are as follows: -

Stepl. Construct list A , showing all work elements in one column and the total 

number o f elements that immediately precede each element in an 

adjacent column.

Step2. Construct list B, showing all elements from list A  that have no 

immediate predecessors.

Step3. Select at random one o f the elements from list B. The computer is 

programmed to perform this random selection process. The only 

constraint is that the element selected must not cause the cycle time to 

be exceeded.

Step4. Eliminate the element selected in step 3 from the lists A  and B and 

update both lists, if  necessary. Updating may be needed because the 

selected element was probably an immediate predecessor for some 

other element(s). Hence, there may be changes in the number of 

immediate predecessors for certain elements in list A ; and there may. be

C hapter 3: A  g en e tic  a lg o rith m  lin e  b a la n c in g  m od el
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some new elements having no immediate predecessors that should be 

added to list B.

Step5. Again select one o f the elements from list B that is feasible for cycle 

time. <

Step6. Repeat steps 4 and 5 until all the elements have been allocated to 

stations within the cycle time constraint.

The third method employs a priori knowledge about the given optimisation 

problem. Previously published deterministic algorithms include C O M SO AL, the 

Hoffman precedence matrix procedure and Rank Positional Weight (R PW ) technique. 

These methods plus the above two methods are employed to generate an initial 

population and is the default method for the model. Since the Genetic Algorithm starts 

the optimisation with a set o f approximately known solutions, convergence is quick 

and consumes less C PU  time.

3.3.1 POPULATION SIZE

The population size has direct effect on the convergence o f the algorithm and should, 

be selected carefully. General wisdom dictates that a larger population will work more 

slowly, but will eventually achieve better solution than a smaller population. However, 

experience indicates, that this rule o f thumb is not always true, and that the most 

effective population size is dependent on the problem being solved, the representation 

used, and the operations manipulating the representation. Suresh et al (1996) showed 

that a population o f 30-50 was effective for Genetic Algorithm assembly line 

balancing problems and, in this model it was set to 40 chromosomes.

3.4 GENETIC OPERATORS

3.4.1 SELECTION

Selection is the process o f choosing chromosomes for the next generation from the 

current generation. A  number o f selection schemes have been reported in the literature 

and most have not addressed the two common problems: high selective pressure and 

loss o f population diversity. Population diversity is representing a variety o f
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chromosomes o f the population that were selected during the selection phase, whereas, 

selective pressure is the probability o f the best chromosome being selected compared 

to the average probability o f selection o f all chromosomes. I f  selective pressure is too 

high, the population diversity decreases and this could result in a premature 

convergence, on the other hand weak selective pressure makes the search ineffective.

The standard rank-based selection technique, in which the population is sorted 

according to the fitness values depending only on its rank and not on the actual fitness 

value, is used in the new model with modifications to overcome the above two main 

problems. Figure 3.12 illustrates the modified rank-based selection scheme. First, 

once and for all, a population o f N POPF chromosomes (feed in g  p o o l)  consisting o f 85% 

feasible chromosomes and 15% o f bin packing chromosomes are generated at the 

beginning o f the evolution process. The value o f  N P0PF depends upon the number o f  

elements (n) in the problem and the following values are recommended for better 

performance. The feasible, chromosomes are generated by the random task assignment 

technique and the bin packing chromosomes by random permutation.

Number o f elements Feeding population size

(n ) (NpoPF )

n <20 25

20 <rc <50 50

50 >  n 100

Table 3.3. Feeding population sizes

Secondly, all the chromosomes in the current population are ranked according 

to their fitness values and the first N b (user defined) chromosomes are selected to 

create a se lec tio n  p o o l . Then, choosing chromosomes from the selection pool and 

performing crossover and mutation generates the rest o f the new population. I f  any 

chosen chromosomes are identical, the currently selected pair will be discarded and a 

new pair o f chromosomes will be selected and this will continue for maximum user



specified times (n j. If the technique is still unable to find two different chromosomes, 

the selected chromosomes are copied to the new population undergoing high mutation.

Current population N ew  population
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14-

Figure 3.12. Modified rank based selection scheme

Selection
pool

Nb chromosomes

Selection Crossover

Crossover + 
mutation

Feeding pool

Eggssa Feasible random solutions 
Bin packing solutions 

Elite chromosomes

N ew  population
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After constructing the new population, the number o f identical chromosomes 

in the selection pool is counted and i f  they are greater than the specified value, all the 

chromosomes excluding the elite chromosomes in the new population are replaced 

with randomly selected chromosomes from the feeding pool. This reduces high 

selective pressure and adds population diversity.

3.4.2 CROSSOVER
The Crossover is a genetic operator that combines two chromosomes to create a new 

chromosome. The idea behind crossover is  that new  chromosome(s) m ay be b etter 

than both the mating chromosomes if  it takes the best characteristics from each o f the 

clu'omosome. Several crossover techniques have been developed since 1975, and they 

are reviewed in the literature survey (Rubinovits and Levitin, 1995). Falkennaure 

(Chambers, 1999, p.67) writing on application o f Genetic Algorithms to real-world 

problems stated that:

“The problem is that we never really know which part(s) o f a good 
solution are the ones that make it a good solution, because we only 
have a measure o f worth o f the whole o f  it (the objective function).
The parts must thus be tested”

None o f the crossover techniques developed so far has addressed this issue. 

The proposed new techniques, Fixed Boundary Moving Crossover Point (FBM C P) 

and Variable Boimdary Moving Crossover Point (V B M C P ) mainly focus on the 

above issue and transferring best attributes o f both parents to their o ffsp ring 's  the 

evolution progresses. The proposed Genetic Algorithm model consists o f six standard 

crossover techniques described in Chapter 2 plus the two new crossover techniques 

with ability to adjust crossover probability (P c) to suit clarity requirement.

3.4.2.1 FIXED  B O U N D A R Y  M O V IN G  C R O SSO VER  PO IN T  (FBM C P )

hi FBM C P technique, a chromosome is divided equally in to a number o f spans (s„), 

depending upon a user defined crossover span-overlapping index ( l 0) and crossover 

span size (cs). The crossover point is selected randomly within the left (cL) and right 

( c r )  locus o f the specified span and the classic single point crossover technique is then

C ha pter 3 : A  g e n e tic  a lgorithm , lin e  b a la n c in g  m od el
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applied to generate offspring. Both loci (boundaries) are incremented in a defined way 

at set generation intervals as the evolution progresses. The following illustrative 

example (figure 3.13) shows its application and the corresponding parameters are 

given below:

1. C ro sso v e r  o v e r la p p in g  index (I0):  This index determines the number o f  

overlapping genes between two adjacent crossover spans. Overlap is very 

essential to explore the whole chromosome in the reproduction process. 

Without this some o f the genes may not be selected at all, during the 

evolution especially at the margins.

2. C ro sso v e r  sp a n  (cs) : is the number o f elements for which the total work 

content is less than or equal to the cycle'time. This is determined by, 

arranging all the task elements in ascending order o f their task times, and 

then calculating the cumulative task time. Figure 3.13 shows a typical 

cumulative task time curve where the abscissa corresponds to the cycle 

time given the crossover span. It is the size o f the crossover zone and 

depends on the cycle time and the task time distribution.
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E lem en t num ber 

Figure 3.13. Cumulative task time curve
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3. N u m ber o f  o v e r-la p p in g  g e n e s  (gn) is given by

S n
L

(3.16)

Where [x ]+ is the smallest integer larger or equal to x.

4. N u m ber o f  sp a n s  (s„): can be calculated by the following formula:

s.. - n ~ S n

c s -  S n

+1 (3.17)

Where n is the number o f elements.

5. N u m b er o f  g en era tio n s  p e r  c ro sso v e r  sp a n  (G o): is a test problem constant,

C D = (3.18)

Where G  is the total number o f generations.

6. Span  index (sj): which identifies the span number and determines both left 

and right loci o f the crossover zone. Initially, s { is equals to one and, if  

number o f generations, is equal to the product o f G p  and s t, ' then it is 

incremented by one unit.

Where G t
G

G is the total number o f generations and s„ is the number of crossover 

spans.

7. L eft c ro sso v e r  locu s ( c f

( s i ~ g n)  cl < n - c s

( cl) (3.19)
n-c. cl >  n-cs
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Figure 3.14. Moving crossover zones and generation class intervals (for FBM CP)

8. R igh t c ro sso v e r  locu s (C r)

0cr) = (3.20)

Where s, is Span index. (1< s, < s n) , and n is the number o f elements in 
the problem
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9. G en era tion  c la ss  in te rva l [G i G J\: is the range o f generations where a 

particular crossover span is active. This normally represented by two 

boundaries: the lower ( G l) and upper (G u) generation boundaries

respectively and are determined as follows:

G , = G 0(.s , . - l )+ l  (3.21)

G v = G 0s , (3.22)

Figure 3.14 illustrated the moving crossover span concept and the variable generation 

intervals for different crossover zones.

3.4.2.2 V A R IA B L E  B O U N D A R Y  M O V IN G  CRO SSOVER  PO INT  (V B M C P )

The V B M C P  t echnique is a more advanced version o f  the fixedboundary moving 

crossover technique. Unlike FBM C P method, the left crossover boundary (c£) is 

dynamically determined by taking into account the number o f elements in the 

previous fully filled wofkstation(s). In the case where, a fully filled workstation 

cannot be achieved, after a user-defined number o f g enerations (G o ) the lower left 

boundary is incremented, and depending upon the number o f elements in the previous 

workstation (equation 3.24) and crossover-overlapping index (I0). The crossover span 

(cs)  is fixed in this technique and calculated by considering the cycle time and the task 

element times. Once a crossover span is selected, a random point is selected within 

the boundaries o f the span and the single point crossover operation is employed to 

generate offspring. The V B M C P  technique can be applied with any fitness function, 

but good results can be achieved with the front-loading fitness function. This 

technique is superior to the FBM CP in the way that it changes the boundary point 

when workstations are fully filled, leading to faster convergence. The following 

illustrative example (figure 3.15) shows 'its application and the corresponding 

parameters are given below.

Chapter 3: A  genetic algorithm line balancing model
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Figure 3.15. Crossover boundaries and generation intervals (for VBMCP)
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1. N u m ber o f  o v e r-la p p in g  g en es  ( g n )

8  n,. (3.23)

Where 10 is the crossover overlapping index and Esi is the number of 

genes in the j,- workstation.

2. V ariable  le ft c ro sso v e r  b o u n d a ry  (cl '): is the lower crossover boundary 

depending upon the number o f elements in the previous workstations (>  1) 

and span index sr_ and is defined as follows:

0
j,-i

Si =1 &  CL’< n - c s

(CL’f i  =  \  Z Y  S i>  1 &  cL ■ <  n -c s
j =1
n -  cs S i>  1 &  c l <> n -c s

(3.24)

Where Ej is the total number o f elements in the j th workstation and n is the 

total number o f elements in the problem.

3. V ariable r ig h t c ro sso v e r  b o u n d a ry  (cr•)

(q Y /  +  <A if (cR) si < n

n i f  (cR) si >  n
(CjR ')si < (3.25)

3.4.3 MUTATION

Mutation is a genetic operator that alters one or more gene values in a chromosome 

from its initial state. This can result in an entirely new gene added to the gene pool. 

With these new gene combinations, the Genetic Algorithm may be able to arrive at a 

better solution than was previously possible. Only a few  mutation techniques have 

been published for the assembly line balancing problem and they are reviewed in 

Chapter 2. The proposed model consists o f four new mutation techniques plus 

previously published standard techniques and the mutation probability (pm) is kept at a 

low value such as 0.01.

96



Chapter 3: A genetic algorithm line balancing model

All four techniques are based on the moving mutation zone approach where mutation 

points are selected randomly from the corresponding zone. This approach lets the 

algorithm scan more feasible chromosomes and converge faster. The left and right 

boundaries o f the mutation zone {m i, md) are varied with generation class interval [G i, 

G jj\, as in the FBM CP and V B M C P  techniques, keeping the mutation span size (m s) 

constant. This is a problem dependent constant and equals to b times cs (Where b is a 

constant and can be fixed by the user).

3.4.3.1 FIXED B O U N D A R Y  AD JAC EN T  M U T A T IO N  (FBA M ):

The concept behind this is similar to the FBM CP technique. As the name applies, N m 

number o f mutation points is selected randomly within the corresponding mutation 

zone and they are swapped with the adjacent genes to their right. If the selected point 

lies on the right hand boundary o f the zone, then it is swapped with the gene to its left. 

Figures 3.16 (a) and (b) illustrate the mutation operation before and after respectively

ms
■ ■ W

E H F J G I A D B C

E H F J G I A D B C
........

(a ) Before crossover

(b ) A fter crossover 

Figure 3.16. Adjacent mutation operation

3.4.3.2 FIXED B O U N D A R Y  R A N D O M  M U T A T IO N  (FBRM ):

This technique is similar to the above; one or more pairs o f genes are selected 

randomly within the mutation span and they are swapped to produce new offspring.
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3.4.3.3 V A R IA B L E  B O U N D A R Y  A D JA C E N T  M U T A T IO N  (V B A M ):

In this procedure, the lower or left boundary (m e) o f the mutation span is changed 

according to the filling o f workstations. This allows the algorithm to explore the 

whole chromosome more rapidly than FBR M  technique. Mutation points are selected 

randomly and swapped as for F B A M

Mutation

technique
Mutation span boundaries

Left boundary (md) Right boundary (md)

F B A M

FBRM

f +  \

m
m, - -----L-

7
V

0
/

(3.26) (3.27)

V B A M

V B R M
4-i

2 X -
7=1

£ ,-i
j,> 1  (3.28)

s,-\

7=1

Esi - l +m s (3.29)

For all cases if  m i >  n then m i ~ n  and mR =  n -cs

Table 3.4. Lower and upper mutation span boundaries

Mutation Generation class boundaries

technique Lower boundary (G l) Upper boundary (G d)

FSAM  

FSRM  

M S A M  

M SR M

G
( s , -  l ) + l  (3.30) (3.31)

(3.33)

Table 3.5. Lower and upper generation class boundaries
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3.4.3.4 V A R IA B LE  B O U N D A R Y  R A N D O M  M U T A T IO N  (V BR M ).

This technique is similar to the V B A M  in determining the mutation boundaries and 

similar to the FBRM in mutation operation. Left and right mutation boundaries ( ,  

mR) and lower and upper generation class boundaries (G l,G u) o f mutation zones for 

the above four techniques are shown in tables 3.4 and 3.5.

3.5 REPAIR TECHNIQUE
Applying standard genetic operators in the assembly line balancing problem can 

rarely ensure offspring feasibility. Duplication o f genes in offspring is the main cause 

o f infeasibility. Figure 3.17 illustrates this problem using two feasible chromosomes 

generated from the problem in figure 3.5. After a crossover operation, genes B and C 

are duplicated in child 1 and 2 respectively whilst genes C and B are missing in child 1 

and 2 respectively, violating the assembly line design concept.

Crossover 
point 1

Crossover 
point 2

1r i r

A B D C E F G H I J •v Duplicated
Elements

A C B E D F I G H J

(a ) Before crossover

D H Child 1

A
• - 

v  •/' D
- E

F G H I J

(b ) A fter two point crossover 

Figure 3.17. Duplicating elements after crossover operation

3.5.1 R A N D O M  B A SE D  R E P A IR  T E C H N IQ U E

This technique removes all the duplicated elements from both offspring and creates a 

gene pool. Then, missing genes are selected from the pool and reassigned randomly 

by the following procedure:
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1. Remove duplicated genes from both chromosomes and prepare a list. The 

number o f genes in the list is equal to

2. Using a random number generator, generate a random integer between one 

and Nd and select the corresponding gene from the list and reassign to the 

first empty position towards the left.

3. Remove the assigned gene from the list and update the value Nd.

4. Go to step 2, and repeat the procedure until all the duplicated genes are 

reassigned.

3.5.2 O R D E R  B A SE D  R E P A IR  T E C H N IQ U E

hi the order based repair technique, the genes are reassigned to empty spaces based on 

their order in the precedence diagram. For example (1 ,2 , 3, 4 ...} or (A , B, C, D .. . } .  

Assigning early elements in the precedence diagram first tends to increase the 

feasibility o f the chromosome and the complete procedure is described as follows:

1. Remove duplicated genes from both chromosomes and prepare a list. The 

genes in the list are arranged in the order that they appear in the 

precedence diagram.

2. Select the first gene from the list and reassigned to the first empty position 

in the chromosome towards the left.

3. Remove the assigned gene from the list and update the list.

4. Go to step 2, and repeat the procedure until all the duplicating genes are 

assigned.

3.5.3 R A N K  P O S IT IO N A L  B A SE D  R E P A IR  T E C H N IQ U E

This technique is similar to the above technique except for step 1. The element list is 

arranged according to their positional weights, instead- o f their order o f appearance. 

The positional weight (p w k) o f the klh element (gene) is calculated using the formula 

below:

p w k = ‘k +  Y . t i‘ (3-34)
hsF(

Where F k* consists a set o f immediate transitive followers o f task k.
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Once the positional weights are calculated the list is rearranged according to the ranks 

o f the positional weights. The highest rank first and so on. The rest o f the procedure is 

same as the order based repair technique (steps 2-4).

3.6 ELITISM

The convergence o f generic algorithms is one o f the most challenging theoretical 

issues in the evolutionary computation area. Several researchers explored this 

problem from different perspectives. Recently Rudolph (1994) proved that the 

classical Genetic Algorithm never converges to a global optimum, but a modified 

version, which maintains the best chromosomes in the population, does. This is 

because.when crearing new p opulations b y crossover and mutation there is a good  

chance that the best chromosome may be lost.

Elitism is the name o f a method which first copies the best chromosome (or a 

few best chromosomes) to the new population. The rest o f the population is generated 

in a classical way. Elitism very rapidly increases the performance o f the Genetic 

Algorithm, because it prevents losing the best-found solution. In the genetic model, 

the user can define the number o f elite chromosomes (N e) in the population. It is given 

as a percentage o f  the total population.

3.7 TERMINATION

Termination is the criterion by which the Genetic Algorithm decides whether to 

continue searching or stop the search. Two termination criteria are used in the 

proposed model. The default criterion is the theoretical minimum number o f 

workstations and, if  this condition is not satisfied, then the evolution will stop when 

the user-defined maximum number o f generations has been run.
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3.8 COMPLETE ALGORITHM

The classic Genetic Algorithm described by Holland (1975) is what has become 

known as the g enerational Genetic Algorithm. The proposed algorithm is based on 

this concept and it keeps two populations all the time, the current and the future (new). 

Each iteration (generation) proceeds by constructing the new population, and finally 

the one just constructed becomes the current one in the next generation.

The chromosomes in the new generation come from three sources: some are 

the offspring o f recombination (i.e. crossover); others are products o f mutation o f the 

chromosomes in the current population. The rest are simply copied unchanged from 

the current population (elilism). Mutation is normally applied after crossover selecting 

random chromosomes from the new population.

The overall fitness function (equation 3.15) is used for chromosome 

evaluation and then, they are sorted for the rank-based selection. The best 75% o f the 

population is used as the selection pool and chromosomes are selected from the pool 

randomly for genetic operations.

After crossover, the new chromosomes are examined for any duplication o f  

elements. These chromosomes are then rectified by a repair technique. In case o f  

identical parents, the algorithm will search for new parents for a fixed number o f 

times and afterwards they are copied to the new population undergoing heavy 

mutation. The number o f mutated pairs is three times the normal mutation. When the 

termination criterion is met, the best chromosome is selected from the current 

population and it is decoded to obtain the solution.

Row vectors and matrices are used to represent chromosomes and populations 

respectively. The high level, user-friendly programming environment M A T L A B  is 

used for programming. Its built-in functions to handle matrix algebra provided the 

power for large-scale number crunching and permits writing source code (m. files) 

that can be directly executed in the M A T L A B  workspace. Easy to build, data 

visualization, menu driven G U I interface modules are used for interaction. The flow

Chapter 3: A  genetic algorithm line balancing model
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chart o f the proposed G A  line-balancing simulation model with the above features is 

shown in figure 3.18 and the corresponding steps are given below.

1. Start.

2. Read task time and precedence data.

3. Input Genetic Algorithm parameters.

4. Generate initial population.

5. Select fitness function.

6. Evaluate each chromosome in the population using the selected fitness 

function.

7. I f  the termination criterion is met, go to step 8, otherwise go to step 11.

8. Select the best chromosome(s) from the population.

9. Decoding.

10. Display solution and other graphical representations and stop.

11. Sort the chromosomes in the population according to their fitness values.

12. Copy best chromosome(s) to the next population.

13. Select two chromosomes (parents) for genetic operations.

14. I f  the selected chromosomes are identical, discard them and go to step 13, 

otherwise go to step 15.

15. Apply crossover operation to the selected chromosomes and generate new 

offspring.

16. I f  the offspring contain duplicate element(s) go to step 17, otherwise go to step 

18.

17. Remove duplicate element(s) using the repair technique.

18. Apply mutation

19. Copy chromosomes to the new population.
‘ -as-3*#'

20. I f  the number o f chromosomes in the new population is less than Npop go to 

step 13 and repeat steps 13 to 19 until number o f chromosomes equals Npop. 

Go step 6 and replace the current population with the one generated in step 19.

Chapter 3: A  genetic algorithm line balancing model
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Start A - Task time and precedence data 
B - Deterministic assembly line

balancing heuristic techniques library 
C - Decoding operation 
D - Fitness function library 
E - Selection techniques library 
F - Crossover techniques library 
G - Repair techniques library 
H -  Mutation techniques library

c#___##

L b J
D

A+C “R ‘1 T Iprr #,. I'd vsy E 
+, ( ■ """if - (Tif A,■; > : I • '  a r i ■ a -r.Sto 4* .

\  Y es_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-■■■    a s ia l________

18

19 ■*------

\  20 /

10

Stop

Figure 3.18. Flow chart of the Genetic Algorithm line-balancing model
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Some o f the basic features associate with software design and development are 

described below:

1. L o a d in g  a n d  sa v in g  d a ta : the software starts with the reading o f two text' 

files, namely precedence data and task time data written in two separate 

directories:

D  :\data\precedence\prob 1 emID. txt and D : \data\taslctime\prob lemID. txt

respectively. After reading these files, they are assigned to two matrices [P] 

and [T ] respectively. The output o f the algorithm, that is all the data and 

variables created during computation are saved in M A T L A B  binary format in 

to the file (D:\gamodel\problemID\results.mat).

2. In pu t D a ta : the following test problem data and Genetic Algorithm 

control parameters are entered manually.

a. Cycle time

b. Number o f evolutions

c. Population size

d. Initial heuristic solution techniques

e. Crossover and mutation techniques and their probabilities.

f. Optimisation criterion

g. Fitness function model

h. Selection method

3. C o d in g  a n d  in itia lisa tio n : chromosomes are assigned to row vectors, and 

these vectors collects together constitutes the initial population matrix.

Two population matrices are maintained in the model. The current 

population [G ] and next population [G N ] respectively. During the 

evolution new offspring are copied into the matrix [ G N ] and after each 

generation, matrix [G ] is replaced by [G N ] and the entries o f matrix [G N ] 

are cleared to make room for new offspring.

4. M a th em a tica l P ro c e d u re s : these procedures in the Genetic Algorithm  

model include coding, fitness evaluation, crossover, mutation, selection



and stopping procedures. They are normally accomplished using random 

number generators, sorting algorithms and several other built-in functions 

such as exponential and algorithmic functions. The normal distribution is 

used to generate random numbers

5. N u m e r ic a l v a lu es: C omparing t wo f  easible c hromosomes m ight r equire 

the comparison o f two fitness values which are very close to each other. 

Real numbers with 16 digits plus exponent are used to differentiate 

chromosomes.

6. D a ta  ou tput: the powerful Graphic User Interface (G U I) properties o f  

M A T L A B  provide data visualization. The line balancing solution, element 

assignments, problem complexities and line balancing measures are 

tabulated and displayed in the M A T L A B  co m m a n d  window. A ll the 

relevant graphs, bar charts and statistical plots are displayed in f ig u r e  

w in d o w s .

A  graphical and text output o f the model for the 58-element Warnecke ( W A 56) 

problem (cycle time =56) are shown in figure 3.19.

Chapter 3: A  genetic algorithm line balancing model
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#lFiguie No 1
File £di» loots Window Help

WARNECKE 58

1000 1500 2000
Generation noGeneration no

Generation no Generation no

LE  =  Line E fficiency BE =  Balance E ffic iency

1 +  i Figure No. 2 ■ H B ' . h l x l
File £dit look Wndow Help r ? '  fa- "

g? o  a ;>  a

11300 1500 2000

No of generations

1000 1500 2000

No of generations

1000 1500 2000
No of generations

No of generations

Figure 3.19 Genetic Algorithm line balancing analysis (graphical)
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File £dk Tooli W n dow  Help

 ̂ A /* /  JS> £>

Station numberStation number

Station numberStation number

# i Figure No. 4
File £di» Tool* Window {Help

fi? Q &  ifV A >  /  ! 0 y&  O

GENETIC ALGORITHM GA0023 Number of optimal solutions

500 1000 1500 2000 2500
Generation no

Fitness function ID . FFl 

Front loading constant(R) 15

No. of generations/station(K) 120

Initial population 10-feasible +■ 30 binpackmg

Population size : 40

Selection technique Modified rank based

Crossover technique Fixed boundary Moving crossover point

Mutation method . Fixed boundarymoving adjacent;mutation

2500

Crossover probability . 0.8 

Mutation probability 0.01 

Termination ; 2100 gen. 

Elitism : 06

Figure 3.19 Genetic Algorithm line balancin^analysis (graphical)

108



Chapter 3: A  genetic algorithm line balancing model

GENETIC ALGORITHM UNE BALANCING SIMULATOR

PROBLEM SPECIFICATIONS

Problem ID : WARNECXE SB 
Cyde time :56

FITNESS FUNCTION SPECIFICATIONS

Fitness (Unction ID : FFI 
Front loading constant(R) : 1.5

INITIAL POPULATION

Random task assignment method 
Number of random solutions : 01 
Population size : 40

GENETIC OPERATORS 

SELECTION

Selection technique : Modified rank based method 
Selective pressure : 30%
Selection population size: 100

CROSSOVER

Crossover technique : Fixed boundary moving crossover point 
Crossove probability : 80%

MUTATION

Mutation technique : Fixed Boundary moving adjacent mutation 
Mutation proballlty : 1%
Repair technique(l/2/3) : I

TERMINATION
Number of generations : 2000

RESULTS

NO EVOLUTIONS LE BE CPU NO STATIONS

0.00 0.79 0.82 0.00 35.00
100.00 81.30 33.86 3.24 34.00
200.00 81.30 84.12 3.oa 34.00
300.00 81.30 83.99 2.91 34.00
400.00 81.30 84.05 3.02 34.00
500.00 83.77 84.91 3.24 33.00
600.00 83.77 85.04 3.35 33.00
700.00 83.77 84.91 3.73 33.00
800.00 86.33 87.31 3.29 32.00
900.00 86.38 87.31 3.07 32.00
1000.00 86.38 87.56 3.02 32.00
1100.00 86.33 86.11 2.86 32.00
1200.00 86.38 86.24 3.02 32.00
1300.00 86.38 86.11 2.97 32.00
1400.00 86.38 86.11 2.58 32.00
1500.00 89.17 89.12 2.97 31.00
1600.00 89.17 90.03 3.03 31.00
1700.00 89.17 68.98 3.40 31.00
1800.00 89.17 88.98 3.19 31.00
1900.00 89.17 88.97 4.07 31.00
2000.00 92.14 92.58 3.79 30.00

Figure 3.20. GA line balancing analysis (text output)
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Station breakdown

7 28 1

33 6

9 16

35 18 11
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55 57 58

Figure 3.20. GA line balancing analysis (text output)
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rta.no staion time no. i
1 56 3
2 51 2
3 47 2
4 52 3
5 23 1
6 34 1
7 53 2
8 36 1
9 52 1
10 35 1
11 38 2
12 47 1
13 52 1
14 53 2
15 22 1
16 53 1
17 23 1
18 55 2
19 44 i
20 42 2
21 46 2
22 26 1
23 51 1
24 52 1
25 56 2
26 46 3
27 46 2
28 29 1
29 ■ 43 1
30 48 3

Maximum station time : 56 
Average station time : 44.2286 
Standard deviation : 10.4039

Max line efficiency : 78.9796 
Balance efficiency : 80.5943 
Optimum no of stations :28 
Min no of stations :30
Max no of stations :35

COMPLEXITY MEASURES

Order Strength : 0.042347 
Time Interval : 0.125 0.94643 
Time variability ratio : 7.5714 
Task Complexity Index : 0.27683

Date (start) : 21-Jun-2001 10:33:39
Date (finish) : 21-Jun-2001 12:19:04

Figure 3.20. GA line balancing analysis (text output)
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C H A P T E R

TEST PR O G R AM M E FO R  GA  
LINE BA LA N C IN G  M O DEL

The proposed genetic algorithm model consists o f four new approaches related to 

fitness function, dynamic crossover and mutation techniques, repair method and a 

modified rank based selection scheme. Each o f these components has its own control 

parameters and, they have significant impacts on the performance o f the model. These 

new components are designed to outperform the existing line balancing genetic 

algorithm models, and to support this hypothesis a series o f test programmes have 

been prepared using six previously published benchmark problems. This chapter 

explains the logic behind the test and the experiments proposed for evaluation o f the 

above new components.

4.1 TEST CASES
The selected problems represent a spread o f problem sizes ranging from 58 to 297 

elements including the largest published test problem in the literature. The cycle time 

o f each problem was selected to allow a theoretical minimum number of workstations 

(ra*) equals to twenty-five. This is because, firstly, equal numbers o f workstations 

show the same front-loading characteristics on each problem and, secondly, these 

cycle times represent hard problems and exhibit a significant difference in the number 

o f workstations between the initial and the final solution. This can be used to assess 

the algorithm’s capacity for improving the quality o f solutions. Table 4.1 describes
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the characteristics o f the selected precedence networks by specifying the original 

reference, the number o f tasks, the minimal and maximal task time as well as the sum 

o f task times, in each case. Two single-valued complexity measures for precedence 

networks including Order Strength (equation 2.2) and Time Variability ratio (equation

2.3) are shown. The task time distributions o f the problems are shown in Appendix D. 

These characteristics show that the selected problems cover a reasonably good 

spectrum without any bias.

In this research, the following coding system was used for problem 

identification (figure 4.1). Two upper case letters and a subscript indicate the problem 

reference and the number o f elements in the problem respectively. A  superscript 

denotes the cycle time o f the particular test case.

975 < Cycle time
A R

j, . 295 a    Number o f elements

Problem Reference 

Figure 4.1. Test case coding system

In addition to the above problems,-48 challenging test cases o f Scholl’s data 

set (Scholl, 1999) containing 12 precedence networks, including the well known 45- 

element Kilbridge and Wester problem with four cycle time assigmnents 

( KW469 , K W j , K W jf and KWjJ4), which have been used in the literature to evaluate

and compare algorithms, were balanced using the model to assess its overall 

performance. The characteristics o f the additional test problems and their task time 

distributions are also shown in Appendix D.

The precedence network details and corresponding task times were down 

loaded from the following World Wide W eb site.

(h ttv ://w w w . b w l  tn darm atad t. d e /b w  13 /fo rsch /v ro iek te /a lb /a lb d a ta . h tm ).
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ID
Reference n C

Min.
task
time

Max,
task
time

Order
Strength

Time
variability

ratio

qtt2787
297 Scholl (1993) 297 2787 5 1386 58.2 277.2

B A 170148
Bartholdi 
(1993) modified

148 170 1 83 25.8 83.0

ARfff9
Arcus (1963)

111 6269 10 5689 40.4 568.9

M U ‘7/ Mukheijee and 
Basu (1964)

94 176 8 ' 171 44.8 21.4

l u 29°
Lutz (1974) 
modified

89 20 1 10 77.6 10.0

W A S
Wameke (1,971) 
modified

58 65 7 53 59.1 7.6

Table 4.1. Test problem specifications

4.2 HARDWARE AND SOFTWARE ENVIRONMENT AND 
EVALUATION CRITERIA

In order to perform fair comparisons o f different genetic algorithm models, the 

influence o f the programming language, the way o f coding or the data structures have 

to be eliminated. Therefore, all algorithms are coded using the M A T L A B  (version

5.3) high-level language (M A T L A B , 1998) and the same data structure was used for 

all the compared algorithms. A ll computations described in this chapter were 

performed on a single IBM-compatible personal computer in order to achieve 

comparable results. The specifications o f the used computer system are given below.

1. Central processing unit: Intel Pentium III

2. Processing speed: 550 M H z

3. Available memory: 64MB R A M
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The proposed experiments were earned out with the selected six test cases 

varying only one parameter, to examine its true impact on the performance, hi all the 

experiments the following genetic algorithm parameters were maintained at the values 

shown in table 4.2 unless otherwise specifically stated.

Control parameter Values and techniques

Fitness function F F j (fron t lo ad in g)

Population size 40

Initial population 

Selection criterion

10 random task assignment solutions plus 30 bin- 

packing solutions

Modified rank-based selection scheme

Selection pool size 20 chromosomes

Crossover method Variable boundary moving crossover technique

Crossover rate 0.80

Repair criterion Rank positional based technique

Mutation technique Variable boundary moving mutation technique

Mutation rate 0.01

Number o f elite chromosomes 06

Termination criterion (Number

generations)
Number o f generations (3000)

able 4.2. G A  control parameters

The following performance measures and data were recorded at each one 

hundredth interval up to three thousand generations for evaluation.

1. Maximum and average line efficiency

2. Maximum and average balance efficiency

3. Maximum and average population fitness

4. Number o f feasible solutions in each generation

5. Optimal number of solutions in each generation

6. Processing time per generation

7. Population selective pressure
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These data sets were plotted against number o f generations plus average Line 

and Balance Efficiency, average increase above the theoretical minimum number o f  

workstations were used for evaluation and comparison o f performances. Finally, the 

quality o f solutions obtained by the model was compared against the following 

heuristic techniques.

1. Rank positional weight technique (Helgeson and Bimie, 1961).

2. Hoffman precedence matrix procedure (Hoffmann, 1963).

3. C O M SO A L  (Arcus, 1966).

4. Modified Hoffman technique (Thilakawardana et al, 2002)

4.3 MODEL CONTROL PARAMETERS
4.3.1 FITNESS FUNCTION COMPARISON
The novel front-loading fitness function is the key component o f the new model. It 

was designed using the front-loading concept (described in Chapter 3) to outperform 

existing fitness models and have proved theoretically that it yields the optimum 

solution or theoretical minimum number o f workstations in a. multi solution 

environment. In order to support this hypothesis, eight' fitness function models 

including seven previously published plus one based purely on balance efficiency 

were compared against the proposed model.

The original fitness functions are listed in table 2.5. Depending on the fitness 

function, a genetic algorithm model becomes a maximization or minimization 

problem. Four o f the selected fitness functions including the front-loading fitness 

function fall into the maximization category and the others into the minimization 

category. The minimization models were modified into maximization models as 

shown in table 4.3 to make the comparison fair and meaningfiil.

Each modified overall fitness function (FF 2...9) consists o f parts for evaluating 

feasible and infeasible chromosomes. I f  the number o f feasible precedence links in a 

chromosome is less than the total number o f precedence links (P ), the chromosome is 

in fea sib le  and, the number o f feasible precedence links (/) becomes the overall fitness

Chapter 4 Test program fo r  GA line balancing model
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function. On the other hand, if  the total number o f feasible links equals the total 

number o f precedence constraints (i.e., I =  P ) the chromosome is a feasible 

chromosome and, therefore, the overall fitness function is given by f +  (f/)k ; where f i  

is the fitness function evaluating infeasible chromosomes and iff )k is the secondary 

fitness function evaluating feasible chromosomes and generally different from model 

to mode. Therefore, the complete overall fitness function is given in equation 4.1.

Chapter 4 Test program for GA line balancing model

f t  K P
F F k =  -j (4.1)

f  +  l - P

Where f  =  /

4.3.1.1 THE IN FLU E N C E  OF FITNESS F U N C T IO N  PARAM ETER S

It can be seen from the equations 3.8 and 3.9, that the change o f fitness (AZ) is 

exclusively dependent on the front-loading constant R . A  high value o f R decreases 

the change o f fitness, particularly transferring elements among latter workstations in 

problems with a large number o f workstations. Low  front-loading constants do not 

create enough fitness change however to force the algorithm to perform forward 

loading, consequently this constant should be selected carefully by examining the 

approximate number o f workstation in the final balance. To examine this point the 

proposed fitness function (Equation 3.15) was run with five different front-loading 

constants (1.5, 2.0, 10, 20 and 40) to examine its effect on forward loading 

performance.

The number o f generations permitted per workstation (G ) is the second control 

parameter, which has a major impact on the performance. and the convergence. 

Allocating more generations per workstation will allow the algorithm to search for 

better workstation assignments, but an excessive number o f generations per 

workstation would increase the computational time unnecessarily. Five different 

levels o f G  (40, 80,120,160 and 200) were examined by terminating simulations at 

1000, 2000, 3000, 4000, and 5000 generations. The influence o f different levels o f G

117



on average C PU  time was also analysed to develop a relationship between the two 

parameters.

C hapter 4 Test p ro g ra m  fo r. G A  line  b a la n c in g  m od e l

Fitness
Function

ID
Reference Modified fitness function

F F 2

Minagawa and 
ICakaz (1992) 
(L ine E ffic ien cy ) I ' i

f + J ± ~
' m C

1 < P

I = P

(4.2)

F F 3

f f 4

f f 5

f f 6

Falkenauer &  
Dechmbre (1992)

Tsuiimuya et al 
(1995)

/<

/ , +

X
j -1

t

Leu etal (1994) f ,  +

1

/</>

/ =  ?

/ < p  

•/ =  />

Z ( S y - C ) 2 X t c - s j
y=l +  1

/l

/,+■

//

f Z ( c - Y )  +1

Suresh et al (1996) // +  r™ ■
(S m ooth n ess index) J E ( C - S , ) 2 + 1

m

1 < P  

l =  P

l < f  

l  =  P

(4.3)

(4.4)

(4.5)

(4.6)

7=1

Kim et al (1998) 
(M ean a b so lu te  
d ev ia tio n )

f .

/,+■

/</> 

/ =  P

+1
tn m

(4.7)

Table 4.3. Modified fitness functions
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Fitness
Function

ID
Reference Modified fitness function

F F 8
Sabuncuoglu et ai 
(2000)

f ,

h  +

1 < P

■l =  P
t/f in

7=1

m
+ 7=1 + 1

m

F F 9 (B a lan ce E ffic iency)

f i

f + n

r  m ^

7=1

m x S „

1 < P

l =  P
(4.9)

Where f i  — I

4.3.1.2 THE EFFECT OF THE PR O BLEM  C O M PLE X IT Y  O N  FITNESS
M O D E L

Generally, cycle times, task time distributions and the structure o f the precedence 

network govern the problem complexity, and have a major impact on the balancing 

problem. Previous studies (Talbot et al, 1986) showed that heuristic performances 

less affected by network structure, however it significantly varies with the magnitude 

o f the cycle time. Cycle times close to the maximum task time and multiples o f cycle 

times (2C, 3C ....) are relatively hard to balance. Equally task time distributions 

positively skewed (figure 4.2(a)) towards the cycle time are harder than negatively 

skewed (figure 4.2(b)).
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Task tim e

Figure 4.2(a). Positively skewed Figure 4.2(b). Negatively skewed

Moreover, precedence networks with low height to breadth ratio are generally 

considered as difficult problems. To find the real effect o f cycle time on the proposed 

genetic algorithm model, a set o f four-cycle times were selected from each problem 

consisting o f both hard and easy problems. They were categorized according to 

Hoffmann’s classification, that is, cycle times where the number o f workstations (m)  

falling between the following limits is considered as hard problems, and the selected 

cycle times are shown in table 4.4.

n n

2>, 2 7
(=i

2 /
< m < M

Where tmax is the maximum task time

Problem Cycle time

s h 279 14215 7035 4675 3500

CO > -to 00 865 430 285 to o

AR|ti 30695 15195 10095

■ i

7560

m u 94 859 426 283 212

l u 89 98 50 35 25

w a 98 316 157 104 -j oo

Table 4.4. Selected test cycle times 

Hard problems
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The effect o f problem complexity on the performance and the variation o f  

computational time with the number o f generations and problem size were also 

analysed.

4.3.2 T H E  IN F L U E N C E  O F  P O P U L A T IO N  S IZ E  A N D  IN IT IA L
S O L U T IO N S

The number o f chromosomes in the population has a strong influence on the 

convergence o f the algorithm and the computational time. A  large population 

increases the computational time unnecessarily and, conversely, a small size o f  

population would restrict the convergence and shows poor performance. To study this 

issue five populations having sizes 20, 40, 60, 80 and 100 were examined.

The characteristics o f the initial population have a significant influence on the 

convergence. It was reported that a well seeded, or in other words, a starting 

population with good solutions, quickly converges to the global optimum compared to 

that o f a poorly seeded population. Five sets o f initial populations, consisting o f a 

single solution generated by the following popular heuristic algorithms plus 39 bin- 

packing solutions were generated and studied.,

1. Random task assignment heuristic (section3.3).

2. Rank positional weight heuristic (Helgeson and Bimie, 1961). ,

3. Hoffman precedence matrix procedure (Hoffmann, 1963).

4. C O M SO A L  (Arcus, 1966).

5. Bin packing

The default initial population o f the model consists o f solutions generated by 

the random task assignment technique and bin packing solutions.. Five levels o f  

random solutions per population (1, 5 10, 20, and 40) were examined to find the 

optimum ratio, keeping the population size to 40. Furthermore, the variation o f CPU  

time with respect to population size was also studied to find the extra computational 

time needed due to increasing population size and also to establish a relation ship 

between C PU  time and population time.

Chapter 4 Test program for GA line balancing model
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4.3.3 C O M P A R IS O N  O F  S E L E C T IO N  T E C H N IQ U E S

A  number o f selection techniques have been defined in the literature over the last 

twenty-five years and some o f them experienced high selective pressure and loss o f 

diversity as generations progress, mainly in latter part o f the simulation. The number 

o f identical chromosomes in the selection pool determines the selective pressure and 

the more the number o f identical chromosomes the higher the selective pressure and 

the lower the population diversity. It also affects the selection process indirectly by  

consuming extra time on selecting different chromosomes for the mating process and, 

generally ends up with poor quality solutions.

The new  s election s cheme in  the model w as developed b ased on the rank- 

selection scheme. It was designed to overcome the above problems. In order to 

compare the performance o f the new selection scheme, the following five previously 

published selection schemes including the original rank based were experimented 

with against the proposed technique.

1. Rank-based technique

2. Roulette wheel

3. Toumament selection

4. Random selection

5. Good and bad selection

The selective pressure o f the original rank-based technique and the modified 

method were compared to confirm the effectiveness o f the modified selection scheme.

In the modified selection scheme, the best twenty chromosomes were selected 

to create the selection pool and then the chromosomes were selected from the 

selection pool for mating. The size o f  the selection pool is very important for better 

performances. A  small selection pool restricts the search to small neighbourhoods and 

would not allow the algorithm to explore the whole search domain and also results in 

high selective pressure. H  owever, a large selection pool contains both superior and 

inferior chromosomes resulting in low quality solutions due to scattering. To study 

.this issue four different sizes o f selection pools containing 10, 20, 30 and 40 

chromosomes were investigated to find the best selection pool size.
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4.3.4 COMPARISON OF CROSSOVER TECHNIQUES
Crossover is the main reproductive operation in the model that generates new 

offspring. Transferring the best attributes o f parent chromosomes in the assembly line 

balancing problem has been discussed in the literature and most o f the published 

methods could not overcome this. However, the proposed Fixed Boundary and 

Variable Boundary Moving Crossover Point techniques (FBM CP, V B M C P ) 

addressed this issue successfully. To verify this claim, the proposed techniques were 

tested against the following six published methods (section 2.2.3.6.2).

1. Two point crossover (TPC )

2. Single point crossover (SPC )

3. Order crossover (O R D )

4. Positional based crossover (PO S)

5. Fragment crossover (FR G )

6. Uniform crossover (U N I)

The new crossover technique is not limited to the front-loading fitness 

function, it could be used with any fitness model developed for line balancing. To 

examine the validity o f this statement, the fixed boundary moving crossover technique 

was experimented with two previously published fitness functions (F F 3, F F 3).

In both FBM CP and V B M C P  techniques, the size o f the crossover span (cs) is 

constant. Small crossover spans would prevent transferring good attributes to 

offspring and, 1 arge crossover spans w ill c arry b oth good and b ad attributes o f  the 

parents to their offspring resulting in low quality s olutions. Five different sizes o f  

crossover spans (0.5q, Iq., 1.5q, 2cs, and 2 .5 cs) were studied to find the overall best 

crossover span ratio (i.e., crossover span size/cy) for generating quality solutions.

4.3.5 THE EFFECT OF REPAIR TECHNIQUES
After the crossover operation, duplicate elements in the chromosomes violate the line 

balancing constraint assumptions. This problem has been addressed by several 

researchers proposing different repair procedures. Some o f the procedures may 

consume extra computational time searching for feasible combinations. In this 

research the three repair procedures described in the previous chapter were studied. 

The number o f feasible solutions in the population was found in each generation and

Chapter 4 Test program fo r  GA line balancing model
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the average number o f feasible solutions created per generation was considered for 

comparison.

4.3.6 COMPARISON OF M U T A T I O N  TECHNIQUES
Mutation is the other genetic operation, which prevents the algorithm converging on a 

local optimum. This model includes two new mutation methods called Fixed 

Boundary Adjacent Mutation (F B A M ) and Variable Boundary Adjacent Mutation 

(V B A M ). The performances o f the new techniques were compared with the following 

mutation techniques (section 3.3.3).

1. Random (Classic) Mutation (R A M )

2. Adj acent Mutation (A D M )

3. Fixed Boundary Random Mutation (FBR M ) ■

4. Variable Boundary Random Mutation (V B R M )

5. Fixed Boundary Adj acent Mutation (F B A M )

6. V  ariable Boundary Adj acent Mutation (V B A M )

4.3.7 THE INFLUENCE OF ELITISM
Rudolph (1994) showed that classical genetic algorithm would never converge 

without elitism. The number o f elite chromosomes copied to the new population has a- 

great influence on the convergence. Alternatively, copying more elite chromosomes 

will decrease population diversity and leads the algorithm to settle in local optima. A  

set o f four different elite chromosomes to total number o f chromosomes ratios 

(0.025,0.25,0.50,and 0.75) are experimented with to find the best ratio giving a high 

performance.

4.4 TEST PROGRAMME SUMMARY

The complete summary o f the test programme is presented in table 4.5. Sixty-five test 

experiments were conducted with the selected six problems to generate results for 

evaluation and they are presented and analysed in the next chapter to draw 

conclusions.

Chapter 4 Test program fo r  GA line balancing model
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Control parameter
Number o f  
experiments

Fitness functions 9

Front loading fitness function constant(R) 5

Generations per workstation (G ) 5

Initial populations 5

Number o f random solutions/population 5

Population size 5

Selection techniques 5

Crossover techniques 8

Crossover zone size 5

Mutation techniques 6

Repair techniques 3

Number o f elite chromosomes per A
population

q

Total 65

Table 4.5. Test programme summary
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4.5 SELECTION OF FACTORIAL EXPERIMENT 
PARAMETERS

The single factor design experiments, varying one experimental condition at a time 

repeated under the same conditions (section 4.3) has been applied in this research to 

identify and examine the leading parameter combinations.

To complete the experimental programme planned for this application o f the 

Genetic Algorithm, single factor analysis is extended in this section to a multi- 

variable analysis. Experimentation with multi-variable analysis can make use o f the 

factorial design approach, in which factors (significant major independent variables or 

parameters) are varied in levels or ‘sub-divisions’. An experimental design with 

factors a 11 wo 1 evels i s c ailed t wo-factor f  actorial e xperiment, t he t wo 1 evels b eing 

either quantitative or qualitative. Examples o f qualitative factor variation can include 

‘high and low ’, and ‘presence and absence’. A  complete two-level replicate factorial 

analysis requires 2k observations, generating for example the need for four thousand 

and ninety six tests per replicate in a 2k factorial design (/c =12) for the assembly line 

Genetic Algorithm review.

To manage an initial detailed examination in the application o f the Genetic 

Algorithm to assembly lines,, the starting point is to separate and identify the 

significant factors and interactions. The literature helps to identify six significant 

parameters including the number o f generations. Five parameters, fitness function, 

selection method, crossover and mutation techniques, initial population appear in the 

leading references as significant factors worthy o f examination, (Dasgupta &  

Michalewicz(1997), Falkenauer (1998), Haput (1998)).

During the single parameter experimentation, the number o f iterations was 

also found to generate interesting results (Chapter 5.2.2), with an identification o f 

convergence o f results at around three thousand generations. The effect o f number of 

generations as a factorial analysis parameter is considered therefore worth examining 

and is added to the list of significant parameters, creating six in total. For analysis in 

section 5.10 section o f the next chapter.

Chapter 4 Test program fo r  GA line balancing model
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The remaining six out o f twelve parameters examined at the single parameter 

analysis stage (front-loading constant, crossover and mutation span size, repair 

technique, the number o f elite chromosomes and feasible solutions in the initial 

population) are problem specific and therefore have been held back from the factorial 

analysis, being identified in the further research section (Chapter 7).

4.5.1 Design of factorial experiment
The selections o f appropriate levels for the six factorial parameters are based on 

highest and second highest results. Table 4.6 identifies parameters, levels and 

nomenclatures used in the remainder o f this chapter.

A  complete replicate o f the 2k factorial analysis requires would have required 

sixty four runs, examining six o f the 63 degrees o f freedom correspond to main 

effects plus fifteen degrees o f freedom correspond to two-factor interactions. The 

remaining forty two degrees o f freedom are associated with three-factor and higher 

interactions.

The single parameter investigation and review o f factorial experiment design 

test cases supports the use however o f a half-fraction o f the 26 design, an approach 

consistent with the concepts o f experimental design (Montgomery, 2001). The 

construction o f the 26"1 design is shown in table 4.7. The design was constructed by  

writing down the basic design having 32 runs (25 design in A, B, C, D  and E ), 

selecting A B C D E F  as the generator, and then setting the levels of the sixth factor 

F = A B C D E . The defining relation for this design is I  =  A B C D E F  and every main 

effect is aliased with a single five-factor interaction, and every two-factor interaction 

is aliased with a single four-factor interaction. Thus, the design is o f resolution V I (the 

degree to which estimated main effects are aliased or confounded).

The W E 58 problem (cycle time =  56) is selected for the experiments, 

exhibiting a suitable size and complexity o f precedence relationship. This is supported 

by previous experimentation with this problem, which identified a considerable 

change in the number o f solution stations (Chapter 3, figure 3.19).
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Factor Highest

(+ )

Next High 

(- )

Reference

Fitness function 
(A)

FFi ( Front 
loading fitness 
function) [a]

FF5
(Tsujimuya et al., 

199.5)

Chapter 5.1 
(Figure 5.9)

Crossover
technique

(B)

Variable 
Boundary 
Moving 

Crossover Point 
(V B M C P ) [b ]

Uniform  
Crossover(UNI) 
Positional based 
crossover (POS)

Chapter 5.5.1 
(Figure 5.38)

Selection method 

(Q

Modified Rank 
Based Selection 
method (M R BS)

M

Rank-based 
selection method 

(R BS )

Chapter 5.4 
(Figure 5.30)

Number o f  
generations

CD)

2000 [d \ 6000
Chapter 5.2.2 
(Figure 5.19)

Mutation
technique

(E)

Variable 
Boundary 
Adjacent 
Mutation 
technique 

(V B A M ) 0 ]

Fixed Boundary 
Adjacent 

Mutation(FBAM)

Chapter 5.7.1 
(Figure 5.43)

Population size

(F)
40 [/] 60

Chapter 5.3.1 
(Figure 5.26 )

[x] Shows the treatment w ith factors X. at the high level

Table 4.6. Line Balancing G A  Parameters and Levels

The analysis o f variance (A N O V A ) is used for data analysis and all terms with 

a p-value higher than 0.05 are rejected as their effects are negligible. With more than 

four parameters under investigation, the widely available M IN ITAB®  software 

package is employed to support analysis o f results.
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Run
Basic Design

F ^ A B C D E

Treatment

CombinationA B C D E

1 - - - - - - 1
2 + - - - - + a f
3 - + - - - + b f
4 + + - - - - cb
5 - - + - - + c

6 + _ + _ _ _ a c
7 - + + - - be
8 + + + ■ - - + a b e f
9 - - - + - + d f
10 + - - + - - ac

11 _ + + _ a d
12 + + - + - + a b d f
13 - - + +  . - - cd
14 . + - + + - + a c d f
15 - + + + - + b e d f

16 + + + + _ _ a b e d
17 - - - - + -t* ef
18 + - - - + - ae
19 - + - - + - be
20 + + - - + + a b e f

21 - - + _ + _ ce
22 + - + - + + a cd e
23 - + + - + + b e e f
24 + + + - + - a b ce
25 - - - T* + - de

26 + - - + + + a d e f
27 - + - + + + b d e f
28 + + - + + - a b d e
29 - - + + + c d e f
30 + - + + + - acd e
31 - + + + + - bed e
32 + + + + + + a b e d e f

Table 4.7. A  2 6'* Design and treatment combination
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R ESU LTS EV A LU A TIO N

The experiments performed to evaluate the applicability and effectiveness o f the 

proposed model for simple assembly line balancing problems are presented in this 

chapter. Comparison is made between the proposed genetic algorithm features with 

existing ones to confirm their superiority.

Thirteen test experiments have been conducted on 65 parameters and, the 

simulation results have been recorded at one hundred generation intervals up to three 

thousand generations generating total 11,7.00 test data (6 problems x 65 parameters x 

30 generations), eventually, 48 previously published test problems were solved to 

show its applicability to a wide range o f problems. The test results are presented in 

the form o f tables and graphs in the order presented in Chapter 4. The results are 

discussed and specific comments are made after each evaluation.

An overall discussion o f results and the final conclusions drawn on the genetic 

algorithm line-balancing model for solving generalized simple assembly line 

balancing problems are presented in the next chapter.

5.1 FITNESS FUNCTION COMPARISON
High line efficiency signifies positive achievement in line utilization and is the key 

indication o f economic performance, with one hundred percent representing the best 

achievable. The average line efficiency performance o f the nine fitness functions 

(FFi,FF2,...,FF9) over the number o f generations is shown in figures 5.1, 5.2, 5,3 and 

5.4.
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Generations

Figure 5.1. Average line efficiency performances o f fitness 
functions FFi, FF2 and FF3

Generations

Figure 5.2. Average line efficiency performances of 
fitness functions FFi, FF4 and FF5
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Generations

Figure 5.3. Average line efficiency performances o f  
fitness functions FFj, FF6 and FF7

Generations

Figure 5.4. Average line efficiency performances o f 
fitness functions FFi, FFg and FF9
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All fitness functions have improved the initial solution as the evolution 

proceeds. In all c ases, a significant increase o f  average line e fficiency can be  seen 

over the first one hundred generations. The Fitness function FFi showed the highest 

average line efficiency, and its increase was substantial mainly during first the 1,200 
generations. However, the improvement was gradual thereafter, and finally reached 

just under 93%. The second best performance was shown by FF5 (just over 90%), and 

there was hardly any increase in average line efficiency beyond 750 generations. 

Fitness functions FF2, F F 3, F F 4, FFs and F F 9 all converged to the same value (89+%) 

after initial steep increases.

The fitness functions FF6 and FF7 improved the initial solution over 100 and 

200 generations respectively but subsequently decrease the quality o f the solution. 

One possible explanation is both these fitness functions are trying to achieve the 

primary line:balancing objective (i.e., minimizing the number o f workstations) by 

reducing the station time variation.

Graphs shown in figures 5.5, 5.6, 5.7, and 5.8 display the average balance 

efficiency performances. Balance efficiency is representative o f the distribution o f  

workload with consequent personnel satisfaction combined with increased 

opportunities for greater output, and is considered as the secondary objective o f line 

balancing.

A ll fitness functions showed a marked increase in average balance efficiency 

over the first 50-100 generations. Fitness function F F 7 showed the highest 

performance and FFg, which is based on a pure balance efficiency definition, shows 

the second best. Fitness functions, F F 2, F F 5, F F 7, FF§ and F F 9 displayed similar 

characteristics and after steep initial increases, they all showed gradual increases in 

average balance efficiency up to 2000 generations. However, beyond 2,500 

generations, the increase was marginal in FFg and F F 9 and the others remained 

constant.
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Generations

Figure 5.5. Average balance efficiency performances o f  
fitness functions FFi, FF2 and FF3

Generations

Figure 5.6. Average balance efficiency performances o f  
fitness functions FFi, FF4 and FF5
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Generations

Figure 5.7. Average balance efficiency performances o f  
fitness functions FFi, FF6 and FF7

Generations

Figure 5.8. Average balance efficiency performances o f  
fitness functions FFb FF§ and FF9
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Fitness function FFi, which is based on the front-loading concept generally 

showed low balance efficiency. After an initial boost in average balance efficiency, 

there was a gradual increase with ±  1% fluctuation (between 50-2,000 generations). 

This is mainly because the front loading process forces the algorithm to assign 

elements to early workstations if possible, leading to significant variation of workload 

particularly in the last few workstations. The improvement after 2,500 generations 

was negligible. The lowest balance efficiency was obtained by fitness function FF3 
and it showed gradual decrease in balance efficiency after 50 generations.

A  summary o f average line efficiency obtained by the fitness functions is 

shown in figure 5.9. As can be seen from the bar chart, the proposed front-loading 

fitness function showed the highest o f 92.96%. Fitness function F F 5 developed by 

Tsujimura et al (1 9 9 5 ) exhibited the best among the published fitness function models 

(90.16%). The lowest average line efficiency was obtained by FF7, which is based on 

mean absolute deviation. Thus, findings indicate that the proposed fitness model 

outperformed selected the published fitness models with an average improvement o f  

2.80% more than F F 5 (second best).

Fitness function

Figure 5.9. Average line efficiency variation
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Figure 5.10 summaries the average balance efficiency obtained by the fitness 

models. The highest average was obtained by fitness function FF7, (95.77%) which is 

0.16% above the second best obtained by the fitness function FFs, developed on a 

pure balance efficiency definition. Five fitness function models showed a high 

average, over 95.5%, at the expense o f average line efficiency. The front-loading 

fitness function displayed a low average o f 92.80% and it is 4.08% above the lowest. 

FF3 proposed by Falkenauer and Delchambre (1992) obtained the lowest o f 88.72%.

Chapter 5: Results evaluation

Fitness function 

Figure 5.10. Average balance efficiency variation

Table 5.1 shows the number o f workstations in the final solution obtained by 

nine fitness models. A ll the six test problems have the same theoretical minimum 

number o f workstations (ra*) o f 25. In cases where the number o f workstations is 

greater than the ra*, the difference is specified following the t+’ sign.

The fitness function FFi showed the least number o f workstations above ra*. 

bi cases, M U 9!6 and A R ®69 it obtained the theoretical minimum number o f 

workstations and, in cases LUg° ,B A ™  and SH ^?7 it was one workstation above the
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m * The total number o f workstations above the m * obtained by all the other fitness 

functions was twice or more that obtained by FFi. These findings show the new 

model’s power and applicability for solving simple assembly line balancing problems.

Fitness
function

Test problem

W A S L U 20-U U 89 M U ™ A R .T RA'™ S H g f

FF[ 27+2 26+l 25 25 26+l 26+1

f f 2 29+4 27+2 27+2 27+2 27+2 27+2

f f 3 29+4 26+1 26+l 28+3 27t2 27+2

f f 4 29+4 27+2 27+2 27+2 27+2 27+2

f f 5 29+4 27+2 26+1 26+1 27+2 27+2

f f 6 30+s 27+2 27+2 28+3 27+2 27+2

f f 7 30+5 27+2 26+1 28+3 27+2 27+2

f f 8 29+4 27+2 27+2 27+2 27+2 27+2

f f 9 29+4 27+2 27+2 27+2 27+2 27+2
Number o f workstations above the optimum is specified follow ing the t+ sign. 

Theoretical minimum number o f workstations

Table 5.1. Number o f workstations in the final solution

Maximum fitness o f a population is a good measure o f assessing the 

performances and convergence o f the genetic algorithm. In the proposed model, 

forward and backward loading results in increasing and decreasing fitness 

respectively, and decreasing the number o f workstations shows a significant increase 

in fitness. Figures 5.11 to 5.16 show the performance o f the front-loading fitness 

function on individual test cases. The change in the number o f workstations is also 

shown below each fitness curve to illustrate its effect on maximum fitness. For all 

cases, FFi showed a stepwise increase in maximum fitness. Small increases were due

138



Chapter 5: Results evaluation

to a station filling up and large step increases appeared when the number o f stations in 

the solution decreased.

Generations

Generations

Figure 5.11. Maximum fitness and the number o f workstations 

against generations for the W A fs problem

X 10 '

1000 1500 2000 2500 3000
Generations

Generations
Figure 5.12. Maximum fitness and the number o f workstations 

against generations for the L U ^  problem
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x 10

in <i> 0) c

E3
E

.2 
ro

o

Generations

Generations

Figure 5.13. Maximum fitness and the number o f workstations 

against generations for the M U ^ 6 problem

x 10

1000 1500 2000 2500 3000
Generations

Generations

Figure 5.14. Maximum fitness and number o f workstations 

against generations for the A R 6269 problem
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Generations

Generations

Figure 5.15. Maximum fitness and the number o f workstations 

against generations for the BAj™ problem

Generations

Generations

Figure 5.16. Maximum fitness and the number o f workstations 

against generations for the SH 2™7 problem



After about 2,500 generations there was hardly any change in maximum 

fitness, indicating the further shifting o f elements to earlier workstations was 

restricted. This suggests that, 2500 generations is the best termination value for the 

selected test cases irrespective o f the number o f elements in the problem.

5.2 THE INFLUENCE OF FITNESS FUNCTION PARAMETERS

5.2.1 F R O N T  L O A D IN G  C O N S T A N T

The value o f the front-loading constant (R) determines the propensity o f elements to 

be shifted to front stations. It was shown that this value must be greater than unity, in 

order to satisfy the front-loading concept (equation 3.9). Theoretically, increasing R  

can force the algorithm for heavy front loading, but its upper bound must be less than 

a certain value, for good performance. This upper bound is normally dependent on the 

approximate number o f workstations in the final solution. Table 5.2 shows the 

number of workstations obtained in the final solution for different front-loading 

constants. Figure 5.17 displays the average number o f workstations above the 

optimum solution.

Chapter 5: Results evaluation

Front
loading
constant

Test problem

W A S L U g M U ™ A R “

O 
00 

C-~< q t t 2787
297

1.5 26+1 26+l 25 ■ 25 26+l 26+1

2.0 I I *2 27+2 25 26+l 26+1 I t 2 ,

10.0 29m
27+2 27+2 27+2 27+2 28+3

20.0 29+4 27+2 27+2 27+2 I t 1 28+3

40.0 2 9 44 28+3 28+3 27+2 27+2 28+3

Number o f workstations above the optimum is specified following the ,+ sign. 

Theoretical minimum number o f workstations

Table 5.2. Number of workstations in the final solution
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4

3.5 -

Front loading constant (R)

Figure 5.17. Average number o f workstations above the optimum

When R =  1.5, the fitness model indicated the lowest average above the 

optimum o f 0.66 and, in problems M U ^ 6 and A R 6269, it yielded the optimum

solutions. The other four problems reported one stations above the optimum. As the 

front-loading constant increases, the quality o f the solutions became poorer and, after 

R  >10 the number o f workstations in the final solution were about 3-4 workstations 

above the optimum.

The above results can be explained by considering the fitness change per unit 

element plot shown in figures 5.18(a)-(d) for different R-values. A ll possibilities o f 

transferring elements between two stations are considered for the problem BA [™ , and

the fitness change (A Z) was plotted against relevant workstations. It can be clearly 

seen that, for higher values o f R, the change o f fitness, even after the first few  

workstations, was constant (figure 5.18(d)), resulting in a very low force on the 

algorithm for forward loading, but within the first few stations, it showed a significant 

change. A  small R  eliminates this problem (figure 5.18(a)) and, therefore is 

recommended for test problems with a large number o f workstations in the final 

solution. However, high front-loading constant values also show excellent

143



performance for test cases with small number o f workstations. These results are 

consistent with the values suggested in section 3.2.2.4.
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Figure 5.18(a). Fitness change plot fo r£  =  1.5

Figure 5.18(b). Fitness change plot for R = 2.0

W orkstation(a)
W orkstation(b)
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Figure 5.18(c). Fitness change plot for R =  10.0

= 10 

change

W orkstation(a) W orkstation(b)

Consta

; r

nt fitness

: R = 20

Fitriessjchnge is alm ost-constani

W orkstation(a) W orkstation(b)

Figure 5.18(d). Fitness change plot for R = 20.0
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5.2.2 T H E  IN F L U E N C E  OF N U M B E R  O F  G E N E R A T IO N S  P E R M IT T E D  PE R  
W O R K S T A T IO N

As described in the previous chapter, the number o f generations permitted per 

workstation (G ) is the second most significant parameter, which influences the 

performance. Table 5.3 shows the number o f workstations in the final solution after 

running the algorithm for five different termination levels. These results are 

summarized and presented in the figure 5.19.

Figure 5.19 shows that for the number o f generations per workstation on and 

above 120, the algorithm showed the lowest average above the optimum o f 0.66. Both 

test problems M U 946 and A R #69 obtained optimal solutions after 120 generations per

workstation and all the other four problems reported one workstation above the 

optimum indicating a sufficient number o f iterations is required for reaching better 

solutions. The highest average above the optimum was obtained for 40 generations 

per workstation and this is mainly due to an insufficient number o f generations for the 

algorithm to do enough forward loading. ,

Number o f 
generations 
per station

Test problem

W A “ L U ”
M U ]# AR fff9 B A 170148

C TJ 2787 
297

40 28+3 27+2 26+1 27+2 26+1 27+2

80 27+2 27+2 25 I T 2 26+1 27+2

120 26+1 26+1 •25 25 26+1 26+1

160 26+l 26+1 25 25 26+1 26+l

200 26+1 26+1 25* 25< 26+l 26+l

Number o f workstations above the optimum is specified following the e+’ sign.
Table 5.3. Number o f workstations in the final solution
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3

2 . 5  -

C
o

Figure 5.19. Average number o f workstatiJ^iabcrvepfla©t©|j(iiinium

Table 5.4 shows the CPU  time taken for different levels o f G  (40, 80, 120, 160 

and 200). Running the algorithm for 1000, 2000, 3000, 4000 and 5000 generations 

(considering 25 workstations in the final solution) obtained the above G  values. 

Figure 5.20 displays the average C PU  time for different termination levels.

Total 
number o f  
generations 

(G )

Test problem

W A 6g L U " m u 1746 AR fff9 R A 170C A 148
CTT 2787 
oJri297

1000(40) 19.72 30.0 32.0 35.6 49.5 122.3

2000(80) 70.1 54.0 113.2 71.3 96.5 248.9

3000(120) 62.2 . 87.5 183.8 107.9 135.6 260.7

4000(160) 82.7 113.2 236.8 138.57 187.1 478.3

5000(200) 94.4 146.1 290.5 173.3 231.3 584.3

Table 5.4. CPU time in seconds for different termination levels
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Total number of generations 
Figure 5.20. Average C PU  time variation against the total
number o f generations

From figure 5.20 it can be seen that the termination level was correlated with 

average C PU  time showing a linear relationship. This implies that the model could be 

run for a long time if  needed, without the C PU  time growing exponentially. Based on 

the above findings, it can be concluded that, the overall best number of generations 

for the studied test problems (where m * <  25) is 3000 generations and running the 

algorithm beyond would hardly improve the quality o f the solution.

Additionally, the capability o f the new fitness model in addressing the primary 

objective o f the assembly line balancing problems is confirmed by solving the well- 

known four test cases ( K W 469, K W 4952 , K W j f , and K W " 4) from the 45-element

Kilbridge and Wester problem. Eight selected fitness functions and the proposed 

fitness function (FFi) were applied to solve the above four problems, and after 3000 

generations the number o f workstations in the final solution were recorded and they 

are shown in table 5.5.
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c ra*

Fitness function

FFi f f 2 f f 3 f f 4 f f 5 f f 6 f f 7 f f 8 f f 9

69 8 8:? 9 9 9 9 9 9 9 9

92 6 0 0 : 7 7 7 7 7 7 7 7

138 4 . 4 5 5 * 5 5 5 ' 5 5 5

184 3 • 3 4 4 4 4 4 4 4 4

C is the cycle time and m* is the optimum number o f  workstations 

Theoretical minimum number o f workstations

Table 5.5. Number o f workstations after 3000 generations

Table 5.5 identifies the power o f the proposed fitness function FFi by solving 

all four problems optimally, whereas the other eight fitness models solved the 

problems with an extra cost o f a workstation. Figures 5.21-24 represent the station 

time distributions at generations 1, 1000, 2000 and 3000 for the four problems with 

the fitness function FF i.

1000

1 2 3 4 5 6 7 8 91 0
Station number 

. 2000

1 2 3 4 5 6 7 8 910
Station number

• 3000

co 20

1 2 3 4 5 6 7 8 9
Station number

1 2 3 4 5 6 7
Station number

Figure 5.21. Station time distribution after 1,1000,2000, and 3000 

generations for the problem K W 4659
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1000
100

to

100

Station number 
2000

Station number 
3000

100 100

to

Station number Station number

Figure 5.22. Station time distribution after 1,1000,2000, and 3000 

generations for the problem K W 492

1000
150

100

as 50

150

100

as 50 
to

1 2 3 4 5
Station number

20Q0

1 2 3 4 5
Station number

3000
150

100

2  50
to

150

100

2  50

1. 2 3 4 5
Station number

1 2  3 4
Station number

Figure 5.23. Station time distribution after 1,1000,2000, and 3000 

generations for the problem KWjJ8
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1000
200

150

100

to 50

200

150

100

to 50

Station number 
2000

200

150

100

to 50

200

to 50

Station number
3000

Station number
1 2 3

Station number

Figure 5.24. Station time distribution after 1,1000,2000, and 3000 

generations for the problem KW#84

Figures 5.21-23 can be used to illustrate the forward loading mechanism o f  

the proposed fitness function. Consider the problem K W 4659 , which is the hardest

problem among those selected. As can be seen from figure 5.21, after one generation 

the first workstation was packed to its capacity (cycle time =  69), but after one 

thousand generations, workstations 1 and 2 were packed, and after 2000 generations 

the first five workstations were packed to the cycle time. Between 2000 and 3000 

generations the number o f workstations was reduced from nine to eight and all the 

workstations were packed to capacity yielding the optimal solution.

The same progressive filling mechanism can be seen in all the other three 

problems and they achieved optimal solutions between 2000-3000 generations. 

However, in ICW4184, optimum solution was reached between 1000-2000 generations.
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5.2.3 THE EFFECT OF PROBLEM COMPLEXITY ON FITNESS
MODEL

Talbot et al (1986) claimed that the performance o f heuristic line balancing methods 

were significantly effected by the cycle time. To find out the influence o f problem 

complexity on the performances o f the new model 24 cycle times consisting of both 

hard and easy problems were solved. Table 5.6 summarizes the number o f 

workstations yielded after 3000 generations, where m *  denotes the theoretical 

minimum number o f workstations for the particular set o f test cases.

The proposed fitness model could not solve any o f the hard problems 

optimally, however as problems become easy, in other words, when the cycle time is 

larger, more optimal solutions were achieved. For, example, five out o f six cases o f  

the group where m *  =  5, reached the optimal solutions and only one optimal solution 

was recorded in the second and third groups.

Figure 5.25 shows the average number of workstations above the optimum in 

each group (m *  = 5, 10, 15 and 20). The lowest o f 0.16 were obtained by problems in 

group I (m * =  5) where all the problems are considered as easy problems and their 

average cycle times are far away from the maximum task times.

Test problem

m *

W A  sj L U 89 M U 94 A R m B A 148 SH 297

Table 5.6. Number o f workstations in the final solution

20

Number o f workstations above the optimum is specified following the i+ sign, 

i l l  Hard problems Theoretical minimum number o f workstations
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2 

1.8 

1.6
c O
g  1.4
0vj
£ 1.2 3 
£
1 1 
$
Z 0.8ns
OJ
S’ 0.6 
I
<  0.4 

0.2 

0

Theoriticai minimum number of stations (m*)

Figure 5.25. Average number o f workstations above optimum

From the above findings it can be concluded that Talbot et af’s claim is also 

valid for the proposed model and, generally, cycle times closer to the maximum task 

times are hard problems.

)

5.3 THE INFLUENCE OF POPULATION
5.3.1 POPULATION SIZE

The population size o f the genetic algorithm must be selected to increase its 

efficiency and arrive at good solutions within a reasonable time. Table 5.7 shows the 

number o f workstations obtained in the final solution for different sizes o f  

populations and figure 5.26 displays the average number o f workstations above the 

optimum. The populations o f size 40 obtained the lowest average increase above the 

optimum. Populations o f size 40 and 60 obtained optimal solutions in the problems 

M U # 6 and A R ff® , but the average increase above the optimum in populations o f 60 

was 0.17 above the population o f 40. Larger populations (80, 100) showed 

considerable deviation from the best and this is mainly due to scattering the genetic
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search all over the solution domain. However, small populations will restrict the 

search around small neighborhoods resulting in poor quality solutions.

Chapter 5: Results evaluation

Population
size

Test problem

W A 6g T U 20. u u  89
M U ™

AR fff9 R A 170 QTT 2787On ygj

30 26+l 27 42 25 2 6 +{ 28+3 2T 2

40 28+3 26+1 25 25 27+2 26+1

60 28+3 26+1 25 ■25. 28+3 26+l

80 29+4 26+l 26+I 26+1 2843 27+2

100 29+4 26+1 26+1 27+2 28+3 27+2

Number o f workstations above the optimum is specified following the ‘+ sign.

,v Theoretical minimum number o f workstations

Table 5.7. Number o f workstations the final solution for different 
population sizes

2.16

Population size

Figure 5.26. Average number o f workstations above optimum 
for different population sizes
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Figure 5.27 shows the average C PU  time consumption for different population 

sizes. The CPU  time grows rapidly as the size o f population increases. Clearly, on the

above findings, it can be concluded that the best population size for the proposed 1

genetic algorithm model is 40 for the problem studied irrespective o f the size o f the

problem.

I

Population size

Figure 5.27. Average C PU  time consumption for different 
population sizes

5.3.2 THE IN IT IA L  PO PU LA T IO N

Generally, a well-adapted (feasible) initial population guarantees faster convergence 

and reduces the computational time. Table 5.8 shows the number o f workstations in 

the initial and final solutions: the initial solutions obtained by the heuristic techniques 

are shown within square brackets. The number o f workstations above the optimum in 

the final solution is specified by the number following the t+’ sign.

Out o f the four heuristic techniques, the initial solutions generated, by the 

Hoffman matrix procedure (Hoffmann, 1963) were closer to the optimum solutions 

and solutions generated by Rank Positional Weight (Helgeson and Bimie, 1961)
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showed the highest increase above the optimum. The bin packing population 

consisted of random permutations o f numbers between 1 to n , where n is the number 

of elements in the problem and none o f these chromosomes represented a feasible 

solution.
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Solution

Test problem

technique
W A  5g l u 29°

M U ™ ARfff9 B A 170 c n  2-787 
297

C O M SO A L
[291
27+“

[27]
26+1

[28]
26+l

[281
26+1

[281
2 1+i

[271
27

Hoffman
[291
27+"

[26]
26+1

[26]
26+1

[271
27+"

[261
26

[26]
26+1

Random
[321
2 7 +i

[281
26

[28]
25

[30]
25

[291
26

[271
.26

RPW
[311
28

[291
27+"

[301
27+"

[301
27

[291
27

[271
27

Bin Packing N o feasible solutions

Theoretical minimum number o f workstations

Table 5.8. Number o f workstations in the initial and final solutions

Figure 5.28 displays the average number of workstations above the optimum 

for each initial population. The lowest average was obtained by the population 

consisting o f solutions generated by the random feasible task assignment technique 

(section 3.3), and the highest average was recorded with R PW  technique (Rank 

Positional Weight). Moreover, in problems M U 976 andARff69, random initial

solutions finally converged into optimum solutions. Populations with the Hoffman 

solutions gave the next best, but none o f the problems yielded optimun^solutions. 

Even after 3000 generations, bin-packing solutions could not generate a single 

feasible solution.
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3

2 . 5

co 2 . 1 6

COMSOAL Hoffrnan Random RPW 
Solution technique

Figure 5.28. Average number o f workstation above optimum 
for different initial populations

It can be seen from the findings that initial populations consisting o f random 

feasible solutions is ideal for the new fitness model. Theses solutions are normally far 

from the optimal and give enough room for forward loading rather than closely 

packed solutions like the Hoffmann solutions.

As pointed out earlier, the best initial population is the one with solutions 

created by the random task assignment technique. The number o f such solutions in 

the population increases the convergence rate and the quality o f  the final solution. 

Table 5.9 shows the number o f workstations in the final solution for initial 

populations consisting o f a number o f feasible solutions per initial population.

Populations with 20 random solutions achieved optimum solutions in 

problems M U 946 and A R f269 and one with 10 solutions reached the optimum solution

.in the problem M U  I,76. Figure 5.29 shows the average number o f workstations above

the optimum for different level; o f feasible solutions in the initial population. Once 

more, a population o f 20 solutions showed the least average o f 0.83 above the 

optimum and it was 0.50 below the second best, which consistinglO solutions.
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Random 
solutions per 
population

Test problem

WA-J L U g
M U ™

A R “ 5 B A ™ o-rr2787
297

1 28+3 26+1 26+l 27+2 28+3 27+2

5 28+3 26+l 26+l 21*1 28+3 /y/j+2

10 28+3 26+1 25 26+l ■ 27+2 26*'

20 26+l 26+1 25 25 27+2 26*'

40 27+2 26+l 26+1 26+1 27+2 2 1  *2

Number o f workstations above the optimum is specified following the ‘+ sign. 
Theoretical minimum number o f workstations

Table 5.9. Number o f workstations in the final solution

3 --------------------------------------------------------- — ----------------------------

2.5 -

co

Number of random solutions

Figure 5.29. Average number o f workstations above the 
optimum for different feasible solution levels

A  small number o f feasible solutions in the population generally slow down 

the convergence and restrict the searching process around a few neighborhoods. On

158



the other hand, an initial population with a large number o f solutions (well-seeded 

initial population) accomplishes a faster convergence by searching more solutions per 

population in different neighborhoods. Therefore, It can be concluded that, 

populations with number o f random solutions is better for the genetic algorithm 

model. The number o f solutions for better overall performance depends on the test 

problem and for the problems studied, populations with a number o f random solutions 

equal to half o f the total population provide the best overall performance.

5.4 COMPARISON OF SELECTION TECHNIQUES

The first genetic operation in the genetic algorithm is selection and a good selection 

scheme avoids both high selective pressure and premature convergence. Table 5.10 

shows the number o f workstation obtained in the final solution by six selection 

methods, and the average number o f workstations above the optimum solutions is 

presented in figure 5.30.
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Table 5.10. Number o f workstations in the final solution for different 
selection schemes.

Selection
Test problem

Technique
W A S L U “

M U ™
A R f jf BA ™148

CTLt27870N 297

Random 28+3 27+2 27+2 i t 2 27+2 I t 2

Rank-Based
(Modified)
Roulette
Wheel

26+l

i t 1

26+1

26+l

25

26+l

25-

26+1

26+1

i t 2

2 t 2

28+3

Good +  Bad i t 2 26+l 25 27+2 28+3 29+4

Tournament 28+3 26+1 26+1 27+2 27+2 2 t 2

Rank-Based i t 2 26+1 26+1 26+1 27+2 it2

Number o f workstations above the optimum is specified following the <+ sign.
Theoretical minimum number of workstations
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Random Rank-based Roulette G ood+BadTournam ent Rank-Based 
(Modified)

Selection technique

Figure 5.30. Average numbers o f workstations above the optimum

The modified rank-based selection scheme obtained optimum solutions in 

problems M U 946 and A R # 59, showing the overall best o f 0.83 average increases

above the optimum. The second best was achieved by the classic rank-based 

technique and, it was a 0.67 worse than modified selection scheme.

The classic rank-based selection method showed the best performance among 

the published selection techniques, and agrees with Whitley’s (1989) findings (the 

rank-based selection technique achieves faster convergence and produces better 

solutions than other published methods). The roulette wheel selection, the most used 

technique in genetic algorithms (Appendix B ) reported a 0.16 average above the 

classic rank based and a 0.83 average increase above the modified selection technique 

respectively. The random selection technique showed the worst overall performance 

(2.16 above the average), an increase o f 1.33 above the best average.
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5.4.1 TH E EFFECT OF SELECTIO N  PO O L SIZE

In the modified rank-based selection scheme, the chromosomes are selected from the 

selection pool for mating. The performances obtained by different sizes o f pool are 

presented in table 5.-11 and the average number o f workstations above the optimum is 

shown in figure 5.31.

Table 5.11. Number o f workstation in the final solution

Selection 
pool size

Test problem

W A S L U g
m u 176 AR®?9 R A 170D A 148

CTJ2787
297

10 29+4 2rf 1 27+2 27+2 28+3 27+2

20 29+4 26+1 26+1 27+2 27+2 21*2

30 27+2 26+1 '25::;; fafa 25 26+1 26+1

40 28+3 21*1 26+1 28+3 26+l 26+1

Number o f workstations above the optimum is specified follow ing the ‘+ sign. 
Theoretical minimum number o f workstations

3

Selection pool's ize

Figure 5.31. Average number o f workstations above the optimum
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A  selection pool o f size 30 achieved the best overall performances, an average 

o f 0.83 above the optimum and reaching optimality in problems M U #  and A R 6269.

The second best was achieved by size o f 40 and small pool sizes showed relatively 

poor quality solutions displaying higher averages above the optimum. Generally, a 

small size o f pool consists o f only a few best solutions and allows limited mating. 

However, a large selection pool contains both good and bad solutions and normally 

generates low quality solutions after mating.

5.4.2 SELECTIVE  PRESSURE

As W  hitely (1989) p ointed o ut, h.igh se lective p ressure i n t he r ank-based s election 

technique increased the number o f identical solutions and decreases the p opulation 

diversity. The modified rank-based selection scheme addressed this issue very 

effectively and figures 5.32 to 5.37 display the selective pressure plot as the number 

o f generations increase for both rank based and modified rank based techniques for 

the six selected problems.
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Generations

Figure 5.32. Selective pressure variation for test problem W A 65
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Generations

Figure 5.33. Selective pressure plot for test problem L U

35

30

25

20

15

10

MU
176I
94

rttmt Wutrw! ii; simmi icrzmhytt!! 4m sMrtiWwrr

Rank-Based Technique 
Modified Rank-Based 
Technique

iimWMiMpai:

500 1000 1500 2000 25 0 0  3000
Generations

Figure 5.34. Selective pressure plot for test problem M U ^ 6
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35

30

25

20

15

10

AR
6269)
111

0 J
500

iElIIiitiLiiiiiiliilLwliiaii!
1000

Modified rank-based 
technique
Rank-based technique

1500 2000  2500  3000
Generations

Figure 5.35. Selective pressure plot for test problem A R „6269

35
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25

20

15

10

0

BA
170

148

JQ  OD a

Modified rank -based 
techique
Rank-based technique

0 500 1000  1500 2000  2500  3000

Generations

Figure 5.36. Selective pressure plot for test problem B A
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mmmmsmmmm •kiwi.®>Rt >

1000

Rank-based technique 
Modified rank-based 
technique

I tt luti:

1500 2000 2500 3000
Generations

Figure 5.37. Selective pressure plot for test problem SH 2787
297

As can be seen from the figures, except A R 6269, in all the other test problems, 

the classic rank-based selection technique showed high selective pressure between 

1000-2000 generations (more than 95% o f the population containing the same 

chromosome). Problem A R 6269 showed an early rise in selective pressure and 

thereafter it was maintained throughout the genetic process.

However, the modified rank-based selection scheme showed low selective 

pressure (less than or equal to 15 identical solutions) throughout the genetic process. 

In all test problems, within the first 1000 generations, it was maintained at a low  

value (<10). After 2000 generations, it displayed slightly higher selective pressure, 

but fluctuating peaks in the plot indicated that after each high selective pressure, there 

was a significant drop in selective pressure. Therefore, It can be concluded that, the 

new selection technique has eliminated the high selective pressure issue in the
p

ordinary rank-based technique, and could be applied to all test problems irrespective 

o f their size and complexity.
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5.5 COMPARISON OF CROSSOVER TECHNIQUES AND ITS 
CONTROL PARAMETERS

5.5.1 C R O S S O V E R  T E C H N IQ U E  C O M P A R IS O N

In the proposed genetic algorithm model, about 80% ( p c -  0.8) o f the offspring in 

the new population are created by a crossover operation. Table 5.12 shows the final 

number o f workstations obtained by eight crossover techniques including two 

proposed techniques and six published methods. The average increase o f workstations 

above the optimum is illustrated in figure 5.38.

Table 5.12. Number o f workstations in the final solution with different 
crossover techniques

Crossover
Technique

Test problem

W A  6g L U “ M U ™ A R " B A 170148
C T T  2787 

297

V B M C P 2 7 + 2 26+l 25 ; 27+2 26+l

FBM CP 29+4 26+1 26+1 26+1 • 27+2 2 7 + 2

SPC 28+3 26+1 25 ; 26+I ' 28+3 2 7 + 2

TPC 28+3 26+I . 25 ■ 26+l 28+3 2 7 + 2

ORD 28+3 29+4 28+3 IT *1 28+3 28+3

POS 27+2 26+1 25. 261 27+2 2 7 + 2

FRG 29+4 27+2 27+2 27+2 2 7 + 2 27+2

U N I 27+2 26*' 25 26+1 27+2 27+2

Theoretical minimum number o f workstations

V B M C P  =  Variable Boundary
M ovin g  Crossover Point 

F B M C P  =  F ixed Boundary M oving  
Crossover Point 

SPC =  Single Point Crossover

T P C  = T w o  Point Crossover 
O RD  =  Order Crossover 
POS =  Position Based Crossover 
FRG  =  FRaGment Reordering 

Crossover 
U N I =  Uniform  Crossover
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The proposed V B M C P  method showed the lowest average increase above 

optimum (1.00) and both POS and U N I techniques displayed the second best, an 

average 0.33 above the VB M CP. Problems M U #  and A R f269 reached the optimum

solutions with the new crossover technique and all the other problems performed with 

the least number o f workstations above their optimum solutions.

4 -  

3.5 -

Crossover technique

Figure 5.38. Average number o f  workstations above the optimum

The classic two point crossover (TPC)V and single point crossover (SPC) also 

achieved optimum solutions in problem M U # ,  and showed the same average above

the optimum (1.66). Rubinovitz (1995) developed the Fragment Reordering 

Crossover (FRG) method especially for the assembly line balancing problem and 

claimed that it was the best among the published techniques. However, It seems that 

this technique does not perform well with the new front-loading fitness function.
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5.5.2 T H E  E F F E C T IV E  C R O S S O V E R  SPA N  R A T IO

In the variable boundary moving crossover point technique, the crossover span where 

the crossover point is> selected is the key parameter and controls the overall 

performances. The size o f the crossover span is determined by the Crossover Span 

Ratio (CSR ) and is the maximum number o f elements (c j) that could pack in to a bin 

o f capacity equals to the cycle time and is generally a constant for a particular cycle 

time. Table 5.13 shows the number o f workstations obtained in the final solution for 

five crossover spans and figure 5.39 displays the average increase in number o f  

workstations above the optimum.

Crossover spans with size equal to half o f cs (CSR=0.5) showed the best 

performance obtaining the least average above the optimum (1.16). The second best 

was achieved by a span with CSR =  1.0 and both o f these reached the optimum 

solutions in problem M U #  and

Crossover Span Ratio (CSR ) =  Crossoverspansize
c.

Table 5.13. Number o f workstations in the final solution

Crossover 
span ratio

Test problem

W A S L U 2089 M U ™ A R “ ’ B A 170148
q t t 2787297

7 14 17 41 23 45

0.5 I t 1 26+1 25- 26+1 26+1 27+2

1.0 27+2 26+1 25 27+2 27+2 27+2

1.5 27+2 26+1 26+l 28+3 26+l 28+3

2.0 28+3 26+l 26+1 28t3 26+l 28+3

2.5 " 28+3 26+1 26+l 28+3 27+2 28+3

Number o f workstations above the optimum is specified follow ing the ‘+ sign.
Theoretical minimum number of workstations
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0.50 1.00 ' 1.50 2.00 2.50

Crossover span ratio

Figure 5.39. Average number o f workstations above optimum

Increasing crossover span size resulted in decreasing. performance. Large 

spans allow the recombination process to propagate both good and bad attributes 

(feasible and infeasible links) o f parents to offspring resulting in inferior quality 

solutions. Small crossover spans allow largely good parts o f the solutions to transfer 

in to offspring increasing its solution quality. However, very small spans would not 

transfer enough characteristics to make good solutions. Therefore, it can be concluded 

that for the problems studied the best' crossover span ratio for overall best 

performance is spans with CSR  =  0.5.

5.6 THE EFFECT OF REPAIR TECHNIQUE ON FEASIBLE 
SOLUTIONS.

Distortion o f feasibility in chromosomes after a crossover operation is inevitable. 

Generally, a repair technique must be used to mend these chromosomes in order to 

restore its feasibility. Two new repair techniques were developed in this research and, 

the number o f workstations obtained in the final solution by each repair technique is
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shown in table 5.14. The average number o f workstations above the optimum is 

illustrated in figure 5.40.

Table 5.14. Number o f workstations in the final solution

Repair
technique

Test problem

W A S LU  g
M U ™ a r  r R A 170D A 148

QT_r 2787 
297

REP1 27+2 2 6 n 25° 25°' 26+1 27+2

REP2 2 7 + 2 26+1 25° 27+2 2 7 + 2 to <1
A

REPS 26+I 26+l 25° 25° 26+1 26+1

Number o f  workstations above the optimum is specified following the <+ sign. 
Y  Theoretical minimum number o f workstations

REP1 REP2 REP3 
Repair technique

Figure 5.40. Average number o f workstations above optimum

The repair technique that re-assigning duplicating elements taking into 

account its rank positional weight (REP3) (the highest rank available element first,
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section 3.3.4.3) showed the least average above optimum and it solved both M U 176
94

and AR.J’f69 problems optimally. The second best was achieved by the random based 

repair technique (REP1, section 3.3.4.1) and the worst performances were displayed 

by the order based repair technique (REP3, section 3.3.4.2). Table 5.15 illustrates the 

average number o f feasible solutions created per generation by the three repair 

techniques.

Table 5.15. Average number o f feasible solutions per generation

Repair
technique

Test problem

W A 65
T T T 20 
f t U  89

m u 1746 AR®®9 B A 170148 S F lg f

REP1 16.00 13.46 26.61 25.20 29.65 38.02

REP2 21.50 15.76 30.80 36.10 38.62 38.23

REP3 20.38 16.64 28.93 27.00 28.90 38.20

REP1 REP2 REP3'

Repair technique

Figure 5.41. Number o f feasible solutions per generation for three repair techniques
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Figure 5.41 displays the overall average number o f feasible solutions created 

per generation by each repair technique. The order based repair technique showed the 

highest average and second best was generated by the rank positional based repair 

technique. The worst performances were displayed by the random based repair 

technique and it was 5.34 solutions per generation less than the best.

40      J----------------------------------------------------------------------------------

35 -

Repair technique

Figure 5.42. Average C PU  time per generation for the repair techniques

The average C PU  consumption per generation by the three repair techniques 

is shown in figure 5.42. It seems that, although the order based repair technique 

(REP2) generate more feasible solutions, it consumes more computational time. The 

REP3 (rank-based) consumes less average CPU  time than REP2 and showed the 

lowest average above the optimum.
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5.7 COMPARISON OF MUTATION TECHNIQUES AND ITS 
CONTROL PARAMETERS

5.7.1 C O M P A R IS O N  O F  M U T A T IO N  T E C H N IQ U E S

Mutation is the other genetic operation that generates new chromosomes away from 

the current neighborhood allowing the algorithm to explore a wider region. Five new 

mutation techniques were considered in this research and they are compared with the 

classic mutation. Table 5.16 shows the number o f workstations obtained after each 

mutation technique and figure 5.43 indicates the average number o f workstations 

above the optimum.

Table 5.16. Number o f  workstation in the final solution

Mutation
Technique

Test problem

W A S L U  “ m u £6 ARff® B A ™° n I48
CTT 2787 

297

FBR M 27+2 26+I 25 26+l I t 2 '2843

V B A M 27+2 26+l 25 25 26+I 27+2

V B R M 28+3 28+3 26+1 28+3 27+a 28+3

F B A M 28+3 26+1 26+1 27+2 26+l 28+3

R A M 28+3 28+3 28+3 28+3 27+2 28+3

A D M 27+2 2 T 2 27+2 28+3 27+2 27+2

Number o f workstations above the optimum is specified following the t+' sign. 
Theoretical minimum number o f workstations

FBRM = Fixed Boundary Random Mutation VBAM = Variable Boundary Adjacent Mutation
FBAM = Fixed Boundary Adjacent Mutation RAM = Random Mutation
VBRM =VariabIe Boundary Random Mutation ADM = Adjacent Mutation
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The variable boundary adjacent mutation (V B A M ) showed the lowest average above 

the optimum and reached optimum solution in problems M U 946 and A R 6269. The

second best performance was obtained by the fixed boundary random mutation 

technique (FBRM ). The classic random mutation displayed the highest average 

number o f workstations above the optimum. Therefore, it can be concluded that the 

V B A M  technique seems to be the best for the problems studied.

4  1------------------------

3.5 -

FBRM VBAM  VBRM FBAM RAM ADM

M utation technique

Figure 5.43. Average number o f workstations above optimum

5.8 THE INFLUENCE OF ELITISM ON THE PERFORMANCE

Propagation o f best chromosomes from current population to the next population is 

crucial for convergence. The number o f elite chromosomes copying to the next 

generation is a vital factor for faster convergence but, copying more chromosomes 

may decrease population diversity. Table 5.17 shows the number o f workstations in 

the final solution for four elitism levels and figure 5.44 illustrates the average increase 

o f workstations above the optimum.
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Propagation o f 6 and 10 chromosomes showed the best performances and, the 

first level o f elitism (6 chromosomes) yielded optimum solutions in three problems 

(LUgg ,M U #  and A R # 69). Increasing the number o f elite chromosomes decreases

the overall performance and, 6-10 elite chromosomes that is 3-5% o f the selection 

pool, seems to be a good choice for the test cases studied.

Table 5.17. Number o f workstations in the final solution

Number o f 
elite 

strings

Test problem

V) oo 
vo 

trt
<£

L U ” M U # A R # 69 R A 17013 A 148
o y  2787 OIT297

6 27*1 25 ; ■ '+25 : ; ■ 25 # 27+2 i t 2

10 i t 2 26+I ' 2 5 # •*++■.25+# 26+1 27+2

20 27+2 26+1 25+ 26+1 27+2 27+2

30 28+3 I t 2 26+1 26+1 27+2 28+3

Number o f workstations above the optimum is specified following the ‘+ sign. 
C+ Theoretical minimum number o f workstations

3

2.5

co
3
o  2

1  1-5 
S0XI ro
ro 1 o> 1 ro
1 
<

Num ber'o f elite chrom osom es/se lection pool 

Figure 5.44. Average number o f workstations above optimum

0.5

0
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5.9 COMPARISON WITH OTHER HEURISTIC TECHNIQUES
In order to draw general conclusions about the new genetic algorithm model, it was 

compared with four heuristic line balancing procedures and the number of 

workstations obtained in the final solution for fifty-four test problems are shown in 

table 5.18. The first column o f the table represents the test problem reference and 

eighth and ninth columns display the theoretical number o f workstations and the best 

performance that have been achieved by any technique. These results are further 

categorized into four groups depending on the theoretical minimum number of 

workstations and they are shown in table 5.19. The results are summarized and 

presented in figures 5.45 and 5.46.

Table 5.18. Final solutions obtained by heuristic techniques

Q  J  csX  e <  T3 c n S

Reference J  £  ^  *3 J  c '§ ft m* m b
-s © s  o o re  a  38 X O S X ° Xft o  ^  <
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Scholl

Bartholdi (1993) 

Arcus (1963 b)

Mukherjee and Basu 
(1964)

B A 29 33 29 30 33 28 28

b a ;s 29 31 27 29 31 27 27

B A 163148 28 30 27 27 30 26 26

R A 170 26 29 26 27 29 25 25
* -p 6269

XJUlv j j | 27 29 26 25 30
-

24 25

M U 946 26 31 25 25 30 24 25

M U 222 21 23 20 20 22 19 20

M U 2481 16 17 16 16 18 15 16

M U 3Sl 15 16 15 15 17 14 15

M U 351 13 13 13 13 13 12 13

R P W  -Rank Positional W eight Technique, m* is the theoretical minimum number o f  workstations and 
mb is the best performance has been achieved by any technique.

Theoretical minimum number o f workstations
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Table 5.18. Final solutions obtained by heuristic techniques (cont..)

Reference

Pr
ob

le
m

 
ID

H
of

fm
an

C
O

M
S

O
A

L

M
od

if
ie

d
H

of
fm

an

G
en

et
ic

A
lg

or
it

h
m

R
P

W

m* m b

L U 1SLU g9 30 31 30 29 32 27 27

Lutz (1974)
L U 1989
L U 2089

28

27

30

28

27

26

27

25

30

29

26

25

27

25

l u 2<; 25 26 25 24 29 24 24

A R 5985 21 23 20 20 23 20 20

Arcus (1963b) A R 5408 15 16 15 14 16 14 14

a r X7' 11 11 11 10 12 10 10

Tonge(1961)
T O 2511 70

TO I f

16

12

17

13

15

12

15

12

18

13

14

11

15

12

W A 'i1 14 16 14 14 16 14 14

w a : 16 17 16 15 19 15 15

Wamecke(1971) W A S 17 20 17 16 21 16 16

W A S 19 20 18 m n 22 17 17

W A S 21 23 20 19 24 18 19

k w ‘59 9 10 8 8 9 8 8

Kilbridge and Wester 
(1962)

k w 4S

K W ™

7

4

7

5

6

4

6
.
4.

7

5

6

4

6

4

K W if rSJ 4 3 4 *sJ 3

G U S 16 17 15 14 17 12 14

Gunther et al (1983)
o u s 11 12 11 11 12 10 11

o u “ 10 11 9 11 9 9

G U " 7 7 7 7 7 6 7

S A ” 14 17 14 14 19 14 14

Sawyer (1970) S A ”

s a JJ

12

9.....

14

9

12

8mmamm

12

8

14

10

11

8

12

8

B U S 13 16 13 13 14 12 13

B U S 11 12 11 11 13 10 11

Buxey(1974) B U S 10 11 10 10 12 9 10

B U S 9 9 8 8 10 8 8

B U S 8 8 8 8 9 7 7

RPW -Rank Positional Weight Technique, m *  is the theoretical minimum number of workstations and 
rn is the best performance has been achieved by any technique. ?  Theoretical minimum number of workstations
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Table 5.18. Final solutions obtained by heuristic techniques (cont.)

Reference

Q
<—*Ga?

Gre
eg

nJ
<
O
CO

-a cu re
&  £

-G
<D
C q

£
CG m* m h

X> o s O o JH COo•—
CG

— O
CJ

2  ffi <

R A : R 0 24S 11 12 10 10 12 9 10
Rosenberg and ROj, 9 9 9 8 9 8 8
Ziegler (1992) r o 2J 6 7 6 6 7 6 6

R ° 2S 4 4 4 4 4 4 4

Mitchell(1957)
Ml'/,

M I”

9 9 9 8 8 
5 5 5 | | p  5 j  5

7

5

8

5
.

. 5 Y ' •Vr#:̂  +|| % ## M O “ 4 4

Mansoor (1964) M Off 4 4 4  4 4 3 4

M O ” 2 2 2 2 2 2 2
Bowman (1960) B O f 5 6 6 5 6 4 5

R P W  -Rank Positional W eight Technique, m* is the theoretical minimum number o f  workstations and 
mb is the best performance has been achieved by any technique.
§|  Theoretica l m inimum number o f  workstations

T o ta l num ber o f  w orksta tion s  ach ieved  mh 
| T o ta l num ber o f  w orkstations a ch ieved  m

50 - 

40 -

30 - 

20 - 

10 - 

0

Figure 5.45. Number o f problems achieved m b and m * by heuristic techniques

MOD. HOFF HOFF

Technique

COMSOAL RFW
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100

GA MOD.HOFF HOFF COMSOAL RPW

Technique

Figure 5.46. Average line efficiency obtained by line balancing techniques

Table 5.19. Number o f problems achieved m b by the heuristic techniques

Theoretically 
minimum 
number o f  

workstations

Hoffman C O M SO A L
Modified
Hoffman

Genetic
Algorithm

Rank
positional

weight

m* < 10
10 5 16 21 4

10 < ra* < 20
10 1 12 17 1

20 < m* < 25
0 0 2 5 0

m* > 25
0 0 2 1 0

For forty-four test problems (81%), the new algorithm achieved the best 

performance that has been achieved by any heuristic technique and it is 

approximately twice that achieved by the original Hoffman precedence technique, hi 

none o f the instances did the Hoffman technique outperform the genetic model! In 

twenty-three instances (42%), the proposed technique achieved the theoretical 

minimum number o f workstations.

The genetic algorithm achieved the highest average line efficiency (93.58%) 

and is 4.87% above the Hoffman technique and it balanced the four test cases (69, 92,
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138 and 184 cycle times) o f the Kibridge and Wester problem producing zero idle 

time optimal solutions, confirming its ability to achieve excellent solutions. The 

second best is obtained by the modified Hoffman heuristic and is 1.52% less than the 

genetic algorithm.

The model indicated excellent performance in test cases where ra* <  10 and 

for larger m *  it showed good performances by obtaining near optimum solutions 

(table 5.19) either better or the same as that obtained by the Hoffmann procedure. 

Therefore, It can be finally concluded that the new genetic model seems better than 

the Hoffman precedence procedure irrespective o f problem size and its complexity, 

accepting the main hypothesis o f this research at a very high confidence level.

5.10 FACTORIAL DESIGN EXPERIMENT

As previously discussed, to enable experimentation on the main interaction between 

variables, a half fraction factorial experimental analysis is to be completed, comparing 

six significant parameters optimising the performance o f the G A  line balancing 

model. The widely available M IN ITAB®  software package is employed to support 

analysis o f results.

Run Line
Efficiency

Run Line
Efficiency

Run Line
Efficiency

Run Line
Efficiency

1 79.00 9 74.70 17 74.70 25 79.00

•2 86.40 10 86.40 18 86.40 26 86.40

3 74.70 11 76.80 19 76.80 27 74.70

4 86.40 12 86.40 20 86.40 28 86.40

5 81.00 13 86.40 21 83.80 29 83.80

6 86.40 14 89.20 22 89.20 30 86.40

7 89.2 15 83.80 23 86.40 31 86.40

8 89.2 16 89.20 24 89.20 32 92.10

Table 5.20 Line efficiencies for the experiment
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The purpose o f using M IN IT A B  is to analyse the planned thirty two parameter 

settings (section 4.5.1) and resultant line efficiencies as given in table 5.20. The effect 

estimates and the sum o f squares for the thirty two treatment combinations are shown 

in table 5.21. Figure 5.47 presents the normal probability plot o f the estimated effects.

Chapter 5: Results evaluation

Variable
Estimated

Effect
Sum o f  
Squares

Variable
Estimated

Effect

Sum o f  
Squares

A 6.931 384.31 C E 0.181 0.26

B 0.931 6.93 C F 0.656 3.44 -

C . 5.631 253.66 D E 0.106 0.08

D 0.181 0.26 D F 0.206 32.19

E 0.181 0.26 E F 0.856 5.86

F -0.944 7.12 A B C -0.419 1.40

A B 0.131 0.137 ..A B D 0.856 5.86

A C -3.169 80.34 A B E 0.206 0.33

A D 0.181 0.26 A B F -0.444 1.57

A E 0.181 0.26 A C D 0.181 0.26

A F 2.006 32.19 A C E 0.181 . 0.26

B C 1.481 17.52 A C F 0.406 1.31

B D -0.494 1.95 A D E -0.444 1.57

. B E 0.156' 0.19 A D F 0.156 0.19

B F 0.106 0.08 A E F -0.494 1.95

C D 0.181 0.26

Table 5.21 estimated effects, sum o f squares for the experiment

A  -  Fitness function B- Crossover technique C- Selection method
D  -  Number o f  Generations E -  Mutation technique F -  Population size

For the majority o f effects, the result clusters close the center (zero) 

line, confirming a low level o f interaction. The single factor A, fitness function has the 

largest estimated effect o f 6.931 (furthest from the center line), identifying this 

parameter as the most significant parameter o f the model. The next highest o f 5.631 is 

shown by single factor C  (selection method). The two single parameters have been 

shown to create a significance level substantially higher than any other single or
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combination set. With interest continuing to examine the interaction results, the 

interactions o f A C , AF, CF, and E F  are also reasonably substantial and require 

interpretation.

A; A 
B: B 
C: C 
D: D 
E: E 
F: F

Effect

Figure 5.47 Normal probability plot o f effects for experiment

Table 5.22 examines the analysis o f variance obtained from experimentation. 

The total sum o f squares (SSf) and the model sum o f squares (SSm) for all parameters 

is 842.27 and 797.23 respectively. Examining the lower significance levels and 

selecting a threshold-of 2.00 for sum o f squares, twenty two o f the thirty-two effects 

and interactions can be excluded, leaving ten single or multiple variable combinations 

that cover 94% o f the total variability as shown. The main effects A and C  are 

confirmed as dominant, accounting for over 75% o f the total variability. Interactions 

A C , A F  and B C  provide 15% o f the total variability. Main effects B  ,F  and the other 

three interactions (C F , E F  and A B C ) accounts for less than 3.5% in total.

For a given confidence level a, all factors or interactions with value o f P  <  a 

are statistically significant, whilst other factors may be disregarded. The two main 

factors, the fitness function and the selection technique, have values o f P  <  0.05 (at 

95% confidence level) and therefore statistically significant. The factor A , the fitness
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function has a large effect on the performance and it has significant interactions with 

two other factors, selection technique and number o f  generations.
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Source o f 

Variable

Sum o f 

Squares

Degrees o f  

Freedom

Mean

Square
F 0 P -Value

A 384.31 1 382.31 187.83 0.0001

B 6.93 1 6.93 3.38 0.0756

C 253.66 1 253.66 123.97 0.0001

F 7.12 - 1 7.12 3.49 0.0712

A C 80.34 1 80.34 39.38 - 0.0001

A F 32.19 1 32.19 ' 15.77 0.0004

B C 17.52 1 17.52 8.58 0.0063

C F 3.44 1 3.44 1.68 0.2045

E F 5.86 1 5.86 . 2.86 0:1008
A B D 5.86 1 5.86 2.86 0:1003
Error 45.02 22 2.04

Total 842.25 32

Table 5.22 Analysis o f Variance for the Line Efficiency data for W E 58 problem

Figures 5.48(a) and 5.48(b) display the main effects o f the six factors. Fitness 

function and selection method show significant positive effect, indicating both the 

front loading fitness function and the modified rank based selection technique are 

better than either the alternative fitness function FF5 or the original rank based 

selection technique. The variable boundary moving crossover technique shows a 

marginal improvement over the uniform crossover technique for the problem.

Increasing population size from forty to sixty shows a negative effect. 

Knowing the process o f assigning elements to stations by the GA, the negative effect 

can be explained by noting the need to consider changes in population size at the
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same time as examining changes in the number o f initial solutions, again proposed in 

future work.

Variab le

Uniform  Boundary M om rig Rank B ased  Modified Rank

p p 5 FF+( Front loading) C rossover C rossover Point Selection Based Selection

Figures 5.48(a) Main effect plots o f factors A, B  and C

Fixed Variab le

Boundary Boundary

Adjacent Adjacent
2000 6000 Mutation Mutation 40 60

Figures 5.48(b) Main effect plots o f factors D , E  and F

Iii' addition to crossover technique, number o f generation and mutation 

technique show negligible effects on overall performance for the test set. The results 

show that for the chosen test set, increasing the number o f generations above 3000 

iterations did not have any effect on performance (table 4.7 and table 5.20). Future
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work can examine the possible existence o f an iteration limit for a wider set of test 

cases.

-1 -j .1 -j .1 1 - 1  - ) - i  1

(A ) Fitness 
Function

(B) Crossover 
Technique

(C) Selection 
Method

(D) Number of 
Generations

(E) Mutation 
Technique

(F) Number of 
Generations

Figure 5.49(a) all possible interactions o f the six factors.

Figure 5.49 (a) shows all the possible interactions o f the selected six factors. 

Twelve interaction plots out o f fifteen show, almost parallel lines indicating no 

interactions even if  they go up or down. The interactions A C , B C  and A F  show non 

parallel lines and they need interpretations. Figures 5.49 (b), 5.49(c) and 5.49(d) 

display the significant interactions o f A C , B C  and A F  respectively.

Figure 5.49 (b), drawn from figure 5.49(a), exhibits a strong interaction 

between fitness function and selection method. Both fitness functions FFi and FF5 
display better performances with the modified rank based selection technique. 

Notably, the front loading fitness function (FFi) and modified selection method 

combination, shows better line efficiency o f over 88% , a superior result to the FF5 
and modified selection method combination.

9 0

8

§0
9 0

8 5

8 0

9 0

8 5

8 0

9 0

8 5

8 0

9 0

8 5

8 0
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(C) Selection Method 

Figure 5.49(b) interaction diagram for selection and fitness function

. . (C) Selection Method
Figure 5.49(c) interaction diagram for selection method and crossover technique

A  significant interaction between selection method and crossover technique 

can be seen in figure 5.49(c). Both crossover techniques display positive interaction 

when combined with the selection methods. Rank based selection technique combined 

with the uniform crossover method . produced better results than the Variable 

Boundary Moving Crossover Point (V B M C P ) technique plus rank based selection 

combination. Modified rank based selection technique combined with V B M C P  shows
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a significant improvement over the alternative modified rank based technique plus 

uniform crossover.

0 c 0) 
'o
1
<DC

(F) Population Size

Figure 5.49(d) interaction diagram for population size and fitness fimction

The interaction between population size and fitness function is complex 

(figure 5.49(d)). The front loading fitness function shows a slight increase o f 

performance with a larger population o f 60. Whereas, the fitness function (FFs) shows 

substantial negative effect with a larger population. The conclusion is to revisit this 

parameter combination with a wider range.

Summarising the results o f the half fractional factorial analysis, the 

conclusions possible are:

A. Main effects: The front loading fitness function and the modified rank 

based selection technique have significant positive effect on the model 

performances.

B. The remaining four single variables have no significant main effect.

C. Cross variables: T he interaction between the front-loading fitness (FFi). 

function and modified rank selection method is important. However, the 

interaction between the front loading fitness function and the variable
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boundary crossover point method is marginal. This was significant in the 

single factor experiment.

D. The remaining combination effects were o f minor significance for the test 

case programme.

Chapter 5: Results evaluation

188



C H ilT E R
% J P

C O N C LU SIO N S

The main objective o f this research was to develop a Genetic Algorithm line- 

balancing model for the single model assembly line balancing problem capable o f  

outperforming existing G A  models and the Hoffmann precedence matrix technique. 

This was accomplished by defining a new fitness function (based on the front-loading 

theory), crossover and mutation techniques, and modifying an existing selection 

technique. The main objectives o f the research have been achieved and the 

performance o f the model was interesting. The following conclusions can be made 

based upon the results o f the study.

The findings in Chapter 5 appear to indicate that the Genetic Algorithm model 

achieved the overall best performance irrespective o f problem size and complexity. 

Forty-four test problems out o f fifty-four (81%) achieved the best solutions obtained 

by any technique so far which is twenty-four problems (44%) more than that obtained 

by the Hoffmann procedure. In twenty-three instances, the Genetic Algorithm model 

achieved the optimum solutions, which are seventeen instances more than that' 

achieved by the Hoffmann precedence procedure.

The modified Hoffman heuristic technique developed based on the front- 

loading t heory a chieved t he s econd o verall b est, w  hich i s n ine c ases 1 ess t han t hat 

achieved b y t he G  enetic A  lgorithm m odel. 0  nly i n p roblems, SH H f , BAJJJ, BA|52

and B U j  were the solutions obtained by the model one workstation more than that 

generated by the modified Hoffmann technique. For test problems with a large
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number o f elements (n >100) with task time distribution skewed towards the 

minimum element time (S H 297 an d B A 148) and cycle time just above the maximum

task time, the modified Hoffman technique outperformed the genetic model. 

However, for hard problems, in which task time distribution skewed towards the 

maximum element time and cycle time just above the maximum- element time, 

(W A 58 and L U 89) the solutions obtained by the model is superior to both the 

Hoffmann and Modified Hoffmann methods.

Therefore, it can be concluded that the new Genetic Algorithm model is better 

than the Hoffmann precedence matrix procedure and it is more suitable for complex 

assembly line balancing problems for which other heuristic methods generate 

solutions far away from optimality.

The key feature o f the genetic model is the front-loading fitness function. This 

fitness function preformed well in obtaining optimum solutions for the assembly line 

balancing problem and outperformed all the existing G A  fitness models. The 

simulation results, particularly those obtained from test cases K W 4659 , K W 4S2 , K W 4lf

and K W 484, verified the front-loading theorem, and the propensity to achieve one 

hundred percent balanced solutions.

The proposed fitness function that drives the algorithm towards forward 

loading demonstrated excellent performance, predominantly in test cases where m * <  

20. However, in cases where the theoretical minimum number o f workstations is 

greater than 25, the function is not powerful enough for forward loading especially in 

latter workstations (>20). This is mainly due to the characteristics o f the negatively 

exponential (i?'x) fitness function, which shows almost constant values where x >  20, 

resulting in a marginal fitness, change for elements transferring among latter 

workstations

This limitation was eliminated to a certain extend by controlling the front-loading 

constant (R) in the fitness function and following values are recommended for better 

performance. ' —
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Theoretical number of 
workstations (m*)

R

m* < 10 1.5

10 < < 20 1.3

m* >  20 1.1

Table 6.1. Recommended J?-values

The second control parameter is the number o f generations permitted for a
(

workstation ( G ). It seemed that most o f the selected problems achieved very good 

solutions running the algorithm for 3000 generations (i.e., 120 generations per 

workstation) and is recommended irrespective o f  the complexity o f the problem for 

test cases where m* <  25.

The C PU  time variation against G  showed a linear relationship and therefore 

the model does not become especially Time consuming when increasing the number o f  

generations per workstation. This property is very useful for solving very bard 

problems and the model can be left to run for long enough to find better solutions.

The most economical population size for the model was 40 for the problems 

studied and increasing population size decreases the diversity and consumes extra 

C PU  time. On the other hand, too low populations showed premature convergence.

Different initial populations were e xamined and a well-seeded population is 

favoured for the genetic.model. It was confirmed that a population containing all bin- 

packing solutions would hardly generate a feasible solution even after 10,000 

generations. Anderson and Ferries (1990) claimed stating with a solution generated by 

the C O M SO A L  algorithm increases the convergence, but this model achieved 

excellent results with solutions generated by the random task assignment technique. 

One possible explanation is that solutions obtained by this technique are not closely
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packed unlike the Hoffmann and C O M S O A L  procedures, and therefore give enough 

room for the forward loading process.

Whitley (1989) claimed the rank-based selection technique is superior to all 

the other selection techniques and the findings reported in this thesis are consistent 

with his claim. The main drawbacks o f this technique are high selective pressure and 

low p opulation d iversity. T he m odified r ank-based s election t echnique u sed i n t his 

research overcame this problem effectively and it performed well on all the selected 

problems irrespective o f the problem size and complexity. The user control the 

maximum number o f identical chromosomes in the selection pool and it is seems that 

one third o f the selection pool size is a typical value for the test problems studied.

A  new crossover technique called Variable Boundary Moving Crossover Point 

(V B M C P ) was developed for the model to propagate the bulk o f the good attributes o f  

the parents to their offspring. The crossover probability was set to 0.80 based on the 

findings o f De Jong (1975). The technique was compared with six existing techniques 

developed for the assembly line balancing problem and the performance was 

encouraging. It outperformed reported techniques and also enhanced the progressive 

filling o f workstations in the front-loading process.

The main control parameter o f the above technique, other than the crossover 

probability, is the crossover span size. The results showed that the overall 

performance o f the model significantly depend on the crossover span size, which is a 

test problem constant. In this research, the crossover span size was fixed to 0.5 cs 

(where cs is the maximum number o f  elements that can be packed in to a bin size o f  

the cycle time), and increasing it resulted in propagation o f both good and bad 

attributes o f parents to offspring. It is apparent that as workstations are filled, the 

number o f elements available for filling will decrease and therefore, cs should vary 

accordingly. But this aspect w as not considered in  this research and 1 eft for future 

research work.

Generally, duplicating elements in chromosomes after crossover is inevitable 

and these chromosomes must be repaired. Two new repair techniques were
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experimented with in this research and the one using rank positional weights o f  

elements in the reassigning o f elements gave better results. It generated more feasible 

solutions than the other techniques without consuming extra C PU  time.

The model consists o f the Variable Boundary Adjacent Mutation technique for 

the mutation operation. This technique was compared with five other mutation 

techniques and it showed good overall performance. The main idea behind the 

technique is to progressively move the mutation zone with the crossover span and 

select adjacent elements for mutation. This process strengthens the progressive filling 

o f workstations s as the Variable Boundary Moving Crossover Point technique 

(V B M C P ). The key controlling parameter is the mutation span size and experimental 

results showed that a mutation span o f 2cs gives better performance for the test cases 

considered. A  part from that, the mutation probability p m was set to 0.01 based upon 

previous findings o f other researchers.

As Rudolph (1994) pointed out, copying the best chromosomes to the next 

generation is vital for rapid convergence and achieving near optimum solutions. 

However, the number o f elite chromosomes must be determined c arefully, copying 

more elite chromosomes leads to low diversity and premature convergence. Based on 

the test results 20-25% o f the best chromosomes are recommended.

This study has taken a step in the direction o f developing a Genetic- Algorithm

Chapter 6: Conclusions

integrating a number o f Genetic Algorithm components including fitness function, 

genetic operators etc., and these components have their own control parameters which 

give the best performances. Therefore, as a whole, there are a large number o f  

parameters in the model that have to be evaluated for optimum performance. These

they vary significantly from problem to problem. For example, two cycle times o f the 

same precedence network could have a marked difference in complexity; therefore, it 

is worth stating that these significant parameters should be properly tuned before 

actually being used to solve a real assembly line balancing problem by conducting a 

number o f pilot runs.

model for the assembly line balancing problem. The model

parameters are closely linked with the complexity o f the line-balancing problem and
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In general, the Genetic Algorithm model consumes more C PU  time than 

heuristic procedures although it mainly depends on the number o f generations. 

However, it can be minimized by distributing computations to a number o f processors 

(parallel processing), which will be discussed in the next Chapter.

The single factor design experiments, varying one experimental condition at a 

time repeating under the same conditions has been applied in this research to identify 

and examine the leading parameter combinations. The follow-on half fractional 

factorial design, included to establish the cross variable effects has been added. 

Further conclusions in relation to both individual parameters and combined parameter 

interaction is summarised as follows.

The half fractional factorial design experiment confirmed the two most 

significant individual p arameters as front 1 oading fitness function and the modified 

rank based selection technique. For combinations o f parameters, new conclusions 

confirm, the main feature o f the G A  model, the front loading fitness function has a 

high 1 evel o f  interaction with the modified ranlc b ased s election method and a 1 ow 

level o f interaction with the variable boundary moving crossover technique. This 

crossover technique was originally designed to support the forward loading process; 

however the results show that the support is marginal for the selected test case. 

Overall results from the half fractional factorial design support the conclusion that the 

new features o f the G A  line balancing model collectively show better performance 

than the previously published line balancing G A  models.
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C H A P T E R

SU G G ESTIO N S FO R  
FU R T H E R  R ESEA R C H

It was stated in the previous chapter that the new fitness function is not powerful 

enough in the forward loading o f elements, especially for problems with workstations 

o f more than twenty. This is mainly due to the levelling o ff o f the front-loading 

weights in latter workstations (because o f the negative exponential characteristics o f  

the loading curve (R'xj). In order to maintain the same strength o f loading among 

latter workstations, the characteristics o f the fitness curve must be modified. 

Changing the loading weight curve every 20 workstations could be one possible 

modification and the modified curve can be mathematically expressed as follows.

* ,  =  ■(

+  R m-j

R m -y+20

K  < 2 8  

20 < K  < 40

At the beginning o f the evaluation, K  =  1, and if
k C j

=  1 or the generation number

equals to G *K , the value o f AT is incremented by one unit. Where G  is the number of 

generations per workstation, a is a loading function constant depends upon the cycle 

time (C ), the number o f elements (n) and the theoretical minimum num ber-of 

workstations (m *) , Rj is the loading weight o f the y'th workstation and the other 

parameters are as defined before. . .

195



Chapter 7: Suggestions for further research

The modified loading weight curve for a  =1000 and R =  2.0 is displayed in 

figure 7.1, which shows a marked difference o f loading weights among later 

workstations. Further research must be carried out with the modified function to 

verify its power o f forward loading for test problems of workstations more than 20;

Workstation number

Figure 7.1 Existing and modified front-loading functions

The complexity o f the test problem has a significant impact on the 

performance and the need (o f more time to explore larger domains has been indicated. 

I f  the model was left to run for long enough, the solutions would have been much 

more closer to the optimum solution. The proposed model is not intelligent enough to 

make a decision on the number o f generations per workstation required according to 

the complexity. Therefore, an index must be defined and integrated into the model to 

guide the number o f generations by analysing the current sector o f the precedence 

network where front-loading takes place.
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Since the genetic algorithm is considering a large number o f solutions in the 

search domain, the computational time o f the genetic model is relatively high 

compared to that o f heuristic techniques. However, as genetic algorithms are good 

candidates for effective parallelization, implementing parallel genetic algorithms can 

significantly increase computational power and thus reduce C PU  time consumption. 

Additionally, evaluating a number o f subpopulations at the same time and swapping 

best chromosomes among the populations allows faster convergence. Therefore, 

implementing parallel genetic algorithms for the genetic model would certainly 

improve its computational power and extend its applicability for real world problems.

The surveys o f Chase (1974) and Milas (1990) showed only a few companies 

utilizing the published techniques to balance their lines. The reason for this were 

reported to be the practitioner’s unfamiliarity With the published techniques, the 

complexity o f algorithms and the inflexibility to model the actual conditions o f 

assembly lines. Additionally, the need o f complete, user friendly and ready to use 

software f  or p ractitioners w  as h ighlighted i n e ach s urvey. T he m odel i n t his t hesis 

utilises M A T L A B  software, with problem specifications and control parameters 

entered using a command window. Since M A T L A B  offers Graphical User Interface 

(G U I) tools, this feature can be used to' develop a powerful, user-friendly genetic 

algorithm model for line balancing.

With regard to test case coverage, by starting with a small, totally enumerable 

problem (30-element, Sawyer 1970), the effect on processing time, solution 

generation and solution quality o f problem size can be examined up to the largest 

known published problem (297-element, Scholl 1999).

Extending the review o f parameters is also an area of-future interest. Six 

parameters were identified asproblem  dependent ( front-loading constant, crossover 

and mutation span size, repair technique, the number o f elite chromosomes and 

feasible solutions in the initial population). An added test case programme would 

further enhance the analysis o f effect on the six remaining parameters.
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Research in this dissertation has shown the frontloading fitness function and 

modified selection technique have a definable contributing relationship. Confirming 

this further with a set o f test cases at the extremes o f line balancing conditions will 

lead to interesting further publications. The extreme conditions would include Order 

Strength (from 20.00 to 75.00, noting1 the current test ease was 59.1), task time 

variation (distributions with positively and negatively skewed towards the cycle time) 

and finally problem size variation (from 30 to 295 elements).

The use o f M IN IT A B  proved a powerful support to the detailed half fractional 

analysis. The opportunity to further use the software to add a full fractional analysis 

should not be missed.

Chapter 7: Suggestions fo r  further research
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GLOSSARY



Genetic algorithms are biologically inspired computational models and the 
terminology has been borrowed from different disciplines including biology, 
mathematics, and computer science. S o m e  of the terminology used in this report is 
described below:

Allele: The-value of a gene.
Building Block: A  group of genes that give a chromosome a high fitness. 
Chr om o so m e:  A n  array of parameters or genes that is passed to the fitness function. 
Converge: To arrive at the solution. A  gene is said to have converged w he n  9 5 %  of 

the chromosome contain the same allele for that gene. Genetic algorithms are' 
considered converged w h e n  they stop finding better solutions for a specified 
period of operation.

Cost: Output of the cost function 
Cost function: Function to be optimised.
Crossover: A n  operator that forms a n e w  chromosome from two parent chromosomes 

by combining part of the information from each.
Crossover rate: A  number between zero and one that indicates h o w  frequently 

crossover is applied to a given population.
Darwinism: Theory founded by Charles Darwin that evolution occurs through 

random variation of heritable characteristics, coupled with natural selection 
(survival of the fittest).

Elitism: The chromosome with the best cost is kept from generation to generation. 
Evolution: A  series of genetic changes in which living organisms acquire the

characteristics that distinguish it from the other organisms.
Fitness: Opposite of cost. A  value associated with a chromosome that assigns a 

relative merit to that chromosome.
Fitness function: Has the negative output of the cost function. A  mathematical 

subroutine that assigns a value or fitness to a set of parameters.
Gene: A  unit of heredity that is transmitted in a chromosome and controls the 

development of a trait.
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Genetic Algorithm: A  type of evolutionary computation devised by John Holland. It 
models the biological genetic process by including crossover and. mutation 
operators.

Genotype: the genetic composition of an organism. The information contained in the 
genome.

Global M i n i m u m :  True m i n i m u m  of the entire search space.
Hill climbing: Investigates adjacent points in the search space, and moves in the 

direction giving the greatest increase in fitness. Exploration technique that is good 
at finding local extrema.

Inversion: A  reordering operator that works by selecting two cut points in a
chromosome, and reversing the order of all the genes between those two. points.

Local m i n i m u m :  A  m i n i m u m  in a subspace of the search space.
Mating pool: A  set of the population selected for potential parents.
Mutation: a reproduction operator that randomly alters the values of genes in a 

parent chromosome.
Mutation rate: percentage of bits in a population mutated in each iteration of the 

Genetic Algorithm.
Natural selection: Fit individuals’ reproduce, passing their genetic information on to 

their offspring.
Offspring: an individual generated by any process of reproduction.
Optimisation: the process of iteratively improving the solution to a problem with 

respect to a specified objective function.
Parallel Genetic algorithm: A  genetic algorithm written to n m  on a parallel- 

processing computer.
Parent: A n  individual that produces to generate one or more other individuals, k no wn  

as offspring, or children.
Phenotype: the environmentally and genetically determined traits of an organism. 

That trait actually observed.
Population: A  group of individuals that interact (breed) together.
Permutation problem: A  problem that involves reordering a list
Recombination: Combining the information from two parent chromosomes via 

crossover.
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Reproduction: The creation of offspring from two parents (sexual reproduction) or 
from a single parent (asexual reproduction)

Search space: All possible values of all parameters under consideration.
Selection: The process of choosing parents for reproduction (usually based on fitness) 
Simulation: The act of modelling a process.
Species: A  group of organisms that interbreed and are reproductively isolated from all 

other groups. A  subset of the population.
Survival of the fittest: Only the individuals with the highest fitness value survive.
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A P P E N D I X

P R O O F



The novel fron t-load ing  fitness function  (equation 3 .1 5 ) consists o f  the fo llo w in g  

properties:

1. Decreasing num ber o f  workstations (m) increases the overa ll fitness.

2. M o v in g  an element from  a latter w orksta tion  to an earlier workstation 

increases.the overa ll fitness.

The second property has already been discussed in  Chapter3 and the p ro o f o f  the firs t 

property is g iven here.

Consider the overa ll fitness func tion  given in  equation 3.15,

FF  =  <

n Ip I < P

X + Y + Z  l=P

(3.15)

IV
Z

W here X  = n2ip Y = n~p 7=1
m ~m * + 1 Z =  a

( S j ' k
Rm - j

mR»i+i

m a x (X ) >  m ax(7 ) >  m ax(Z ) V  X ,  Y, Z

I t  can be seen that, component X  is independent o f  the num ber o f  workstations (m) 

and therefore, decreasing or increasing the num ber o f  workstations does not effect the 

fitness through X. H ow ever both Y and Z  terms consist o f  variable m and they are 

sensitive to any change in  num ber o f  workstations.

Consider component T in  equation 3.14,

Y = n2p

( s A
( c . l)

m -  m * +1
Expanding the r igh t had side o f  equation c. 1,
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V S, (c.2)

Where K is the workstation index, which varies according to the following 
relationship, g is the number of generations and G is the number of generations per 
workstation (test problem constant).

I f g = l ; K = l

Else if g =  G*K; then K:=K+1

Without loss of generality, in order to illustrate the properties of this relationship, 
setting n =  58, m =  25 generates a family of curves (depending on K), and figure (a) 
shows the fitness variation of Y while the number of workstations decrease from 30 
to 25 in the solution.

180 00

.16000

14 0 0 0

12000
> 10000 </)</)0)
-  8 0 0 0  
LU

6000  

4 0 0 0  

2000 
0
25  2 5 .5  26 2 6 .5  27 2 7 .5  28 2 8 .5  29 2 9 .5  30

N um b e r o f w o rks ta tio n s

Figure a. Fitness variation against number of 
workstations for K= 1,2 and 5.

y < -- ---- K since 1 > f o \
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F r o m  figure (a) it can be seen that, decreasing the number of workstations in the 
solution increases the fitness Y irrespective of the value of K.

Next, consider the Z  component of the overall fitness function that is responsible for 
forward loading.

_ £
(c.3)

mR;n+l

Expanding the right hand side of the above equation c.3, and substituting k=l, gives

a s o
m I C R + V C ; R +

t r  + \ C j R ~5 + " " ( c  r  +°

Since —  C R (V+I) < R (JC+1), the above expansion can be simplified in to the following

expression.

Z < a
m R

+ v ^ y + _1_
v * y

(  j
R

(c.4)

Rearranging the expression c.4,

Z < a
m

( i V
i1 + u J + u + I

\Rj
+

R

^ v „-r 
R

The first m terms in the above expression represents a geometric series and the 
summation of the progression is given by (Ssum)

2 1 7



Substituting a  =  nCRm*+i and, further simplifying gives,

Z <
(  nCR‘ —  |l-- l—

m I Rm~[
(c .5 )

Without loss of generality, in order to illustrate the properties of this relationship, 
setting n = 58, m = 25, and C  =  65, generates a family of curves (depending on R), 

and figure (b) displays the fitness variation o f Z  w he n  the number of workstations 
decrease from 30 to 25 in the solution for R =  1.2.

x 105

Number of workstations

Figure (b). Variation of fitness against number of workstations

So, both Y and Z  fitness components increase as the number of workstations decreases 
, proving the second property of the overall fitness function.
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I

c ° ro o 40 60 80 100 
Task time

u - - - - - -0 500 1000 1500 
Task time

Reference Problem
ID n hiim tmax 'sum OS TV Cycle times

Wamecke(1971) w a 58 58 1 53 1548 59.1 7.6 65
Lutz (1974) l u 89 89 1 10 485 77.6 10.0 20
Mukeheijee and 
Basu (1964) m u 94 94 8 171 4208 44.8 21.4 176,301,

351
Arcus (1963) A R 1U 111 10 5689 150339 40.4 568.9 6269
Bartholdi (1993) 
Sholl (1999)

B A i48
s h 297

148
297

1
5

83
1366

4234
69655

25.8
58.2

83.0
277.2

170,425, 
1000 ■ 
2787,7000, 
14000

n : number of task elements 
tmax: maximum task time 
OS: Order Strength

tmi„: minimum task time 
tmm dotal work content 
TV : time variability ratio
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o 4c<u=3cr ca o 
£  2

Mertens 7 b Bowman 8
. o 4co3 mm

a 2 1 ' ■

■
LL

. . i1 2  3 4 '5 5 ■ °(3 8 10 12 1Task time
m Task time

10 20 30 40 50
Task time

10 15
Task time

10 15 
Task time 5 10 15 20 25

Task time

Reference Problem
ID n t/nim Licix t-sum OS TV Cycle times

Mertens (1967) m e 7 1 1 6 29 52.4 6.0 6,8,10,15
B o w m a n  (1960) b o 3 8 3 . 17 75 75.0 5.7 20
Mansoor(1964) m a u 11 2 45. 185 60.0 22.5 48,62,94
Mitchell (1957) m i 21 21 1 13 105 71.0 13.0 15,26
Rosenberg and 
Ziegler (1992) r o 25 25 1 13 125 71.7 13.0 14,16,21,32

Buxey (1974) b u 29 29 - 1 25 324 50.7 25.0 27,33,36, 41
n : number of task elements tmin: minimum task time
t,nax '■ maximum task time tsm  :total work content
OS: Order Strength TV : time variability ratio
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Task time
3000 4000
Task time

Reference Problem
ID n t/nim tmax tsum OS TV Cycle

times
Sawyer (1970) S A J0 30 1 25 324 44.8 25.0 25,30,41
Gunther et al (1983) g u 3S 35 1 40 483 59.5 40.0 41,49,

54,81
Kilbridge &  Wester 
(1962) i c w 45 45 3 55 552 44.6 18.3 69,92,

138,184
Tonge (1961) T O , 0 70 1 156 3510 59.4 156 251,320
W e e  and Magazine 
(1981b) w m 75 75 7 53 1548 59.1 7.6 97,104,

350
Arcus (1963b) a r 83 83 233 3691 75707 59.1 15.8 5408

7571
n : number of task elements 
tnmx: maximum task time 
OS: Order Strength

tmin: minimum task time 
tsum dotal work content 
TV : time variability ratio
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