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Corrections

Page 2 line 5: this should read: “The amorphous molecules are random coils with 

each molecule overlapping with its neighbours.”

Page 30 line 3: a fullstop should be inserted so that the sentence now ends: 

Page 43 line 9: “Hann” should be written “Hahn”.

Page 62 line 9: the sentence starting with “Their are...” should begin “There 

are...” .

Page 6 6  at end of the caption for Figure 3.2 the following sentence should be 

added: “Every fifth profile is shown giving a time between profiles of about 2.5 

hours.”

Page 6 8 : the last line on the page should end: “.. .found experimentally are...”.

Page 135 line 10 should be: “. . .  effective viscosity of the glass r]g. If we follow

this suggestion then swelling takes a time of order %/(c&T), where ckT is an 

approximation to the osmotic pressure exerted by the solvent.”

Page 135 line 15 should be: “...  the solvent diffuses in a time rjg/(ckT). This is

{Dgllg/ckT)1/2."

Page 140 equation 6.18: this should read F2 =  Dv̂ °2r t FS>> •

Page 140 equation 6.19: this should read

Page 185 reference [78]: “Hann” should be written “Hahn” .



Abstract

The understanding of solvent ingress into polymers is of vital importance in a 

plethora of applications that embrace such diverse technologies as dental resins 

and food systems. Two limiting regimes of small molecule diffusion in polymers 

are widely acknowledged: Fickian and Case II. Fickian diffusion is associated 

with solvent uptake proceeding with the square root of time and with smooth 

concentration profiles. Case II ingress is characterised by uptake that is linear 

with time and by concentration profiles with sharp fronts. This thesis describes 

new insight into both these transport mechanisms. Binary mixtures of good 

(methyl ethyl ketone) and bad (ethanol) solvents ingressing polystyrene with 

Fickian dynamics are investigated. Using both 2H magnetic resonance imaging 

(MRI) with selectively deuterated solvents and ^C-^H cyclic cross-polarisation 

chemically selective imaging of normal solvents, the individual components are 

separately measured. The two solvents are found to ingress together but they have 

different spatial concentration profiles. These results are explained in terms of a 

simple model. In a further study using both MRI and ellipsometry, no polymer 

molecular weight dependence is observed for Fickian solvent ingress. Powerful 

evidence of a new rate-limiting step to give Case II diffusion is demonstrated. 

We show that the rate-limiting step can be the solvent flux at the polymer 

surface as well as the visco-elastic polymer swelling. Numerical simulations 

of a simple phenomenological model demonstrating these effects are presented. 

They are supported by experimental measurements of liquid and vapour toluene 

ingress into polystyrene using MRI and stray field imaging. One problem with 

ellipsometry for measuring Fickian ingress is that it is difficult to unambiguously 

fit the i/j and A data to the smooth refractive index profile through the swelling 

sample. Two methods have been implemented to overcome this problem: a Born 

approximation and a Bayesian inference technique. The latter has shown that 

ellipsometry can now, in theory, be described as a model independent technique.
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Chapter 1

Introduction

1.1 W hat is a polymer?

1.1.1 Polymer structure

A polymer is a large molecule made from one, two or occasionally more types of 

small repeat units, sometimes called “mers”. There may be hundreds, thousands, 

millions or even billions of repeat units forming a single polymer molecule. In 

the synthesis of a polymer, small molecules called monomers are reacted to form 

a large molecule. Copolymers are polymers composed of two or more different 

monomers. If each repeat unit is bonded to only two other units (it is said that 

the functionality is equal to two) then a linear polymer is formed. However, if 

the functionality is greater than two then a crosslinked network is made. When 

the backbone of a polymer chain carries two dissimilar atoms or groups then 

the polymer may be found with different tacticity or stereoregularity. If the 

groups are all along the same side of the backbone then the polymer is termed 

isotactic. In syndiotactic polymers the pendant groups are located on alternate 

sides of the backbone. In atactic polymers, however, the pendant groups are

1



INTRODUCTION 2

randomly arranged along the polymer chain. A multitude of individual long- 

chain polymer molecules are held together by stabilising forces (usually van 

der Waals’ forces) acting between them, to form bulk material. [1] Crystalline 

polymeric materials have their molecules arranged in a regular and ordered 

fashion. Amorphous molecules’ conformation is a random coil with each molecule 

overlapping with its neighbours. Amorphous polymeric materials have properties 

that share characteristics with glass.

1.1.2 The mechanical response of polymers

Glassy polymers are elastic, i.e. obey Hooke’s law. They fail cleanly and suddenly, 

usually after deformations of only a few percent [1 ], but at any strain below 

failure, deformation is completely reversible. They have a high Young’s modulus 

which reflects the fact that large forces are needed to move atoms even a tiny 

amount. Glasses do not show a sharp phase change from solid to liquid at a 

definite melting point. They change gradually. The glassy state occurs below 

Tg (the glass transition temperature). Above Tg the polymer is in a rubbery 

state. There is a transition region of about 20°C between the two. [1] Tg can 

be reduced for a particular polymer by, for instance, the addition of solvent 

or the reduction of polymer molecular weight. Rubbery polymers (also termed 

elastomers) are also elastic but a stress-strain graph is characteristically curved, 

with varying Young’s modulus at large strains. This indicates that Hooke’s 

law is disobeyed. Rubbery polymers can frequently be extended to ten times 

their unstrained length [2] and their mean Young’s modulus is low (between 100 

and 1000 times less than for glassy polymers). [1] This is due to the fact that 

the constituent molecules can rearrange themselves in response to an applied 

stress. They are ultimately restrained by chemical crosslinks. In the case of 

polymers such as glassy poly (methyl methacrylate) (PMMA) and polystyrene 

(PS), where there are no chemical crosslinks, chain entanglements serve the same
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role in restricting chain motion. However, for entanglement-reliant, rubbery 

polymers these entanglements eventually free themselves leading to irreversible 

chain movements and plastic deformation.

1.1.3 The molecular weight of a polymer

The relative molecular mass (RMM) is defined as the relative atomic mass of the 

constituent atoms. [1] In a real polymer sample, the individual chains have a range 

of different lengths, and so a number-average relative molecular mass M/v and a 

weight-average relative molecular mass Mw are used to describe the distribution 

of chain lengths. The chain length of a polymer molecule is proportional to RMM. 

The number average chain length is given by

where, for the zth different chain length, /< is the fraction of chains with length 

rii in a total of N  molecules. This definition provides equal weighting to every 

molecule whatever its size. However, the length-average weights the average to

We can write a number-average relative molecular mass M# and a weight-average 

relative molecular mass as

(i.i)

bias a chain proportional to its length. It is defined by

_ S» f i N n t  X m  _  Ei fiTij 

n L ~  H i S i N n i  Ei f m  '
(1.2)

Mjv =  n^Mt (1.3)

and

Mw  =  nLMi (1.4)

respectively. Mi is the relative molecular mass per repeat unit in the polymer 

chain. The ratio Mw /M n is called the polydispersity and is equal to unity when
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all the molecules in a polymer sample have the same chain length and mass. If 

this condition is true, then the material is called monodisperse. In nearly every 

synthetic polymer, M w /M ^ > 1 .

1.2 A brief history of engineering polymers

The first manmade polymer (a form of cellulose nitrate) appeared at the 1862 

Great International Exhibition. [2] It was called Parkesine after Alexander Parkes. 

He was no stranger to the invention of new materials having already sold a patent 

for a waterproof fabric to Charles Macintosh in 1843. However, Parkesine was 

not commercially viable. Successful commercial production of a polymer based 

on cellulose nitrate did not become possible until 1868 when John Hyatt, [3] 

after much experimentation in his kitchen, successfully met the challenge, set 

by the Phelan and Collander company, of finding a synthetic material of which 

billiard balls could be made. [2] This remained the only commercial polymer until 

Bakelite, named after the Belgian born scientist, Leo Baekeland, who accidently 

discovered it, was produced in 1907. [4] Thorough scientific research into polymers 

never really got going in the 19th century. Materials chemists of the day were 

only interested in producing highly pure new materials. Of course, one of the 

common tests for purity is a sharp melting point, something that a polymer does 

not have. Hence many early laboratory-produced polymers could well have been 

thrown away. In the 1920s Hermann Staudinger suggested that polymer molecules 

were chains. [5] He used the word macromolecule rather than polymer. Macro 

means “large” in Greek, and molecule comes from the Latin phrase meaning 

“tiny mass of something”. After Staudinger’s work was finally accepted by the 

scientific community in the 1930s (he eventually received his Noble Prize in 

1953), a rational scientific framework for understanding polymers was formed. 

Large industrial companies began highly successful research programmes leading



INTRODUCTION 5

to the discovery of commercially viable processes for the production of nylon (by 

Du Pont), polyethylene (by ICI) and polystyrene (by Dow Chemical Company) 

amongst others. One should not forget that there are naturally occuring polymers 

such as starches and DNA, which is the longest polymer in existence, containing 

up to ten billion monomer units. [5]

1.3 W hat is solvent ingress?

Place a piece of polymeric material in a beaker of liquid or in vapour and the 

liquid or vapour will often penetrate the polymer causing it to swell. The kinetics 

of the system can be described using a chemical potential gradient which tends 

to zero with time, at which point the system is said to be in equilibrium. The 

chemical potential of a polymer solution is defined as the change in free energy 

resulting from the addition of one mole of solvent to an infinite amount of solution 

when temperature and presssure are held constant. [6 ]

1.3.1 Pick’s law: Case I ingress dynamics

Pick’s first law [7] describes the rate of the steady state of permeation through 

unit area of any medium. In one dimension it is written as:

J  = - D ^ -  (1.5)
OX

where D is the diffusion coefficient, c is the concentration of penetrant and x  is 

the distance. Pick’s second law (easily derived from the first [8 ]) refers to the 

accumulation or loss of matter as a function of time, t, at any given point in the 

medium being investigated. It is written as:
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Solving Equation 1.6 for boundary conditions for sorption in a semi-infinite 

medium:

c =  Co, x = 0, t > 0 , (1-7)

c =  0 , T > 0 , t =  0 , (1 *8 )

yields a solution for Fickian (also called Case I) dynamics of a solvent ingressing a 

polymer, that is characterised by smooth concentration profiles that move forward 

proportional to the square root of time. [8 ] Kinetically good solvents diffuse 

quickly through a polymer. They usually contain molecules that are physically 

small in size, such as methanol or water. [9]

1.3.2 Anomolous and Case II ingress dynamics

Concentration profiles other than those predicted by Pick’s theory have been 

observed in polymer/ solvent systems. This is the so-called anomolous regime 

where the solvent front position is seen to move as x (x tn where 1/2 < n < 1. In 

1965 Alfrey [10] coined the term Case II diffusion to describe the system where 

n =  1 . Mills et al [11] described an idealised concentration profile for the Case 

II system. This profile has a constant penetrant concentration in the swollen 

region followed by a large, sharp drop in concentration at the boundary of the 

unswollen region. A Fickian precursor penetrates the polymer glass ahead of 

the solvent front. Mills and Kramer [12] studied a range of iodohexanes with 

different numbers of carbon atoms ingressing a glassy chemical photoresist that 

had a chemical composition similar to poly (methyl methacrylate). They saw 

that the values of the diffusion coefficient extracted from the Fickian precursor 

decreased strongly with the number of carbon atoms in the iodohexane. They 

also observed a similar decrease in the Case II front velocity.
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1.3.3 Mechanical polymer relaxation

Theories abound to explain the anomolous and Case II phenomena. Some do not 

have any real physical basis, such as that proposed by Kwei et al [13] Others, 

discussed below, have a thorough physical justification. These theories have one 

characteristic in common. Viscoelastic properties are incorporated to describe a 

time-dependent stress-strain relationship. If a stress is applied to a polymer and 

then removed, it takes some time for the stress in the polymer to disappear. The 

effect is due to a molecular rearrangement in the solid induced by the stress. [2 ] 

The time scale for this to occur is called the relaxation time. Additionally, if 

a small sinusoidal stress is applied to a polymer, the resulting strain is out of 

phase with the stress by an angle ô. There is an in-phase component representing 

energy storage and a 90° out-of-phase component representing energy dissipation. 

The relative extent of each of these effects depends on a dimensionless Deborah 

number, De given by:

De = ^ ~  (1.9)
■L char

where Tchar is a characteristic time constant of the process of interest, representing 

the length of time in which the stress is applied, r  is the relaxation time. [14] For 

low values of De the polymer response is essentially liquid-like (viscous), whereas 

for high values it is solid-like (elastic). Viscoelastic behaviour is often modelled 

by spring and damper systems. Such a model comprising units of a spring and 

damper in series is called a Maxwell element; a parallel combination is called a 

Voigt element. [1]

The Crank model

In an attempt to produce a model for non-Fickian behaviour, in 1953 Crank [15] 

postulated that as penetrant concentration increased in a polymer there was
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a sudden jump in the diffusion coefficient which slowly drifted back to an 

equilibrium value. This history-dependent system can be described by Pick’s 

second law with the modification that

dD(c, t) _  Deq(c) — D(c,t) ^
«% ~  r(c) ' I ' ^

Deq is the equilibrium diffusion coefficient, c is concentration and t is time. Under 

certain limitations this methodology has successfully described pure Fickian, Case 

II and anomolous behaviour. [16]

The Thomas and Windle model and the Peppas model

In 1982, Thomas and Windle introduced what has become the basis of the 

most widely accepted model of Case II ingress. Phenomenologically, Thomas 

and Windle considered that the swelling of the polymer caused a stress across 

the sample that relaxed over time. The relaxation process was governed by 

competition between the viscosity of the polymer decreasing the stress across 

the sample and more solvent entering the polymer thereby increasing the stress. 

Mathematically,

dc _  d 
dt dx

and

d
dx

DVc da
.RT(1 -  c)(l -  2 %c) dx.

(1.11)

f e  =  - 4 - + /  E  (1.12)
dt ri/E (1 — c) 2 dt

where V  is the solvent molar volume, R  is the universal gas constant, T  is 

temperature, a is the normal stress in the x  direction, E  is the Young’s modulus 

of the spring in the Maxwell model, % is the Flory-Huggins interaction parameter 

(discussed in Section 1.3.4) and 77 is the viscosity of the damper in the Maxwell 

model. Numerical solutions to these differential equations are very unstable due
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to the fact that, for Case II diffusion, concentration profiles are step functions, 

with a first derivative of infinity at the front. Hence, application of this model 

using a simple numerical algorithm given by Thomas and Windle [17] yielded 

solutions that, in the Case II limit, were dependent on the step size of the 

finite differences used. [18] A more rigorous approach by Wu and Peppas [19] 

also seemed promising. They adopted asymmetric finite differences in their 

approach. However, this unfortunately led to solutions which were dependent 

on the direction of solvent ingress. To overcome this shortcoming, a symmetric 

finite difference method, using the ideas of Wu and Peppas, that gives stable 

and symmetric solutions has been implemented by the group at Surrey. [20] One 

additional limitation with this model, is that it also requires a large number of 

unknown parameters.

The Cody and B otto  m odel

The Cody and Botto theory appeared in 1994. [2 1 ] They explained that the 

solvent concentration gradient induces a strain across the sample that relaxes 

in a time that is dependent on the entangled polymer network. This strain is 

considered to be that from a single Voigt viscoelastic element. Mathematically, 

Cody and Botto used Pick’s second law with the proviso that:

g-njrd-e-h  + l (1.13)
fro n t

where J  is the compliance (a time-dependent reciprocal Young’s modulus or 

creep term) of the polymer network, H is the osmotic pressure driving diffusion

a n d £ is the solvent concentration gradient evaluated at the rubber/ glass
fro n t

interface.
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1.3.4 The thermodynamics of a polym er/ solvent system

To fully describe a polymer being swelled by solvent, not only the kinetics 

of the system must be considered, but the thermodynamics of the resulting 

polymer solution must be considered also. The chemical potentials in polymer 

solutions deviate enormously from those given by Raoult’s description of an 

ideal solution (where the activity of a solvent in solution equals its mole 

fraction). [6 , 22] This comes as no surprise because this law assumes equal 

molecular sizes and intermolecular attraction between the solute and solvent. 

The thermodynamics of polymer solvent systems were developed independently 

by Flory [2 2 ] and Huggins [23] in 1942. The level of enthalpic and entropie 

deviation from Raoult’s law can be quantified by the Flory-Huggins interaction 

parameter, %. [22] Thermodynamically good solvents interact strongly with 

polymer molecules. That is, they deviate little from ideality and hence have 

a small % (< 0.5). [22] Thermodynamically bad solvents, however, interact very 

little with polymer molecules; they therefore deviate enormously from ideality 

and hence have large values for % (> 0.5). [22] The Flory-Huggins interaction 

parameter is a function of temperature [24], concentration and molecular weight 

(even at very high molecular weights). [25] The solvent volume and quality decides 

which technique is used to measure %. Suitable apparatus include gas liquid 

chromotography (for low solvent fractions) and light scattering techniques (for 

high solvent fractions). [26]

1.4 W hy study solvent ingress?

Solvent ingress in polymers has huge importance in both the manufacture and 

end application of polymers. [27] In manufacturing, topics of interest include 

the motion of monomer, solvent and plasticizer molecules in polymer. [27] 

End applications of engineering polymers include controlled drug release [28],
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microlithography [29], membrane separation [30] and in fibre spinning. [31] 

Solvent ingress in biopolymers such as water in xanthan is also of considerable 

interest because of its relevance to the storage of water in plant roots. [32] Today, 

the controlling mechanisms of solvent ingress are reasonably well understood. 

However, confusion remains in the literature to describe some crucial phenomena. 

For instance, the rates of ingress in mixed solvent systems, the effects of 

polymer molecular weight on solvent ingress, and the mechanisms controlling 

the transition from Fickian to Case II dynamics are all poorly understood. These 

issues are all considered in this thesis.



Chapter 2

Experim ental m ethods

2.1 Measuring solvent ingress experim entally

The simplest and most common way to measure solvent ingress is to do 

a gravimetric experiment (see for instance reference [33]). Specifically, the 

polymer is placed in the solvent and removed every so often and weighed. 

This methodology has the problem of all ex-situ experiments in that changes 

can occur to the sample, such as solvent evaporation, when it is transferred 

from the solvent reservoir to the weighing apparatus and, of course, one 

cannot look at the effects of just one of the solvents in a mixed solvent 

system. Additionally, since there is no spatial concentration information one 

cannot find the diffusion coefficient as a function of concentration. Other 

methods that have been used in the literature include ion beam analysis [34], 

nuclear magnetic resonance (NMR) spectroscopy [35], ellipsometry [36], magnetic 

resonance imaging (MRI) [27, 37, 38, 39, 40], optical microscopy [41], neutron 

reflectivity [42] and conductivity measurements. [43] Neutron reflectivity is good 

for investigating sharp interfaces but is much less sensitive to the broad interfaces 

we expect in this study. [44] Only the magnetic resonance techniques and ion

12
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beam analysis can examine two solvent components separately. However, the ion 

beam technique requires, that at each ingress time step, the solvent has to be 

frozen into position and then measured hence a true dynamic in-situ measurement 

cannot be made. It does have the advantage of very high spatial resolution 

(suitable for examining the Fickian precursor in a Case II system, for instance). 

NMR spectroscopy can only take information about the swelling sample as a 

whole. It cannot provide a solvent concentration profile through the sample. 

The advantage of MRI is that an image can be taken at any position through 

the swelling sample. The disadvantage of MRI is that spatial and temporal 

resolution are both relatively low. The temporal and spatial resolution of optical 

microscopy is very high. However, separate solvent components in a mixed 

solvent system cannot be individually resolved. Ellipsometry seems the better 

technique in these applications. Although it cannot easily differentiate between 

separate solvent types, spatial and temporal resolution are extremely high, and 

information through the sample can sometimes be obtained (it is difficult for 

ellipsometry to provide a concentration profile). In the work explained in this 

thesis, the techniques of magnetic resonance imaging and ellipsometry are used 

to measure solvent ingress into polymers.

2.2 Nuclear magnetic resonance

2.2.1 The N M R  development timeline

The first successful attempts to observe NMR absorption were reported in 1946 

by Purcell et al at Stanford and by Bloch et al at MIT. Purcell’s group detected 

the NMR of protons in paraffin whereas Bloch’s group detected the NMR of 

protons in water. The first major application of NMR became apparent after the 

discovery of the chemical shift phenomenon in 1950 and its use in spectroscopy
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quickly became commonplace. Lauterbur, working with liquids, reported the first 

reconstruction of a proton spin density map in 1973. In the same year, Mansfield 

and Grannell, working with solids, independently showed the Fourier relationship 

between the spin density and the NMR signal. MRI is now routinely performed in 

hospitals. The application of MRI in materials science has only relatively recently 

started to develop. One of the more notable achievements, for the study of solids 

and confined liquids, has been stray field imaging suggested by Samoilenko in 

1988. A chronology of the development of NMR over the last fifty years is given 

in Table 2.1.

2.2.2 The N M R phenomenon

Atomic nuclei are characterised by quantum mechanical states. At a macroscopic 

level the behaviour of nuclei are combined as an ensemble. For nuclei with spin 

quantum number /  =  1 / 2  (a description of this term is given below), these 

spins are conventionally described by two orientations of a single vector: “up” or 

“down”. This forms the basis for the classical description of NMR, the approach 

taken by Felix Bloch. It is described in Section 2.2.5. The semi-classical approach 

for any / ,  followed by Purcell, is explained next in Section 2.2.3.

2.2.3 The semi-classical energy level approach to N M R

Atomic nuclei are spinning charges. They therefore have an angular momentum 

or spin I. This gives rise to a magnetic moment m. We can write

m  =  7 I. (2.1)

7  is usually called the gyromagnetic ratio although more correctly it should be 

termed the magnetogyric ratio. The value of 7  is nuclei specific. Spin is quantised
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Table 2.1: A chronology of the development of NMR

1946 Bloch [45] and Purcell [46] independently reported the first successful NMR 

absorption experiments in condensed matter.

1948 Relaxation described theoretically by Bloembergen, Purcell and Pound 

(BPP theory). [47]

1950 Chemical shift effect discovered highlighting NMRs use in chemical 

applications. [48, 49]

Hahn proposed the use of spin echoes to rephase transverse magnetisation. [50]

1952 Noble prize in physics shared by Bloch and Purcell for their contribution to NMR.

1953 First commercial NMR spectrometer.

1966 Ernst proposed the use of pulsed Fourier spectroscopy rather than continuous 

wave spectroscopy. [51, 52]

1973 Lauterbur suggested the use of magnetic field gradients to make proton resonant 

frequencies position dependent. [53]

Mansfield and Grannell introduced the concept of k-space. [54]

1978 First commercial MRI scanner.

1986 First NMR micrographs (voxels smaller than 100/mi3). [55, 56, 57, 58]

1988 Samoilenko proposed stray field imaging. [59]

1991 The Noble prize in chemistry won by Ernst for his contribution to NMR.
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with quantum number I  such that

(2 .2)

h is Planck’s constant.* If the magnitude of I is known, then, because of 

the uncertainty principle, the orientation is incompletely specified and only the 

magnitude in one direction can be known. Having applied a magnetic field the 

measurement direction is defined. In NMR, it is conventional to use the z axis. 

Now the z component of the angular momentum is defined as

where m L =  ± /, ±{I  -  1 ) , . . .  and ft is the angle of the spin to the z axis. m L 

is called the magnetic quantum number. For spin-half systems, i.e. I  =  1 / 2 , we 

can rearrange Equation 2.3 to find that ft =  54.7°. The interaction energy E  

between a magnetic dipole and a magnetic field B is

Assuming that there is a magnetic field in the z direction we can substitute 

Equations 2.1 and 2.3 into Equation 2.4. This gives the result for the energy of 

the states as

Conventionally, in NMR, the magnetic field in the z direction is called the B0

field. The energy difference between the two possible states of a spin-half system
*The fact that the angular momentum of particles is quantised is usually attributed to Bohr. 

However in 1912, the year before Bohr, the Englishman John Nicholson was really the first to 

make the discovery. Unfortunately, at this time, Rutherford’s model of the atom was not 

complete, and thus Nicholson’s results, using an incorrect model for the atom, were somewhat 

modest. Nicholson felt that he never received proper recognition for his discovery and he died 

in obscurity in 1955.

Iz =  |I| cos/? =  m ik, (2.3)

E  =  —m • B. (2.4)

(2.5)
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(mL =  ± 1 / 2 ) is written as

A E  = 'yhBo. (2 .6)

Transition between energy states requires a quantum of energy

A E  =  hu. (2.7)

Comparing Equations 2.6 and 2.7 we can finally write

CJQ =  7 B0 . (2.8)

This is the Larmor equation and cjq is called the Larmor frequency. If /  > 1, 

then more than one transition is possible, and in the presence of perturbing 

interactions, these nuclei may have more than one Larmor frequency. For 7 =  1/2 

systems, if a spin has mr, =  + 1 / 2  it is called a spin-up; if m i  =  —1 / 2  then it is 

a spin-down.

2.2.4 The bulk nuclear magnetisation

The possible energy levels have a thermal equilibrium population given by a 

Boltzmann distribution. For mL =  ±1/2 we can say that the distribution of the 

spins in the two energy states is

where n-f- is the number of spin-ups per unit volume, 7 4  is the number of spin- 

downs per unit volume, T  is temperature and k is the Boltzmann constant. We 

can write that the net magnetisation or magnetic moment per unit volume M  is

— A E  -7ftgp
= e kT =  e kT (2.9)

M  = (rif — ni)m. (2.10)
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Trivially, n-j- +  =  n where n is the total number of spin-half nuclei. Combining

Equations 2.9 and 2.10 we can write that

For a typical proton NMR experiment at the University of Surrey: B0 =  9.4 T, 

T =  298 K and 7  =  2.7 x 108 rad s _1 T "1. Hence, nt -  n; «  3 3  x 10"6. For a 

proton NMR experiment we only get a signal from 33 out of every million nuclei. 

Additionally, every emitted quantum of energy from a downward transition is 

tiny (hujQ). An NMR experiment has an inherently low signal.

2.2.5 The classical approach 

T he Bloch equations

A nucleus spinning in a magnetic field feels a torque

Equating the two expressions for torque and substituting Equation 2.1 we see 

that

(2 .11)

T  = m  x B. (2 .12)

The torque is also equal to the change in angular momentum

(2.13)

(2.14)

Hence, for an ensemble of spins
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The steady state solution is precession at an angle ft about the field direction 

with angular velocity cjq =  —'jB q such that:

M, =  Mocos/3, (2.16)

Mx =  Mo s i n c o s  wot, (2.17)

Mx =  M0 sin fi sin w0t. (2.18)

When a sample is placed in a magnetic field Bq the magnetic moment changes 

from zero to M0. Equally when the orientation of the equilibrium magnetisation 

in the magnetic field is perturbed and then released the magnetisation returns to 

Mo. Bloch assumed that M relaxes to M0 exponentially and that the components 

of M  parallel and perpendicular to M0 relax with different time constants T\ and 

T2 respectively. With the z axis chosen along Bq

dMz Mz — Mq z9 -, q\
dt ~  Ti ’

dMx Mx (2 .20)

y  -  (2 .21)

dt T2 ’

dM,, M
dt

This approach to thermal equilibrium is known as relaxation and Ti and T2 are 

relaxation times. The decay of Mz, the longitudinal component can differ from the 

decay of the transverse components Mx and My because the energy of the system 

depends on Mz. A change in Mz is accompanied by an energy flow between the 

nuclear spin system and the surrounding lattice of atoms. The relaxation time 

describing this flow is Ti, usually known as the spin-lattice relaxation time. For 

protons, at room temperature, typical values are between 0.01 and 10 s. Direct 

interactions between the spins of different nuclei can cause relaxation Mx and
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M y  without energy transfer to the lattice. Hence T2 is known as the spin-spin 

relaxation time. Typical values for T2 are between 10 /is and 10 s for protons at 

room temperature. [60]

In an NMR experiment a small oscillating magnetic field in the x  direction 

2B l c o s  cut is used to perturb the magnetisation and excite observable resonance 

phenomena. It can be resolved into two components that precess in opposite 

directions around B0 one of which can be ignored as it is effectively off-resonance 

by 2(Jo when cu0 ~  w- The total field B acting on the sample is

B =  Bi cos uj t i  — Bi sinwtj +  Bok (2.22)

where i, j and k are unit vectors in the x, y and z directions. Combining 

Equations 2.15, 2.19, 2.20, 2.21 and 2 . 2 2  and we can write the Bloch equations 

in the presence of this perturbing field and relaxation as [60]:

=  - j ( B i  cos u t M y  + Bi sin u>tMx) -  , (2.23)
d t  i i

= - j ( B 0M x -  Bi cos u j t M z ) -  (2.24)
a t  ±2

=  ^(Bi sin u ) t M z + Bq M y )  — — . (2.25)
d t  ±2

The rotating reference frame

The Bloch equations can be made simpler by considering a set of axes (x',y',z) 

rotating with the applied field with angular velocity —uj about the z axis. If u 

is the component of magnetisation in the Bi direction (along x1) and v is the 

component along the y' axis then:

u =  M x cos u t  — M y  sin u t ,  (2.26)

v =  Mx sin Lot +  My cos wt. (2.27)
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In the rotating frame the Bloch equations are written as [60]:

(2.28)

(2.29)

dt
v (2.30)

which clearly simplify further when the resonance condition cu =  cjq is met.

2.2.6 Radio frequency pulses

The causes of these differences are described in Section 2.2.8. The differences 

in environment produce different resonant conditions. NMR can be used to

method for finding the structure of molecules. The simplest way to obtain an 

NMR spectrum is to slowly sweep a single radio frequency (RF) to scan all 

the resonances in a sample. This is called continuous-wave (CW) NMR. One 

disadvantage with this method is that, since one is only detecting one frequency 

at a time, an experiment can be very slow. To overcome this shortcoming short 

pulses of radiation are used. In a pulsed experiment an oscillating RF magnetic 

field is turned on for a time usually in the range of 1-50/zs (i.e. short compared 

to the relaxation times). The frequency (called the carrier frequency u c) of this 

pulse is chosen so that it is close to the resonance of the nucleus of interest. If 

one Fourier transforms this time-domain top-hat function one has a sine function 

in the frequency domain centred on cvc, that is to say, a range of frequencies are 

now excited. One can see the action of the pulse best in the rotating frame. In 

the rotating reference frame M will precess about the x' axis at —j B i  during the

In a real sample each spinning nucleus will be in a different chemical environment.

determine these differences and it is this fact that makes NMR such a powerful
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pulse. After a pulse of length r  it will have processed by 7 B 1T. If r  = 

then M  will have turned through 90° into the y' direction (a so called 90° pulse). 

If r  = 71-/7 B1 then after the pulse M  will be in the —z direction (a 180° pulse). 

Following a pulse, Boltzmann equilibrium is restored by relaxation. After a 180° 

pulse there is purely spin-lattice relaxation:

This is a solution to Equation 2.19. A 90° pulse is followed by transverse 

relaxation:

This is a solution to Equation 2.21 as well as spin-lattice relaxation.

2.2.7 Signal detection

To measure the NMR phenomenon in the laboratory, a coil must be placed 

around the sample. The coil geometry should be such that the symmetry axis 

is perpendicular to the B0 field. Any transverse magnetisation processing at ljq 

will induce an EMF at the same frequency in the coil. In an RF receiver the 

induced EMF in the coil is mixed with a reference RF oscillator at a frequency, 

u)r. This is called heterodyning. If two RF references are used that are 90° out of 

phase, then the output signal is proportional to orthogonal magnetisation phases 

i.e. Mx and My. Hence, in the time domain, the NMR signal is represented as 

a decaying EMF, oscillating at A cj = cjq — ivr . As an example of an expected 

NMR signal, consider an experiment where an RF pulse is applied that flips the 

equilibrated spins at M0k  through 90°. In the laboratory frame of reference and 

neglecting Ti relaxation, the magnetisation is then

M(t) = (M0 cos wod +  M0 sincvoti)e- ^ .  (2.33)

M z ( t )  -  M0 =  (M*(0) -  M q )  exp(-t/Ti). (2.31)

My ( t )  = M y(0) exp(—t/T2). (2.32)
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Expressing this in complex number notation where i is the real axis and j is the 

imaginary axis we have that

M(Z) = (2.34)

The heterodyne signal is

(2.35)

So, the signal immediately after the RF pulse is proportional to M0 and ÿ is 

the absolute receiver phase. Since this EMF is induced by the magnetisation 

in free precession, it is called a free induction decay (FID). There is a Fourier 

relationship between the FID and the spectrum measured by CW NMR.

2.2.8 Linewidths and interactions 

Linew idth

For a liquid state sample, if we Fourier transform the NMR signal and set the 

absolute receiver phase to 0°, then we see a Lorentzian in the real channel with 

a full-width-half-maximum (FWHM), or linewidth, of I / ttT̂  (the absorption 

spectrum) and what is called a dispersion spectrum in the imaginary channel. 

These spectra are illustrated in Figure 2.1.

M agnetic field inhomogeneity

In a real NMR magnet, inhomogeneities in the Bo field, expressed as ABq, are 

inevitable. In the frequency domain, this leads to a broadening of the NMR 

spectrum and in the time domain, this gives a more rapid transverse dephasing 

than T2 effects alone would suggest. The time constant that represents this is
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Figure 2.1: The absorption spectrum in the real channel (solid line) and the 
dispersion spectrum in the imaginary channel (dashed line).

T2*. It can be written as

1 ^ 1  ( 7 AB0 

2 ?  ^  7 ^ +  2
(2.36)

It should be noted that although coherence lost through relaxation is random 

and therefore irreversible, coherence lost through magnetic field inhomogeneities 

is ordered and thus réversible. This is achieved in a two pulse sequence by 

the formation of a Hahn echo. [50] The first pulse excites and the second pulse 

refocuses.

Dipole interactions

Given that the separation of nuclei in condensed matter is relatively vast, it is 

surprising to see that the magnetic fields from spinning nuclei have a massive 

influence on their neighbours. These effects are called dipole interactions. They 

have the same magnitude between the nuclei of solids and liquids, but in liquids 

they are averaged to zero by the motion of the constituent nuclei. Hence, in 

solids, T2 is extremely short and the signal can be broadened so much in the
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frequency domain that the NMR signal can be invisible. Due to the ordered 

nature of dipole interactions, the FID is Gaussian in shape.

Chemical shift

In condensed matter, the atomic nuclei are surrounded by a cloud of electrons. 

The field generated from these electrons acts against the B0 field and we can 

write

where a is called the shielding parameter. This equation means that spins that 

are in different electronic environments -  and therefore in different magnetic fields 

-  precess at different angular velocities. The absolute value of a is hard to find,

where /  is the frequency of the compound of interest. The chemical shift is 

dimensionless, and we describe the shift in parts per million or ppm. It is no 

overstatement to proclaim that the discovery of the chemical shift phenomenon 

in the 1950s revolutionised chemistry.

Scalar coupling

Scalar, spin-spin or J-coupling (since it is quantified by the coupling constant 

J), acts through electrons in chemical bonding and not through space. A nucleus 

perturbs its bonding electrons, which produces a magnetic field at a neighbouring 

nucleus, which, in turn, affects its neighbouring nuclei and so on. The value of 

J  is independent of spectrometer frequency, and for protons typical values are 

rarely above 20Hz. [61]

D  nucleus —  ^ o ( l (2.37)

so the shift in frequency, the so-called chemical shift Ô, from a reference frequency 

f ref  is measured instead, with

fO QQ't(2.38)
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Q uadrupolar coupling

Nuclei with 7  > 1 / 2  have an electric quadrupole moment that arises from the 

non-spherical distribution of nuclear charge. These nuclei interact with electric 

field gradients that are produced by valence electrons. This type of interaction 

gives 27 lines in low symmetry environments. In liquids it is averaged to zero. 

When 7 > 1/2, the quadrupolar interaction dominates relaxation.

2.2.9 Measuring relaxation times 

M easuring Ti

In an experiment after a 180° Equation 2.31 applies but no signal is detected 

because no magnetisation is produced in the y direction. However, at any time 

after the pulse the state of Mz can be monitored by applying a 90° pulse. The 

pulse sequence used is

[180° -  r  -  90°(FID) -  Td)n (2.39)

where Td is a time longer than the longest Ti to be measured so that a return 

to the Boltzmann populations is made between 180° pulses. The FID is Fourier 

transformed and the time r  is varied. Ti is then found from a plot of In S  against 

t  {S is the peak height at each r) using:

ln(S(oo) -  S(t)) =  ln(2 ) +  In S(oo) -  r/T i. (2.40)

Spin-echoes and T2 m easurem ent

Two factors contribute to the FID after a 90° pulse. Due to magnetic field 

inhomogeneities, different parts of the same specimen have different Larmor 

frequencies and so the different contributions to the magnetisation vector slowly
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fan out. Random processes realign the nuclei to establish thermal equilibrium. 

These processes can be measured separately by using a series of pulses and 

observing spin-echoes. A 90° pulse turns M q  into the y -a o d s  (Equation 2.32). 

The magnetisation vectors then fan out and the signal decays. A 180° pulse 

is then applied after time r  i.e. all magnetisation vectors are rotated by 180° 

about y ' .  The magnetisation vectors continue to move in the same direction and 

after r  they are again in-phase in the y '  direction. This is a spin-echo or Hahn 

echo. Successive 180° pulses can be applied and the amplitude of the resulting 

echoes decays exponentially due to Tg relaxation. The value of T2 can be found 

from the envelope of the echoes. This is the Carr-Purcell-Meiboom-Gill (CPMG) 

sequence.

2.2.10 The theory of relaxation

The requirement for spin-lattice relaxation is the presence of a magnetic field 

fluctuating on a time scale comparable to the Larmor frequency. Such fluctuations 

give rise to the energy quanta necessary to cause spin transitions. An essentially 

static or low frequency fluctuation is required for T2 relaxation. The fluctuations 

experienced by a nucleus in a liquid f(t)  where t is time will be due to the 

magnetic moments of other nuclei as they move through Brownian motion. This 

fluctuating field can be resolved into two components perpendicular and parallel 

to B q . The component perpendicular to B 0 induces transitions between energy 

levels, in a similar way to electromagnetic radiation. This gives a non-adiabatic 

contribution to both Ti and T2 relaxation. The populations of the states change 

until they reach the values given by the Boltzmann distribution (Equation 2.9). 

This process is entirely described by T%. T2, on the other hand, also has an 

adiabatic component. The linewidth (if B q  effects are neglected) is inversely 

proportional to T2 and is a measure of the uncertainties in the energies of the two 

states. Through the Heisenberg principle this is found to be inversely proportional
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to the lifetime of the states. These are reduced by random fluctuations in the 

local magnetic field. Hence fluctuation in the magnetic field affects both Ti and 

T2 . Both the x and y components of the fluctuating field affect Ti. However, 

My is affected only by the x  component of the non-adiabatic term, hence the 

non-adiabatic contribution to T2- 1  is half that of T f 1 for mobile liquids. The 

adiabatic contribution to T2- 1  is from the magnetic field fluctuations in the z 

direction which affect linewidth. For a mobile liquid this contribution is T f1/2 

so Ti =  T2 .

The fluctuation in the ^-component of the local magnetic field is:

Bx(t) = (2-41)

We need to quantify the persistence of these fluctuations. This is done using an 

autocorrelation function defined as:

G{r) =  +  t) . (2.42)

The bar shows that this is an ensemble average over all the spins in a region of 

space, t is the time over which the ensemble is averaged. G(r) is independent of 

t but decays with r. This decay can be assumed to be exponential and we can 

write that:

G(r) =  exp(—|r |/ r c). (2.43)

tc is called the correlation time. From perturbation theory [60] we can write that: 

■̂ r = l 2BoxJ M .  (2.44)

J(cuo) is the spectral density i.e. the power available from fluctuations at 

frequency cu. It is the Fourier transform of G(r). Hence, using the assumption of 

Equation 2.43:
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Substituting Equation 2.45 into Equation 2.44 gives:

J_ _  _ 2  d 2 2 t c 
Tr _ 7  ° n  +  a;02r |-

(2.46)

Plots of J(u) against log(w) are shown in Figure 2.2. The flat part of the graphs

1 100

0.6 6 0

0.4 40

0.220

1210862 40
b

Figure 2 .2 : A graph of J(w) (with arbitrary units) against w. Case (a) shown 
by the left hand scale and lower plot shows the extreme narrowing situation 
when rc =  lOx/ÎÔps valid for mobile systems. Case (b) shown by the right hand 
scale and the upper plot is far from extreme narrowing (rc =  1 0 \ / I 0 ns) valid for 
immobile systems

occurs when <  1. This is called extreme narrowing. In this case: 

T, =  2 7 % T , (2.47)

In mobile solutions, rc ~  lOps and since for an NMR experiment w is of the order 

of 1 0 8rads- 1  the extreme narrowing condition holds and hence T\ increases with 

tc , that is, as mobility decreases. Away from extreme narrowing the full form 

of Equation 2.46 holds. Its form is plotted in Figure 2.3. For X2 the adiabatic 

term, discussed above, requires no energy change hence the appropriate spectral 

density is J(0). We can write:
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Figure 2.3: A graph of Ti (‘V’-shaped curve) and T2 (lower curve) versus the 
correlation time rc. The left hand side of the graph is the extreme narrowing 
regime

Figure 2.3 shows the form of this equation. The concepts in this section were 

first described by Bloembergen, Purcell and Pound [47] and are usually called 

BPP theory. They are valid in the so called “weak collision” case when rc < T2 

In Figure 2.3 the rigid lattice value of T2, when tc —> oo and BPP theory is not 

valid, has been arbitrarily chosen as it depends on the distribution of the random 

fields. [60]

2.3 M agnetic resonance imaging

Consider two spins in a B 0 field to which a magnetic field gradient =  G has 

been additionally applied. One of the spins has an angular frequency oj( x ) .  The 

other spin a distance A x  away has angular frequency, cj(x-hAx) — cj(x)-i-jGAx. 

The difference in frequency between the two spins is therefore jG A x .  Hence 

we see that frequency maps to space. The constant of proportionality linking 

frequency and space is the product of the known terms 7  and G. In theory this 

allows us to find NMR parameters such as nuclei density, Ti and T2 as a function
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of position and not simply an average of the whole, bulk sample. This concept 

is the basis for magnetic resonance imaging (MRI). How this technique works in 

practise is described below.

2.3.1 k-space

For simplicity we again consider spins in one-dimension at position x. The spins 

occupy an element dx and the local spin density is p(x). Hence, in an element 

there are p(x)dx spins. These nuclei are in a fixed magnetic field to which a 

magnetic field gradient has also been applied. From Equation 2.35 we can write 

that the signal from this element dS is

dS(G,t) <x p(x)eiut-x)tdx. (2.49)

Substituting for lj ( x ) ,  we have

dS(G,t) <x p{x)éi--'Bo+-'Gx)tdx. ■ (2.50)

If the on-resonance condition applies (that is the heterodyne reference signal wr 

is set to 7 B0), then the signal oscillates with jG x  only. So, after integration

S(G,t) a  f  p{x)ei',axtdx. (2.51)

With a change of variables such that k = ^  and neglecting the constant of 

proportionality

S{G,t) =  [  p(x)ei2Tkxdx. (2.52)

This equation is of course a Fourier transform. Taking the inverse of this means 

that we can write the spin density as:

p(x) = J  S i G ^ e - ^ d k .  (2.53)
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Trivially extending these arguments to three-dimensional space (where the spins 

are at the cartesian position r) :

This statement of three-dimensional k-space giving the mutual conjugacy between 

S  and p is the fundamental relationship of MRI. k has the units of reciprocal space 

or m-1. However, normally only two dimensions are encoded in this way and slice 

selection is used to image three dimensional space.

2.3.2 M RI pulse sequences

The aim of an MRI experiment is to acquire enough information about k-space 

to be able to produce an image in space with a desired contrast weighting. This 

contrast weighting can come from a wide range of physical factors, such as Ti, 

T2, nuclei density, chemical composition, diffusion or flow. It is this huge range 

of different contrast media that makes MRI such a powerful technique. Different 

contrast and different views of k-space are found by using pulse sequences. These 

are combinations of RF pulses and switched magnetic field gradients. A careful -  

and often extremely cunning -  choice of these inputs can produce an image with 

the desired contrast and sample slice selection. In this section a description is 

given first of spin-warp imaging, its drawbacks are discussed and then the spin- 

echo imaging sequence is described. The latter is the most commonly used pulse 

sequence for magnetic resonance microscopy.

2.3.3 Spin-warp imaging

The spin warp pulse sequence is shown in Figure 2.4. In MRI we usually want

(2.54)

(2.55)
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T/R

Gz J  L _________________________  Slice

Gx ___________ I_______________L Read

Gy _______     Phase

Figure 2.4: The spin-warp pulse sequence. On the top line, the RF transmit (T) 
signal is shown as the solid line; the received signal (R) is shown as a dashed line. 
The sequence is repeated many times with r  incremented at each stage.

to record a 2 D image, i.e., a slice through a 3D sample. So first we must select a 

2D slice. This is achieved by applying a magnetic field gradient in the z direction 

and then applying a frequency-selective and therefore, because of the magnetic 

field gradient, a slice-selective (or soft) 90° RF pulse. Ideally, a soft pulse should 

be rectangular in the frequency domain. However, this is a sine function in 

the time domain, which expands infinitely in time. Hence, in practise, it will 

always be truncated, producing unwanted modulation in the frequency domain. 

Nevertheless, sine pulses with three or five lobes are usually good enough. Soft 

pulses are also often Gaussian in the time domain and therefore Gaussian in 

the frequency domain, which is an acceptable approximation to a rectangular, 

frequency domain pulse. The first order phase shift introduced by the soft pulse 

must be refocused. This is done by reversing the slice gradient for a time equal 

to half the pulse length. Another gradient is now applied in the y direction, the 

so called phase direction. This gradient causes the spins to rotate at different 

rates so after a time r  they each have a different phase, hence the name of this 

axis. The spins now precess at a frequency dependent only on their y position,
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hence their phase ÿ also depends only on this position as:

(t>{y) = u{y)T = -lyGyT. (2.56)

Acquisition of the signal now begins at the same time as a further gradient in the

x direction is switched on. The spins now precess at a rate dependent on their x 

position:

This is of course the Fourier transform of p{x, y). So inverse transforming returns 

the spin density p(x, y). Additionally, one should note that for a single acquisition 

period described above we obtain values for a range of t but only one r  value. 

The sequence is therefore repeated for a range of different r  values. To produce a 

full representation of p(x, y) we need to measure as much of k-space as possible. 

One problem with the spin-warp sequence is that, because we cannot make an 

acquisition in negative time, it is not possible to measure kx and ky for negative 

values. This leaves a huge portion of k-space unknown. A second drawback 

with this sequence is that the NMR signal decays because of inevitable B q  

inhomogeneities.

u(x) =  —̂ fxGx. (2.57)

The signal from each spin is now:

dS{x,y,t) = el<f>̂ e lu}̂ tp(x,y)dxdy. (2.58)

Integrating over the whole sample gives

5 (x, y , t , r ) =  f  f  e 7xGxte 'iyGyTp{x) y)dxdy. (2.59)
v —o o  7 —0 0

Performing a change of variables, we can write Equation 2.59 as

(2.60)
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2.3.4 Spin-echo imaging

Both of the problems with the spin-warp sequence are overcome with the addition 

of a second application of a magnetic field gradient in the read direction and a 

180° RF pulse. A schematic of the timing of the complete spin-echo sequence 

is shown in Figure 2.5. To measure negative kx a negative phase is introduced

Signal90T 180°

T/R

Slice

Read

Phase

H
T

Figure 2.5: The spin-echo pulse sequence. On the top line, the RF transmit (T) 
signal is shown as the solid line; the received signal (R) is shown as a dashed line.

to the spins before acquisition. This is done by using a read-dephase gradient 

lobe. A gradient is applied during the period r  so that the spins are phased. 

The 180° pulse then inverts these spins. The read gradient is applied again and 

as t evolves we measure increasing kx from negative, through zero, to positive. 

The 180° pulse also refocuses magnetisation that has been dephased by B q  

inhomogeneities. This increases the measured signal compared to spin-warp 

imaging. To measure negative ky, gradient Gy is incremented every T r  to go 

from negative to positive rather than changing r, which cannot be negative. The 

other advantage in not incrementing r  is that the relaxation weighting remains 

constant across the sample. If T r  is less than between three and five times the 

value of Ti, then the level of Ti contrast is changed. If the echo time is in the
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region of T2 then an image has T2 contrast. An alternative to spin-echo imaging 

is gradient-echo imaging. Here, an echo appears without applying a 180° RF 

pulse because the magnetisation is refocused by reversing the first read gradient 

pulse. This sequence, however, gives T2* weighting rather than the T2 weighting 

of spin-echo imaging, but the minimum echo time is shorter without the 180° 

pulse.

2.3.5 Spatial resolution

We cannot, of course, measure our NMR signal at an infinite rate. Neither can we 

measure it for an infinite time. This means that a magnetic resonance image has 

a finite resolution and field of view. The level of the digital resolution can easily 

be explained by rearranging our definition of ID k-space, say kx, and writing 

Akx as the increment in Â^-space we measure, A x  is the space between image 

pixels, A t  is the time between samples of the NMR signal and N  is the number 

of samples in total time T. This gives

We can assume that features are resolved across next nearest neighbour pixels so 

that spatial resolution is

Our lines in frequency space are not of course infinitely small but are broadened 

(Section 2.2.8) with FWHM 1/7tT2 s o  there is a limit on T  such that after scaling 

the line broadening by 2tïI^GX

A t* —      — - - !. —— ... .
ATAk, A % A f  -yO=T'

27T 27T 27T (2.61)

ATbest — 2 Ax. (2.62)

1 1 (2.63)
7tt2 r
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Hence,

A r w  =  - i - .  (2 .6 4 )
l O x±2

This argument is of course valid in all three dimensions. [62] Spatial resolution 

is also limited by diffusion. This attenuates the signal as: exp(-72Gf̂ t3D/3) 

giving Arz,est % 2 .6 [B /(7 G!a:)]1/3. [63] Other phenomena that limit resolution are 

susceptibility inhomogeneity and spin motion. [64] Solids have very short T^s. 

This makes them a challenge to image with MRI.

2.3.6 Stray field imaging

One way to improve spatial resolution is to maximise the magnetic field gradient. 

In conventional MRI, gradient coils are used to produce this gradient and a typical 

maximum obtainable value for a microimaging set is between 1 and lOTm-1. [62] 

In 1988 Samoilenko et al [59] [65], proposed placing the probed sample in the 

fringe field of a superconducting magnet. It is well known that a magnetic field 

reduces as the reciprocal of the distance squared. However, this gradient can 

only be approximated as linear over short distances and it is not switchable. 

Nevertheless, huge magnetic field gradients, roughly linear over short distances, 

are obtainable. At the University of Surrey, our superconducting magnet with 

an isocentre field of 9.4T can can give a near linear gradient of 58Tm-1 in a 

5.5T fringe field. In a conventional stray field imaging (STRAFI) experiment, 

a profile is acquired by using an RF pulse to excite the resonating spins. The 

high gradient ensures that even a short pulse is highly spatially selective. The 

resulting magnetisation is recorded directly as a measure of the spin density in 

the resonance plane. A Fourier transformation is not required. Instead, the 

sample is then moved mechanically so that a different slice of the sample is then 

at the position in the field corresponding to the coil resonant frequency. Usually 

only ID profiles are obtained although it is possible to move the sample in all
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three dimensions and construct an image using back projection type algorithms. 

In 1992, Miller and Garroway [66] proposed frequency swept imaging. In this 

technique, the excitation frequency is incremented rather than the position of 

the sample. This is a relatively fast method but it has the disadvantage that the 

field of view can be rather small (say 2mm). It is limited by the bandwidth of 

the RF coil and the sensitivity of the coil at a distance. The latter is usually the 

ultimate limiting factor. Both STRAFI acquisition methodologies, however, have 

one great advantage over conventional MRI. Since time is not spent switching 

gradients, measurements can be made close to the pulse before Tg decay has 

occured and so true proton density maps can be obtained. It should also be 

noted that with such a large gradient, T2* is short, usually much less than the 

dead time of the spectrometer, hence no FID can be measured. Instead, the 

signal must be refocussed as an echo. Usually, a quadrature echo sequence that 

generates an echo train is used such as 90a;—r —(90y—r —echo—r)n where r  is the 

time period between RF pulses and n is the number of echoes. [67] This sequence 

has the advantage of producing spin-relaxation weighted profiles. Alternatively, 

if the SNR is low, the echoes can be summed.

2.3.7 M RI hardware

In a conventional system magnetic field inhomogeneity in the magnet is critical. 

Values of the order of one part in 107 are required. This is achieved by putting 

an additional set of adjustable magnetic field coils or shims inside the fixed B0 

magnet. The shims are computer controlled and their values can be optimised by 

the NMR experimenter. The gradient pulses are also computer controlled. The 

signal from the computer is first passed through a digital to analogue converter 

and then amplified to drive the gradients in all three dimensions. The RF pulses 

are controlled by the computer modulating the output from an RF generator at 

the desired Larmor frequency. These pulses are then passed through an amplifier.
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A typical broadcast power is IkW. The RF signal is both transmitted and 

received by the same coil. The received signal is passed through a pre-amplifier 

which amplifies the signal from the order of //V to a level more suitable for 

further amplification. If different nuclei are probed with the same spectrometer, 

then a range of frequencies need to be amplified. The usual balance between 

bandwidth and signal-to-noise ratio that results is, in our case, dealt with by 

using a broadband pre-amplifier. However, the signal is first passed through a 

filter to remove any signal out of the frequency range of interest. This signal then 

needs to be fed back to the computer for processing. However, analogue to digital 

converters do not work at RF frequencies so the signal is first demodulated, that 

is the NMR signal is removed from the Larmor frequency carrier. A demodulator 

works by mixing the NMR signal S{t) = /( t)e i(tVo+Aa,)t with a reference signal 

cos LJ0t. This gives

S(t) cos (Jot =  ^-^[cos(2wo +  A)t +  cos Aut  +  2(sin(2 wo + Aivt)]. (2.65)

We can simplify this expression to

S{t) COS Wot =  Z | l ( ei(̂ o+Au,)« +  gi&wt'j' (2.66)

The signal now has two frequency components. The high one is removed with 

a low pass filter to leave the low frequency component, which yields the NMR 

frequency with respect to the rotating frame of reference. This low frequency 

component can then be digitised. [68]

2.3.8 RF coil design for isocentre MRI

There are a number of designs for coils that provide a homogeneous RF field 

perpendicular to the Bq field. Usually these coils have a circular cross section 

to house a sample test tube. The solenoidal coil provides the greatest SNR.
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However, a normal superconducting magnet, suitable for MR microscopy, has a 

narrow bore and so housing a sample test tube within this bore can be awkward. 

Consequently, saddle [69] or birdcage [70] type coils are used. [64] A saddle coil 

has an SNR of about one-third of that of a solenoid [71], however, they provide a 

more convenient sample geometry. Hoult and Richards [71] show that the optimal 

geometry for both homogeneity and proximity is given by a coil length twice that 

of the coil diameter. For the saddle coil the optimum angular width is 120°.

2.3.9 Chemically selective imaging

One advantage of MRI over other techniques for measuring mixed solvent ingress 

is that one can probe specific chemical species. There are a number of different 

methodologies for doing this.

Chemical substitution

In a mixed solvent system, such as methyl ethyl ketone and ethanol ingressing 

polystyrene, to be looked at later, we may want to look at just one solvent at a 

time. To observe ethanol only, for instance, we can substitute deuterium atoms 

for some hydrogen atoms in the ethanol only and perform an MRI experiment at 

the deuterium Larmor frequency. Alternatively, one can perform an additional 1H 

experiment on the same system and deduce ingress information from the signal 

that has disappeared from the signal of the fully-protonated system. This has 

the advantage of having a better SNR and hence quicker experiment time. The 

disadvantage is that signal from the increasingly mobile rubber cannot be easily 

deducted without performing an experiment where all the ingressing solvents have 

been isotopically substituted, to give signal only from the polymer. However, with 

any type of labelling experiment, there will always be the worry that the labelled 

molecules behave differently from their unlabelled counterparts. Sometimes the
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effect is major, in the case where fluorine is used for labelling, if acetone (a 

liquid) is fluorinated it becomes perfluoroacetone (a gas) and cyclohexane (a 

liquid) becomes perfluorocyclohexane (a solid). [72] Indeed, even when the atomic 

species remains the same after labelling, e.g. deuterium instead of hydrogen, the 

diffusion coefficient varies with mass.

Relaxation time editing

Different chemical species display different relaxation times. Hence, editing an 

image based on the relaxation time of each species would appear to be very 

convenient. The problem with this type of method for mixed solvent ingress 

experiments is that there will be a spread of relaxation times across the sample 

depending on the relative concentrations of each of the solvent components. This 

means that accurate nulling of the response from either of the solvent components 

across the whole sample would be very difficult. [72]

Chemically resolved imaging

If the NMR spectrum of a mixed solvent reservoir has more than one line with a 

separation greater than a single pixel, each line will produce an image displaced 

by its respective chemical shift. There are a number of NMR techniques available 

that allow one to obtain separate images from each resonance. The easiest method 

is to make one of the excitation pulses a soft pulse, applied in the absence of 

gradients and then to use the other pulse for slice selection. There are other 

techniques where a fourth spectral dimension is introduced such as chemical-shift 

imaging. [73] Here, all spatial dimensions are phase encoded and the NMR signal 

is acquired without a magnetic field gradient. The result is an NMR spectrum 

at each point in k-space. The disadvantage of chemically resolved imaging is 

that if chemical shifts are small between species, then unambiguous distinction
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between them is not possible. Also, with the addition of a spectral dimension to 

the MRI experiment, measurement time can become prohibitively high [74] for 

in-situ solvent ingress experiments.

Cyclic J  cross polarisation edited  imaging

Another alternative is cyclic J  cross polarisation (CYCLCROP) edited imaging 

which exploits the wider chemical shift of 13C with respect to whilst still 

retaining the SNR advantages of imaging. The pulse sequence consists of two 

modules: one for editing and the other for imaging. The editing sequence selects 

a single resonance from a specific 13CHn group of a molecule while suppressing all 

other resonances. The output is an FID. A suitable imaging sequence, such as a 

spin-echo, can then be implemented. The sequence has already been successfuly 

implemented by Kimmich and coworkers [75] and used to study carbohydrate 

metabolism and transport [76] and to selectively determine elastomer distribution 

in multicomponent polymer mixtures. [77] The CYCLCROP editing sequence 

is shown in Figure 2.6. It consists of a forward step 1H -> 13C, a saturation

90

(RF)

(RF)

C
O.

1 I *

CP
1

CP
■90.; 9 0/ 1

81

G
Figure 2.6: The CYCLCROP pulse sequence

step during which unwanted signal is destroyed, and a backward 13C —> 1H
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polarisation transfer step. The forward and backwards steps are both composed 

of a spin-locking pulse (SL) on one side and a contact pulse (CP) on the other. 

Magnetisation is said to be spin-locked when after a 90° pulse, the B\ field is 

not switched off but its phase is shifted by 90° so that it is aligned with the 

magnetisation along the +y axis for a time r. In the rotating frame of reference, 

the magnetisation only experiences the Bi field and undergoes no precession. It 

does, however, decay with a time constant Tip (the spin-lattice relaxation time in 

the rotating frame). Spin-locking is the preparation mode used in the Hartmann- 

Hann experiment. [78] This allows magnetisation transfer from NMR favourable 

spins (high j  and/ or abundance) in this case 1H to NMR unfavourable spins 

(low 7  and/ or abundance) in this case 13C. In a two-spin system, one set, I  can 

be locked along an RF field Bi (the spin-locking pulse) and another, S  along a 

second RF field B2 (the contact pulse). If the Hartmann-Hann condition

7 /Bi =  7 sB 2 (2.67)

is satisfied, then coherence can be transferred between the two chemical species. 

In solid state systems, I  and S  spins interact through dipolar interactions. In 

liquids, indirect spin-spin or J  coupling prevails. This is also called J  cross 

polarisation. In the CYCLCROP sequence, magnetisation is first transferred 

from the 1H to the 13C spins. The carbon magnetisation is then stored in the z 

direction. All residual proton spin resonances are saturated with a combination 

of spoiler gradient pulses and a comb of RF pulses at the proton spin resonance. 

The 13C spins are then spin-locked and the polarisation transferred back to the 

J  coupled protons. Another module, for instance a spin-echo imaging sequence, 

can then be deployed. The polarisation transfer for the 13CHn system of interest 

only occurs if the Hartmann-Hann condition holds for that methyl group. In 

a CYCLCROP experiment, the RF frequencies of the 1H and 13C channels 

are set to the resonant frequencies of the nuclei one wants to observe. The 

optimum duration for the SL and CP pulses for the most complete transfer of
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magnetisation depends on the value of the spin-spin coupling constant J  and 

the number of protons in the probed molecular group. [76] The efficiency of 

the transfer of magnetisation discussed above is highly susceptible to inaccurate 

adjustment in the RF amplitude and to sample inhomogeneity. To minimise 

any Hartmann-Hann mismatch effects various modifications have been proposed 

including MOIST [79] and PRAWN. [80] The latter uses a train of m  pulses 

with flip angle a of duration rw separated by a delay ts . The a  pulses must 

satisfy the condition mot. =  27T and r  =  m{rw + rs). PRAWN has the advantage 

of requiring low RF powers, increased efficiency and it is both adaptable for a 

variety of applications and easy to implement.

2.4 Ellipsometry

Ellipsometry has been around for more than 30 years. It is an optical technique 

and as such is non-invasive if the sample is not light sensitive. Under good 

experimental conditions, a measurement of refractive index can be returned to 

the nearest 0.001 and the thickness of a layer to the nearest Â. In an ellipsometry 

experiment, light in a known polarisation state is reflected from a planar sample 

surface or parallel interfaces. The state of polarisation after reflection is then 

measured and used to deduce characteristics of the sample.

2.4.1 W hat is polarised light?

For a non-conducting, non-dispersive medium any propagating light must obey 

Maxwell’s equations. [81] These equations can be combined to give the wave 

equation for the electric field of the propagating light beam
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A solution to this is the electromagnetic plane wave

E(r,*) =  E0eiâ q-re - ^ .  (2.69)

E is the electric field, c is the speed of light, e is the dielectric function, fi is 

the permeability, E0 is a complex vector constant specifying the amplitude and 

polarisation state of the wave, N  = n + ik the complex refractive index, A is the 

wavelength of the light, q is a unit vector along the direction of wave propagation 

and r defines a Cartesian coordinate system. If there is no absorption, that is 

& =  0, such a wave will propagate indefinitely with the electric field, magnetic 

field and direction of travel all orthogonal to each other. Hence, the E-field and 

the propagation direction are all that are needed to define a plane wave. If k is 

non-zero, then the amplitude of the wave decays exponentially with propagation 

distance. If you look at linearly polarised light where the direction of travel is 

out of the page (in the z direction) then the electric field vibrates back and forth 

tracing a line at all times. That is, the x and y components of the E-field, Ex 

and Eyi are in phase. If Ex and Ey are equal in magnitude but 90° out of phase, 

then the light is called circularly polarised because, if the light travels out of the 

paper, the E-field vector traces out a circle as a function of time. If, Ex and Ey 

do not have equal magnitudes and and have a phase relationship not equal to 

90°, the E-field vector traces out an ellipse, and the light is elliptically polarised.

2.4.2 The ellipsometry experim ent

In a typical experiment, linearly or circularly polarised light is reflected from 

a sample. After reflection the light becomes elliptically polarised, hence the 

name ellipsometry. The change in amplitude and phase of the polarised light 

are determined both in the plane of reflection (p-plane or parallel plane) and 

perpendicular to this plane (the s-plane or senkrecht plane, the German word for 

perpendicular). Before reflection, the light has a polarisation state given by the
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amplitude ratio ^  and phase difference dp -  ds. The two ellipsometry angles ÿ  

and À are then given by

A = (<fp — drs) — (d^ — (Ç), (2.70)

and

#  (2 -n )

The subscripts p and s, refer to the two orthogonal planes. A superscripted i 

indicates the incident wave and a superscripted r is a reflected wave, ip and 

A are related to the Fresnel reflection coefficients Rp and Rs by the so-called 

ellipticity given by

p =  ^  =  ta n ^ e ^ . (2.72)
l ts

This equation is particularly useful as it relates the polarisation state to the 

physical parameters of the sample, namely the refractive indices and thicknesses 

of the sample layers via the Fresnel coefficients.

2.4.3 The Fresnel equations

For m  layers on a semi-infinite substrate, we can write the Fresnel reflection 

coefficients using a convenient matrix system. [82] First recall Snell’s law [81]

No sin ÿo =  M  sin ÿi =  . . .  =  NjSincpj = . . .  = jVm+i sin <j>m+i. (2.73)

Nj is the refractive index of the j th  layer and (pj is the angle between the angle 

of propagation in the j th  layer and the perpendicular to the plane of the layer’s 

interfaces. Nq is the ambient refractive index. If the j th  layer has thickness dj, 

then the Fresnel reflection coefficients are

Rp = ^ ,  (2-74)
O l l p
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Rc = >213

> l l s

(2.75)

Sp,s =

where

‘S ' i lp .s  Sl2p,s  

^Ip.s S22p,s

Sp,s is given by

S p jS =  I o i p , s I - , l-^ 1 2 p ,s-tJ2 • • • I j (j —l)p ,s^ -vj  • • • h /j7 il7 n (m —l) p ,s

(2.76)

(2.77)

where

I a 6 p ,s  —

La =

_ 1 _
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0 e

0
—0a

(2.78)

(2.79)

and

2irdaNa
A

COS 0 O. (2.80)

rab is the amplitude reflection coefficient at the interface between substance o 

and 6 and taz, is the amplitude transmission coefficient of the ab interface. By 

convention, the ambient medium is called medium 0 and the substrate is given 

the highest number. The reflection and transmission coefficients are expressed 

by

Tab —

and

Vg ~  Vb

Va + Vb’
(2.81)

_  2t)„
ab va + vb’

(2.82)
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where for the s-polarised component,

va = Nacos (j)a, (2.83)

and for the p-polarised component,

(2.84)

Other expressions can be included to incorporate such features as surface 

roughness and anisotropic refractive indices. [83]

2.4.4 Ellipsometry data collection and inversion strategies

To extract useful Nj and Dj information from ellipsometry data (ip and A) the 

Fresnel equations must be inverted. Drolet et al [84] state that so far, this has 

been done analytically only for six simple cases when one or two (ip, A) pairs 

are found to find one or two unknowns, such as finding the complex refractive 

index of a single layer on a known substrate. To analyse more complicated 

sample structures, this inversion can sometimes be enabled by acquiring (ip, A) 

pairs at different values of <p0 and À so that sufficient simultaneous equations are 

formed to solve for all the unknown variables. One should add at this point that 

since each refractive index has two unknown components (the real and imaginary 

parts respectively) that are both functions of incident wavelength each additional 

(ip, A) pair found from an extra spectroscopic scan merely produces another two 

unknowns. For polymers (where k = 0) this problem is solved by using the well 

known Cauchy dispersion model [81]

Usually the terms in À4 and higher are so small that they are neglected resulting

(2.85)

in only two unknowns needing to be found to characterise a polymer refractive
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index at any wavelength. One final note on this subject is to consider the effects 

of changing <̂0. We get more information from different </>0s if the path length 

of the light beam is changed as a result. This does not happen when there are 

no layers on a substrate, when the layers are very thin, or if the refractive index 

is very high (N > 3) such as for semiconductor samples. As it was just stated, 

with many unknowns the Fresnel equations cannot be inverted analytically. In 

commercial ellipsometers the data are analysed instead by entering some realistic 

initial guess values and then using a Levenberg-Marquardt least-squares fitting 

algorithm (LM) [85] to minimise the error between the experimental data and the 

simulated data generated from the Fresnel equations. This works both accurately 

and quickly if the measured sample structure is already well known. However, 

if the sample structure is quite complicated, say m > 2, and the structure of 

the sample is unknown, LM can be extremely difficult to use. The reason for 

this is that ellipsometry data is inherently ambiguous. For instance, sets of ÿ  

and A data cannot be inverted to necessarily differentiate between two layers p 

and q of different refractive indices and thicknesses on a substrate arranged p 

on g or ç on p. Although experimentalists know of this ambiguity, as far as we 

are aware, thorough quantification of it has never been made. The two issues of 

inverting ellipsometry data for an arbitrary refractive index profile and assessing 

the ambiguity inherent in ellipsometry data to produce a more robust fitting 

methodology for unknown samples are both considered in Chapter 5.

2.4.5 The sensitivity of ellipsometry

In Figure 2.7 one can see a demonstration of the sensitivity of ellipsometry for 

simulated noise-free data. The A curve for a Cauchy semi-infinite substrate 

(na = 1.5 and nb =  0) is a step function. ^  is a smooth V-shaped curve. The 

discontinuity in A occurs when '0 =  0° and at a specific angle-of-incidence called 

the Brewster angle. If a 100Â thick Cauchy layer with a refractive index of
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Figure 2.7: Simulated ellipsometry 'ip and A data at various angles of incident 
light. The A data is at the top, the ip data is at the bottom. The solid line 
shows a single semi-infinite Cauchy layer substrate with na =  1.5 and nb =  0; 
the dotted line shows the same substrate with a 100Â thick Cauchy layer on top 
with na =  1.45 and nb =  0; the dashed line show the same substrate but with a 
1000Â thick Cauchy layer on top with na =  1.45 and nb — 0. The inset shows 
only ip to demonstrate the change in ip at the Brewster angle.

na =  1.45 and n& =  0 is placed on top of this substrate, then some curvature can 

be seen in the A plot, and refering to the inset of the graph 'ip no longer goes to 

zero at the Brewster angle. With a thicker, 1000Â layer, with the same refractive 

index parameters as before, on top of the substrate then a noticeable shift is seen 

in both ip and A. The largest changes occur around the Brewster angle. For a 

single, fast (2s) scan, typical of those used in a solvent ingress experiment, the 

ellipsometer at Surrey can produce precisions of =1=0.15° in 'ip and ±1.5° in A. [86]



EXPERIMENTAL METHODS 51

2.4.6 Ellipsometry hardware

How does the ellipsometer return values of ip and A? An ellipsometer has the 

following elements: light source — > polarisation generator — > sample surface 

— > analyser — y detector. There are three types of ellipsometer: 1. the null 

ellipsometer, 2. the phase modulated ellipsometer and 3. the rotating element 

ellipsometer. The first option is often manually operated and hence very slow. 

They are therefore not an option for the fast dynamics involved in a solvent ingress 

experiment. It is also difficult to perform spectroscopic scans with this type of 

ellipsometer. Phase modulated ellipsometers are extremely fast, however they 

are extremely sensitive to temperature and so it is difficult to find stable spectral 

calibrations for them. The third type are ideal for accurate measurements over 

a broad wavelength range. At the University of Surrey we have a variable angle 

spectroscopic ellipsometer (VASE) (J. A. Woollam Co., Inc., Lincoln, Nebraska, 

USA) that uses a rotating-analyser. We briefly consider here each of the elements 

in this type of ellipsometer. [87]

2.4.7 VASE at the University of Surrey 

The monochromated light source

The perfect light source would have an output intensity that is completely 

constant with time and the same output at every wavelength. This ideal source 

does not exist. We use a xenon source that is a fair match for these criteria. The 

flaw is low intensity in the far ultra violet (below 260nm) and high intensity in the 

infra red (880 to lOlOnm). The white light is passed through a monochromator 

that uses a set of moveable gratings to produce interference patterns that 

constructively interfere at a selected wavelength. The monochromated light is 

passed through a mechanical chopper that modulates the light so that ambient 

light at the same wavelength but modulated at a different frequency can be
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rejected later. The light travels up an optical fibre where it is then passed 

through a collimating lens before being linearly polarised using a calcite Glan- 

Taylor polariser. This beam is reflected off the sample that has previously been 

carefully aligned. The reflected beam then goes into a rotating analyser, which 

is described in the next section.

The ro ta ting  analyser: obtaining ÿ  and A from  polarised light

The rotating analyser is a rotating linear polariser with a photo-detector behind 

it. It provides a measure of how the light is now polarised. How does this 

component work? Figure 2.8 shows the voltage V(t) that is produced from the 

photo-detector behind the rotating analyser with elliptically-polarised incident 

light. This voltage has the general form

Rotating analyser: 
A(t)=  cof

Input beam  
reflected off sam ple

v(t)D etector converts  
light to voltage

t

Figure 2.8: The detector signal associated with an elliptically polarised beam 
entering the rotating analyser polarisation detector

V(t) = d-\-a cos(2wt) +  b sin(2wt) (2.86)

where a, b and d are constants for each characteristic polarisation state, u  is 

the angular velocity of the rotating analyser, and t is time. V(t) oscillates in
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magnitude as the analyser sweeps through angles of rotation. How this voltage 

is related to -0 and A is best described using Jones vectors and matrices. In this 

system an electric field E is described as components of p-polaristaion Ep and 

s-polarisation Es such that

E =
EP
E.

(2.87)

With this notation any effect by a component on the polarisation state can be 

written as a 2 x 2 transfer matrix. These are called Jones matrices. The electric 

field at the detector Ed will then be given by

Ed =  [analyser matrix][sample matrix][polariser matrix][input beam]. (2.88)

The detector intensity Id and thus voltage is proportional to \Ed\2. All we need 

to do now is write Jones matrices for each of the optical components in the 

ellipsometer. To make things simple we consider a rotated coordinate system 

such that the axis of the input polariser is in the p-direction. Rotating the 

cordinate system back to the p and s system of the ellipsometer, we can write 

that the beam incident on the sample is

cos P  — sin P  

sin P  cos P

... 
, 

o (2.89)

where P  is the angle between the polariser axis and the plane of incidence. 

Assuming that the sample is isotropic and smooth, then there are no off-diagonal 

elements in the sample Jones matrix. It is simply

Rp 0 

0 Rm
(2.90)

It should be noted that anisotropic samples are sometimes of interest. If this is 

the case, then the off-diagonal elements of the Jones matrix must be considered. 

With respect to the analyser frame of reference, where the angle between the
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analyser and the plane of incidence of the light is A, the Jones matrix for the 

analyser is then

(2.91)
'1 o' cos A sin A

0 0 — sin A cos A

Combining all these expressions as indicated in Equation 2.88 gives

Ed =

i
h-* o

0 0

cos A sin A 

-  sin A cos A

Rp 0 

0 Rs

cos P  — sin P  

sin P  cos P

"I"

i
o (2.92)

Evaluating this expression and we have 

Ed =
Rp cos P  cos A +  R s sin P  sin A 

0
(2.93)

The intensity of the beam is then the non-zero element of Ed multiplied by its 

complex conjugate. We can use a few trigonometric identities and then normalise 

the expression by dividing through by the term that is independent of the analyser 

angle. The result is that

Id ocl +
&
Rs

2
— tan2 P

Rp
Rs

2
4- tan2 P

2R(§M tan P  
cos 2A 4-----------  sin 2A.2

ik.
Rs 4- tan2 P

(2.94)

9ft indicates the real part of an expression. Substituting in Equation 2.72 gives an 

expression effectively relating -0 and A to the electric signal from the detector:

tan2 ib -  tan2 P  . 2 tan 0  cos A tan P
Id oc 1 +  -— „ — —  cos 2A +  A  sr=— sm 2A (2.95)

tan2 0  4- tan2 P  ^  ^  ' tan2 0  +  tan2 P

Divide Equation 2.86 by its DC component d and then compare this to Equation 

2.95 and we can see that

a tan2 0  — tan2 P
d a  tan2 0  4- tan2 P

b
d

2 tan 0  cos A tan P  
tan2 0  4- tan2 P

(2.96)

(2.97)
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Finally, solving these two simultaneous equations in terms of 'ip and A yields

Thus from knowledge, in advance, of P, and measurement of a, b and d the 

ellipsometry parameters ÿ  and A are obtained.

Calibrating the rotating analyser ellipsometer

Before performing an experiment on an unknown sample, the ellipsometer must 

be calibrated to find the difference in angle between the dial reading of the 

polariser (P) and analyser (A) and the true angle between the polariser and 

analyser and the plane of incidence. We define Ps and As as calibration 

parameters between the true and dial angle measurements of the polariser and 

analyser, respectively. The relative attenuation of the AC signal, with respect 

to the DC component of the detector, due to the signal processing electronics 

must also be calibrated. The calibration parameter 77 is used to represent this 

attenuation. We can then write that

(2.98)

/3 tan P (2.99)

a  =  -[ol cos 2 AS -  sin 2 AJ (2.100)

and

(2 .101)

where

, _  tan2 ip — tan2(P — Ps) 
a  tan2 'ip +  tan2(P — Ps)

(2.102)
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ol 2 tan xp cos A tan(P — Ps) ( x
P =  tan2 ip + tan2(P — P5) ' (2-103)

To calibrate the ellipsometer first a smooth, isotropic sample must be mounted 

and aligned. Typically a silicon wafer with a 20nm thermal oxide layer is used. 

This will give a well defined polarisation state. The Fourier coefficients, a  and (3, 

are then measured as P  is changed. Equations 2.100 to 2.103 are then fitted to 

the measured Fourier coefficients and to the residual function to find the three 

calibration parameters (Ps, As and 77).



Chapter 3

Fickian ingress of binary solvent 

mixtures into glassy polym er

3.1 Introduction

In everyday situations, polymers are often exposed to mixtures of solvents. 

Typical examples are polymer composites in aircraft or cars being exposed 

to petroleum/ water mixtures and dental resins being exposed to mixtures of 

water and ethanol or other solvents in the mouth. The resulting ingress is of 

obvious importance. The manufacturing of the important industrial product of 

asymmetric membranes relies on the mass transfer of good and bad solvents in 

glassy polymer. Either a solvent/ non-solvent/ polymer ternary mixture or a 

polymer/ solvent binary mixture is exposed to a coagulation bath of non-solvent. 

Precipitation times have been shown to be dependent on the ternary diffusion 

coefficients. [88] It has been highlighted in the literature [89] that the diffusivity 

of a binary solvent mixture cannot be considered to be the additive sum of its 

components when they differ in molecular volumes and polarities.

The ingress of binary solvents has been measured experimentally by a large

57
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number of groups. However, the literature is very confused. There are two 

schools of thought regarding mixed thermodynamically good/ kinetically bad and 

thermodynamically bad/ kinetically good solvents ingressing polymer.* They are 

that only the thermodynamically good solvent ingresses; the thermodynamically 

bad solvent does not ingress at all. The second way of thinking is that the 

kinetically good solvent ingresses ahead of the kinetically bad solvent. In addition, 

when both the solvents are thermodynamically good but kinetically different, 

the two trains of thought continue. Some experimenters hypothesise that the 

kinetically better solvent leads; others suggest that the solvents ingress at the 

same rate. All these ideas are discussed below.

3.1.1 Literature summary of binary mixed therm odynam ­

ically good and bad solvents

Only the thermodynamically good solvent ingresses

In 1954, Long and Thompson [90], using a gravimetric method [91], found that the 

ingress rate of polystyrene by water and benzene vapours was only very slightly 

less than the ingress rate of benzene alone. They concluded that since the water 

does not ingress alone into the polymer, then it also does not ingress even when 

mixed with a good solvent for the polymer. Kwei and Zupko [92] used optical 

methods to measure bicomponent solvent ingress into crosslinked glassy epoxy 

polymers. For the diffusion of methanol (a thermodynamically bad/ kinetically 

good solvent) and MEK (a thermodynamically good/ kinetically bad solvent), 

they found that there was a single advancing front and that it progressed with 

Fickian dynamics. However, using these techniques no unambiguous visualisation
*A thermodynamically good solvent has a value of % (the polymer-solvent Flory-Huggins 

interaction parameter) that is less than 0.5. A kinetically good solvent is a physically small 

molecule.
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of the individual solvent component concentrations through the swelling sample 

could be made. Titow et al [93] assumed that Kwei and Zupko’s work showed that 

the bad solvent does not interfere with the “active” solvent (in their words) but 

correctly speaking no such inference can be made. Miller et al [94] looked at the 

solvent stress-cracking of polycarbonate. They diffused a mixture of isopropanol 

(a non-stress cracking agent) with varying proportions of various stress-cracking 

agents (acetone, toluene, benzene, xylene and carbon tetrachloride) and saw 

that only the stress-cracking agent was sorbed. These experiments used gas 

chromatographic techniques. Webb and Hall studied Fickian diffusion of two 

solvents in rubbery polymers using NMR techniques. [95] In one experiment [72], 

vulcanised rubber (VR) was placed in a reservoir containing a 1:1 mixture of 

water and acetone. An NMR spectrum was taken of the sample after two weeks. 

It showed that only acetone had ingressed the polymer. No water signal at all was 

evident. A further experiment was performed with pure acetone. The signal in the 

rubber was greater after the same time period when compared to the bicomponent 

experiment. This indicated that the acetone ingress rate was reduced in the mixed 

solvent system. Pure water ingresses VR several orders of magnitude slower than 

acetone [96, 97], much slower than one would expect from the consideration of 

physical size alone. Webb and Hall suggest that hydrophilic sites within the 

rubber act as a sink for water molecules and prevent further diffusion into the 

VR of any solvent. Models have been written with the assumption that for a 

mixture of water and organic solvent in contact with polymer, only the organic 

solvent and not the water ingress the polymer. [98] Some researchers have used 

this assumption but they have presented no unambiguous evidence to prove that 

water is excluded from the polymer phase. [99]



BINARY SOLVENT INGRESS 60

The kinetically good solvent ingresses ahead of the kinetically bad 

solvent

In 1968, Ueberreiter [100] stated that some kinetically good but thermodynami­

cally poor solvents may penetrate a polymer matrix at a much faster rate than 

thermodynamically good but kinetically poor solvents. In a set of dissolution 

experiments by Cooper et al using binary solutions into glassy polymer (PMMA), 

a small amount of kinetically good but thermodynamically bad solvent (methanol 

or ethanol) with a kinetically bad but thermodynamically good solvent (MEK) 

was seen to increase the polymer dissolution rate. [89] Manjkow et al [36] also 

observed enhanced dissolution rates for a thermodynamically good/ bad mixture 

of MEK and isopropanol. They concluded that the smaller non-solvent molecules 

diffused ahead of the larger good solvent molecules. A model to explain the results 

of Cooper et al [89] and Manjkow et al [36] has been developed by Devotta and 

Mashelkar. [101]

An additional interesting set of experiments were performed by Lane et al. [18] 

They used MRI to show that a small quantity of acetone could induce a transition 

form Fickian to Case II ingress for methanol diffusion into PMMA.

3.1.2 Literature summary of binary mixed therm odynam ­

ically good solvents

The solvents ingress at the same rate

For the system of VR ingressed by benzene and acetone (both thermodynamically 

good solvents), Webb and Hall [95] used a chemical shift selection technique to 

observe the solvent components independently. They saw that the ingress rates 

of the two components were identical, with the diffusion rate of the acetone 

increased compared to when it was ingressed alone into VR. The rate of benzene
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diffusion was reduced when mixed with acetone compared to ingress of benzene 

as the lone component. Like Kwei and Zupko, they made no assessment, even 

qualitatively, of the solvent concentration distribution of the two components 

within the swelling polymer.

The kinetically good solvent ingresses ahead of the kinetically bad 

solvent

Long and Thompson also studied thermodynamically good solvent binary 

mixtures ingressing polymer. [90] They explained the two stage absorption process 

they observed by stating that the small solvent molecules diffuse ahead of the 

larger solvent molecules even when the two solvents are immiscible.

3.1.3 Aim

The review above leads to the conclusion that understanding of the ingress of 

mixed solvents into glassy polymers is far from complete. The issues raised 

highlight the need for spatially resolved and solvent specific concentration data. 

The availability of this kind of data is extremely limited. It is the purpose of 

this chapter to explore the separate concentration profiles of mixtures of good 

and bad solvents ingressing a glassy polymer and to monitor the changes when 

the relative fractions of the solvents in contact with the polymer are varied. We 

chose a polymer/ solvent system that could be used to test the model proposed by 

Devotta and Mashelkar. [101] Namely a mixture of a thermodynamically good/ 

kinetically bad solvent (we chose MEK, also commonly called 2-butanone) and a 

thermo dynamically bad/ kinetically good solvent (we chose ethanol) ingressing 

a glassy polymer (we chose polystyrene). MEK has a value of % of 0.49 [102] for 

a large excess of solvent in the polymer at 25°C. For ethanol, % =  1.80 [103] 

for a large excess of polymer in the mixture, at 162°C. % is a function of
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temperature [103] so the value at room temperature may be much higher. MEK 

and ethanol have molar volumes of 90.1cm3m o r1 and 58.5cm3mol_1, respectively, 

indicating that ethanol is the better solvent kinetically. [89]

1H, 2H and CYCLCROP profiling techniques have been used. For the 

deuterium experiments, one of the solvent components was selectively deuterated 

and then deuterium NMR profiling was performed so that the ingress dynamics 

of the individual solvent type could be measured. This was done with an 80% 

MEK and 20% ethanol mixture (by volume) with first one solvent component 

deuterated and then the other. Their are two disadvantages with visualising the 

solvent components in this way. Firstly, two experiments need to be run with 

alternate deuterated components. Differences between samples may exaggerate 

differences in the ingressing solvents. Secondly, the mass of the deuterated 

solvents is higher than their protonated equivalents. This may have an effect 

on the ingress rate.To overcome the shortcomings of these 2H NMR experiments, 

CYCLCROP, a chemically selective NMR technique was also used. This pulse 

sequence was implemented on a 70vol% MEK and 30vol% ethanol mixture 

ingressing polystyrene. The position of each component can be tracked separately 

and simultaneously so variations between samples can be excluded as the cause 

of any differences. Normal, unlabelled solvents have been used overcoming the 

second shortcoming of performing deuterium experiments. We have assumed 

that the two solvent components have similar relaxation time characteristics in 

solution and thus obtained solvent concentration profile shapes of the individual 

solvents.

Additional experiments have been run with conventional 1H spin-echo imaging 

and ellipsometry to ascertain the effects of varying the solvent ratios in the 

reservoir. Encouragingly, MRI and ellipsometry were found to be entirely 

complementary in their temporal and spatial resolution. MRI was found to be 

ideal for looking at fast experiments with a high MEK fraction (50vol% MEK and
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above) and ellipsometry good for probing slow ingress with 40vol% MEK fractions 

and below. In this chapter, we also suggest that the Devotta and Mashelkar model 

is based on erroneous equations. We present a simple new model that describes 

well the essential features of our experimental findings.

3.2 Polystyrene sample preparation

Polystyrene powder with Mw= 325,000g/mol (Mw/Mn=1.04) (Polymer 

Laboratories Ltd., Church Stretton, UK) was compressed in a steel press under 

a pressure of 50kPa at 180°C for eight hours under vacuum. A vacuum was 

used to prevent oxidation of the samples. The polystyrene was slowly cooled, 

still under vacuum, until the temperature was well below the glass transition. 

The final cylindrical pellets were approximately 4mm thick with a diameter of 

8mm. The PS was then inserted into a polytetrafluoroethylene (PTFE) sleeve. 

A solid glass rod was placed on the bottom of an NMR test tube (10mm outside 

diameter) to provide a flat base. The PS in its sleeve was then pushed onto the 

glass rod and glued down with an industrial adhesive. The PTFE sleeve was of 

such a thickness that it prevented flow of polymer down the sides of the test tube 

without applying a transverse stress. An MEK and ethanol mixture (all solvents 

were obtained from Sigma Aldrich Co. Ltd., Gillingham, UK) was then poured 

on top. A bung was placed on the end of the tube to prevent the solvent from 

evaporating. This sample presentation was chosen as it allowed the ingress to 

be considered as one dimensional, very useful as it makes later modelling much 

simpler. As one can see in the MR images shown in Figure 3.1 and described 

in Section 3.3, the PS is indeed seen to swell unidirectionally, with a negligible 

amount of curvature on the surface.
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3.3 1H NM R imaging of MEK and ethanol 

ingressing polystyrene

A reservoir containing 80vol% MEK and 20vol% ethanol was used first to ingress 

the PS. The spin-echo imaging sequence at ljq =  400MHz was used as described 

in Section 2.3.4. The acquisition parameters used were: 90° pulse length= 

4/is, echo time= 0.0145s, repetition time= Is and number of phase steps= 

128. The maximum phase and read gradient strengths were 2.45 and 9.79G/cm 

respectively. These parameters gave an acquisition time of 34 minutes for 16 

averages. For the initial, quick swelling only four averages were used. This still 

gave an adequate signal-to-noise ratio. The plane image pixel size was 23/zm 

by 94/mi. After the run had been completed, NMR proton spectra were taken 

of the solvent mixture above the swollen PS to verify that the polystyrene had 

not dissolved. No polystyrene lines were found in the MEK/ ethanol reservoir 

indicating that dissolution had not occured. A typical set of images is shown in 

Figure 3.1. At the top of each image one can see the solvent reservoir in grey. The 

bright region is the expanding gel layer. The PTFE, glassy polystyrene and the 

glass rod supporting the sample appear dark. From each image, profiles through 

the sample were made by summing the middle ten rows. A set of profiles is shown 

in Figure 3.2. The central part of each profile shows signal from the swollen rubber 

region. With time, this region is seen to swell. The solvent reservoir is to the left 

in the profiles. The signal from the reservoir is strongly attenuated by rapid self 

diffusion of the liquid molecules in the magnetic field gradient and by the short 

repetition time of the experiment compared to the free liquid nuclear spin-lattice 

relaxation time. The polymer glass (not visualised) is to the right. The width 

of the rubber region has been directly measured from these profiles and is shown 

in Figure 3.3. The polymer swelling is in accordance with generalised Fickian 

diffusion, since the width increase is proportional to the square root of time.



BINARY SOLVENT INGRESS 65

Figure 3.1: NMR microscopy images of a mixture of 80% MEK and 20% ethanol 
ingressing Mw= 325,000g/mol PS. Alternate images are shown hence the time 
between each displayed image is 68 minutes.

3.4 H NMR profiling of MEK and ethanol

ingressing polystyrene

To assess whether both solvents ingress together two further experiments were 

now recorded in which one or other of the solvents was partially deuterated.

3.4.1 T he 2H probe, N M R  acq u isition  param eters and

exp erim en ta l d eta ils

An in-house built deuterium probe was used (iuq =  61.4MHz at 9.4T). This 

comprises a saddle type inductor coil (as discussed in Section 2.3.8) and fixed-
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Figure 3 .2 : profiles of 80% MEK and 20% ethanol ingressing PS. The solvent
is to the left, the progressively swelling rubber is in the middle and the glass is 
to the right. The original sample surface is at 0mm on the scale.

value tuning capacitors connected in parallel. The coil was wound with sticky 

backed copper tape onto a thin walled glass rod with a 1 0 mm inside diameter 

suitable for standard MRI test tubes. The glass rod was glued with epoxy 

resin into a PTFE holder which was screwed onto an aluminium probe body. 

A spin-warp ID profiling sequence was implemented rather than a 2 D image 

acquisition, as the SNR was poor due to the low 7  of deuterium. The acquisition 

parameters used for deuterium profiling were: Gaussian pulse length= 500/zs, 

read gradient stength= 30.0 G/cm, read time= 10.24ms and repetition time= 

Is. These parameters gave an acquisition time of 17 minutes for 1024 averages. 

The spatial resolution in the a: direction was 51//m. The binary solvent mixture 

of 20% ethanol and 80% MEK by volume was placed in contact with the PS. It
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Figure 3 .3 : The width of the rubber region in swelling PS recorded using 1H 
(squares), 2H MEK (circles) and 2H ethanol (triangles) profiling. The solid lines 
are fits to the equation x = A t1!2. The solvent fronts go in together.

contained either 20% deuterated MEK/ 60% protonated MEK /  20% protonated 

ethanol or 20% deuterated ethanol/ 80% protonated MEK. The deuterated 

solvents were chosen such that exchange of deuterium with the protons of the 

non-deuterated solvent would not occur. The solvents used were CH3CD2COCD3 

and CD3CH2OH.

3.4.2 Experimental results and analysis

Half-heights of the ingress of the solvent front positions were plotted against time 

as shown in Figure 3.3. Comparison of the half-height solvent front positions
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clearly and unambiguously show the MEK and ethanol fronts ingressing at 

the same rate and with Fickian dynamics. The concentration profiles have
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Figure 3.4: Boltzmann transformed profiles of 80% MEK /  20% ethanol ingressing 
325,000g/mol PS. The averaged MEK is shown with the top line, the averaged 
ethanol below. The dots show the unaveraged signal from all the profiles

been transformed according to the Boltzmann transform [8], rj = z /2 t1/2. The 

resulting master experimental concentration profiles for Mw= 325,000g/mol are 

shown in Figure 3.4. The solid MEK curve shows 53 transformed and summed 

profiles (recorded over 15 hours) and the ethanol curve shows 69 transformed 

and summed profiles (recorded over 19.5 hours). The profiles were normalised 

to the concentrations shown in the figure by considering the fact that the 

concentration at the reservoir/ gel boundary is always at the equilibrium value. 

The equilibrium concentration values have been found experimentally are are

4 6202
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described in Section 3.6. The reservoir/ gel boundary position is found easily. 

It is indicated by a steep gradient in the signal versus 7] plot. Figure 3.4 has 

been scaled only to include concentration values from this point. The solvent 

concentration profiles for the MEK and ethanol are not the same. Assuming the 

spin relaxation times and self diffusion of the two solvents are comparable at any 

given location, then the MEK profile is more square and the solvent front more 

sharp than the corresponding ethanol profile.

3.5 CYCLCROP profiling of MEK and ethanol 

ingressing polystyrene

A CYCLCROP profiling sequence was used next to follow the ingress of 70% MEK 

/  30% ethanol into Mw= 325,000g/mol PS. The solvents had 13C present only at 

the level of natural abundance. The CH3 bonded to the ethyl group of the MEK 

and the CH3 group of the ethanol were selected. Alternate profiles of these species 

were obtained. The PRAWN variant of the method was used with 15 coupling 

pulses with a nominal flip angle of 24° applied over 4.5ms for both MEK and 

ethanol. The profiles typically took 2.4 hours to acquire. They were not therefore 

acquired during the early part of the ingress when the concentrations were varying 

rapidly. Boltzmann transformed profiles of the ingress are shown in Figure 3.5. 

In this plot, both the lines show 10 summed profiles. They were normalised to the 

concentrations shown in the same way as described in Section 3.4.2. The dots are 

the complete set of unaveraged Boltzmann transformed profiles. These profiles 

were not only summed but corrected for the roll-off from the coil. To find how 

the signal varied through a homogeneous sample, a CYCLCROP profile of a pure 

solvent sample that filled the coil was recorded. The resulting curve was fitted 

to a parabola. The dotted Boltzmann transformed profiles shown were divided 

by this parabola. Again, the resulting profiles for the two solvents are different,
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Figure 3.5: Boltzmann transformed profiles of 70% MEK /  30% ethanol ingressing 
325,000g/mol PS. The MEK is shown in the top line, the ethanol below. These 
lines represent an average value obtained from the two sets of ten profiles. These 
data have been corrected to compensate for the coil roll-off. The dots show the 
the original signal from all the uncorrected profiles

but their shapes are very similar to the deuterium profiles shown previously in 

that there is a square MEK profile and a smooth ethanol profile. As one would 

expect, since there is a lower MEK fraction in this experiment compared to the 

2H experiment, the solvents are shown to move in more slowly.
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3.6 Equilibrium fractions of MEK, ethanol and 

polystyrene mixtures

When modelling ingress experiments, it is vital to know the equilibrium fractions 

of solvents in the polystyrene. These can be calculated using the equations of 

Flory and Huggins. At thermodynamic equilibrium, the chemical potentials of 

the solvents in the reservoir are equal to those in the swollen polymer. According 

to Flory-Huggins theory [22], the chemical potentials of the two solvents in the 

gel phase relative to the pure solvents are given by

^ 4  = ln(<M + (1 -  (M -  faiYi/Vi) -  fa(Vi/V3)

+  (X l202 +  XisMifa +  ÿ s )  “  % 23(^ l/^2)^2^3, (3-1)

+ (1 — f a )  — (̂ 2/^1) — f c i V ^ / V z )

+  (X 2101 +  X 23< fe)(01  +  0 3  ) — % 1 3 (^ 2 /T 4 )0 1 0 3 , (3 -2 )

where the subscripts 1,2 and 3 denote solvent 1, solvent 2 and the polymer

respectively, /if is the chemical potential of component i in the gel phase, /i° is

the chemical potential of component i when it is pure, 0* is the volume fraction of

component i, Vi is the molar volume of component i and Xij is the Flory-Huggins

interaction parameter between components i and j .  The chemical potentials of 

the two solvents in the liquid reservoir relative to the pure solvents are

= in(^i) +  (1 — (i/i/^2))02 +  Xi202j (3 3)

=  H f o )  +  (1 -  ( V z /V ) ) ^  +  x n f i ,  (3-4)

where /if is the chemical potential of component i in the liquid phase. However, 

to find the equilibrium solvent fractions by equating Equation 3.1 to Equation



BINARY SOLVENT INGRESS 72

3.3 and Equation 3.1 to Equation 3.3 requires knowledge of the Flory-Huggins 

interaction parameters Xij as a function of concentration. The concentration 

effects on Xij are often wrongly neglected. [19, 103] One can find values in the 

literature for the interaction parameter of MEK and PS. [104] Since ethanol 

only ingresses PS at very high temperatures, values of Xij can only be found at 

162°C or above and for an infinitely small solvent fraction. [24] Too few values 

are known to extrapolate back from this data to temperature and concentration 

levels used in the experiments described above. Solvent-solvent interaction 

parameters are rarely quoted in the literature. [22] As a consequence of a dearth 

of information, we have chosen to find the equilibrium fractions experimentally 

using 1H NMR spectroscopy. Large volumes of mixtures of MEK and ethanol 

with volume fractions of 70, 75, 80 and 90% MEK were poured onto PS pellets 

with Mw= 280,000g/mol (Sigma Aldrich Co. Ltd., Gillingham, UK) in NMR 

test tubes and allowed to equilibrate for a number of weeks. Care was taken to 

ensure that no air bubbles were present. The spectra of the resulting swollen 

polymer samples were recorded. Integrating under the peaks of the NMR 

spectra of these samples allowed us to extract the equilibrium concentrations. 

These are shown in Figure 3.6. Attempts were made to solve for the solvent- 

solvent and solvent-polymer interaction parameters simultaneously using the 

Flory-Huggins equations and assuming Xij varied as Xij =  X 0 + X i fo  + A2</>3 

where ÿ3 is the PS fraction and Xq, X \  and %2 are the constants for each 

Xij- [103] It should be noted that Xij is not the same as Xji- They are related 

by the ratio of their molar volumes: Xji — Xij{vj / vi) where Vj and Vi are the 

molar volumes of components i and j  respectively. [22] Solving for all the % 

parameters did not give a meaningful result. Inevitable experimental errors 

appeared to dominate. Setting Xu =  0.0, X23 =  0.5 and X13 =  1-5, where the 

subscripts 1, 2 and 3 denote ethanol, MEK and PS, respectively, and neglecting 

concentration dependence does predict equilibrium concentrations close to those 

we have measured. These values of Xij are very reasonable in that X12 =  0
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Figure 3.6: Equilibrium fractions of MEK (circles) and ethanol (squares) in PS 
(crosses) for a reservoir of ethanol and MEK as a function of MEK fraction.

corresponds to mixing of solvents in all fractions, xis =  1.5 describes ethanol 

as a bad solvent and x n  = 0.5 describes MEK as a good solvent. [22] With a 

technique that could find values for equilibrium solvent fractions with less error, 

using a bicomponent mixture of solvents could prove a good way to find Xij values 

for bad solvent-polymer combinations. Such measurements would otherwise not 

be experimentally determinable as the bad solvent does not ingress the polymer.

3.7 The D evotta and Mashelkar model

Devotta and Mashelkar [101] have presented a model, in part to explain the 

unexpected dissolution behaviour in some systems already discussed. [36, 89] The
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model predicts that, in general, competition between thermodynamic and kinetic 

factors will lead to differential uptake rates. We have neglected dissolution in 

our implementation of the model. Devotta and Mashelkar consider the swollen 

system to include three regions: a glassy polymer region, a swollen gel region and 

an infinite reservoir of two mixed solvents. Having used Equations 3.1 to 3.4 to 

find the solvent volume fractions at the surface of the gel region, Devotta and 

Mashelkar use Pick’s second law written in terms of concentration gradients to 

describe the solvent flux in the gel region. They write:

where Di and D2 are the diffusion coefficients of solvents 1 and 2  in the polymer. 

The concentration dependence of the diffusion coefficients depend on the size of 

the solvent molecules and they can be related to the free volume by:

Ai, Bi, A2 and B2 are parameters that depend on the size of the diffusing 

species. The free volumes of the two solvents and the polymer are: /i, / 2 

and / 3. Devotta and Mashelkar also use the initial boundary condition that 

at a: > 0  t =  0  ÿi =  ÿ2 =  0. A computer program has been implemented 

to solve these equations. Figure 3.7 shows the output for the model for the 

parameters: Ai =  3.0 x 1 0 ~10cm2s-1, A2 =  1.5 x 1 0 - 10cm2s-1, B\ =  0.3, 

B2 =  0.15, / i  =  0.102, f 2 = 0.034 and / 3 =  0.0905, where subscript 1 indicates 

ethanol, subscript 2 indicates MEK and subscript 3 indicates PS. The equilibrium 

surface concentrations used were <̂ i =  0.0855 and ÿ2 =  0.404. The free volumes

(3.5)

(3.6)

(3.7)

(3.8)
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Figure 3.7: Boltzmann transformed profiles of simulated 80% MEK /  20% ethanol 
ingressing PS using the Devotta and Mashelkar model. The MEK is shown above, 
the ethanol below.

were calculated from theory discussed in the literature. [6 , 105] The equilibrium 

solvent fractions were found experimentally as described in Section 3.6. The 

diffusion coefficients are of the same order of magnitude to those found in the 

literature. The ethanol was predicted to diffuse in PS more quickly than does 

MEK because of the smaller physical size of the former. In Figure 3.7 one can 

see that the Devotta and Mashelkar model predicts that the solvent fronts move 

at different rates and the concentration profiles have similar smooth profiles, far 

from the square MEK profile we observe in our experiments. The only way that 

this model can predict the fronts moving in at the same rate is if the diffusion 

coefficients of the two solvents are identical. The only way this can realistically 

occur is, of course, when the solvents are the same. The limitation of the Devotta
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and Mashelkar model is that they consider only the diffusion coefficients of the 

solvent diffusing the polymer (Di3 and D23). They neglect the diffusion of the 

solvents in each other (£>12).

3.8 A new model for mixed solvent ingress into 

polymer

In the model described here, we build on the early work of Cussler and Light foot 

into mixed solvent ingress in polymers. [106] For a ternary (n =  3) multi- 

component diffusion system one can write:

F . - g B u f l  (3.9)

where Fi is the flux of component i, Dij is a multi-component diffusion coefficient, 

ÿj is the concentration of component j ,  and z is position. In general 7  ̂

Djfi and the coefficients are strongly concentration dependent. Conservation of 

mass and flux means that only four of the nine components D y  are mutually 

independent. [107] These four can be chosen in a variety of equivalent ways. For 

systems such as dilute gases, the equations can be reformulated in terms of the 

pairwise binary diffusion coefficients D*j. [108] However, for condensed liquids 

and polymers this is not so straightforward. Some authors develop the analysis 

in terms of chemical potential driving forces and Flory-Huggins theory. [8 8 ] Such 

analysis is attractive from the viewpoint of trying to characterise the ingress 

fully. However, it suffers in so much as it relies on adequate models of the 

chemical potential in the non-equilibrium swelling polymer and of the mobilities 

of the different components, both of which are difficult to obtain. Moreover, the 

approach then requires the use of a large number of fitting parameters. We base 

our analysis on a model derived from pairwise exchange of components as might
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be used in a simple Monte Carlo calculation. According to this very much simpler 

model we write:

(310>

Equation 3.10 is derived in Appendix A. We can then write that

d(/)i _  1
d t  E k  <l>k

(3.11)

The number of independent parameters is now reduced to three since we require 

Dfj =  DY.  The set of diffusion equations have been solved numerically for the 

boundary conditions

— 2 =  0, £->0 (3.12)

(f)i =  0 z > 0, £ =  0. (3.13)

The first states that the surface of the sample is maintained at equilibrium 

concentration throughout. The second states that the body of the sample is 

initially pure polymer. The characteristic features of the data now result if we 

assume that

Z)^ 2  =  constant, (3.14)

(3 -15)

(3.16)0 if 5 ^  < f a 0
constant otherwise.

The subscripts 1,2 and 3 denote ethanol, MEK, and PS respectively. Equation 

3.14 implies a single, concentration independent mutual diffusivity for the two 

solvents. Equation 3.15 implies that ethanol does not diffuse in PS. Equation
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3.16 implies a strongly concentration dependent diffusivity for MEK in PS. The 

simplest possible form has been chosen, namely a step function. The critical 

concentration foe  is the MEK in PS fraction required to induce a glass-to-rubber 

transition at the experimental temperature. The diffusion coefficients used here 

represent a simplification of the problem. More correctly, they will all be strong 

functions of concentration, but in this instance we only wish to demonstrate 

the essentials of the physics involved, rather than producing perfectly fitted 

diffusion coefficient parameters. In our implementation of the mathematics, all 

are calculations are performed in a fixed polymer mass reference frame. The 

swelling is incorporated later. As the solvents swell the polymer, the increase 

in the concentration of the solvents in a fixed quantity of polymer must lead 

to a relative decrease in polymer concentration. Hence to find the amount of 

swelling in each element, the initial size of each one is simply divided by the 

polymer concentration. Figure 3.8 shows the resulting theoretical, Boltzmann 

transformed profiles, which can be directly compared to the experimental data. 

An overlay has not been attempted, since the experimental data is relaxation 

attenuation weighted. Nonetheless, the essential features are seen. The key point 

is that the solvent fronts move in together but the shape of the concentration 

profiles are very different. The MEK shows a sharp solvent front, whereas the 

ethanol concentration varies much more uniformly. The MEK front arises because 

of the strong concentration dependence of However, since the flux at the 

solvent front is not limited by the viscoelastic polymer swelling, the system 

stays Fickian and not Case II. The ethanol cannot proceed beyond the front, 

but can diffuse rapidly in the swollen region due to the presence of the MEK. 

The flux of the ethanol across the swollen region, which is proportional to the 

concentration gradient, matches that required to keep pace with the swelling of 

the polymer by the ingressing MEK. In consequence, the ethanol concentration 

at the front remains constant and small. The values of diffusion coefficient used
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Figure 3.8: Theory master curves of MEK (top) and ethanol (bottom). The MEK 
profile shows a sharp front with a high solvent fraction throughout the rubber. 
The ethanol fraction decreases across the rubber to near zero at the front. This 
compares favourably with the experimental data.

in this comparison are: =  1 x 10_5cm2s-1 and =  1 x 10_5cm2s_1

for 02/(02 +  0s) > <j>TG = 0.17. From the experimental results described 

in Section 3.6, the surface concentrations were set at 0i =  0.0855 and 02 =  

0.404. These values of diffusion coefficient are consistent with experimentally 

measured diffusion coefficients resulting from direct integration of the Boltzmann 

transformed experimental data. In particular, is also consistent with typical 

values of diffusion coefficient of small molecules to be found in the literature, 

and for larger concentrations is consistent with values reported for small 

molecules in swollen rubbers. The diffusion coefficient of both MEK at low 

concentration and ethanol in the glass is expected to be very small.
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3.9 Experimental results: varying MEK frac­

tion

3.9.1 1H N M R microimaging data acquisition

Polysytrene samples were prepared as described in Section 3.2. The solvent 

reservoir contained mixtures of MEK and ethanol varying from 50vol% MEK 

to 90vol% MEK in steps of 10%. This range was chosen as lower MEK fractions 

were too slow to be measured by MRI, but higher fractions dissolved the PS. 

Plots of solvent front position at half-height against time for mixtures of MEK 

and ethanol varying from 90% MEK/ 10% ethanol to 50% MEK/ 50% ethanol 

ingressing PS (Mw= l,460,000g/mol, Mw/Mn= 1.06) are shown in Figure 3.9 

The results of fitting the front positions to % == ktn are shown in Table 3.9.1. 

Fickian dynamics corresponding to n =  0.5 were observed, as one would expect 

given the results of Section 3.3. Mean diffusivities, D, have been extracted from 

the k fit parameter. For a semi-infinite medium, with the boundary at constant 

concentration Co, for a non-swelling sample and assuming a constant D, we can

Table 3.1: The results of fitting x =  ktn and x  =  k't0,5 to diffusion profiles with 
varying solvent fractions

MEK fraction k n D /  10-7cm2s-1 kf

50% 0.116 0.516 0.406 0.123

60% 0.274 0.517 2.27 0.286

709% 0.458 0.519 6.34 0.479

80% 0.793 0.509 19.0 0.809

90% 1.084 0.496 35.5 1.079
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Figure 3.9: Half-height solvent front position of MEK/ ethanol mixtures
ingressing PS. The symbols depict the different solvent fractions as follows: 
50% MEK/ 50% ethanol (diamonds), 60% MEK/ 40% ethanol (triangles), 70% 
MEK/ 30% ethanol (crosses), 80% MEK/ 20% ethanol (squares), 90% MEK/ 
10% ethanol (circles).

write that the concentration C through the sample is [8]

c = a«*(:>(I5jÿ> <3I7)
Assuming concentration is proportional to NMR signal, we have plotted our front 

positions at C/Cq =  1/2, so rearranging Equation 3.17 gives

x = 0.959(£)i)1/2. (3.18)

Hence
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The calculated values of D are shown in Table 3.9.1. These increase markedly 

with MEK fraction.

3.9.2 Ellipsometry data acquisition  

Ellipsometry sample preparation

PS films were prepared by the following procedure. PS of molecular weight 

325,000g/mol (Mw/Mn=1.04) (Polymer laboratories Ltd., Church Stretton, UK) 

was dissolved in cyclohexanone (Sigma-Aldrich Co. Ltd., Gillingham, UK) in a 

conical flask, attached to a Leibig condensor and heated to boiling point until 

the PS was seen to be fully dissolved. This took about one hour. Approximately 

5wt% polymer solutions were made and spin-cast onto clean (111) silicon wafers 

at 2000 rpm for 30 seconds. A syringe fitted with a filter was used to drop 

the solution onto the silicon wafers in order to remove any residual undissolved 

polymer or any other solid contamination. The aim was to make samples roughly 

3000 Â thick. This thickness is sufficient to be considered a bulk film but not 

too thick to reduce the sensitivity of the ellipsometer or to give a rough surface. 

The samples were then heated in a vacuum oven at 180°C for 24 hours. This 

heating protocol was chosen firstly to be warm enough to remove any residual 

cyclohexanone and secondly to be well above Tg so as to relax any molecular 

order resulting from the spin coating process.

Ellipsometry data acquisition

An initial spectroscopic multiple angle ellipsometric scan, in air, was made of 

the bare silicon wafer to allow accurate measurement of the native oxide layer. 

The same scan was then performed on each of the PS coated samples to give an 

accurate pre-swelling thickness. The polystyrene samples were placed in a sample 

cell. The cell has thin stress-free glass windows at a fixed angle. In this case, an
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angle of 75° has been used, as this is close to the Brewster angle of the samples 

being measured. This provides the greatest sensitivity for ellipsometry. Values 

of ip and A were obtained as a function of time using a wavelength of 500nm, 

initially without the solvent. After a minute or two of data acquisition, the solvent 

was quickly added. A typical set of %p and A data is shown in Figure 3.10. The

2 60 
o><D"O
^ 50

40

20
150 200100

Time /  minutes

Figure 3.10: Typical xp and A data recorded as a function of time for 20% MEK 
and 80% ethanol ingressing PS. The top line shows the values for A. xp is shown 
by the lower line

jump in xp and A after about four minutes is when the solvent was quickly added. 

The gradual change in the parameters after this time are attributed to polymer 

swelling. Measurements of xp and A are taken at about two second intervals. In 

this set of experiments, the MEK/ ethanol ratio was varied from 0:100 to 40:60 

in increments of 10.
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Data fitting

The ÿ  and A versus time data were fitted to a three-layered model using a 

Levenberg-Marquardt algorithm. [85] The model consisted of a silicon substrate 

with a native oxide with a Cauchy layer (see Section 2.4.4) on top, representing 

the polymer. The refractive indices and the thicknesses of the silicon substrate 

and the native silicon oxide were fixed in the data analysis to standard values. 

The only fitting parameters were d, the PS thickness and no, the wavelength- 

independent component of the Cauchy dispersion model. The ambient refractive 

indices of the MEK in ethanol fractions were also fixed. Their refractive index 

values were measured independently using refractometry. These values are given 

in Table 3.2.

Experimental results

The results of fitting to the experimental ÿ  and A data are illustrated in 

Figure 3.11, which shows the effects of different reservoir solvent fractions on 

ingress. The replicate ellipsometry measurements show that the thickness values 

are extremely reproducible. On the whole, the ingress slows down with time. The

Table 3.2: The Cauchy coefficients for various fractions of MEK in ethanol

Solvent na nb

40% MEK/ 60% ethanol 1.3300 0.0062

30% MEK/ 70% ethanol 1.3312 0.0062

20% MEK/ 80% ethanol 1.3359 0.0061

10% MEK/ 90% ethanol 1.3338 0.0062

100% ethanol 1.3317 0.0062
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Figure 3.11: The depth of the Mw= 325,000 g/mol polystyrene being ingressed 
by varying fractions of MEK and ethanol mixtures as a function of time. This 
measurement has been made using ellipsometry. The crosses and left triangles 
are pure ethanol, the up and down triangles are 10% MEK, the diamonds and 
squares are 20% MEK, the right triangles and circles are 30% MEK and the 
pluses and circles are 40% MEK.

“hump” in the 30% MEK data is peculiar and is probably a result of an ambiguity 

in fitting the ellipsometry ip and A data. Alternatively, it may be thought to 

indicate polymer dissolution. However, the results of NMR spectroscopy on 

ingress experiments involving higher MEK fractions (which are more likely to 

cause dissolution) described earlier show that PS dissolution does not occur. 

Overall, the greater the MEK fraction in the reservoir, the faster the ingress. 

Fitting an equation of the form: x  =  ktn to the solvent fraction data sets does 

not, however, give sensible values of n. Typically, when there is MEK in the 

reservoir values between 0.2 and 0.3 are found. At early times ingress rates, as
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also found in the MRI data, are of the order of nms-1. For the pure ethanol 

sample, a value of n only slightly above zero (0.03) is found. This may show a 

tiny amount of very quick ingress followed by a complete halt. The difficulties 

in fitting realistic values of n to the ellipsometry data are likely to be due to the 

inadequacy of the model we are fitting to. It is simply not correct to assume 

that the swelling polymer has a constant refractive index throughout. However, 

even if we had recorded data over a range of wavelengths and angles to allow 

us to fit more Cauchy layers to represent a refractive index gradient through 

the swelling sample, the inherent ambiguity in the ijj and A data would make 

it extremely difficult to fit these layers, with any measurable confidence level, 

using conventional fitting techniques. These issues are discussed thoroughly in 

Chapter 5.

3.10 Rule of mixture analysis

Kwei and Zupko [92] suggest that the advancing front obeys the rule of mixture. 

That is:

x  =  (Nik[ +  JV2̂ ) t 1/2 (3.20)

where N\ and N2 are the mole fractions of the two solvents in the reservoir 

(the molar volumes of MEK and ethanol are 90.1 cm3/mol and 58.5 cm3/mol 

respectively) and k[ and are the fit parameters to x =  ktn assuming n =  0.5 

for the pure solvents. We have not been able to extract k[ and k'2 directly with 

the MRI and ellipsometry experiments here. However, we know that pure ethanol 

barely ingresses polystyrene, so we can assume that k[ — 0. We can then make a 

best-fit of ^  to k' =  N2k'2. The result of this fitting is shown in Figure 3.12. The 

best-fit compares reasonably well with the experimental values indicating that 

the rule of mixture applies to the data.
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Figure 3.12: A best-fit of k'2 to h' =  The experimental vales of k' are shown 
by the crosses

3.11 Conclusions

We have obtained the first data which provides separate spatially-resolved 

concentration information about the components of mixtures of good and 

bad solvents ingressing glassy polymer. For the system studied, MEK and 

ethanol ingressing polystyrene, the two solvents ingress together. However, 

the concentration profiles appear rather different. The good solvent exhibits a 

strong solvent concentration front whereas the poor solvent concentration varies 

smoothly and slowly across the swollen region. The effects can be explained in 

terms of a simple model wherein the poor solvent diffuses within the swollen 

rubber only by virtue of the presence of the good solvent. We have verified
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additionally that increasing the fraction of MEK in the reservoir increases the 

ingress rate according to the so-called rule of mixture. MRI and ellipsometry were 

found to be entirely complementary in their temporal and spatial resolution. 

However, fitting ip and A ellipsometry data for Fickian ingress did not give 

entirely sensible results.

A paper describing the MRI experiments and modelling covered in this chapter 

has been submitted to Macromolecules.



Chapter 4

The effect of molecular weight on 

Fickian solvent ingress into 

glassy polymer

4.1 Introduction

The literature on the effects of polymer molecular weight on solvent sorption in 

polymers dates back to the 1950s. Studies have been made into both anomolous 

and Fickian diffusion. The conclusions are however contradictory. In 1953, 

Park [109] observed that when sorption kinetics were close to Fickian, methylene 

chloride ingressed polystyrene at a rate that was independent of the polymer 

molecular weight. A similar result was observed by Hutcheon et al for the 

diffusion of acetone into polyvinyl acetate. [110] These results were reinforced 

for a Fickian system by Tang et al in 1997 for ethylbenzene vapour ingressing 

monodisperse polystyrene with molecular weights well above that of the critical 

molecular weight (Me). [Ill] Me is the molecular weight above which the viscosity 

of the polymer changes as Mw3*4. Below Me, polymer viscosity varies linearly with

89
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Mw. [112] Me is a function of tacticity. [113] Conflicting results were obtained 

from gaseous carbon dioxide ingressing poly(dimethylsiloxane) (PDMS) with 

Fickian dynamics, which was reported to be dependent on polymer molecular 

weight. [114] A small decrease in ingress rate with increasing molecular weight 

was observed. However, although the molecular weights examined were above 

Me, the PDMS was polydisperse with Mw/Mn of around 2.3.

The conclusions of experiments into Case II diffusion are similarly diverse. In 

1971, in a study of the Case II system, n-pentane vapour ingressing polystyrene, 

Baird et al [115] explicitly considered not only the effects of polymer molecular 

weight on the ingress rate but also polydispersity and molecular orientation in the 

glassy polymer. They concluded that the ingress rate was neither a function of 

polymer molecular weight (even below Me) or polydispersity. However, sorption 

was extremely sensitive to residual orientation in the polymer, with highly 

oriented films showing an ingress rate ten times that of annealed films. Umezawa 

et al [116] showed that the Case II solvent front velocity, when PS films were 

exposed to a fluorinated hydrocarbon vapour, was decreased with increasing 

molecular weight even far above Me. For Case II transport of liquid methanol into 

monodisperse poly(methyl methacrylate), Hassan and Burning [117] observed no 

molecular weight dependence until well below the Me. However, in a preliminary 

study, the same group did find a molecular weight dependence for the same system 

when the PMMA was polydisperse. [118]

In this chapter, further experiments, using ellipsometry and MRI, have been 

performed for the system of monodisperse polystyrene ingressed by mixtures of 

MEK (a thermodynamically good but kinetically bad solvent) and ethanol (a 

thermodynamically bad but kinetically good solvent) as a function of polymer 

molecular weight. The two techniques of MRI and ellipsometry are applicable 

for two different time and length scales. MRI is most suitable for relatively 

fast ingress rates, owing to its poor spatial resolution. Ellipsometry is faster
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and also has a higher spatial resolution, so it is suitable for slow ingress. MRI 

experiments were run for a mixture of 80vol% MEK and 20vol% ethanol in 

which the molecular weight of the polystyrene was varied from 10,000g/mol 

to l,460,000g/mol. The polymer molecular weight effects on ingress were also 

probed using ellipsometry for pure ethanol ingress and a mixture of 20vol% 

MEK/ 80vol% ethanol. Experiments used Mw above and below the Me for 

polystyrene which is 36,000 g/mol. [119] Additionally, the effects of orientation 

in the polymer stucture were examined using ellipsometry. For these experiments, 

crystallised isotactic polystyrene was ingressed by a mixture comprising 20vol% 

MEK/ 80vol% water. For comparison, unoriented atactic PS, with an identical 

thermal history, of similar molecular weight was ingressed by the same solvent 

mixture.

4.2 NM R microimaging data acquisition

4.2.1 Polystyrene sample preparation

Polystyrene powders with Mw= 9,860g/mol (Mw/Mn=1.04), 13,000g/mol 

(Mw/Mn=1.04), 50,400g/mol (Mw/Mn=1.03), 96,000g/mol (Mw/Mn=1.03), 

325,000g/mol (Mw/Mn=1.04) and l,460,000g/mol (Mw/Mn=1.06) (Polymer 

Laboratories Ltd., Church Stretton, UK) were made into pellets as described 

in the previous chapter. The temperature to which each sample was heated was 

dependent on PS molecular weight. The temperature range was 140°C to 200°C. 

The lower temperatures were used for lower Mw and hence lower Tg specimens 

so that samples were prepared at about the same temperature increment above
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4.2.2 1H data acquisition

The same MR acquisition parameters were used as in Section 3.3. Plots of half­

height solvent front position against time for 80% MEK and 20% ethanol mixtures 

are shown below in Figure 4.1 The results of fitting the front positions to re =  ktn
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Figure 4.1: Half-height solvent front position of a mixture of 80% MEK and 
20% ethanol ingressing PS. The symbols depict the different molecular weights 
as follows: 10,000g/mol (triangles), 13,000g/mol (squares), 50,000g/mol (pluses), 
96,000g/mol (circles), 325,000g/mol (diamonds), l,460,000g/mol (stars).

are shown in Table 4.1. The ingress rates, reflected in the value of k, for all the 

molecular weights are remarkably similar. Some deviation may be seen below 

Me. However, at low molecular weight the swelling front position was harder to 

distinguish. This is demonstrated by comparing the profiles from ingress into 

Mw= 10,000g/mol shown in Figure 4.2 to those for ingress into 325,000g/mol
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Table 4.1: The results of fitting x = ktn to the Mw varied experimental data

Mw/ gmol 1 k n

10,000 0.569 0.570

13,000 0.850 0.486

50,000 0.808 0.510

96,000 0.851 0.503

325,000 0.829 0.500

1,460,000 0.793 0.509

shown in Figure 3.2. In both of the molecular weight experiments shown, the 

border between the glass and the rubber is easy to distinguish, however, in the 

case of the Mw= 10,000g/mol experiment, the border between the liquid reservoir 

and the rubber region is difficult to make out. For the low molecular weight 

experiments sample preparation was also less reliable. At these molecular weights, 

during the pressing process, when molten, the PS is less viscous and flows more. 

It fills any tiny spaces in the press, sticking the unit tightly together. When 

it has solidified the low molecular weight PS is more brittle than the higher 

molecular weight samples. Because the PS is more strongly held to the press at 

low molecular weight it requires a larger force to extract. However, since it is 

more brittle, this larger force is more likely to damage the PS sample.

Clearly, ingress rate does not vary significantly with molecular weight above 

Me and below Me the slight indications of a change in ingress rate may be due 

to experimental error. For every sample a best fit was achieved for n close to 0.5. 

This indicates Fickian kinetics which are consistent with Chapter 3.
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Figure 4.2: 1H profiles of 80% MEK and 20% ethanol ingressing Mw=
10,000g/mol PS. The solvent is to the left, the progressively swelling rubber 
is in the middle and the glass is to the right. The original sample surface is at 
Omm on the scale. In the first profile the change in gradient between the solvent 
reservoir and rubber region can be seen, however, in later profiles, this change is 
difficult to distinguish. Profiles are shown about 2.5 hours apart

4.2.3 2H data acquisition

Additional 2H experiments to those performed with 325,000g/mol PS in the 

previous chapter were run with Mw= 50,400g/mol PS ingressed with a mixture of 

80% MEK and 20% ethanol. The same deuterated solvents in the same fractions 

were used as in the previous chapter. The half-height front positions are shown in 

Figure 4.3 where they are compared to the Mw= 325,000g/mol results. The front 

positions of the different solvent components are clearly identical. The best-fits 

of these graphs to x = ktn are shown in Table 4.2. The relatively large deviation
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Figure 4.3: Half-height solvent front position of a mixture of 80% MEK and 20% 
ethanol ingressing PS in a 2H MRI experiment where one or the other solvent 
has been selectively deuterated. The symbols show the following: 50,000g/mol 
PS and ethanol (diamonds), 50,000g/mol PS and MEK (triangles), 325,000g/mol 
PS and ethanol (pluses) and 325,000g/mol PS and MEK (circles). The solid lines 
show the best fits to the equation x = ktn. For clarity, only alternate points are 
shown

from Fickian diffusion shown by the 325,000 g/mol sample (n = 0.414) are likely 

to be due to particularly large changes in temperature during the experiment 

caused through problems with the gradient set cooling unit. Again, ingress rate 

is seen not to vary significantly with polymer molecular weight, even when close 

to Me. Deviations can be attributed to experimental error.
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Table 4.2: The results of fitting x =  ktn to the experimental deuterated solvent 
data.

Mw/ gmol 1 Solvent k n

50,000 MEK 1.025 0.451

50,000 ethanol 0.917 0.491

325,000 MEK 0.997 0.414

325,000 ethanol 0.946 0.458

4.3 Ellipsometry data acquisition

To further explore the molecular weight effects a further set of experiments were 

performed on solvent ingress using ellipsometry.

4.3.1 Solvent ingress in amorphous polymer films

Films were prepared as described in the previous chapter for Mw= 50,400g/mol, 

72,000g/mol, 195,000g/mol, 325,000g/mol, 696,500g/mol and l,290,000g/mol. 

As before we tried to make film thicknesses of around 3000Â. Of course, 

film thickness, when spin coating, is a weak function of polymer molecular 

weight [120], but the effects were not seen to be too great in the molecular weight 

range studied. All of the samples except Mw= 50,400g/mol were then heated in 

a vacuum oven at 180°C for 24 hours. If the molecular weight of the PS is too 

low when heated, it dewets from the silicon substrate. Molecular weights below 

50,400g/mol could not be studied as the PS film dewetted from the substrate at 

these low molecular weights even without heating. The purpose of heating the 

polymer is to allow it to become homogeneous, removing any molecular order 

formed during the spin coating process. For the ingress of pure ethanol and



MOLECULAR WEIGHT EFFECTS 97

Ec
<DO)(0s0 c
80)
1
sz

15

3 O o0octo0 
0 o o  0

o o
5 XX,

O O

XXX X
XX

XX

XX0
20151050

Time /  minutes

Figure 4.4: The amount of swelling of PS of varying molecular weight being 
ingressed by pure ethanol as a function of time. This measurement has been 
made using ellipsometry. The triangles are Mw= 195,000g/mol, the crosses and 
circles are Mw= 325,000g/mol, the squares are Mw= 696,500g/mol and the pluses 
are Mw= l,290,000g/mol

a mixture of 20% MEK/ 80% ethanol respectively, the thickness of the samples 

as the PS molecular weight is varied is shown in Figures 4.4 and 4.5. It should 

be mentioned that at low molecular weight (72,000g/mol) the PS has been seen 

to craze during ingress and thus gave ingress ÿ  and A data that could only be 

fitted with large errors. Hence, these results are not shown. This phenomenon 

is due to the increased brittleness of low Mw polystyrene. There appear to be 

some differences between the different molecular weights. Refering first to the 

pure ethanol ingress in Figure 4.4. The high molecular weight samples (Mw= 

696,500g/mol and Mw= l,290,000g/mol) appear to be extremely similar. They
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Figure 4.5: The amount of swelling of PS of varying molecular weight being 
ingressed by a mixture of 20% MEK and 80% ethanol as a function of time. 
This measurement has been made using ellipsometry. The up triangles are Mw= 
195,000g/mol, the crosses and circles are Mw= 325,000g/mol, the squares and 
right triangles are Mw= 696,500g/mol and the pluses are Mw= l,290,000g/mol

show an almost instantaneous swelling before ingress is largely halted. The lower 

Mw samples have a much more gradual increase in thickness and the eventual 

equilibrium thickness is much lower (roughly half) that of the higher Mw samples. 

Overall, although ethanol is a bad solvent we observe a small amount swelling 

indicative of solvent ingress. Best-fits were made to re =  ktn at short times, 

but the results were not reasonable, with values of n considerably less than 0.5. 

For the ingress of 20% MEK/ 80% ethanol (shown in Figure 4.5) the change in 

thickness of all the different molecular weight samples appears to be a two-stage 

process. For the first minute, there is rapid increase in film thickness. After this
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time, the ingress slows apparently instantaneously and we observe relatively slow 

and decelerating ingress until equilibrium. There is no obvious pattern relating 

ingress rate to molecular weight for the 20% MEK samples. The overall swelling, 

both in depth and time, is greater for the 20% MEK sample than compared to 

the pure ethanol. The inability to fit a; =  ktn meaningfully can be attributed to 

the fact that the single layer Cauchy model we use is not good enough for the 

refractive index gradient we expect for Fickian diffusion. However, it is reasonable 

to expect that, even if the model to fit ip and A is wrong, if there were no 

molecular weight effects on solvent ingress then the fitted film thickness increase 

versus time graphs would be the same. One explanation that could describe these 

apparent molecular weight effects is residual oriention of the polymer chains. 

Spin coating, is known to order thin films. [121, 122] Although, an annealing 

strategy was chosen that was thought to relax all orientation in the film, this 

may not necessarily be the case. The research of Bray and Hopfenberg [123] has 

shown that subtle differences in residual orientation in films can result in different 

sorption rates. Longer polymer chains take longer to relax, so increased sorption 

rates due to increased orientation, will be observed for higher molecular weights. 

The effects of orientation have not been observed in our MRI experiments because 

their effects are only seen up to 10/Ltm from any substrate. [124] In addition, this 

distance is for high molecular weight polymers, in lower molecular weight samples 

orientation is only observed up to 1/mi.

4.3.2 Solvent ingress in crystallised polymer films

In Section 4.3.1 it was mentioned that some apparent polymer molecular weight 

effects on solvent ingress have been attributed to different levels of orientation in 

the polymer. In this section a comparison is made between highly oriented PS 

films and largely unoriented PS when ingressed by a mixture of 20%MEK and 

80% deionised water. To achieve high levels of orientation in a PS film isotactic
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PS (iPS) is used as opposed to the atactic PS (aPS) discussed elsewhere in this 

thesis. The ordered structure along the molecule means that, unlike aPS, iPS 

will crystallise after melting and slow cooling. [112]

A brief introduction to polymer crystallisation

A crystal may be defined as a portion of matter within which the atoms are 

arranged in a regular, repeated, three-dimensionally periodic pattern. From 

early X-ray diffraction work, it is known that polymers never crystallise to 100%. 

In 1938, Storks [125] introduced the idea of chain folding. He concluded that 

the chains of semi-crystalline polyisopropene had to fold back and forth. This 

hypothesis, however, went unnoticed by the scientific community. Later, in 1957, 

three independently published papers by Keller [126], Till [127], and Fischer [128], 

reported that single crystals were lOnm thick and that the polymer chain direction 

lies transverse to the plane of the lamellae. Finally, Keller postulated chain folding 

to explain why crystal lamellae were very much thinner than the length of polymer 

chains. [112] The visible microstructural units of crystalline bulk polymers are

Figure 4.6: Chain folding in semi-crystalline polymer. The dashed lines show the 
divisions between lamellae

normally spherical spherulites. [1] These are complicated assemblies of chain-
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folded lamellar units. [1]

Experimental method

Monodisperse aPS and iPS of comparable molecular weight (Mw= 696,500g/mol 

(Mw/Mn= 1.05) and Mw= 752,000g/mol (Mw/Mn= 1.75) respectively) were 

obtained from Polymer Laboratories Ltd., Church Stretton, UK. These were 

prepared in a similar way as described earlier but with a lower weight fraction 

of polystyrene dissolved in the cyclohexanone (2wt%). Again, the samples were 

heated after spin coating at 180°C for 24 hours. This heating protocol not only 

allowed enough time and heat to remove any residual cyclohexanone but there was 

also plenty of time for complete crystallisation of the iPS. [129] Different annealing 

strategies and even different substrate materials will form crystals with different 

structures and at different rates. [129, 130] Each sample was viewed under an 

optical microscope to confirm crystallisation. A typical crystallised sample is 

shown in Figure 4.7. The extent of the spherulites can be clearly seen. An 

initial spectroscopic multiple angle ellipsometric scan was made of each of five 

iPS and five aPS samples. The thickness of the PS film was typically found to 

be around 900Â. The polystyrene samples were placed in the same ellipsometry 

cell as described in Chapter 3. Scans of ip and A as a function of time were made 

at a wavelength of 500nm, initially without the solvent. Then, after a minute or 

two, the MEK/ water mixture was quickly added. The ip and A data were fitted 

to a three layer model as before.

Results

The percentage change in thickness against time for typical aPS and iPS samples 

are shown in Figures 4.8 and 4.9. The results for the five iPS and five aPS 

samples are not entirely reproducible. A general trend is that the iPS samples
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Figure 4.7: An optical micrograph of iPS crystals on a silicon substrate. The 
border between each sperulite is shown bright. The spherulites are similar in size 
(approximately 6/mi in diameter)

swelled more than the aPS samples (on average 10% compared to 5%). Both 

types of PS took a similar range of times to reach their maximum equilibrium 

thickness (between 20 and 40 minutes). However, it is difficult to say which 

swelling mechanism is active. After correcting so th a t the ingress started at zero 

time, fits of the complete data sets to x = ktn did not give a meaningful best-fit. 

Typically, values of n were about 0.2. Fixing n = 0.5 and fitting only k gave very 

poor fit quality. If one assumes tha t ingress is linear at short times, then the iPS 

samples have a front velocity three times faster than the aPS samples (0.3 nm /s 

compared to 0.1 nm /s). Looking again at Figures 4.8 and 4.9 and one notices 

another difference between the two samples. The iPS appears to have two changes 

of gradient (at about 10 minutes and at about 30 minutes after the experiment 

was started) whereas the aPS sample is a single smooth curve. We propose th a t 

in the iPS there are two different ingress rates. Refering back to the structure
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Figure 4.8: A graph of the percentage swelling against time of a typical aPS 
sample. Time zero represents when the ellipsometry scan was started and not 
when the solvent was added to commence ingress. The solvent was added after 
three minutes.

of crystallised polymer in Figure 4.6 and one can see that there are two areas 

of different polymer chain density. In between the folded chains and between 

lamellae there is a low density of amorphous polymer chains. These pathways 

will allow quick ingress, like that in the first five minutes of ingress. However, 

ingress through the crystallised densely packed folded chains is a slower process 

shown by the distinct change of gradient. On the other hand, the aPS sample has 

a homogeneous polymer chain density throughout the sample giving the single 

ingress regime. Overall, this result is not inconsistent with the observations of 

Baird et al. [115] in that polymer swelling is increased when the polymer structure 

is oriented.
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Figure 4.9: A graph of the percentage swelling against time of a typical iPS 
sample. The iPS thickness is shown by the crosses. Time zero represents when the 
ellipsometry scan was started and not when the solvent was added to commence 
ingress. The solvent was added after five minutes. The dashed lines are guides to 
the eye to show the change of gradient that we suggest is caused by quick ingress 
through the low density amorphous polymer chains and slow ingress through 
densely packed folded polymer chains

4.4 Further work on the effects of polymer order

An obvious addition to this work would be to perform measurements on bulk 

crystallised iPS samples using MRI. However, attempts to make bulk samples 

failed. iPS has a considerably higher melting point than aPS, and a bulk sample 

could not be made to melt with readily available heating and pressure equipment. 

With a very thin layer on a silicon substrate, crystallisation occurs at around 

180°C and this temperature limit is not a problem. A more subtle experiment 

could be performed with MRI using not a spin-echo NMR image but a double
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quantum filtered image. [131, 132, 133]

This imaging technique gives contrast to the level of molecular ordering in spin 

7 = 1  systems. Using this technique one could witness the change in the molecular 

structure during swelling rather than simply a change in thickness. Deuterated 

solvent or polymer would have to be used. This pulse sequence was successfully 

implemented with the in-house built deuterium probe. We also tried to implement 

it in the stray field. However, this proved unsuccessful. Unfortunately, without 

good bulk crystallised iPS samples, no reliable DQF experiment on ordered 

polystyrene could be attempted. Experiments with the lamellar liquid crystal 

phases of soap have however been done successfully at Surrey with the DQF 

pulse sequence. The use of ellipsometry is problematic in that we are unable to 

fit Fickian ingress data easily and meaningfully. Progress into overcoming this 

problem is covered in Chapter 5.

4.5 Conclusion

Fickian solvent ingress into polystyrene does not appear to be a function of 

polymer molecular weight. Reports in the literature which are contrary to this 

may be attributed to varying levels of orientation in the different molecular 

weights of polymer studied.



Chapter 5

Improved m ethods for extracting  

film thickness and refractive 

index information from  

ellipsom etry

One explanation for the poor quality of fitting to the ellipsometry data sets 

discussed so far in this thesis, is that the model we assume, a single swelling layer 

with a uniform refractive index, is an over simplification. For Fickian ingress 

one would expect the refractive index to vary through the sample, representing 

the changing solvent concentration. One could of course try to fit thickness and 

refractive index values to a large number of very thin layers or indeed a continuous 

distribution. [134] However, using the Levenberg-Marquardt algorithm, one would 

become stymied by the ambiguity inherent in ellipsometry data (discussed in 

Section 2.4.4). There would be no guarantee that the refractive index profile gave 

the global minimum in the error between the experimental data and the model 

fit. Two methodologies have been developed to try to alleviate this problem. The

106
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first, proposed by Charmet and de Gennes [135] uses a series of approximations so 

that ellipsometry ip and A data from an arbitrary refractive index profile can be 

inverted directly without fitting. The second, developed at Surrey, is a Bayesian 

inference analysis that uses simulated annealing (SA) to find candidates for the 

global minimum in the least-squares fit to the ellipsometry data and a Markov 

chain Monte-Carlo (MCMC) method to find the most probable solution when 

there is more than one candidate for global minimum in the error between the 

model fit and experimental data.

5.1 The Charmet and de Gennes formulae 

for an inhomogeneous layer with arbitrary 

refractive-index profile

5.1.1 The mathematical background

For thin films with a maximum thickness zmoa: < X/Att where A is the wavelength 

of the incident light, Charmet and de Gennes [135] express the reflection 

coefficients in terms of the Fourier transform of the tested sample’s index profile, 

F(2ç) where q is the normal component of the incident wave vector defined as 

q =  (27r/A)n0 cos <po where (po is the angle of the incident beam and n0 is the 

ambient refractive index. In an ellipsometry experiment many incident angles 

can be used, to give a range of q values. Thin layers are treated as a perturbation 

\Sn/no\ < 1. In their paper, Charmet and de Gennes derive an equation for 

ellipticity in terms of F that is written as:

p =  tan ipé^ =  —[1 +  zAr(—2ç) +  iBT(2q)\ (5.1)
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where

A = a (r“1 -  r s-1) -  ôr™1; B  =  o(rp -  rs) -  1 (5.2)

where

a =  nQ(u/c)2q 1; b =  2n0 lq. (5.3)

rp and r s are given by the familiar Fresnel equations [81], 

no cos 0o — 7%2 cos 02

n0 cos 0o +  n2 cos 02
(5.4)

_ÜQ n2
_  COS </>Q COS 02 f5 5)

rP ~  _nQ _ , _ n 2 _  •
COŜ >0 COS<f>2

n2 and 02 are the refractive index of the substrate and the complex angle of 

refraction respectively. In practise, n2, is usually known or it can be measured 

with ellipsometry before a coating is applied. 02 can be calculated from Snell’s 

law [81] i.e.

n2 cos 02 =  n0 cos 0q. (5.6)

The Fourier transform for the index profile is

/•OO
T(k) = I dzSn(z)eikz. (5.7)

In the sample thickness limit zmax < A/Itt one can expand e'kz as:

eikz = l  + ikz + ^ -  + . . .  (5.8)

hence

T(2q) =  Fq +  2igFi +  ^
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where

roo
r n =  /  dzzu5n(z) (5.10)

vo

representing successive moments of the index profile. The latter terms in 

Equation 5.9 can be neglected because one does not expect oscillations or a 

sudden jump in the refractive index profile. A Gaussian or exponential type 

decay is expected. Therefore to find the refractive index profile write

= Rz r± =  = z , + (5.11)
Rs rp tan ̂  °

Z' and Z" are respectively the real and imaginary parts of Z. Substituting 

Equation 5.9 into 5.1 gives

Z{c[) =  1 +  z(A +  5 )ro  + 2ç(A — jB)Fi — 2 iq*(A +  B)T2 +  • • • • (5.12)

Assuming that rs and rp are real, then A and B are also real. Hence 

Z ' ^  ~  1 = 2 q r 1 +  . . .  = F  (5.13)
A(g) -  B(q) 

and

Z"(q)

A(q) + B(qrr°~2q2ri + ’"~G' (5"14)
By plotting F  and G versus q one can deduce the moments Fq and Fi. Charmet 

and de Gennes [135] then define an effective thickness, ee/ /  of a layer as

2Fi
ee// — p • 1 0

(5.15)

Charmet and de Gennes say that they include the factor of two so for a 

homogeneous slab of thickness s, ee/ /  =  s. An IDL program was written to 

implement Equations 5.1 to 5.6, 5.11 and 5.13 to 5.15. The algorithm was tested 

firstly using simulated data and then real ellipsometric data.
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5.1.2 Testing the algorithm with simulated data

The most simple sample structure was chosen to test the Charmet and de Gennes 

algorithm, that is, a single uniform transparent film on a transparent substrate. A 

set of simulated ÿ  and A data was created for a range of thickness and refractive 

index values. A range of q values corresponding to 0° < ÿ0 < 90° were used. 

Here the example of a semi-infinite substrate with a refractive index of 1.50 and 

a thin film lOnm thick with refractive index 1.45 is illustrated. In Figures 5.1 

and 5.2 plots of F  and G versus q can be seen. Pi is found from the gradient

0)

- 4

- 6
106 8420

q /  1 e 6 / m

Figure 5.1: A plot of F (defined in the text) plotted against the normal component 
of the incident wave vector q obtained from simulated data for a lOnm thick film 
with refractive index 1.45 on a substrate with a refractive index of 1.50.

of F  and F  ̂ is found from intercept of G when q = 0. In this case, the thin 

layer thickness is found to be 9.35nm when we neglect the factor of two given 

by Charmet and de Gennes in Equation 5.15. The value of the thickness of the 

layer compares favourably to the actual value (lOnm) used in the data simulation.
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Figure 5.2: A plot of G (defined in the text) plotted against the normal component 
of the incident wave vector q obtained from simulated data for a lOnm thick film 
with refractive index 1.45 on a substrate with a refractive index of 1.50.

Charmet and de Gennes give no mathematical reason to include the factor of two 

in Equation 5.15. They merely hypothesise that they must include it to return the 

correct thickness value! Since we find that this term is unnecessary, we can only 

conclude that it is a mistake on their behalf. Using the same refractive indices 

for the substrate and film but varying the film thickness and the wavelength of 

incident light for zmax < À/47T the errors in thickness are generally less than 10%. 

Figure 5.3 shows this error (expressed as a percentage difference between ee/ /  and 

Zmax) for three different incident wavelengths. These simulations were performed 

for the full range of q values. Experimentally, however, it is impossible to measure 

q at the extremes. 20° < ÿ0 < 85° is a realistic experimental range. For this 

range, the error grows to 20% for thicknesses close to À/47T. These results for 

simulated data are extremely promising. Table 5.1 shows the ranges of refractive 

indices that give a 20% error when analysing simulated data with the Charmet
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Figure 5.3: The errors obtained after applying the Charmet and de Gennes 
with ni =  1.45 and n2 = 1.50 at wavelengths of 400nm (the continuous line), 
600nm (the dotted line) and 800nm (the dashed line). On the horizontal axis 
a,b and c show the limit of applicability of this algorithm (zmax < X/An) for the 
aforementioned wavelengths

and de Gennes algorithm. The sample is a lOnm thick film on a semi-infinite 

substrate in air with A =  600nm. Most organic materials have a refractive index 

between 1.35 and 1.6. Therefore, the thicknesses of most polymers on a glass or 

polymer substrate could be determined. However, real samples will always have 

some kind of imperfection, such as surface roughness. Moreover, noise in the data 

could affect the quality of the inversion.

5.1.3 Testing the algorithm with real ellipsom etry data

Poly (methyl methacrylate) (PMMA) was dissolved in boiling acetone and then 

spin cast onto a thick glass substrate. Scans were performed using the University 

of Surrey ellipsometer using incident wavelengths of 400, 600 and 800nm and
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Table 5.1: Ranges of refractive indices where the errors of the Born approximation 
result in an error less than 20% when determining the thickness of a lOnm 
transparent layer on a transparent substrate in air with À =  600nm

Film index Substrate index Index range

1.4 Varied 1.33-1.47

1.5 Varied 1.47-1.68

1.6 Varied 1.52-2.0

Varied 1.4 1.35-1.45

Varied 1.5 1.41-1.52

Varied 1.6 1.46-1.57

angles between 20° and 85° in 0.1° increments. These data were fitted using the 

LM algorithm, and a thickness of 18.7nm was obtained. Scans had already been 

made on the substrate before the PMMA was deposited in order to determine 

the optical constants of the substrate.

The Charmet and de Gennes analysis on the experimental data could not 

produce a meaningful result. Looking at the ellipsometry data from the bare 

substrate provided an explanation for this problem (see Figures 5.4 and 5.5). 

This scan did not give a perfect step function in A that one would expect for a 

semi-infinite slab (as described in Section 2.4.5) and neither did ip go to zero at 

the Brewster angle. There are two explanations for this result. Either the glass 

slab was contaminated or the ellipsometer acquisition was not accurate enough. 

Either or both of these explanations are probable. Without a compensator [136] 

the ellipsometer is subject to errors at low values of ip. A limitation with the 

University of Surrey ellipsometer is that, since it uses a rotating analyser to 

measure the light polarization state, it cannot give the sign of the imaginary 

component of p. This means that A can only be measured between 0° and 180°.
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Figure 5.4: ip as a function of angle-of-incidence for a glass slab measured using 
the University of Surrey ellipsometer

Similar samples were then analysed using a compensator-equipped ellipsometer 

at J.A. Woollam, Lincoln, Nebraska, USA which allows A to be measured over 

the full range from 0° to 360°. The results of these scans on the uniform glass slab 

are shown below in Figures 5.6 and 5.7. The values of still do not at any point 

go to zero, and the A curve is still some way from being a step function. One 

of the assumptions of the Charmet and de Gennes model is therefore violated. 

A meaningful inversion of data from a polymer coated glass sample could not be 

obtained with this technique. Without evidence for a semi-infinite substrate, the 

technique is not valid.



ELLIPSOMETRY DATA FITTING 115

200

150

S
2
g  100
TJ

100
Angle-of-incidence/ degrees

Figure 5.5: A as a function of angle-of-incidence for a glass slab measured using 
the University of Surrey ellipsometer

5.1.4 Discussion

The thin layer approximation version of the Charmet and de Gennes inversion 

technique works well for noise-free simulated data. However, even with a clean, 

flat glass substrate real ellipsometry data cannot be inverted. For the type of 

solvent ingress experiment described earlier, this technique has further flaws. The 

approximations given here are valid only for samples with a maximum thickness, 

Zmax < A/47T. The maximum value of A typically available is say lOOOnm (into the 

infra red range), suggesting the biggest swollen thickness measureable is around 

80nm. This is fine for looking at the early stages of a Fickian precursor in a Case 

II system but nothing more. Charmet and de Gennes do also suggest an inversion 

process that does not make a thin layer assumption, however, an implementation
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Figure 5.6: ÿ  as a function of angle-of-incidence for a glass slab measured using 
the J.A. Woollam ellipsometer

of this methodology either by us or by others [137] has not been successful. An 

additional limitation with these analyses is that they require an angular scan to 

obtain a range of q without the complications of optical dispersion. Since angular 

scans need movement of the light source and analyser arms, they are rather slow. 

Poor temporal resolution would be achieved.
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Figure 5.7: A as a function of angle-of-incidence for a glass slab measured using 
the J.A. Woollam ellipsometer

5.2 The Bayesian inference analysis of ellipsom­

etry data

5.2.1 Introduction

Given the limited success of the Charmet and de Gennes method, the following 

Bayesian inference method was developed. The aim again is to produce what is 

effectively a model-free inversion method. Firstly, simulated annealing is used 

to perform a least-squares multi-parameter fit to the ellipsometry data. SA is 

a global optimisation algorithm. Hence, it has the advantage over LM in that 

a good initial guess of the fit parameters, giving a value of error close to the 

global minimum (or indeed maximum) of the error function, is not required.
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No assumptions need to be made about the physical structure of the measured 

sample. However, SA is a stochastic technique. It will only find one possible 

structure if there is no more than one structure that fits the data. To overcome 

this limitation, Bayesian inference has been applied. This is the only way to 

consistently treat incomplete and noisy data when additional prior information 

is known. It is realised using the MCMC algorithm. This algorithm can explore 

solution space in its entireity to find every possible solution consistent with the 

ellipsometry data. In this section, the SA-MCMC is implemented and tested for 

the simple case of a bilayer on a semi-infinite substrate for real ellipsometry data. 

However, the algorithm could be generalised for a system of m  unknown layers 

where m  is an unknown parameter.

5.2.2 The mathematical background to SA

SA [138, 139] is based on an analogy with the thermal annealing of crystals 

where defects are removed by heating the crystal and then cooling it very slowly. 

Let us assume that the current state i of a system has energy E{. Another 

state j , slightly different from i and with energy given by Ej, is generated by a 

random process. If Ej < Ei then the system is taken to be in the new state j. 

Furthermore, if Ej > Ei then the transition can still occur with probability given 

by the Boltzmann factor

P(i -> j)  = exp , (5.16)

where T  is the absolute temperature and is the Boltzmann constant. If the 

initial temperature is high enough, if at each temperature the system is given 

long enough to reach thermodynamic equilibrium, and if the cooling rate is slow 

enough, then at T=0K the system will be in any one of the minimum-energy 

states. In the SA analogy the energy becomes the error between the measured 

ellipsometry spectra and the spectra produced by the current N  and d parameters.



ELLIPSOMETRY DATA FITTING 119

T  is redefined as a control parameter, and the constant ks can be neglected. At 

high T  values, practically all transitions are accepted (c./. a liquid state with high 

entropy). As T  decreases, the probability of transitions decreases so that when 

T  is very small only transitions that lead to a decrease in error are accepted. In 

SA, T  is initialised at a high value, T0 and then slowly decreased. In our case,

Ti+l =  aTi (5.17)

where 0 < a  < 1. For each T  value one performs LM transitions. The accepted 

states form a Markov chain. The values of To, a and LM form what is called 

the cooling schedule. If these three values are high, then a global minimum in 

the error is guaranteed to be found, but the process is very time consuming. 

If the cooling schedule values are lower, there are no such guarantees but the 

process is considerably quicker. A good SA system is therefore a compromise 

between speed and accuracy. To find the best compromise solution for the values 

of the parameters in the cooling schedule, either trial-and-error or an optimisation 

algorithm, such as LM or indeed simulated annealing, can be used.

5.2.3 The shortcomings of SA

SA has one major shortcoming. It gives only one state of the system with no 

measure of the fit error. In general, perfect data has only one global minimum. 

However, real ellipsometry data is inherently noisy and ambiguous. Noisy and 

ambiguous data can have several possible candidates for the global minimum. 

The ideal ellipsometry fitting tool would give all possible solutions and their 

corresponding confidence intervals. This combination is achieved here with 

Bayesian inference and the Markov chain Monte Carlo algorithm.
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5.2.4 Bayesian inference and the Markov chain M onte 

Carlo algorithm

Here we give a qualitative argument for using MCMC. We want to find every 

candidate for the global minimum of an error function. To achieve this, one 

merely runs the SA algorithm many times using the same cooling schedule. Each 

run produces a possible solution. One finds the confidence intervals by counting 

the number of times each solution appears. We can then state the most likely 

solution, but of course, any of the SA solutions could define the physical structure 

of the test sample. The full and thorough Bayesian inference description of the 

MCMC algorithm is given by Barradas, Keddie and Sackin. [140] A copy of this 

paper can be found in Appendix B.

5.2.5 Testing the SA-MCMC algorithm w ith a bilayer

A simple specimen was made to test the SA-MCMC algorithm. This consisted of 

a silicon substrate that had a thermal silicon oxide layer with a PS layer on top. 

Polystyrene (Mw= 696,500g/mol) was spin coated at 2000rpm for 30 seconds onto 

a (111) single crystal of silicon on which a thermal oxide had been grown. The 

oxide layer thickness was measured before the polystyrene was spun on. Both 

ellipsometry and Rutherford backscattering specrometry (RBS) scans were made 

of the same sample. Rutherford backscattering is the coulomb elastic scattering 

of charged particles. Incident ions scatter elastically from target atoms with an 

energy characteristic of the mass of the struck nucleus. [141, 142] The measured 

thicknesses from both these techniques are shown in Table 5.2. The ellipsometry 

data was fitted, in the first instance, by the LM algorithm. The fit however 

was not good. It was improved by assuming some surface non-uniformity in the 

fitted LM model. The best-fit values with this model are also given in Table 5.2. 

The SA-MCMC model implemented here cannot consider surface non-uniformity,
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Table 5.2: Means and standard deviations of the thicknesses and refractive indices 
of a polystyrene and Si02 bilayer on an Si substrate. The fits have been obtained 
in the following ways: an LM using a literature value of SiC^ refractive index, 
with and without allowing for PS thickness non-uniformity; and using MCMC for 
the whole range of solutions and restricted to the most probable solution. The 
subscript 1 refers to the oxide layer, and the subscript 2 refers to the PS

Solution d i/  nm noi nb\ dg/ nm 7 1 0 2 7162 Comments

P S/ S1O2 bilayer 36.9-45.8° 93.4(1.8)b 1.4476= 0.003666=

LM(non-uniform) 36.1(0.7) 1.557(3) 0.028(2) 97.7(0.1) 1.4476= 0.003666= A d i=  4.45(0.37)

LM 37.2(0.8) 1.556(9) 0.024(6) 97.7(0.1) 1.4476= 0.003666= ▻ > II 0

MCMC 48.5(26.9) 1.52(5) 0.01(1) 90.5(25.7) 1.482(16) 0.0033(30) di + d 2=  139(2)

MCMC(restricted) 28.4(6.7) 1.54(4) 0.016(11) 109.2(6.1) 1.483(11) 0.0031(22) 10 <  di <  40 

90 <  d2 <  120

“Determined with RBS. The two values are measurements on the edge and centre of the 

sample.

^Determined with RBS.

“SiOg values from literature. [143]
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hence, using this method to fit the ellipsometry data will never give a perfect fit. 

The value of x2 calculated using SA-MCMC only reflects the error in the model 

and not experimental error. To overcome this shortcoming, the error bar for 

every data point was taken as the deviation between the data and the best-fit 

assuming homogeneous layers. The minimum error for each point was set to 1°. 

This technique ensures that all solutions similar to the best-fit will be highly 

probable and so the given solution will reflect the real physical structure. The 

results of the SA-MCMC algorithm fitting are given in Table 5.2. These reveal 

that the values of thickness are ambiguous with di taking values between 10 and 

120nm and d2 falling between 20 and 130nm where dj is the thickness of layer 

j .  j  =  1 represents the oxide layer and j  = 2 represents the polystyrene layer. 

The range of possible solutions is always such that di +  d2 «  140nm. Given the 

inherent ambiguity of ellipsometry data it is curious to note that neither di =  0 or 

d2 =  0 is a solution. The naj values for the two layers are however well defined and 

although they are close the values for the two layers are different. The polystyrene 

layer having nai slightly above 1.5 and the Si02 layer na2 just below 1.5. There 

is a high probability of low nbj values (nbj < 0.01), however, there is still a low 

probability of high nbj values (nbj > 0.01). The strong linear correlation between 

the two layers (di +  d2 % 140nm) probably stems from these similar refractive 

index values and the associated weak reflection from the interface between the 

two layers. The order of the two layers stacked on the substrate is not, however, 

interchangeable because the probability density of the refractive indices is not the 

same for both layers. The most probable values of the thicknesses are within the 

ranges 10nm< di < 40nm and 90nm< d2 < 120nm. The corresponding refractive 

indices to both these thickness regimes are shown in Table 5.2. The Si02 layer 

has a well defined refractive index with high certainty, whereas the PS layer does 

not. Overall, they compare well to the RBS and LM fitting.
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5.2.6 Conclusion and further work

For the first time a method has been shown that can invert ellipsometry data 

without any knowledge of the thin film structure thus greatly increasing the 

applications of ellipsometry. All possible solutions that can reproduce the 

ellipsometry data set can be found. The drawback with this technique is the 

slowness of the computations required. For example, the bilayer data set shown 

here took about 24 hours to analyse. However, careful tuning of the cooling 

schedule, which has not been done at the present time, could give at least an 

order of magnitude improvement. Of course, the second improvement would be 

to increase the scope of the model to include many more layers, surface non­

uniformity and biaxiality. In its final development this work could describe 

the exact shape of the solvent front swelling polymer. The limit would be the 

ambiguity inherent in the noisy ellipsometry data rather than the finite area of 

local minima solution space explored.



Chapter 6

Solvent flux lim ited diffusion of 

solvent into polymer

6.1 Introduction

In 1991 Gall and Kramer demonstrated Case II diffusion in the toluene/ 

polystyrene system. [144] In their experiments, deuterated toluene vapour was 

diffused over a range of temperatures and equilibrium solvent fractions. The 

equilibrium solvent fraction in the swelling polystyrene was varied by using 

large volumes of different fractions of polystyrene dissolved in toluene as a 

vapour source. Measurements were performed with forward recoil ion-beam 

spectrometry. Gall and Kramer showed that increasing the temperature increases 

the Case II front velocity and that the diffusion coefficient of the Fickian 

precursor ahead of the Case II front is approximately independent of solvent 

activity. However, the use of NMR microimaging at Surrey with liquid toluene 

ingressing PS revealed two characteristics: firstly, Fickian dynamics and secondly, 

polystyrene is dissolved by pure toluene. The characteristics are illustrated in 

Figure 6.1. The sample preparation is the same as that used for the MEK ingress

124
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experiments. The toluene reservoir is at the top of each image. The solid PS gives 

no signal and is the dark region towards the bottom. The swelling and dissolving 

gel region is the bright region in the middle. This region is shown expanding 

non-linearly with time. The diffuse grey region is the polystyrene dissolving into 

the solvent. A plot of the position of the polymer/gel interface with time is shown

Figure 6.1: NMR microimages of pure toluene ingressing and dissolving PS. 
The first image is at 0.3 hours the other two images are at 2.3 and 4.3 hours 
respectively. The size of the gel region can be seen expanding non-linearly with 
time indicating non-Case II kinetics.

in Figure 6.2. A best-fit of A and B  to the formula x = At1/2 +  B  (where x is 

the position of the polym er/ rubber interface in mm and t is time) is overlayed 

in this plot. The good agreement is extremely convincing evidence of Fickian 

dynamics. A characteristic diffusivity of 9.1 x 10~7 cm2s-1 can be found from 

A. B  should of course be equal to zero, since at the beginning of the experiment 

there will be no gel region. However, the exact position of the front of the sample 

is notoriously difficult to determine exactly and B  gives a measure of the error 

in finding this position.
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Figure 6.2: The position of the polymer/gel interface against time for toluene 
ingressing PS is shown by the circles. The solid line is the best-fit to the interface.

There are other anomalies in the literature regarding Case II diffusion. NMR 

measurements have sometimes shown the dynamics of the rubber changing on 

timescales orders of magnitude greater than any commonly accepted polymer 

chain disentanglement time. An example of this phenomenon has been observed 

at Surrey by Perry et al [145] for acetone vapour ingress into poly (vinyl chloride). 

Measurements showed that the dynamics of the rubber region behind the liquid 

front evolved over a period of days. One would normally expect this evolution 

to occur over a period of the order of seconds. [5] Furthermore, Hui et al [146] 

observed a very rapid rise in the Case II front velocity at higher equilibrium 

solvent concentrations which they were unable to explain in terms of the Thomas 

and Windle model. [17]

What has caused toluene diffusion to be Case II in the Call and Kramer 

experiments but Fickian here? Three ways have previously been cited. One 

explanation is that any Case II diffusion process will become Fickian in the
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long time limit for very large samples. The solvent flux is proportional to the 

solvent concentration gradient. As the distance between the Case II solvent front 

and the sample surface increases, the solvent concentration gradient decreases, 

thus reducing the maximum flux into the glassy polymer. At some large time 

and distance, governed by the physical properties of the particular polymer/ 

solvent system studied, the amount of solvent arriving becomes the rate limiting 

factor and Fickian dynamics are thus observed. However, there has yet to 

be an unambiguous observation of the transition occasioned in this way. A 

second possibility is that varying the temperature of the experiment can, in 

some systems, increase the maximum solvent flux at the gel/glass interface 

more quickly than the liquid diffusivity in the rubber. This has been shown 

experimentally at the University of Surrey for the system of methanol ingressing 

poly (methyl methacrylate) (PMMA). [18] The third way to cause a Case II 

to Fickian transition is varying the composition of the solvent either by using 

different amounts of good and bad solvents, or pre-swelling the polymer with a 

good solvent before ingressing a bad solvent. This has also been demonstrated 

at Surrey for PMMA pre-exposed to acetone ingressed by methanol. [18]

At the heart of the Thomas and Windle model [17] is the assumption that 

swelling at the glass-to-rubber transition is the rate limiting step that can cause 

Case II diffusion. The transition to Fickian diffusion occurs when this is no longer 

the rate limiting process. We propose that there are circumstances in which the 

rate determining step is not the swelling at the solvent front. Instead, solvent 

ingress can be limited by the flux of solvent impinging on the polymer sample 

surface. We call this surface-flux-limited Case II diffusion. We suggest that the 

difference between Gall and Kramer’s work [144] and that reported here is that 

theirs is in the surface-flux-limited regime. This new theory can also explain the 

work of Hui et al and Perry et al described above.

Experimentally we have changed the surface flux in three different ways: 1.
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changing the vapour path length; 2. changing the activity of the toluene by using 

different polystyrene/ toluene fractions in the vapour source; and 3. varying the 

temperature of the experiment. STRAFI has been used because the signal from 

the vapour induced rubber region is too low to be measured using conventional 

MRI. In this chapter, our experimental observations of solvent-flux-limited Case 

II diffusion using toluene vapour ingressing polystyrene are reinforced by a new 

phenomenological model.

6.2 The model

The aim of the model is to represent solvent ingress into glassy polymer in as 

simple a way as possible. It uses the basics of the physics to give the qualitative 

behaviour of the system. Like our NMR experiments, we consider uniform 

polymer with its surface parallel to the solvent so that the solvent advance is 

one-dimensional, c the solvent concentration (number per unit volume) is a 

function of z (distance from the polymer surface) and t the time since solvent 

started to ingress into the polymer. At the polymer surface, z =  0. We define a 

dimensionless concentration (j) = c/cm where Cm is the maximum concentration 

of the solvent in the swollen polymer.

6.2.1 Fickian diffusion

First we consider the most simple solvent diffusion into the polymer with a 

constant diffusion coefficient D. The surface concentration is fixed at Cm. 

Neglecting a transformation of co-ordinates caused by sample swelling, Tick’s 

second law in this case gives:
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subject to the boundary conditions

ÿ(z >  0, t =  0) =  0 (6.2)

0(z =  0, t) =  1. (6.3)

Equation 6.1 can be solved analytically. [8] The result is a solvent front advancing 

as t1/2. To solve Equation 6.1 numerically, space and time are discretised into

elements of width a and 5t respectively. The reduced solvent concentration in the

zth element at time t is Element 1 is at the surface. Analogous boundary

conditions to Equations 6.2 and 6.3 can be written as:

(j)(i > l , t  =  0) =  0 (6.4)

<6(M) =  1. (6-5)

The time evolution of the concentrations of the other elements is governed by the 

equation

t + ôt) = (/)(i, t) + [(j){i -  1, t) -  t) +  (j>(i +  1, *)] i > 1. (6.6)

From Equations 6.4, 6.5 and 6.6 results indistinguishable from their analytical 

analogues (Equation 3.17) are obtained as long as the reduced time increment 

Dôt/a2 is small and we have lengthscales much greater than a.

6.2.2 Case II diffusion

Ingress into a glassy polymer is slow until it becomes a rubber. This limits the 

flux from the rubber into the glass. This can be the rate-limiting step when the 

mechanical relaxation of the glassy polymer at the solvent front is very slow. 

The solvent front lies at the interface between the rubber and glass, between 

elements is and (is+ l). To keep our model simple we characterise the rubber-glass 

boundary with just two parameters: 1. the critical reduced solvent concentration
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(/)rg needed to transform the glass to a rubber; and 2. the maximum flux j rg at the 

solvent front. We can write that (f)(is,t) > <j)rg, <ÿ(is +  l , t) < (j)rg. At any time t, is

advanced rubbery element is into the adjoining glass element (is +  1). The time

The flux at the solvent front is j f  and j rg is the flux into the glass if the 

concentration in the neighbouring rubber element is high enough. It is an upper 

bound to the flux. If the concentration in the last rubber element is very close to

tends towards the flux into the last rubber element is at the previous time step.

a slice of width a due to a flux j rg equals jrg/a- This is then multiplied by our 

time step and divided by c™ to get the change in the reduced concentration ÿ in a 

time 8t. Beyond the glassy element in contact with the last rubber element, there 

is no diffusion and =  0. The time evolution in the rubber, i < is, is given 

by Equation 6.6. The model does not predict a Fickian precursor because of the 

absence of diffusion in the glass. There are two competing rates, the slowest of 

which will be the rate limiting step to the front advance. For a solvent front at zs,

is defined as being the largest value of i for which > (j)rg. Slow mechanical

relaxation at the the solvent front is modelled by limiting the flux from the most

evolution of the concentrations in the isth and (is +  l)th  elements is governed by 

the equations

(/)(is,t  + ôt) =  + (6.7)

and

(6 .8)

where

mm (6.9)

(j)rg then the flux is lower than j rg. The flux into the glassy element (is +1) then

The change in ÿ is jf/{cmo) because the rate of change in concentration c inside
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one rate, called the characteristic speed comes from the diffusion of the solvent 

from the surface in contact with the solvent. The diffusive speed is Sd =  D /zs. 

It can be found by differentiating the t1/2 advance or by dimensional analysis. 

The second characteristic speed is for the glass-to-rubber transition at the solvent 

front srg =  jrg/cmÿrg- If S£> <  sr5, that is to say the diffusion from the solvent 

surface is the limiting speed of advance, then the results are little different from 

Fickian diffusion without the boundary conditions given in Equations 6.7 and 6.8 

with the solvent advancing as t1/2. However, in the opposite limit where sd^> srg 

then it is the glass-to-rubber transition itself which limits the speed of advance. 

The solvent front then advances with t. This is solvent-front-limited Case II 

ingress, sp decreases as zs increases but srg is fixed for a particular system. This 

means that at large zs which occurs at long times, the solvent advance will always 

become proportional to t1/2. The crossover in dynamics occurs at s# =  srg, when 

zs =  Dcmÿrg/jrg. Example behaviour of this model is shown in Figure 6.3. There 

are two dimensionless parameters: (j)rg and a  =  j rga/Dcm. The ratio a  =  srg/sj) 

with sd evaluated at z3 =  a. We set (j>rg = 0.2. This is a reasonable value for a 

real system and indeed the results from the model are not sensitive to the precise 

value. The only parameter to vary is then Of. Plots of a  =  10-2, 10“3 and 10-4 

are shown in Figure 6.3. The time unit is a2/D  and the length unit is a. For 

a = 10-2 the solvent advance is close to t1/2. For a  =  10-4 the solvent advance 

is linear for the entire period shown. For the intermediate value of a, the solvent 

front movement is linear up to £ =  105. It then curves over and tends towards a 

t1/2 dependence. This is as one expects because for a  =  10-3 the solvent front 

will be diffusion limited for zs greater than approximately 103a.

6.2.3 Low flux at the surface

Instead of having a liquid solvent reservoir in contact with the polymer surface, 

one could instead have solvent vapour. The flux of solvent available could be
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Figure 6.3: Calculations of the advance of the solvent front. The x  axis is time 
in units of a2/D. The time step 8t =  0.1o2/B  The y axis is the position of the 
solvent front in units of the element of width a. From top to bottom: a  =  10-2, 
10"3 and KM

much lower than that from the liquid and indeed it could be so low as to be rate 

limiting. This phenomenon can be modelled by replacing the boundary condition 

of Equation 6.5 with a constant flux j v. The boundary condition is written as:

ÿ ( l ,t  +  St) =  min ( 0(1, t) +  [0(2, t) -  0(1, £)] +  l )  . (6.10)
\  Û Cm0 /

That is to say, there is a constant flux j v into the sample surface, unless this 

flux causes the concentration to exceed the maximum value. Equation 6.10 

controls the flux into the rubber whereas Equation 6.7 controls the flux out of 

the rubber. Either of these equations can be rate limiting. We can again define 

a characteristic speed of advance, sv = j v/ (Çmÿrg) - It is the rate at which the 

solvent front advances if the flux at the surface is the rate limiting step. This 

will occur when sv <  sD,srg. Linear ingress occurs even if srg >  sD. Hence a 

linear advance is seen for a polymer and solvent system that is Fickian when the
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polymer is is contact with liquid solvent. We call this solvent-flux-limited Case II 

diffusion. Example calculations were performed using this model are represented 

in Figure 6.4. The model has three dimensionless parameters (j>rg and the ratios
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Figure 6.4: Calculations of the advance of the solvent front. The x  axis is time 
in units of a2/D, our time step 6t = 0.1a2/D. The y axis is the position of the 
solvent front in units of the element width a. From top to bottom, =  10-2, 
10-3 and 10“4; a  =  lO-2.

a =  jrga/iDcm) and /3 =  j vcL/(DCm). Once these terms are fixed the solvent front 

position and concentration profile can be found at any time using Equations 6.6, 

6.7, 6.8, 6.9 and 6.10. <j>rg is fixed at 0.2 as before. If we have that sv >  srg, sD 

this is the same situation as before. Hence, here we consider only sv < srg. The 

results in Figure 6.4 are for the case a  =  10-2 and — 10-2, 10-3 and 10-4. 

For p =  10-4 the solvent front advance is linear. For fi =  10"2 the advance is 

proportional to t1/2. For ft =  10“3 it is neither linear nor t1/2. Over the range 

plotted in Figure 6.4 neither diffusion nor flux at the surface completely dominate. 

Solvent concentration profiles at approximately the same position are plotted in 

Figure 6.5. When the ingress is solvent flux-limited the concentration profile is
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Figure 6.5: Three solvent profiles, 0 as a function of z, are plotted. They are 
plotted at different times, each when the front has moved a distance close to 200a. 
From top to bottom the curves are for /? =  10“2, 10~3 and 10“4, respectively; 
a  =  10~2. The three curves are at times 12,000, 51,000 and 390,000, in units of 
a2/D, for (3 =  10-2, 10-3 and 10-4, respectively. The time step St =  0.1a2/D .

rather flat. The concentration is close to 0r5 everywhere. Because the solvent 

front advances as fast as the solvent arrives at the surface, the solvent does not 

build up as it does for Fickian or solvent-front-limited Case II diffusion. The 

solvent concentration profiles for solvent-flux and solvent-front-limited diffusion 

are therefore very different. For the former it is always slightly above 0r9, for the 

latter it is considerably higher. However, in both cases the profile will be close 

to a straight line because in both cases diffusion is a fast process relative to the 

solvent front advance.
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6.2.4 Relation to previous work

It is intriguing to compare the purely phenomenological model described here 

with more thorough analyses to be found in the literature. [17, 19, 147] In our 

model, we set the flux into the glassy polymer to be very small. Previously, other 

authors have instead used models in which visco-elastic relaxation couples to 

the diffusion of the solvent. Essentially, solvent diffuses into the glassy polymer 

that swells to accomodate increasingly more solvent. As it does so the diffusion 

coefficient increases rapidly. This slow diffusion into the glassy polymer and the 

resulting swelling, which both occur at the solvent front, then limit the ingress 

speed. Lasky et al [148] neglect the rapid viscosity change as solvent diffuses 

into the polymer and instead consider an effective viscosity of the glass ÿ9. If we 

follow this suggestion then swelling takes a time of order 09/ (ckT) where ckT is an 

approximation to the osmotic pressure exerted by the solvent. Similarly the rapid 

change in diffusion coefficient in the glassy polymer can be considered as some 

effective diffusion constant Dg. The width of the diffusion front is the distance 

the solvent diffuses in a time (j)g/(ckT). This is {DgckT/ (j)g)1/2. An estimate of 

the velocity of the solvent front advance, srg is then (DgckT/rjg)1/2. [148] Hence, 

srg can be estimated if one knows both the time taken for the initially glassy 

polymer to swell and the distance the solvent diffuses in this time. In their 

experiments, Lasky et al [148] find a value of (ckT)1/2 of the order of 104Nms and 

r]o of the order of 1014Nsm-2. A typical value of Dg for small molecule diffusion 

is 10-8cm2s_1. This predicts a value of srg «  Inms-1.
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6.3 Experimental work

6.3.1 Sample preparation

The polystyrene and toluene were presented to the magnet in one of two ways. 

These are shown in Figures 6.6 and 6.7. The idea was to have a liquid reservoir 

separated from the PS by a vapour path. Ideally the PS would swell vertically 

upwards to avoid gravity causing the swelling rubber to flow down the sides of the 

test tube. Using arrangement A (Figure 6.6), longer vapour path lengths were 

made by inserting 8mm OD glass rod of varying lengths between the bottom 

of the 8mm OD small test tube and the top of the PTFE sleeve. The short 

vapour path length (3mm) was achieved with arrangement B (Figure 6.7). It 

should be noted that with set-up B the polymer swells down the test tube, where 

gravity causes the rubber to flow down the sides of the test tube and into the 

toluene where it is dissolved. Hence, this arrangement should only be considered 

unaffected by gravity in a very short time period. Sample A was adopted to 

alleviate this problem. The solvent reservoir was filled either with pure toluene or 

a homogeneous mixture of toluene and PS for the reduced activity experiments. 

For the variable temperature experiments dry heated air was blown over the 

sample. The temperature was measured using a PT100 resistor to an error of 

dh0.1°C. Fixed temperature experiments were performed at 17°C. This is the 

temperature of the bore of the magnet.

6.3.2 Estimating the toluene vapour flux

An estimate of the toluene vapour flux in set-up A

Refering to Figure 6.6. Fi is the vapour flux leaving the solvent reservoir, F2 is the 

flux in the space between the outer test tube and the sculpted tube and jFs is the



SOLVENT FLUX LIMITED DIFFUSION 137

d6, A6

Toluene
Small test tube

Glassjod

Test tube

Glass beads to provide 
support for glass rod

PTFE slee'
Polystyrene pellet

toi
P a L

F1

P b

Pps

J
F2

F3

d1

d2

d3

H h- 
A4

h 4
d5, A5

0 2 4 6 8 1 0

Scale in mm

Figure 6.6: A schematic of the toluene and polystyrene sample preparation for 
long path lengths (Arrangement A)
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Figure 6.7: A schematic of the toluene and polystyrene sample preparation for 
the 3mm path length (Arrangement B)
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flux entering the polystyrene, di is the distance between the top of the reservoir 

and the top of the small sculpted test tube; d2 is the distance between the top 

of the small sculpted test tube and the top of the PTFE sleeve; and d3 is the 

distance between the top of the PTFE sleeve and the surface of the polystyrene. 

A4 is the area between the sculpted test tube and the outer test tube; d5 and A5 

are the diameter and area at the surface of the swelling polystyrene; and de and 

A6 are the diameter and area at the surface of the solvent reservoir. Assuming 

conservation of mass along the sample

FiAe =  F2A4 =  JF3A5. (6.11)

From Fields first law:

F  =  Dv(ptol-Pa) (6.12)
di

F2 = (6.13)
d2

F3 =  P 'f o - W * )  (6.14)
d3

where Dv is the toluene vapour diffusion coefficient and p is the vapour pressure 

evaluated at the surface of the toluene reservoir (toi)', at positions a and b as 

indicated in Figure 6 .6 ; and at the surface of the swelling polystyrene ( P S ) .  

Combining Equations 6.11 to 6.14 we can write

Also, from ideal gas kinetics

where R  is the universal gas constant, T  is temperature, M  =  ( M air

and M toi are the molecular weights of air and toluene respectively), a is the mean
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of the radii of the air and toluene molecules assuming they are classical spheres 

and Cair is the number density of the mixture of air and toluene vapour. [149] The 

initial value of di is diinit = 2mm however it increases as the toluene is absorbed 

by the PS as di = dUnit +  dswoiienj^  where dswouen is the change in length of 

the PS pellet at some time, d2 is the part of the path length we have varied at 

values of 3.5, 9.5 and 19.5cm. The initial value of d3 is d3i.nit =  11mm however it 

decreases as the toluene is absorbed by the PS as d3 =  d3init — dswouen. d5 = 8mm 

and de =  6mm giving A5 = 50.27mm2 and A6 =  28.27mm2. A4 is 13.35mm2. To 

calculate Dv: a = 3.36 x 10-10m, M  =  11.08g and cair =  2.49 x 1024m-3. At 

T  =  17°C, this gives a value for Dv of 1.75 x 10-5m2s_1.

An estimate of the toluene vapour flux in set-up B

In Figure 6.7, is the toluene vapour flux at the surface of the PS. F2 is the 

vapour flux leaving the solvent reservoir. A% and di are the area and diameter 

of the swelling polystyrene pellet. d2 is the distance between the surfaces of the 

toluene and PS. A3 and d3 are the area and diameter of the surface of the toluene 

reservoir. We can write, assuming conservation of mass, that

FiAi = F2A3. (6.17)

From Fields first law:

F2 =  ^ (P to i -p p s )  (6.18)
d2

P to i  and pps are the toluene vapour pressures at the surface of the solvent 

reservoir and at the surface of the swelling polymer respectively. Dv is defined in 

Section 6.3.2. Substituting Equation 6.17 into Equation 6.18 and rearranging
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In this experiment, di =  8mm, = 3mm and cfa =  9mm.

Equations 6.15 and 6.19 require accurate values of ptoi which will be considered 

next.

6.3.3 Values for the toluene vapour pressure

Toluene vapour pressure as a function of polystyrene fraction

Values for the vapour pressure of a mixture of polystyrene (with a molecular mass 

of 290,000g/mol) and toluene at different fractions have been measured by Bawn, 

Freeman and Kamaliddin. [104] A graph of their results is shown in Figure 6.8. 

Flory-Huggins theory can be written in terms of vapour pressures:

0.8

0.4  -

0.2

0.80.60.4
Polystyrene volume fraction

0.2

Figure 6.8: A graph of toluene activity above a mixture of PS and toluene 
as a function of PS volume fraction. The circles denote Bawn, Freeman and 
Kamaliddin’s original data and the line is a best-fit to Flory-Huggin’s theory

=  exp (In (1 — 0 2  ) +  (1 — 7 7 ) 0 2  +  (A'o +  AT102  +  ^ 2 0 2 )0 2 )- 
Ptol V2

(6 .20)
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<j)2 is the polymer volume fraction, V\ is the toluene molar volume 

(106.52cm3/mol) and V2 is the PS molar volume (273584.91cm3/mol). Xq, X \  and 

X 2 are the fit parameters representing a concentration dependent Flory-Huggins 

interaction parameter. [103] A least-squares best-fit of Equation 6.20 to the data 

of Bawn et al. gives X$ = 0.163977, X \ — 1.08418 and X 2 =  —0.779059.

Toluene vapour pressure as a function of temperature

A plot of toluene vapour pressure against temperature is shown in Figure 6.9. [150]

100 r

<y
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i

-50 50
Temperature/ C

100 150

Figure 6.9: A graph of toluene vapour pressure as a function of temperature 
based on data from reference [150]

The toluene vapour pressure at 17°C is 3000Nm 2.

6.3.4 STRAFI acquisition parameters

A quadrature echo sequence as described in Section 2.3.6 was used with a 90° 

pulse width of around 20/zs, r  =  35/zs and n=16. The stepper motor was moved
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in 60/im increments.

6.3.5 Measuring the swelling front position

To measure the size of the swelling front the last eight echoes were summed giving 

signal only from the more mobile component. The front and rear portions of the 

swelling front were measured at the position of the half maximum of this summed 

signal.

6.3.6 Finding the solvent volume fractions through the 

swelling PS

Best-fits were made, at each stepper motor step, to the decaying NMR echo peak 

envelope S  of the form

S  =  A e-m +  C (6.21)

where A, B  and C are the fitted parameters. A  gives the amount of short, 

polymer Tg component. The mobile solvent has a long T2 component and is thus 

represented by C. The solvent fraction is then simply calculated as C/(A +  C). 

Before fitting the echo peaks, the first two points were multiplied by a factor of 

1.5 x 1.5. The first factor is to correct for systematic low intensity between the first 

STRAFI echo which is a pure Hahn echo and the second which is a superposition 

of Hahn and stimulated echoes. [151] The second factor is to compensate for 

errors in setting the 90° pulse. This value is justified for a number of reasons. 

Firstly, they give more physical echo train decays. Secondly, values of surface 

solvent concentration between the two methods used (these are described below 

in Section 6.3.7) are in much better agreement.
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6.3.7 Finding the P S / toluene fraction at the surface of 

the swelling PS

The surface PS/ toluene fraction has been found in two ways, namely: performing 

three component fits, as described above, to the decaying echoes of the NMR 

signal; and finding by how much the PS pellet has swollen. Since this increased 

volume must be due to the toluene in the polystyrene, a ratio of the total change 

in length of the PS pellet to the length of the gel region will give the toluene 

volume fraction.

6.3.8 Calculating the mass of toluene being taken up at 

the polymer surface

The mass of toluene taken up by the PS has been calculated in two ways: 

multiplying the Case II front velocity by the product of the toluene density 

and the polymer surface area; and from the change in area between two solvent 

concentration profiles at early times are used to find the amount of solvent taken 

up in a known length of time. In this short time frame, it is much more reasonable 

to consider that solvent uptake is constant with time.

6.3.9 Calculating diffusion coefficients from the solvent 

front shapes

We can rewrite Pick’s first law as:

D M  - - s i s s  l6  22)

where D is the diffusion coefficient at time t, position z and solvent concentration 

(j). If both the shape and velocity of the solvent front do not vary with time then
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we can write

j ( z , t )  =  V(j)(z,t). (6.23)

Substituting Equation 6.23 into Equation 6.22, we have

=  ~  d f a i y d z ’ (6 '24)

Hence, if in an experiment we can determine c and its derivative with respect 

to position then, for a solvent front advancing at a constant known velocity, 

v we can determine the diffusion coefficient. In the work described here, we 

are able to vary the velocity by varying the incident flux, this gives a way of 

determining the diffusion coefficient in non-equilibrium situations. In particular, 

if D is history dependent, we can use Equation 6.24 to obtain values of D and, at 

least in principle, study the history dependence by varying v. To the best of our 

knowledge, this capability has not been pointed out or derived in the literature.

6.3.10 Analysis of STRAFI profiles

Shown in Figure 6.10 are a set of raw data stray field imaging profiles. The sample 

studied in this case is vapour from a pure toluene reservoir ingressing polystyrene 

with a vapour path length of 3.5cm. The profiles shown are MR spin-echo trains 

recorded at each sample location. The time interval between profiles is 30 hours. 

To the left of each profile is the vapour space, and to the right is the glassy 

polymer appearing as a series of short echo decay trains. The central, larger 

amplitude region, is the rubber. Both the swelling polymer surface and the rubber 

interface are well resolved. After best-fits have been made to the decaying NMR 

echo peak envelope as described in Section 6.3.6, a set of solvent concentration 

profiles are produced as shown in Figure 6.11 After an initial period in which 

the front shape forms (shown as profile (a) in the figure) the profiles overlay
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Figure 6.10: Raw data stray field profiles of the ingress of toluene vapour 
(d=3.5cm) into polystyrene at 17°C. The profiles are recorded after (a) 30, (b) 
60, (c) 90 and (d) 120 hours. The profiles consist of 128 magnetic resonance spin 
echo trains. Each train consists of 16 echoes recorded over 1120/zs. The trains 
are recorded at different slices of the sample separated by 60 fim. Hence each 
profile is 7.68mm long. To the left of each profile is the vapour space (no signal) 
and to the right the glassy polymer (strongly attenuated signal). The rubber is 
between. Within the rubber, the echo trains are bi-exponential decays. Even by 
eye, it is possible to estimate the solvent fraction.

each other (profiles (b) and (c) in the figure). From the gradient of the profiles, 

measured by drawing a tangent, the diffusivity is found using Equation 6.24. This 

calculated diffusivity relates to the time since the profile first passed —z'jv. We 

expect that diffusivity is both concentration and history dependent. When the 

profiles overlay, D as a function of both concentration and experiment history 

can be calculated from Equation 6.24. In Figure 6.11 a tangent is shown to 

the overlaying profiles at ÿ =  0.225. The results of these calculations are given 

in Section 6.3.11. In theory, we could evaluate earlier profiles such as profile 

(a) in Figure 6.11 if the flux is determined from the time dependence of the 

profile shape. We could then estimate the concentration history dependence of
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Figure 6.11: Three solvent fraction profiles extracted from STRAFI toluene 
vapour ingress data with d =3.5cm at 17°C, recorded after (a) 17 hours, (b) 8 and 
(c) 13 days. The profiles have been shifted so that the solvent front positions are 
at z'=0. After an initial development stage, the front shape assumes a constant, 
pseudo-equilibrium, form. The dashed line is a tangent to this shape from which 
the diffusivity at ÿ=0.225 is calculated.

D. However, the spatial and temporal resolution of MR are inadequate to study 

this early period. Additionally, when we fit to the echo trains there is ambiguity 

between the signal contributions from the solvent and from the polymer. At 

high solvent concentrations, the solvent diffusivity decreases the apparent spin 

relaxation of the solvent and the spin-spin relaxation time of the polymer also 

increases. One could, nevertheless, acquire data using a technique with higher 

spatial and temporal resolution, such as ion beam analysis. This can also better 

separate the solvent and polymer concentration fractions. By using different 

vapour path lengths one has the great advantage of tracing alternate cuts through 

D(c,t) space. It should also be mentioned that, at low solvent concentration, 

although in theory we can evaluate the diffusion coefficient using the method 

described above, the gradient is so steep that it is limited by pixel resolution and
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only an upper bound to D can be found. Furthermore, is is not obvious that 

Pick’s first law remains valid and higher order terms may need to be included.

6.3.11 Varying the vapour path length  

Aim

The aim of this set of experiments is to determine whether, Case II ingress can 

be induced by limiting the solvent vapour supply. We expect to see that the Case 

II front velocity is proportional to the vapour flux. Here, we vary the solvent 

vapour flux by adjusting the vapour path length.

Experimental results

Plots of Case II front position versus time are shown in Figure 6.12 for path 

lengths of 19.5, 9.5, 3.5 and 0.3cm. The initial period, where the solvent is 

apparently seen not to ingress should not be confused with the induction period 

often reported in Case II systems. [144] The solvent front observed by MRI is 

broadened by the point spread function of the profile resolution. In consequence, 

in the early stages, when the distance ingressed is less than the profile resolution, 

the signal intensity within the first few pixels is seen to rise but the profile 

width does not increase appreciably. The Case II front velocities are given in 

Table 6.1. Values for the equilibrium surface PS fractions, calculated using the 

two methods described in Section 6.3.7, and the corresponding vapour pressures 

calculated from Equation 6.20 are shown in Table 6.2. Table 6.3 gives the mass of 

toluene arriving at the polymer surface for both of the surface fraction calculation 

methods. These are shown with the mass being taken up by the PS. In Figure 6.13 

the Case II front velocity is compared to the flux arriving. As one can see in 

Figure 6.13, the Case II front velocity is proportional to the solvent vapour flux 

when the vapour flux is varied by changing the path length. There is good
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Table 6.1: Toluene ingress Case II front velocity at different vapour path lengths

Path length/ mm Front velocity/ nms 1

3 24.4

35 5.1

95 1.6

195 0.9

Table 6.2: The equilibrium PS surface fraction and corresponding vapour
pressures as a fraction of the pure solvent vapour pressure calculated using the 
two different methodologies at different vapour path lengths

Path length/ mm Surface PS fraction Pps!Ptoi Surface PS fraction Pps/Ptoi

Using two component fit Using swelling

3 0.46 0.95 0.53 0.92

35 0.52 0.93 0.64 0.85

95 0.70 0.79 0.70 0.79

195 0.75 0.72 0.67 0.82
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Figure 6.12: The Case II front position of toluene ingressing polystyrene at 
different vapour path lengths. The circles show a vapour path length of 3mm, 
the squares a path length of 35mm, the diamonds a path length of 95mm and 
the triangles a path length of 195mm

correlation over two orders of magnitude in spite of considerable errors involved 

in estimating both the swelling and the incident flux. This strongly suggests that 

we have observed Case II diffusion resulting from a limited surface flux. In their 

ion beam experiment at 20°C, Gall and Kramer [144] reported a front velocity 

of 0.04nms_1 for low activity deuterated toluene vapour ingressing polystyrene 

over an unspecified vapour path length. Our values also compare well with this. 

We extracted non-equilibrium diffusion coefficients from solvent concentration 

STRAFI profiles. Values of 5.7 x lO"8, 6.8 x 10"8 and 5.8 x lO"8 cm2/s were 

found for ÿ =  0.225 at path lengths of 3.5, 9.5 and 19.5cm. These values are 

effectively the same as one would expect for a diffusion coefficient measured at 

the same solvent concentration and sample history. The values compare well with 

those found in the literature for similar systems. [40, 152]
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Table 6.3: The toluene flux arriving at the surface of the PS compared to the 
mass taken up

Path length/ mm Flux arriving/ gs 1 Flux arriving/ gs 1 Mass uptake/ gs 1

Using two component fit Using swelling

3 210 x 10-* 330 x 10-8 110 x 10"8

35 4.1 x 10"8 10 x 10"8 22 x 10"8

95 6.0 x 10"8 5.7 x lO"8 6.8 x 10"8

195 3.7 x 10"8 2.3 x 10~8 4.0 x 10"8

1c

I
ÿ

Figure 6.13: The Case II front velocity as a function of toluene vapour flux at 
the polystyrene surface. The filled circles are variable path length samples made 
with set-up A. The unfilled circle is the inverted sample where PS downward flow 
was a problem.

6.3.12 Changing the toluene vapour source activity  

Aim

The aim of these experiments was to find how the Case II front velocity changed 

when the solvent supply was limited further by reducing the source activity.
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Table 6.4: The activity of the toluene vapour of mixtures of PS and toluene at 
different concentrations

PS volume fraction Activity

0.00 1.0

0.10 0.997

0.15 0.994

0.20 0.991

0.25 0.986

0.40 0.965

0.50 0.937

0.60 0.883

Experimental results

To reduce the activity, a of the toluene vapour source homogeneous mixtures of 

PS and toluene at varying concentrations were put into the solvent reservoir. The 

activity is given by Equation 6.20 since activity is equivalent to pps/ptoi- The 

mixtures were prepared by gently heating and stirring the PS and toluene over a 

period of days. Table 6.4 shows the different PS/ toluene mixtures used and the 

resulting activity. Experiments were performed with both set-up A and a path 

length of 35mm as well as with set-up B. Plots of the front position against time 

are shown in Figure 6.14. If the activity was reduced to below 0.883, no ingress 

was seen even when the sample was left for a number of weeks. The results 

shown in Figure 6.14 are what one would expect. The higher the activity of 

the toluene vapour the faster the front moves. The toluene ingress using sample 

set-up B, with a reduced vapour path, is quicker than using set-up A. Table 6.5 

shows the Case II front velocities. Values for the equilibrium surface PS fractions 

and corresponding vapour pressures calculated from Equation 6.20 are shown in
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Figure 6.14: The front position of toluene ingressing polystyrene at different 
vapour activities. From left to right the associated activités are: triangles (down): 
a =  1.0 with set-up B, stars: a = 0.965 with set-up B, diamonds: a = 0.883 with 
set-up B, circles: a = 1.0 with set-up A, plus signs: a = 0.997 with set-up A, 
triangles (right): a =  0.994 with set-up A, triangles (left): a =  0.991 with set-up 
A, circles: a =  0.986 with set-up A, diamonds: a =  0.965 with set-up A, squares: 
a =  0.937 with set-up A, triangles (up): a =  0.883 with set-up A.

Tables 6.6 and 6.7 for set-ups A and B respectively. The mass taken up by the 

PS was calculated as before. The results using set-up A and set-up B are shown in 

Tables 6.8 and 6.9 respectively. In Figure 6.15 the Case II velocity is compared to 

the solvent flux arriving at the sample surface. Again, good correlation is found.
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Table 6.5: Toluene ingress Case II front velocity with different toluene ativities 
in the solvent reservoir

Reservoir toluene activity Front velocity/ nms 1

Set-up A (35mm path length) Set-up B

1.0 5.1 24.4

0.997 4.3 -

0.994 4.0 -

0.991 3.7 -

0.986 3.6 • -

0.965 3.3 16.7

0.937 2.3 -

0.883 1.2 5.4

Table 6.6: The equilibrium PS surface fraction and corresponding vapour
pressures as a fraction of the pure solvent vapour pressure calculated using the 
two different methodologies at different toluene reservoir activities. (Experiments 
performed with set-up A and a path length of 35mm)

Activity Surface PS fraction pps/ptoi Surface PS fraction pps/Ptoi

Using two component fit Using swelling

1.0 0.52 0.93 0.64 0.85

0.997 0.40 0.88 0.67 0.82

0.994 0.41 0.89 0.64 0.85

0.991 0.41 0.89 0.64 0.85

0.986 0.41 0.89 0.65 0.84

0.965 0.44 0.91 0.67 0.82

0.937 0.44 0.91 0.77 0.68

0.883 0.19 0.60 0.85 0.51
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Table 6.7: The equilibrium PS surface fraction and corresponding vapour
pressures as a fraction of the pure solvent vapour pressure calculated using the 
two different methodologies at different toluene reservoir activities. (Experiments 
performed with set-up B)

Activity Surface PS fraction P p s / P toi Surface PS fraction p p s / p t o i

Using two component fit Using swelling

1.0 0.46 0.95 0.53 0.92

0.965 0.42 0.96 0.13 0.99

0.883 0.62 0.87 0.70 0.79

Table 6.8: The toluene flux arriving at the surface of the PS compared to the mass 
taken up for different toluene activities in the solvent reservoir. (Experiments 
performed with set-up A)

Activity Flux arriving/ gs 1 Flux arriving/ gs 1 Mass uptake/ gs 1

Using two component fit Using swelling

1.0 11.0 x 10-8 10 x lO-8 22 x lO"8

0.997 7.9 x lO"* 12 x lO"8 19 x lO"8

0.994 7.0 x lO"8 9.7 x 10-8 17 x lO"8

0.991 6.8 x lO"8 9.5 x lO"8 16 x lO"8

0.986 6.5 x lO-8 9.8 x lO"8 16 x lO"8

0.965 3.7 x lO"8 9.8 x lO"8 14 x lO"8

0.937 1.8 x lO"8 17 x lO"8 10 x lO"8

0.883 19.4 x lO"8 26 x lO-8 3.9 x lO-8
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Table 6.9: The toluene flux arriving at the surface of the PS compared to the mass 
taken up for different toluene activities in the solvent reservoir. (Experiments 
performed with set-up B)

Activity Flux arriving/ gs 1 Flux arriving/ gs 1 Mass uptake/ gs 1

Using two component fit Using swelling

1.0 210 x 10"8 330 x 10"8 110 x 10~8

0.965 21 x 10"8 27 x 10"8 73 x 10~8

0.883 55 x lO '8 250 x 10"8 8.7 x 10”8
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Figure 6.15: The Case II front velocity as a function of toluene vapour flux at 
the polystyrene surface. The circles are variable path length samples discussed in 
Section 6.3.11. The filled diamonds are variable reservoir activity samples made 
with set-up A. The unfilled diamonds are variable reservoir activity samples made 
with set-up B where downward flow of the PS was a problem

6.3.13 Temperature effects of toluene vapour ingressing 

PS

Aim

The aim of this set of experiments is to provide a large enough flux to remove the 

vapour flux as the rate-limiting step in diffusion. Increasing the temperature of
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the experiment greatly increases the flux. We expect the ingress to tend towards 

Fickian dynamics as the sample temperature is increased.

Experimental results

Sample set-up A with a path length of 35mm was used at temperatures T  of 17.0, 

41.5, 47.8, 73.3, 85.6 and 100.9°C. Figure 6.16 shows the solvent front position 

as a function of time.

jS 2

q OQ Q
2010

Time /  hours
15

Figure 6.16: The effects on changing the temperature of toluene vapour ingressing 
PS. Key: 17.0°C: circles; 41.5°C: stars; 47.8°C: diamonds; 73.3°C: triangles; 
85.6°C: crosses and; 100.9°C: squares.

These front positions were fitted against a curve of the form x  =  A tn where x  is 

distance, t is time and A  and n are the fit parameters. The results are shown in 

Table 6.10. Between 17.0 and 47.8 °C the ingress of toluene appears to be Case 

II with a transition to the anomolous regime occuring above this temperature. 

With increasing temperature, the trend is towards Fickian diffusion.

An estimate was again made of the toluene vapour flux arriving at the surface of
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Table 6.10: Best-fit parameters to the toluene vapour ingressing PS at varying 
temperature data in Figure 6.16

T /  °C A n X2

17.0 14.8401 1.05930 1195.23

41.5 104.679 0.925358 18583.4

47.8 109.244 0.976306 9390.92

73.3 292.281 0.834292 57303.6

85.6 968.856 0.715899 89325.6

100.9 1477.71 0.738802 185460

the PS and the mass taken up by it. A number of further assumptions have been 

made in these calculations. Firstly, for all the samples for a short time period 

at the start of the experiment, ingress is assumed to be linear with time. This 

is valid because in the short time limit the ingress must be surface flux limited 

and hence one expects Case II behaviour. Secondly, it has been assumed that 

the Flory-Huggins interaction parameters are not a function of temperature. This 

assumption has had to be made due to the lack of available data in the literature. 

Shown in Table 6.11 are estimates of the linear front velocities as a function of 

temperature. The vapour pressure for toluene as a function of temperature was 

interpolated from Figure 6.9. These values are listed in Table 6.11. Using the 

same methods as before, equilibrium PS surface volume fractions were measured 

(Table 6.12) and used to find an estimate of the flux arriving at the surface of 

the polymer. This value is compared to the mass of toluene taken up by the PS 

calculated from the front velocity at short time (Table 6.13).

Broadly speaking, as temperature is varied, at short times, correlation exists 

between flux arriving and front velocity. This is shown in Figure 6.17. At higher 

temperatures where both surface flux and diffusivity in the polymer are higher,
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Table 6.11: Pure toluene vapour pressures, diffusion coefficient of toluene vapour 
in air and estimated linear velocities at short experiment times all as a function 
of temperature

T /  °C Toluene vapour pressure/ Nm 2 Dv/  m2s 1 Front velocity/ nms 1

17.0 3000 1.75 x 10-5 5.1

41.5 9160 1.83 x 10-5 22.8

47.8 11700 1.84 x lO-5 28.2

73.3 36000 1.92 x lO"5 61.3

85.6 49100 1.95 x lO"5 252.5

100.9 79100 1.99 x lO"5 370.4

Table 6.12: The equilibrium PS surface fraction and corresponding vapour 
pressures as a fraction of the pure solvent vapour pressure calculated using the 
two different methodologies at different temperatures. (Experiments performed 
with set-up A and a path length of 35mm)

T /  °C Surface PS fraction pps/ptoi Surface PS fraction pps/Ptoi 

Using two component fit Using swelling

17.0 0.52 0.93 0.64 0.85

41.5 0.27 0.98 0.50 0.94

47.8 0.37 0.97 0.59 0.89

73.3 0.25 0.99 0.47 0.95

85.6 0.35 0.97 0.58 0.90

100.9 0.40 0.96 0.53 0.92



SOLVENT FLUX LIMITED DIFFUSION 160

Table 6.13: The toluene flux arriving at the surface of the PS compared to the 
mass taken up at various temperatures (Experiments performed with set-up A 
and a path length of 35mm)

T / °C Flux arriving/ gs-1 Flux arriving/ gs-1 Mass uptake/ gs-1 Mass uptake/ gs 1

Using two component fit Using swelling Assuming Case II Assuming Case II in short time

17.0 4.1 x 10-8 10 x lO-8 22 x lO -8 5.6 x  lO-8

41.5 3.1 x 10-8 12 x lO-8 99 x lO -8 48 x lO-8

47.8 7.3 x lO-8 28 x lO-8 123 x lO” 8 49 x lO " 8

73.3 10 X lO-8 35 x lO " 8 267 x  lO"8 43 x lO-8

85.6 26 x lO - 8 100 X lO-8 1098 x  lO-8 6 9 7 x lO -8

100.9 55 x lO " 8 125 x lO-8 1610 x  lO"8 923 x lO-8

linear ingress breaks down, equivalent to varying the parameter /3 in the model. 

The effective surface concentration also varies with temperature as the Case 

II behaviour breaks down. This variation results in changing the relationship 

between vapour flux and front velocity.

Calculating the activation energy

At each temperature a diffusion coefficient was calculated at ÿ =  0.3. If we 

assume that diffusivity in the rubber obeys an Arrhenius relationship then

D =  (6.25)

where E  is the activation energy, R  is the universal gas constant and T  is 

temperature. The gradient of a straight line of best-fit to a plot of In D  against 

L will give E. This plot is shown in Figure 6.18. For the higher temperature 

sets, only the linear, early ingress was considered. Fitting to the more reliable 

lower temperture data, where pixel resolution is not a limiting factor, gives an 

activation energy oî E  = 22kJ/mol. This is comparable with literature values for 

small molecule diffusion processes in polymers. [18, 37, 144, 148]
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Figure 6.17: The Case II front velocity as a function of toluene vapour flux at 
the polystyrene surface. The circles are variable path length samples discussed 
in Section 6.3.11. The diamonds are variable reservoir activity samples discussed 
in Section 6.3.12. The triangles are data recorded as a function of temperature

6.4 Discussion

The results of this chapter explain a number of puzzles originating from earlier 

work.

• A plausible explanation emerges as to why, in experiments looking at 

acetone vapour ingress into PVC, the polymer chain dynamics were 

observed to evolve across the rubber region. This equated to evolution for 

long periods (days). [145] With limited solvent flux at the sample surface, 

the solvent concentration in the polymer is near uniform and is close to that 

corresponding to the glass-rubber transition rather than the (much higher) 

equilibrium concentration. The (very) small concentration gradient close to 

the transition is sufficient to give rise to large changes in polymer mobility.
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Figure 6.18: The effects on changing the temperature on the diffusion coefficient 
The triangles and circles show the diffusion coefficients at 0 =  0.30 as a function 
of temperature. At high temperatures, the ingress tends towards Fickian and 
these points (the triangles) are neglected in the best-fit solid line.

• It also becomes possible to explain the unusually large extent of the Fickian 

precursor ahead of the main solvent front seen in the same acetone vapour 

ingress experiments. In the model as described in Section 6.2, the solvent 

diffusivity in the glass is set to zero. In reality, it will be very small, but 

non-zero. With low vapour flux, the Fickian precursor has time to build.

• The new results explain why some systems can be both Fickian and Case 

II. The observed diffusion depends on experimental conditions and not on 

the visco-elastic properties of the polymer. For solvent-flux-limited Case 

II diffusion, the Case II velocity depends solely on the solvent flux at the 

surface.

• It is possible, too, that the current work explains why the ion beam data 

of Hui et al [146] on iodohexane ingress into polystyrene led these authors
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to infer solvent diffusivities in the glassy state which apparently varied 

between samples. The experiment involved exposing glassy polymer to 

vapour above equilibrated iodohexane/ polystyrene solutions. The front 

velocity increased markedly with the solvent fraction in the reservoir. It is 

now apparent that the variable in this work was the vapour flux to which 

the samples were exposed.

We have demonstrated both by simple numerical modeling and by experiment 

that limiting the flux of a solvent impinging on a glassy polymer sample can 

result in Case II diffusion of the solvent into the polymer. This contrasts with 

Case II diffusion as normally described [17], where the rate limiting step is the 

swelling of the polymer at the solvent front. It has been shown that by varying 

the solvent flux, it is possible to vary the Case II front velocity. It is worth 

emphasising that the low surface flux is necessary but not sufficient to cause 

Case II ingress of this kind. A low flux of diffusant applied to a matrix will 

normally result in Fickian transport. The special boundary condition of the 

glass-to-rubber transition remains necessary for linear ingress. Without it, even 

if the diffusion coefficient is a strong function of concentration, the flux at the 

solvent front is always proportional to the concentration gradient and generalised 

Fickian diffusion must result, with D a function of c. It is also worth emphasising 

that Case II diffusion is a transitory phenomena. Left long enough in a sufficiently 

large system, the diffusion will always revert to Fickian behaviour.

It has been shown that the solvent diffusion coefficient can be derived readily 

from the solvent concentration profile when the incident solvent flux is limited. It 

is suggested that, with higher temporal and spatial resolution data, this provides a 

means of readily accessing the concentration history dependence of the diffusivity 

-  if such history dependence exists -  in the region of the solvent-induced glass 

transition.

A paper of the work in this chapter has been submitted to Macromolecules.



Appendix A

Derivation of m ulti-com ponent 

atom istic diffusion equation

Here we derive Equation 3.11. This is the equation used for multi-component 

diffusion. Consider two diffusing species r  and s from a larger number t. Thus

i = 1 ,2 ,... , r , s , . . .  ,t. (A.l)

There are n™ molecules of species r in a plane (y, z) at position m  along the x 

direction (which is the direction of diffusion) and n™ molecules of species s in a 

plane (y, z) at position m. The total number of molecules in the plane (%/, z) at 

m  is given by N  where

N  = j r n T .  (A.2)
i = l

We now calculate the net flux of the different species across a surface between 

position m  and m +  1 arising from mutual exchange of atoms in neighbouring 

planes m  and m +  1 with the same y and z coordinate. If the probability of 

type r in plane m  exchanging position with a species of type s at m +  1 (where 

the neighbours r and s have the same y and z coordinate) per unit time is Pr,s,

164
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then the flux of r crossing forwards from position m  to position m + 1  previously 

occupied by s is Ff orward, and we can write:

«jTTi+l p  d n Tn

F forvm rd  =  +  - ^ A x )  (A.3)

where A x  is the distance in the x direction between plane m  and m + 1. Similarly 

we can write the reverse flux of r from plane m +  1 to plane m, Freverse as:

F reverse =  A*). (A.4)

Hence the net flux number is:

p / r ln 171 H nr \
Fforwari -  Frever3e = (A.5)

Pr>s is proportional to the diffusion coefficient DriS. n™ is proportional to 

concentration (j)r hence summing over all species, the flux of component i is:

<A-e)

This is Equation 3.10. From Pick’s second law we can then write that:

d(j)i

dt Efc <t>k 

This is Equation 3.11.

( a '7>
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