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A multi-symplectic system is a PDE with a Hamiltonian structure in both temporal and spatial variables. This paper considers spatially
periodic perturbations of symmetric multi-symplectic systems. Due their structure, unperturbed multi-symplectic systems often have
families of solitary waves or front solutions, which together with the additional symmetries lead to large invariant manifolds. Periodic
perturbations break the translational symmetry in space and might break some of the other symmetries as well.

In this paper, periodic perturbations of a translation invariant PDE with a one dimensional symmetry group are considered. It is
assumed that the unperturbed PDE has a three dimensional invariant manifold associated with a solitary wave or front connection of
multi-symplectic relative equilibria. Using the momentum associated with the symmetry group, sufficient conditions for the persistence
of invariant manifolds and their transversal intersection are derived. In the equivariant case, invariance of the momentum under the
perturbation gives the persistence of the full three dimensional manifold. In the equivariant case, there is also a weaker condition for the
persistence of a two dimensional submanifold with a selected value of the momentum. In the non-equivariant case, the condition leads to
the persistence of a one dimensional submanifold with a seleceted value of the momentum and a selected action of the symmetry group.
These results are applicable to general Hamiltonian systems with double zero eigenvalue in the linearisation due to continuous symmetry.

The conditions are illustrated on the example of the defocussing nonlinear Schrödinger equations with perturbations which illustrate
the three cases. The perturbations are: a equivariant, periodic, Hamiltonian perturbation which keeps the momentum level sets invariant;
a equivariant damped, driven perturbation; and a perturbation which breaks the rotational symmetry.
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1. Introduction

A multi-symplectic system is a partial differential equation with a Hamiltonian or (pre-)symplectic struc-
ture in both spatial and temporal variables. Although existence of a multi-symplectic structure might
seem to be overly restrictive, it turns out that many Hamiltonian PDEs have such structure. This can also
be seen from the many multi-symplectic numerical methods that have been developed for various PDEs,
for an overview see [1]. The concept of a multi-symplectic structure, in the sense used here, was intro-
duced in Bridges [2–4], where it was shown to be a natural dynamical systems framework for analysing
multi-dimensional patterns and their stability. The connection with the Cartan form requires starting
with a Lagrangian formulation of the problem which after multiple Legendre transform leads to a similar
higher-order form – but without distinguishing the role of the two forms. In the case of Hamiltonian PDEs
associated with first-order field theories, this connection can be made precise (cf. Marsden & Shkoller [5]).
Because of the symplectic structure for both temporal and spatial variables in multi-symplectic systems,

the study of perturbations of such systems has the potential to provide a starting point for understand-
ing of so-called spatio-temporal chaos. Spatio-temporal chaos corresponds to incoherent behaviour in both
temporal and spatial directions of the system and has been observed both in numerics and in real measure-
ments. In particular, spatio-temporal chaos seems to have similarities to turbulence (see e.g. Bohr et al. [6]),
which arises in areas such as fluid flows, plasmas, chemical and biological systems. More applications of
spatio-temporal chaos can be found, for example, in the fibre-optic communications (see Garcia-Ojalvo &
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Roy [7] and references therein). Several model systems which exhibit spatio-temporal chaos can be written
as perturbed multi-symplectic systems.
Many multi-symplectic systems have symmetries, which means that such systems usually possess families

of special solutions such as (travelling) solitary waves or fronts. Perturbations can lead to the break-up of
those solutions and subsequent formation of spatio-temporal chaos. In this paper, the focus is on the effects
of spatially periodic perturbations on the invariant manifold associated with solitary waves/fronts of multi-
symplectic systems with symmetry. Sufficient criteria will be derived for the persistence of this manifold,
or parts of this manifold, under spatially periodic perturbations both equivariant and symmetry-breaking
ones. Furthermore, intersections of the persisting manifolds will be investigated, as these can signify the
existence of chaotic dynamics through a suitable modification of the Smale-Birkhoff theorem [8]. As an
illustration of the general theory, we will analyse the effect of various spatially periodic perturbations of
the nonlinear generalised Schrödinger (NLS).
The generalised NLS equation has the form

iΨt = Ψxx + ivΨx +W ′(| Ψ |2)Ψ, (1)

where Ψ(x, t) is a complex-valued function of (x, t) ∈ R× R, v is a parameter often relating to a travelling
wave frame and W (·) : R → R can be any smooth function. The NLS equation can be written as a
multi-symplectic system, as will be shown below. This presentation follows Bridges & Derks [9]. Using
the notation Ψ = q1 + iq2 and Ψx + iv2Ψ = p1 + ip2, the NLS equation (1) can be recast in the following
multi-symplectic representation:

MZt + JZx = ∇S(Z), (2)

where

M =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , J =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , Z =




q1
q2
p1
p2


 ∈ R4,

and

S(Z) = 1
2

(
p21 + p22

)
+ v

2(p1q2 − p2q1) +
v2

8 (q
2
1 + q22) +

1
2W (q21 + q22).

Thus the partial differential equation (1) is represented by the pair of skew-symmetric matrices M and J,
and the scalar function S(Z) on R4.
The NLS equation (1) is equivariant under phase shifts, which are actions of the Lie group G = SO(2). In

the multi-symplectic formulation (2), a phase shift corresponds to rotating the vectors (q1, q2) and (p1, p2)
simultaneously and it will be denoted by Gθ.
Solutions often appearing in Hamiltonian or multi-symplectic systems are solitary wave or front solutions

which are travelling wave solutions connecting two steady states of the PDE. In the case of the focusing NLS
equation (W ′(|Ψ|2) = k+ |Ψ|2), localized bright solitons connect the trivial steady states. The defocussing
NLS equation (W ′(|Ψ|2) = k − |Ψ|2) has dark solitons which connect two non-trivial steady states (with
different phases) [10]. The equivariance of the equations implies that there exists a full group orbit of
steady states and solitary waves/fronts, obtained by letting the symmetry group act on the solution. The
symmetry can also be used to generalise the steady states and solitary/wave front solutions. In classical
Hamiltonian systems, equilibrium solutions are generalised by changing them into the solutions aligned
with a group orbit travelling at some constant speed - the so-called, relative equilibria. Such solutions are
represented as Gat+θZ0. In a multi-symplectic system, a Hamiltonian structure is present in both time and
space, so it is natural to generalise the definition of a relative equilibrium to be a solution of the form

Z(x, t) = Gat+bx+θ0Z
∞ or ψ(x, t) = ei(at+bx+θ0)ψ∞
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and a relative solitary wave or front solution to be a solution of the form

Z(x, t) = Gat+bx+θ0 Z̃(x), or ψ(x, t) = ei(at+bx+θ0)ψ̃(x)

where the wave shape ψ̃(x) (Z̃(x)) converges exponentially fast to a relative equilibrium ψ∞ (Z∞) for
x→ ±∞. The relative equilibria and relative solitary waves/fronts usually come in families, which can be
parametrised by the wave speeds a and b, or equivalently, the value of the mass and the momentum of the
wave shape. In case of the NLS equation, they are bright/dark solitons in a frame rotating both with time
and space. More details can be found in section 6.

A general multi-symplectic system of the form

MZt + JZx = ∇S(Z),

is invariant under translations. Often such a system has travelling solitary waves/fronts; they usually come
in families, which can be parametrised by the wave speed. By going to a moving frame (t, x) → (t, x− vt),
where v is the wave speed of the solitary wave, the solitary wave becomes stationary and the multi-
symplectic form is preserved. The only change is in the symplectic matrices, and the equation in the
moving frame is MZt + JvZx = ∇S(Z), where Jv = J − vM. Perturbations can be in a travelling wave
form as well, for example, the driving of wind on waves in the ocean. In such case the perturbation will
select the solitary wave with the appropriate wave speed. We will assume that a transformation to a
moving frame has been made and the perturbation can be written as having only spatial and no temporal
dependence.
So we will look at perturbed multi-symplectic systems of the form

MZt + JZx = ∇S(Z) + εF (Z, x), t > 0, x ∈ R,
where Z ∈ R4, M and J are skew-symmetric matrices with J invertible, S : R4 → R, ε ∈ R, and F :R4 × R→ R4 is periodic in its second spatial argument. For ε = 0 (unperturbed multi-symplectic system)
it is assumed that the system is invariant under the action Gθ of a one-dimensional Lie group G and that
the unperturbed multi-symplectic system has a family of relative solitary waves/fronts of the form

Z(x, t) = Gat+bx+θ0 Z̃(x),

where Z̃(x) decays exponentially fast to a relative equilibrium at ±∞. Hence such solution is uniformly
moving with the symmetry group in both space and time. By taking a = b = 0, a standard stationary
solitary wave/front is obtained. These families of solutions form invariant manifolds in the unperturbed
system. With Noether’s Theorem, it follows that there is some C : R4 → R such that J d

dθGθZ = ∇C(GθZ).

Any solution of the form Z(x, t) = Gat+bx+θ0 Z̃(x) stays within the same C level set, both in time and
space. Thus if ε = 0, C is a temporal and spatial constant of motion for solutions of this type.
In the next section, the multi-symplectic formalism will be introduced as a framework for studying

persistence of invariant manifolds in perturbed systems, as well as their intersections. The methodology to
study the intersection of the invariant manifolds is inspired by Melnikov’s method [11], which was originally
proposed to study time-periodic perturbations of a differential equation having a hyperbolic fixed point
connected to itself by a homoclinic orbit. In this approach, after the persistence of perturbed invariant
manifolds is established, the splitting of those manifolds is studied by evaluating a function that gives
the signed distance between the manifolds to the leading order. Melnikov’s method has been extended
to hyperbolic systems in higher dimensions [12], as well as to the non-hyperbolic fixed points [13–16].
However, none of those extensions considers fixed points with a linearisation that has zero eigenvalues. If
one considers systems with symmetry, then zero eigenvalues will appear generically in the linearisations.
Our method will investigate the effects of symmetry breaking perturbations on Hamiltonian systems,
i.e. also on saddle-centres characterized by a double zero eigenvalue due to a continuous symmetry. The
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complications in the analysis due to the double zero eigenvalue can be dealt with by using that the origin
of the double eigenvalue is in a symmetry group.
Being originally used for detecting chaotic motion in the systems of ODEs, Melnikov’s method has been

also successfully used to analyse chaotic behaviour in the solutions of partial differential equations. One
can mention the seminal paper by Holmes & Marsden [17], where a Melnikov-type analysis was applied
to the problem of a linearly damped sinusoidally forced buckled beam. Other problems investigated with
a Melnikov-type method include perturbed sine-Gordon equations [18], perturbed KdV-Burgers equa-
tions [19], and perturbed focussing nonlinear Schrödinger equations [20, 21]. All of those systems have
hyperbolic fixed points (the symmetry in the focussing NLS equation acts in a degenerate way on the fixed
points).
There are several steps involved in deriving Melnikov-type conditions for the intersection of perturbed

invariant manifolds. The first of these steps is the proof of the persistence of the unperturbed periodic
orbit under perturbation. While sometimes this persistence is just assumed [15], the traditional approach
relies on the implicit function theorem to prove it. In this paper a Lyapunov-Schmidt type argument is
used to prove the persistence of the periodic orbit in section 3, as the presence of the symmetry group
leads to a double zero eigenvalue in the linearization matrix of the unperturbed system.
After the persistence of the periodic orbit is established, the next question is the persistence of its

invariant manifolds. The symmetry group plays a very important role in this consideration as it underlines
the geometry of the invariant manifolds. As a first step, in section 4 the spectrum of the linearised perturbed
Poincaré map is derived and used to obtain an understanding of local invariant manifolds. Then this
information is used to construct the global manifolds while taking into account the details of perturbed
geometry for each kind of perturbation. Three types of perturbations are considered in this paper. The
first type are equivariant perturbations which also preserve the level sets of C, the function related to
the symmetry group by Noether’s Theorem. Reduction to a level set of C transforms the problem to a
standard case of hyperbolic fixed point, which is well understood. The second kind of perturbations are
also equivariant but do not necessarily preserve the level sets of C. In this case, it is shown in section 5
how a Melnikov-type measurement can be performed to study the intersection between centre-stable and
centre-unstable manifolds of the perturbed periodic orbits. Finally, symmetry-breaking perturbations are
considered and for some of them it is demonstrated how the existence of a transversal intersection of
perturbed invariant manifolds can be established via a Melnikov-type measurement.
To illustrate the theoretical results, the example of the defocussing NLS equation with several equivariant

and symmetry-breaking perturbations is considered in section 6. The paper concludes with some final
remarks and a discussion of the results.

2. The general problem and some preliminaries

Consider the following multi-symplectic system with a small spatially periodic perturbation:

MZt + JZx = ∇S(Z) + εF (Z,ωx), t > 0, x ∈ R, (3)

with Z ∈ R4, M and J are skew-symmetric matrices with J invertible, S : R4 → R, ε ∈ R, F : R4 ×R→ R4

is 2π-periodic in its second spatial argument and ω is a parameter such that F (Z,ωx) is T = 2π
ω periodic

in x.
For the unperturbed multi-symplectic system (ε = 0), it is assumed that the system is invariant under

the action of a one-dimensional Lie group G which is generated by the generator ξ(Z). The action is denoted
by GθZ = exp(θξ(Z)) and ξ(Z) = d

dθ

∣∣
θ=0

GθZ. By applying Noether’s theorem to both (pre-)symplectic

operators (see e.g. [2]), it follows that there exists a pair of functionals P, C : R4 → R such that

Mξ(Z) = ∇P (Z), Jξ(Z) = ∇C(Z). (4)

It is assumed that all functionals S, P , and C are smooth (at least in Cr, r ≥ 3).



March 28, 2008 11:43 Dynamical Systems paper˙ds

Transverse intersection of invariant manifolds 5

A relative solitary wave is a solution of the form

Z(x, t) = Gat+bxZ0(x),

where the shape of the solitary wave Z0(x) converges to some limit, say Z∞
0 , for x→ ±∞ and Gat+bxZ

∞
0

is a relative equilibrium (note that the limits can be different at ±∞). Substitution of this expression into
the unperturbed multi-symplectic system (3, with ε = 0) shows that the wave shape Z0 will satisfy the
Hamiltonian ODE

J(Z0)x = ∇H0(Z0; b), with H0(Z0; b) = S(Z0)− aP (Z0)− bC(Z0). (5)

In the analysis in this paper the parameter a will not vary, hence the dependence on a in functionals etc.
will be suppressed.
The limits of the wave shape Z(x) are fixed points of solitary wave equation and satisfy

∇S(Z∞
0 ) = a∇P (Z∞

0 ) + b∇C(Z∞
0 ). (6)

This is the Euler-Lagrange equation for the critical point problem

crit
Z

{S(Z)− aP (Z) | C(Z) = c }. (7)

So solving the fixed point problem (6) is equivalent to solving the critical point problem (7).
Because of the equivariance of the Hamiltonian ODE (5) under the action of the symmetry group G, all

solitary wave solutions and fixed points come in families. If Z0(x) is a solitary wave shape or if Z∞
0 is a fixed

point, then GθZ0(x) is a solitary wave shape and GθZ
∞
0 is a fixed point too for any Gθ ∈ G. We will consider

solitary wave shapes which are heteroclinic connections between two points on the same group orbit, i.e.,
if Z(x) is a solitary wave shape and lim

x→−∞
= Z∞

0 , then lim
x→∞

= GθZ
∞
0 for some Gθ ∈ G. The following

hypothesis guarantees the existence of such solitary wave solutions of the unperturbed multi-symplectic
system and gives some non-degeneracy conditions.

Hypothesis 2.1

a There is an interval C ⊂ R, such that for all c ∈ C, the critical point problem (7) has a solution Z∞
0 (c)

and the corresponding Euler-Lagrange equation (6) has a Lagrange multiplier b(c), both of which depend

smoothly on c. Furthermore, db(c)
dc 6= 0 for any c ∈ C.

b For every c ∈ C, there is a solitary wave shape Z0(x; c) which depends smoothly on c and is a
homo/heteroclinic solution of the Hamiltonian system

J
d

dx
Z0(x; c) = ∇H0 (Z0(x; c); b(c)) ,

with lim
x→−∞

Z0(x; c) = Z∞
0 (c) and lim

x→+∞
Z0(x; c) = Gθ∞Z

∞
0 (c), for some Gθ∞ ∈ G. Moreover, the or-

bits Z0(x; c) approach the fixed points Z∞
0 (c), respectively, Gθ∞Z

∞
0 (c), exponentially fast with velocity

λ(c) > 0, i.e., the limits lim
x→−∞

(Z0(x; c) − Z∞
0 (c)) e−λ(c)x and lim

x→∞
(Z0(x; c)−GθZ

∞
0 (c)) eλ(c)x exist.

Define V ±
0 (c) = lim

x→∞
e±λ(c)x(Z0(x; c))x for future use.

c At the fixed points Z∞
0 (c) the generator ξ(Z∞

0 (c)) does not vanish for any c ∈ C.
d For all c ∈ C, the vectors ∇H0(Z; b(c)) and ∇C(Z) are pointwise linearly independent at any point
Z ∈ R4 except for the fixed points GθZ

∞
0 (c) (since ∇H0(GθZ

∞
0 (c); b(c)) = 0).

Using Noether’s theorem, it follows that C(Z) is a constant of motion for the Hamiltonian ODE (5), for
any b. Hence, any solitary wave shape Z0 has the property that C(Z0(x; c)) = C(Z∞

0 (c)) = c for any x ∈ R
and c ∈ C. Using that the Hamiltonian H0 is a constant of motion too, one can define the function sa(c)
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as follows:

sa(c) = S(Z∞
0 (c)) − aP (Z∞

0 (c)) = S(Z0(x; c)) − aP (Z0(x; c)),

where c = C(Z∞
0 (c)). Using the definition of sa(c) and the Euler-Lagrange equation (6) for Z∞

0 (c), it
follows immediately that the Lagrange multiplier b(c) is related to sa(c) by

b(c) = s′a(c).

Furthermore, the linearisation of the Hamiltonian system about the fixed points Z∞
0 can be determined

with hypothesis H2.1.

Lemma 2.2: For any c, the linearisation J−1D2H0 (Z
∞
0 (c); b(c)) around the point Z∞

0 (c) has the spec-
trum {0, 0,±λ(c)}. The zero eigenvalue of this linearisation has the corresponding eigenvector ξ(Z∞

0 (c))

and a generalised eigenvector u(c) which is given by u(c) = 1
s′′a(c)

dZ∞

0 (c)
dc . The hyperbolic eigenvalues corre-

spond to the exponential decay of the heteroclinic solution Z0(x; c) to Z∞
0 (c) as x approaches −∞, and of

G−θ∞Z0(x; c) to Z∞
0 (c) as x→ +∞, respectively.

Proof : Using the invariance of the Hamiltonian H(Z; b), it follows immediately that the generator
ξ(Z∞

0 (c)) is in the kernel of the operator D2H0(Z
∞
0 (c); b(c)). Differentiating the Euler-Lagrange equa-

tion ∇H0 (Z
∞
0 (c); b(c)) = 0 with respect to c and using that b(c) = s′a(c), we obtain

J−1D2H0 (Z
∞
0 (c); b(c))

dZ∞
0 (c)

dc
= s′′a(c)J

−1∇C (Z∞
0 (c)) = s′′a(c) ξ(Z

∞
0 (c)). (8)

Therefore, we can conclude that the zero eigenvalue of the operator J−1
v D2H0 (Z

∞
0 (b); b) has algebraic

multiplicity two with the generalised eigenvector as given in the Lemma.
By the Hypothesis H2.1(b) there exist relative heteroclinic orbit Z0(x; c) which connects the equilibria

Z∞
0 (c) and Gθ∞Z

∞
0 (c) and approaches these equilibria exponentially fast with the velocity λ(c). This gives

the eigenvalues ±λ(c) in the spectrum of the linearised operator. �

Remark 1 : Note that the condition db(c)
dc 6= 0 in Hypothesis H2.1(a) implies that the relative equilibria

are non-degenerate.

The solitary wave shapes can be associated with invariant manifolds in the unperturbed system. First
of all, for a fixed value of c, one can define the one dimensional invariant manifold associated with the
relative equilibria Z∞

0 :

M∞
0 (c) = {GθZ

∞
0 (c) | Gθ ∈ G}

and the two-dimensional invariant manifold associated with the wave shape of the solitary wave or front Z0:

M0(c) = {GθZ0(x; c) | x ∈ R, Gθ ∈ G}.

These manifold are sketched in Figure 1. All manifolds together form a three-dimensional invariant manifold

M0 = ∪
c∈C

M0(c).

It follows immediately from Lemma 2.2 and the invariance of H(Z, b) that this manifold is the centre-stable
manifold and the centre-unstable manifold of any fixed point GθZ

∞
0 (c).

In the following two sections the persistence of those invariant manifolds under the perturbation F (Z, x)
will be studied. To analyse the persistence for the perturbed system, a transformation to the moving frame
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M
oo

Z (x;c)

(c)

x

0

0

Figure 1. Geometry of the invariant two-dimensional manifold M0(c) of the unperturbed system for a fixed value c ∈ C. Different
points on the group orbit GθZ

∞

0
(c) are connected by the relative heteroclinic orbits Z0(x; c).

Z(x, t) = Gat+bxZ(x) is made and the resulting perturbed Hamiltonian system is

JZx = ∇H0(Z; b) + εDG∗
at+bx(Z)F (Gat+bxZ, x). (9)

In case the perturbation F is equivariant, it holds DG∗
at+bx(Z)F (Gat+bxZ, x) = F (Z, x). If F is not

equivariant, it is natural to restrict the persistence questions to solutions with a = 0 = b. Using this, the
non-autonomous system can be written as an autonomous system by using the suspended system

JZx = ∇H0(Z; b) + εF (Z, τ),

τx = ω. (10)

Thanks to the smoothness assumption, this system has a smooth flow denoted by Φε,b
x : R4×S1 → R4×S1.

The Poincaré map for this system is given by

Πε,bZ = π1Φ
ε,b
T (Z, 0), (11)

where π1 : R4 × S1 → R4 denotes the projection onto the first factor.
By differentiating the flow map, it follows immediately that the linearised unperturbed Poincaré

map DΠ0,b(c)(Z∞
0 (c)) is the solution matrix at x = T of the constant coefficient ODE JUx =

D2H0(Z
∞
0 (c); b(c))U . In Appendix A it is shown that the linearisation of the unperturbed Poincaré map

evaluated at the relative equilibria satisfies the following properties.

Lemma 2.3: For any c ∈ C, write L0(c) = DΠ0,b(c) (Z∞
0 (c))− I, where I is the identity matrix. It holds

L0(c) ξ(Z
∞
0 (c)) = 0, (12)

L0(c)
dZ∞

0 (c)

dc
= −s′′a(c)

∂

∂b

∣∣∣∣
b=b(c)

Π0,b(Z∞
0 (c)) = s′′a(c)T ξ(Z

∞
0 (c)), (13)

Furthermore, the vector ∇C(Z∞
0 (c)) is orthogonal to the range of the operator L0(c).
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3. Persistence of the relative equilibria

For any c ∈ C and b arbitrary, the relative equilibria G(b(c)−b)xZ
∞
0 (c) of the unperturbed system (5)

correspond to relative periodic orbits of the form (G(b(c)−b)xZ
∞
0 (c), ωx+ τ0) in the suspended system (10),

where τ0 is an arbitrary parameter. We will denote the periodic orbits (b(c) = b) by

p0(c) = {(Z∞
0 (c), τ) | τ ∈ S1}.

Since periodic orbits of the suspended system correspond to fixed points of the Poincaré map, the points
Z∞
0 (c) are fixed points of the unperturbed Poincaré map Π0,b(c).
The invariance of the unperturbed system under the group G implies that the relative periodic orbits

come in families

Gp0(c) = {(GθZ
∞
0 (c), τ) | τ ∈ S1, Gθ ∈ G}.

So, the two-dimensional invariant manifold ∪c∈CM∞
0 (c) of relative equilibria in the unperturbed system

(5) corresponds to a three-dimensional invariant manifold of relative periodic orbits in the unperturbed
suspended dynamics (10) and a two-dimensional manifold of relative equilibria of the unperturbed Poincaré
map (11).
The values of the C level sets are used to parametrize the relative equilibria in the unperturbed case.

The dynamics of the C level sets plays an important role in the persistence arguments too. Using the
suspended system (10), the relation Jξ(Z) = ∇C(Z) and the invariance of H0, it follows for a solution of
the perturbed system

d

dx
C(Z) = −〈ξ(Z),JZx〉 = −ε〈ξ(Z), F (Z, τ)〉, τ = ωx+ τ0. (14)

Hence, the C level sets are invariant under the perturbation if and only if 〈F (Z, τ), ξ(Z)〉 =
〈J−1F (Z, τ),∇C(Z)〉 = 0 for all Z and τ (i.e., J−1F (Z, τ) is tangent to the C-level sets).
Furthermore, fixed points of the Poincaré map correspond to periodic solutions of the suspended system,

and any T -periodic solution satisfies

−ε
∫ T

0
〈ξ(Z(x)), F (Z(x), τ(x))〉 dx = C(Z(T ))− C(Z(0)) = 0.

In other words, the periodic orbit Gθp0(c) can persist only if

∫ T

0
〈ξ(GθZ

∞
0 (c)), F (GθZ

∞(c), τ(x))〉 dx

=
1

ω

∫ 2π

0
〈ξ(GθZ

∞
0 (c)), F (GθZ

∞(c), τ)〉 dτ = 0.

Therefore we introduce the following quantities

R(Z, τ) = 〈F (Z, τ), ξ(Z)〉 = −〈J−1F (Z, τ),∇C(Z)〉,

and the average value of this quantity

R(Z) =
1

2π

∫ 2π

0
R(Z, τ) dτ =

1

T

∫ T

0
〈F (Z,ωx), ξ(Z)〉 dx.
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We have shown above that the C level sets are invariant under the perturbation if R(Z, τ) = 0 for all Z
and τ . Furthermore, if the perturbation is equivariant, then R(GθZ) = R(Z) for all θ and Z.

Theorem 3.1 : A necessary condition for the existence of a smooth curve of (relative) periodic or-
bits Gat+bεxZε(x) with Zε(0) converging to a relative equilibrium GθZ0(c) for ε → 0, is given by
R(GθZ0(c)) = 0. If the perturbation is not equivariant, then it is also necessary that a = 0 = bε and
c = c0, where c0 is such that b(c0) = 0.
Sufficient conditions for the persistence of the relative periodic orbits are given by one of the following

three criteria:

(i) If F is equivariant and R(Z, τ) = 0 for all values of Z and τ , then for any c ∈ C, there is an ε0 > 0
and smooth curves {bε(c), |ε| < ε0} and {Z∞

ε (c), |ε| < ε0} such that Z∞
ε (c) are fixed points of the

perturbed Poincaré map Πε,bε(c) with Z∞
ε (c) → Z∞

0 (c), bε(c) → b(c), for ε → 0, and C(Z∞
ε (c)) = c.

The equivariance implies the existence of a two-dimensional manifold of fixed points: GθZ
∞
ε (c), for

any |ε| < ε0. Furthermore, for any c ∈ C and Gθ ∈ G, the perturbed PDE has relative periodic orbits
of the form Z(x, t) = Gat+bεx+θZε(x), where Zε(x) is periodic in x and Zε(0) = Z∞

ε (c).
(ii) If F is equivariant and there is some ĉ ∈ C satisfying the selection criterion R(Z∞

0 (ĉ)) = 0 and the
non-degeneracy condition d

dc |c=ĉR(Z∞
0 (c)) 6= 0, then there is an ε0 6= 0 and a curve {(Z∞

ε , bε), |ε| < ε0}
of the fixed points Z∞

ε of the perturbed Poincaré map Πε,bε. In the limit for ε→ 0 it holds Z∞
ε → Z∞

0 (ĉ),
as well as bε → b(ĉ). The equivariance implies the existence of a one-dimensional manifold of fixed
points: GθZ

∞
ε , for any |ε| < ε0. Furthermore, for any Gθ ∈ G the perturbed PDE has relative periodic

orbits of the form Z(x, t) = Gat+bεx+θZε(x), where Zε(x) is periodic in x and Zε(0) = Z∞
ε .

(iii) If F is not equivariant, then take b = 0 = a and c = c0, where c0 is such that b(c0) = 0. If there

is some θ̂ such that R(Gθ̂Z
∞
0 (c0)) = 0 and d

dθ |θ=θ̂R(GθZ
∞
0 (c0)) 6= 0, then there is an ε0 6= 0 and a

curve {Z∞
ε , |ε| < ε0} of the fixed points of the perturbed Poincaré map Πε,0. In the limit for ε → 0 it

holds Z∞
ε → Gθ̂Z

∞
0 (ĉ). Furthermore, the perturbed PDE has a spatially periodic solution Zε(x) with

Zε(0) = Z∞
ε .

The (relative) equilibria of the Poincaré map correspond to (relative) T -periodic solutions Zε(x) of the
perturbed Hamiltonian system (9). If ε is small, those (relative) periodic solutions Zε(x) are order O(ε)
near the persisting unperturbed (relative) equilibria.

The necessary conditions follow immediately from the observations before the Theorem. The proof of
the sufficient conditions is given in the Appendix A.
From Theorem 3.1 it follows immediately that if F is equivariant and R(Z, τ) = 0 for all Z and τ (case

1), then the full three-dimensional invariant manifold of invariant relative periodic orbits persists. If F is
equivariant and R(Z, τ) has isolated roots (case 2), then a two-dimensional invariant manifold of invariant
relative periodic orbits persists. Finally, if F is not equivariant, then one can expect at most the persistence
of a one-dimensional manifold of periodic orbits.

Remark 2 : Any Hamiltonian equivariant perturbation automatically satisfies R(Z, τ) = 0 for all values
of Z and τ . Thus for such perturbations the fixed points of the Poincaré map persist for all admissible
values of c ∈ C.

4. Persistence of invariant manifolds

The invariant manifolds M∞
0 (c), M0(c) and ∪c∈CM0(c) in the unperturbed system (5) can be related

to invariant manifolds associated with the unperturbed periodic orbits p0(c) in the suspended system
(10). The two-dimensional manifold M0(c) corresponds to the three-dimensional manifold formed by the
centre-stable manifold of the periodic orbit p0(c) restricted to a fixed level set of C and also to the three-
dimensional manifold formed by the centre-unstable manifold of the periodic orbit p0(c) restricted to a



March 28, 2008 11:43 Dynamical Systems paper˙ds

10 K.B. Blyuss and G. Derks

fixed level set of C:

M0(c) 7→ Mext
0 (c) =W s(Gp0(c))={(GθZ0(x; c), τ) | Gθ ∈ G, x ∈ R, τ ∈ S1};

M0(c) 7→ Mext
0 (c) =W u(Gp0(c))={(GθZ0(x; c), τ) | Gθ ∈ G, x ∈ R, τ ∈ S1}.

Similarly, the three-dimensional manifold ∪c∈CM0(c) corresponds to the four-dimensional centre-stable
manifold of the periodic orbit p0(c) and also to the four-dimensional centre-unstable manifold of the
periodic orbit p0(c):

∪c∈CM0(c) 7→ Mext
0 =∪c∈CW s(Gp0(c)) = {(GθZ0(x; c), τ) | Gθ ∈ G, x ∈ R, τ ∈ S1, c ∈ C};

∪c∈CM0(c) 7→ Mext
0 =∪c∈CW u(Gp0(c)) = {(GθZ0(x; c), τ) | Gθ ∈ G, x ∈ R, τ ∈ S1, c ∈ C}.

The tangent and normal spaces to those manifolds are described below.

Lemma 4.1: For every c ∈ C, at the point P = (GθZ0(x; c), τ) ∈ Mext
0 (c), the tangent space and normal

space of this three dimensional manifold are

TPMext
0 (c)=span

{
(ξ(GθZ0(x; c)), 0) ,

(
∂
∂xGθZ0(x; c), 0

)
, (0, 1)

}

NPMext
0 (c)=span {(∇C(GθZ0(x; c)), 0) , (∇H0(GθZ0(x; c); b(c)), 0)}

Similarly, the tangent space and normal space to the four dimensional manifold Mext
0 are

TPMext
0 =span

{
(ξ(GθZ0(x; c)), 0) ,

(
∂
∂xGθZ0(x; c), 0

)
,
(

∂
∂cGθZ0(x; c), 0

)
, (0, 1)

}

NPMext
0 =span {(∇H0(GθZ0(x; c); b(c)), 0)}

Note that ∂
∂xGθZ0(x; c) = J−1∇H0(GθZ0(x; c); b(c)) and ξ(GθZ0) =

∂
∂θGθZ0 = J−1∇C(GθZ0).

Proof : For every c ∈ C, the tangent space to the manifold Mext
0 (c) at the point (GθZ0(x; c), τ) is

spanned by ξ(GθZ0(x; c)), 0), ( ∂
∂xGθZ0(x; c), 0) = (J−1∇H0(GθZ0(x; c); b(c)), 0), and (0, 1) (note that

ξ(GθZ0(x; c)) = ∂
∂θGθZ0(x; c)). Since both C and H0 are constants of motion for the dynamics of the

unperturbed system, the three-dimensional manifold Mext
0 (c) = W s(Gp0(c)) ≡ W u(Gp0(c)) is embedded

within the level set C−1(c) and within the level set H−1
0 (sa(c) − cb(c)) in the five-dimensional ambient

space. Thus, at every point (GθZ0(x; c), τ) in the invariant manifold, the vectors (∇C(GθZ0(x; c)), 0) and
(∇H0(GθZ0(x; c); b(c)), 0) are perpendicular to the invariant manifold Mext

0 (c). Since both vectors are lin-
early independent if x 6= ±∞, the normal plane to the invariant manifold is spanned by those two vectors
at each point of the manifold.
Similarly, for every point (GθZ0(x; c), τ) in the invariant four-dimensional manifold Mext

0 =
∪c∈CW s(Gp0(c)), the vector ( ∂

∂cZ0(x; c), 0) is tangent to this manifold as well as the three vectors men-
tioned before. So the normal vector at a point of Mext

0 is a linear combination of (∇C(GθZ0(x; c)), 0)
and (∇H0(GθZ0(x; c)), 0) which is perpendicular to ( ∂

∂cZ0(x; c), 0). Differentiation of H0(Z0(x, c); b(c)) =

sa(c) − b(c)c with respect to c shows that ∇H0(Z0(x, c); b(c)) is orthogonal to ∂
∂cZ0(x; c), 0). Hence,

∇H0(GθZ0(x, c); b(c)) is orthogonal to the full four-dimensional invariant manifold Mext
0 at each

point (GθZ0(x; c), τ). �

Now the perturbed centre-stable/unstable manifolds of the persisting relative periodic orbits can be
considered and compared to the corresponding unperturbed manifolds. The first step in this analysis is
the spectrum of the perturbed Poincaré map at the persisting relative equilibria.

Lemma 4.2: For the three cases in which persistence is proved, the linearised Poincaré map has the
following spectrum:
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(i) If F is equivariant and R(Z, τ) = 0 for all values of Z and τ , then for any c ∈ C and |ε| < ε0,
the spectrum of the linearised perturbed Poincaré map DΠε,b(c)(Z∞

ε (c)) is (eλ
−

ε T , 1, 1, eλ
+
ε T ), where

λ−ε < 0 < λ+ε and lim
ε→0

λ±ε = ±λ(c).
(ii) If F is equivariant and ĉ ∈ C is such that R(Z∞

0 (ĉ)) = 0 and d
dc |c=ĉR(Z∞

0 (c)) 6= 0, then define

µ1 = −T d
dc |c=ĉR(Z∞

0 (c)). For any |ε| < ε0, the spectrum of the linearised perturbed Poincaré map

DΠε,bε(Z∞
ε ) is (eλ

−

ε T , 1 + εµ1 +O(ε2), 1, eλ
+
ε T ), where λ−ε < 0 < λ+ε and lim

ε→0
λ±ε = ±λ(ĉ). The eigen-

vector related to the eigenvalue bifurcating out of 1 is vε = ξ(Z∞
ε ) + ε µ1

s′′a(ĉ)T
dZ∞

0

dc (ĉ) +O(ε2).

(iii) If F is not equivariant, then take c = c0 and b = 0 = a. Let the group action Gθ̂ be

such that R(Gθ̂Z
∞
0 (c0)) = 0 and d

dθ |θ=θ̂R(GθZ
∞
0 (c0)) 6= 0. Define µ1 to be such that µ21 =

−s′′0(ĉ)T 2 d
dθ |θ=θ̂R(GθZ

∞
0 (c0)). For any |ε| < ε0, the spectrum of the linearised perturbed Poincaré map

DΠε,0(Z∞
ε ) is (eλ

−

ε T , 1±√
εµ1+O(ε), eλ

+
ε T ), where λ−ε < 0 < λ+ε and lim

ε→0
λ±ε = ±λ(c0). The eigenvec-

tors related to the eigenvalues bifurcating out of 1 are v±
ε = ξ(Gθ̂Z

∞
0 )±√

ε µ1

s′′0 (c0)T
dGθ̂Z

∞

0

dc (c0) +O(ε).

The proof of this lemma is given in the Appendix A.

The linearisation of the Poincaré map in the various cases gives the existence of local centre-stable
and centre-unstable manifolds near the persisting periodic orbits. A description of those manifolds and
extensions to global manifolds is given below:

Case 1 If F is equivariant and R(Z, τ) = 0 for all values of Z and τ , then for any c ∈ C the fixed points
Z∞
ε (c) of the Poincaré map Πε,bε(c) correspond to periodic orbits in (10), which will be denoted by pε(c).

Since R(Z, τ) = 0 implies that d
dxC(Z(x)) = 0 for any solution (Z(x), ωx + τ0) of (10), the dynamics

takes place within the level set C−1(c), where c = C(Z(0)). Within the four-dimensional level set C−1(c),
there exist a three-dimensional local centre-stable manifold GθW

s
loc(pε(c)) and a three-dimensional local

centre-unstable manifold GθW
u
loc(pε(c)), which are order ε close to the unperturbed three dimensional

centre-stable/unstable manifold GθW
s(p0(c)) = GθW

u(p0(c)). Finite time global extensions of local
perturbed manifolds are

Ms
ε(c, Y )=GθW

s (pε(c)) = Gθ
⋃

−Y≤y≤0 Φ
ε,b(c)
y W s

loc (pε(c))

Mu
ε (c, Y )=GθW

u (pε(c)) = Gθ
⋃

Y≥y≥0Φ
ε,b(c)
y W u

loc (pε(c)) ,

For fixed Y , both manifolds are ε-close to the unperturbed manifold Mext
0 (c). The manifolds can be

parametrised by θ0, τ0 and x0 as follows.

Fix c, θ0, τ0, and x0. For x ≥ 0, resp. x ≤ 0, let (Z
s/u
ε (x;x0, τ0, θ0, c), ωx + τ0) be solutions of (10)

(with b = bε(c)) in the stable/unstable manifold Ms/u
ε (Y, c), such that

Z
s/u
0 (0;x0, τ0, θ0, c) = Gθ0Z0(−x0; c)

and

[
G−θ0Z

s/u
ε (0;x0, τ0, θ0, c)− Z0(−x0; c)

]
∈ span {∇H(Z0(−x0; c)), ∇C(Z0(−x0; c0))} .

The component in the direction of ∇C(Z0(−x0; c0)) is due to the curvature of the C-manifold, but

both Z
s/u
ε (0;x0, τ0, θ0, c) and Z0(−x0; c) are in the same C-levelset C−1(c). Hence if the component of[

G−θ0Z
s/u
ε (0;x0, τ0, θ0, c)− Z0(−x0; c)

]
in the direction of ∇H(Z0(−x0; c)) vanishes, then automatically

the component in the ∇C(Z0(−x0; c)) direction vanishes too.

Case 2 If F is equivariant and ĉ ∈ C is such that R(Z∞
0 (ĉ)) = 0 and d

dc

∣∣
c=ĉ

R(Z∞
0 (c)) 6= 0, then denote

the periodic orbits corresponding to the fixed points Z∞
ε of the Poincaré map Πε,bε by pε. Without loss of

generality it can be assumed that µ1 > 0 (if µ1 < 0, then read “stable” for all “unstable” and the other
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way around). In this case there is a four-dimensional local centre-unstable manifold GθW
u
loc(pε) and a

three-dimensional local centre-stable manifoldGθW
s
loc(pε). The tangent plane to the local centre-unstable

manifold GθW
u
loc(pε) at Z

∞
ε is spanned by (ξ(Z∞

ε ), 0), (ξ(Z∞
ε )+ εµ1

Ts′′a(ĉ)
dZ∞

0

c (ĉ), 0)+O(ε2), (V +
0 , 0)+O(ε)

and (J−1[∇H0(Z
∞
ε ) + εF (Z∞

ε , τ0)], ω) = (0, ω) + O(ε), thus this manifold is order O(ε) close to the
extended manifold Mext

0 . Also, the tangent plane to the local centre-stable manifold GθW
s
loc(pε) at Z

∞
ε

is spanned by (ξ(Z∞
ε ), 0), (V −

0 , 0) + O(ε) and (J−1∇H0(Z
∞
ε ) + εF (Z∞

ε , τ0), ω) and this manifold is
order ε close to the manifold Mext

0 (ĉ).
The finite time global extensions of the local manifolds are

Mu
ε (Y )=GθW

u (pε, Y ) = Gθ
⋃

0≤y≤Y Φε,bε
y W u

loc (pε)

Ms
ε(Y )=GθW

s (pε, Y ) = Gθ
⋃

−Y≤y≤0Φ
ε,bε
y W s

loc (pε) .
(15)

For fixed Y , the centre-unstable manifold Mu
ε (Y ) is ε-close to the unperturbed four-dimensional man-

ifold Mext
0 . The evolution of the C values of the solutions on the centre-unstable manifold Mu

ε (Y ) is
within an ε-neighbourhood of ĉ as follows from (14). Using this, the centre-unstable manifold Mu

ε (Y )
can be parametrised by θ, τ , c1 and x in the following way: Fix θ0, τ0, c1 and x0 and for x ≥ 0.
For all ε small and x ≤ 0, let (Zu

ε (x;x0, τ0, θ0, c1), ωx + τ0) be a solution of (10) (with b = bε) in the
centre-unstable manifold Mu

ε (Y ), such that

Zu
0 (x;x0, τ0, θ0, c1) = Gθ0Z0(x− x0; c)

and

[G−θ0Z
u
ε (0;x0, τ0, θ0, c1)− Z0(−x0; c)] ∈ span {∇H0(Z0(−x0, c); b(c))} (16)

with c = ĉ+ εc1. In other words, the C-value of the point Z0(−x0, ĉ+ εc1) on the unperturbed manifold
is chosen such that the vector which connects this point and the point G−θ0Z

u
ε (0;x0, τ0, θ0, c1) on the

perturbed manifold is along the direction of ∇H0(Z0(−x0, ĉ+ εc1); b(ĉ + εc1)).
Next define

yu1 (x;x0, τ0, θ0, c1) =
d

dε

∣∣∣∣
ε=0

G−θ0Z
u
ε (x;x0, τ0, θ0, c1).

Then, for x ≤ 0, yu1 (x;x0, τ0, θ0, c1) is a solution of the first variational equation

dyu1
dx

=J−1D2H0 (Z0(x− x0; ĉ); b(ĉ)) y
u
1 + J−1F (Z0(x− x0; ĉ), ωx+ τ0)

+ b1 ξ(Z0(x− x0; ĉ)).
(17)

where b1 = dbε
dε

∣∣
ε=0

, thus bε = b(ĉ) + εb1 + O(ε2). Furthermore, differentiating (16) with respect to

ε shows that yu1 (0;x0, τ0, θ0, c1) − c1
∂
∂cZ0(−x0; c0) is in the span of ∇H0(Z0(−x0, ĉ); b(ĉ)). (Note that

Zu
ε (x;x0, τ0, θ0, c1) has both fast and slow dynamics; the slow dynamics is due to the eigenvalue bifur-

cating out of 1. However, the slow dynamics does not play a role in the first order approximation as
used in the next section to estimate the distance of the stable and unstable manifold.)

Similarly, for fixed Y , the centre-stable manifold Ms
ε(Y ) is ε-close to the unperturbed three-

dimensional manifold Mext
0 (ĉ) and can be parametrised by θ, τ , and x as follows. Fix θ0, τ0, and x0

and for x ≥ 0, let (Zs
ε (x;x0, τ0, θ0), ωx + τ0) be a solution of (10) (with b = bε) in the centre-stable

manifold Ms
ε, such that

Zs
0(x;x0, τ0, θ0) = Gθ0Z0(x− x0; ĉ)
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and

[G−θ0Z
s
ε (0;x0, τ0, θ0)− Z0(−x0; ĉ)] ∈ span {∇H0(Z0(−x0; ĉ); b(ĉ)), ∇C(Z0(−x0; ĉ))} .

Define

ys1(x;x0, τ0, θ0) =
d

dε

∣∣∣∣
ε=0

G−θ0Z
s
ε (x;x0, τ0, θ0).

Then for x ≥ 0, ys1(x;x0, τ0, θ0) is a solution of the first variational equation (17) and satisfies the initial
condition that ys1(0;x0, τ0, θ0) is in the span of ∇H0(Z0(−x0; ĉ); b(ĉ)) and ∇C(Z0(−x0; ĉ)).

Case 3 If F is not equivariant, then take c = c0 and b = 0 = a, let the group action Gθ̂ be

such that R(Gθ̂Z
∞
0 (c0)) = 0 and d

dθ

∣∣
θ=θ̂

R(GθZ
∞
0 (c0)) 6= 0 and denote the periodic orbits cor-

responding to the fixed points Z∞
ε of the Poincaré map Πε,0 by pε. Define µ1 to be such that

µ21 = −s′′0(c0)T 2 d
dθ |θ=θ̂R(GθZ

∞
0 (c0)). If the orbits Z0(x) are heteroclinic, then we will need at least

two values of θ̂ to persist and those values have to correspond to the fixed points of the heteroclinic
orbit GθZ0(x). Discrete symmetries in the perturbation can take care of this. Assuming that two such
values exist, we denote Gθ̂sZ

∞
0 for the persisting solution creating the stable manifold and Gθ̂Z

∞
0 for

the persisting solution creating the unstable manifold. This implies that θ̂s = θ̂+ θ∞(c0), where θ
∞(c0)

is the angle such that lim
x→∞

Z(x; c0) = Gθ∞(c0)Z
∞
0 (c0) (recall that lim

x→−∞
Z(x; c0) = Z∞

0 (c0)).

Case 3a If µ21 < 0, then there is only one eigenvalue inside the unit circle and there are three eigenvalues
outside the unit circle. Thus there is a two-dimensional local stable manifold W s

loc(pε) and a four-
dimensional local unstable manifold W u

loc(pε) associated with the periodic orbit pε. As can be seen
from the eigenvectors of the Poincaré map, the perturbed stable manifold W s

loc(pε) is order ε close

to the two-dimensional unperturbed manifold Mext
0 (c0, θ̂) = {(Gθ̂Z0(x; c0), τ) | x ∈ R, τ ∈ S1}

(since lim
x→∞

Gθ̂Z0(x; c0) = Gθ̂+θ∞(c0)
Z∞
0 (c0) = Gθ̂sZ

∞
0 (c0), this manifold forms the stable manifold

of Gθ̂sZ
∞
0 (c0)). In first instance one might think that the perturbed unstable manifold W u

loc(pε) is
order

√
ε close to the unperturbed four-dimensional centre-unstable manifold Mext

0 . However, since

the order
√
ε correction to the eigenvector is µ1

s′′0 (c0)T
dGθ̂Z

∞

0

dc (c0) and this vector is is tangent to Mext
0 ,

it follows that the perturbed unstable manifold W u
loc(pε) is order ε close to the unperturbed four-

dimensional centre-unstable manifold Mext
0 after all. For fixed Y , both manifolds can be extended to

finite time global manifolds Ms/u
ε (Y ) as in (15). The centre-unstable manifold will contain both fast

and slow dynamics, while the stable manifold will only contain fast dynamics.
To describe solutions on the perturbed manifolds, similar parameterizations as in case 2 will be

given. First the parametrization of the perturbed stable manifold Ms
ε. Using that this manifold is

order ε close to the unperturbed two-dimensional manifold Mext
0 (c0, θ̂), the perturbed stable manifold

can be parametrised by τ and x as follows. Fix τ0 and x0. For all x ≤ 0, let (Zs
ε (x;x0, τ0), ωx+ τ0) be

a solution of (10) (with b = 0) in the stable manifold Ms
ε(Y ), such that

Zs
0(x;x0, τ0) = Gθ̂Z0(x− x0; c0)

and

[
G−θ̂Z

s
ε(0;x0, τ0)− Z0(−x0; c0)

]

∈ span {∇H0(Z0(−x0, c0); 0), ∇C(Z0(−x0, c0)), ξ(Z0(−x0, c0))} .
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Define

ys1(x;x0, τ0) =
d

dε

∣∣∣∣
ε=0

G−θ̂Z
s
ε (x;x0, τ0).

Then for x ≥ 0, ys1(x;x0, τ0) is a solution of the first variational equation

dys
1

dx =J−1D2H0 (Z0(x− x0; c0); 0) y
s
1

+DG−θ̂(Gθ̂Z0(x− x0; c0))J
−1F

(
Gθ̂Z0(x− x0; c0), ωx+ τ0

) (18)

and ys1(0;x0, τ0) is in the span of the vectors ∇H0(Z0(−x0, c0); 0), ∇C(Z0(−x0, c0)) and
ξ(Gθ̂Z0(−x0; c0)).
Next the solutions on the perturbed centre-unstable manifold will be parametrised. As in case 2,

the perturbed centre-unstable manifold is order ε close to Mext
0 , hence this perturbed manifold can

be parametrised by θ, τ , x and c. From the analysis above, it follows that the stable manifold stays
ε-close to the solution Gθ̂Z0(x − x0; c0). So for the analysis of the intersection of the stable and
centre-unstable manifold, we have to consider only order ε perturbations of the θ and c variables, i.e.,
θ = θ̂ + εθ1 and c = c0 + εc1.
Hence fix x0, τ0, θ1 and c1. For all ε small and x ≤ 0, let (Zu

ε (x;x0, τ0, θ1, c1), ωx+ τ0) be a solution
of (10) (with b = 0) in the unstable manifold Mu

ε (Y ) such that

Zu
0 (x;x0, τ0, θ1, c1) = Gθ̂+εθ1

Z0(x− x0; c)

and

[
G−(θ̂+εθ1)

Zu
ε (0;x0, τ0, θ1, c1)− Z0(−x0; c)

]
∈ span {∇H0(Z0(−x0, c); 0)}

with c = c0 + εc1. As in case 2, define

yu1 (x;x0, τ0, θ1, c1) =
d

dε

∣∣∣∣
ε=0

G−(θ̂+εθ1)
Zu
ε (x;x0, τ0, θ1, c1).

Then for x ≤ 0, yu1 (x;x0, τ0, θ1, c1) is a solution of the first variational equation (18) and yu1 (0;x0, τ0)−
c1

∂
∂cZ0(−x0; c0) is in the span of the vector ∇H0(Z0(−x0, c0); 0).

Case 3b If µ21 > 0, then there are two eigenvalues inside the unit circle and two eigenvalues outside the
unit circle. Thus there is a three-dimensional local stable manifoldW s

loc(pε) and a three-dimensional lo-
cal unstable manifoldW u

loc(pε), both of which are order
√
ε close to the unperturbed three-dimensional

manifold Mext
0 (c0). To avoid the term

√
ε complicating the presentation, we define γ2 = ε. On the

stable/unstable manifolds, there is both slow and fast decaying dynamics. For fixed Y , both manifolds

can be extended to finite time global manifolds Ms/u
γ (Y ) as in (15) with ε = γ2. These manifolds are

also order O(γ) = O(
√
ε) close to the unperturbed three-dimensional manifold Mext

0 (c0) and can be
parametrised by θ, τ , and x as follows.

Fix θ0, τ0, and x0. For x ≥ 0, resp. x ≤ 0, let (Z
s/u
γ (x;x0, τ0, θ0), ωx+ τ0) be solutions of (10) (with

b = 0 and ε = γ2) in the stable/unstable manifold Ms/u
γ (Y ), such that

Z
s/u
0 (0;x0, τ0, θ0) = Gθ0Z0(−x0; c0)

and

G−θ0Z
s/u
γ (0;x0, τ0, θ0)− Z0(−x0; c0) ∈ span {∇H(Z0(−x0; c0)), ∇C(Z0(−x0; c0))} .
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At x = 0, the perturbed solution Z
s/u
ε (0;x0, τ0, θ0) is close to Gθ0Z0(−x0; c0), while asymptotically

this solution is close to Gθ̂Z
∞
0 or Gθ̂sZ

∞
0 . The change from Gθ0Z

∞
0 to Gθ̂Z

∞
0 (resp. from Gθ0+θ∞Z∞

0

to Gθ̂sZ
∞
0 ) is due to the slow dynamics on the perturbed manifold. To capture this slow dynamics,

we introduce the slow variable ζ = γx and a function θ
s/u

(ζ; θ0) to represent the slow dynamics
in the direction of the symmetry group on the perturbed manifold. In other words, the function

θ
s/u

(ζ; θ0) takes care of the change from Gθ0Gθ∞Z∞
0 /Gθ0Z

∞
0 to Gθ̂sZ

∞
0 /Gθ̂Z

∞
0 and has the property

that θ
s/u

(0; θ0) = θ0, lim
ζ→±∞

θ
s/u

(ζ; θ0) = θ̂ and the decay towards θ̂ is like e−µ1|ζ|. Finally, θ
s/u

has to

be such that the expansion

Z
s/u
γ (x;x0, τ0, θ0)=Gθ

s/u
(γx;θ0)

[
Z0(x− x0; c0) + γ y

s/u
1 (x, γx;x0, τ0, θ0)

+ γ2 y
s/u
2 (x, γx;x0, τ0, θ0) +O(γ3).

] (19)

is uniform for x ≥ / ≤ 0. Hence the fast (x) and slow (ζ = γx) behaviour on the stable/unstable

manifolds comes back in first two arguments of y
s/u
i (x, ζ; ·). Then for x ≥ / ≤ 0 and with ζ = γx,

y
s/u
1 (x, ζ;x0, τ0, θ0) is a solution of the first variational equation

∂y
s/u
1

∂x
= J−1D2H0 (Z0(x− x0; c0); 0) y

s/u
1 − (θ

s/u
)′(ζ)ξ(Z0(x− x0; c0). (20)

The definition of Z
s/u
γ implies that the initial condition y

s/u
1 (0, 0;x0, τ0, θ0) is in the span

of ∇H0(Z0(−x0; c0)) and ∇C(Z0(−x0; c0)). The asymptotic condition at ±∞ gives that

lim
x→±∞

y
s/u
1 (x, γx; ·) = 0, as the asymptotic solution pε does not depend on γ, but on ε = γ2 and

y1 is related to an order γ correction, uniform in x.
One particular solution of the inhomogeneous linear problem (20) is (see Eq. (8))

ypart(x, ζ) =
(θ

s/u
)′(ζ)

s′′0(c0)
∂Z0

∂c
(x− x0; c0).

The bounded solutions of the homogeneous part of (20) are

∂Z0(x− x0; c0)

∂x
= J−1∇H0(Z0(x− x0; c0); 0), and ξ(Z0(x− x0; c0)).

(The homogeneous ODE has one polynomially and one exponentially growing solution as well). Thus
the first order approximation is of the form

y
s/u
1 (x, ζ; ·) = (θ

s/u
)′(ζ)

s′′a(c)
∂Z0

∂c
(x− x0; c0) +A(ζ)

∂Z0

∂x
(x− x0; c0)

+B(ζ) ξ(Z0(x− x0; c0)).

Using the asymptotic condition lim
x→±∞

y
s/u
1 (x, γx; ·) = 0, it follows that B(ζ), (θ

s/u
)′(ζ) → 0 for

ζ → ±∞ as lim
x→±∞

∂Z0

∂c (x− x0; c0) 6= 0 and lim
x→±∞

ξ(Z0(x − x0; c0)) 6= 0. By considering the condition

at x = 0 that y1(0, 0;x0, τ0, θ0) is in the span of ∇H(Z0(−x0; c0)) and ∇C(Z0(−x0; c0)), it follows
that an order γ perturbation is only possible in one direction (which is not surprising as this is also
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the case asymptotically). And if θ
s/u

(ζ) is such that (θ
s/u

)′(0) = 0, then also A(0) = 0 = B(0) and
hence y1(x, 0; ·) = 0, thus there is no order γ perturbation at x = 0.

The next order correction for Z
s/u
γ is y

s/u
2 (x, γx;x0, τ0, θ0) and it satisfies the following variational

equation for x ≥ / ≤ 0

∂y
s/u
2

∂x
=J−1D2H0 (Z0(x− x0; c0); c0) y

s/u
2

+ J−1D3H0 (Z0(x− x0; c0); c0) (y
s/u
1 , y

s/u
1 )

+DG
θ
s/u(Z0(x− x0; c0))

−1J−1F
(
G

θ
s/uZ0(x− x0; c0), ωx+ τ0

)

− ∂y
s/u
1

∂ζ − (θ
s/u

)′(ζ)Dξ(Z0(x− x0; c0))y
s/u
1 .

(21)

As before, at x = 0, the vector y
s/u
2 (0, 0;x0, τ0, θ0) is in the span of ∇H(Z0(−x0; c0)) and

∇C(Z0(−x0; c0)).
Remark 3 : In the cases 2 and 3(a), we could have introduced a similar description as in case 3(b) with
both slow and fast variables explicit in the notation. This would have led to an approximation on the
centre-unstable manifold which is uniformly valid for x ≤ 0. However, this is not necessary to measure the
distance between the persisting stable and centre-unstable manifolds.

5. Transverse intersection of the invariant manifolds

The transverse intersection of the persisting invariant manifolds Mε will be determined by the following
Melnikov-type function

MH(τ0, θ0; c) =

∫ ∞

−∞

〈
∇H0(Gθ0Z0(x; c); b(c)) , J

−1F (Gθ0Z0(x; c), ωx + τ0)
〉
dx. (22)

Theorem 5.1 : For the cases 1, 2 and 3(a), the following criteria are sufficient for the intersection of
the persisting invariant manifolds:

(i) If F is equivariant and R(Z, τ) = 0 for all values of Z and τ , then the Melnikov function MH does
not depend on θ0. If there is some c ∈ C for which there is a τ0(c) such that MH(τ 0(c), 0; c) = 0
and dMH

dτ0
(τ 0(c), 0; c) 6= 0, then for ε 6= 0 sufficiently small the invariant manifolds Ms

ε(c) and Mu
ε (c)

intersect transversely along a two-dimensional surface (within the level set C−1(c)), which can be
parametrised by τ and θ.

(ii) If F is equivariant and ĉ ∈ C is such that R(Z∞
0 (ĉ)) = 0 and d

dc |c=ĉR(Z∞
0 (c)) 6= 0, then the Melnikov

function MH does not depend on θ0. If there is some τ0 such that MH(τ 0, 0; ĉ) = 0 and dMH

dτ0
(τ0, 0; ĉ) 6=

0, then for ε 6= 0 sufficiently small the invariant manifolds Ms
ε and Mu

ε intersect transversely along a
two-dimensional surface which can be parametrised by τ and θ.

(iii) If F is not equivariant, then take c = c0 and b = 0 = a. Let the group action Gθ̂ be

such that R(Gθ̂Z
∞
0 (c0)) = 0 and d

dθ |θ=θ̂R(GθZ
∞
0 (c0)) 6= 0. Define µ1 to be such that µ21 =

−s′′0(c0)T 2 d
dθ |θ=θ̂R(GθZ

∞
0 (c0)).

a) If µ21 < 0 and there is some τ0 such that MH(τ0, θ̂; c0) = 0 and dMH

dτ0
(τ 0, θ̂; c0) 6= 0, then for

ε 6= 0 sufficiently small the invariant manifolds Ms
ε and Mu

ε intersect transversely along a one-
dimensional curve parametrised by τ .

The first case of the Theorem deals with invariant manifolds C−1(c). Within those invariant manifolds,
the persistence of the intersection of the perturbed stable and one-dimensional perturbed unstable manifold
has to be shown and this can be done along very similar lines as the standard theory. For the second and
third case, the C level sets are not preserved anymore and the eigenvalues of the Poincaré map, which
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come out of the eigenvalue 1, play an essential role in the dimension and type of the persisting invariant
manifolds, although the ultimate criterion for intersection remains unchanged. We will come back to
case 3(b) after the proof of the Theorem.

Proof :

Case 1 In the case when F is equivariant and R(Z, τ) = 0 for all Z and τ , the perturbed invariant
manifolds Ms

ε(c, Y ) and Mu
ε (c, Y ) are three-dimensional manifolds within the four-dimensional level

set C−1(c). As discussed in the previous section, these manifolds can be parametrised by x0, τ0 and
θ0 and the gradient of the Hamiltonian H0 is the relevant normal vector to those manifolds, just as
in the standard case without group action [22, 23]. The equivariance of the perturbation implies that
MH(τ0, θ0; c) is independent of θ0 and can be simplified to

MH(τ0, 0; c) =

∫ ∞

−∞
〈∇H0(Z0(x; c); b(c)), F (Z0(x; c), ωx + τ0)〉dx.

The signed distance between two points Zs(0;x0, τ0, θ0) and Z
u(0;x0, τ0, θ0) on the perturbed invariant

manifolds Ms
ε(c, Y ) and Mu

ε (c, Y ) can be found to be up to first order as

dε(x0, τ0)= ε

∫ ∞

−∞
〈∇H0(Z0(x; c); b(c)), F (Z0(x; c), ωx + τ0)〉dx+O(ε2)

= εMH(ωx0 + τ0, 0; c) +O(ε2),

(23)

see [22,23] for details. An implicit function theorem argument gives that the distance dε(x0, τ0) vanishes
whenever the Melnikov function MH(τ, 0; ĉ) has a simple zero as a function of its first argument. Thus
if MH has a simple zero as a function of τ0, then the perturbed invariant manifolds will intersect
transversally (up to the action of the symmetry) within the level set C−1(c). Dimension counting shows
that generically two three-dimensional manifolds in a four-dimensional ambient space intersect along
some two-dimensional surface. Indeed, the perturbed manifolds Ms

ε(c, Y ) and Mu
ε (c, Y ) intersect along

a surface which can be parameterised by τ0 (or, equivalently x0, see [22] for discussion) and θ0. The
parameter θ0 is related to the invariance the problem with respect to the group action Gθ.

Case 2 The distance between the four-dimensional centre-unstable manifold Mu
ε (Y ) and the three-

dimensional centre-stable manifold Ms
ε(Y ) has to be determined. In the previous section, we have

seen that for every x0, τ0 and θ0, the solution Zs
ε(x;x0, τ0, θ0) on the three-dimensional centre-stable

manifold is parametrised such that G−θ0Z
s
ε(0;x0, τ0, θ0) − Z0(−x0; ĉ) is of order ε and in the span

of ∇H0(Z0(−x0; ĉ); b(ĉ)) and ∇C(Z0(−x0; ĉ)). Using that the unperturbed three-dimensional mani-
fold M0(ĉ) is embedded in the four-dimensional manifold Mext

0 , it can be shown that there is some c1(ε)
such that the difference G−θ0Z

s
ε (0;x0, τ0, θ0)− Z0(−x0; ĉ + εc1) is in the direction of ∇H0(Z0(−x0, ĉ+

εc1); b(ĉ + εc1)). Indeed, G−θ0Z
s
ε(0;x0, τ0, θ0) − Z0(−x0; ĉ) is in the span of ∇H0(Z0(−x0; ĉ); b(ĉ)) and

∇C(Z0(−x0; ĉ)), so it can be written as ε(α∇H0(Z0(−x0; ĉ); b(ĉ))+β∇C(Z0(−x0; ĉ)))+O(ε2) for some

α and β. A straightforward expansion in ε shows that this implies that c1 = β
∣∣∣∂Z0(−x0;ĉ)

∂c

∣∣∣
−2

+O(ε).

Therefore, this choice of c1 in Zu
ε gives that G−θ0Z

u
ε (0;x0, τ0, θ0, c1)−G−θ0Z

s
ε(0;x0, τ0, θ0) is parallel

to ∇H0(Z0(−x0, ĉ+ εc1); b(ĉ + εc1)). Define

dε(x0, τ0, θ0) = 〈G−θ0Z
u
ε (0;x0, τ0, θ0, c1)−G−θ0Z

s
ε(0;x0, τ0, θ0),∇H0(Z0(−x0; c); b(c))〉

with c = ĉ + εc1. Then dε(x0, τ0, θ0) measures the distance between the stable and unstable manifolds
and it satisfies

dε(x0, τ0, θ0) = ε〈yu1 (0;x0, τ0, θ0, c1)− ys1(0;x0, τ0, θ0),∇H0(Z0(−x0; ĉ); b(ĉ))〉+O(ε2).
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To calculate the lowest order of this distance, define

∆u/s(x;x0, τ0, θ0) = 〈yu/s1 (x;x0, τ0, θ0, c1),∇H0(Z0(x− x0; ĉ); b(ĉ))〉.

Since ∇H0(Z0(x − x0; ĉ); b(ĉ)) decays exponentially fast to zero asymptotically (for x → ±∞) and

y
u/s
1 (x;x0, τ0, c1) are ε-derivatives of solutions on the centre-unstable/stable manifolds and thus at most

polynomially growing asymptotically, it follows that lim
x→∓∞

∆u/s(x;x0, τ0, θ0) = 0.

Differentiating the functions ∆u/s(x;x0, τ0, θ0) with respect to x, using the differential equation (17)

for y
s/u
1 and integrating gives

∆u(0;x0, τ0, θ0)− 0 =

∫ 0

−∞
〈J−1F (Z0(x− x0; ĉ), ωx+ τ0) ,∇H0(Z0(x− x0; ĉ); b(ĉ))〉 dx.

and

−∆s(0;x0, τ0, θ0) =

∫ ∞

0
〈J−1F (Z0(x− x0; ĉ), ωx+ τ0) ,∇H0(Z0(x− x0; ĉ); b(ĉ)) dx.

Here we used that for any Z, D2C(Z)J−1∇H0(Z) = D2H0(Z)J
−1∇C(Z), which follows from the

invariance of H0 under the flow of the symmetry group. Adding those two equalities gives

∆u(0;x0, τ0, θ0)−∆s(0;x0, τ0, θ0) =MH(ωx0 + τ0, 0; ĉ).

Note that the right hand side of this expression does not depend on θ0, which reflects that fact that the
problem is equivariant under the group action Gθ. Using the expression just derived, one can write the
distance between the perturbed centre-stable and centre-unstable manifolds as

dε(x0, τ0, θ0) = εMH(ωx0 + τ0, 0; ĉ) +O(ε2).

An implicit function theorem argument gives that the distance dε(x0, τ0) vanishes whenever the Mel-
nikov function MH(τ, 0; ĉ) has a simple zero as a function of its first argument. Hence if there is some
τ0 such that the Melnikov function MH(τ, 0; ĉ) has a simple zero at τ = τ0, then for any x0 and τ0 such
that ωx0 + τ0 = τ0, the stable and unstable manifolds have a non-trivial intersection. This intersection
is two-dimensional, the equivariant group action Gθ parametrises one dimension and the periodic orbit
parametrises the other dimension, as in case 1.

Case 3a If µ21 < 0, the distance between the two-dimensional stable manifold Ms
ε(Y ) and the four-

dimensional centre-unstable manifold Mu
ε (Y ) has to be determined. The arguments will have a similar

flavour as in case 2. In the previous section it is shown that for every x0 and τ0 the solution Zs
ε (x;x0, τ0)

on the two-dimensional centre-stable manifold is parametrised such that G−θ̂Z
s
ε(0;x0, τ0)−Z0(−x0; c0) is

of order ε and in the span of ∇H0(Z0(−x0; c0); b(c0)), ∇C(Z0(−x0; c0)) and ξ(Z0(−x0; c0)). As in case 2,

using that the unperturbed two-dimensional manifold Mext
0 (c0, θ̂) is embedded in the four-dimensional

manifoldMext
0 , it follows that there are some c1(ε) and θ1(ε) such thatG−θ̂+εθ1

Zs
ε(0;x0, τ0)−Z0(−x0; c0+

εc1) is in the direction of ∇H0(Z0(−x0, c0 + εc1); b(c0 + εc1)). Therefore these choices of c1 and θ1 give
that G−θ̂+εθ1

Zs
ε(0;x0, τ0)−G−θ̂+εθ1

Zu
ε (0;x0, τ0, θ1, c1) is parallel to ∇H0(Z0(−x0, c0 + εc1); b(c0 + εc1)),

so

dε(x0, τ0) = 〈G−θZ
u
ε (0;x0, τ0, θ1, c1),−G−θZ

s
ε(0;x0, τ0) , ∇H0(Z0(−x0; c); b(c))〉,

with θ = θ̂ + εθ1 and c = c0 + εc1, measures the distance between the stable and unstable manifolds.
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This distance satisfies

dε(x0, τ0) = ε〈yu1 (0;x0, τ0, θ1, c1)− ys1(0;x0, τ0),∇H0(Z0(−x0; c0); b(c0))〉+O(ε2).

To calculate the lowest order of this distance, define

∆u/s(x;x0, τ0) = 〈yu/s1 (x;x0, τ0, θ1, c1),∇H0(Z0(x− x0; c0); b(c0))〉.

Similar arguments as before give that

∆u(0;x0, τ0)−∆s(0;x0, τ0) =MH(ωx0 + τ0, θ̂; c0).

Thus the distance between the perturbed stable and centre-unstable manifolds is given by

dε(x0, τ0) = εMH(ωx0 + τ0, θ̂; c0) +O(ε2).

As before, this implies that the distance dε(x0, τ0) vanishes whenever the Melnikov functionMH(τ, θ̂; c0)
has a simple zero as a function of its first argument. Hence the stable and unstable manifolds have a
non-trivial one-dimensional intersection.

�

For the case 3(b), we have not yet been able to derive a sufficient criterion for the intersection of the
invariant manifolds. Using the descriptions of the invariant manifolds in this case as derived in section 4,
it follows that two measurements have to be taken in this case. One measurement is the distance be-
tween the stable and unstable manifolds in the direction of ∇H(Gθ0Z0(−x0, c0), b(c0)). This measurement
is similar to the ones presented before and would involve the Melnikov function MH(ωx0 + τ0, θ0; c0).
The second measurement is the distance between the stable and unstable manifolds in the direction of
∇C(Gθ0Z0(−x0, c0)). Following the last vector along the unperturbed manifold to the fixed point, we see
that its limit ∇C(Gθ0Z

∞
0 (c0)) does not vanish. Thus the behaviour at infinity will play a more important

role and our estimates will have to be uniform in x. The slow variable ζ and function θ
s/u

(ζ, θ0) have been
introduced for this reason.
The function θ

s/u
(ζ, θ0) describes the slow behaviour of the symmetry group near the persisting fixed

point, apart from the condition θ
s/u

(0, θ0) = θ0, the behaviour of this function near ζ = 0 is not prescribed.

So we can take θ
s/u

(ζ, θ0) to be such that ∂
∂ζ θ

s/u
(0, θ0) = 0. As we have seen in section 4, this implies that

that y1(x, 0;x0, τ0, θ0) = 0. The differential equation (21) for y2(x, 0;x0, τ0, θ0) simplifies to the familiar
form

∂y
s/u
2

∂x
(x; 0; ·)=J−1D2H0 (Z0(x− x0; c0); c0) y

s/u
2 (x; 0; ·)

+DGθ0(Z0(x− x0; c0))
−1J−1F (Gθ0Z0(x− x0; c0), ωx+ τ0)

To estimate the difference Zu
ε (0;x0, τ0, θ0) − Zs

ε (0;x0, τ0, θ0) in the direction of ∇C(Gθ0Z0(−x0; c0), we
define the quantity

dCε (x0, τ0, θ0) = 〈G−θ0Z
u
ε (0;x0, τ0, θ0)−G−θ0Z

s
ε (0;x0, τ0, θ0),∇C(Z0(−x0; c0))〉

Since y
u/s
1 (0, 0;x0, τ0, θ0) = 0, in lowest order this is

dCε (x0, τ0, θ0) = ε〈yu2 (0, 0;x0, τ0, θ0)− ys2(0, 0;x0, τ0, θ0),∇C(Z0(−x0; c0))〉+O(ε
√
ε),
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so we define

∆
u/s
C (x;x0, τ0, θ0) = 〈yu/s2 (x, 0;x0, τ0, θ0),∇C(Z0(x− x0; c0))〉.

By using the differential equation for y
u/s
2 (x, 0; ·) it can be shown that

∆u
C(0, 0;x0, τ0, θ0)−∆s

C(0, 0;x0, τ0, θ0)

=

∫ ∞

−∞
[R(Gθ0Z0(x; c0), ωx+ τ0)−R(Gθ0Z

∞
0 (c0), ωx+ τ0) ] dx

+ lim
x→−∞

d
dε

∣∣
ε=0

[
C(Zu

ε (x;x0, τ0, θ0))−C(Φε,0
x (Gθ0Z

∞
0 , τ0))

]

− lim
x→∞

d
dε

∣∣
ε=0

[
C(Zs

ε(x;x0, τ0, θ0))− C(Φε,0
x (Gθ0Z

∞
0 , τ0))

]
.

Although we expect that the integral in this expression acts as a Melnikov integral, we have not been able
to prove this so far. However, if this is the case, then the two parameters τ0 and θ0 can be used to find
simultaneous zeros for this Melnikov function and the Melnikov function MH(ωx0 + τ0, θ0; c0).

6. Perturbed defocussing NLS equations

The methods developed in previous sections will now be used to analyse transversal intersections of persist-
ing invariant manifolds for various perturbations of the defocussing nonlinear Schrödinger equation. The
unperturbed version of this equation is presented in the Introduction together with its multi-symplectic
formulation. The perturbed equation will have the form

iΨt = Ψxx + ivΨx +W ′(|Ψ|2)Ψ + ǫf(Ψ,Ψx, ωx), (24)

where W ′(|Ψ|2) = k − |Ψ|2 (defocussing cubic NLS) and the perturbation f = f1 + if2. In the particular
context of optical wave propagation in nonlinear waveguides, the perturbations in this equation describe
various physical influences on the travelling waves such as cable losses, amplification, fibre birefringence
and so on [24].
The perturbed NLS equation (24) can be rewritten in a perturbed multi-symplectic form (3), where M,

J and S(Z) are defined in the introduction and the perturbation is multi-symplectified as

F (Z, x) = (f1, f2, 0, 0)
T .

As it was mentioned in the Introduction, the unperturbed NLS equation is equivariant with respect to
a one-dimensional group G = SO2, whose action is given by

Gθ(Z) = RθZ, Rθ =




cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 ,

with the generator ξ(Z) = d
dθ |θ=0Gθ(Z) = (−q2, q1,−p2, p1)T and Noether’s functionals P (Z) and C(Z)

given by

P (Z) = −1

2
(q21 + q22), and C(Z) = q1p2 − q2p1.

Hence P corresponds to the mass density (amplitude) of Ψ and C is the momentum density.
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The unperturbed defocussing NLS equation has dark solitons, which in the multi-symplectic formulation
can be found as heteroclinic solutions of the Hamiltonian ODE (5) with the Hamiltonian

H0(Z; b) =
1
2(p

2
1 + p22) +

1
2(k + a+ v2

4 )(q
2
1 + q22)− 1

4(q
2
1 + q22)

2 + 1
2(v + 2b)(q2p1 − q1p2).

Following similar arguments as in [9], it can be shown that if the parameters a, b and v satisfy the condition
(2b+ v)2 < 4(k + a) + v2, then this Hamiltonian ODE (5) has fixed points GθZ

∞
0 (c), with

Z∞
0 (c) = (ρ0, 0, 0,

1
2(v + 2b)ρ0)

T , with 4ρ20 = 4(k + a) + v2 − (2b+ v)2, (25)

and b and c are related by 2c = ρ20(2b+ v).
To ensure that the fixed points are saddle-centres, the following stronger condition on the parameters

a, b and v is needed

3(2b + v)2 < 4(k + a) + v2. (26)

If this condition is satisfied, then the corresponding front solution Z0(x; c) of the unperturbed NLS equation
can be found as

Z0(x; c) =
1

2ρ0




2ρ20 − 4B2 (1 + tanh(Bx))
2(v + 2b)B(1 + tanh(Bx))
−4B3 sech2(Bx)− (v + 2b)2B(1 + tanh(Bx))
2B2(v + 2b) sech2(Bx) + (v + 2b)ρ20 − 2(v + 2b)B2(1 + tanh(Bx))




where

4B2 = 2ρ20 − (v + 2b)2 = 1
2

[
4(k + a) + v2 − 3(v + 2b)2

]
. (27)

This front has a phase shift of θ∞ = arccos
(
1− 4B2

ρ2
0

)
between Z∞

0 (c) = lim
x→−∞

Z0(x; c) and Gθ∞Z
∞
0 (c) =

lim
x→∞

Z0(x; c). The front corresponds to the following dark soliton solution of the original unperturbed

(ε = 0) NLS equation (24):

Ψ(x, t) =
ei(at+bx+θ0)

ρ0

[
ρ20 − 2B2 (1 + tanhBx) + iB(v + 2b)(1 + tanhBx)

]
.

It is easy to check that those solutions satisfy all criteria of Hypothesis (H1). In the following subsections,
we will look at various perturbations and apply Theorem 5.1 to obtain results about intersecting invariant
manifolds.

6.1. Equivariant Hamiltonian perturbation

The first example considers the symmetry-preserving Hamiltonian perturbation

f(Ψ,Ψx, τ) =
[
m(τ) + n(τ)|Ψ|2

]
Ψ, (28)

wherem(τ) and n(τ) are given real 2π-periodic functions. This kind of perturbation arises in the studies of
wave propagation in weakly inhomogeneous and disordered media [25]. When written in a multi-symplectic
form, the above perturbation (28) transforms into

F (Z, x) =
(
q1

[
m(τ) + n(τ)(q21 + q22)

]
, q2

[
m(τ) + n(τ)(q21 + q22)

]
, 0, 0

)T
.
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With Theorem 3.1 and Remark 2, the persistence of all relative equilibria GθZ
∞
0 (c) as relative periodic

orbits follows immediately for all values of b satisfying the unperturbed existence condition (26).
According to Theorem 5.1, the intersection of perturbed invariant manifolds is determined by the simple

zeros of the Melnikov function as given in (22). Taking m(τ) = A cos τ and n(τ) = B sin τ , this function
can be evaluated to give

MH(τ0, θ0; c) =
πω2

3
csch

(πω
2B

) [
3A sin τ0 + 2B

(
6ρ20 − (4B2 + ω2)

)
cos τ0

]
.

where B is given by (27) and ρ20 by (25). From this expression it follows that at the points

τ0 = − arctan
2B(6ρ20 − (4B2 + ω2))

3A

one has MH(τ 0, θ0; c) = 0 and dMH

dτ0
(τ 0, θ0; c) 6= 0. Hence, with Theorem 5.1 we conclude that within

each C−1(c) level set, the perturbed invariant manifolds Ms
ε(c) and Mu

ε (c), associated with the persisting
periodic orbits, intersect transversely along a two-dimensional curve parametrised by θ0 and τ0.

6.2. Equivariant damped-driven perturbation

The second example considers the following equivariant non-Hamiltonian perturbation

f(Ψ,Ψx, τ) = −iΓ
2
Ψ + iA[1− δ cos τ ]|Ψ|2Ψ, (29)

where Γ > 0, A > 0 and δ > 0. The first term in the perturbation represents dissipation due to fibre losses
in the optical fibre [24], while the second one is the term representing compensating amplifiers placed along
the fibre. As the perturbation is multiplied by ε in the perturbed NLS equation, we can set A = 1 without
loss of generality.
In the multi-symplectic form this perturbation is written as

F (Z, τ) =

(
Γ

2
q2 − (1− δ cos τ)(q21 + q22)q2,−

Γ

2
q1 + (1− δ cos τ)(q21 + q22)q1, 0, 0

)T

.

The C level sets are not automatically preserved anymore and one has to obtain the conditions for the
persistence of the fixed points first. Straightforward calculations show that the function R(Z) evaluated
at the fixed points Z∞

0 (c) is given by

R(Z∞
0 (c)) = ρ20(−Γ/2 + ρ20).

Apart from the trivial solution ρ0 = 0, this function vanishes whenever

Γ = 2ρ20 = 2(a+ k) +
1

2
v2 − 1

2
(2b+ v)2, hence (2b+ v)2 = 4(a+ k) + v2 − 2Γ. (30)

It can be easily checked that dR/dc 6= 0 at fixed points satisfying the last relation. Thus Theorem 3.1

gives the existence of a family of curves of relative periodic orbits, coming out of GθZ
∞
0 (c(b̂)), where

b̂ satisfies (30) and Gθ is any element in G. Note that in order for b̂ to satisfy (30) and the existence
condition (26), Γ has to be in the following interval

1
3 [4(a+ k) + v2] < Γ < 1

2 [4(a+ k) + v2]. (31)
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Γ
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Figure 2. In both pictures 4(k + a) + v2 = 5. a) The plot of z(ω,Γ) as defined by (32). b) The bounded regions in the Γ-ω plane are
the regions for which the perturbed invariant manifolds intersect transversely for δ = 1 (dotted line), δ = 2 (dashed line) and δ = 10

(solid line).

A direct calculation shows that the first order correction to the unit eigenvalue of the perturbed Poincaré
map is equal to

µ1 = −T d

dc

∣∣∣
c=ĉ

R(Z∞
0 (c)) = T

Γ(2b̂+ v)

4B2
,

thus µ1 > 0. This means that the perturbed periodic orbit γε has a three-dimensional centre-stable manifold
and a four-dimensional centre-unstable manifold. To analyse possible intersections of these manifolds we
compute the Melnikov function in the direction of the gradient of the Hamiltonian:

MH(τ0, θ0; ĉ)=−B
3

√
4(k + a) + v2 − 2Γ

[
6Γ− 8(k + a)− 2v2

+ δπω
2B csch

(
πω
2B

)
(8(k + a) + 2v2 − 2ω2 − 3Γ) cos τ0

]
.

where relation (30) for b̂ gives that 4B2 = 3Γ−4(k+a)− v2. This function will have simple zeros for some
values of τ0 provided that Γ satisfies (31) and ω, Γ and δ satisfy

z(ω,Γ) =
πω

4B
csch

(πω
2B

) ∣∣∣∣
8(k + a) + 2v2 − 2ω2 − 3Γ

3Γ− 4(k + a)− v2

∣∣∣∣ >
1

δ
, (32)

In Figure 2 we illustrate z(ω,Γ) as a function of Γ and ω, and also boundary of the region in the Γ-ω
plane given by (32) for different values of δ, while taking 4(k+a)+v2 = 5 (the figure does not qualitatively
change for other values of 4(k + a) + v2). Inside the bounded regions in Fig. 2(b), the perturbed invariant
manifolds will intersect transversely. Note that if δ increases, two extra regions appear alongside the central
region. These regions will never merge as z = 0 at Γ = 2

3(ω
2 − 4(k + a) − v2) and Γ = 1

3 (4(k + a) + v2)
with ω 6= 0.

6.3. Symmetry-breaking perturbation

As an example of possible changes in the dynamics which occur when the system is exposed to the influence
of symmetry-breaking perturbations, we consider a particular case given by

f(Ψ,Ψx, τ) = β
Ψ

2

|Ψ|2 + iA[1 − δ cos τ ]|Ψ|2Ψ. (33)

Here, the first term breaks rotational symmetry of the unperturbed system, while the second corresponds
to the compensating amplifiers as in the previous example. Again, we can set A = 1 without loss of
generality as the perturbation is multiplied by ε in the perturbed NLS equation.



March 28, 2008 11:43 Dynamical Systems paper˙ds

24 K.B. Blyuss and G. Derks

Figure 3. The points θi on the unperturbed group orbit persist under the perturbation (33).

In a multi-symplectic form this perturbation can be written as

F (Z, τ) =

(
β
q21 − q22
q21 + q22

− q2(q
2
1 + q22)[1− δ cos τ ],−2β

q1q2
q21 + q22

+ q1(q
2
1 + q22)[1− δ cos τ, 0, 0

)T

.

As the symmetry is broken, we will take a = b = 0 implying that the existence condition becomes v2 < 2k
and

c0 =
1

2
kv, ρ20 = k, 4B2 = 2k − v2, and θ∞ = arccos

(
v2

k
− 1

)
.

Theorem 3.1 implies that the angles θ̂, for which the fixed points Gθ̂Z
∞
0 (c0) persist, are the roots of

R(Gθ̂Z
∞
0 (c0)) = k1/2(k

√
k − β sin 3θ̂).

This shows that for β > k
√
k, there are six persisting fixed points with angles given by

sin 3θ̂ =
k
√
k

β
. (34)

We have illustrated this relation in Figure 3. Thus there are six curves of periodic orbits in the perturbed
system. The first order correction to the unit eigenvalues of the perturbed Poincaré map associated with
those periodic, can be found as

µ21 = −s′′0(c0)T 2 d

dθ

∣∣∣
θ=θ̂

R(GθZ
∞
0 (c0)) = 3

√
kβ s′′0(c0)T

2 cos 3θ̂.

This implies that the sign of µ21 is alternating between the six successive roots θ̂ of (34). As s′′0(c0) =

− v2(14k2+2v2)
16(2k−v2) < 0, the first of these roots θ̂1 ∈ [0, π/6] is characterised by µ21 < 0, as is θ̂3 ∈ [π/2, 2π/3].

The angular distance between these two roots is 2π/3. The invariant manifolds of the persisting fixed
points have to coincide. This implies that the angular shift between the surviving fixed points should equal
the phase shift of the unperturbed heteroclinic orbit as it goes from −∞ to +∞. From this condition, one
concludes that

θ∞ = arccos

(
v2

k
− 1

)
=

2π

3
, hence v2 =

k

2
, (35)

which fixes the relation between the velocity v and the squared radius k of the unperturbed orbit.
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Figure 4. Boundary of the parameter region when the perturbed invariant manifold intersect transversely for k = 1. a) δ = 50, the
manifolds intersect in the region where z > 1. b) δ = 1000, the manifolds intersect transversely in the regions B and C, and do not

intersect in the region A.

Remark 1 : If one had taken the symmetry breaking part of f to be linear (e.g. ψ) or like |ψ|2ψ, then
the angular distance between two fixed points with equal µ21 would have to be π. This is not possible as
the angular distance between the two fixed points of the heteroclinic orbit is always less than π.

So for β > k
√
k, θ̂ = 1

3 arcsin
(
k
√
k

β

)
, and v2 = k/2, we will investigate the intersection of two dimensional

centre-stable and four dimensional centre-unstable manifolds of the perturbed fixed points evolving out of
θ̂ and θ̂ + 2π

3 . The Melnikov function is

MH(τ0, θ̂; c0)=
1
2

∫ ∞

−∞
β
[
cos 3θ̂[(q21 − q22)(2p1 + vq2)− 2q1q2(2p2 − vq1)]

+ sin 3θ̂((q21 − q22)(2p2 − vq1) + 2q1q2(2p1 + vq2))
]
/(q21 + q22)

+ [1− δ cos(ωx+ τ0)]|q|2[v|q|2 − 2C(Z0)] dx

where qi and pi are the components of Z0(x; c0) and |q|2 = q21+q
2
2. Straightforward but lengthy calculations

show that the above integral can be evaluated as

MH(τ0, θ0; c0)=
k2

48

[
54
√
3− 48π + 6

√
3
2 −

√
2
(
β2

k3 − 1
)
(52π − 15

√
3)

−
√

3
2
δπω
kB csch

(
πω
2B

) (
3k − 2ω2

)
cos τ0

]
,

where the expression (35) for v2 gives that B = 1
2

√
3k/2. This function will have simple zeros for some

values of τ0 provided β > k
√
k and that ω, β and δ satisfy

z(β, ω, δ) =
2δ

k
√
k

∣∣∣∣∣∣∣∣

(
3k − 2ω2

)
πω csch

(
πω

√
2
3k

)

54
√
3− 48π + 6

√
3
2 − (52π − 15

√
3)

√
2
(
β2

k3 − 1
)

∣∣∣∣∣∣∣∣
> 1. (36)

In Figure 4 we show the boundary in β-ω plane for different values of δ as determined by the relation
(36). For δ small, there is a single boundary separating the areas with z > 1 (the invariant manifolds
intersecting transversely there) and those with z < 1. As δ increases, the boundary develops a dimple (see
Fig. 4b), and inside this dimple we also have z > 1, so that the perturbed invariant manifolds intersect
transversely in the regions B and C. As one increases δ further, the region B grows, and simultaneously
the boundary between the regions A and C moves up. The regions B and C will always be disjoint as z = 0
at ω2 = 3k

2 .
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The general conclusion is that in all three cases of different perturbations of the NLS equation, we have
been able to indentify conditions on parameters which guarantee transversal intersection of some perturbed
invariant manifolds. As the complexity of perturbations increases, more and more structure of the original
system is destroyed. This inevitably leads to the decrease in dimensions of persisting invariant manifolds
and as a consequence to a decrease in the dimension of their transversal intersection. It is worth noting
that in the case of equivariant Hamiltonian perturbation, the Melnikov condition does not impose any
restrictions on the parameters of the perturbation, and therefore a high-dimensional transversal intersection
of perturbed invariant manifolds is guaranteed for any parameter values. When the nonlinear Schrödinger
equation considered in this section is used to model optical wave propagation in waveguides, the description
of different dynamical regimes in terms of perturbation parameters, as given above, is particularly useful
when devising optimal schemes of signal amplification or chaotic communications. Finally, we would like
to mention that Theorem 5.1 provides sufficient conditions for the transversal intersection of perturbed
invariant manifolds (transversal in the parameter along the original heteroclinic orbit), and hence does not
imply the persistence of a heteroclinic connection. One reason for the disappearance of the heteroclinic
orbit is that under the perturbations, the geometry of the phase space changes, and some parts of the
original structure (such as symmetry and/or Hamiltonian structure) disappear. Instead, it is more likely
that the results about transversal intersection of perturbed invariant manifolds can be used to analyse the
existence of spatio-temporally chaotic dynamics in the perturbed system.

7. Conclusions

In this paper we have derived sufficient criteria for the bifurcation (persistence) of relative equilibria into
relative periodic orbits in multi-symplectic PDEs with spatially periodic perturbations, both equivariant
and symmetry-breaking ones. The persistence of the periodic orbits is established by using a Lyapunov-
Schmidt type argument to take into account the presence of the symmetry group. The symmetry group
plays also a crucial role in the description of perturbed (centre-)stable and (centre-)unstable manifolds
associated with those relative periodic orbits. These descriptions are used to show that a Melnikov integral
gives a sufficient condition for the transversal interestion (up to symmetries) of those manifolds in case of
symmetric perturbations.
In case of symmetry-breaking perturbations, one gets either a four-dimensional unstable manifold and a

two-dimensional stable manifold or both stable and unstable manifolds are three-dimensional. In the first
case, one Melnikov integral can be used to derive a sufficient condition for the transversal intersection of
the stable and unstable manifolds. In the second case, an additional condition is needed and it is currently
a work in progress to show that a second Melnikov function can be used for this.
It is worth noting that qualitatively the method developed in this paper can be considered in its own

merit for Hamiltonian systems with saddle-centres characterized by a double zero eigenvalue. This is a
degenerate case of the saddle-centre with non-hyperbolic eigenvalue being on the imaginary axis [15, 16].
The double zero eigenvalue presents certain complications in the analysis, which can be dealt with by using
that the origin of the double eigenvalue is in a symmetry group.
Finally, we mention again the problem of spatio-temporal chaos. In the context of celestial mechanics

some results about temporal chaos in non-dissipative systems have already been obtained. These results are
concerned with the explicit construction of a horseshoe “polynomial” in time. This procedure was developed
for area-preserving perturbations by Burns & Weiss [26], and has been also applied to the systems with
non-hyperbolic fixed points [27, 28]. The techniques developed in this paper provide a description of the
intersection of invariant manifolds in perturbed multi-symplectic systems with symmetry. The intersection
of invariant manifolds might initiate spatio-temporal chaos in such systems, although some work will need
to be done to make this formal, possibly via spatio-temporal horseshoe functions.
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Appendix A: Linearisations and equivariance

This Appendix contains the proofs of some auxiliary results and the persistence Theorem 3.1.

Proof of Lemma 2.3 : First we prove that for any c ∈ C, the generator ξ(Z∞
0 (c)) lies in the kernel of the

operator L0(c). The flow of the unperturbed system commutes with the group action, hence the Poincaré
map is equivariant under the group action and for all Gθ ∈ G and Z we have Π0,b(c) (GθZ) = GθΠ

0,b(c) (Z).
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Differentiating this equation with respect to θ and setting θ = 0 we obtain

DΠ0,b(c)(Z)ξ(Z) = ξ
(
Π0,b(c)(Z)

)
.

Substitution Z = Z∞
0 (c) completes the proof of (12).

Next, we prove the second statement, i.e., for any c ∈ C, the vector dZ∞

0 (c)
dc is the generalised eigenvector

corresponding to the zero eigenvalue of the operator L0(c). Recall that the relative equilibria Z∞
0 (c) are

fixed points of the unperturbed Poincaré map Π0,b(c), hence Π0,b(c) (Z∞
0 (c)) = Z∞

0 (c). Differentiating this
relation with respect to c and recalling that b(c) = s′a(c) hence b

′(c) = s′′a(c), gives

s′′a(c)
∂

∂b

∣∣∣∣
b=b(c)

Π0,b (Z∞
0 (c)) + L0(c)

dZ∞
0 (c)

dc
= 0. (A1)

Next use that for arbitrary b, the relative equilibria flow with the symmetry group, i.e., Π0,b(Z∞
0 (c)) =

G(b(c)−b)TZ
∞
0 (c). Differentiating this relation with respect to b and evaluating at b = b(c) gives

∂

∂b

∣∣∣∣
b=b(c)

Π0,b (Z∞
0 (c)) = −T ξ(Z∞

0 (c)).

Combining this with (A1), we get the second relation (13).
Finally, the proof that for every c ∈ C, the vector ∇C(Z∞

0 (c)) is orthogonal to the range of the operator
L0(c). Since C is a constant of motion of the unperturbed Hamiltonian ODE, it follows immediately for
every c ∈ C that C(Π0,b(c)(Z)) = C(Z). Taking the variation of Z in an arbitrary direction U and evaluating
at Z = Z∞

0 (c) gives

〈∇C(Z∞
0 (c)), U〉 = 〈∇C(Z∞

0 (c)),DΠ0,b(c)(Z∞
0 (c))U〉

hence 〈∇C(Z∞
0 (c)), L0(c)U〉 = 0. �

Proof of Theorem 3.1 : To find the fixed points of the Poincaré map, we want find bε and Zε such that

Πε,b(Z)− Z = 0.

However, for ε = 0 this equation does not have a unique solution, due to the equivariance under the
group G and the invariance of the C level sets under the dynamics. In order to deal with this issue, the
equation above is extended to the system





0=Πε,b(Z)− Z + σ∇C(Z)

0= 〈ξ(Z), Z −GθZ
∞
0 (c)〉

0=

∫ T

0
R(Φε,b

x (Z)) dx

(A2)

with the variables/parameters b, Z, θ, c and σ. The idea behind this system is the same as the idea behind
a Lyapunov-Schmidt reduction. The first equation adds a vector which is missing in the range of the
unperturbed linearised operator L0 = DΠ0,b(Z∞

0 )− I. The second equation removes the invariance under
the group action, which is present if ε = 0. Finally, the third equation is related to the selection criterion
for c or θ. The role of the variables c, b, σ and θ will vary, depending on which of the three criteria the
perturbation satisfies.

Case 1 Let F be equivariant and R(Z, τ) = 0 for all values of Z and τ . This means that the third equation
in (A2) is trivially satisfied and on each C-level set we can expect a persisting relative equilibrium. So
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we fix c and we will solve for (Z, σ, b) in





0=Πε,b(Z)− Z + σ∇C(Z)

0= 〈ξ(Z), Z − Z∞
0 (c)〉

0=C(Z)− c

(A3)

First note that for ε = 0 this system has a unique solution, given by (Z∞
0 (c), 0, b(c)). The linearisation

near this solution of this system at ε = 0 is

LIN :=




L0(c) ∇C(Z∞
0 (c)) −T ξ(Z∞

0 (c))

ξ(Z∞
0 (c))T 0 0

∇C(Z∞
0 (c)) 0 0


 .

(note that Lemma 2.3 gives that ∂
∂b

∣∣∣∣
b=b(c)

Π0,b(Z∞
0 (c)) = −T ξ(Z∞

0 (c))). This matrix has a trivial kernel.

Indeed, assume that

LIN



U
g
β


 = 0, hence





0=L0(c)U + g∇C(Z∞
0 (c)) − βT ξ(Z∞

0 (c))

0= 〈ξ(Z∞
0 (c)), U〉

0= 〈∇C(Z∞
0 (c)), U〉

Taking the inner product of the first equation with ∇C(Z∞
0 (c)) (due to the Hypothesis H2.1(c), one has

∇C(Z∞
0 (c)) = Jξ(Z∞

0 (c)) 6= 0) and using the result of Lemma 2.3 that ∇C(Z∞
0 (c)) is orthogonal to the

range of the operator L0(c), we obtain g ‖∇C(Z∞
0 (c))‖2 = 0, and therefore g = 0. With Lemma 2.3,

it follows that L0(c)
dZ∞

0 (c)
dc = b′(c)T ξ(Z∞

0 (c)), hence, U − β
b′(c)

dZ∞

0 (c)
dc ∈ kerL0(c), and thus it can be

written as U− β
b′(c)

dZ∞

0 (c)
dc = Kξ(Z∞

0 (c)). Substituting this into the third equation gives that β = 0. Now

substitute U = Kξ(Z∞
0 (c)) into the second equation and K‖ξ(Z∞

0 (c))‖2 = 0 follows, thus K = 0 and
therefore U = 0. So, it can be concluded that LIN has a trivial kernel, and therefore it is an invertible
matrix.
Applying the implicit function theorem to (A3) gives that for ε small there exists a solution

(Z∞
ε (c), σε(c), bε(c)) of the system (A3), such that limε→0(Z

∞
ε (c), σε(c), bε(c)) = (Z∞

0 (c), 0, b(c)).
To finish this part of the proof, it has to be shown that σε vanishes. We have seen that R(Z, τ) = 0 im-

plies that the C level sets are invariant under the perturbed dynamics. Hence C (Z∞
ε ) = C

(
Πε,bε(Z∞

ε )
)
.

Expanding the right-hand side of this equation about Z∞
ε , we obtain

C (Z) = C (Z) + 〈∇C (Z) ,Π(Z)− Z〉+ 1

2

〈
D2C(Z̃) (Π(Z)− Z) ,Π(Z)− Z

〉
,

where Z = Z∞
ε , Π = Πε,bε and |Z̃ − Z∞

ε | ≤ µ
∣∣Πε,bε(Z∞

ε )− Z∞
ε

∣∣, for some 0 ≤ µ ≤ 1. From (A3) it

follows that Πε,bε(Z∞
ε )− Z∞

ε = −σε∇C(Z∞
ε ), so we can conclude

σε‖∇C(Z∞
ε )‖2 =

1

2
σ2ε〈D2C(Z̃)∇C(Z∞

ε ),∇C(Z∞
ε )〉 ≤ K

2
σ2ε , (A4)

for some constant K. Therefore either σε = 0, or σε ≥ 2‖∇C(Z∞

ε )‖2

K . In the limit ε → 0 the right-hand
side of this inequality is bounded away from zero which contradicts limε→0 σε = 0. Thus σε = 0, for all
ε small.
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By varying c and using the equivariance, the existence of a two-dimensional manifold of fixed points
given by GθZ

∞
ε (c) follows immediately for any |ε| < ε0.

Case 2 Let F be equivariant and assume that there is some ĉ ∈ C such that R(Z∞
0 (ĉ)) = 0 and

d
dc |c=ĉR(Z∞

0 (c)) 6= 0. We will solve the system (A2) with θ = 0 and c = ĉ for (Z, b, σ). For conve-
nience of notation, we introduce

Rflow(Z, b, ε) =

∫ T

0
R(Φε,b

x (Z, 0)) dx,

hence Rflow(Z
∞
0 (c), b(c), 0) = T R(Z∞

0 (c)). Since F is equivariant, the perturbed flow is equivariant.
Thus Rflow is invariant under the group G and 〈∇Rflow(Z, b, ε), ξ(Z)〉 = 0.
First note that for ε = 0 the system (A2) with θ = 0 has a unique solution (Z∞

0 (ĉ), b(ĉ), 0). The
linearisation at ε = 0 near this solution, is

LIN :=




L0(ĉ)
∂Π0,b(ĉ)

∂b (Z∞
0 (ĉ)) ∇C(Z∞

0 (ĉ))
ξ(Z∞

0 )T 0 0

∇Rflow(Z
∞
0 , b(ĉ), 0)

∂Rflow

∂b (Z∞
0 , b(ĉ), 0) 0


 .

Note that Lemma 2.3 implies that ∂Π0,b(ĉ)

∂b (Z∞
0 (ĉ)) = −(s′′a(ĉ))

−1L0(ĉ)
dZ∞

0 (ĉ)
dc . To show that the ma-

trix LIN is invertible, we proceed in a same way as in case 1, i.e., assume that there is some (U, β, g)
such that

LIN



U
β
g


 = 0, i.e.,





0=L0(ĉ)
[
U − β(s′′a(ĉ))

−1 dZ∞

0 (ĉ)
dc

]
+ g∇Cv(p0),

0= 〈ξ(p0), U〉,
0= 〈∇Rflow(Z

∞
0 (ĉ), b(ĉ), 0) , U〉+ β ∂Rflow(Z∞

0 (ĉ),b(ĉ),0)
∂b .

(A5)

As in case 1, by taking the inner product of the first equation with ∇C(Z∞
0 (ĉ) 6= 0 and using that

∇C(Z∞
0 (ĉ) is orthogonal to the range of L0(ĉ), it follows that g = 0. Thus U − β(s′′a(ĉ))

−1 dZ∞

0 (ĉ)
∂c ∈

kerL0(ĉ), so it can be rewritten as U = Kξ(Z∞
0 (ĉ)) + (s′′a(ĉ))

−1 dZ∞

0 (ĉ)
∂c . Substituting this into the second

equation of (A5), using the invariance of Rflow and s′′a(ĉ) = b′(ĉ), it follows

β

s′′a(ĉ)

[〈
∇Rflow(Z

∞
0 (ĉ), b(ĉ), 0) ,

dZ∞
0 (ĉ)

dc

〉
+ b′(ĉ)

∂Rflow(Z
∞
0 (ĉ), b(ĉ), 0)

∂b

]
= 0,

in other words

β

s′′a(ĉ)
d

dc

∣∣∣
c=ĉ

Rflow(Z
∞
0 (c), b(c), 0) = 0 so

β

s′′a(ĉ)
d

dc

∣∣∣
c=ĉ

R(Z∞
0 (c)) = 0.

With the assumption on the derivative of R(Z∞
0 (c)), this implies that β = 0, and therefore U = Kξ(p0).

Substitution of this into the third equation of (A5) gives K‖ξ(p0)‖2 = 0, and thus K = 0. So, it can be
concluded that LIN has a trivial kernel, and therefore it is an invertible matrix.
Again, applying the implicit function theorem gives that for ε small there exists a solution (Z∞

ε , bε, σε)
of the system (A2) with θ = 0, such that limε→0(Z

∞
ε , bε, σε) = (Z∞

0 (ĉ), b(ĉ), 0).
In a similar way as in case 1 it can be shown that σε = 0. Indeed, the system (A2) with θ = 0 gives

that Rflow(Z
∞
ε , bε, ε) = 0. Since d

dxC(π1Φ
bε,ε
x (Z∞

ε )) = −εR(Φbε,ε
x (Zε)), this implies

C(Z∞
ε )− C(Πbε,ε(Z∞

ε )) = Rflow(Z
∞
ε , bε, ε) = 0.

Following the same arguments as in case 1, it follows that σε = 0 for all ε.
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By using the equivariance, the existence of a one-dimensional manifold of fixed points given by GθZ
∞
ε

follows immediately for any |ε| < ε0.

Case 3 Take c = c0 and b = 0 = a and assume that there is some θ̂ such that R(Gθ̂Z
∞
0 (c0)) = 0 and

d
dθ |θ=θ̂R(GθZ

∞
0 (c0)) 6= 0. We will solve the system (A2) for (Z, θ, σ) (and b = 0, c = c0). For convenience

of notation, we introduce

R̂flow(Z, ε) =

∫ T

0
R(Φε,0

x (Z, 0)) dx,

hence R̂flow(GθZ
∞
0 (c0), 0) = T R(GθZ

∞
0 (c0)).

First note that for ε = 0 the system (A2) with b = 0 has a unique solution (Gθ̂Z
∞
0 (c0), θ̂, 0). The

linearisation at ε = 0 near this solution, is

LIN :=




(DG∗
θ̂
(Z∞

0 (c0)))
−1 L0(c0) (DGθ̂(Z

∞
0 (c0)))

−1 0 ∇C(Gθ̂Z
∞
0 (c0))

ξ(Gθ̂Z
∞
0 (c0))

T ‖ξ(Gθ̂Z
∞
0 (c0))‖2 0

∇R̂flow(Gθ̂Z
∞
0 (c0), 0) 0 0


 .

To show that the matrix LIN is invertible, we proceed in a same way as in case 1, i.e., assume that there
is some (U,α, g) such that

LIN



U
α
g


 = 0, i.e.,





0=L0(c0) (DGθ̂(Z
∞
0 (c0)))

−1U + g∇C(Z∞
0 (c0)),

0= 〈ξ(Gθ̂Z
∞
0 (c0)), U〉 + α ‖ξ(Gθ̂Z

∞
0 (c0))‖2,

0= 〈∇R̂flow(Gθ̂Z
∞
0 (c0), 0) , U〉

(A6)

As in case 1, by taking the inner product of the first equation with ∇C(Z∞
0 (c0) 6= 0 and using that

∇C(Z∞
0 (c0) is orthogonal to the range of L0(c0), it follows that g = 0. Thus (DGθ̂(Z

∞
0 (c0)))

−1U ∈
kerL0(c0), so it can be rewritten as U = Kξ(Gθ̂Z

∞
0 (c0)). Substituting this into the third equation

of (A6) gives

0 = K 〈∇R̂flow(Gθ̂Z
∞
0 (c0), 0) , ξ(Gθ̂Z

∞
0 (c0))〉 = KT

d

dθ

∣∣∣
θ=θ̂

R(GθZ
∞
0 (c0)).

With the assumption on the derivative of R(GθZ
∞
0 (c0)), this implies that K = 0, thus U = 0. Since

U = 0, the second equation gives immediately that α = 0. So, it can be concluded that LIN has a trivial
kernel, and therefore it is an invertible matrix.
Again, applying the implicit function theorem gives that for ε small there exists a solution (Z∞

ε , θε, σε)

of the system (A2) with b = 0, such that limε→0(Z
∞
ε , θε, σε) = (Z∞

0 (c0), θ̂, 0).
In a similar way as in cases 1 and 2, it can be shown that σε = 0 for all ε.

�

Proof of Lemma 4.2 :

Case 1 The equivariance of the system and the invariance of the C level sets under the dynamics, imply
that the Poincaré map will preserve the double eigenvalue 1. The other two eigenvalues are just the
continuation of the hyperbolic eigenvalues e±λ(c)T .

Case 2 The equivariance of the system under the action of the symmetry group G, gives that the generator
of the group is an eigenvector of the Poincaré map with eigenvalue 1:

[DΠε,bε(Z∞
ε )− I] ξ(Z∞

ε ) = 0.
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This follows immediately by differentiating the equality Πε,bε(GθZ
∞
ε ) = GθZ

∞
ε with respect to θ and

setting θ = 0.
To find the eigenvalue bifurcating out of 1, the eigenvalue equation is written as

[DΠε,bε(Z∞
ε )− I](ξ(Z∞

ε ) + εv1 + ε2v2 + . . .) = (εµ1 + ε2µ2 + . . .)(ξ(Z∞
ε ) + εv1 + . . .),

Using that ξ(Z∞
ε ) is an eigenvector of the Poincaré map, this reduces to

[DΠε,bε(Z∞
ε )− I] (v1 + εv2 + . . .) = (µ1 + εµ2 + . . .) (ξ(Z∞

ε ) + εv1 + . . .).

The lowest order equation is

[DΠ0,b(ĉ)(Ẑ∞
0 )− I] v1 = µ1 ξ(Ẑ

∞
0 ) =

µ1
s′′a(ĉ)T

[DΠ0,b(ĉ)(Ẑ∞
0 )− I]

dZ∞
0 (ĉ)

dc
,

where Ẑ∞
0 = Z∞

0 (ĉ) and the last equality follows from (13). Thus v1 =
µ1

s′′a(ĉ)T
dZ∞

0

dc (ĉ).

The next order equation gives

L0(ĉ)v2 +DΠ
1
(Ẑ∞

0 )v1 +D2Π0,b(ĉ)(Ẑ∞
0 )(Z

∞
1 , v1) = µ1v1 + µ2ξ(Ẑ

∞
0 ) + µ1Dξ(Ẑ

∞
0 )Z

∞
1 ,

where the following notation is used

Π
1
(Z) =

d

dε

∣∣∣∣
ε=0

Πε,bε(Z), and Z
∞
1 =

d

dε

∣∣∣∣
ε=0

Z∞
ε .

Taking the inner product with ∇C(Ẑ∞
0 ) and using that R(L0) ⊥ ∇C(Ẑ∞

0 ), ξ(Ẑ∞
0 ) ⊥ ∇C(Ẑ∞

0 ) and the
expression for v1 derived above, gives

0= µ1

s′′a(ĉ)T

(〈
DΠ

1
(Ẑ∞

0 )dZ
∞

0

dc (ĉ) +D2Π0,b(ĉ)(Ẑ∞
0 )

(
Z

∞
1 ,

dZ∞

0

dc (ĉ)
)
,∇C(Ẑ∞

0 )
〉

−s′′a(ĉ)T
〈
Dξ(Ẑ∞

0 )Z
∞
1 ,∇C(Ẑ∞

0 )
〉
− µ1

〈
dZ∞

0

dc (ĉ),∇C(Ẑ∞
0 )

〉)

Observe that
〈
dZ∞

0

dc (ĉ),∇C(Ẑ∞
0 )

〉
= dC(Z∞

0 )
dc (ĉ) = 1, then this implies

µ1=
〈
DΠ

1
(Ẑ∞

0 )dZ
∞

0

dc (ĉ) +D2Π0,b(ĉ)(Ẑ∞
0 )

(
Z

∞
1 ,

dZ∞

0

dc (ĉ)
)
,∇C(Ẑ∞

0 )
〉

− s′′a(ĉ)T
〈
Dξ(Ẑ∞

0 )Z
∞
1 ,∇C(Ẑ∞

0 )
〉

To simplify this expression, we manipulate the differential equation for the flow operator Φε,bε
x (Z, 0). For

simplicity of notation, we write Φε
x(Z) = π1Φ

ε,bε
x (Z, 0). For any x, Z, ε, we have

JDxΦ
ε
x(Z) = ∇H(Φε

x(Z), bε) + εF (Φε
x(Z), ωx).

Taking the inner product with ξ(Φε
x(Z)) = J−1∇C(Φε

x(Z)) gives for any x, Z, ε

− d

dx
C(Φε

x(Z)) = ε〈F (Φε
x(Z), ωx), ξ(Φ

ε
x(Z))〉. (A7)

For arbitrary c, take Z = Z∞
0 (c) + εZ

∞
1 and expand in ε about ε = 0, using the notation Φ

1
x(Z) =
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d
dε

∣∣
ε=0

Φε
x(Z):

− d
dx

(
C(Φ0

x(Z
∞
0 (c))) + ε

〈
∇C(Φ0

x(Z
∞
0 (c))),Φ

1
x(Φ

0
x(Z

∞
0 (c))) +DΦ0

x(Φ
0
x(Z

∞
0 (c)))Z

∞
1

〉
+ . . .

)

= ε〈F (Φ0
x(Z

∞
0 (c)), ωx), ξ(Φ0

x(Z
∞
0 (c)))〉 + . . . .

Using the first order equation, recall that Φ0
x(Z) is the flow for the vector field with Hamiltonian

H0(Z, b(ĉ)), thus Φ0
x(Z

∞
0 (c)) = G(b(c)−b(ĉ))xZ

∞
0 (c) and using equivariance under the group action, we

get

− d
dx

(〈
∇C(Z∞

0 (c)),Φ
1
x(Z

∞
0 (c)) +DΦ0

x(Z
∞
0 (c))DG(b(c)−b(ĉ))x(Z

∞
0 (c))−1Z

∞
1

〉)

= 〈F (Z∞
0 (c), ωx), ξ(Z∞

0 (c))〉

Integrating this for x from 0 to T and using that for any Z, Φε
0(Z) = Z (hence DΦ0

0(Z) = I and

Φ
1
0(Z) = 0), gives

〈
∇C(Z∞

0 (c)), Z
∞
1 − Φ

1
T (Z

∞
0 (c))−DΦ0

T (Z
∞
0 (c))DG(b(c)−b(ĉ))T (Z

∞
0 (c))−1Z

∞
1

〉

=

∫ T

0
〈F (Z∞

0 (c), ωx), ξ(Z∞
0 (c))〉 dx = TR(Z∞

0 (c)).

Finally, differentiating this with respect to c and evaluating at c = ĉ, gives

〈
D2C(Ẑ∞

0 )dZ
∞

0

dc (ĉ), Z
∞
1 − Φ

1
T (Ẑ

∞
0 )−DΦ0

T (Ẑ
∞
0 )Z

∞
1

〉

−
〈
∇C(Ẑ∞

0 ),DΦ
1
T (Ẑ

∞
0 )dZ

∞

0

dc (ĉ) +D2Φ0
T (Ẑ

∞
0 )(dZ

∞

0

dc (ĉ), Z
∞
1 )− Ts′′a(ĉ)Dξ(Ẑ

∞
0 )Z

∞
1

〉

= T d
dc

∣∣
c=ĉ

R(Z∞
0 (c)).

Observe first that

Z
∞
1 − Φ

1
T (Ẑ

∞
0 )−DΦ0

T (Ẑ
∞
0 )Z

∞
1 =

d

dε
(Z∞

ε − Φε
T (Z

∞
ε )) = 0,

Furthermore, the Poincaré map Πε,bε = Φε
T , and Z

∞
ε is a fixed point of this map, so we can conclude

〈
∇C(Ẑ∞

0 ),DΠ
1
(Ẑ∞

0 )dZ
∞

0

dc (ĉ) +D2Π0,b(ĉ)(Ẑ∞
0 )(dZ

∞

0

dc (ĉ), Z
∞
1 )− Ts′′a(ĉ)Dξ(Ẑ

∞
0 )Z

∞
1

〉

= −T d
dc

∣∣
c=ĉ

R(Z∞
0 (c)).

Hence µ1 = −T d
dc

∣∣
c=ĉ

R(Z∞
0 (c)).

The final two eigenvalues are just the continuation of the hyperbolic eigenvalues e±λ(c)T .

Case 3 In general, the eigenvalue 1 will not persist in this case as the symmetry is broken. This eigenvalue
is degenerate with algebraic multiplicity 2, so it can be expected that two eigenvalues will bifurcate out
of 1. So we should use and expansion in

√
ε instead of ε. Therefore, to find the eigenvalues bifurcating

out of 1, the eigenvalue equation is written as

[DΠε,0(Z∞
ε )− I](ξ(Gθ̂Z

∞
0 ) +

√
εv1 + εv2 + . . .) = (

√
εµ1 + εµ2 + . . .)(ξ(Gθ̂Z

∞
0 ) +

√
εv1 + . . .),

where Z∞
0 = Z∞

0 (c0). Using that ξ(Gθ̂Z
∞
0 ) is an eigenvector of the unperturbed Poincaré map, the
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lowest order equation is

[DΠ0,0(Gθ̂Z
∞
0 )− I] v1 = µ1 ξ(Gθ̂Z

∞
0 ) =

µ1
s′′0(c)T

[DΠ0,0(Gθ̂Z
∞
0 )− I]

dGθ̂Z
∞
0 (c0)

dc
,

Thus v1 =
µ1

s′′0 (c0)T
dGθ̂Z

∞

0 (c0)
dc .

The next order equation gives

L0(c0, θ̂)v2 +DΠ
1
(Gθ̂Z

∞
0 )ξ(Gθ̂Z

∞
0 ) +D2Π0,0(Gθ̂Z

∞
0 )(Z

∞
1 , ξ(Gθ̂Z

∞
0 )) = µ1v1 + µ2ξ(Gθ̂Z

∞
0 ),

where the following notation is used

L0(c0, θ̂) = DΠ0,0(Gθ̂Z
∞
0 )− I, Π

1
(Z) =

d

dε

∣∣∣∣
ε=0

Πε,0(Z), and Z
∞
1 =

d

dε

∣∣∣∣
ε=0

Z∞
ε (c0).

Taking the inner product with ∇C(Gθ̂Z
∞
0 ) and using that R(L0(c0, θ̂)) ⊥ ∇C(Gθ̂Z

∞
0 ), ξ(Gθ̂Z

∞
0 ) ⊥

∇C(Gθ̂Z
∞
0 ) and the expression for v1 gives

µ21
s′′0(c0)T

=
〈
DΠ

1
(Gθ̂Z

∞
0 )ξ(Gθ̂Z

∞
0 ) +D2Π0,0(Gθ̂Z

∞
0 )

(
Z

∞
1 , ξ(Gθ̂Z

∞
0 )

)
,∇C(Gθ̂Z

∞
0 )

〉

To simplify this expression, put (for arbitrary θ) Z = GθZ
∞
ε into (A7) and take the derivative with

respect to ε and evaluate at ε = 0:

d
dx

[〈
∇C(Φ0

x(GθẐ
∞
0 )),Φ

1
x(GθẐ

∞
0 ) +DΦ0

x(GθẐ
∞
0 )DGθ(Ẑ

∞
0 )Z

∞
1

〉]

= 〈F (GθẐ
∞
0 , ωx), ξ(GθẐ

∞
0 )〉,

where Ẑ∞
0 = Gθ̂Z

∞
0 . Integration from 0 to T gives

〈
∇C(GθẐ

∞
0 ),Φ

1
T (GθẐ

∞
0 ) +DΦ0

T (GθẐ
∞
0 )DGθ(Ẑ

∞
0 )Z

∞
1 −DGθ(Ẑ

∞
0 )Z

∞
1

〉

=

∫ T

0
〈F (GθẐ

∞
0 , ωx), ξ(GθẐ

∞
0 )〉 dx.

Finally taking the derivative with respect to θ and evaluating at θ = 0 shows

〈
D2C(Gθ̂Z

∞
0 )ξ(Gθ̂Z

∞
0 ),Φ

1
T (Gθ̂Z

∞
0 ) + [DΦ0

T (GθZ
∞
0 )− I]Z

∞
1

〉

+
〈
∇C(Gθ̂Z

∞
0 ),DΦ

1
T (Gθ̂Z

∞
0 )ξ(Gθ̂Z

∞
0 ) +D2Φ0

T (Gθ̂Z
∞
0 )(Z

∞
1 , ξ(Z

∞
0 ))

〉

−
〈
∇C(Gθ̂Z

∞
0 ), L0(c0, θ̂)Dξ(Gθ̂Z

∞
0 )Z

∞
1

〉
= d

dθ

∣∣
θ=θ̂

∫ T

0
〈F (GθZ

∞
0 , ωx), ξ(GθZ

∞
0 )〉 dx.

As shown in case 2, the first term is zero and using that ∇C(Gθ̂Z
∞
0 ) is perpendicular to the range of

L0(c0, θ̂), we get

〈
∇C(Gθ̂Z

∞
0 ),DΦ

1
T (Gθ̂Z

∞
0 )ξ(Gθ̂Z

∞
0 ) +D2Φ0

T (Gθ̂Z
∞
0 )(Z

∞
1 , ξ(Z

∞
0 ))

〉

= d
dθ

∣∣
θ=θ̂

∫ T

0
〈F (GθZ

∞
0 , ωx), ξ(GθZ

∞
0 )〉 dx = T

d

dθ

∣∣∣∣
θ=θ̂

R(GθZ
∞
0 ).
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and this implies that µ21 satisfies the expression as given in the lemma.
The final two eigenvalues are just the continuation of the hyperbolic eigenvalues e±λ(c)T .
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