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ABSTRACT

Mathematical models are playing an important part in the current developments in 

engineering, science and biotechnology. Within this field the most fashionable and 

representative organisms are the ones who are genetically and physiologically 

tractable. Since the fission yeast Schizosaccharomyces pombe plays a role model 

among them and its behaviour has medical, genetic and industrial links (related to 

cancer research, metabolic pathways and beer production), this makes it a 

particularly interesting organism for study.

This dissertation presents the first physiological model ever developed for the yeast 

S. pombe. The model allows for the simulation and prediction of batch and repeated 

batch experiments which are an important engineering tool in terms of optimization 

of industrial processes improving yield in bioreactors by predicting precise values of 

harvest fraction (HF) and dilution cycle times (DCT).

The model has been developed within the generic modelling framework of 

CelCyMUS (Cell Cycle Model University of Surrey). As part of the research being 

carried out CelCyMUS has been up-dated by introducing the new Fortran 95 

features and utilities in order to exploit its powerful new features and to keep the 

generic model in pace with technological software advancements.

The model is a one-dimensional age-based population balance for the fission yeast 

S. pombe. It includes the four typical phases (S, G2, M and Gl) with the G2 phase 

divided into two phases (G2A, G2B) and two checkpoints that govern the movement 

of cells between Gl and S, and G2B and M phases. The transitions (movement of 

cells between phases) are determined by a probability function related to the 

consumption of glucose. The G2B-M transition is also dependent on cell size, but 

since individual growth of cells is related to the consumption of the carbon source 

(in this case glucose), cell size is dependent upon the amount of glucose consumed 

per cell.



The model also includes a phase for cells facing starvation before going into a 

meiotic cycle, with some chance of coming back to the mitotic cycle, and a death 

phase that accounts for cells dying with no chance of recovering at all.

Parameters in the S. pombe model have been gathered from experimental data in 

batch culture reported in literature. Data generated from this specific model have 

been compared with data from experiments (Fotuhi, 2002) in batch and repeated 

batch cultures of S. pombe following the behaviour of population balance, 

consumption of nutrients, and production of metabolites.

The new code was tested by successfully reproducing data from mm-321 hybridoma 

cell line, the first specific model of a cell line developed in CelCyMUS. As a new 

feature a model of mass transfer has been incorporated in the generic framework. 

This mass transfer module accounts for interactions of metabolites (oxygen and 

carbon dioxide) in the gas and liquid phase of bioreactors. The new S. pombe model 

was fitted to the experiments of Creanor (1992) on synchronised cultures where the 

consumption of oxygen was being measured. Such experiments identify two points 

(G2B and Gl) where the rate of oxygen uptake increased in the cycle, doubling the 

consumption at the end of every cycle. With the model fitted to experimental results 

in synchronised cultures of S. pombe the model was then used to simulate 

desynchronised cultures. S. pombe was successfully tested when reproducing 

experimental data generated by Fotuhi (2002) in S.pombe for batch and repeated 

batch bioreactors. The S. pombe model was able to simulate cell number, oxygen 

and glucose consumption. Carbon dioxide and ATP production were predicted by 

the model however there was no experimental data to compare with.

Now that the S. pombe model has been tested against experimental data it will be 

applied in a model-based observer strategy for the online control of bioreactors. This 

research is actually being carried out at University of Surrey and some suggestions 

and recommendations about future experiments are presented in this dissertation.
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GLOSSARY

Anaphase: consist of the segregation of the sister chromatids at the metaphase plate 

and their subsequent movement pole ward along microtubules toward the spindle 

pole.

Ascus: Elongated spore case containing 4 or 8 haploid sexual ascospores of 

ascomycete fungi (which include most yeasts).

Cdc2: is a protein kinase, which phosphorylates key proteins leading to major 

events in mitosis (nuclear envelope breakdown, golgi body disassembly etc). 

Activation of cdc2 protein kinase is dependent on cell size and the completion of S 

phase. To activate the protein kinase involves association with cyclin B (forming 

Mitosis Promoting Factor - MPF) and a change in the phosphorylation state of cdc2.

Cdc25: A protein phosphatase that dephosphorylates Y15. Cdc25 removes the 

inhibitory Y15 phosphorylation, and activates cdc2. Cdc25 removes the inhibitory 

Y15 from the cdc2/cyclinB complex. This then allows the initiation of key events 

leading to mitosis. Mutations in cdc25 cause cells to arrest before mitosis, giving 

elongated phenotypes. Cells continue to grow but cannot enter mitosis as cdc2 is 

never activated. Where DNA damage is detected (by CHKl) cdc25 will be 

phosphorylated, the gene product of Rad24 will recognise this phosphorylated form 

of cdc25 and it will transport the protein phosphatase out of the nucleus. Thus 

mitosis cannot proceed until the DNA damage has been repaired.

Cell death: Cells die (non-accidentally) either when they have completed a fixed 

number of division cycles (around 60; the Hayflick limit) or at some earlier stage 

when programmed to do so, as in digit separation in vertebrate limb morphogenesis. 

Whether this is due to an accumulation of errors or a programmed limit is unclear; 

some transformed cells have undoubtedly escaped the limit.
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Cyclin B: Cyclin B complexes with cdc2 forming MPF (Mitotic Promoting Factor). 

Levels of cyclin fluctuate during the cell cycle. Cyclin is gradually produced 

throughout interphase, and then degraded prior to exit from mitosis. This breakdown 

of cyclin occurs at metaphase and is required indirectly for the segregation of the 

two sister chromatids and the progression of the cell into anaphase. Active Anaphase 

Promoting Complex (APC) is required both for the ubiquitination/degradation of 

cyclin, and the breakdown of cut2 (the protein controlling the cohesion of the two 

chromatids). The actual breakdown of cyclin however is not necessary for separating 

the chromatids. Complete degradation of cyclin is required later for exit from 

mitosis, here MPF must be completely inactivated or the cell cannot leave mitosis.

Cytokinesis: is the final stage of mitosis. The material within the parent cell is 

cleaved equally into two daughter cells through contraction of a ring of actin and 

myosin around the equator of the cell.

Flow cytometry: Slightly imprecise but common term for the use of the 

Fluorescence Activated Cell Sorter (FACS). Cells are labelled with fluorescent dye 

and then passed, in suspending medium, through a narrow dropping nozzle so that 

each cell is in a small droplet. A laser-based detector system is used to excite 

fluorescence, and droplets with positively fluorescent cells are given an electric 

charge. Charged and uncharged droplets are separated as they fall between charged 

plates, and so collect in different tubes. The machine can be used either as an 

analytical tool, counting the number of labelled cells in a population, or to separate 

the cells for subsequent growth of the selected population. The great strength of the 

system is that it looks at large numbers of individual cells, and makes possible the 

separation of populations with, for example, particular surface properties.

Haploid: Describes a nucleus, cell or organism possessing a single set of unpaired 

chromosomes. Gametes are haploid.



Hybridoma: A cell hybrid in which a tumour cell forms one of the original source 

cells. In practice, confined to hybrids between T- or B-lymphocytes and appropriate 

cell lines.

In vitro: In an unnatural position (e.g., outside the body, in the test tube). "In vitro" 

is Latin for "in glass." For example, the testing of a substance, or the 

experimentation in (using) a "dead" cell-free system.

In vivo: Latin for "in living" (e.g., the testing of a new pharmaceutical substance or 

experimentation in (using) a living, whole organism. An in vivo test is one in which 

an experimental substance is injected into an animal such as a rat in order to 

ascertain its effect on the organism.

Iiiterphase: is defined as the stages preceding mitosis in the cell cycle. During 

inteiphase the cell will grow and replicate the genetic information it contains.

Meiosis: A specialized form of nuclear division in which there are two successive 

nuclear divisions (meiosis I and II) without any chromosome replication between 

them. Each division can be divided into 4 phases similar to those of mitosis (pro-, 

meta-, ana- and telophase). Meiosis reduces the starting number of 4n chromosomes 

in the parent cell to n in each of the 4 daughter cells. Each cell receives only one of 

each homologous chromosome pair, with the maternal and paternal chromosomes 

being distributed randomly between the cells. This results in the recombination of 

genes. Meiosis occurs during the formation of gametes in animals, which are thus 

haploid and fertilization gives a diploid egg. In plants meiosis leads to the formation 

of the spore by the sporophyte generation.

Metaphase: When all the chromosomes have formed bipolar attachments and are 

oscillating about an equatorial position (the metaphase plate) metaphase has been

VI



reached. Metaphase is a transient stage, as the cell will progress rapidly into 

anaphase soon after metaphase is reached.

Prophase: is the first stage after commitment to mitosis. The mitotic spindle is 

begimiing to form, but as the nuclear envelope has yet to break down there is no 

contact between the chromosomes and microtubules

Spore: Highly resistant dehydrated form of reproductive cell produced under 

conditions of environmental stress. Usually have very resistant cell walls 

(integument) and low metabolic rate until activated. Bacterial spores may survive 

quite extraordinary extremes of temperature, dehydration or chemical insult. Gives 

rise to a new individual without fusion with another cell.

Telophase: the chromosomes will recondense, and the nuclear envelope will reform 

around the genetic material. The plane of cytokinesis will have been defined, and the 

separation of the parent cell into two identical daughter cells will follow.

Weel: Protein kinase that phosphorylates Y15. Weel suppresses cdc2 activity and 

stops entry into mitosis. Cells with a weel.50 mutation divide at a smaller size than 

the wild type cell. The cells are still viable at this size, indicating that some other 

size threshold checkpoint acts before weel. Mikl (mitotic inhibitory kinase) is 

closely related to weel, and is thought to have some Y15 phosphorylation activity. 

Redundancy in the function of weel and mikl means that to an extent there is an 

overlap of function. Therefore a mutation in either weel or mikl will not be lethal, 

only a mutation of both weel and mik 1 is lethal to the cell, as all Y15 

phosphorylation activity is lost.

From the weel ts mutant phenotype it is possible to deduce that weel acts as a brake 

on mitosis. Mitosis can proceed faster than the cell can complete growth and DNA 

replication, therefore weel is required to slow entry into mitosis and allow these 
other targets to be reached.
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Introduction

CHAPTER 1

INTRODUCTION

Mathematical modelling is a well-established, powerful and reliable option for many 

scientists who work in simulating different sort of industrial and biotechnological 

processes. For decades research has been carried out on the modelling of growth 

kinetics of cells and micro-organisms in bioreactors so that these processes might be 

optimised. More recently the concept that an apparently homogeneous cell culture is 

in fact a mixture of sub-populations of cells has greatly added to the understanding 

of the problems involved in modelling these systems.

The underlying biology responsible for the behaviour of these cultures is the cell 

cycle which will be defined as the sequence of events whereby a living cell (mother 

cell) duplicates its essential components and distributes them at division to a 

daughter cell which is capable of repeating the sequence itself for a number of times 

until it finally dies. It is central to this dissertation that any mathematical model of 

these processes integrates or takes account of current research in this area to produce 

an effective model.

In this chapter mathematical modelling in general, its importance, uses and links will 

be discussed. An introduction to modelling in biological processes will be presented. 

The importance of the cell cycle and its generalities are also included, giving an 

overview of the internal processes that generate the cycle of life in a cell, setting the 

scene for what it will be the main goal of this dissertation: developing a 

mathematical model for the fission yeast Schizosaccharomyces pombe (S. pombe). 

Other main goals and objectives will also be put forward.

1.1 MATHEMATICAL MODELS USES AND LINKS

Mathematical models encapsulate the order in a given natural system, playing a 

fundamental role in science, allowing quantitative and qualitative analysis using
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mathematical tools, and allow workers to relate theory with empirical data; 

furthermore they can be use for various ends:

1. Simulation; when studying a system behaviour by simulating 

experimental conditions in the real world using a model with the 

possibility of simulating beyond what is feasible in the real world, for 

example testing a new design when it would be expensive to run in a 

pilot plant or under experimental conditions i.e. On-line control in 

fermentors can be tested first (Araujo, 1998) by using a model of the 

process to be controlled.

2. Evaluating experimental conditions; checking how various parameters 

and variables of the system influence its behaviour. Running a model in 

scenarios that otherwise would be difficult to be carried out or difficult to 

observe under different experimental conditions or moving beyond the 

boundaries of real life in order to explore new untested experimental 

conditions.

3. Predictions; when giving estimates from real systems behaviours in 

systems that have not yet been tested with a good degree of accuracy. 

Prediction helps to set up changes in the experimental set up avoiding 

undesirable results, cost cutting and to verify assumptions made when 

simulating a system.

Mathematical models have been used in optimisation of processes, where once a 

process has been established and by manipulating parameters in the system 

(simulated by the model) the overall efficiency of the process or of one desired part 

is improved. Industrial applications would be related to optimising yields and 

controlling bioreactors using model based observer (M.B.O.) control systems 

(Araujo, 1998), a field which is still being developed. Mathematical models have 

been used in environmental studies when separating organic compounds in residual 

waters using granular activated carbon beds (Friedrich G., Helfferich, 1996) and in 

the use of permeable reactive barriers for remediating contaminated groundwater
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(Jefferis, Norris, 1998) and many other areas of environmental research. Medicine is 

an area of public interest where mathematical modelling is used in simulating and 

predicting behaviour of cancer (Wegener, Nusslin, 2000) and tumour cells 

populations. Economics, when forecasting tendencies in markets in different 

countries and continents, and many other areas of engineering such as civil 

engineering, aerodynamics (i.e. wings design in airplanes), fluid dynamics, particle 

technology, social behaviour, and physical science in general.

1.2 MATHEMATICAL MODELLING IN BIOLOGICAL PROCESSES

With the explosion in experimental data within biology, there are many attempts to 

develop mathematical models for the description of cellular functions, either overall 

functioning (cell population) or individual cell behaviour. In biotechnology there is 

an especial focus on the cellular metabolism, as this may be exploited for the 

production of compounds that might find application as materials, pharmaceuticals, 

food additives, and so on. Besides featuring very complex networks, with 

interconnecting pathways that consist of hundreds of reactions, the metabolism of a 

cell is also subject to control and regulatory mechanisms. These regulatory 

mechanisms are not completely elucidated and are therefore very difficult to 

quantify. Thus the establishment of fully mechanistic, empirical, probabilistic, and 

detenninistic models to describe cellular behaviour in terms of its metabolism and 

population growth is not completely possible and most models are therefore based 

on significant simplifications.

In this context mathematical models play a crucial role in hypothesis testing, they 

can serve as a guide to choosing amongst different possible regulatory structures for 

a specific cellular process. In traditional studies of cell cultures growth in 

bioreactors, extra cellular metabolites (such as substrates and products) have been 

measured, as well as the biomass concentration and the relationship between these 

metabolites and the behaviour of the cell population has been linked through 

regulatory mechanisms (check points). The models that can be based on these types 

of measurements are structured models that have increased the possibility for 

interpretation and prediction of cell physiology. Besides, the versatility of computer
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programs allow including more features in more structured models of different cells 

cultures.

To understand the behaviour of a cell culture, it is appropriate to look in detail at the 

metabolic processes, physiological changes and regulatory controls in an individual 

cell. There follows an overview of the cell cycle, the activities carried out for the 

cells throughout the different phases of the cycle and the regulatory mechanisms that 

control the transition between them.

1.3 GENERALITIES OF THE CELL CYCLE

The cell cycle can be seen as the sequence of events that makes two nearly identical 

cells from an original mother cell. Within this process it is very important to carry 

out three main tasks, the synthesis of DNA, its replication to transfer a copy of 

genetic information from a mother cell to a new daughter cell and the precise 

partitioning (cytokinesis) giving birth to a new cell. The cell cycle as such is divided 

in four phases, Gl and G2 phases, or ‘gap phases’ due to their timing depends on the 

duration of the S phase where the cell synthesises DNA and M phase prepares to 

give birth to a daughter cell respectively. The cell using checkpoints regulates the 

transition between one phase and another.

One of the approaches to understanding checkpoints is through the dishwasher 

analogy (Alberts et a l, 1994). Cell cycle regulation is like the control dial on a 

dishwasher. The dial turns clockwise from one checkpoint to the next. The phases of 

the cell cycle are like the soak, wash, rinse and dry phases of the dishwasher cycle. 

The dishwasher control has at least one checkpoint at the end of the cycle; to make 

sure that the door is opened and closed before a new cycle starts.

A second form of looking at checkpoints is the one used by those authors who see 

the cell cycle as a sequence of transitions from one (pseudo) steady state to another. 

Cells remain in a stable steady state at every checkpoint of the cell cycle, cells 

progress through these states depending upon chemical signalling. The signals that 

relay information about cellular factors, cell size, DNA damage etc. impinge on the
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parameters of the control system, favouring either stability of the steady state (if the 

answer is ‘stop’) or passing the check point (if the answer is ‘go’), if the conditions 

are given to overcome the steady state. These signals are a manifestation of the 

interaction of the components of the enzymes cyclin -  CDK machinery. As 

CDK/cyclin activities rise and fall, the cell is driven through four phases of the cell 

cycle in order. The phases of the cycle are the stages where a whole population of 

cells carries out the same set of activities in order to achieve a common goal (DNA 

synthesis, cell size etc.) and with control mechanisms (checkpoints) to assure all 

tasks in a phase have been complete before moving to the next phase.

In eukaryotic cells, DNA replication and sister chromatid separation are temporally 

separated into distinct phases of the cell cycle: S phase (for DNA synthesis) and M 

phase (for mitosis). A general description of the checkpoints in the eukaryotic cell 

cycle can be given as follows:

1. Gl/S checkpoint. Before entering the S phase, the cells check that they have 

divided once since the previous round of DNA replication, cells make sure 

that they are large enough (cell size) to guarantee another round of successful 

replication, and that environmental conditions are suitable for (or permissive 

of) mitotic reproduction. There are genes (such as cdc2) which encode 

proteins (p34 protein kinase) and cdcl3 encoding p56 B-type cyclin, which 

move the cells forward to a new phase in the cycle.

2. G2/M checkpoint. Cells check that they have finished replicating their DNA, 

that they have repaired any DNA damage that might has occurred, and that 

they are large enough to divide even though cell size has been previously 

revised in Gl/S. DNA damage can cause cell cycle delay before S-phase, 

during replication and before mitosis. This involves a number of highly 

conserved proteins (kinases) that sense DNA damage and signal to the cell 

cycle machinery. Kinases that were initially discovered in yeast model 

systems have recently been shown to be in charge of regulating the 

production of cyclin dependent kinases and other proteins in charge of
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repairing damages in DNA chains. This illustrates the importance of 

checkpoints for maintaining genome stability (repairing DNA).

3. Metaphase checkpoint. Metaphase is the moment during mitosis when all the 

chromosomes have formed bipolar attachments and are oscillating about an 

equatorial position. This occurs before initiating anaphase (the separation of 

sister chromatid to the poles of the mitotic spindle) the cell checks that all the 

chromosomes are properly aligned with each kinetochore (point where 

microtubules of the spindle apparatus are attach) in place.

Clearly there is a regulatory system of signals that co-ordinate growth, DNA 

synthesis and division. The details of this control system have been widely 

researched in molecular biology through study of the interactions between proteins 

and genes which rule the restrictions imposed at different checkpoints between 
phases.

1.4 MATHEMATICAL MODELS AND THE CELL CYCLE

One current approach used in mathematical modelling is to use a population balance 

model to explain the behaviour of the cells. These models together with sets of 

equations to account for different features of the bioreactor such as flow rates of 

nutrients; air and other variables coming in and out of the bioreactor have proved 

effective in describing the behaviour of micro-organisms and cell cultures.

Studying the cell cycle has become a useful tool to understand and predict not just 

the behaviour of populations of eukaryotic and mammalian cells but also cancer and 

tumour cells. Based on biological observations and cell kinetic data, models of 

radiogenic responses have already been developed. These models predict cell growth 

and cellular as well as cell population responses to irradiation (Wegener, Nusslin, 
2000).

The main principle for this type of model is the function carried out by kinases 

which recently have been shown to regulate the behaviour of cyclin-dependent
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kinases and to control the stability of p-53 (Transcription factor, required for the 

Gl/S checkpoint). In other words they are in charged with repairing the possible 

damage in the DNA during the G2 phase prior to mitosis.

The knowledge of the kinetics of these proteins, have been combined with models 

describing the growth of rapidly proliferating normal cells and those of growth of 

tumours in order to predict the minimum amount of radiation required for killing the 

maximum number of tumour cells.

Another important topic of study is the property eukaryotic cells have of not 

dividing continuously. Under certain environmental conditions they stop cell 

division, leave the cycle, and enter a stable quiescent state (Nurse, 1987). Quiescent 

cells remain viable for extended periods of time and are much more resistant to 

thermal heat shocks than actively cycling cells. For most eukaryotic cells, 

environmental signals cause growth arrest resulting in cells arrested in the G1 phase 

of the cell cycle. These arrested cells enter a quiescent state referred to as Go. A 

notable exception to this is found in the yeast S. pombe where entry to a quiescent 

phase can happen from any phase (facing starvation, chemical blocks etc.). Even 

though the mechanisms involved in the entering and exiting the quiescent phases are 

not clear yet, these findings are already important for clinical oncology in cases 

where tumour cells escape from the effect of chemotherapeutic agents. The escape 

from the effect of these drugs is due to tumour cells entering quiescent states at 

points in the cycle other than G1 phase.

A number of issues have arisen about the uses of modelling cell cycle has in 

engineering, industrial applications and medicine, now an oveiwiew of the different 

experimental approaches that have been used by researches will be presented.

1.5 EXPERIMENTAL APPROACHES TO STUDYING CELL CYCLE

To study the cell cycle is necessary to follow behaviour of a cell at all times in every 

single phase of the cell cycle. This is achieved by means of synchronisation of 

cultures which is obtained by arresting cells in a particular phase by using physical
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means such as centrifugation or chemical blocking using products to inhibit cell 

division such as hydroxiurea. Once cells are ‘trapped’ in a desired phase they are 

released in fresh medium to start cycling again. Such a process is known as 

synchronisation of cells.

Most of the studies carried out in cell cycle of different cells are experiments done in 

batch cultures. A batch culture is a closed system culture of micro-organisms with 

specific nutrient types, temperature, pressure, aeration, and other environmental 

conditions, where only a few generations are allowed to grow, before all nutrients 

are consumed. One of the main objectives of batch reactor engineering is the 

optimization of reactor operation, striving for higher productivity, a shorter reaction 

time, higher product quality, good reproduction of results from batch to batch, etc. 

Once a performance index is defined and some constraints are fixed, involving a 

dynamic model and other physical limitations, a way to determine the best 

operational conditions is then introduced, which results in control actions for 

implementation in an open-loop scheme (mathematical models with no action upon 

controllers in the system) or close-loop in the case of on-line controllers. The 

practical implementation of these strategies involves many challenges that arise 

mainly due to the lack of knowledge of the true behaviour of the process and of the 

cell culture in use. Sometimes an optimal strategy determined in a simulation study 

results in a complete failure when experimentally implemented due to batch 

processes that favour manual operation, which are highly dependent on the abilities 

of a "specialist".

In order to solve the proposed problem, a mathematical model for the process is 

implemented. This is the first and most important challenge. Construction of reliable 

models for bioprocesses is a difficult task due to the complex nature of microbial 

metabolism and the nature of its kinetics. For these processes, the development of 

detailed models based on fundamental principles of the cell cycle of a particular cell, 

its kinetics and metabolic behaviour are of great importance due to the overall effect 

of the cycle in the results of a batch or continuous batch experiment. At the 

University of Surrey a research group has been working on the solution of this 

particular problem and the development of a framework that is able to cope with
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specific modules for different types of micro-organisms and the simulation of batch 

and repeated batch cultures.

1.6 THE RESEARCH GROUP

At the University of Surrey a generic model framework for the study of cell 

populations through out the cell cycle known as Cell Cycle Model, University of 

Surrey (CelCyMUS) has been developed. CelCyMUS was bom 18 years ago, it is a 

model capable of predicting kinetics, physiological state of the cell (inter and extra­

cellular), consumption of nutrients, production of metabolites, population 

distribution of cells in different phases. The generic framework was then used to 

develop a mathematical model for the mm321 hybridoma cell line based on 

experimental data gathered in the lab. The results were successful in predicting the 

behaviour of the mm321 cell line population and its particular features within the 

cycle, such as: the consumption of glutamine and production of antibody to 

paraquat.

The model could be used to control of bioreactors online. CelCyMUS was then used 

in virtual control of batch bioreactors as part of MBO (Model Based Observed) 

control techniques, by simulating a real process with a copy of the program. Once 

again the results achieved were successful (Araujo, 1998) allowing the team to 

control errors and to increase them until the system failed. This part of the 

experiment was done as a pre-test of online control in a real system with 

CelCyMUS.

More recently research has been carried out on a particular kind of cell: the fission 

yeast S. pombe. The reason why this especial type of cell has been chosen relies on 

its similarities with more developed organisms. S. pombe is a eukaryotic cell, which 

divides as mammalian cells do having a way of division similar to the way cells 

from higher organisms divide. It is much easier to handle in the lab, faster growing 

than mammalian cells and cheaper in terms of cost. Furthermore, a large number of 

scientists are working on S. pombe and there is a vast scientific literature.
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Experiments on growing this cell culture in batch reactors using repeated and 

periodical fed batch fermentation have been carried out in other projects. In this 

project a mathematical model for describing the S. pombe has been developed as 

another module in the generic framework of CelCyMUS. Throughout this chapter 

the main features of the cell cycle as a subject have been described as being of huge 

importance and use at all levels of industry, medicine, biology, and genetics. All of 

these points make cell cycle modelling an important subject of study and are the 

main reasons for this research. Next the aims and objectives of the research are 

stated below.

1.7 AIMS AND OBJECTIVES

The aims of this dissertation are:

1) To develop a specific mathematical model for the Schizosaccharomyces pombe 

{S. pombe) yeast cell. The model will be the first ever physiological model of 

S. pombe.

2) To update the generic framework of CelCyMUS and introduce a mass transfer 

module that accounts for exchange of materials such as oxygen and carbon 

dioxide within the cell (internally) and interaction with the medium.

3) To simulate experimental data and predict results for the cell cycle of S. pombe 

in batch and repeated batch bioreactors using the smallest number of parameters 

possible. The model will be able to predict optimum values of haiwest fraction 

(HF) and dilution cycle time (DCT) in order to improve yield in bioreactors.

In order to complete the model, the research presented here has sought to achieve 

some specific objectives:

1. The generic framework CelCyMUS was to be updated with the new Fortran 

95 utilities and features to make it portable as a program more robust and 

more flexible as a model.
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2. To develop a specific mathematical model for the S. pombe cell line, 

defining phases of the S, pombe cycle, transition rules, death rules, rates of 

consumption and production of different metabolites.

5. To link the model to the simulation of batch bioreactors using batch and 

repeated batch experiments carried out on S. pombe cell cultures by Fotuhi 

(2002).

The structure of this dissertation and the general issues presented in each chapter is 

as follows:

A literature survey is presented in Chapter 2 on yeast S. pombe models particularly 

those which describes the population balances in a similar fashion to the one being 

used in CelCyMUS. Genetic models will be mentioned since they have also been 

developed to predict and to simulate the behaviour of S. pombe.

Chapter 3 describes the core theory of CelCyMUS as a generic framework that 

supports a new module for S. pombe. The numerical methods used to solve the 

model are also described here explaining why the technique was chosen. Then 

transforming the theory into code will be described. Finally the specific module for 

S. pombe, to be installed into CelCyMUS is outlined presenting the main features of 

this model and the assumptions that have been considered within it. A mass transfer 

module to account for the exchange of oxygen and CO2 , is introduced as a new 

feature for CelCyMUS.

Chapter 4 shows the results achieved by the new code based on experimental data 

developed for batch bioreactor cultures (Fotuhi, 2002) for S. pombe and intioduces 

the main features of the new module for the S. pombe yeast indicating the 

parameters chosen for it. Chapter 4 also describes the research carried out in order to 

simulate the behaviour of repeated batch cultures based in Fotuhi’s experiments. The 

S. pombe model, involves experimental work to determine fix parameters within the 

model such as glucose and oxygen consumption and research on data gathered from 

other sources on metabolite production in this particular case.

11
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Finally Chapter 5 includes a discussion of the information presented in the 

dissertation report concluding on the main tasks completed throughout. Chapter 6 

presents recommendations and future work, commenting on the analysis of the goals 

that have been achieved and viable applications of the model in real systems, such as 

control on line M.B.O. (Model Based Observed) of experimental processes and 

optimisation of the existing model for S, pombe. Recommendations on introducing 

new features with regards to metabolites in intra-cellular pools when cells are facing 

low levels of carbon source and possible applications of the model in study of 

periodic feeding are also presented.

12
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CHAPTER 2 

LITERATURE SURVEY

2.1 INTRODUCTION

The most relevant research on S. pombe will be reviewed, a description of the 

importance of this particular cell will be given and the different approaches taken by 

different authors to look at S. pombe as an easily manageable micro-organism will 

be presented. Concentrating on the literature on models is a priority here since one 

will be developed, especially for models of biological processes in batch and 

repeated batch cell culture. The models are:

a) those based on metabolic pathways and genetic control and,

b) those that approach the cell cycle as a population balance following probabilistic 

transitions despite the fact that they are not specific S. pombe models.

2.2 MATHEMATICAL MODELLING IN CELL CULTURES

Model equations can be obtained in several ways: using theoretical concepts, 

through direct experimental observation or by using the equations of a system 

believed to be analogous to the one under analysis. In general, considerable effort is 

required to establish useful models. Modelling can thus only be justified if the 

models are less complicated than the processes they represent and lead to significant 

advantages. Process models have been widely used in the chemical industry, from 

the design phase to plant maintenance. However, these models have limited use as 

they often lack robustness due to the processes not being fully understood.

This review is focused on mathematical models that describe the cellular 

metabolism, as these models play a central role in the rapid developing field of 

metabolic engineering (Bailey 1991, Stephanopoulos 1999). In this discussion, the

1 3



Literature Survey

models are grouped according to their structure: firstly, stoichiometric models, 

which are based on the time invariant characteristics of metabolic networks; and 

secondly, kinetic models, which are usually based on both stoichiometry and 

enzyme or microbial kinetics.

2.2.1 STOICHIOMETRIC MODELS

Metabolic flux analysis (MFA) has been widely used for the quantification of the 

intracellular fluxes in the central metabolism of bacterial, yeast, filamentous fungi 

and animal cells. In MFA, mass balances over all the intracellular metabolites are 

used to calculate the fluxes through the different branches of the network. Hereby it 

is possible to get an understanding of the metabolism under a particular condition. 

The fluxes can be calculated by combining measurements of a few fluxes either with 

linear algebra or linear optimisation (Varma and Palsson, 1994). More recently, the 

use of labelled substrates combined with the measurement of the labelling state of 

intracellular metabolites, either by NMR (Marx, De Graaf, Wiechert, 1996) or by 

gas chromatography/mass spectrometry (GC-MS) (Christensen and J. Nielsen, 1999) 

has been used to estimate the fluxes. When the material balances used in traditional 

MFA are combined with balances of the labelling pattern of the metabolites, the 

models become non-linear (Wiechert, De Graaf, 1997, Christensen and J. Nielsen 

1999). The additional information supplied by measurements of the labelling pattern 

of the metabolites do, however, allow for a more reliable estimation of the fluxes, as 

well as the analysis of the pathway structures and possible reversibility. These new 

features make it possible to speculate about some key points in cell metabolism, 

such as pathway identification and compartmentation of enzymes and metabolites, 

which lead to the use of the term 'metabolic network analysis' (MNA) (Christensen 

and J. Nielsen, 1999).

Besides being applied to the investigation of cells under different environmental 

conditions and for studying different mutants of a particular cell, these 

stoichiometric models have also been applied with the aim of predicting the 

genotype-phenotype relationship, in order to fill in the gap that exists between DNA 

sequence data and functional information. Schilling et al. 1999, have constructed a
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stoichiometric model describing all known reactions in Escherichia coli, and have 

analysed the phenotypes of different deletion mutants, using linear optimisation. The 

predictions made by using this approach were in agreement with 60 of the 66 

mutants examined. Furthermore, it was proposed that by identifying a proper set of 

vectors of the stoichiometric matrix or by determining the elementary flux modes by 

convex analysis, it is possible to assess all the capabilities of a metabolic genotype 

(Schuster, T. Dankekar, 1999).

Stoichiometric models are clearly very powerful, but their main drawback is the 

limited predictive power, which is due to the lack of regulatory information in the 

model formulation.

2.2.2 KINETIC MODELS

When detailed information is available about the kinetics of specific cellular 

processes (e.g. enzyme-catalysed reactions, protein-protein interactions, or protein- 

DNA binding) it is possible to describe the dynamics of these processes by 

combining kinetics with the known stoichiometry of metabolic pathways. Rizzi et 

ah (1997) have applied this methodology to model glycolysis in Saccharomyces 

cerevisiae. The model includes reactions of the Embden-Meyerhof-Pamas (EMP) 

pathway, tricarboxylic acid (TCA) cycle, glyoxylate cycle, and respiratory chain (22 

material balances around metabolites and 23 rate equations for enzymes have been 

included) and has been successfully applied to predict the levels of intracellular and 

extracellular metabolites after a glucose pulse in a continuous culture of the 

S. cerevisiae. The model has only been applied to a 120 s timescale, however, and 

phenomena such as enzyme synthesis and degradation — which would be important 

in larger timescales — have not been included. Besides this, regulation has only 

been included at the level of individual enzymes and all the kinetic parameters for 

enzymatic activities are taken from in vitro experiments, which probably do not 

reflect the in vivo situation. Vaseghi et ah (1999) have applied the same strategy to 

investigate the pentose phosphate (PP) pathway in S. cerevisiae. The concentrations 

of some intracellular metabolites, such as glucose-6-phosphate and 6- 

phosphogluconate, as well as of the co-enzyme NADPH predicted by the model
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were in agreement with experimental results. By using the model, some kinetic rate 

equations and parameters were identified — as they could not be found directly in 

the literature — and it was suggested that the split ratio between the PP and the EMP 

pathways is related to the intracellular concentration of MgATP^'.

Kinetic modelling has also been applied to the investigation of the penicillin 

biosynthetic pathway in Pénicillium chrysogenum (Pissara, Nielsen, 1996). The 

model was used for calculating the fluxes through this pathway (enzyme kinetics for 

10 reactions were included), as well as the concentrations of the metabolites 

involved, which were in agreement with experimental results. In these studies 

(Pissara, Nielsen 1996), the models have been applied to analysis of the flux control 

in the pathway, which demonstrates the use of kinetic models in the field of 

metabolic engineering. Van Riel et a l (1998) have established a kinetic model for 

the central nitrogen metabolism in S. cerevisiae, including variables that account for 

regulatory aspects. These variables represent the concentration of regulators and 

may indicate a way — though non-mechanistic means — of accounting for the 

control aspects of metabolism.

Another way of accounting for the regulatory aspects of cell metabolism is by 

applying cybernetic principles (Varner and D. Ramkrishna, 1999). In this case, 

cybernetic variables are introduced into a kinetic model with the aim of substituting 

the unknown mechanistic details of the cell regulatory architecture by an objective 

function by supposing that the metabolism of a cell operates with a specific overall 

goal, such as the optimisation of growth. This approach has been used to predict the 

increase in flux towards threonine formation in Corynebacterium lactofermentum, as 

a consequence of genetic modifications (Varner and D. Ramkrishna, 1999). 

Cybernetic models will be explained later in this chapter. A further way of including 

regulatory aspects in a mathematical model is the approach presented by 

Hatzimanikatis et ah (Hatzimanikatis, Floudas, 1996), which formulates the model 

as a 'mixed integer linear programming' (MIL?) optimisation problem. In this case, 

the presence or absence of different possible regulatory loops is represented by 

discrete variables. This approach has been applied to the investigation of genetic 

alterations in recombinant high-ethanol-producing E. coli (Hatzimanikatis, M. 

Emmerling, 1998). By using a log- linear approximation for a non-linear model, the
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authors verified a qualitative agreement between the predictions of the model and 

experimental results. When mechanistic details are missing, neural networks 

(Hellinga, Luyben, 1997) or fuzzy logic-based models (Lee, Yen, Yang, 1999) can 

be used with the aim of simulating metabolic behaviour; however, the amount of 

experimental data required to generate these models is usually very high and also 

less insight into the underlying mechanisms is gained. To illustrate the difficulty in 

mechanistically modelling particular aspects of metabolism, Wong et al. (P. Wong, 

S. Gladney, 1997) presented a model for aspects such as catabolite repression and 

inducer exclusion that required several assumptions to be made. Thus, even in this 

very well studied system there are still some mechanistic aspects that have not been 

fully elucidated.

If information on all the enzymatic reactions (both equations and parameters) of the 

whole metabolism of an organism were available, it would in principle be possible 

to apply detailed modelling to interpret experimental results and predict the dynamic 

behaviour of cells when subjected to a determined shift in the environmental 

conditions and the consequences of specific genetic changes. The limitation of this 

approach, however, is the lack of information on general regulatory aspects, as well 

as the fact that normally only in vitro parameters are available for the enzyme 

kinetics. In vivo perturbation experiments could be a way of fine-tuning these 

parameters, as illustrated by Rizzi et al. 1997.

Mathematical modelling of regulatory phenomena, such as heat-shock regulation 

(Peper, C.A. Grimbergen, 1998), synergistic eukaryotic gene activation (Wang, 

Ellwood, 1999), regulation of the Gl/S transition of eukaryotic cells 

(Hatzimanikatis, Lee and Bailey, 1999), signal transduction pathways (Bhalla and R. 

Iyengar, 1999), and gene expression in a complex (Agger and Nielsen, 1999), can 

serve as a tool -— which should be used together with experimental investigation — 

in clarifying the molecular mechanisms behind these phenomena. This may lead to 

combining modelling of the metabolism with modelling of signal transduction 

pathways.

With the aim of trying to interpret the genotype-phenotype relationship, 

Hatzimanikatis et al. (1999) propose the dynamic analysis of the protein levels of an

1 7



Literature Survey

organism instead of using a set of metabolic fluxes as the output of a non-dynamic 

model. As it is not possible to correlate mRNA and protein levels directly (Franza 

and R. Aebersold, 1999), the sole information on gene expression generated by 

hybridisation on a solid surface (such as from DNA microarrays) cannot account for 

the functional assignment of the genome sequence of an organism. In order to 

illustrate the need for combining mRNA and protein levels, Hatzimanikatis and Lee 

(Hatzimanikatis and K.H. Lee, 1999) applied a continuous dynamic model to 

describe circadian rhythmicity that agrees with experimental observations. In spite 

of being incipient as a result of limitations that still exist in proteome analysis, this 

kind of functional modelling is promising and focuses on the protein which is the 

final product of the gene.

2.2.3 CYBERNETIC MODELS

Cybernetic modelling involves the identification of:

a) The kinetics of enzyme syntheses and growth processes as a function of 

relevant concentrations and cybernetic variables, and

b) An optimality criterion that assigns optimal values for the cybernetic 

variables at each instant. The cybernetic variables represent the cellular 

regulatory processes of induction or repression and inhibition or activation, 

respectively.

These models have described the growth of Escherichia coli on mixtures of glucose 

and organic acids such as pyruvate, fumarate, and succinate showing both diauxic 

and simultaneous uptake. Batch fermentation kinetics of Lactobacillus bulgaricus 

were examined in detail using cybernetic modelling methodology. The original 

cybernetic framework was expanded by Straight and Ramkrishna so that it can also 

offer solutions to problems associated with predicting and understanding microbial 

growth limited by complementary substrates, by expanding kinetic models with 

simple representation of established regulatory processes. Cybernetic modelling can 

also be applied to antibiotic production, activated sludge and wastewater treatment 

systems.
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2.3 ALTERNATIVE APPROACHES FOR MODELLING CELL CULTURES

Models may be used to estimate process information on-line and continuously 

(Stephanopoulos et a l, 1999; Bastin and Dochain, 1990; Montague et a l, 1992). 

Data-based and simple qualitative models, such as artificial neural network (ANN) 

models and fuzzy models, have been receiving considerable attention in the last 

decade. Although introduction of such models has increased the possibilities to 

describe biological processes, the models developed are simple descriptions and 

cannot be classified according to the method proposed by Fredrickson and Tsuchiya 

(Fredrickson and Tsuchiya, 1966).

ANNs are computational instruments that try to emulate the topology of the human 

brain, on an extremely simplified scale (Gomm et a l, 1995; Zorzetto, 1995; 

Montague, 1992). They are also referred to as connectionist models because they are 

composed of a set of interconnected process units, called neurones or nodes 

(Zorzetto, 1995). ANNs have the potential to identify and learn correlative patterns 

between sets of input data and corresponding target values; the latter are usually key 

process variables, which are difficult to measure (Montague and Morris, 1994). 

Although a reasonable amount of representative data is required, ANNs offer a 

‘black-box’ approach, being able to model relationships in a process with no 

knowledge of its mechanism. ANNs are thus very attractive when dealing with 

biological processes (Lant et a l, 1990; Bulsari and Saxén, 1994) as these are often 

not well understood and normally result in a large amount of reliable process data, 

albeit mostly off-line data.

Further modelling alternatives include fuzzy logic and neurofuzzy models. Fuzzy 

logic attempts to represent reality by introducing the idea of gradations of truth, or 

falseness (Postlethwaite, 1996); it thus ‘humanises’ conventional logic (Lübbert and 

Simutis, 1994). Fuzzy models are useful for non-linear processes (Sanders, 1998), 

where human experience outbalances mathematical modelling (Rhinehart and 

Murugan, 1997). Neurofuzzy models offer the precision and learning capability of 

ANNs, whilst being easy to understand, like fuzzy models (Lübbert and Simutis, 

1994). Although widely used in fields such as robotics and financial markets.

1 9



Literature Survey

application of these models to biological systems is yet scarce (Frank and Koppen- 

Seliger, 1997).

Combination of ANNs and fuzzy principles with poor process models provides an 

intermediate solution to modelling. These combined models are often referred to as 

hybrid or ‘grey-box’ models and have been successfully applied to biological 

systems (Gehlen et a l, 1992; Wu and Joseph, 1992; Zorzetto, 1995; Fu and Barford, 

1996; Shimizu, 1996; Groep, 1997).

2.4 POPULATION BALANCES IN MODELLING BIOLOGICAL 

PROCESSES

By viewing a microbial culture as a homogeneous mixture of identical cells, 

experimental results and mathematical models representative of average cell 

behaviour are readily scaled to the cell population level. However, individual cells 

exhibit heterogeneity as a result of small differences in their cellular metabolism and 

cell cycle dynamics. Repeated movement through the cell cycle yields a 

heterogeneous population in which individual cells differ according to their size and 

intracellular state. Unless a synchronous population is established by exploiting 

natural mechanisms (Zamamiri, Birol and Hjortso, 2001) or through artificial means 

(B. Futcher, 1999), the average cell behaviour is only partly representative of the 

entire population. This motivates the development of experimental and modelling 

techniques that account for heterogeneities present at the single-cell level.

Cell heterogeneities can have a significant impact on microbial culture dynamics and 

the production of key metabolites and several examples are given below.

Yeasts can exhibit glycolytic oscillations at the single-cell level owing to the 

autocatalytic activity of the enzyme phosphofructokinase. In the absence of a 

synchronization mechanism, random variations in energy metabolism would cause 

individual cells to oscillate out of phase. Instead, secreted acetaldehyde causes 

dynamic synchronization of the individual cells and results in sustained oscillations 

at the cell population level (S. Dano, P. Sorensen, 1999).
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Continuous yeast cultures can exhibit oscillations of a much longer period, which 

are related to the asymmetric nature of the budding cell cycle. Normally random 

variations in cellular metabolism and cell-cycle regulation produce a heterogeneous 

population in which individual cells are dispersed throughout the cell cycle. Under 

aerobic and glucose-limited growth environments, a synchronization mechanism yet 

to be fully understood causes cell subpopulations to move simultaneously through 

the cell cycle and leads to sustained oscillations in extracellular measurements 

(Birol, Zamamiri and Hjortso, 2000).

Secretion rates of microbial products can be affected by the cell-cycle position of 

individual cells and therefore on the degree of heterogeneity. Synchronous cultures 

of the budding yeast Saccharomyces cerevisiae have been used to investigate the 

secretion rates of various proteins as a function of the cell-cycle phase. Studies have 

shown that significant protein secretion rates are obtained only as the synchronized 

cells approach mitosis (Frykman and Srienc, 2001).

To develop fundamental understanding of cell heterogeneities and their effects on 

microbial population dynamics, biochemical analysis methods, which provide 

information at the single-cell level, are required. Flow cytometry has emerged as a 

very powerful method for measuring the distribution of cellular properties across 

large cell populations. By combining cell staining techniques and analysis of light 

scattering and fluorescence signals, individual cells can be differentiated with 

respect to their size, protein content, DNA content and other intracellular properties 

(Rieseberg, Kaspar, 2001). Recently, flow cytometry has been combined with flow 

injection techniques to produce automated systems that provide on-line 

measurements of cell distribution properties (Abu-Absi, A. Zamamiri, 2003). When 

combined with suitable cell population models, on-line flow cytometry will enable 

the development of computer-based systems that provide real-time monitoring and 

control of cellular distributions in microbial fermentations.

Two general approaches are discussed: population balance equation (PBE) models, 

in which the intracellular state is characterized by a single variable such as cell age 

or mass, and cell ensemble models constructed from single-cell models that have 

more detailed descriptions of cellular metabolism and/or cell-cycle progression.
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Applications of these cell population models for predicting culture dynamics and 

designing feedback control strategies are described.

2.4.1 Different Types of Population Balance Models

Population balance models range from simple empirical descriptions of growth 

curves to models that include numerous, and sometimes complex, partial differential 

equations. The latter are potentially capable of accounting for behaviour under a 

much wider variety of conditions (Fredrickson et a l, 1967), but require detailed 

knowledge of the process. Fredrickson and Tsuchiya were the first to categorise 

models according to the detail included in the system representation. These workers 

classified models into four distinct categories: unstructured, structured, unsegregated 

and segregated (Fredrickson and Tsuchiya, 1963). Unstructured models describe the 

biophase only in terms of its quantity and not of its quality, whilst structured models 

require some qualitative description of the biophase (Harder and Roels, 1982). 

Unsegregated models consider the population of cells or micro-organisms to be a 

single, uniform, lumped biophase (Fredrickson et a l, 1970; Ramkrishna, 1979); 

these models are also called continuum or distributed models (Harder and Roels, 

1982). Segregated models consider the existence of discrete, heterogeneous cells 

(Bailey and Ollis, 1986). Both unstructured and structured models may assume a 

segregated or unsegregated viewpoint. It is obvious that the ‘real’ situation is a 

structured, segregated system.

The simplest models are unstructured, distributed models (Harder and Roels, 1982) 

and are usually empirical descriptions of growth curves. A growth curve for a cell 

population in a conventional batch bioreactor usually exhibits four distinct periods 

(Bailey and Ollis, 1986):

• a lag period, during which very little or no growth occurs;

• an exponential period, during which rapid growth occurs, with the number of 

cells increasing exponentially with time;

• a stationary period, during which no growth occurs; and

• a decline period, during which the population dies.
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The simplest model is known as Malthus’ Law and describes the exponential period 

only (Bailey and Ollis, 1986). This law assumes that the rate of increase of biomass 

is directly proportional to the current biomass. Although simple, it leads to the 

definition of the specific growth rate that is of paramount importance in the 

description of biological processes. Modifications to Malthus’ Law have been 

proposed in order to incorporate other periods of the batch growth curve (Velhurst, 

1838; Pearl, 1924, Volterra, 1959). Other workers suggested that the specific growth 

rate could be related to the concentration of a particular substrate in the growth 

medium (McKendrick and Pai, 1910; Monod, 1942; Monod, 1949). Monod adopted 

this approach to propose an empirical description of exponential growth in a 

fermentation process (Monod, 1942). This model is referred to as the Monod 

Equation and has been applied to the growth kinetics of many biological systems. 

Several modifications to the Monod Equation have been introduced to account for 

further features, e.g., the effect upon specific growth rate of cell concentration 

(Contois, 1959), substrate inhibition (Andrews, 1968; Aiba et a l, 1968) and multiple 

growth limiting substrates (Megee et a l, 1972; Ryder and Sinclair, 1972).

Unstructured, distributed models include two limiting assumptions: an ‘average cell’ 

approximation and an average biophase state approximation. As a result, it has been 

suggested that the use of these models should be restricted to situation of balanced 

growth situation (Bailey and Ollis, 1986). This is a growth state in which every 

extensive property of the growing system changes by the same factor (Campbell, 

1957). The most successful application of these models has been observed in 

chemostats (Monod, 1950; Herbert et a l, 1956; Powell, 1958); under steady state 

conditions, balanced growth seems as a viable option (Harder and Roels, 1982). The 

major advantage of unstructured, distributed models is that they generally give rise 

to relatively simple, linear differential equations, which can either be solved 

analytically or by simple numerical techniques (Faraday, 1994).

Structured models can generally be divided into two types (Harder and Roels, 1982): 

those, which simply consider the primary metabolism and those that attempt to 

model the internal biochemistry in some detail. The former type can still be 

sub-divided into compartmental and cybernetic models. Compartmental models
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define a number of internal pools or compartments (Williams, 1967; Harder and 

Roels, 1982). Cybernetic models assume that through ‘natural selection’ microbes 

have developed the ability to control their regulatory processes and, as a result, they 

are able to optimise their growth patterns (Ramkrishna, 1982; Ramkrishna et a l, 

1987). Structured models, which describe the internal biochemistry, are less 

common than compartmental or cybernetic models due to the large number of 

equations and parameters, which may have to be considered (Harder and Roels, 

1982).

Segregated models consider cells as individual and heterogeneous entities (Bailey 

and Ollis, 1986). As a result, segregation enables uncoupling reproduction from 

growth, i.e., whereas unsegregated models consider the biophase as a lump, which 

‘grows’, segregated models consider that the biophase changes due not only to cells 

growing, but also to cells reproducing. Thus these models are, more complicated 

than unsegregated models and require the numerical solution of more complex 

differential equations involving quite computationally intensive methods 

(Fredrickson et a l, 1967; Ramkrishna, 1979; Faraday, 1994).

Reproduction may be described either deterministically or stochastically. The 

deterministic approach considers cell division to be an explicit function of the state 

of the system, only independent of time, whereas the stochastic approach considers 

cell division to be a partly random process (Faraday, 1994).

2.4.2 Specific Population Balances in Microbial Growth

For the purposes of this dissertation modelling in microbial cell population will be 

restricted to those models that describe cell populations as a set of subpopulations in 

different phases. Cells are distributed into several discrete cell populations due to 

the transitions that make a cell change from one phase to another. This has caught 

the attention of industrial biotechnologists and mathematical modellers who agree 

that a population balance model can be linked with a kinetic model for cell reactions 

and a model for the characteristics of the bioreactor in use which together constitute 

a good combination for a cell cycle framework model.
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Initially, the models of growth of microbial populations were of the non-segregated 

or continuum type (Friedrickson, 1970). Such models were based on the assumption 

that cells were identical and that the septation process was random. Nowadays it has 

been established that these processes depend on the physiological state of the cell 

and models must account not just for the segregated nature of the cell population but 

also for the individual state of the cell. Since properties such as cell size, 

consumption of nutrients etc. influence cell growth and division, the state of 

individual cells can be specified by an abstract collection of state properties, the 

physiological state vector (Friedrickson, 1971; Kirkby and Faraday, 1988). The 

population balance equations are in fact a number balances on individual phases of a 

population, which follow cell division, death and the continuous changes in 

physiological growth processes.

Fredrickson (1967) proposed one of the first equations formulated: 

ôn(X,
a —  + Vx.[X(x)n(x,t)] = 2 |r(x)P(x,x')n(x',t)dx' -  r(x)n(x,t) 2.1

Here, X(x) is the rate of change of cellular properties, F(x) is the time specific 

division rate function, and P(x,x ) is the partitioning function, which specifies the 

probability that a mother cell with state vector x' gives birth to a daughter cell with 

state vector x.

This equation accounts for the material balance for a well-mixed batch bioreactor, 

cells reproducing by binary division, no cell death occurs with environmental 

conditions of the cell culture such as temperature, pH value, and nutrient 

concentration assumed to be constant.

Fredrickson (1996), has used this type of population balance with different 

approaches, such as the successive generations approach trying an age structured 

model where:
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(^_t).kï2: 2.2
at aa

With boundary condition:
CO

iik(0,t) = 2 j*r(a)iik_i(a,t)da 2.3

0

are the equations for an age structured population balance in a well-mixed 

bioreactor. Here nk(a,t) is the number density function of the /cth generation, so that 

n(a,t)da is the number of cells which have age between a and a+da, r(a ) is the 

conditional probability density function which specifies the rate of cell division. The 

boundary condition expresses the physical meaning that new-born cells have age 

zero. The equations are solved by converting them into integral equations following 

the method of characteristics (Ramkrishna, 1979) and then solved numerically using 

the method of successive approximation (Guenther and Lee, 1988).

Following exactly the same pattern (structured model) for mass and growth rate, 

Fredrickson put together a model that can compute the propagation of the age 

distributions of individual generations and of the entire microbial culture. The cell 

division function r(a), which depends on cell age, is the only factor, which controls

the rate of dispersion of a synchronised culture. r(a) can be calculated using the

probability density function of the generation time distribution (Eakman et al., 

1966):

r(a)= 2.4

-  j*g(â)dà1- Jg(à)dà 

0

Where g(a) is the probability density function which takes g(a)da to be the 

probability of a cell to divide aged between a and a+da.

Mass structured cell population balance model in an environment of changing 

substrate concentration has also been developed (Mantzaris, Liou, Friedrich, 1998).
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Generally the main problem with population balance models is that some of them 

are extremely difficult to be solved. Some others are very time consuming such as 

the Monte-Carlo method used by several authors (Baron, Krabben, 1997) to describe 

development of populations. This Monte-Carlo algorithm is called a dlscrete-event 

simulation algorithm because it keeps track of the timing of individual transition 

events by monitoring the state of the overall population instead of directly tracking 

the growing of individual cells. To carry out such simulations is need to be 

determined the laws that govern the distributions for the different arrival times and 

of the variables which identify the transition event and the cell undergoing the 

transition.

These distributions depend on the assumptions embedded in the population balance 

model and they can be derived from the same arguments used to derive the original 

partial integro-differential equations (Equation 2.1). The different types of modelling 

approaches in growing of cell cultures have been explained. Particular emphasis has 

been given to describing cell population balance models since this dissertation 

presents one. There follows an introduction to the main process that influence of all 

cell cultures behaviour is presented; the cell cycle.

2.5 INTRODUCTION TO THE CELL CYCLE

The fundamental process underlying all biological growth and reproduction in 

eukaryotic cells is the cell division cycle, which is the periodic repetition of three 

main events: mitosis and cytokinesis DNA synthesis. These events transform a 

single cell into two daughter cells. All of this cycle is ‘controlled’ by a complex and 

effective genetic mechanism that orchestrates the fluctuation of cyclin-dependent 

protein kinases.

In most eukaryotic cells this co-ordination of events is carried out at three 

checkpoints. A checkpoint is a stage of the cell cycle where progress is halted until 

certain signals indicate that conditions are suitable to continue through the cycle. A 

typical example is at the end of the G1-phase (Forsburg and Nurse, 1991) where 

cells evaluate their external environmental conditions (for growth factors, nutritional
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status etc.) and their internal state (cell size) before going into replication of DNA (S 

phase).

G2-phase cells make sure that the synthesis and repair of DNA is completed and that 

cells are large enough to divide. At metaphase they ensure that all chromosomes are 

aligned in the right position before the order is given to segregate sister chromatids 

to opposite poles of the mitotic spindle.

Given the information gathered on the molecular details on these control systems, it 

is possible to translate the biochemical mechanisms into systems of non-differential 

equations (Ramkrishna, Varner, 1999). In this approach, a checkpoint is interpreted 

as a ‘stable steady state solution’ of the equations that best described the system. 

These steady states are established by particular conditions (such as consumption of 

nutrients, cell size, DNA replication etc.). These checkpoints have been widely 

discussed by many authors from different point of views, (genetic, probabilistic, 

deterministic etc.) the most important approaches to them will be covered together 

with an introduction to the approach taken in this work for a particular micro­

organism: S. pombe.

2.6 S, pombe

The yeast, S. pombe is a simple single fungal eukaryote with a DNA content only 

four to five times greater than that of Escherichia coli (Nurse, 1992). S. pombe is 

becoming increasingly popular as a model organism for molecular genetics studies. 

Pombe means "beer" in Swahili. It was originally isolated from the East African 

millet beer known as pombe. It probably diverged from the budding yeast 

Saccharomices cerevisiae 1000 million years ago (Sipiczki, 1989).

The strains used in the laboratory today are derived from a Swiss isolate called 

Schizosaccharomices liquifaciens Oswalder now called S. pombe.

S. pombe was developed as a genetically tractable organism in the early 1950s by 

Urs Leupold (Leupold, 1989). He isolated a homothallic strain ĥ ® (so called because
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90% of the cells could form spores) and two heterothalic strains of opposite mating 

types, h^ and h", which were derived from the ĥ ® strain. It is from these original 

isolates that all present day S. pombe strains used for genetic analysis are derived.

S. pombe cells contain three chromosomes that condense during mitosis, and can be 

distinguished by light microscopy. The nuclear envelope remains intact throughout 

mitosis (closed mitosis) unlike many other eukaryotes where the nuclear envelope 

fragments (open mitosis). S. pombe is an haploid cell (only one copy of each 

chromosomes), they are rodlike and are 7-14pm in length and 3-4pm in diameter.

The haploid cells will divide asexually through mitosis. This involves growth by 

elongation at the cell tips, usually called NETO (new end takes off) followed by 

nuclear division and septa formation and cytokinesis (binary fission). The S. pombe 

yeast is an ideal organism for the study of the cell cycle because it grows rapidly on 

simple media, each haploid cycle takes around 3 hours. In rich medium they grow as 

a rod-shaped cell of constant diameter, which divides by septation and medial fission 

(Nurse, 1992). When starved, cells enter a stationary phase either from G1 or G2 

phases depending on which nutrient becomes limiting. Cells starved of nitrogen 

arrest predominantly in G1 and if cells of both mating types are present they 

conjugate, forming a diploid zygote that undergoes meiosis and sporulates to 

generate four haploid spores contained within an ascus. S. pombe is normally 

haploid but can be induced to undergo a diploid mitotic cycle if cells are re-fed with 

nitrogen after conjugation but before meiosis has been initiated. Yeast cells can also 

exit the cycle at any phase to enter a quiescent phase where they become resistant to 

thermal heat shocks (Nurse, 1993).

2.6.1 Cell Cycle Control in S, pombe

In S. pombe as in most of the eukaryotic cells there are three main events to be 

controlled within the cell cycle (Novak, 1999) as follows:

1) Gl/S checkpoint

2) G2/M checkpoint
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3) Metaphase checkpoint.

The presence of these checkpoint controllers within the cell and their mechanisms 

has been studied in S. pombe through three main sources of information about the 

cell cycle control in fission yeast: 1) the kinetics based on consumption of nutrients 

through out the cycle or the production of metabolites such as carbon dioxide (CO2), 

oxygen (O2), etc. 2) The genetics (Novak, 1996) because S. pombe is an easily 

tractable organism (Mitchinson, Tyson and Novak, 1998) and 3) an indirect method 

by using population balances with experimental parameters linking genetics and 

kinetics (Friedricson, 1996).

2.7 MODELLING APPROACHES TO pombe^s CELL CYCLE

The majority of the models created to describe the S. pombe cell cycle rely heavily 

on the kinetics of the genetics controllers and the interactions of proteins and genes 

described before. There are a few authors (Friedrickson, 1996; Kirkby and Faraday, 

2001) who worked with population balances that could be used (as will be 

explained) in building a model for S. pombe, although they were written for different 

kinds of micro-organism.

2.7.1 The Kinetic Approach in S, pombe

Observation of the production of metabolites or consumption of nutrients throughout 

the cell cycle in synchronised cultures was one of the first techniques used to look 

for specific patterns that would lead to information about the existence of internal 

controls in or between phases of the fission yeast cycle.

CO2 evolution was measured in synchronous cultures of S. pombe and a periodic 

change in the rate of evolution once per cycle was found, (Creanor, 1978). When the 

DNA division cycle was blocked with chemical inhibitors it was found that periodic 

changes continued for one to two cycle times after the blocks. These findings were 

one of the earliest unequivocal demonstrations that periodic cell cycle events can 

continue in growing eukaryotic cells after a block to DNA synthesis and division.

3 0



Literature Survey

Novak and Tyson, (1988) continued and extended the research by Creanor following 

CO2 production by manometry in synchronous and asynchronous cultures of 

S, pombe prepared by élutriation from the same initial culture. The rate of 

production follows a linear pattern in synchronous cultures with a rate change per 

cycle at the time of cell division. The association between the rate of change and the 

time of division is maintained during growth speeded up in rich medium and slowed 

down in poor medium or at lower temperature. The association is also maintained 

after an increase in temperature. Results with wee mutants {S. pombe mutants with 

small cell size) suggest that the association is with the S phase rather than division 

itself. The rate of CO2 production is approximately proportional to cell size (protein 

content) in asynchronous cultures.

When synchronous cultures of the temperature-sensitive mutants cdc 2.33 and 

wee 1.6 are brought up to the restrictive temperature (the temperature at which cells 

stop dividing), the DNA division is blocked. The oscillatory pattern of CO2 

production however continues for one or two cycles until the acceleration (change of 

rate of CO2 production) reaches a constant value, after which the oscillations are 

undetectable.

These studies were a base to determine whether or not the transition (movement of 

cells between phases) was promoted by cell size due to nutrients consumption. Since 

the rate of CO2 is proportional to cell size in asynchronous cultures, this points to 

cell size as one of the ‘indicator signals’ (Gl/S and G2/M checkpoints) in S. pombe.

Similar research has been carried out in cells such as mm321 hybridoma cell line 

(Hayter, 1987), where the rate of consumption of glutamine in a synchronised 

culture throughout the cycle was measured. The rate of consumption of glutamine 

was then used as a measure of the cumulative content of glutamine being taken up in 

G1 phase to determine the probability of transition to the S phases (Faraday, 1988). 

If the kinetics of the cell cycle gives an idea of the physical and palpable changes in 

the cell and population dynamics, genetics may eventually provide the 

understanding of the internal mechanisms that determine this behaviour.
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2.7.2 The Genetic Approach in S. pombe

The genetic approach is consider in depth by Tyson and Novak (1998) where they 

established that the cell cycle for fission yeast is controlled by a single CDK, namely 

Cdc2 (protein encoded by the gene cdc2^ ) in combination with three B-type cyclins 

(Cdcl3, Cigl, and Cig2). Genes have the information on how to produce proteins; 

such information will be picked up for a ribosome in-charge of the actual synthesis 

of proteins. The most important partner of Cdc2 protein is Cdcl3. The complex of 

Cdc2 and Cdc 13 is known as M-phase promoting factor (MPF) and is fundamental 

to initiate mitosis, in the absence of other complexes, this complex can trigger the 

S phase as well.

The Cdc 13 level fluctuates dramatically during the cell cycle, reaching a maximum 

as cells enter mitosis, dropping precipitously as cell exits mitosis, and reappearing 

after cells enter S phase. The activity of Cig-2 dependent kinase peaks at M-phase 

even though its physiological role is not known.

The Cdc2 catalytic subunit of the heterodimer (A dimer in which the two subunits 

are different. Heterodimers are relatively common, and the arrangement has the 

advantage that, for example, several different binding subunits may interact with a 

conserved signalling subunit), is present at a constant level throughout the cell cycle. 

Its catalytic activity is determined not only by the availability of cyclin partners but 

also by phosphorylation at two specific amino-acids: Thr-167 and Tyr-15. 

Phosphorylation of Thr-167, which is necessary for Cdc2 kinase activity, happens 

rapidly after cyclin binding.

Tyr-15 phosphorylation, which inhibits S and early G2-phases, decreases 

dramatically as cells enter M-phase. Phosphorylation of Tyr-15 is carried out by 

Wee I and Mikl kinases and dephosphorylation by Cdc25 phosphatase. 

Phosphorylation by active MPF-inhibits weel and activates Cdc25, and these two 

positive feedback loops are responsible for the abrupt activation of MPF as cells 

enter M-phase.
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The genetic approach is not of great use amongst modellers yet due to the tiny 

amount of quantitative information available in the literature and the experiments 

carried out in regarding this issue. However the focus of this research will be 

orientated towards the development of a structured model within the generic 

framework CelCyMUS for S. pombe.

2.7.2.1 G2/M Checkpoint

Wild type yeast cells have short durations of G l, S and M-phases, and a long G2 

phase. Tyr-15 phosphorylation is used to stop cells at the G2 checkpoint. Two 

requirements must be met to start dephosphorylation of Tyr-15 residues:

1) Cells must reach a critical size and

2) The chromosomal DNA must be fully replicated.

Comparing cells of different sizes at birth, Fantes and Nurse (1977) found that larger 

cells grow less during their division cycle (same growth rate but shorter cycle time), 

proving that cell size has a strong effect on progress through the cell cycle (see 

fig.l). Using nutritional shifts it was proven that, in wild type fission yeast cells do 

not pass the size-control checkpoint until shortly before mitosis (Fantes and Nurse, 

1977).

Novak and Mitchinson (1998) established that there is a marker in G2 in (WT) cells 

provided by a rate change point (RCP) where the linear rate of length growth 

increases by approximately 30%. The period before RCP is dependent on size and 

can be called a ‘sizer’. The period after the RCP is nearly independent of size and 

can be called a ‘timer’. The achievement of a threshold critical size is either at or 

near RCP, which is on average at about 0.3 of the cycle (halfivay through G2). The 

RCP is about the time when HI histone kinase activity and the B type cyclin, cdc 13, 

start to rise in preparation for mitosis.
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Molecular genetics studies implicated Cdc25 and weel in the G2 size control 

mechanism. When cells are sufficiently large, the positive feedback loops engage, 

activating MPF and driving cells into mitosis.

The surveillance mechanism for unreplicated DNA also seems to work through 

weel and Cdc25, by activating phosphates opposing the MPF dependent 

phosphorylation of these enzymes. As a consequence, MPF cannot turn on the 

positive feedback loops, and CD 13/Cdc2 dimers are kept in their inactive, tyrosine- 

phosphorylated forms.

2.7.2.2 G1 Checkpoint

Fantes and Nurse (1978) produce evidence that weel^ was an essential element of 

the mitotic size control and that in its absence the mitotic size control was abolished 

and it was replaced by a Gl/S size control. The Gl/S transition (Start) is controlled 

by antagonistic interactions between Ruml and cyclin/Cdc2 dimers (Cig2/Cdc2 and 

Cdcl3/Cdc2): Ruml binds to and inhibits the dimers, whereas the dimers 

phosphorylate Ruml, making it more susceptible to proteolysis. Below the critical 

size, Ruml is predominant and progress through the cell cycle is stalled. Above the 

critical size, Ruml inhibition is removed and cyclin/Cdc2 dimers drive the cell into 

S-phase. Recently, Novak and Tyson (1998) have turned these ideas into a 

mathematical model, which describes the behaviour of these interactions

2.7.2.3 Mitotic Checkpoint

The mitotic size control in fission yeast ensures that cells large at birth will have 

shorter than average cycle times, and vice versa for small cells. Fantes (1977) 

demonstrated this negative correlation between cycle time and birth length.

At the end of mitosis, MPF is inactivated by degradation of its Cdc 13 subunits. The 

degradation step is mediated by a multi-enzyme complex, called the anaphase 

promoting complex (APC), which attaches ubiquitin labels to cyclin molecules and 

renders them susceptible to proteolysis.
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In addition to cyclin B molecules, the APC also induces degradation of the tether 

molecules that hold the sister chromatids together. The mitotic checkpoint ensures 

that APC is activated only after all chromosomes are properly attached to the bipolar 
mitotic spindle.

It is important to notice that APC activity and cyclin B accumulation seem to be 

mutually exclusive: in budding yeast and fission yeast the APC is active during Gl- 

phase, when B-type cyclins are absent, and is inactive during S+G2+M, when B- 

type cyclins are present. These facts led scientists to propose that B-dependent 

kinase activity must be a potent inactivator of the APC as well.

2.8 CONCLUDING COMMENTS

This review has presented an overview on modelling on biological processes, cell 

cultures and the different approaches (Kinetic, genetic, cell population balances etc.) 

taken by different authors regardless of the type of micro-organism. Then a review 

on mathematical models for the S. pombe cell has also been introduced following the 

same modelling approaches that were followed for other authors in other eukarotic 
micro-organisms.

The introductory chapter described the cell cycle setting the scene for the S pombe 

model. A review of the literature has now been done. Different approaches to 

modelling of the cell cycle in general and to modelling of S. pombe in particular 

were presented. Previous work in CelCyMUS as a generic framework and its 

development are explained in the theory chapter, the theory chapter will also be used 

to show what the S. pombe model will look like from the particular point of view of 

this research group. In order to do that it is important to know the generic framework 

CelCyMUS and why it has been chosen for this task. All the new features such as 

mass transfer modules and the new modules for the particular organism of study 

S. pombe are introduced. The approach on segregated populations for the 

S. pombe model is new and differs from the existing genetic model accounting for 
the kinetics of proteins activity.
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CHAPTER 3 

Schizosaccharomvces pombe MODEL

3.1 INTRODUCTION

A mathematical model is a representation of the essential aspects of a real system. It 

is mainly constituted of a set of mathematical relationships which describe the 

behaviour of a real system at a reasonable level of detail and with an acceptable 

degree of accuracy.

Throughout this chapter the definition of a mathematical model will be applied to 

the yeast; S. pombe. This is a deterministic model, which means each variable, and 

parameter takes fixed values for some given conditions. However, despite being 

detenninistic this model has a representation of events that may be stochastic in 

reality.

The model has been built as a module within the generic framework of the updated 

CelCyMUS model coded in Fortran 95. The model takes into account the population 

balance of fission yeast, the phases of the cell cycle including phases where the cells 

exit the cycle due to external damage and environmental factors. Consumption of 

nutrients (glucose), probability transitions, production of catabolites (CO2, glucose) 

will also be considered. The basic theory that supports CelCyMUS will be 

explained. The main equations which are included in the program and the 

assumptions made to derive the generic framework of the model for S. pombe are 

introduced.

3.2 CelCyMUS

A one-dimensional age-based population balance model of the cell cycle known as 

CelCyMUS (Kirkby and Faraday, 2001) has been developed. This is a fully 

deterministic model, which can describe changes in the cell age distribution.
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interactions of the cell population with a multi-component medium and changes in 

cytological state. It defines a phase as the state in which all cells obey the same set 

of transition rules, share the same forms of interaction with the environment and are 

performing the same internal functions. Changes in cell age distribution are also 

accounted for by describing how cells move from one phase to another by 

undergoing a ‘transition’ between phases.

The model accounts for cells in any phase at any time following one of these three 

main mutually exclusive events:

a) The cells get older (‘flow’)

b) Cells leave this current phase (‘transition’)

c) Cells leaving the system (‘washout’)

CelCyMUS counts with a population density function (number of cells per unit 

volume per unit biological age) represented in the population balance below:

° J -  (3. 1)
j=l

Where: t  is the biological age (hr); F is the feed flow rate to the system (m^h'*); V is 

the volume of the system (m^); rjx is the rate at which cells undergo transition as a 

result of the transition rule in phase X (cells m'^ hr'^); Gx is the number of 

transition rules which apply to phase X; Cc is the cytological state vector, accounting 

for the concentrations of all the intra-cellular components of interest (kg cell'^) and 

C is the medium state vector, accounting for the concentrations of all the medium 

components of interest (kg m'^).

Within the model each phase has a finite maximum duration and, in all cases, the 

first transition rule is used to account for this fact. Therefore, for any phase X the 

following is true:

T lx(Tx,nx(t,Tx),Cc(t,Tx),C(t))=0 0<Tx<Tx (3.2)
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Tix(Tx,nx(t,Tx),Cc(t,Tx),C(t))=nx(t,Tx) Ô Xx<Tx (3.3)

Where Tx is the maximum duration of phase X (hr). However, there may be any 

number of other transition rules, which also apply to this phase.

Each phase also has boundary conditions, which will depend on the kind of micro­

organism, is being dealt with. The boundary conditions have to be defined for each 

phase (as will be shown for the S. pombe module) depending upon the transitions 

between phases and these play an important role on the solution technique employed 

to solve the equations in the model.

The model of mm321 has been proved to be a successful specific model and was 

included as a module within CelCyMUS. Based on data of Dr. Paul Hayter who 

studied the behaviour of synchronised cultures of a mouse-mouse hybridoma cell 

line (mm321) producing Immunoglobulin G antibody to paraquat, a module to 

simulate this particular type of cell was developed by Faraday. The mm321 module 

has successfully tested CelCyMUS as a generic framework inviting the study of 

other micro-organisms. It has also been used as part of a M.B.O. (Model Based 

Observer) controller model for the same cell line, in a theoretical way (Araujo, 

1998) with promising results for a real application.

A brief description of the generic framework of CelCyMUS has been outlined, the 

equations and numerical methods used to solve them were studied in order to choose 

a method accurate, stable and fast enough to solve the system as discussed below.

3.3 MATHEMATICAL SOLUTION TECHNIQUE

The population balance equations (Equation 3.1) are first order, quasi-linear 

hyperbolic partial differential equations and may be solved by a variety of numerical 

techniques. By considering the total derivative and the method of characteristics this 

expression may be rewritten as an ordinary differential equation along 

characteristics trajectories given by dt/dx = 1.

38



s. pom be Model

By applying the boundary conditions as will be mentioned for the S. pombe module 

(Equations 3.8 to 3.15) these ordinary differential equations can also be solved by 

using Euler integration. A step length of 1 minute has deliberately been chosen to 

match the biological age in the program to give simplicity in the handling of the 

code program. Such step length proved to be most appropriate since this is the 

equivalent unit use to divide the array for biological age.

The object of the Euler method is to obtain an approximation to the solution y(t) to 

the initial value problem:

^  = f(t,y), a ^ t < b ,  y(a)=a (3.4)

The technique consists in generating approximations to y(t) that will be generated at 

various values, called mesh points, in the interval [a,b]. Once the approximate 

solution is obtained at the points, the approximate solution at other points in the 

interval can be obtained by interpolation if required. The values for initial conditions 

are set up for the user of the program through the initial number of cells for the 

population distribution balance at time t=0. The Euler integration technique was 

built into CelCyMUS in such a way that the program itself contains Euler method in 

the backbone of the code.

The original version of CelCyMUS was written in Fortran 77 code. As part of the 

research, one of the tasks carried out has been to update the CelCyMUS code to 

Fortran 95 taking advantage of the new features this programming language has 

incorporated. Such features and a brief description of the language will be given as 

follows.

3.4 SOFTWARE FORTRAN 95

Most of the major languages are particularly suited to a particular class of problems; 

often this class is very wide. Fortran is one such language, and is particularly well 

suited for almost all scientific and technological problems as well as to a wide range 

of other problems areas especially those with a significant numerical or
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computational content. All of these together with the powerful utilities are described 

as follows.

3.4.1 New Features and its Implementation

As follows some of the new Fortran 95 features and how they have been exploited 

will be introduced. Every application will be supported by an example of its 

functionality in the program that appears in the form of F.95 files enclosed in a CD 

with this thesis.

3.4.2 Modules

A form of program unit, which did not exist in FORTRAN 77, is a module. The 

purpose of a module is quite different from a function or subroutine. Quite simply, a 

module exits in order to make some or all of the entities declared within it accessible 

to more than one program unit, as an extension and replacement for common blocks.

Perhaps the most important use of a module is the global accessibility to variables, 

constants and derive type functions. This utility gives the opportunity of using 

common variables, which are going to be used through out the program. Even 

assigning initial values by declaring subroutines within them since a module itself 

cannot be used to execute statements. However, modules can contain complete 

subroutines and functions, which are known as module procedures. These 

procedures are accessed as part of the other program units by including a USE 

statement containing the module name in the program unit.

Procedures which are included within a module must follow any data objects 

declared in the module and must be preceded by a CONTAINS statement. Such 

feature is applied in various parts of our program; the module initialising is one of 

them.
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3.4.3 Making the Code Portable: Derive Data Type

Parameterised numeric data types, which permit control over range and precision in 

a portable manner, are available in Fortran 95. The range of values that may be 

stored in an integer will vary according to how many bits are used to represent it in a 

computer’s memory, while both the range and the precision of real values can vary 

enormously depending on how they are actually represented by the computer being 

used. This presents considerable numerical difficulties when attempting to write 

portable programs.

Fortran 95 overcome these problems by allowing all the intrinsic types (other than 

double precision) to have more than one form, known as different kinds, and 

provides the means for a program to define which kind of variables and constants it 

wishes to use. Each implementation of Fortran 95 will provide at least one kind of 

each intrinsic data type, known as default kind, and may provide as many other 

kinds as it wishes. The non-default kinds are identified by means of kind type 

parameters.

User define types give to the user flexible programs with robust data structures ideal 

for age distribution data. A single module stating the type kind of the integer and real 

variables can be seen in the derive type module.

3.4.4 Dynamic Memory Allocation

Fortran 95 includes two ways to allocate memory dynamically at execution time; 

allocatable arrays and pointers. Allocatable arrays are arrays whose rank is specified 

at compilation time, but whose shape is not specified until the program is executed. 

Pointers are variables that contain the address in memory of another variable where 

data is actually stored. Pointers can also be used for dynamic memory allocation.

Dynamic allocation has been chosen in the current program to make it flexible, 

faster and more efficient by using just the amount of memory required in our arrays, 

saving space, which is release afterwards in a de-allocation statement. This simple
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but powerful instruction allows big changes when introducing arrays that will 

allocate cells within phases with different duration times. See module starting up as 

an example.

Therefore we can go further towards the implementation of a new module within our 

existing model. This report will discuss the use of CelCyMUS as a generic 

framework to support a module for an especial cell line: Schizosacharomyces 

Pombe.

3.5 A PROPOSED MODEL FOR S. pombe

A model for the description of the S. pombe cell cycle is proposed (see figure 1 

Appendix A). The model is composed of five phases found in fission yeast (with the 

G2 phase divided in G2A and G2B phases) with two checkpoints at Gl/S and 

G2B/M phases.

Consumption of glucose and oxygen play an important role in both the checkpoints 

as implicit controllers of them. Since consumption of glucose is linked to the 

individual growing of cells (cell size) and the two checkpoints being considered are 

related to cell size it can be assumed that the rate of up-take of glucose is then an 

indirect measurement of cell size. Undoubtedly, cell size and protein content per cell 

increase to a certain point during GI phase, this enhances glucose consumption 

since is the main source of energy and mass that is taken from the medium.

The first checkpoint in S. pombe cells is Gl/S. Once cells have completed mitosis 

they have to achieve a determined cell size before synthesising DNA, measuring the 

protein content per cell has proved this. In S. pombe cell division (separation of 

mother cell and daughter) also occurs here; hence the newborn cells appear at the 

beginning of the S phase. If cells have not achieved the desired cell size they will 

remain in Gl phase degrading Cdc25 at an elevated rate until they are large enough 

to leave Gl phase.
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The second checkpoint G2B/M has to do with preparation during the G2-phase for 

mitosis. Cells ensure that repair and synthesis of DNA are completed and that cells 

are large enough to divide. At metaphase they ensure that all chromosomes are 

aligned in the right position before sister chromatids segregate to opposite poles of 

the mitotic spindle. Therefore, the G2/M checkpoint can also be controlled by the 

rate of uptake of glucose.

A GO phase has been incorporated where cells remain for a certain period of time 

when exposed to certain environmental conditions such as starvation or heat shock. 

Cells in this phase become resistant to heat and chemical treatment. They can be 

reinserted in the main cycle once they ‘sense’ conditions in the environment (such as 

medium, temperature) are normal for them to re-start the mitotic cycle. The events 

described above will happen if after a certain period of time, the conditions improve. 

Cells in this ‘dormant state’ will enter a meiotic cycle where haploid cells of 

opposite mating type (h"̂  and h ) conjugate to form a diploid which will continue to 

divide in its own meiotic cycle. It is believed that fission yeasts conjugate in order to 

‘save nutrients and energy’. In the S. pombe model presented, cells can leave the 

mitotic cycle to join the GO phase from any phase at any time, such an assumption is 

supported by Nurse (1993) who discovered the ability this type of cells have to leave 

the cycle from any phase.

However, if a diploid cell is starved of nutrient it has the option of undergoing a 

meiotic cycle to produce four haploid spores. The process of sporulation forms a 

distinct kind of cell division cycle that has similarities and differences with mitotic 

progression. Therefore, in S. pombe conjugation, meiosis and sporulation combine 

in an emergency response to nutrient limitation.

The model also has a D phase or pre death phase to account for the cells which have 

left the cycle with no option at all of returning to the cycle.

It is assumed that glucose is taken up during G2A and G2B phases only. Production 

of CO2 is also an important parameter (Mitchison and Novak, 1986) being released 

through out the whole cell cycle with an increment of the rate of CO2 production
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right at the mid-point of the S period at 0.97 of the cycle (Mitchison and Creanor, 

1969). Within the S. pombe module and as a new feature in the generic framework 

of CelCyMUS mass transfer is considered. The model is required to represent an 

aerated system with oxygen being taken up by the cells and CO2 produced by them. 

This gives the opportunity of introducing a new module within CelCyMUS, capable 

of considering mass transfer processes between gas and liquid phases in a 

bioreactor.

3.6 MASS TRANSFER

In aerobic systems, the oxygen transfer rate from the gas phase to the liquid is often 

a limiting factor, and the bioreactor has to provide good mixing characteristics to 

provide good gas-liquid transfer. The consumption or production affects the levels 

of dissolved oxygen and carbon dioxide respectively and the rate of transfer between 

phases.

Carbon dioxide diffuses through the cell membrane and is hydrated in the liquid 

medium by the following reactions

CO2 +  H2O <— > H2CO3 <— > + HCOs' (3.5)

The dissociation of bicarbonate to form carbonate ions, is considered negligible at 

pH 7 (Royce and Thornhill, 1991). The hydratation equilibrium is very slow, 

whereas the bicarbonate forming equilibrium is almost instantaneous. Hence the 

conversion between carbon dioxide and bicarbonate ions is described by the overall 

reaction;

CO2 + H2O IT  + H2CO3 (3 .6)
K .,

Where Ki and K_i are the rate constants for the indicated reactions. Therefore if a 

balance for carbon dioxide is written this should include the hydratation in the liquid 

medium of carbon dioxide to bicarbonate. Oxygen and carbon dioxide transfer in the 

gas-liquid interface are physical phenomena limited by the transfer in liquid side of
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the interface (Perry, 1984). The oxygen transfer rate is expressed usually as a 

product of the volumetric mass transfer coefficient, KLa°2 , and the driving force of 

oxygen. The equilibrium oxygen concentration, C*o2, is expressed by the solubility 

in water at the culture temperature. The carbon dioxide transfer rate can be described 

in the same way to oxygen transfer rate. The equilibrium concentration C*co2 is 

given by:

C*co2 = 10^RT^|î2- (3.7)

H (Pa.m^.mol"^) is the Henry’s law constant, T (K) is the temperature of the gas 

phase, C^co2 is the gas carbon dioxide concentration, and R (8.3143510 Pa moC K‘ 

 ̂) is the ideal gas constant. KLa®̂  and KLa^°^ (s"̂ ) are estimated with a mass transfer 

model (Arranz, 1993; Yagi and Yoshida, 1977) based on a fluid dynamic model 

which takes into account the bioreactor configuration and the operational conditions. 

On the other hand, the estimation of oxygen uptake rate and carbon dioxide 

production were obtained from experimental data (Nurse, 1993).

For the prediction of the oxygen transfer coefficient in stirred tanks, some 

simplifications are made. First of all, it is assumed that the stirrer supplies the energy 

dissipated. The friction losses and the reduction of power due to the aeration are 

assumed negligible. The energy dissipation rate is given by Equation (3.8). The 

interfacial area is calculated from the equations given by Figueredo and Calderbank 

(1979) for a system air-water Equation (3.9). The power of the aerated liquids is 

estimated by the expression proposed by Michel and Miller (1962) (Equation 3.10), 

with C being a constant value for an agitator type turbine with six blades (Fort et ah, 

1993). The product of the interfacial area and the mass transfer coefficient allows 

predicting the for stirred tanks semi-theoretically.

The volumetric mass transfer coefficients for oxygen and carbon dioxide involve the 

same interfacial area, solvent properties and agitation variables. Thus, the is

calculated as a function of the K.i,aP̂  by using the square root of the diffusivity ratio 

given in Equations 3.11 and 3.12 (Yagi and Yoshida, 1977; Royce and Thornhill,
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1991). Although the liquid difftisivities are a function of both compositions, the 

values for water are assumed for simplification. With the values for the oxygen 

uptake-rate and carbon dioxide allow estimating the changes in concentration of 

oxygen and carbon dioxide in the liquid and gaseous phase during batch 

fermentation in stirred tank bioreactors.

The mass transfer model in general for this particular case is represented through the 

following equations:

Energy dissipation velocity

<«)

Where Po is the power supplied by a stirrer in a degasified system (W), Pl is liquid 

density, V is volume (m^), Np is the power number and N is the liquid velocity 

profile parameter (dimensionless).

Interfacial area
i0.25

a = 593 &
V

(3.9)

Where Po is the power supplied by a stirrer (W), Vs is the gas slip velocity (m.s"'). 

Power of aerated liquids

?s = c(PoNT̂ /Q®-̂ )̂ ■ (3.10)

Where Q is the volumetric gas flow rate (l.s" )̂. C is a constant value for an agitator 

type turbine with six paddles.

Volumetric Oxygen Transfer Coefficient

(3.11)
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Where is the diffusivity of the oxygen in the liquid phase (m^.s'*), e is

dimensionless constant for stiired tanks (e = 0.070), g is the gravitational constant 

(m.s’̂ ), db is the diameter of bubbles (m) and n is the flow behaviour index 

(dimensionless)

Volumetric CO2 Transfer Coefficient

/D].C0 2 Y2

V Dl02 (3.12)

Where Klb (s’̂ ) are the volumetric mass transfer coefficients for oxygen and carbon 

dioxide respectively. Studies carried out on bioreactors processes (Guardia and 

Calvo, 2000) where mass transfer of oxygen and carbon dioxide where analysed 

have been implemented in our model through the following equations:

Species Mass balance equations

Liquid phase oxygen
(^02 €^2) Y02 (3.13)

Liquid phase carbon dioxide
^  = Yco. -  {cèo2 -  Cco2 h  n  (3.14)

Liquid phase bicarbonate
^  =  (3.15)

Gas phase oxygen
- Ô Æ  - C % ( 3 .1 6 )

Carbon dioxide
Vq -00^0)2 (‘i s  QralW (3.17)

TABLE 3.1

Where y represents the constant of reactions for the different species in the reactor. 

Qo is the volumetric gas inlet flow rate (l.s" )̂.

A schematic representation of what the mass transfer module looks like when 

working with CelCyMUS is presented here:
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MASS TRANSFER MODEL

Fluid dynamics, type of reactor and 

reactions, temperature etc.

MASS BALANCE

LIQUID PHASE 
GAS PHASE

CELL CYCLE MODEL

G2 PHASE CO2 PRODUCTION 
RATE

GI PHASE O2 CONSUMPTION 
AND CO2 PRODUCTION RATE

3.7 MAIN FEATURES OF THE MODEL

The main features for a model of the cell cycle of S. pombe have been stated above. 

A generic one-dimensional age population balance model of a fission yeast cell 

cycle based upon cell age is proposed. The model is a module within the generic 

frame model of CelCyMUS. It describes changes in age population, interactions of 

cell population with a multi-component medium and changes in the cytological 

state.

The S. pombe cycle divided in five phases has been presented in the model, where a 

phase is defined as a ‘state’ in which all cells obey the same set of transition rules, 

executing the same internal fiinctions and interacting in the same way with the 

environment.

Transition is defined as the flow of cells from one phase to another due to changes in 

the cell age distribution mainly because cells have become older or they have 

achieved a ‘transition rule’ events these ones, which are mutually exclusive. As 

follows a list of all of the main assumptions in the model is outlined there are seven 

phases -  GO, G l, S, G2A, G2B, M and D;
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a) the S phase is the DNA synthesis phase and where a new daughter cell is born;

b) the M phase is where mitosis occurs;

c) Gl and G2 are the gap phases between the M and S phases;

d) the G2 phase is divided into two distinct periods, referred to as G2A and G2B

phases;

e) the GIO phase accounts for the initial lag period and cells in this phase re-enter 

the cell cycle via G2A;

f) cells in the D phase stain as though still viable, although irreversibly out of the 

cell cycle and approaching death;

g) cells progress around the cell cycle in the following 

order -  G2A, G2B, M, G l, S and back to G2A;

h) the G2A, S, M and GIO phases are of fixed duration - 63, 18, 9, 30 min,

respectively;

i) the G2B and Gl phases are of variable duration, with maximum durations of 29 

and 25min, respectively;

j) glucose is consumed at constant rates for cells throughout the cycle except 

during G2B phase where it reaches a peak twice as big as the uptake rate in the 

other phases;

k) CO2 is produced at a rate which is proportional to the rate of assimilation of 

glucose and is excreted to the medium in the Gl and G2B phases;

1) Oxygen is assimilated in all of the phases at a rate which is proportional to the 

oxygen concentration in the medium; 

m) the initiation of the S and M phases is controlled by a stochastic transition; 

n) the probability of this transition is dependent on the cumulative amount of 

glucose consumed cells in phases Gl and G2B. 

o) the relationship between the probability of this transition and the cumulative 

glucose content is a quadratic form; 

p) once cells enter the D phase, they are trapped in this phase and the death rate of 

these is in accordance with first order kinetics, 

q) During glucose exhaustion, cells which remain in G2B for the whole of its 

maximum duration will immediately enter D, instead of going into S; and 

r) in a glucose firee medium, cells which complete mitosis are incapable of 

initiating the Gl phase and enter the GO phase. Cells which enter G2B after
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glucose exhaustion will be trapped and will enter the D phase after the maximum 

duration of the G2B phase.

3.7.1 Phase Transition Rules

Each phase has a finite maximum duration and, in all cases, the first transition rule is 

used to account for this fact.

In this model, cells start in G2A phase and move around the cycle undergoing 

transitions from G2B through to M then Gl (cells recovering from mitosis) going to 

S, and finally going back to G2A phase. As stated above, cells must remain in each 

phase for a predetermined period of time (the maximum duration of the phase) 

unless they are forced to leave due to a transition rule. In the S. pombe case there are 

some specific transition rules to be considered:

For S, M and G2A phases only the first transition rule that applies (Equations 3.2 

and 3.3). In the cases of Gl and G2B this transition is dependent upon the 

cumulative amount of glucose a cell has consumed since it entered this phase. This 

is given by:

r2G,(^Gl,nG,(t.TG,).Co(t,To,),C{t)) = (3.20)
(CcGLUC(t,T:Gl ) -  ^MAX1 dt

Where Cqluc is the intra-cellular concentration of glucose (kg cell'^) and Smax is the 

maximum cumulative amount of glucose a cell can consume before it must initiate 

the M phase (kg celF^).

For the D phase (death) it is assumed that the rate of transition is dependent upon the 

prevalent CO2 or Ethanol concentration as follows:

2̂D('’̂ D>^D(t5'^D)>Ec(t,TD),C(t)) = kETHO^ETHO^lf Tx) (3.21)
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As it is proved that high concentration of ethanol inhibits mitosis and induces death 

in S. pombe. Where Icetho is a constant to be determined empirically and Cetho is 

the ethanol concentration in the growth medium (kg m'^).

3.7.2 Boundary Conditions

The boundary conditions have to be defined for each phase depending upon the 

transitions between phases. In the model proposed cells go through the phases S, 

G2A, G2B, M, and Gl before dividing. It is assumed that cells will duplicate right at 

the start of the S phase. Cells in the quiescent state (GIO) enter the cell cycle in 

phase G2 (but within the model they could do it from any phase). Cells facing 

starvation are arrested in GO phase.

Bearing in mind the assumptions made above the boundary conditions for the model 

phases are:

G2A Phase

^G2A “  % (4 ̂ 5  ) If Cgiucose ^ 0 C3.22)

I f  C giucose 0 (3.23)

G2B Phase

^G2B ~ ^S2A (̂ 5 '̂ G2A ) (3.24)

For M Phase:

( .̂0 ) = f ^CGUC '̂ G2B )
i^G LU C  ^G2S )  ^MAX ) ât

dx,GI B Q.25)
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(3.26)

For S Phase:

____ 2 /?gi(/, Tgi)_____ *^CGI/c(^>Tq|)

(^Git/C (̂ 5 '̂ G\) ~ ^

For D Phase:

«d(^.0) -  riQ{t, Tq )  + % 2B(A T(^g) If Cgiucose ^ 0 (3.28)

For GO Phase:

«O)(̂ ,0)-MQ(4%)+M(2g(A%g) If C giucose 0 (3.29)

3.7.3 Growth Medium

The model describes the consumption of glucose, oxygen and the production of 

CO2 . It is assumed that glucose is consumed in all of the phases with two big 

increments in glucose uptake rate for G2B and Gl phases, and the consumption 

kinetics are zero order. Carbon dioxide (CO2) is produced in all of the phases 

(Mitchison, Novak, 1986). A change in the rate of production right at the end of the 

cycle made CO2 production a special marker in the cycle of S. pombe. The increase 

in this rate is a pattern in S. pombe and different kind of mutants of the same micro­

organism (Novak et a l, 1998. See figure 2 Appendix A).

With the assumption that increments of glucose uptake rates during Gl and G2B, a 

material balance gives the rate of change of concentration of glucose in the growth 

medium as follows:
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■ = (C F a w S f)-C a w M rj^ -! (a w \  bc2»(4% aX ^+
7r„,„

(3.30)
Vo

-14Where R g l u c  is the rate of consumption of glucose, approximately 1.04027x10 

kg.glue.cells"\hr"\ (data gathered from Fotuhi, 2 0 0 0  for batch fermentors). C g l u c  is 

the concentration of glucose in the growth medium (kg m'^), and C f g l u t  is the 

glucose concentration in the feed stream (kg m'^).

Since carbon dioxide is being produced at a constant rate throughout the cycle with a 

rate of change right at the end of the cycle in S phase. Then it is logical to affirm that 

the rate of CO2 production will be constant in all of the phases but S phase. 

Therefore, the rate of change of concentration of CO2 in the medium is given by:

dCco/t)
= Rco,dt Jns(t,Ts)dx

VO

Where Rco2 is the rate constant for the production of CO2 firom a cell (kg cell"̂  hr"̂ ) 

and Cco2 is the concentration of CO2 in the growth media (kg m" )̂. It is assumed that 

there is not carbon dioxide in the feed stream at the beginning of the process.

3.8 ESTABLISHING THE MODEL

In order to establish numbers firom the model, some parameters have to be fixed, 

such as real values of glucose and oxygen consumption throughout different phases 

of the S. pombe cell cycle. The knowledge of these parameters gives a better 

approach to the age population balance, improves the accuracy in cycle timing per 

single phase and a real view of this particular cycle. The experimental 

determination of glucose, oxygen and any other nutrients consumption per phase is 

achieved by synchronising cultures of fission yeast using either chemical blocks 

(growth arrest) or physical selection. Physical arrest is achieved by centrifugation 

selecting the smaller cells in a elutriating rotor following Mitchison et a l selection 

method (1965) using lactose and sucrose density gradients, such cells are then taken
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to a different flask to initiate a new culture. Chemical blocks stop a specific event 

necessary for progression around the cycle. Once the entire population reaches this 

point the block can be removed and the resultant cell population is synchronised. 

This method includes the use of chemicals such as hydroxyurea and 

deoxyadenosine, both of which inhibit DNA synthesis in S. pombe for a period of 

time. This process is usually uniform during two to three cycles, time enough to 

determine the real consumption of glucose in every particular phase of the cycle 

rather than a general average value per cycle. The sampling and analysis of glucose 

consumption is done before de-synchronisation.

Cell de-synchronisation happens since cells with larger size will have shorter cycle 

times and vice-versa despite initiating the cycle at the same phase. It is expected to 

find changes in the rate of consumption of glucose at different phases. Such changes 

will be more representative at the checkpoints, since both of them (Gl/S, G2B/M) 

depend on cell size, which enhance glucose, and oxygen as the medium responsible 

of individual anabolic growing.

Creanor (1992) carried out such experiments, when he studied the consumption of 

oxygen throughout the whole cell cycle for S. pombe. Creanor found two increments 

in the consumption of oxygen, which ended up being twice as much at the end of 

every cycle. The first increment in the oxygen uptake rate half way through the cycle 

(G2B phase) and a second one right at the end of it (Gl/S phase). Each change in the 

rate was an increase of about 50%, with the result that overall the rate doubled each 

cycle.

Data from synchronised cultures of S. pombe where consumption of oxygen, 

production of CO2 and other variables were analysed to be used within our model as 

indicators of a checkpoint and also as parameters in transition rules of the cycle. 

From Creanor’s results, three sets of experiments were selected for analysis.

Their analysis will provide specific information about division and synthesis of 

DNA. The rate of production follows a linear pattern in synchronous cultures with a 

rate of change per cycle at the time of cell division, which seems to be more related 

to S phase.
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The inclusion of CO2 production is perfectly valid since it is a measure of the 

glycolytic flux and about half the total ATP production. All growth patterns in S. 

pombe yeast show these periodicities and there is not case of an exponential smooth 

increase. This is true for total dry mass (Mitchison, 1969), cell length (Mitchinson, 

Nurse 1985), oxygen consumption (Creanor, 1978), total protein (Creanor and 

Mitchison, 1969), ribosomal RNA (Elliot, 1983a), messenger RNA (Nurse et al, 

1978), and DNA (Mitchison and Creanor, 1969). Therefore CO2 production would 

be a good parameter to control timing and cell division within the model. In figure 2 

Appendix A the cell cycle times for different mutants of S. pombe based on CO2 

production are displayed.

Based on these data consumption of oxygen can be linked with the metabolic 

activity of the cell throughout ATP generation. The glucose consumed in the process 

is directly proportional to the amount of energy generated in the cycle, P/0 ratio and 

the yield of glucose with respect of ATP production and formation of biomass. It is 

important to say that is highly unlikely that Y a t p  is constant at all growth rates, since 

it is known that the protein content of S, pombe increases significantly with 

increasing growth rate both under aerobic and anaerobic conditions. Therefore a 

decrease in Y a t p  is expected with increasing growth rate.

3.9 CONCLUDING COMMENTS

In this chapter a model for the S. pombe cell has been proposed. The mathematics 

behind the generic framework of CelCyMUS have been explained and the 

mathematical modifications needed to introduce the different phases in the cell cycle 

of S. pombe and its transition rules have been presented. The next chapter will 

elaborate on the development of the S. pombe model. The experimental data selected 

to support the model (Creanor, 1978) and the experiments used to test it (Fotuhi, 

2002).
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CHAPTER 4

DEVELOPMENT AND TESTING OF THE MODEL IN BATCH AND 

REPEATED BATCH CULTURES

4.1 INTRODUCTION

The basis and foundations for a new module containing the main features of the cell 

cycle for S. pombe as well as the new Fortran 95 features introduced in CelCyMUS 

have been presented in Chapter 3. In this chapter, the new code was checked to 

assure the reproducibility of the data by running the new program against the old 

version of it. The following chapter then explains how the S. pombe module has 

been developed, the assumptions made within the module, the analysis of 

experimental data both batch and repeated batch to develop the model and to 

compare them with predictions of real batch cultures run in the S. pombe model.

The S. pombe works as a module within the generic framework of CelCyMUS (Cell 

Cycle Model University of Surrey). The basic principle of the model of S. pombe is 

based on the individual consumption of oxygen per phase and subsequently CO2 

generation (Creanor, 1978), plus the consumption of glucose throughout the cycle 

(experiments in synchronised cultures) as a first order kinetic parameter (Fotuhi, 

2002). The control and knowledge of these three parameters allow the model to 

establish the transition rules at different checkpoints within the cell cycle. In this 

chapter it will be demonstrated how the model has included a relationship between 

oxygen and glucose consumption, as part of the internal reactions in the cell to 

generate the necessary energy (ATP) to keep the cell cycling. The analysis of post­

synchronisation data, error analysis for each one of the parameters and the 

adaptations made to simulate the behaviour of S. pombe in batch fermentors is 

presented. Experimental data used to corroborate the accuracy of the model were 

collected by (Fotuhi, 2002). The experimental results gathered from shake flasks, 

batch and repeated batch reactors were key factors in the development of the model.
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4.2 VALIDATION OF THE NEW CODE

Since the code of the framework CelCyMUS has been re-built, two tasks were 

carried out to validate the new program. The first task was to run the program 

following the Smith and Martin model (1973), which basically divides the cell cycle 

in two stages. Some time after mitosis the cells enter a state (stage A, figure 4.1) in 

which their activities are deterministic, and leading towards replication. At this stage 

(A) cells are leaving with a constant probability, in our case such probabilities vary 

between l%cell.h'* and 7%cell.h'\ The B state includes the conventional S, G2 and 

M phases as it can be seen in figure 4.1 below.

B - STAGE A - STAGE B - STAGE

1 S 1 G2 1 M 1 1 S 1 G2 1 M 1

Indeterminate
Determinate Determinate

FIGURE 4.1

The Smith and Martin model (general population balance model. Figure 4.2) was 

applied to simulate synchronised cell culture runs for the mm 321 hybridoma cell 

line. It was assumed that a synchronised cell culture is released from a double block. 

Cells are arrested in G2 phase due to the action of chemical blocks (thymidine and 

hydroxyurea), which inhibit mitosis, and the progress of the cell population through 

the cell cycle in G2 phase. Glutamine is consumed through out GIA and GIB 

phases and there is a constant probability transition from GIB to S phase. Neither 

death phase nor washout was considered in these runs the phases and timing for this 

cell culture are displayed in Figure 4.2.

The second task was to run the new program against the old version of CelCyMUS 

once again for a mm321 cell line in a batch reactor, to test how reproducible the data 

would be. Here the cells are released from a G’ phase (where they are evenly 

distributed) into the GIB phase where they follow a transition probability based in
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the cumulative amount of glutamine per cell as a function of time. Consumption of 

glutamine in phases GIA and GIB, production of antibody to paraquat in phase 

GIB and S and excretion of ammonia into the medium (phases GIA and GIB) are 

taken into account. Schematic representation of the cell cycle for the mm321 

hybridoma cell line can be seen in figure 3 (Appendix A).

B-STATE A-STATE B-STATE

lOhr

Shr 2hr 2hr 2.5hr Shr 2hr2hr 2.5hr

GIA G2 GIA

FIGURE 4.2

Having validated the new CelCyMUS code against previous runs on the model for 

hybridoma mm321 cell line it was then necessary to select experimental data to 

develop a specific model for S. pombe. The main data to be used in the new model 

had to come from synchronised cultures that allow following of the behaviour of 

parameters and kinetics in every phase of the cell cycle. The methods and techniques 

employed to achieve synchronisation of cell cultures, the importance of this 

procedure, its main advantages and the main researches that used synchronisation 

techniques in S. pombe are now discussed in detail.

4.3 SYNCHRONISATION OF CELL CULTURES

A synchronised culture is a population of cells, in which each cell has the same 

biological age (same cell cycle phase) carrying out the same activities over a 

common period of time. Creanor achieved synchrony by using lactose (7.5-30%)
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and sucrose gradients (10-40% concentration). Such method works by suspending 

the cells in the medium (sucrose/lactose) and then centrifuging the solution in a 

centrifuge tube. Cells with different size and weight will spread in different layers 

down the tube. The top layer cell is then removed and the degree of synchrony is 

measured by the cell plate index, which is the percentage of cells in a population 

showing cell plates. This is roughly equivalent to the measurement of mitotic index 

in other systems.

Chemical blocking is also a common technique used to confirm the independence of 

metabolite uptake pattern from DNA synthesis, nuclear division and cell division. 

Mitomycin C inhibits nuclear division in S. pombe (Robinson, 1976) and S. cerevisiae. 

While hydroxyurea and deoxyadenosine (Mitchinson and Creanor, 1969) arrest cells 

in G1 phase.

4.4 ANALYSIS OF OXYGEN UP-TAKE IN INDUCED SYNCHRONOUS 

CULTURES WITH CHEMICAL BLOCKS

The addition of deoxyadenosine and hydroxyurea both of which inhibit DNA 

synthesis in S. pombe were carried out by Mitchinson and Creanor (1969), in order 

to confirm the independence of the oxygen uptake pattern from DNA synthesis, 

nuclear division and cell division. When added to an exponentially asynchronous 

culture for 3hr and then extracted by filtration, these inhibitors cause cells to 

undergo a synchronous division 2 hr later, followed by a second semisynchronous 

division 1.5hr after. In this culture although DNA synthesis, nuclear division and 

cell division are occurring in a synchronous manner, the rate of oxygen uptake is 

increasing continuously.

A second type of experiment was carried out by introducing Mitomycin C which 

inhibits nuclear division in S. pombe (Robinson, 1972) and S. cerevisiae (Willianson 

and Scopes, 1962). While hydroxiurea and deoxyadenosine arrest cells in Gi, after 

nuclear division has occurred but before DNA synthesis, mitomycin C arrests cells 

in G2. The difference here was that the mitomicyn C was not removed from the cell 

culture, and the rate of oxygen uptake continues to increase during this period. This
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of course suggests that the increase in oxygen uptake is independent of nuclear 

division, DNA synthesis and cell division.

4.5 ANALYSIS OF THE EXPERIMENTS OF CREANOR et al.

Creanor (1978) conducted experiments where the consumption of oxygen 

throughout the cycle in synchronised cultures was measured. The rate of oxygen 

uptake was found to increase in a step-wise manner at the beginning of the cycle 

(Gl-S phase) and in the middle of it (G2B phase). The increments doubled the 

amount of oxygen uptake at the end of each cycle. In an induced synchronous 

culture where DNA and nuclear division were inhibited, oxygen uptake increased 

continuously in rate and it did not appear to affect growth. The step-wise behaviour 

also disappears. Creanor's findings agreed with those of Poole and Lloyd (1973). 

These cases are similar to those shown for the production of CO2 in synchronous 

cultures of S. pombe (Creanor 1978) and are another case where a rate change 

persisted after DNA/cell division block. These changes in uptake during the cycle 

are therefore support of the “cell size growth” concept or the cells having to achieve 

a determined size before moving into DNA synthesis or cell division. Increase in 

cell size is therefore related to the internal accumulation of nutrients (proteins, 

carbon source) to be used in metabolic processes such as ATP production (energy) 

and in the repairing and duplication of the genetic information from mother cell to 

daughter cell.

The average results of three different experiments performed by Creanor et al in 

synchronised cultures of S, pombe were studied and named as Creanor A, B and C 

(see Table 4.2 and Graphs 1, 2 and 3 Appendix A). Such experiments where 

synchrony can clearly be seen were carried out for a period of six hours, after this 

time de-synchronisation takes over and the consumption rate of oxygen per phase 

becomes less evident because the data obtained are of those of cells with different 

cell age in different phases. From Creanor's experiments was established that the 

first two hours of the experiment are an initial lag or GIO phase, which is were cells 

are released into the medium and they acquaint themselves with their new 

environment. This is just after being released from synchrony. This GO phase will
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also be used for those cells that for some reason (to be explained later) do not 

successfully complete mitosis and leave the cycle permanently to join a quiescent 

phase. Initially, the data obtained from Creanor experiments were from logarithmic 

graphs presented in his paper. These graphs were then digitally scanned and actual 

data from oxygen consumption rates was extracted. Once the data were available 

this was translated into a decimal scale form by using a normal linear regression 

from the logarithmic scale.

P hase Time(min) Time (hr) 02R ate 02R ate n o n -lo g  (u l.cell-l.m in-T
51.80 0.86 0.620 4.171
63.02 1.05 0.610 4.077
75.97 1.27 0.728 5.347
88.92 1.48 0.783 6.062
102.73 1.71 0.848 7.046
115.68 1.93 0.949 8.886

M phase 129.50 2.16 0.972 9.372
Cell Plate Index Peak 135.60 2.26 0.966 9.247
G lP hase 144.17 2.40 0.972 9.372
G lP hase 157.12 2.62 1.070 11.748
G l/S p h a se 169.21 2.82 1.159 14.432
End Sphase 178.62 2.98 1.202 15.907
G 2A Phase 182.16 3.04 1.216 16.461
G 2A Phase 195.11 3.25 1.256 18.035
G 2A Phase 205.47 3.42 1.276 18.899
G2A Phase 216.69 3.61 1.308 20.301
G 2BPhase 227.91 3.80 1.463 29.031
G 2BPhase 241.73 4.03 1.572 37.355
G2BPhase 255.54 4.26 1.624 42.034
G2BPhase 267.63 4.46 1.624 42.034
G2BPhase 277.99 4.63 1.846 70.126
Cell Plate Index P e a B 280.80 4.68 1.802 63.387

289.21 4.82 1.921 83.444
303.02 5.05 1.891 77.772

.............. — ^ ....................
P hases Time (hr) Time(min)
M /G lP h ase 2.26 135.6
G l/S p h a se 2.67 160.2
S/G 2Phase 2.977 178.62
G2/M ph ase 4.53 271.8
M /G lP h ase 4.68 280.8

TABLE 4.1

From the six hour period since the start of the synchrony until the beginning of de- 

synchronisation (5-6hr) just the intermediate part (3-5hr) was analysed. The criterion 

for this selection was that during the first two 2 hr of synchronisation the cells were 

recovering from the induced synchrony (either throughout glucose gradients and/or
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chemical blocks) and adjusting to the new medium. Such a period can be considered 

as a lag phase and is usually about half an hour (30min) long. At three hours the 

synchrony is most noticeable (were most cells are cycling together) even though 

synchrony is not perfect, since not all of cells would be in the same phase by now. 

Creanor measured the cell plate index of the cells, which is similar to the 

measurement of mitotic index. About 60% of the cells reached this peak (when seen 

under the microscope) about two hours into the experiment and a clear partition (an 

unequivocal sign of cells about to undergo cytokinesis) can be seen at this moment 

(M phase). The S. pombe model simulates the behaviour of cells when released from 

synchrony at the beginning of the G2A phase, about 45min later. This indication 

was common for the three experiments (Creanor A, B and C) where about two hours 

into the experiment cells would show the highest percentage of cells in synchrony 

(60%). This is the reason why the data in between 2.82 hr and 5.05 hr were selected 

as initial data to run the model (see Table 4.5). In fact the least square error in this 

part of the model is just about 3.09 compared with the 26.26 total from the whole 

graph covering the synchronisation experiment.

Even though the S. pombe model predicts de-synchronisation the initial fitting of the 

model to experimental data was made strictly on the basis of perfect 

synchronisation, in order to find the right values of oxygen consumption and CO2 

production in the different phases of the cell cycle. Therefore the last two hours of 

the experiments marking the beginning of the de-synchronisation in full scale were 

not considered as data for a perfect synchronisation experiment.

4.6 CARBON DIOXIDE PRODUCTION (MITCHINSON AND NOVAK 

EXPERIMENTS)

Changes in the rate of production of carbon dioxide was studied by Novak and 

Mitchison (1986) and appears once per cycle at the time of cell division being a 

predominant pattern right at the end of the cycle. The actual increase of CO2 

production occurs during the S phase, which is when the cells are splitting up. 

Carbon dioxide has been shown to have a big influence in the cell cycle of S. pombe 

(Novak 1998). Novak examined the effect of CO2 removal finding that this

6 2



Development and Testing o f  the M odel in Batch and Repeated Batch Cultures

shortened the G2 phase of the cell cycle and arrested the cells in Gl phase in 

minimal medium. The slow down of anapleurotic CO2 fixation might be responsible 

for this effect, as aspartatic acid could abolish the Gl block. The shortening of G2 

phase in the wild type cells was observed in every medium irrespective of whether 

the growth rate was changed or not. Therefore it was proposed that CO2 would 

inhibit mitosis in fission yeast explaining the proportionality between growth rate 

and cell size at mitosis.

In faster growing and dividing cells the CO2 production rate is larger than in slow 

growing cells. The larger CO2 production lead to a higher CO2 concentration in the 

cell and the intracellular C02 concentration is proportional to the specific growth 

rate. Thus the growth rate of cells could be measured through the intracellular CO2 

concentration. Since CO2 inhibits mitosis, the faster growing cells might divide their 

nuclei only at a larger size. Mitchinson's experiments confirmed the findings from 

Creanor (1978) regarding the relationship between cell size and metabolic activity in 

the cell throughout the cycle. Based in the information gathered from these 

experiments it is now possible to establish a model for the S. pombe cell and its 

phases.

4.7 PHASES IN S. pombe AND THEIR DURATION

In the conventional cell cycle four phases are known, the so-called gap phases (due 

to the duration in time is determined for the length of S and M phases) Gl and G2, 

the S phase and M phase or mitosis. The S phase is where cell synthesise DNA 

making sure the genetic information is transferred from mother cell to daughter cell 

and M phase or mitosis where cells are basically giving birth to a new cell. As 

discussed in the previous chapter, the cycle for S. pombe has five phases instead. 

The G2 phase is divided in G2A phase and G2B phase. G2A phase is the phase 

where cells will be recovering from cytokinesis, since in S. pombe cells split right at 

the end of the S phase opposite to what most cells do (cytokinesis at the end of 

mitosis). The G2B phase is where cells prepare to enter mitosis, which makes them 

increase the consumption of metabolites in order to start mitosis. Such division of 

the G2 phase is supported by the fact that consumption of oxygen after cell division
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stabilises for a period of time before reaching a new peak that is generally twice as 

big as the average consumption in the rest of the cell cycle (see Tables 4.1 and 4.2). 

The ratios calculated in Table 4.2 show the relationship between rates of oxygen 

uptake. Production of CO2 (Mitchinson and Novak 1998) and consumption of 

glucose display similar patterns at this stage through the cycle.

Phases
Included

Time
(min)

Average Oxygen 
Uptake rate 

(ul.ceirhmin'^)

Ratio

G2A/(M+G1+S)

Ratio. G2B/ 

(M+G1+S+G2A)

Creanor
A

M+Gl+S 52 1.8729x10*’
0.9568 2.1669G2A 38.07 1.79205 xlO^

G2B 61.29 4.01466 xlO^
Creanor

B
M+Gl+S 52 2.19176 xlO^

1.1104 2.4765G2A 42.05 2.43362 xlO^
G2B 64.15 5.57762 xlO^

Creanor
C

M+Gl+S 50.7 1.63292 xlO^
0.82835 1.665379G2A 25.04 1.35263 xlO^

G2B 75.97 2.48604 xlO^

TABLE 4.2

As it can be seen from Graphs 1,2 and 3 (Appendix A), M, Gl and S phases have a 

combined duration of approximately 52min (data presented in Table 4.2) G2A is 

about 40 min long except for Creanor C where G2A is quite short (25min) compared 

with Creanor A and B. The ratio from G2A with regards of M+Gl+S phases is close 

to 1. Therefore the consumption of oxygen in these phases is almost constant. 

However, that is not the case for G2B phase where the ratio of oxygen consumption 

compared with the rest of the phases in the cycle is twice as big (2 . 1  on average). 

The G2B phase has a length of 63min on average (Creanor A and B) except once 

again for Creanor C. These measurements indicate a far better synchrony in Creanor 

A and B than in Creanor C. This fact guided us to the conclusion that for practical 

purposes Creanor A and B should be used as the experiments to use to extract the 

values for oxygen consumption rate.

4.8 PARAMETERS CONSIDERED AND THEIR RELATIONSHIP

There are three main features to be followed in the S. pombe cycle for the purposes 

of this model. They are: oxygen consumption, carbon dioxide production and
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glucose consumption as a representation of the amount of energy (ATP) spent in a 

cell throughout the cycle in assimilatory and dissimilatory processes. About 33% of 

the glucose is spent in dissimilatory processes or processes related to energy 

production, synthesis of proteins and other metabolites and movement. The 67% left 

is used in assimilatory processes or reactions related to growth of cells regarding 

individual cell size. Glucose is transformed into energy by means of the ATP 

production and consumption. In order to do so, glucose would have to go through 

different metabolic pathways that will happen depending on the circumstances, they 

are; glycolysis, respiration from adding BMP reaction (Embden-Meyerhof-Pamas 

pathway) with TCA reaction (tricarboxylic acid cycle).

The general reaction involving all intermediate reactions for the glycolytic pathway 

is:

+ 2Pi + 2ADP -> 2 C2H5OH + 200% + 2ATP + H^O (4.1) 

Where Pi represents piruvate.

4.8.1 The Energy Balance Sheet for Glucose Oxidation

For each molecule of pyruvate oxidised to completion, 12 molecules of ATP are 

formed in the four NAD-linked steps. 2 molecules of ATP are formed during the 

flavin-linked oxidation of succinate and 1 molecule of ATP is formed by the 

substrate level phosphorylation at the expense of succinyl CoA, to make a total of 

15ATPs formed per molecule of pyruvate oxidized. We can therefore write an 

equation for the complete oxidation of pyruvate by mitochondria, including the 

coupled phosphorylations:

Pyravate + 2 io 2  +15Pi + 15ADP -> SCO  ̂+ 15ATP + 17HjO (4.2)
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It is now possible to write a set of equations for the complete aerobic oxidation of 

glucose to CO2 and water and the conservation of free energy as ATP. For the 

glycolytic sequence to pyruvate we have the reaction:

+2PÎ+2ADP+2NAÜ -^2Pyruvat^2NADH-\-2lT +2ATP-h2Hff (4.3)

and for the tricarboxylic acid cycle:

2Pyruvate+ 5O2 + 30Pz + 3 OADP ̂  6 CO2  + 20 A T P 3 4 /^ 2 ^  (4.4)

To these we must add the equation for the oxidation of the two molecules of extra- 

mitochondrial NADH formed in the glycolytic conversion of glucose to pyruvate. 

Oxidation of extra-mitochondrial NADH may generate either two or three molecules 

of ATP per pair of electron, depending upon how the electrons from extra- 

mitochondrial NADH enter the mitochondria. If it is assumed that two molecules of 

ATP are formed in this process, we have:

2NADH + 2H+ + + 4P, + 4ADP 2NAD+ + 4ATP + ÔH^O (4.5)

The sum of Equations 4.6, 4.7 and 4.8 is therefore:

CgHigOg + 6 O2 + 36Pi + 36ADP ^  6 CO2 + 36ATP + 4 2 H 2O (4.6)

The second reaction to be considered is the general reaction for the ATP yield from 

glucose in a respiring cell. This reaction results from adding EMP reaction 

(Embden-Meyerhof-Pamas pathway) with two times TCA reaction (tricarboxylic 

acid cycle) with ten times the equation for the oxidation of all NADH + H^ 

generated in the EMP (two) and TCA reactions, and twice Eq. 1.2 (FADH2 

oxidation) giving:

CgH;20g + 38Pi + 38ADP ^  6 CO2 + 38ATP + 4 4 H2O (4.7)
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Since ATP hydrolysis has a standard free-energy change of -7.3-kcal/mol glucose, 

the free energy of the reaction is approximately:

= {3SmolATPI mo Ig lu cose)* (-7 3  kcal / mol) « - l l lk c a l  ! moXglu cose

This is 19 times the energy that the cell captured during glycolysis. As in glycolysis, 

energy retention is very efficient: Energy captured efficiency = 277/686 = 40%. If 

this figure is corrected for the non-standard concentrations within the cell a rather 

astounding efficiency estimate of greater than 70% results. Most of the remaining 

energy is dissipated as heat, which must be removed in some fashion to keep the 

temperature in the physiologically suitable range.

4.8.2 Energy Requirement for Biomass Formation: Y a tp

In the classical studies has been found that the biomass yield was related to the 

energy yield in the dissimilation. This led to the introduction of the term Y a t p  (g cell 

per mol ATP formed). This Y a t p  was calculated from product formation in 

anaerobic (batch) cultures and thus was an experimental value. As it was shown later 

that the observed Y a t p  maybe affected by maintenance, notably in the case of 

bacterial growth, a second term, Yatp̂ ^  (Stouthamer & Bettenhaussen, 1976) was 

introduced, which is Y a t p  corrected for growth independent maintenance energy. 

For yeast no large differences in between Y a t p  and Y a t p ^ ^  are observed (Harder 

and Dijkhuizen, 1982).

4.8.3 Parameter Values to Be Implemented

The parameters and the relationship between them have been explained. Using 

experimental data from synchronised cell cultures for the rate of consumption of 

oxygen (RCOXY) in S. pombe, the rate of production of carbon dioxide (RC02) and 

glucose consumption have been justified. It is possible to follow the stoichiometry 

of the reactions where these metabolites are being produced or consumed to find out 

the production of ATP throughout the cell cycle in the same form as it was 

calculated from experiments, or simply by calculating P/O ratios throughout the
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cycle. Therefore calculating the amount of ATP produced at different stages in the 

cycle is also a reality. The initial values for the chosen parameters are shown in 

Table 4.3:

PARAMETER S G2A G2B M G l

RCOXY 1.5169 1.7921 6.125x10’“̂ 1.86183uL.ceir 5.66x10'"

uL.ceir'min'' uL.ceir'min’’ (mol.ceir'.min’') 'min' (mol.ceir'.min’')

R C 02 -- -- 6.655x10'" --

(mol.ceir'.min’')

RCLUCOS -- -- 1.0403x10'" -- --

KgGluc.cell-l.hr’'

SMAX -- -- 4.5982x10’" -- 1.05371x10’"

(mol02.cell’') (mol02.ceir')

GLUCLIMIT 1.73x10-'^ g 1.73x10’"' g 1.73xlO'"g 1.73x10'" g 1.73x10'" g

glucose.ml'* glucose, ml’' glucose.ml’' glucose.ml’' glucose.ml'

TABLE 4.3

4 .9  INITIAL CONDITIONS AND Sm ax VALUES

The cell cycle phase duration and the number of probability distributions associated 

with each phase are presented in Table 4.4:

G2A G2B M G l S GO

Phase Duration (min) 40 62 9 25 18 125

Number o f  Transition Rules (G) 1 2 1 2 1 1

TABLE 4.4

The duration of the phases were calculated from the synchronisation experiments 

that Creanor carried out in S. pombe for oxygen consumption and has been 

explained above. The number of probability transitions was also allocated based on 

the oxygen consumption ratios presented in Table 4.2 where it can be seen that the 

uptake rate of oxygen peaks in G2B and Gl (see Creanor analysis). Data for the
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initial number of cells in synchronised experiments were not given in Creanor’s 

experiments but were inferred by running the model assuming perfect 

synchronisation (5x10^ cells starting at G2A). The next step was fitting the data 

obtained (in terms of oxygen consumption) to the experimental values given by 

Creanor, see Table 4.5:

Time (hr.) Experimental Value. Model Value. , LSQE
Oxygen consumption 

(mol.ceir^min*^)
Oxygen consumption 

(m ol.ceir'.m m ')
0.86 4.17 13.64 5.15
1.05 4.08 13.64 5.50
1.27 5.35 13.70 2.44
1.48 6.06 14.16 1.78
1.71 7.05 15.52 1.45
1.93 8.89 17.40 0.92
2.16 9.37 19.44 1.15
2.26 9.25 20.44 1.47
2.40 9.37 21.93 1.80
2.62 11.75 26.18 1.51
2.82 14.43 26.74
2.98 15.91 27.61
3.04 16.46 27.75
3.25 18.04 28.45
3.42 18.90 29.37
3.61 20.30 30.94
3.80 29.03 32.93
4.03 37.35 36.37 q3)o
4.26 42.03 40.57
4.46 42.03 44.27 6>od
4.63 70.13 47.19 DJi
4.68 63.39 48.04 Qng
4.82 83.44 50.33
5.05 77.77 54.25

TOTAL SUM OF LSQE (Highlighted data)

TABLE 4.5

Initially the number of cells calculated by the model was considerably different from 

the one obtained in the experiments. This is due to the fact that at the beginning 

there were no death rules included (to account for the number of cells dying or 

leaving the cycle) in the model, instead adjusting the proliferation factor PF (fraction 

of cells that make it throughout cytokinesis or average number of daughter cells per 

cell) the number of cells was fitted. The method employed to fit these data was the 

least square error.
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Once a reasonable fitting from the synchronised experiments had been obtained 

(total summa of square errors being equal to 3.09) the introduction of death rules, 

and transition probabilities breaking the synchrony were the steps forward towards 

the simulation of batch experiments. Such experimental data were taken from Fotuhi 

(2002) experiments on batch and repeated batch cultures of S. pombe.

4.10 FOTUHI EXPERIMENTS

Fotuhi (2002) conducted research in order to develop an automated repeated batch 

propagation system and used this system to validate theoretical findings from other 

researchers who had previously worked in S. pombe. Fotuhi identified the best batch 

and repeated batch-operating conditions for this system. The growth kinetics of 

S. pombe in this study were investigated and characterised experimentally against the 

Monod model. Experiments in flask, batch and repeated batch cultures were carried 

out. As follows a compilation of the batch experiments carried out by Fotuhi that 

were used for this dissertation purposes is presented here.

Batch Culture Age Glucose Level 

(%)

Inoculum Size

Shake Flask 24iir 2 8.9

Bioreactor 24hr 2 1.2

Bioreactor 24hr 2 8.8

Bioreactor 24hr 2 19.2

TABLE 4.6

Fotuhi also used the batch experiments to find out the effect of oxygen transfer on 

growth by varying the concentration and flow of oxygen in two separate batch 

experiments with the same initial concentration of glucose (Table 4.7). Despite the 

fact that during the batch experiments the outlet flow of oxygen and the oxygen 

dissolved were not measured, the result of these experiments was conclusive 

regarding growth in cell population. The results showed that those cell cultures with 

higher oxygen transfer rate achieved maximum cell concentration and higher
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Specific growth rate. These experiments and the analysis of death cells in other batch 

experiments were important in finding and understanding the rate at which cells die 

and the minimum values of glucose and oxygen that are necessary for the cells to 

cycle at normal conditions.

Parameter Batch Experiment A Batch Experiment B

Inoculum (cells/m l) 1.2 X 10*’ 1.7 X 10"

Oxygen Flow  rate 0.5 L/min 2 L/min

X max (cells/m l) 18.5x10" 73.7 X 10"

Time at X max (hr) 70 26

TABLE 4.7

The repeated batch experiments that will be analysed in Chapter 5 were all based on 

three sets of operating conditions using a harvest fraction (HF) of 90%, a dilution 

cycle time (DOT) of 18hr, HF of 80% and DOT of 12hr The data obtained by Fotuhi 

corroborated the importance of the relationship between HF/DCT combinations and, 

in part, validate the theoretical findings of Faraday (1994) and Araujo’s research on 

model based observer controller (MBO) in 1998. A compilation of the repeated 

batch experiments carried out by Fotuhi and used in this dissertation is presented 

here (Table 4.8).

Repeated Batch 

Culture in

HF DCT Re-suspension

number

Initial cell

concentration (M illion 

cells/ ml)

Bioreactor 90% 18hr 9 19.8

Bioreactor 90% 18hr 20 12.2

Bioreactor 80% 18hr 20 21

Bioreactor 80% 18hr 8 17.5

Bioreactor 80% 12hr 20 22

Bioreactor 80% 12hr 18 20

TABLE 4.8
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4.10.1 Adjusting the Model to Fotuhi’s Data

The first challenge faced by the new model was to simulate the behaviour of batch 

cultures of S, pombe. Such runs should fit Fotuhi’s experiments. In order to do so 

there were certain new parameters that had to be introduced, such as oxygen uptake 

kinetics, carbon dioxide consumption kinetics, glucose consumption rate and finally 

the introduction of a death rule for the S. pombe model.

Results showing the values for glucose consumption from Fotuhi compared with 

data from the S. pombe model are presented in both batch and repeated batch 

experiments. Batch experiments had in common an 18hr DCT and an average time 

to initiate next batch experiment (charge and discharge) of 6-12min. The analysis of 

this experiment allowed for the inclusion of a lag phase and a death phase presented 

as follows.

4.11 DEATH RULE, D PHASE

To account for the number of cells dying in every batch a constant percentage of 

death cells per hour was included. This percentage was triggered by reaching critical 

levels of oxygen dissolve (according to mass transfer module) and a minimum value 

of glucose concentration per cell in the bioreactor. Cells die in a bioreactor either 

because they present a genetic failure, having failed to successfully duplicate their 

DNA sequence or because they get old. Cells also die due to collisions with the 

paddles of the stirrer in the bioreactor and stretching when a formation of foam 

collapses, very common in animal cells. The shape, geometry and roughness of the 

material the paddles are made of are factors to be considered. Collisions with the 

walls of the reactor are also a common cause of cell death. All of these factors put 

together (oxygen flow rate, speed of the stirrer, paddles geometry and material) 

remain constant in every experiment and they are responsible for cell death in 

general, representing a constant percentage of the cell population. These cells drop 

out of the cycle, and accounted for in a D phase or death phase placed in the model. 

The only factor that will change depending of the conditions of the experiment is the 

glucose concentration. The minimum amount or critical value of glucose will be
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reached sooner in experiments with a higher initial cells number hence a larger 

population to deplete the medium they are being fed. However it was proven that the 

minimum amount of glucose per cell was the same in all cases. This issue will be 

discussed in Chapter 5.

4.12 LAG PERIOD IN BATCH AND REPEATED BATCH EXPERIMENTS

From Fotuhi’s experiments it was noticeable that at the start of every batch and 

repeated batch experiment there was a delay for a period of about half an hour at the 

time before the cells would start cycling and carrying out normal activities in the 

reactors. This period of time is associated for some researchers with the time the 

cells need to adjust to the new medium. In the case of batch cultures, cells have 

usually being taken from a shake flask where they have been cultivated and then re­

suspended in a batch reactor with new medium to start the batch.

In order to justify this period of time a lag phase was introduced, in other words 

cells do not start cycling immediately, cells drop into the cycle from a GO phase or 

lag phase. This GO phase is 30 minutes long and is represented within the model as 

an array with an evenly distributed number of cells throughout it. Then for a period 

of 30min cells will be introduced into the cycle in equal numbers after known equal 

periods of time.

4.13 REPEATED BATCH EXPERIMENTS (FOTUHI, 2002)

The basic principle for repeated batch experiments is to grow a batch culture for a 

fixed period of time (DCT), after which a known fraction of the cells in the reactor is 

harvested (HF). The remaining fraction in the reactor will be then the initial amount 

to start a new batch that will be fed with fresh medium. This process is then repeated 

several times (cycles number or re-suspension number). The operating parameters 

DCT and HF are kept constant throughout all cycles. Fotuhi (2002) carried out this 

type of experiments looking for the best values for DCT and HF that will generate 

the best yield and the most homogeneous behaviour in a repeated batch experiment.
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4.14 SENSITIVITY ANALYSIS FOR THE 5. pombe MODEL

In order to analyse the influence the main parameters have on the model, a 

sensitivity study was carried out. The sensitivity analysis was done by comparing 

the results from the model with batch mns carried out by Fotuhi 2002 in batch 

reactors with an initial cell number of 5x10^ million cells, a glucose concentration of 

2% and over a period of time of 24hr The analysis was conducted by varying one 

parameter at the time while keeping all the others constant. Then a summa of the 

least square errors compared with the parameters values for which the model had 

reached a minimum is calculated.

The parameters were varied 5% above and below the initial number set up for those 

parameters in the model. The criterion used to choose the parameters were based on 

the impact these parameters would have on the population balance of the model and 

the variation they would introduce in the model regarding the experimental values. 

Therefore oxygen consumption was a valid parameter since the model had been 

adjusted based on experimental values gathered by Creanor (1978) as explained 

before in this chapter. Other metabolic parameters such as carbon dioxide 

production, glucose consumption and ATP generation were dependent upon oxygen 

consumption due to the stochiometric factors. The results of changing these 

parameters would be in agreement with the results obtained by changing oxygen 

consumption in the experiments and the model. Therefore oxygen consumption was 

the only metabolic parameter consider for this study. Furthermore, the importance of 

modifying the oxygen consumption at the Gl/S and the G2B/M checkpoints is 

linked to the regulation of the probability transitions ( S m a x )  and the amount of cells 

that will ‘transit’ to the following stage of the cycle once they have completed the 

necessary tasks (achieving cell size or DNA synthesis). It was also considered that 

the variations in oxygen consumption for this analysis would have to be small 

(especially below the original value) since our purpose is to simulate an aerobic 

system and small values of oxygen consumption would lead to a different process 

and a different metabolic pathway than the one studied here.
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The initial number of cells used to fit Fotuhi’s data was obtained by running the 

model over a long period of time to obtain a very well distributed population of cells 

around the cycle extracting the number of cells in every phase after this time. The 

idea of changing the initial number of cells in every phase was to visualise the 

importance of cell population and its distribution around the cycle. The initial 

number of cells in different phases was then affected. The impact they would have in 

the outcomes of the model would be reflected in the number of cells arriving at the 

checkpoints, the number of cells at the end of every cycle, and subsequently the 

overall amount of cells for every batch. Therefore changing the values at every 

phase at the time should give us a reference point about the importance of cell 

distribution in the cell cycle and the importance of individual phases within the 

cycle. Changing the cell population numbers in different phases seems to be a very 

sensitive parameter. The response to these variations will be discussed in the 

Chapter 5.

0
+  A N D  -

% Error in O xygen consumption 
(Creanor)

+  A N D  -
Oxygen consumption rate 
(+ /-)5 % A T G 2 B -M 5.934 5.933 0.0169 0.000
Oxygen consumption rate 
(+/-) 10% AT G2B-M 5.937 5.935 0.0674 0.0337
Oxygen consumption rate 
(+/-) 5% AT G l-S 5.96 5.982 0.455 0.826
Oxygen consumption rate 
(+/-) 10% AT G l-S 6.062 6.101 2.174 2.832
Cells starting in G2A phase 
(+/-) 5% 5.990 6.296 0.961 6.118

Cells starting in G2B phase 
(+/-) 5% 8.700 7.883 46.637 32.867
Cells starting in M  phase 
(+ /-) 5% 16.340 13.760 175.409 131.920

Cells starting in G l phase 
(+/-) 5% 21.390 17.650 260.526 197.489

Cells starting in S phase 
(+/-) 5% 11.230 10.660 89.280 79.673

TABLE 4.9
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4.15 CONCLUDING COMMENTS

Throughout this chapter validation of the new code used in CelCyMUS and the 

inclusion of experimental data to justify the assumptions taken in the S. pombe 

model have been presented. Data regarding the validation of the new code (Fortran 

95) was presented by simulating the Smith and Martin model and by reproducing 

data from the mm321 hybridome cell line previously obtained by Faraday (1994). 

The results of these tests are discussed in Chapter 5.

Once the model was tested against the old version, this research moved into 

developing a model for the organism of interest S. pombe. Analysis of the 

synchronisation methods (vital for data collection) was presented in detail. Within 

the synchronisation experiments, those involving S. pombe and the consumption of 

oxygen in particular (Creanor, 1978) were selected and thoroughly studied due to 

the quality of data, the fact they were specifically for S. pombe and the importance 

of such parameter (oxygen consumption) in testing the newly introduced mass 

transfer module in the CelCyMUS framework. The mass transfer module accounts 

for oxygen (and any other metabolite and their reactions) dissolved in the liquid and 

gas phases of the reactor at any given time. Results from the mass transfer module 

explained in Chapter 3 and introduce in Chapter 4 will be discussed in Chapter 5. 

With the new tools fitted in the CelCyMUS framework and the gathered data from 

S. pombe, final details such as the inclusion of a death phase (D phase) accounting 

for cell deaths and washout (in the case of repeated batch) and a lag phase were also 

included. The next step was the to test the newly developed S. pombe model in a real 

system and for those purposes this dissertation adjusted the model to reproduced 

data generated within the research group at Surrey University by Fotuhi (2002). The 

data generated by Fotuhi in batch and repeated batch reactors allowed this research 

to test the model against real systems. Finally a sensitivity analysis in the S. pombe 

module on the parameters chosen to regulate the movement of cells between phases 

of the cell cycle and the importance of initial number of cells and cells distribution 

was carried out. The outcome of this analysis is discussed in Chapter 5 and 

expanded in Chapter 6 in future work as it opens up this research into new 

conclusions about this particular model.
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CHAPTERS 

DISCUSSION OF RESULTS

5.1 INTRODUCTION

The following chapter compares the results obtained from the model for the 

S. pombe cell cycle with those reported in literature. Firstly the results regarding the 

reproducibility of the revised framework of CelCyMUS in Fortran 95 are compared 

with those from the model previously developed by Kirby and Faraday (1994) for 

the mm321 hybridoma. Once the reproducibility of CelCyMUS was checked a 

comparison was made between data generated for the new module for S. pombe and 

experimental batch and repeated batch runs from Fotuhi (2002). These data were 

fitted and found to be in good agreement. Discussion and comments regarding the 

repeated batch experiments are also presented and compared with lab data. Finally 

analysis on the sensitivity study carried out on the model parameters is presented 
here.

5.2 TESTING THE ALGORITHM

The results obtained in the CelCyMUS updated version of Fortran 95 have been 

compared with those gathered from a previous Fortran 77 version where the 

CelCyMUS model had been used to describe the behaviour of a mouse - mouse 

mm321 hybridoma cell line. The advantage of the new version is that it can be 

included in a PC rather than running the program in a supercomputer due to the new 

Fortran 95 utilities, which made it faster (faster compilation times), more flexible 

and code portable. The amount of memory required to run the program is just the 

quantity needed. Dynamic allocation of arrays also allows us to run the program for 

different conditions and cycle times, which could be very useful when simulating 
mutants.
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The runs carried out for the new versions of the model correspond to population 

balances of the mm321 cell line with four conventional phases (S, G2 M and Gl), 

with the Gl phase divided in two parts (Gla and Gib), with a constant and variable 

probability transition (Smith and Martin 1973) see Graphs 1 and IB (Appendix B), 

cells leaving Gib phase and moving into S phase. Consumption of glutamine at Gl 

phase is considered taking into account hydrolysis of glutamine (ih—8.917x10'̂  

mg.ml \hf )̂. Production of Immunoglobulin G antibody to paraquat and consumption 

of glutamine during GIB and S phases of the cell cycle were also reproduced and 

can be seen in Graphs 2 and 3 (Appendix B).

Resolution or the ability of looking in detail at every single phase of the cell cycle is 

one of the main advantages of CelCyMUS. This can be appreciated in graphs 4 to 8 

of the Appendix B where a complete sequence for a synchronised cell culture going 

through every single phase of the cell cycle starting in G2 phase is observed. In 

these graphs the total number of cells in every phase is plotted against reactor time.

The results for the second task where obtained from an mm321 hybridoma cell line 

simulating a single run in a batch reactor. These data were compared with those 

obtained from the old version of the model. Here the probability transition is 

dependent on the cumulative amount of glutamine a cell has consumed since 

entering this phase. This transition rule applies only for GIB phase as stated in the 

equation below (Faraday, Hayter and Kirkby 2001):

r  ( t  n ( t  T  ) Cfrt T ^^GlB(t.x01B) ^ C G L U t(^ > ^ G 1 b )  /C  1 \

^C G L U #>  % I B / ~  ̂ MAX ^

Where C cg l u t  i s  the intra-cellular concentration of glutamine (kgcelf^) and S m a x  

the maximum cumulative amount of glutamine a cell can consume before it must 

initiate S phase (Kgcell’ )̂. For the D phase, it is assumed that the rate of transition is 

dependent upon the prevalent ammonia concentration as follows (Faraday, Hayter 

and Kirkby, 2001):

^ 2 D  (^Z) ’ )) (̂O) “  ^ A M M ^ A M M ^ D  D )  (^  ’2 )
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Where k a m m  is a constant determined empirically and C a m m  the concentration in the 

growth medium (kg.m'^).

Graph 9 (Appendix B) shows cells in Glo phase. Cells remaining in this phase are 

introduced into the cycle in phase GIB. This is a continuous process of ‘feeding 

cells’ (1x10^ cells) into GIB phase, which last for 14hr.

The number of cells decreasing as a function of time in this phase (GIO) can be 

readily appreciated. Cells start consuming glutamine immediately after entering 

GIB phase (Graph 10 Appendix B). Once they have achieved an Smax (maximum 

concentration of glutamine per cell) following the probability transition mentioned 

in Equation 5.1 they leave the phase going to the S phase where they transit 

normally as the only transition rule is age (cells getting older, ageing) see Graph 11 

of (Appendix B). Graph 12 shows cells transiting through the G2 phase. During 

phase M a normal flow of cells is seen as expected with duplication in the number of 

cells as a consequence of Mitosis and cell division right at the end of the phase 

(Graph 13). Cells in GIA phase are recovering from mitosis and start accumulating 

glutamine (from the medium. Graph 14, Appendix B). The consumption of 

glutamine from the medium and the production of Antibody are carried out in phase 

GIA and GIB, the data obtained from the new version for both cases compare with 

the old one are shown in Graphs 14 and 10 (Appendix B).

5.3 DISCUSSION OF DATA REPRODUCIBILITY OF UPDATED VERSION

The results obtained from the updated generic framework of CelCyMUS are 

comparable with those of the previous version. The predicted cell cycle distribution 

from the mm 321-hybridoma cell line shows the results obtained for the previous 

version of the program. Such graphs (Graphs 1 to 8, Appendix B) were plotted for 

constant and variable probability transitions following the Smith and Martin model. 

Cells being released to start the cycle in G2 phase and executing transition from Gib 

to S phase, assuming that the growth of cells occurs in a well mixed batch bioreactor 

and in an infinite period of time with no death phase.
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Predictions of the cell age population for every phase where the de-synchronisation 

process can be appreciated and the flow of cells during the GlB/S cell can clearly be 

seen is presented in Graphs 4, and 8 (Appendix B). These figures represent the 

ability CelCyMUS has of giving ‘resolution’ in the results, being capable of locating 

the total number of cells in each phase of the cell cycle at any time. Once again these 

graphs are the result of simulations predicting the behaviour of the mm321 cell line 

(1 xlO^ cells starting in G2 Phase) following a constant probability transition (0.03 

cell/min) according to the Smith and Martin model.

For the second part of the runs (Graphs 9 to 15 Appendix B) a batch system is 

simulated for a mm321 cell line culture following a specific transition rule during 

GIB phase based on the cumulative concentration of glutamine. The graphs from 

the new CelCyMUS version overlap the ones from the old model showing 

reproducibility in the data.

5.4 THE MASS TRANSFER MODULE RESULTS AND THEIR ANALYSIS

A mass transfer module accounting for the interactions of oxygen and carbon 

dioxide in the gas and liquid phase has been introduced as explained in Chapters 3 

and 4. The model considers the reaction of carbon dioxide into bicarbonate due to 

generation of CO2 and the consumption of oxygen by cells in batch and repeated 

batch bioreactors. The introduction of this module was necessary not just to 

reproduce data from Creanor’s experiments on oxygen consumption in synchronized 

S. pombe cells throughout the cycle but also to equip CelCyMUS with a new tool to 

account for interactions between gas and liquid phases in batch and repeated batch 

bioreactors. The final outcome of this module was the fitting of parameters such as 

RCOXY and RC02 in simulation of batch and repeated batch experiments.

The behaviour of oxygen consumption in batch and repeated batch cycles can now 

be predicted for desynchronised cells as shown in Graphs 1 and 2 from the appendix 

C. As it can be seen here Graph 1 displays the results for oxygen consumption in 

synchronised cultures once the parameters have been fitted to the experimental data. 

It is worth mentioning here that the area fitted for our model purposes corresponds
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to the periods between 2.5 and 4.5hr, such assumption was based on the fact that the 

first 2hr synchronised growing is affected by a lag phase of about 45min and after 

4.5hr cells start desynchronising rapidly.

Carbon dioxide production can also be predicted the pattern followed by CO2 in 

synchronised cultures shows a single increment per cycle rather than the two per 

cycle seen in oxygen consumption. This can be explained by assuming that most of 

the oxygen transformed into carbon dioxide comes mainly from respiration from the 

S. pombe cell related to assimilatory processes (production of biomass) that account 

for cell size growth. The consumption of oxygen increases when the cell transits 

throughout G2B phase due to the acceleration in the uptake rates of other 

metabolites such as glucose, proteins and the generation of energy in the form of 

ATP, all of these factors together accounting for elongation of the cell before 

undergoing mitosis. The second point where an increment in the production of CO2 

was expected is the Gl-S transition. Here despite the fact that there is an increment 

in the consumption of oxygen the period over which it occurs is very short (9min) 

when compared with the increment in the G2B-M transition (40min). Also the 

reactions that take place generating carbon dioxide do not occur instantaneously, 

causing the increment in CO2 to be carried over into the next phase (S) where cells 

are undergoing cytokinesis reducing metabolic activity to a minimum. In conclusion 

a second increment in the production of carbon dioxide in the cell is not easily 

visualised. Right at to this point the cell has been considered as one individual cell 

and the rate at which carbon dioxide is being produced was considered to be for one 

cell only, from this point (S phase) onwards the rate of carbon dioxide production 

will be halved since a new daughter cell is bom and cell population is duplicating.

Carbon dioxide plays an important role in the timing of cell cycle events in S. pombe. 

Novak et a l (1986) observed the shortening of G2 phase in the wild type of cells by 

switching off CO2 and introducing nitrogen into the system removing CO2 and 

blaming the slow down of anapleurotic fixation as responsible for this effect. Carbon 

dioxide inhibits mitosis in S. pombe and has an effect on the growth rate and cell 

size before mitosis. The mass transfer module included in the S. pombe model could 

also allow fiirther testing in this type of experiments.
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5.5 THE INTRODUCTION OF GLUCOSE CONSUMPTION IN THE 

MODEL AND COMPARISON WITH EXPERIMENTAL DATA

Consumption of glucose necessary for growth processes related to cell size has been 

linlced via oxygen consumption and based on studies carried out by Milbrdat and 

Hofer (1987) on the transport of metabolites from the medium across the membrane 

cell. They estimated the maximum transport velocity for D-glucose as 

VT=90mnol.min’^mg"^ As explained before (Chapter 4) the G2B/M transition is a 

consequence of the consumption of glucose. The values calculated when fitting the 

model with glucose uptake rates were of the order of 2-3 times those estimated in 

literature under slightly different conditions. This difference as the value used in the 

model comes from experimental data in desynchronised cultures. Analysing 

concentration of glucose from the medium, critical value rates of glucose were found 

fi'om Fotuhi’s experiments that are responsible in part for the rate of cell death in the 

cycle. Below this limit cells would leave the cycle to go into Glo phase where they 

will reduce their metabolic activity to a minimum, stop cell division and remain thus 

for a certain period of time until conditions change.

5.5.1 Analysis of Death Rule and Death Phase

Two critical values of glucose were found by analysing all of the final 

concentrations and final values of cell number in 8 batch experiments with 17.5x10^ 

million cells/ml, HF=80% and DCT=18hr. The first critical value was calculated as 

the average of several batches in a repeated batch experiment with a value of 

1.78x10'̂  ̂ g glucose/ml per cell (see Table 5.1). Cells that reached this state are 

accounted for in the model with a constant rate of 2% and are taken out right at the 

end of G1 phase. Cells in bioreactors that reach this low level of glucose in the 

medium will start to join a GO where they will remain before commencing a meiotic 

cell cycle. If the glucose levels continue to drop until values around 1.73x10' '̂  ̂

g glucose/ml a percentage of cells in the reactor will automatically die. Cell death is 

also affected by the common factors for cell death in a reactor such as friction with 

the paddles, bioreactor walls, and those cells which become fixed in the M phase 

due to genetic damage unable to go tluough cytokinesis and finally die.
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Initial C ell 

N um ber x 

10^ cell/m l

F inal cell 

N um ber x 

10^ cell/m l

Initia l & F inal glucose

C oncentrations

(g.glucose/m l)

C ritical G lucose 

rate (g.glucose/ 

cell m l X 10"*̂ )

B A T C H  1 17.5 104 16.50 2.80 2.69

B A T C H 2 29.3 146 17.19 1.89 1.29

B A T C H 3 35 134 17.14 3.12 2.33

B A T C H 4 39 138 16.66 1.83 1.32

B A T C H 5 42 133 16.60 2.12 1.59

B A T C H 6 48.5 132 16.22 2.50 1.89

B A T C H ? 46 138 15.89 1.88 1.36

B A T C H 8 ' 44 139 16.12 2.44 1.75

TABLE 5.1

5.6 BATCH DATA COMPARISON AND ANALYSIS

Experimental data gathered from Fotuhi were reproduced from simulations of 

experiments with different initial cell numbers (inoculum size), however glucose 

concentration was kept constant throughout the experiments. The experiments for 

1.2, 8.8, and 19.2x10^ cells have been named A, B and C respectively (Table 5.2).

Initia l cells N um ber x  10® G lucose C oncentration (% ) D C T  (D ilution Cycle  

T im es in hr)

Exp. A 1.2 2 24

Exp. B 8.8 2 24

Exp. C 19.2 2 24

TABLE 5.2

Graphs 3-8 from Appendix C show the simulation for cell population in batch 

reactors for periods of time of approximately 24hr. It can be seen that the trend 

generated for the model data overlaps the experimental results with great accuracy.
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The assumption of two checkpoints generating de-synchronisation and a gap phase 

at the beginning of each experiment seem to have good effect in the final prediction 

for cell number. It is worth remembering that for modelling purposes the model was 

fitted with an initial number of cells estimated after having run the model for an 

initially synchronised culture of S. pombe during a period of 20hr. After such time a 

more homogeneous distribution of desynchronised cells across the different phases 

was obtained and used as an initial cell number (see Table 5.3).

CellsSPhase CellsG2APhase CellsG2BPhase CellsM Phase C ellsG l Phase

Cell Distribution (%) 18.97 35.33 30.02 5.41 10.31

TABLE 5.3

This model run was carried out since data for the cell population distribution 

throughout the cell cycle were not available. The inoculum sizes where chosen by 

Fotuhi (2002) when trying to find the best conditions for cell growth. These 

experiments demonstrated that when having the same age of inoculum, maximum 

cell concentration and growth rate rise by increasing initial glucose concentration.

In accordance with experimental data, when keeping constant the concentration of 

glucose and increasing initial cell number, glucose will deplete faster accompanied 

by an increase in the final number of cells. It was also expected that a slight increase 

in the value of (p) growth constant (at constant glucose concentration) would be 

seen due to the effect of inoculum size. In fact Fotuhi’s experiments reveal that cell 

concentration and specific growth rate increase when increasing initial conditions; 

cell number and glucose concentration. The model was able to reproduce these data 

and also to simulate the behaviour of cell populations at different values of glucose 

concentration (2 and 1% glucose).

Values for glucose consumption show a well-defined pattern in the model following 

experimental data. Furthermore the rates of consumption of glucose throughout 

Fotuhi’s batch experiments were analysed and compared with the glucose uptake 

rates calculated from Creanor’s experiments. The glucose values calculated in the 

model where obtained indirectly via oxygen consumption (O2) and carbon dioxide
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(CO2) production as an indicator of energy generation related processes in the cell 

cycle. Once the glucose uptake rate per phase of the cell cycle was known, this was 

used to reproduce the behaviour of desynchronised batch cultures from Fotuhi’s 

experiments.

The comparison between the experimental glucose consumption rates and the 

predicted glucose consumption rates from the model is shown in Appendix C 

(Graphs 9-11). In every single case the shapes of the curves were in agreement with 

the experimental patterns taken from batch cultures. However differences in the 

actual value of consumption rate where noticeable. Graph 9 displays the results for 

batch experiments in a culture with 1.2 x 10̂  cells inoculum and 2% glucose (Exp, 

A). Here whilst the shapes of the graphs were similar, the actual peaks (highest 

values in glucose consumption rate) differ from each other despite being in the same 

order of magnitude (4.40x10'^ for batch experiments and 3.96x10'^ g.gluc.cell"\min"̂  for 

the model).

Graph 10 describes a bi-modal behaviour in the experimental glucose consumption 

rate for a batch culture with 8.8 xlO^ cells inoculum and 2% glucose (Exp. B), the 

two peaks with glucose uptake rate values of 1.12x10'^ and 5.9x10'^ g^c.cell'*jnin' 

being placed at 10 and 20hr, respectively. The simulation predicted for the model 

also displays both peaks this time being placed at 5 and 20hr with a noticeable gap 

with respect to the time of appearance for the first peak at lOhr. The value of the 

glucose consumption rate here is very similar about 1.02x10'^ g.gluc.ceir'.min'^ for 

each peak. It is also worth pointing out that whilst for the model the two highest 

values of glucose consumption rate appear to be the same, in the experimental case 

the values of glucose consumption rate in the first peak (5hr) is almost reduced to 

half of the initial value in the second peak.

Graph 11 displays the results for a batch culture with an inoculum size of 19.2 x 10̂  

cells and a glucose 2% concentration and compares (Exp. C) glucose consumption 

rates both from the model and experimental data. A mono-modal type of shape is 

obtained this time; here the glucose consumption rate from the model starts at a 

higher value than the experimental rate peaking at the same time (7hr) but with a

85



Discussion o f  Results

lower value (9.35x10"^ g.gluc.ceir^min'^ compared to 1.18x10'^ g.gluc.cell'^mm )̂. 

It can also be seen that for all three experiments the initial glucose consumption rate 

calculated from the model is higher than the experimental rate. It then peaks at lower 

values throughout the experiment but both coincide at the time glucose is depleted. 

These differences in results are due to the initial number of cells in the cultures and 

their distribution in the different phases of the cell cycle. The fact that for number of 

cell in each phase of the cell cycle were not available meant that an initial number of 

cells had to be assumed (see Table 5.2) hence some of the differences with the 

experimental data. However, since the glucose values of consumption rate were 

estimated from metabolic and stoichiometric analysis from synchronised cultures 

this can be a platform to infer and predict upon other variables from the cell cycle.

In fact the variables plotted in the graphs were the result of indirect measurements 

obtained from oxygen consumption data estimated from Creanor experiments (1978) 

in synchronised cultures. These data allow accurate metabolic predictions to be 

made for (oxygen consumption, glucose consumption and ATP production, carbon 

dioxide generation) in each phase of the cell cycle. The P/O ratio was estimated for 

every single phase in the cycle and values of ATP production can be reproduced for 

the model. The behaviour of ATP production in the cycle can also be simulated 

despite the fact that there were no experimental data to compare with, glucose 

consumption and cells number from the model fitted the lab data making them good 

initial parameters to link other related metabolic variables from the cycle, thus 

allowing other variables to be studied throughout the cycle with a good degree of 

accuracy. The metabolic and biochemical processes that justified this assumption 

were previously explained in Chapter 3 (energy balance).

5.7 REPEATED BATCH SIMULATIONS

Experimental results of aerobic repeated batch cultivation in bioreactors were 

obtained by Fotuhi (2002). In his study two experiments were performed at 90% HF 

and 18hr DCT, two other at 80% HF and 18hr DCT and two more carried out at 

80% and 12hr DCT. These experiments performed consecutively up to 22 times by 

using an automatic and novel feeding system developed by Fotuhi. The S. pombe
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model then simulated the experimental data obtained here. In order to keep a logical 

order the simulations carried out for the S. pombe module were based on the Fotuhi 

(2002) experiments for repeated batch.

Fotuhi ran several experiments looking for values of harvest fraction, dilution cycle 

times and initial cell number that would produce the best values of biomass 

production per cycle. In order to find the impact of HF and DCT in repeated batch 

cultures, experiments were carried out at constant HF and different DCT, Fotuhi 

(2002) also performed another set of experiments with constant DCT varying HF. 

The effect of changing the HF while keeping DCT constant showed that when 

increasing HF the final cells number in a repeated batch reactor throughout a number 

of cycles will decrease. On the other hand final concentrations of glucose increased 

while increasing HF. However the yield for both experiments turn out to be similar. 

The changes in cells number and glucose concentration throughout the cycles were 

successfully achieved by S, pombe. The model values represent a good accurate real 

fit from the experimental data.

The second set of experiments kept HF constant while changing DCT. These runs 

showed that when decreasing DCT the final number of cells increased as did 

biomass production per cycle when using more glucose. The S. pombe model 

follows the experimental patterns throughout. An advantage from the model is the 

accuracy when predicting values from intermediate batches or cycles.

5.7.1 Analysis of Harvest Fraction in Experimental Data

It is necessary to point out that the experimental values of HF fi*action in the entire 

repeated batch experiments did not correspond to the expected initial cell number 

and the glucose concentration at the start of every new batch. A comparison between 

the reported value from Fotuhi and the corrected values taking into account the real 

HF in repeated batch experiments is presented in Table 5.4.
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Repeated Batch Experiment with 1.65x10® initial cell number, HF= 80%, DCT=18hr

Batch

number

Initial and Final cell 

number/ml xlO®

Initial and Final Glucose 

concentration (g/ml)

Expected  

glucose cone, 

and % error

Expected cell 

numberxlO® 

and %error

1 1.65 16.38 15.70 4.37 - - - -

2 2.77 20.08 15.88 4.50 16.87 5.89 338 15.45

3 5.79 25.1 15.65 2.28 16.90 7.40 4.02 -44.17

4 5.23 33.13 15.54 2.01 16.46 5.57 5.02 -4.18

5 7.63 49.35 15.47 238 16.40 5.68 6.63 -15.15

TABLE 5.4

Here it is clear that at the start of a new batch after taking out the harvest fraction 

and introducing fresh medium the reported values do not correspond to what it 

should have been under controlled conditions. The errors introduced in the 

concentration of glucose at the start of a new batch are evident. The experimental 

values of glucose are below the estimated values after adding the new medium. The 

experimental values of initial cell number in every batch also differ from the 

estimated by the correct HF.

Repeated Batch Experiment with 12.2x10® initial cell number, HF=80%, DCT=18hr

Batch

number

Initial and Final cell 

number/ml xlO®

Initial and Final Glucose 

concentration (g/ml)

Expected  

glucose conc. 

and % error

Expected cell 

number xlO® 

and % error

1 12.20 89.30 18.41 3.6 - - - -

2 20.21 92.20 18.79 3.1 16.72 12.38 17.86 -12.54

3 17.30 100.7 18.49 2.35 16.62 11.25 18.44 16.18

4 26.60 120 18.32 0.43 16.47 11.23 20.14 -32.07

5 26.70 122.7 18.73 0.46 16.09 16.44 24.00 -11.25

6 29.30 134.35 18.03 0.47 16.09 12.04 24.54 -19.40

TABLE 5.5
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Another example of the differences introduced in the HF fraction appears illustrated 

in Table 5.5 where from a set of 22 repeated batches the first 7 batches are 

considered to illustrate the error. As it can be seen the error introduced by the HF is 

in average 12.67% for the glucose concentration and 16.29% for the cell numbers.

The expected values for cell number and glucose presented in Tables 5.4 and 5.5 

were the values calculated for the model did not match the initial number of cells 

neither glucose concentration introduced experimentally for the next batch. To solve 

the problem the values of numbers of cells harvested and the new value of glucose 

concentration at the beginning of every batch had to be introduced as a separate file 

in the program. Based on the actual number of cells at the beginning of every batch 

the real value for HF was then recalculated and fed back to the program in order to 

estimate a more accurate initial number of cells for the next batch. It is probable that 

these fluctuations in the experimental values reported by Fotuhi (2002) of HF 

between separate batches, were the consequence of malfunctioning in the electronic 

systems that controlled the pumping out of the harvested fraction introducing fresh 

medium.

5.7.2 Comparison between Repeated Batch Experiments and Model 

Simulations

The comparison between the simulations for repeated batch experiments and the

S. pombe model are presented in Appendix C Graphs 12 to 17. Graphs 12 and 13 

compare the results for a repeated batch experiment with an initial cell number about 

17.5x10^ cells/ml, HF=80% and a DCT=18hi' for cell number and glucose 

concentration respectively. It can be seen that in the first batch the final number of 

cells calculated by the model is slightly higher than the one reported experimentally, 

most probably due to the initial distribution of cells assumed by the model. From the 

second batch onwards the model tends to match the cell number obtained 

experimentally.

The discrepancies between the initial number of cells in the model and the reported 

experimentally are expected since this is a very difficult parameter to control. The
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final number of cells after harvesting every batch is almost a random figure (10-20% 

deviation in most cases) around the desire value since the cells are spread all over 

the reactor and harvesting a percentage of the cells does not guarantee an exact 

number of cells left for the next batch. The model however works with exact 

estimated number of cells after harvesting assuming that the percentage left to start 

the new cycle is an exact percentage.

Despite the model taking exact number of cells at the start of a new batch, the results 

for final number of cells are very close to the experimental data and even closer 

when considering the final values of glucose concentration (Graph 13, Appendix C).

The fact that the final number of cells and the final glucose concentration estimated 

by the model were very similar to the reported data leads to the conclusion that there 

is in fact a critical value of glucose concentration were the cells switch off their 

metabolic activity before being arrested in a GO phase where they remain until 

conditions improve otherwise they leave the mitotic cycle to start meiosis. In the 

case of repeated batch the conditions are critical enough to arrest cells in a GO phase 

but never to go into meiosis. This also explains the existence of a lag phase at the 

beginning of every batch were cells are re-suspended in new medium. Cells in GO 

phase will re-start cycling once they have sensed that conditions (nutrients 

concentration, temperature etc.) are normal for them to start again. This lag phase 

(about half an hour) is clearly seen in most of the repeated batch experiments 

presented here. There are critical values of glucose concentration which produce an 

increase death rate since cells undergoing mitosis, or synthesising DNA will not 

have the required amount of nutrients to carry out these activities.

Graphs 14 and 15 compare the simulations from the model with experimental data 

for repeated batch experiments with an initial number of cells 21x10^ cells/ml, 

HF=80% and a DCT=18hr for cell number and glucose concentration respectively. 

The results from the model in this particular experiment are the closest of the three 

experiments presented here. Only in the last five batches of this experiment do the 

simulated results vary from the experimental. This is most probably due to the fact 

that the initial cell number also changes and as seen from the sensitivity analysis
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presented in Chapter 4 initial cell distribution has a big effect in the final outcome of 

the model. In Graph 15 the comparison for glucose concentration also displays very 

close approximation from the model to experimental data. However most of the 

experimental final values of glucose concentration are below the ones estimated for 

the model. Once again cell distribution might be responsible for this, since cells can 

deplete glucose faster in some phases of the cycle (G2B and G l) than others.

Graphs 16 and 17 compare the simulations from the model with experimental data 

for repeated batch experiments with an initial number of cells 12.2x10^ cells/ml, 

HF=80% and a DCT=18hr for cell number and glucose concentration respectively. 

The results for this simulation are the less accurate from the three experiments 

simulated. Here the final cells number calculated by the model in every batch is 

lower than the one reported experimentally. It is also noticeable that final values of 

glucose concentration estimated by the model are higher than the ones in 

experimental data. It is clear here that the critical value of glucose is reached faster 

in the model than the one in the bioreactor, stopping cell division, decreasing the 

final number of cells at the end of the batch and leaving final values of glucose 

concentration in the model higher than the ones shown in data from the bioreactor. 

All this indicates that the assumed value in the model of glucose consumption does 

not match the one seen in the bioreactor for this experiment. It is unlikely that cell 

distribution has an effect in the results since the patterns for glucose concentration in 

the experiment constantly differ from the ones in the model.

5.8 DISCUSSION ON THE SENSITIVITY ANALYSIS

From the sensitivity analysis presented in Chapter 4 can be seen that parameters that 

have an influence in metabolic behaviour such as oxygen (and all the other 

metabolically linked to it) have little effect on the final outcome of the model when 

compared with the cell distribution around the cycle. Increasing the consumption 

rates of oxygen that regulates the transition between phases has a minor effect when 

compared with the cell number at the start of every phase. The closer to the check 

points (G2B/M and Gl/S phases) the bigger the impact in the final cell distribution 

that is expected since checkpoints determine the flow of cells around the cycle. The
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biggest impact is clearly in the S phase with a 197.49% error. This is mainly due to 

cytokinesis occurring in this phase. The duplication in the number of cells at this 

stage has a big effect in the cycle. Increasing or decreasing the number of cells in 

any percentage at this phase has a direct implication in how successful cells are 

giving birth to a new daughter cell and the consumption or production of any 

metabolites in the cycle. G2A is clearly a recovery period after cytokinesis with only 

a 6.12 % margin error. G2B has a higher impact but this is dissipated by the length 

of this phase (almost 70%) of the cell cycle. M and Gl phases are of very short 

duration in the cycle, but the fact that they are part of both checkpoints (G2B/M and 

Gl/S) makes them more important. Their short duration as phases that control the 

transition of cell between different stages of the cycle makes them more important. 

The sensitivity analysis suggests that varying cell number at the Gl/S checkpoint is 

the most critical part of the S. pombe model.

5.9 CONCLUDING COMMENTS

In this chapter the discussion of results presented in Chapter 4 has been studied. 

First a demonstration of the reliability of the new code by reproducing data from the 

mm321 hybridoma cell line was made clear. Then simulations from the mass 

transfer module were displayed and the importance of this new module within the 

generic framework of CelCyMUS explained. Comparisons between batch runs 

simulated for the model and experimental data were analysed. These simulations of 

batch runs were also studied to follow the pattern of glucose consumption rates in 

different experiments. The behaviour of the glucose consumption rate introduced in 

the S. pombe model followed the one given in the experimental data.

Discrepancies between expected values of HF and the ones used in the repeated 

batch bioreactors were detected. The assumptions taken in the model to cope with 

this difference has also been included. A thorough comparison between the model 

results and those for three different results from batch experiments concluding on 

the importance of cell distribution and the impact checkpoints have in the cycle has 

been examined. Finally comments on the sensitivity analysis presented in Chapter 4 

elucidate the importance of cell distribution and initial number of cells in different
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phases of the cell cycle. Gl/S appears to be the most critical part in the model 

regarding cell distribution; the effect of the probability transition over its short 

period of time makes it very critical in the cycle.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

A cell cycle model for the fission yeast S. pombe has been described in a model 

which accounts for the different cell cycle phases and the probability transition 

between phases (G2B/M, Gl/S). A GO phase is also present, where cells remain 

when environmentally threatened, switching to meiosis under severe conditions of 

starvation and a death phase. A value for the consumption of glucose per phase 

through out the cycle has been estimated.

CelCyMUS, the generic framework model has been updated by introducing 

powerful new features of Fortran 95, making of the model a ‘platform’ with 

facilities to support specific modules containing mathematical models for particular 

types of cells. In this context the research can be summarised in four points here:

1) The results obtained from the updated generic framework of CelCyMUS, are 

comparable with those of the previous version.

2) A new mass transfer module has been incorporated in the CelCyMUS 

framework, which describes the interactions in bioreactors between the gas and 

liquid phases in the medium.

3) The new S. pombe model proposed which describes cell cycle phases, transition 

between phases, death phase, and a pre-meiotic GO phase. This model is the first 

and only physiological model that exists for S, pombe. It also accounts for 

consumption and production of different metabolites.

4) The model is able to simulate work previously carried out by Fotuhi (2002) on 

batch and repeated batch bioreactors for S. pombe.

In this chapter the steps needed to improve and complete the model will be 

established as well as the future work towards the implementation of MBO control 

in a real system for bioreactors batch in S. pombe.
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6.2 THE GENERIC FRAMEWORK

With regards to CelCyMUS, this research has focused on introducing the new 

Fortran95 tools. The generic framework has now a stronger, portable and flexible 

code as a result of the dynamic allocation of memory, implementation of modules 

and the derive types described in the theory chapter. Changes in the mathematical 

framework were not needed in this module apart from the introduction of a Runge 

Kutta order method when solving the mass transfer module, which accounts for 

dissolved oxygen and carbon dioxide exchanges in bioreactors for the gas and liquid 

phases. This will be of especial use in the S. pombe model since O2 production and 

CO2 consumption play particular roles as markers of cell division in the fission 

yeast, enhancing the opportunity to establish a controller in the S. pombe cycle. Data 

and graphs presented in the report were in accordance with those simulated in the 

model for the mm321 hybridoma cell line in the CelCyMUS model under the same 

conditions.

Once the model was complete, further testing was done in order to simulate the 

behaviour of batch and repeated batch cultures. Fitting values for rate of 

consumption of oxygen, rates of production of carbon dioxide and linking other 

metabolites such as glucose and ATP were part of the process. The fitting came 

from experimental data by Creanor (1992) who measured the consumption of 

oxygen in synchronised cultures of S. pombe. Once these values were fitted for 

batch experiments, the results of the simulations showed a good degree of accuracy. 

Thereafter the prediction of experimental results for repeated batch experiments was 

equally good this time the fitting was based on experimental runs made by Fotuhi 

(2002) in batch and repeated batch bioreactors.

Differences were detected between experimental values of HF reported by Fotuhi 

and expected data of HF for every batch in repeated batch experiments. Throughout 

the experiments the values of HF fluctuated for every batch in repeated batch runs 

when it should have been kept constant, this was apparently due to errors in the 

amount of biomass being flushed out of the system after every batch and the amount 

of fresh medium used for the next run. To solve this problem the model was fed
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with the actual value of HF for every single batch in any given number of cycles, 

allowing the model to work with real data instead of the aimed value of HF. This 

correction allowed for a more accurate response from the model however one of the 

recommendations of this thesis would be to review the device used when reloading 

the bioreactor for a new batch run.

6.3 THE MATHEMATICAL MODEL FOR S, pombe

A mathematical model for the S. pombe strain has been proposed its main features 

are explained below:

1. The division of G2 phase is derived from observations made by other researchers 

who have determined that there is a period of time after cytokinesis where cells 

recover before accumulating nutrients from the medium and achieving a desired 

cell size to start synthesising DNA (Faraday, Kirkby, 2001). The actual 

transition occurs at the checkpoint G2B/M. As an increase in the consumption of 

glucose starts at the beginning of G2B (being a cumulative function), where 

once cells have assimilated certain level of glucose (enhancing a cell size 

length), they will execute the transition.

2. G2B/M transition is dependent on the consumption of glucose as the main 

source of energy for the cells to actually reach the size threshold (Novak 1998, 

Nurse 1985).

3. At the metaphase checkpoint, which occurs before initiating anaphase (the 

separation of sister chromatids to the poles of the mitotic spindle) the cell checks 

that all chromosomes are properly aligned with each kinetochore attached. This 

checkpoint is not considered. The argument to omit this checkpoint is that it does 

not have direct influence in the population balances and is more a regulatory 

genetic control rather than a physiological one.

4. Cells can exit the cell cycle at both check points to go and remains in a GO phase 

where they become resistant to heat and chemical treatment, this is usually as a
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consequence periods of starvation. Cells will go to this stage depending on 

minimum values of glucose concentration or critical values of glucose set up 

within the program. This critical value of glucose was found from analysis of 

experiments in batch and repeated batch bioreactors carried out by Fotuhi. The 

experiments clearly show that at a certain point when cells reach the critical 

value they stop dividing and remain in the cycle before leaving to a GO phase 

where they will remain almost inactive. At this point cells remain at a very low 

metabolic level and if the starvation conditions persist after a long period of time 

they will leave the mitotic cycle to go in a meiotic cycle. They will revert to the 

main cycle when the concentration of glucose reaches an acceptable level for 

cells to go back into the main cycle. Entrance to the cycle will occur at those 

points where glucose consumption increases; in the G2B and Gl phases.

5. In practice if starvation persists, cells would sporulate starting a meiotic cycle 

typical of sexual cells, since this meiotic cycle has another behaviour and is 

presented just under extreme circumstances, is not considered within the model. 

Instead the GO phase has been introduced as explained in the point before.

6. The rate of production of CO2 increases right at the end of mitosis and during S 

phase. This feature allows the use of carbon dioxide as a marker for the end of 

the cycle and a hypothetical value for a probability transition from Gl/S. The 

implementation of a transition considering CO2 production is valid as a marker 

of the septation process. It has been proved that this change in the production 

rate is at the start of the S phase, based on the assumption that glucose will be 

taken up in GIB. Increments in CO2 production are used as markers for the cell 

cycle time of different S. pombe mutants whose cell cycle times are specified in 

table 1 from Appendix D.

7. The model accounts for cell population age distribution with the specific timing 

for wild type cells (WT cells). Specific values for rate of oxygen and glucose 

consumption, production of CO2 and generation of ATP are presented here. The 

values mentioned for rate of consumption of glucose are average values from 

experimental batch cultures through out a period of 24 hours.
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8. The model can accomplish the simulation of mutants S. pombe cells since the 

framework of the program can be adjusted to different cycle times for the 

different phases. All that is required for simulation of these cells is the new times 

for the cell cycle phases to be determined (see Table 1.0) and these data can be 

fitted to the parameters for RCOXY and RC02 in the cycle.

A graphical representation of the S. pombe model suggested appears in figure 1 with

the timing, transitions, and consumption of nutrients at discrete phases and

production of metabolites through out the cycle.

The running conditions of the program at the moment are presented as follows:

a) Cells being released from GIG phase to start the cycle in G2A phase.

b) Executing transition from G2B to M phase and Gib to S phase.

c) Fixed period of times for the phases of the cycle.

d) Probability transitions vary depending upon the value of cumulative glucose in 

the cycle for the G2B/M phase transition and oxygen consumption for the Gl/S 

checkpoint.

e) The mass transfer module regulates and controls the amount of oxygen dissolved 

in the medium and calculates the rate of oxygen consumed for the cells in a 

bioreactor at all times

f) It is assumed that growth of cells occurs in a well-mixed batch bioreactor and 

death occurring as a consequence of low levels of glucose in the medium during 

extremely long periods of time.
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6.4 NOVEL FEATURES INTRODUCED BY A. pombe MODEL

The model proposed for S, pombe is the first physiological model developed for this 

particular type of yeast. The model enhances metabolic interactions of the cell 

throughout different phases in the cycle allowing for simulations of batch and 

repeated batch cultures in any given period of time. Existing models for S. pombe 

concentrated on the genetics of the micro-organism and the kinetics of all the 

different proteins responsible for transition between phases and cell growth. The 

model proved to be very accurate in following behaviour of specific genes but was 

too specific for our purposes. It concentrated on protein kinetics of the products of 

certain genes and specific rates of production metabolites acting as markers at 

certain stages of the cell cycle, leaving out the physiological processes within the 

cell cycle. This type of approach specialises in certain points of the cell cycle but 

fails to predict general behaviour in batch and repeated batch cultures; it is more a 

micro approach to understanding the cell cycle from a genetic point of view rather 

than a physiological one.

The model has also identified a critical value of glucose concentration in the 

medium for batch reactors below which S. pombe switches from a mitotic cycle to a 

quiescent phase where cells remain, waiting for conditions in the medium to 

improve. If conditions persist they will conjugate into diploid cells and then 

sporulate before starting a meiotic cycle where they can remain for months or even 

years, this as a defence mechanism. Such ability to leave the cycle when threaten for 

internal and/or external conditions is also seen in other type of cells such as cancer 

cells. S. pombe can leave the cycle from any phase but for purposes of this model 

they leave from any of the transition points, G2B/M and Gl/S. This value of critical 

glucose concentration was found when analysing Fotuhi’s results in both batch and 

repeated batch experiments.

The mass transfer module incorporated in CelCyMUS will be useful for any other 

type of cell to be simulated in this framework. The interactions between metabolites 

in the liquid phase and gas phase such as oxygen and carbon dioxide can be studied.
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Considerations about the geometry of the stirrer and the amount of energy input to 

the system by stirring will also have a direct influence in the amounts of material 

dissolved in the medium due to changes in the Kia, and the amount of cells that die 

as a consequence of injury loss (impacts with the paddles and bioreactor walls). 

These effects are considered as explained in Chapter 4 and make part of the 

assumptions in the calculation of a death rate of cells in batch reactors.

The capability this model has of following cells in different phases of the cycle at 

any given time form part of the resolution inherited from CelCyMUS. This tool is 

very useful when studying transition points (G2B/M and Gl/S) since it allows us to 

pin point the changes in rates of consumption and/or production of metabolites 

responsible for physiological changes in the cell. It is also useftil to single out cells 

in a particular phase at all times, allowing understanding of population balances. 

Resolution enhances simulations of both synchronised and de-synchronised cell 

culture. For the particular case of S. pombe data from repeated batch can be 

reproduced and analysed per batch and per any given time within the batch. This 

features virtual sampling of the cell culture at any desired time in every cycle, which 

would very time consuming and expensive when being carried out in a lab.

The model can be used to find the best values of glucose concentration, HF and 

DCT necessary to improve the yield in a batch culture. S. pombe simulates runs for 

repeated batch cultures of different DCT and for any given number of cycles. 

Normally runs of 20 cycles with DCT of 18hr can be reproduced in less than 3 

minutes, so that by implementing optimisation routines the S. pombe model can find 

the best conditions to obtain the best possible yield in terms of growth and/or 

production metabolites. This again will allow for reduction in experimental times 

and cost.

The S. pombe model can also calculate the energetic demands in the cycle based on 

ATP production and glucose consumption in the cell cycle. Such demands will vary 

accordingly with the concentration of carbon source available (glucose in this case) 

as the primary source of energy, the type of cell (wild/mutant), growth rate and type 

of process fermentative or respiratory as in this model. An energy balance (see
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Chapter 3) helps in evaluating the best concentration of nutrients in the medium to 

achieve the best possible yield, the minimum amount of oxygen both in the gas and 

liquid phase necessary to complete the breaking down of glucose into ATP.

6.5 M.B.O CONTROLLER

With the model fitted, the future work of the project will be on line control. This 

stage is about implementing a model-based observer (MBO) controller in a real 

batch system for the growing of S. pombe yeast.

Modelling provides a means for estimating process information on-line in a 

permanent way. Therefore, it may be used as an alternative to the monitoring of key 

process variables. However, the use of such an approach for control purposes can 

only be successful if the models employed are a good representation of the process. 

The MBO technique has been tested by Araujo (1998) using a copy of the 

mathematical model produced to correct the behaviour of a model, which executes a 

feedback loop on the outcome of the real system being controlled. The model replica 

will then adjust parameters within the first copy of the model improving it to make it 

closer to real behaviour of the system. The principle of model-based observer 

(MBO) control is illustrated in Figure 1 Appendix D. Two distinct feedback loops 

can be identified: the process loop in blue and the model loop in green. These loops 

are interconnected as indicated in red; disturbances to the system are shown in 

brown. In the process loop, the process controller manipulates process parameters 

according to the difference between a set point and a process output (the set point 

error). The process is thus altered so that its output is driven towards the set point. In 

the model loop, the model adaptor modifies model parameters dependent upon the 

difference between the ‘desired’ value of the model output and its actual value (real 

output of the system). The purpose of the model adaptor is to modify parameters in 

the model so that its output is driven towards the ‘desired’ value. Such parameters 

could be the inlet flow to the system, the rate of consumption of glucose in the 

particular case of S. pombe, or even temperature as an external factor that might 

induce sporulation under extreme conditions.
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The interaction between the process and model loops allows information from the 

model to be used by the process controller and the model to be updated on the basis 

of actual process behaviour. The disturbances to both process and model may be 

considered to be the same and, thus, process and model outputs should be the same 

if the model is a good representation of the process. The model infers some process 

information, which is now available on-line but still expensive and difficult to obtain 

(Gawthrop and Ponton, 1991); in this case, the model is said to act as an observer.

As can be seen in Figure 1 Appendix D, the process parameter thus manipulated is 

employed as input not only to the process, but also to the model. The model is 

updated by comparing the model output to the process output, which is the ‘desired’ 

value; thus, process/model mismatches can be identified and corrected by the model 

adaptor.

6.6 OTHER COMMENTS

The complete S. pombe model has the necessary tools to determine the consumption 

of glucose, oxygen, ATP production, and CO2 generation per phase at the S. pombe 

cycle. This has been achieved by analysing data from cells whose DNA synthesis 

has been blocked chemically and released afterwards to determine glucose 

consumption in a synchronised culture. The rate of production of CO2 and oxygen 

consumption has been included, operating as ‘markers’ at the end of the cell cycle 

division, making this model the first physiological model for S. pombe. The S. 

pombe model has also been adjusted to simulate cell population behaviour, batch 

and repeated batch bioreactors experiments.

The model performance is very satisfactory to the point that can be used to spot 

abnormalities or to detect irregularities in the bioreactors system as was the case 

with the values of HF reported in Fotuhi’s experiments.

The future work of this project will be orientated towards implementing an MBO 

controller technique in a real system with a batch bioreactor for a culture of *S'. 

pombe. This aim is possible since previous results for an MBO control system
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(Araujo 1998) implemented for the mm321 hybridoma cell line working with a copy 

of the program have been successful.

6.7 FUTURE WORK AND RECOMMENDATIONS

The future work regarding MBO controllers and some recommendations to further 

develop not only the generic framework CelCyMUS but also the S. pombe model are 

introduced as follows;

• Adjusting and running the program implementing MBO model control for 

S. pombe. The next steps of the research will be orientated towards the on-line 

control of batch and repeated batch bioreactors. The on-line control of different 

parameters in the model will help to study other aspects of the research such as 

optimisation of yield in biomass production or metabolites in particular and cells 

culture that exhibit chaotic behaviour in their kinetics.

• The mass transfer model here installed could also allow further testing in 

different type of experiments such as inhibition of mitosis by carbon dioxide 

suppression. The study of these and other features such as different nutritional 

carbon sources can also be predicted as long as the parameters of consumption 

and/or production of the different metabolites are known.

• To adjust the MBO controller to a real system (controlling a Bio-reactor) 

growing S. pombe and therefore to determine the effectiveness and usefulness of 

the controller by comparing its performance and comparing it against existing 

control on-line systems in bioreactors.

6.7.1 Recommendations on the Model Containing Intracellular Pools of Stored 

Energy

Cells continue to pass round the cell cycle even in the presence of low levels of 

glucose and other metabolites essential for cell growth. This phenomenon was 

observed in several experiments by Fotuhi (2002).
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The critical levels of glucose concentration found in this research which were 

responsible for cell death in batch reactors still apply when analysing the latest 

findings. However, it is also evident that cells do store energy and can continue to 

grow before leaving the mitotic cycle, hence the low rate of cell death (2 % after 

reaching critical levels of glucose concentration). Energy for driving the cell cycle 

must therefore come from other intracellular pools of metabolites. Many different 

explanations can be found to this phenomenon; the use of other hydrocarbon sources 

present in the medium as a way to generate energy, the ability cells have to adapt to 

extreme conditions by reducing metabolic activity to minimum levels or by 

operating other metabolic pathways. Further research into finding the mechanisms 

that allow cells to store the energy levels necessaries to continue cycling should be 

implemented. In order to carry out the study of internal intracellular pools of 

metabolites this dissertation proposes the introduction of markers (isotopes) to track 

down the routes of consumption of glucose (and other carbon sources) in media with 

low levels of carbohydrates. Labelling metabolites will allow for a better 

understanding of when these intracellular pools are activated and how they work. It 

is possible that at this point (low levels of carbon source in the medium) the cells 

adopt different metabolic pathways in order to save energy and maximise its use.

6.7.2 Recommendations on Exploring Chaotic Growth Kinetics

Once the model was completed two runs on repeated batch experiments with an 

initial number of cells of 17.5x10^ million cells/ml, 80% HF, 18hr DCT and 100 

cycles (Graphs 1-4 appendix D) and another simulating a reactor with 20x10® cells 

80% HF, 18hr DCT and 200 cycles (Graphs 5-9 Appendix D) were executed by the 

model. The purpose of this exercise was to try to find chaotic behaviour in repeated 

batch cultures. The results did not show chaotic behaviour in the growth kinetics of 

repeated batch experiments under the conditions and parameters established for the 

model. However it is worth to mention here that the 51 pombe model can be induced 

into chaotic behaviour according to the sensitivity analysis presented in Chapter 4  

and discussed in Chapter 5. The sensitivity analysis shows that for the parameters 

chosen in the model, variations in the initial number of cells in Gl and S phase have 

a very large impact upon the results of the model and cell population (up to 197%
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error) when deviating +/- 5% from the initial cell number. Following these results it 

is clear that by altering cell number in a phase of the cycle or by changing the length 

of the phases in the cycle, chaotic behaviour could be observed. It was then 

considered worthwhile to run a sensitivity analysis by altering the length of the cell 

cycle phases and their initial cell numbers. As part of the future work this 

dissertation proposes to run repeated batch experiments looking for chaotic 

behaviour in cell cultures of S. pombe. Such chaotic behaviour maybe induced by 

manipulating the amount of cells harvested from the system (HF), and by altering 

the duration of phases in the cycle as demonstrated by Mitchinson when altering the 

concentration of CO2 produced the elongation and shortening of the G2 phase due to 

an anapleurotic effect. Achieving the shortening or elongation of the phases should 

trigger chaotic behaviour according to the sensitivity analysis especially during 

G2B/M and Gl/S phases.

6.7.3 Recommendations on Running Experiments with Mutants

Since a complete set of data are available on the different mutants of S, pombe (see 

Table 1 Appendix D) and a flexible model has been developed for the wild type of 

cells, executing the program for mutants should in theory be just as successful. The 

cell cycle times for different type of synchronised cultures of S. pombe mutants are 

available and the exact times at which increments in the rate of production of CO2 

are also known, therefore the implementation of these data within the model could 

be simply done as a file with specific characteristics of the cell that could be used by 

the program user. CO2 could be used as the marker for metabolic events within the 

cycle (cytokinesis) and the handling of the timing in the cell cycle phases of the 

mutants can be done by means of dynamic allocation in the program. The reason to 

simulate data with mutant cells is simply because it allows us to study in more detail 

especial conditions that otherwise would be difficult to study with wild type cells, 

such as the influence of cells size in the checkpoints when growing wee mutants.
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6.7.4 Recommendations on Different Carbon Sources and Glucose 

Concentrations

An area that needs to be improved in the program is the extension of the model to 

simulate different concentrations of glucose in the medium and the use of other 

carbon sources by this particular type of cell. Most of the experiments simulated 

here were 2 % glucose concentration and only one was done for a slightly different 

level of glucose (1% glucose, Graphs 10 and 11 Appendix D). Furthermore care is 

needed when making changes in glucose concentrations in the medium since 

metabolic pathways of S. pombe will change depending upon glucose concentration 

and they will vary all the way from respiration at low levels of glucose and highly 

aerated systems to fermentation processes with high concentrations of glucose. 

Phenomena such as the Crabtree effect and the Paster effect need to be addressed if 

radical changes of glucose concentration are introduced in the model.

The experiment run in the model at 1% (Graph 11 Appendix D) glucose was 

simulated successfully, by changing the parameters in the system, however forther 

changes would need to be made in order to simulate different glucose 

concentrations. The inclusion of yield and growth (p) as parameters to improve 

estimates at different levels of carbon source could be of help since they change 

regarding the concentrations and type of carbon source in the medium.

6.7.5 Recommendations on Periodic Feeding

Periodic time sequences in feeding strategies influence variations in cell growth 

more easily than a repeated batch or continuous reactor would. Moreover, a periodic 

feeding process offers the flexibility of changing parameters in an experiment such 

as the length of the cycle and the length of the feed period, parameters that can be 

varied with the same residence time. The influence of these parameters on the 

biomass behaviour in a bioreactor, and then on the performance of yeast cultures 

deserves more investigation.
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Arzumanov (2001) worked on the growing of S. pombe yeast. The goal of his 

research was to apply periodic feeding in bioreactors in order to study the dynamics 

of biomass and glucose at different frequency of periodicities. From Arzumanov’s 

results was interesting to see the different patterns of glucose consumption and 

biomass production when exposed to periodic perturbations of 4, 7 and 8 hr In these 

experiments cell concentration was reproducible whereas residual glucose 

concentration was dependent on the level of culture adaptation to glucose-limited 

conditions.

The simulation of periodic feeding is definitively an alternative within the model, 

periodic feeding can be simulated by introducing different types of feed functions 

(step, pulse etc.). A better understanding will be obtained when a module is 

introduced that accounts for transport phenomena from the external medium, 

through the cell wall and into the cytoplasm. Transport phenomena will be of 

importance since during periodic feeding the conditions and concentrations of the 

carbon source vary from time to time. For instance in an on-off experimental run in 

a batch reactor the cells in the medium will quickly be switching between a medium 

with a high source of carbon to a medium with minimum concentrations of carbon 

and the transport of nutrients from the medium to the cell will change from simple 

diffusion in the presence of high concentrations of the carbon source to active 

transport by the use of proteins carriers generated by specialised RNA.

6.7.6 Recommendations on the Application of the Model to the Enzymes 

Involved in the Cell Cycle

Tyson, Novak et al (1998) have developed a complete set of equations to describe 

the certain cell cycle kinetics of the proteins produced by genes in the S. pombe 

yeast and their behaviour at different stages of the cycle. A parallel module 

following the kinetic equations given by Novak’s model can easily be implemented 

here. The diversity of data and molecular details from different researchers (Tyson et 

al 1998, Novak et al. 1998, Nurse et al. 1985 etc.) has made possible the 

construction of more realistic mathematical models of the cell cycle. In these
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molecular models, biochemical reactions have been translated into systems of non­

linear equations (ODEs). By numerical simulation, the solution of these ODEs, 

could be compared to the physiological behaviour of living cells. Within this context 

CelCyMUS and the S. pombe model are the perfect complement since the 

physiological behaviour and the influence of shortening and elongation of phases in 

the cycle can be studied here.

Including the behaviour of the relevant kinases into the cell cycle model will help to 

display the interactions between these enzymes and other proteins generated by 

different genes and the final physiological consequences of their actions. For 

instance it is known that the cell cycle in S. pombe is driven by fluctuations in the 

activity of M-phase promoting factor (MPF or Cdcl3/Cdc2) which is a heterodimer 

of a catalytic subunit (Cdc2 protein kinase) the actual execution of events in S. 

pombe yeast requires that MPF activity oscillates between low (S and G2 phases) 

and high (M phase) levels. The production of these proteins could therefore be 

linked to the increments in the uptake rates of consumption for oxygen and glucose 

and any other metabolic activity considered in the model.

6 . 8  CONCLUDING COMMENTS

This dissertation has proven to be successful when achieving the objectives initially 

proposed for this research. The S. pombe model is now fitted within the generic 

framework of CelCyMUS, recommendations on future work regarding CelCyMUS 

and fine tuning of the model regarding introduction of intracellular pools of energy, 

genetics, MBO controllers and application of the model in periodic feeding have 

also been suggested in this chapter.

108



REFERENCES

Abu-Absi, Zamamiri A., Kacmar J., Balough SJ. and F. Srienc, Automated flow 
cytometry for acquisition of time-dependent population data. Cytometry 51 
(2003), pp. 87-96.

Agger, T., Nielsen J., Genetically structured modelling of protein production in 
filamentous fungi. Biotechnol Bioeng 6 6  (1999), pp. 164-170

Ai'aujo, S., The Application of Model-based Observer Control to Bioreactors. 
PhD Thesis, Chemical & Process Engineering, School of Engineering, 
University of Surrey, UK (1998).

Aristidou, A.A., San K.Y. and Bennett G.N., Metabolic flux analysis of 
Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch 
and continuous cultures. Biotechnol Bioeng 63 (1999), pp. 737-749.

Arranz, M.A., Transferencia de materia en columnas de burbujeo: clasicas y con 
recirculation. Tesis doctoral, Universidad de Alcala, Spain (1993)

Arzumanov, T., Slater, G., Kirkby, N., Underwood, B., Faraday, D., Periodic 
feeding of Schizosaccharomyces pombe in continuous culture. Chemical & 
Process Engineering, School of Engineering, University of Surrey, UK (2003).

Ataai, M.M., Shuler M.L., Simulation of CFSTR through development of a 
mathematical model for anaerobic growth of Escherichia coli cell population. 
Biotechnol Bioeng. 27 (1985), pp. 1051-1055.

Bailey, I.E., Mathematical modeling and analysis in biochemical engineering: 
past accomplishments and future opportunities. Biotechnol Prog 14 (1998), pp. 
8- 20 .

Bailey, J.E., Toward a science of metabolic engineering. Science 252 (1991), pp. 
1668-1675.

Balcker, B.M., Westerhoff H.V., How yeast cells synchronize their glycolytic 
oscillations: a perturbation analytic treatment. Biophys. J. 78 (2000), pp. 1087- 
1093.
Bhalla, U.S., Iyengar R., Emergent properties of networks of biological 
signalling pathways. Science 283 (1999), pp. 381-387.

Birol, G., Undey C., Parulekar S.J. and Cinar A., A morphologically structured 
model for penicillin production. Biotechnol Bioeng. 77 (2002), pp. 538-552.

Birol, G., Zamamiri A.M. and M.A. Hjortso, Frequency analysis of 
autonomously oscillating yeast cultures. Process Biochem. 35 (2000), pp. 1085- 
1091.

R1



Bulsari, A., and Saxén, H., Using feed-forward neural networks for estimation of 
microbial concentration in a simulated biochemical process. Biosensors and 
Bioelectronics, Volume 9, Issue 2, 1994, Pages 105-109.

Çalik, G., Takaç S. and Ôzdamai* T.H., Metabolic flux analysis for serine 
alkaline protease fermentation by Bacillus licheniformis in a defined medium: 
effects of the oxygen transfer rate. Biotechnol Bioeng 64 (1999), pp. 151-167.

Christensen, B., and Nielsen J., Isotopomer analysis using GC-MS. Metab Eng 1 
(1999), pp. 282-290.

Christensen, B., and Nielsen J., Metabolic network analysis: a powerful tool in 
metabolic engineering. Adv Biochem Eng Biotechnol 6 6  (1999), pp. 209-231.

Cooney, M.J., Goh L.T., Lee P.L.and Johns M.R., Structured model-based 
analysis and control of the hyaluronic acid fermentation by Streptococcus 
zooepidemicus: physiological implications of glucose and complex-nitrogen- 
limited growth. Biotechnol Prog 15 (1999), pp. 898-910.

Creanor, J. (1978a). Carbon dioxide evolution during the cell cycle of the fission 
yeast Schizosaccharomyces pombe . Journal o f Cell Science 33, pp. 385-397.

Creanor, J., (1978b). Oxygen uptake during the cell cycle of the fission Yeast 
Schizosaccharomyces pombe. Journal o f Cell Science 58, pp. 263 -  285.

Dano, S., Sorensen P. and Hynne G.F., Sustained oscillations in living cells. 
Nature 402 (1999), pp. 320-322.

Daoutidis, P̂ , and Henson M.A., Dynamics and control of cell populations in 
continuous bioreactors. AIChE Symp. Ser. 326 (2002), pp. 274-289.

De Graaf, A.A., Striegel K., Wittig R.M., Laufer B., Schmitz G., Wiechert W., 
Sprenger G.A. and Sahm H., Metabolic state of Zymomonas mobilis in glucose-, 
fructose- and xylose-fed continuous cultures as analysed by ^^C- and ^^P-NMR 
spectroscopy. Arch Microbiol 171 (1999), pp. 371-385.

Domach, M.M. and Shuler M.L., A finite representation model for an 
asynclironous culture q/"E. coli. Biotechnol Bioeng. 26 (1984), pp. 877-884.

Duboc, P. and von Stockar U., Modeling of oscillating cultivations of 
Saccharomyces cerevisiae: identification of population structure and expansion 
kinetics based on on-line measurements. Chem. Eng. Scl 55 (2000), pp. 149- 
160.

Elliot, S.G., Co-ordination of growth with cell division: Regulation of synthesis 
during the cell cycle of the fission yeast Schizosaccharomyces pombe. 
Molec.gen.Genet.192 (1983), pp. 204-211.

R2



Faraday, D. B. F., Hayter P. and Kirkby N. F., A mathematical model of the cell 
cycle of a hybridoma cell line, Biochemical Engineering Journal, Volume 7, 
Issue 1, January 2001, pp. 49-68

Faraday, D.B.F., The Mathematical Modelling of The Cell Cycle of a 
Hybridoma Cell Line. PhD Thesis, Chemical & Process Engineering, School of 
Engineering University of Surrey, UK. (1994)

Ferenci, T. (1999) ‘Growth of bacterial cultures’ 50 years on: Towards an 
uncertainty principle instead of constants in bacterial growth kinetics. Research 
microbiology. 150 (1999), pp. 431 -438.

Figueredo, L.M., Calderbanlc. P.H., The scale-up of aerated mixing vessels for 
specified oxygen dissolution rates. Chem. Eng. Sci. 34 (1979), pp. 1333-1338.

Follstad, B.D., Balcarcel R.R., Stephanopoulos G. and Wang D.I.C., Metabolic 
flux analysis of hybridoma continuous culture steady state multiplicity. 
Biotechnol Bioeng 63 (1999), pp. 675-683.

Forsburg L., The beast Yeast?.TIG Vol 15No9 (1999), pp. 340 -  344.

Fotuhi, H., Investigation of Repeated Batch Propagation Strategy. PhD Thesis, 
Chemical & Process Engineering, School of Engineering, University of 
Surrey,UK (2002).

Franlc, P. M., and Koppen-Seliger B., New developments using AI in fault 
diagnosis. Engineering Applications of Artificial Intelligence, Volume 10, Issue 
1, February 1997, Pages 3-14
Fredrickson, A., and Mantzaris N.V., A new set of population balance equations 
for microbial and cell populations. Chem. Eng. Sci. 57 (2002), pp. 2265-2278.

Friedrickson A., Friedrich S., Hatzis C., Multistaged corpuscular models of 
microbial growth: Monte Carlo Simulations. Bio systems 36 (1995), pp. 19-35 .

Frykman, S. and Srienc F., Cell cycle dependent protein secretion by 
Saccharomyces cerevisiae. Biotechnol. Bioeng. 76 (2001), pp. 259-268.

Futcher, B., Cell cycle synchronization. Methods Cell Sci. 21 (1999), pp. 79-86.

G. Bastin, G. and Dochain, D., Where mathematics and microbiology meet. 
Process Measurement and Control, Vol. 1: On-line Estimation and Adaptive 
Control of Bioreactors, Manchester Biotechnology Centre, UMIST. ISBN 
0444884300,1990.

Ganusov, V.V., Bril'kov A.V. and Pechurkin N.S., Mathematical modeling of 
population dynamics of unstable plasmid-bearing bacterial strains under 
continuous cultivation in a chemostat. Biophysics 45 (2000), pp. 881-887.

R3



Gershenfeld, N.A., The Nature of Mathematical Modeling. Cambridge 
University Press, Cambridge (1999).

Ginovart, Lopez D. and Vails J., INDSIM, an individual-based discrete 
simulation model to study bacterial cultures. J. Theor. Biol 214 (2002), pp. 
305-319.

Goel, A., Lee J., Domach M.M. and Ataai M.M., Metabolic fluxes, pools, and 
enzyme measurements suggest a tighter coupling of energetics and biosynthetic 
reactions associated with reduced pyruvate kinase flux. Biotechnol Bioeng 64 
(1999), pp. 129-134.

Gomra J. J., Browne P. J., Coope R. C., Liu Q. Y., Buluwela L. and Coombes R. 
C. Isolation of Pure Populations of Epithelial and Myoepithelial Cells from the 
Normal Human Mammary Gland Using Immunomagnetic Separation with 
Dynabeads. Analytical Biochemistry, Volume 226, Issue 1, March 1995, Pages 
91-99
Guardia, M.J., Garcia Calvo, E., Kinetic model for Escherichia coli growth in 
different operational conditions, Appl Microbiol Biotechnol Submitted (2000).

Gujer, W., Microscopic versus macroscopic biomass models in activated sludge 
processes. Water Scl Technol 45 (2002), pp. 1-11.

Gygi, S.P., Rochon Y., Franza B.R. and Aebersold R., Correlation between 
protein and mRNA abundance in yeast. Mol Cell Biol 19 (1999), pp. 1720- 
1730.

Harder, W., Dijldiuizen, L., Strategies of mixed substrate utilization in 
microorganisms. Philos. Trans. R. Soc. Lond. B. Biol Scl 297 (1982), pp. 459- 
480
Hatzimanikatis, V., and Lee K.H., Dynamical analysis of gene networks 
requires both mRNA and protein expression information. Metab Eng 1 (1999), 
pp. 275-281

Hatzimanikatis, V., Choe L.H. and Lee K.H., Proteomics: theoretical and 
experimental considerations. Biotechnol Prog 15 (1999), pp. 312-318.

Hatzimanikatis, V., Emmerling M., Sauer U. and Bailey I.E., Application of 
mathematical tools for metabolic design of microbial ethanol production. 
Biotechnol Bioeng 58 (1998), pp. 154-161.

Hatzimanikatis, V., Floudas C.A. and Bailey I.E., Analysis and design of 
metabolic reaction networks via mixed-integer linear optimization. AIChE J  42 
(1996), pp. 1277-1292.
Hatzimanikatis, V., Lee K.H. and Bailey I.E., A mathematical description of 
regulation of the Gl-S transition of the mammalian cell cycle. Biotechnol 
Bioeng 65 (1999), pp. 631-637.

R4



Hatzis, C., Srienc F. and Fredrickson A.G., Multistaged corpuscular models of 
microbial growth: Monte Carlo simulations. Biosystems 36 (1995), pp. 19-35.

Hayles, J., Nurse P., Genetics of the fission Yeast Schizosaccharomyces pombe. 
Annual review genetics 26 (1992), pp. 373-402.

Henson, M.A., Dynamic modeling and control of yeast cell populations in 
continuous biochemical reactors. Comput. Chem. Eng. 27 (2003), pp. 1185- 
1199.
Henson, M.A., Muller D. and Reuss M., Cell population modeling of yeast 
glycolytic oscillations. Biochem. J. 368 (2002), pp. 433-446.

Hjortso, M.A. and Nielsen J., Population balance models of autonomous 
microbial oscillations. J. Biotechnol. 42 (1995), pp. 255-269.

Hofer, M., Aerobic and Anaerobic Uptake of Sugars in S. pombe. Journal of 
general microbiology (1897), 133, pp.2163-2172
Hua, Q., Yang C. and Shimizu K., Metabolic flux analysis for efficient pyruvate 
fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata. J  Biosci 
Bioeng 87 (1999), pp. 206-213.

Hynee, F., De Monte S., d'Ovidio F., Sorensen P.G. and Westerhoff H., 
Synclironization of glycolytic oscillations in a yeast cell population. Faraday 
Discuss 120 (2001), pp. 261-276.

Hynne, G.F., Dano S. and Sorenson P.G., Full-scale model of glycolysis in 
Saccharomyces cerevisiae. Biophys. Chem. 94 (2001), pp. 121-163.

Joshi, N. V., Murugan, P. and Rliinehart R. R., Experimental Comparison Of 
Control Strategies, Control Engineering Practice, Volume 5, Issue 7, July 1997, 
Pages885-896

Katoh, T., Yuguchi D., Yoshii H., Shi H. and Shimizu K., Dynamics and 
modeling on fermentative production of poly (^-hydroxybutyric acid) from 
sugars via lactate by a mixed culture of Lactobacillus delbruecldi and 
Alcaligenes eutrophus. J  Biotechnol 67 (1999), pp. 113-134.

Kurtz, J., Control of Oscillating Microbial Cultures Described by Population 
Balance Models. Ind. Eng. Chem. Res. 37 (1998), 4059 -  4070.

Leaf, T.A. and Srienc F., Metabolic modeling of polyhydroxybutyrate 
biosynthesis. Biotechnol Bioeng 57 (1998), pp. 557-570.

Lee, P.L., Yen J., Yang L, and Liao J.C., Incorporating qualitative knowledge in 
enzyme kinetic models using fuzzy logic. Biotechnol Bioeng 62 (1999), pp. 
722-729.

Lloyd, D., Poole, R.K. and Edwards, S.W. The cell division cycle: temporal

R5



organisation and control of cellular growth and reproduction (1 ®̂ edition), 
Academic Press, London, UK (1982)

Liibbert A., and Simutis R., Using measurement data in bioprocess modelling 
and control. Trends in Biotechnology, Volume 12, Issue 8 , August 1994, Pages 
304-311
Mantzaris, N.V., Daoutidis P. and Srienc P., Numerical solution of multi- 
variable cell population balance models: I. Finite difference methods. Comput. 
Chem. Eng. 25 (2001), pp. 1411-1440.

Mantzaris, N.V., Daoutidis P. and Srienc F., Numerical solution of multi- 
variable cell population balance models: II. Spectral methods. Comput. Chem. 
Eng. 25 (2001), pp. 1441-1462.

Mantzaris, N.V., Daoutidis P. and Srienc F., Numerical solution of multi- 
variable cell population balance models: III. Finite element methods. Comput. 
Chem. Eng. 25 (2001), pp. 1463-1481.

Mantzaris, N.V., Liou J.-J,, Daoutidis P. and Srienc F., Numerical solution of a 
mass structured cell population balance model in an environment of changing 
substrate concentration. J. Biotechnol. 71 (1999), pp. 157-174.

Mantzaris, N.V., Srienc F. and Daoutidis P., Nonlinear productivity control 
using a multi-staged cell population balance model. Chem. Eng. Sci. 57 (2002), 
pp. 1—14.

Marx, A., De Graaf A.A., Wiechert W., Eggeling L. and Sahm H., 
Determination of the fluxes in the central metabolism of Corynebacterium 
glutamicum by nuclear magnetic resonance spectroscopy combined with 
metabolic balancing. Biotechnol Bioeng 49 (1996), pp. 111-129.

Matsoukas T., and Smith M., Constant-number Monte Carlo simulation of 
population balances. Chemical Engineering Science 53 (1996), pp. 1777 -  1786.

Mete, M., Altnta, Betiil Krdar, Z. Isen Onsan and Kutlu Ô. Ülgen. Cybernetic 
modelling of growth and ethanol production in a recombinant Saccharomyces 
cerevisiae strain secreting a bifunctional fusion protein .Department of 
Chemical Engineering, Boaziçi University, 80815 Bebek, Istanbul, Turkey. 
Process Biochemistry Volume 37, Issue 12, July 2002, Pages 1439-1445.

Mhaskar, P., Hjortso M.A. and Henson M.A., Cell population modeling and 
parameter estimation for continuous cultures of Saccharomyces cerevisiae. 
Biotechnol. Prog. 18 (2002), pp. 1010-1026.

Michel, B.J., Miller, S.A., Power requirements of gas-liquid agitated systems, 
AIChE. J. 8  (1962), pp. 262-267.

Mitchison, J..M. and Creanor, J., Further measurements of DNA synthesis and

R6



enzyme potential during the cell cycle of Schizosaccharomyces pombe. Expl 
Cell Res. 69 (1969), pp. 244 -  247.

Mitchison, J.M. & Cummins, Changes in the acid-soluble pool during the cell 
cycle of Schizosaccharomyces pombe. Expl. Cell Res. 35 (1964), pp. 394 -  401.

Mitchison, J.M. & Nurse P., Growth in cell length in the fission yeast 
Schizosaccharomyces pombe. J.Cell.Science. 75 (1985), pp. 357 -  376.

Montague, G. A., Morris, A. J. and Tham, M. T. Enhancing bioprocess 
operability with generic software sensors. Journal of Biotechnology, Volume 25, 
Issues 1-2, August 1992, Pages 183-201

Montague, G., and Morris, J., Neural-network contributions in biotechnology. 
Trends in Biotechnology, Volume 12, Issue 8 , August 1994, Pages 312-324

Montague, G., Tham, M., and Lant, P., Estimating the immeasurable without 
mechanistic models. Trends in Biotechnology, Volume 8 , 1990, Pages 82-83

Munz, P.W., Kohli H., Leupold, U., Genetics Overview. Molecular Biology of 
fission Yeast. New York: Academic (1989), pp. 1-30.

Nielsen, J and Jorgensen H.S., A kinetic model for the penicillin biosynthetic 
pathway in Pénicillium chrysogenum. Control Eng Practice 4 (1996), pp. 765— 
771.

Nielsen, J., Villadsen J, Bioreaction engineering principles. New York: Plenum 
Press (1994).

Nishimura, Y. and Bailey J.E., Bacterial population dynamics in batch and 
continuous-flow microbial reactors. AIChE J. 27 (1981), pp. 73-81.

Novak, B., Attila Csikasz-Nagy, Bela Gyorffy, Chen K., Tyson John, 
Mathematical model of the fis%gn yeast cell cycle with checkpoint controls at 
the Gl/S, G2/M and metaphase/Anaphase Transitions. Journal o f Biophysical 
Chemistry 72 (1998), pp. 185-200.

Novak, B., Mitchinson J.M., ‘Change in the rate of CO2 production in 
synchronous cultures of the fission yeast Schizosaccharomyces pombe: A 
periodic cell cycle event that persist after the DNA-division cycle has been 
blocked. Journal o f cell science 8 6  (1986), 191-206.

Novak, B., Mitchison, J., Sveiczer, A., The size control of fission Yeast 
revisited. Journal o f Cell Science 109 (1986), pp. 2947 -  2957.

Nurse, P., Wen W., Broek D., Yeast Cells can enter a Quiescent State Through 
G1,S,G2, or M phase of the cell cycle. J. o f Cancer Research 53 (1993), pp. 
1867-1870.

R7



O’Connell M., Walworth N., Carr A., The G2-phase DNA-damage checkpoint. 
Trends in Cell Biology 10 (2000), pp. 296 -  303.

Peper, Grimbergen C.A, Spaan J.A.E, Souren J.E.M. and van Wijk R., A 
mathematical model of the hsp70 regulation in the cell. Int J  Hyperthermia 14
(1998), pp. 97-124.

Perry, R.H., Chemical Engineering Handbook, McGraw-Hill, New York 
(1984)

Pissara, P.N., Nielsen J. and Bazin M.J., Pathway Idnetics and metabolic control 
analysis of a high-yielding strain of Pénicillium chrysogenum during fed batch 
cultivations. Biotechnol Bioeng 51 (1996), pp. 168-176.

Ponton J. W., and Gawthrop P. J., Systematic construction of dynamic models 
for phase equilibrium processes. Computers & Chemical Engineering, Volume 
15, Issue 12, December 1991, Pages 803-808

Postlethwaite. B.E., Building a model-based fuzzy controller. Fuzzy Sets and 
Systems, Volume 79, Issue 1, 8  April 1996, Pages 3-13.

Pramanik, J., Trelstad P.L., Schuler A.J., Jenldns D. and Keasling J.D., 
Development and validation of a flux-based stoichiometric model for enhanced 
biological phosphorus removal metabolism. Wat Res 33 (1999), pp. 462-476.

Ramkrishna, D., Population Balances: Theory and Applications to Particulate 
Processes in Engineering. New York: Academic Press (2000).

Ramlcrishna, D., Vamer J., Mathematical models of metabolic pathways. 
Current opinion in Biotechnology 10 (1999), pp. 146 -  150.

Rieseberg, M., Kaspar C., Reardon K.F. and Scheper T., Flow cytometry in 
biotechnology. Appl. Microbiol. Biotechnol. 56 (2001), pp. 350-360.

Rizzi, M., Baltes M., Theobald U. and Reuss M., In vivo analysis of metabolic 
dynamics in Saccharomyces cerevisiae: II. mathematical model. Biotechnol 
Bioeng 55 (1997), pp. 592-608.

Robinson, J.H., Smith, J.A., Totty, N.F., Riddle, P.N. Transition probability and 
the honnonal and density dependent regulation of cell proliferation. Nature 248 
(1976), pp. 704-707

Royce, P., Thornhill, N.F., Estimation of dissolved carbon dioxide 
concentrations in aerobic fermentations. AIChE J. 37 (1991), pp. 1680-1686

Schilling, C.H., Edwards J.S and Palsson B.O., Toward metabolic phenomics: 
analysis of genomic data using flux balances. Biotechnol Prog 15 (1999), pp.

R8



288-295

Schilling, C.H., Schuster S., Palsson B.O. and R. Heinrich, Metabolic pathway 
analysis: basic concepts and scientific applications in the post-genomic era. 
Biotechnol Prog 15 (1999), pp. 296-303

Schmidt, K., Carlsen M., Nielsen J. and Villadsen J., Modeling isotopomer 
distributions in biochemical networks using isotopomer mapping matrices. 
Biotechnol Bioeng 55 (1997), pp. 831-840.

Schmidt, K., Nielsen J. and Villadsen J., Quantitative analysis of metabolic 
fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and 
complete isotopomer models. J  Biotechnol 71 (1999), pp. 175-190.

Schuster, S., Dankekar T. and Fell D.A., Detection of elementary flux modes in 
biochemical networks: a promising tool for pathway analysis and metabolic 
engineering. Trends Biotechnol 17 (1999), pp. 53-60.

Shi, H., Nikawa J. and Shimizu K., Effect of modifying metabolic network on 
poly-3-hydroxybutyrate biosynthesis in recombinant Escherichia coli. J  Biosci 
Bioeng 87 (1999), pp. 666-677.

Shuler, M.L., Single-cell models: promise and limitations. J. Biotechnol. 71
(1999), pp. 225-228.

Sipiczki M., Taxonomy and physiogenesis. Molecular Biology of Fission Yeast. 
New York : Academic (1989), pp 431-52.

Smith, J.A., Martin, L., Do cells cycle? Proc. Natl. Acad. Sci. U.S.A 70(4) 
(1973), pp. 1263-1267

Southamer, A.H., Bettenhausen, C., Utilization of energy for growth and 
maintenance in continuous and batch cultures of microorganisms: a réévaluation 
of the method for the deteimination of the ATP production by measuring molar 
growth yields. Biochim. Biophys. Acta. 301 (1976), pp 53-70

Srienc, F., Friedrickson A., Liou J., Solutions of Population Balance Models 
Based on a Successive Generations Approach. Chemical Engineering Science. 
Vol 52, No 9 (1996), pp. 1529 -  1540.

Srienc, F., Cytometric data as the basis for rigorous models of cell population 
dynamics. J. Biotechnol. 71 (1999), pp. 233-238.

Srienc, F., Mantzaris, N. et al.. Numerical Solution of a mass Structured cell 
population balance model in an environment of changing substrate 
concentration. Journal o f Biotechnology 71 (1998), pp. 157 — 174.

Stephanopoulos, G., Metabolic fluxes and metabolic engineering. Metab Eng 1

R9



(1999), pp. 1-11.

Szyperski, T., '^C-NMR, MS and metabolic flux balancing in biotechnology 
research. Q Rev Biophys 31 (1998), pp. 41-106

Theilgaard, H., and Nielsen J., Metabolic control analysis of the penicillin 
biosynthetic pathway: the influence of the LLD-ACV : bisACV ratio on the flux 
control. Anton Leeuw Int J  G IS (1999), pp. 145-154.

Tholudur, A., Ramirez W.F. and McMillan J.D., Mathematical modeling and 
optimization of cellulase protein production using Trichoderma reesei RL-P37. 
Biotechnol Bioeng 6 6  (1999), pp. 1-16.

Tsuchiya, H.M., Fredrickson A.G. and Aris R., Dynamics of microbial cell 
populations. Adv. Chem. Eng. 6  (1966), pp. 125-206.

Tyson, J., Models of cell cycle control in Eukaryotes. Journal o f Biotechnology 
71 (1998), pp. 239-244.

Uchiyama, K., Morimoto M., Yokoyama Y. and Shioya S., Cell cycle 
dependency of rice ot'-amylase production in a recombinant yeast. Biotechnol. 
Bioeng. 54 (1997), pp. 262-271.

Vallino, J.J., and Stephanopoulos G., Flux determination in cellular bioreaction 
networks: applications to lysine fermentations. In: S.K. Sikdar, M. Bier and P. 
Todd Editors, Frontiers in Bioprocessing CRC Press, Boca Raton (1990), pp. 
205-219.

Van Can, H.J.L., te Braake H.A.B., Bijman A., Hellinga C., Luyben K.C.A.M. 
and Heijnen J.J., An efficient model development strategy for bioprocesses 
based on neural networks in macroscopic balances: part II. Biotechnol Bioeng 
62(1999), pp. 666-680.

Van Can, H.J.L., te Braake H.A.B., Bijman A., Hellinga C., Luyben K.C.A.M. 
and Heijnen J.J.,An efficient model development strategy for bioprocesses based 
on neural networks in macroscopic balances. Biotechnol Bioeng 54 (1997), pp. 
549-566.

Van Riel, N.A.W., Giuseppin M.L.F., TerSchure E.G. and VeiTips T., A 
structured, minimal parameter model of the central nitrogen metabolism in 
Saccharomyces cerevisiae: the prediction of the behaviour of mutants. J  Theor 
Biol 191 (1998), pp. 397-414.
Vaima, A., and Palsson B.O., Metabolic flux balancing: basic concepts, 
scientific and practical use. Bio/Technology 12 (1994), pp. 994-998.
Vamer, J., and Ramlcrishna D., Metabolic engineering from a cybernetic 
perspective. 1. Theoretical preliminaries. Biotechnol Prog 15 (1999), pp. 407- 
425.
Vamer, J., and Ramlcrishna D., Metabolic engineering from a cybemetic

RIO



perspective. 2. Qualitative investigation of nodal architectures and their 
response to genetic perturbation. Biotechnol Prog 15 (1999), pp. 426-438.

Varner, J., and Ramkrishna D., Metabolic engineering from a cybemetic 
perspective: aspartate family of amino acids. Metabol Eng 1 (1999), pp. 88-116.

Vaseghi, S., Baumeister A., Rizzi M. and Reuss M., In vivo dynamics of the 
pentose phosphate pathway in Saccharomyces cerevisiae, Metab Eng 1 (1999), 
p p .128-140

Verbmggen H.B., Van Can H.J.L., Fuzzy modeling of enzymatic penicillin-G 
conversion. Eng Applic Artif Intell 12 (1999), pp. 79-92.

Villadsen, J., On the use of population balances. J. Biotechnol 71 (1999), pp. 
251-253.

Wang, J., Ellwood K., Lehman A., Carey M.F. and She Z.S., A mathematical 
model for synergistic eukaryotic gene activation. J  Mol Biol 286 (1999), pp. 
315-325 A nice example of a detailed mechanistic description of eukaryotic 
gene expression.

Ward, J.P., King J.R., Koerber A.J., Williams P., Croft J.M. and Sockett R.E., 
Mathematical modeling of quorum sensing in bacteria. IMA J. Math Appl Med. 
Biol 18 (2001), pp. 263-292.

Wegener R., Nusslin F., A Novel Radiobiological Cell Cycle Model. 
Department of medical physics, Radiological University Clinic, Hoppe Seyler- 
Str. 3 -  7206 Tubingen Germany (2000).

Wiechert, W. and De Graaf A.A., Bidirectional reaction steps in metabolic 
networks: I. modeling and simulation of carbon isotope labeling experiments. 
Biotechnol Bioeng 55 (1997), pp. 101-117.

Wiechert, W., Siefke C., De Graaf A.A. and Marx A., Bidirectional reaction 
steps in metabolic networks: II. Flux estimation and statistical analysis. 
Biotechnol Bioeng 55 (1997), pp. 118-135.

Wolf, J., and Heimich R., Effect of cellular interaction on glycolytic oscillations 
in yeast: a theoretical investigation. Biochem. J. 345 (2000), pp. 321-334.

Wolf, J., Passarge J., Somsen O.J.G., Snoep J.L., Heinrich R. and Westerhoff
H.V., Transduction of intracellular and intercellular dynamics in yeast glycolytic 
oscillations. Biophys. J. 78 (2000), pp. 1145-1153.
Wong, P., Gladney S. and Keasling J.D., Mathematical model for the lac 
operon: inducer exclusion, catabolite repression, and diauxic growth on glucose 
and lactose. Biotechnol Prog 13 (1997), pp. 132-143.

Yagi, H., Yoshida, F., Gas absorption by newtonian and non-newtonian fluids in

R ll



sparged agitated vessels, Ind. Chem. Process. Dev. 14 (1977), pp. 488-493.

Yang, Y.T., Bennett G.N. and San K.Y., Effect of inactivation of nuo and ackA- 
pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng 
65 (1999), pp. 291-297.

Yarnold J., Molecular aspects of cellular responses to radiotherapy. 
Radiotherapy and Oncology 44 (1997), pp. 1-7.

Yin, K.K., Yang H., Daoutidis P. and Yin G.G., Simulation of population 
dynamics using continuous-time finite-state Markov chains. Comput. Chem. 
Eng. 27 (2001), pp. 235-249.

Zafiri, C., Komaros M. and Lyberatos G., Kinetic modelling of biological 
phosphoms removal with a pure culture of Acinetobacter sp. under aerobic, 
anaerobic and transient operating conditions. Wat Res 33 (1999), pp. 2769- 
2788.

Zamamiri, A.M., Birol G. and Hjortso M.A., Multiple steady states and 
hysteresis in continuous, oscillating cultures of budding yeast. Biotechnol. 
Bioeng. 75 (2001), pp. 305-312.

Zamamiri, A.M., Zhang Y., Henson M.A and Hjortso M.A., Dynamics analysis 
of an age distribution model of oscillating yeast cultures. Chem. Eng. Sci. 57
(2 0 0 2 ), pp. 2168-2181.

Zhang, Y., Henson M.A. and Kevrelddis Y.G., Nonlinear model reduction for 
dynamic analysis of cell population models. Chem. Eng. Sci. 58 (2003), pp. 
429-445.
Zhang, Y., Zamamiri A.M., Henson M.A. and Hjortso M.A., Cell population 
models for bifurcation analysis and nonlinear control of continuous yeast 
bioreactors. J. Process Contr. 12 (2002), pp. 721-734.

Zhu, G.Y., Zamamiri A.M, Henson M.A. and Hjortso M.A., Model predictive 
control of continuous yeast bioreactors using cell population models. Chem. 
Eng. Sci. 55 (2000), pp. 6155-6167.

Zorzetto, L. F. M., and Wilson, J. A. Monitoring bioprocesses using hybrid 
models and an extended Kalman filter. Computers & Chemical Engineering, 
Volume 20, Supplements 1996, Pages S689-S694

R12



APPENDIX A



FIGURE 2 CYCLE TIMES BASED ON CO9 PRODUCTION.
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FIGURE 3. CELL CYCLE OF MM321 HYBRIDOME CELL LINE
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G raph IB  : POPULATION BALANCES FOR DIFFERENT mm321 CELL LINE
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BATCH EXPERIMENTS. CELL NUMBER AND GLUCOSE CONSUMPTION
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RATES OF GLUCOSE CONSUMPTION FOR DIFFERENT BATCH EXPERIMENTS

RATES OF GLUCOSE CONSUMPTION EXP. AND MODEL 
1.2Mllllon Cells

5.0E-06

4.5E-06

4.0E-06

3.5E-06

3.0E-06

2.5E-06

2.0E-06

1.5E-06

1.0E-06

5.0E-07

0 .0 & -0 0

TIME (h rs .)

Rate exp.(glucosa/cell.rrin) 
Rate M odel(giucose/cell.min)

GRAPH 9
1.2 Million cells. Comparison with Fotuhi’s experiments. Batch with 2% Glucose

GLUCOSE RATE VARIATION S.SmlllionCells

1.2E-06

1 .OE-06TTc
I  8.0E-07 

191 6.0E-07

I
O  4.0E-07
UJ

-e—Rate Model(glucose/cell.min) 
* — RateExp.(glucose/cell.min)

2.0E-07

O.OE+00
0 5 10 15 2 0 25 30

TIME (hrs.)

GRAPH 10
8.8 Million cells. Comparison with Fotuhi*s experiments. Batch with 2% Glucose

C5
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EXPERIMENTAL AND SIMULATED REPEATED BATCH RESULTS

REPEATEDBATCH 17.5Millions
2 0 0

Ê 150 
m
§  1 0 0

50
UJ
Ü

■ »

♦  Ex p. C el Is N urn ber 

■ Model CellNumber

0 25 50 75 100 125 150
TIME (hrs.)

GRAPH 12
Ceil number in repeated batch experiments compared to Fotuhi’s 2002 

fHF=80%. DCT= 18. Initial Cell number=17.SxlO*’i

GLUCOSE. REPEATEDBATCH IT.SMillions

D)

2 0

15

UJ
g  1 0

Ü
3 5
O

0

0 i
♦

■ ■ ■ ■ ■ ■ ■ ♦ Exp. Glucose
■ ■ ModelGIucose

♦ ■
%

1

^  ■ # #

1 "1------------- 1 " ' ' 1-----
*

25 50 T IM Ë 'T k r,.)  1 ° °  125  150

GRAPH 13
Glucose in medium repeated batch experiments compared to Fotuhi’s 2002 

(HF=80%. DCT= 18. Initial Glucose=20g/L)

C7



180 
160 

1  140
S  120 
“  100 

g  80
_J 60

g  40
2 0

COMPARING CELL NUMBER

y  : i "  I  *  Ë  : :  (  IÎ  r
- - - r  r

*  ^  ^  1 ±  ♦  ♦
^ - - - - - -

♦  ModetCells Number 

■  Exp.CelINUmber

0 50 100 150 200 250 300
TIME (hr&)

GRAPH 14
Cell number in repeated batch experiments compared to Fotuhi’s 2002 
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FIGURE 1. MBO CONTROLLER
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Schematic of the model-based observer (MBO) control strategy.
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GRAPH 10. SIMULATION OF BATCH REACTOR 1% GLUCOSE
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STUDYING POSSIBLE CHAOTIC GROWTH KINETICS 

100 Cycles. Initial cell number = 17.5 Millions/ml. DCT = 18hr. HF = 80%

GRAPH 1. First 25 Batches
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GRAPH 2. 25 - 50 Batches
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GRAPH 3. 50 -  75 Batches

50-75 BATCHES. REPEATED BATCH
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GRAPH 4. 75 -  100 BATCHES

1.5E+08

1.3E+08

U 1.0E+08 
00

s  7.5E+07 

j  5.0E+07 

g  2.5E+07

O.OE+00

75-100BATCHES. REPEATED BATCH

V . ..............

.. -------  - ...................  ■■■ « p - j M . . , . , . ........ ..  . - ; . . .

♦  » Q x x «  + V  X  $

............ A . M  .- -  'V ’: ’* ’ . » -  a ,

1300 1400 1500 1600
TIME (hrs.)

1700 1800

D5



STUDYING POSSIBLE CHAOTIC GROWTH KINETICS

GRAPH 5. 200 Cycles. Initial cell number = 20 Millions/ml. DCT = 18hr. HF 
80%
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GRAPH 6. 40 -  80 Batches
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GRAPH 7. 80 -  120 Batches

(80-120 BATCHES). REPEATED BATCH
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GRAPH 8.120 -  160 Batches
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GRAPH 9 .160 -  200 Batch

(160-200BATCHES) REPEATED BATCH
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