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ABSTRACT

An investigation was undertaken into the structural behaviour of skeletal 

systems, manufactured from pultruded fib re  reinforced polyester ( f . r . p . ) ,  

also into the structural characteristics of pultruded f . r .p .  and into the 

r e l ia b i l i t y  of the material and structural systems. The study applied 

theoretical and experimental methods to single member elements and to the 

main classes of skeletal space structures. The testing of single members 

was undertaken to determine the properties of the material and to assess 

its  degree of v a r ia b ility . A computer program was developed for the 

non-linear analysis of skeletal structures manufactured from pultruded 

f . r .p .  members. The program was used for the analysis of fu l l  scale 

models, and in addition, was used to undertake a theoretical parameter 

investigation to study the methods of improving the performance of these 

skeletal systems. The experimental testing of the various models was 

carried out to study the structural performance up to fa ilu re , in both 

the pre and post-buckling states, to assess the v a lid ity  of the 

non-linear analysis program developed for this research, and also to  

compare the linear and non-linear methods of analysis of the various 

systems.

The need for the non-linear method of analysis for the f . r .p .  skeleta l  ̂

structures, especially for the f le x ib le  type is shown when the 

experimental behaviour of a skeletal dome is compared with the 

theoretical computer linear and non-linear analyses. The cases in which 

the linear method of analysis can be u tilize d  and its  lim ita tio n  fo r the 

skeletal f . r .p .  structures are c learly  pointed out.

Various aspects of the behaviour of the f . r .p .  members and structural 

assemblies such as the deform ability, recovery and mode of fa ilu re  are 

obtained. The importance of the combination of more than one type of 

f . r .p .  members on the structural effic iency is shown.



To My Wife Gabriel la  

and My Parents



ACKNOWLEDGEMENTS

I would like  to express my gratitude to Dr L Hollaway for his guidance, 
advice and encouragement throughout the period of the research.

Thanks are due to Dr P Mullord and Mr A I Tarzi for th e ir  advice on 

various aspects of the non-linear method of analysis.

Thanks are also due to my friends, Dr A P ickett, Dr V G Iskatian and 

Mr G Mall in for the invaluable discussions and advice during the course 

of this research.

Special thanks are due to my colleagues and friends in room 6 AA 19, 

namely E ric , Colin, Hana, Hashim, Robert, Simon and Steve.

I am indebted to the technicians of the C iv il Engineering Workshop fo r . 
th e ir  effic iency in the fabrication of components for some of the models.

I wish to thank Miss S Nicholls for the excellent typing of th is  thesis.

F in a lly , I wish to express my gratitude to the members of the Linguistics  

Department, in particu lar Mrs S M Gee, for th e ir help in checking the 

manuscript of this thesis.



C O N T E N T S

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

NOTATION

CHAPTER 1. INTRODUCTION 1

1.1 General 1

1.2 The Pultrusion Technique 2

1.3 The Use of Composites in Skeletal Structures 4

1.4 Objectives and Approach to the Current
Investigation 6

CHAPTER 2 . PULTRUDED F.R .P . MEMBERS 9

2.1 Introduction 9

2.2 Mechanical Properties 9

2 .2 .1  Tensile Testing 10

2.2 .2  Compressive Testing 12

2.2 .3  Torsional Testing 14

2 .2 .4  Pressure Testing for Hoop Characteristics 15

2.2 .5  Discussion 16

2.3 Axisymmetric F in ite  Element Analysis 16

2.3 .1  The Analysis 16

2.3 .2  The Results of Analysis 18

2 .3 .3  Discussion 20

2.4 Buckling of Pultruded C.H.S, G.R.P. and C.G.R.P. 21

2.4 .1  Introduction 21

2.4 .2  Theoretical Background and Application to

G.R.P. and C.G.R.P. Members 22

2.4 .3  Testing of G.R.P. Members 24

2.4 .4  Discussion 25



CHAPTER 3. NON-LINEAR ANALYSIS OF SKELETAL STRUCTURES 44

3.1 Introduction 44

3.2 Some Relevant Basic Princip les'of E lastic
S ta b ility  45

3.2 .1  Equilibrium of Structures 45

3 .2 .2  The S ta b ility  of Equilibrium 46

3.2 .3  The C ritic a l Points 48

3 .2 .4  Limit Point Behaviour 49

3.3 Geometric Non-Linearity of Skeletal Systems

by the F in ite  Element Method 50

3.3 .1  General 51

3 .3 .2  H istorical Review 54

3 .3 .3  Solution of Non-linear Equations 60

3.4 Computer Programs for the Geometrically

Non-Linear Analysis of Skeletal Systems 62

3.4 .1  The Computer Programs 62

3 .4 .2  Derivation of the Stiffness Matrix 64

CHAPTER 4 . STIFF SKELETAL STRUCTURES IN PULTRUDED F.R .P . ’ 71

4.1 Introduction 71

4.2 Small Span Structures 72

4 .2 .1  The Model Structures 72

4 .2 .2  The Model Testing 74

4 .2 .3  The Theoretical Analysis 76

4 .2 .4  Results and Discussion 77

4.3 Large Span Structures 79

4.3 .1  The Model Structures 79

4 .3 .2  The Model Testing 81

4 .3 .3  The Theoretical Analysis 83

4 .3 .4  Results and Discussion 84



4.4 Parameter Study 86

4.4.1 Introduction 86

4.4 .2  The Structural Systems 87

4.4 .3  The Theoretical Analysis 88

4 .4 .4  Results and Discussion 89

4.5 Observations 94

CHAPTER 5. FLEXIBLE SKELETAL STRUCTURES IN PULTRUDED F .R .P . 134

5.1 Introduction 134

5.2 Shallow Dome Model 135

5.2 .1  The Model Structure 135

5.2 .2  Testing Arrangement and Loading 137

5.2 .3  Instrumentation . 137

5.2 .4  Testing Procedure 138

5.2 .5  The Theoretical Analysis 139

5.2 .6  Results and Discussion 139

5.3 Parameter Study 143

5.3.1 Introduction 143

5.3 .2  The Barrel Vault Structures 144

5.3 .3  The Boundary Conditions 145

5 .3 .4  The Loading of the Structures 145

5.3 .5  The Theoretical Analysis 146

5.3 .6  Results and Discussion 146

5.4 Observations 149

CHAPTER 6 . CONCLUSIONS AND RECOMMENDATIONS 180

REFERENCES

BIBLIOGRAPHY

184

191



NOTATION

X, Y, Z Rectangular Coordinates
L, R, H Cylindrical Coordinates

A Cross Sectional Area
t  Thickness of Circular Hollow Section Members

J Polar Moment of In e rtia  of a Cross Section
6  Normal Stress

t  Shearing Stress
e Unit Elongation

0 Angle of Twist Per Unit Length
M Bending Moment

T Torque
Ey|_, Ejh» T̂R Tensile Elastic Moduli in L, R and H Directions

Ecl . ĈH> ĈR Compressive Elastic Moduli in L, R and H directions

VLH» VLR» VHR Poisson's Ratios in Cylindrical Coordinates
Glh> G|_r , Ĝ r Shear Moduli in Cylindrical Coordinates
V Potential Energy

P Load Vector
q Generalised Coordinates Vector

qi Generalised Coordinate i at Equilibrium Position E
X Load Factor

u, v, w Components of Displacement
ky, k£, ka , k§ Tangent, E lastic Linear, In i t ia l  Stress and

In i t ia l  Displacement Matrices for a Member
Ky, Kj:, Ka , K$ Tangent, E lastic Linear, In i t ia l  Stress and

In i t ia l  Displacement Matrices for a Structure

SUPERSCRIPTS

1

2
A Quantity Relevant to G.R.P.
A Quantity Relevant to C.G.R.P.



C H A P T E R  O N E

INTRODUCTION

1.1 GENERAL

During the last few years many radical changes have taken place in the 

manufacturing techniques of fib re  reinforced polyesters ( f . r . p . ) .  In the 

past, i t  has been a labour intensive industry and consequently has been 

somewhat unpopular with engineers because of the slow, laborious hand 

lay-up technque, with quality  control problems where the fin a l product is 

operator sensitive.

With more advanced technology in the form of new mechanics and with the 

introduction of resin formulation, fib re  reinforced polyester products 

are becoming more e ffic ie n t and re liab le  and the material property 

v a r ia b ility  is being reduced to a minimum.

The pultrusion technique is one of the fu lly  automated methods of 
production. I t  is a mechanised process for producing f . r .p .  sections by 

the closed mould system. There are no physical lim its  to the size of 
sections that can be produced, but for the tubular sections, fo r the 

reasons of economy, they generally vary from 25mm diameter with a wall . 
thickness of 2mm up to 150mm diameter and wall thickness of 5mm. The 

fib re /m atrix  percentage ra tio  by weight can have a wide range of values 

with an upper lim it of about 70/30. The pultruded tube is an ideal unit 

with which to manufacture skeletal systems. The modulus of e la s t ic ity  

fo r the upper lim it of the fib re  glass reinforced polyester would be of 
the order of 25000 N/mm2 . This value is re la tiv e ly  low compared with 

that of steel but i f  members, which are highly loaded in a skeletal 

system, require greater stiffness to prevent buckling, a hybrid composite 

of carbon and glass fib re  in a polyester matrix, or even a higher 

stiffness fib re , could be used. An acceptable carbon fib re /g lass  

fib re /po lyester resin ra tio  from an economic view point would be 

30/30/40% by weight and the modulus of e la s tic ity  would be of the order 
of 70000 N/mm2 .
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The use of fib re  reinforced polyester ( f . r .p . )  composites in 

construction, although not widespread, is now well established. One of 

the principal uses of the material in this f ie ld  has been in the form of 
repeatable units of both load bearing and in f i l l  type that can be 

assembled to form a structure. The technique for jo in ting  these units is 

also well established. F .r .p . in the form of rods and tubes has not yet 

been seriously used; this is due, mainly, to the d if f ic u lty  of jo in tin g  

tubular members at nodal points. Recently the crimped and bonded jo in t  

technique [ l ]  has been presented by the Fulmer Research In s titu te  and The 

Royal A irc ra ft Establishment and has been used in this investigation to 

make end connections to f . r .p .  pultruded members which may then be 

screwed into an aluminium nodal jo in t . This invention has opened up a 

whole new f ie ld  in skeletal structural systems which can be manufactured 

from fib re  matrix componenets and pultruded members, in p articu lar.

1.2 THE PULTRUSION TECHNIQUE

The pultrusion describes the process which uses a pulling action to draw 

and shape the composite m aterial. H is to ric a lly  pultrusion techniques 

date back to 1946. However, great technological improvements have taken 

place since then whereby a large variety of shapes and profiles  with 

excellent surface finishes can now be produced. Although the process was 

at f i r s t  lim ited to produce g . r .p . , nowadays various types of fib res and 

resins are combined to produce a high performance material such as carbon 
fib re  reinforced epoxy.

A schematic representation of the process is shown in Figure (1 .1 ) where 

continuous fib re  roving reinforcements are drawn from creels through a 

bath containing the resin mixture; the resin impregnated reinforcement 

passes through a heated die having the shape and dimensions of the 

required section. The surplus resin and a ir  are squeezed from the 

reinforcement in the cold part and on passing through the hot part of the 

die the setting of the resin commences. The proceed section is pulled by 

a hydraulically  driven puller which provides the motive force fo r the 

operation. A diamond tipped fly in g  saw cuts the profiles to the required 

length. In certain variations, the resin is injected under pressure to 

impregnate the reinforcement within the die. Often radio frequency 

curing is used for fast production (up to 7m/min).



-  3 -

Glass fib re  makes up the bulk of reinforcement used in pultrusion, 
although any fib re  compatible with the resin and the processing method 

can be used. Pultrusion sections which have exclusively unidirectional 
reinforcement are anisotropic with extremely high axial and flexural 
strength but re la tiv e ly  low transverse strength, but incorporating hooped 

strands along a reinforcement core can improve the cross strength. Mats, 
especially continuous fib re  mat (c .f .m .) , can also be used for the 

transverse reinforcement.

Generally the role of the resin in any composite is to bind the fibres  

together, to d istribute  and to transfer stresses to the reinforcements. 
The polyester resin, the major resin used in the pultrusion process, is 

normally a combination of polybasic acid and polyhydric alcohol, to which 

the minimum of styrene is added to enable some cross linking of the 

polymers to take place and also to improve the physical properties; a 

curing agent and possibly a flame retardant should be added. I t  is 

thermosetting m aterial, thus, when exposed to a flame, localised charring 

takes place as opposed to the melting which is associated with 

thermoplastic polymers.

The main properties of the pultruded composite which gives i t  a special 
significance are:

i )  High Strength/Weight Ratio

Considering a pultruded g .r.p . element of unit length and unit 

cross sectional area (of fib re /m atrix  ra tio  by weight of 60 /40 ), 
and a mild steel element of unit length and of the same weight as 

the g .r .p . element, the ra tio  of the tens ile  strengths of these two 

elements (g .r .p ./s te e l)  would be of 3 .7 /1 .

i i )  Dimensional S ta b ility

As the material is of a thermosetting type i t  maintains its  

physical properties over a wide temperature range and, unlike  

thermoplastics, does not soften or melt at temperatures in excess 

of 30CPC (the melting point of high technology thermoplastic 

polymers).
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i i i ) Low Finishing

Pultruded members generally do not require any surface fin is h . 
However, pigments can be added to the resin at the time of 

fabrication of the sections.

iv ) Corrosion Resistance

Examples of the use of pultruded g .r .p .,  where corrosion is a major 
problem, w ill be given in the next section.

Other properties, such as a re la tiv e ly  low thermal coeffic ien t of 
expansion, a high e le c tric a l resistance and an electromagnetic 

permeability to radio waves make the material suitable for particu lar  

applications.

1.3 THE USE OF COMPOSITES IN SKELETAL STRUCTURES

During the last decade skeletal structures in fib re  reinforced polymers 

started to gain c re d ib ility ;  however, applications were lim ited to simple 

experimental types of structures; some examples of these applications in -  

various fie ld s  are given below.

Collings and Steinlen [2 , 1970] presented a paper, in which potential 
applications of composite tubes to VTOL a irc ra ft structure components 

were demonstrated by the design and fabrication of a composite t a i l  skid 

brace. Model studies of a possible redundant truss structure fo r the 

t a i l  section of a large crane helicopter where made.

Baker et al [3 , 1974] presented a study of experimental bipod legs, which 

could be used in place of a standard non-adjustable metal bipod leg for 

81mm mortar (gun) un it. They were manufactured from carbon fib re  

reinforced polyester tubes with bonded metal ends. The composite units 

performed successfully under practical f ir in g  conditions. The saving in 

weight in the tubular sections, by replacing the aluminium alloy with 

composite m ateria l, was about 45%. This value indicated the s ig n ifican t 
potential for the application of carbon fib re  reinforced polyester to
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items of service equipment where such weight saving can be shown to be 

cost e ffec tive .

Fager [4 , 1976] presented a paper on the use of ligh t weight graphite 

composites for large autenna systems for communication s a te llite s . The 

material was described as ideal for its  high r ig id ity  and near zero 

coeffic ien t of thermal expansion and in addition a 40 to 60% weight 
reduction when compared to existing metal systems could be achieved. The 

study included the development of an 8 - f t  graphite composite re fle c to r.

The truss element, rings and radial stiffeners were a ll made from 

unidirectional graphite composites. Another aspect discussed was the 

s ign ificant improvement that can be made in using the graphite composite 

material in erectable autenna.

Hollaway and Ishakian [5 , 1977] illu s tra ted  the superior mechanical 
characteristics that a fib re /m atrix  composite skeletal structure has over 
the one that has been manufactured from a ductile m ateria l. A model of 
r ig id ly  jointed cantilever space structures, made from pultruded carbon 

f ib re  reinforced epoxy resin rods of 8mm diameter, was used in th is  

investigation. Further study, by the same authors [61, 1981] was 

undertaken into the f i r s t  buckling characteristics of a skeletal 
continuum structure made from pultruded g .r.p . members and chopped s tran d / 

mat fib re  glass reinforced plate elements.

In 1980, an exhibition in association with the th ird  conference on 

composite materials in Paris was arranged. A walkway, of overall span
4.3 metres and to ta l weight of 35kg, made from pultruded g .r .p . elements 

was presented. This structure was b u ilt by Fulmer Research Laboratories 

Limited in collaboration with BTR Permali RP Limited. However, the 

structure was very crude.

In April 1981, a BP technical report [6] was published describing a high 

s trength /ligh t weight composite structure; the manufacturing technique is 

known as 'Mathweb', and was invented and patented in 1977 by BP. The 

structures, in th is technique, are manufactured from continuous filam ents  

in which the materials used are the continuous fib re  and the polyemerised 

struts and frames. The open-lattice structures are fabricated in a j ig .  
Fixing lugs, bushes, bobbings, etc,: can be incorporated, in the structure  

during manufacture.
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Morrison [7 , 1981] presented an interesting discussion on a long span, 
single piece girder structure manufactured from glass reinforced 

polyester resin and used for special applications in the chemical and 

wastewater treatment f ie ld s . A second structure discussed was a roof 

beam system composed e n tire ly  of f . r .p ;  this in s ta lla tio n  was used as a 

roof to mercury-cell chlorine plant. No information about the structural 

system, design, analysis or behaviour was given.

Opinger et al [8 , 1983] published a paper on structural analysis, design 

and testing of a framework made of pultruded glass reinforced polyester 

which was developed to replace a m etallic  frame system for large tent 
applications. The frame was tested and a sim plified non-linear analysis 

was undertaken. The study showed that the non-linear effects (geometric) 
were considerable in such structures.

Various papers of a more general character were published. An example of 

such work was given in a paper by Makowski [9 , 1981]. I t  contains a 

review of the development in structural and semi-structural applications 

of plastics within the last decade. A more general paper, dealing with 

the application of glass reinforced polyester in buildings was given by 

Einsfeld [10, 1982],

1.4 OBJECTIVES AND APPROACH TO THE CURRENT INVESTIGATION

In the previous section various examples, showing the wide fie ld s  of 

application of the skeletal fibres reinforced polymer structures, were 

given. The application in the f ie ld  of structural engineering is 

generally lim ited to cases with particu lar requirements, such as the 

resistance to chemical corrosion. The structures b u ilt tend to be 

over-designed and of the trad itio n a l s ty le , mainly because of the lim ited  

knowledge of the material potential and design procedures.

Although pultruded f . r .p .  is one of the most promising skeletal 

structural elements, i t  has never been fu lly  investigated. Therefore, 
the main objectives of the present study were to determine the v ia b i l i ty  

fo r using.the pultruded fib re /m atrix  composite materials as component 
members in ligh t weight structural systems. The investigation, which
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included experimental procedures and theoretical analysis, was undertaken 

on single elements, as well as large scale assemblies representing the 

main classes of skeletal space structures. The development of a 

practical technique of non-linear analysis, applicable to the pultruded

f . r .p .  skeletal structures, was required to achieve the objectives. This 

technique had to be general and had to include the pre and post-buckling 

states. Constructing the fu l l  curve of the structural behaviour was 

considered an important part of the study as the f i r s t  buckling does not 

always imply collapse.

The material used in the investigation was limited to the pultruded glass 

reinforced polyester (g .r .p .)  and the pultruded hybrid, carbon and glass, 

reinforced polyester (c .g .r .p .) .  The material mechanical properties were 

determined and an investigation on member behaviour was undertaken.

These investigations and a fu ll  discussion of the results are included in 

Chapter Two. The non-linear analysis technique was based on the findings 

obtained from this investigation. Some important aspects of the concepts 

of s ta b ility  and a review of the main practical non-linear analysis 

techniques for skeletal systems were included in Chapter Three. The 

method of non-linear analysis adopted and the computer program 

implementation were given in the same chapter.

The f i r s t  class of structures considered, and manufactured from g .r .p .  
and c .g .r .p . ,  was of the s t i f f  type. Two double-layer grid models (short 

span and long span) were analysed and tested to enable a study of the 

behaviour in the pre and post-buckling states to be made. In addition, 

the mode of fa ilu re  and amount of deformation that occur in the structure  

prior to fa ilu re  were also investigated. The effect of replacing the 

c r it ic a l g .r .p . members with c .g .r .p . ones on the performance of the 
structure was also considered. The comparison of the experimental 

results and those obtained ana ly tica lly  by the computer program developed 

here offered the po ss ib ility  of assessing the program's performance. A 

further parameter study on three types of double-layer grid systems was 

undertaken; th is completed the study on the s t i f f  type of structures.

The second class of structures to be considered was of the f le x ib le  

type. A shallow three-way skeletal dome was analysed and tested. Also a 

theoretical parameter study of a braced barrel vault was undertaken. The 

objectives were to obtain fu l l  information on the structural behaviour 

and to investigate methods of improving the ir performance.
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C H A P T E R  T WO

PULTRUDED F.R.P. MEMBERS

2.1 INTRODUCTION

The investigation into the use of fib re  reinforced polyester pultruded 

sections as structural members in skeletal systems has been undertaken by 

experimental and theoretical techniques. The experimental testing of the 
pultruded sections alone was required in order to determine its  behaviour 

under load as well as to obtain data on its  mechanical properties 

fo r use in the theoretical analysis. The study carried out on the 

tubular sections also included a theoretical f in ite  element analysis to 

determine the stress d istribution  in the member subjected to axial force.

The investigation was lim ited to two fib re  reinforced polyester composite 

sections; the f i r s t  was a pultruded glass fib re  reinforced polyester 

(g .r .p .)  with fib re  to matrix weight ra tio  of 60/40 percent and the 

second was a hybrid composite of carbon and glass fib re  reinforced 

polyester (c .g .r .p .)  with a carbon/glass/resin weight ra tio  of 30/30/40  

percent. These values were obtained by burning various specimens in a 

furnace at a temperature of 43CPC. Only one size of pultruded hollow 

sections was considered.

2.2 MECHANICAL PROPERTIES

A series of tests were undertaken to determine the mechanical properties 

of g .r .p . and c .g .r .p . pultruded c ircu lar hollow section members of 
external diameter of 25.4mm and wall thickness of 2mm. The members were 

tested in axial tension, axial compression, torsion about th e ir  

longitudinal axis and hoop tension. Only a lim ited number of c .g .r .p .  

specimens were tested due to the cost of producing the experimental 
m ateria l.
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2 .2 .1  TENSILE TESTING

(a) Specimens and Testing Arrangement

A ll of the g .r.p . specimens were obtained from d iffe ren t batches of 
commercially produced pultruded tubes purchased from B.T.R. Permali 

and the c .g .r .p . specimens were obtained from experimental 
production.

Six specimens of g .r.p . and three specimens of c .g .r .p . ,  each 250mm 

long, were tested in tension. To enable the samples to be set up 
in an Instron testing machine, crimped and bonded aluminium tubes 

were secured on to each end of the tensile  specimens. The 
preparation for the crimped bonded procedure involved thorough 

cleaning of the ends of the specimens by means of sandpaper and 

solvent. To remove grease and foreign matter, the inner surface of 

the aluminium sleeve was treated in a sim ilar manner to the outer 

surface of the g .r .p . tube before crimping. The aluminium sleeves 

of internal diameter of 27mm and 130mm long were then crimped on to 

allow an overlap of 60mm. An epoxy adhesive was applied to the

inner surface of the sleeves and to the outer surface of the
pultruded tube. Prior to crimping, the aluminium sleeves were heat 

treated up to 53CPC and then quenched to anneal the m ateria l. The 

softening prevented the aluminium cracking when crimped. The 

crimping tool used was manufactured from mild steel and consisted 

of two blocks each with a channel shaped cavity. When the two 

blocks were brought together the two cavities were of cy lin d rica l 
form with a gap between the two halves to allow the permanently 

deformed aluminium tube to enter the space. As a resu lt of the 

crimping, a uniform thin glue line formed between the outer surface 

of the specimen and the inner surface of the aluminium tube. The 

70mm lengths of aluminium tube outside the overlap were fla ttened  

to enable the specimen to be set up in the jaws of the Instron 

machine. The specimen was allowed to cure in a furnace at 6CPC.

This type of crimped and bonded end grip was proposed by Green and

Philips [1 ] .  As the crimped and bonded jo in t was weaker than the
pultruded tube, an aluminium tube bonded to the inside of the
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pultruded member was required in order to produce an increase in 

the bonded surface and, hence, an increase in the strength of the 

jo in t so that the specimen could be loaded to fa ilu re . The inner 

aluminium tubewas surface prepared exactly in the same way as the 

outer aluminium tube; also the inner surface of the f . r .p .  tube was 

roughened. The application of adhesive and the insertion of the 

inner tube took place immediately before crimping. A diagram of 
the cross-section of the pultruded tube and aluminium end f it t in g s  

is shown in Figure (2 .1)A.

The specimens were tested in tension in an Instron testing machine 

of type No. TTD TTDM. The moving crosshead was operated by two 

vertica l driven screws from a servo controlled drive system. The 

chart of the recorder was driven synchronously at a variety  of 
speed ratios with respect to the crosshead. The crosshead speed 

used in th is testing was of lmm/min.

In some of the specimens the strain was measured by means of 8mm 

e le c tric a l metal o il strain gauges, with a resistance of 120 Ohms 

and gauge factor of 2.09. The strain gauges were stuck on the 

external surface midway along the specimens, in both the 

longitudinal and hoop directions. Three strain gauges were equally 

spaced around the specimens and were connected to a data logging 

system. For the other specimens the testing machine chart recorder 

was used to obtain the load against displacements of the crosshead.

(b) The Results

Figure (2 .2 ) shows that the average values of the readings of the 

three strain gauges varies lin ea rly  with the average stress applied 

to the specimens. The average stress is equal to the applied 

tens ile  load divided by the specimen cross-sectional area. The 

graph shows only small discrepancies in the linear behaviour 

between the various specimens tested. The e las tic  modulus, 
obtained by averaging the results of a ll  tested specimens, was
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found to be equal to 21061 N/mm2 for the g .r .p . (E1-^ ) and 71428 

N/mm2 for the c .g .r .p . (E2j l ). I t  is necessary to emphasise that

these two values were based on the assumption of a uniform

distribution  of the stresses. A value of 0.2534 was obtained for 

the Poisson's ra tio  of g .r .p . (v1^ )  which is defined as the 

ra tio  of the average strain in the hoop direction and the average 

strain in the longitudinal direction.

To obtain the ultim ate ten s ile  stress, tests were carried out

using a Saetec machine and, since there was no data logging system 

available, the testing machine chart recorder was used. A linear  

behaviour, up to fa ilu re , of the load against crosshead 

displacement was observed. The ultimate loads of the g .r .p .  
specimens tested were 42.0 kN. 44.9 kN and 46.0 kN. The average 

value divided by the cross-sectional area of 147mm2 gave an 

ultim ate tens ile  stress of 301 N/mm2 . This may have involved 

bending strains which were unavoidable due to eccentric ity  in the 

loading arangement. I t  was not possible to f a i l  the c .g .r .p .  
specimen due to the premature fa ilu re  of the crimped and bonded 

ends on this composite.

The fa ilu re  of the g .r .p . specimens involved complete destruction ~ 
of the tube, characterised by the debonding of the fib res as plate  

(2 .1 ) shows. In order to explain the reasons for th is  mode of 
fa ilu re , further investigation was required to determine the state  

of internal stresses and th e ir possible e ffec t.

2 .2 .2  COMPRESSIVE TESTING

(a) Specimens and Testing Arrangement

The specimens for this test were short and the ends were cut 
perfectly  square to the axis. The ends of the specimens were 

encapsulated into a tig h t f i t t in g  inner steel plug with an outer 

steel ring and an end cap, as shown in Figure (2 .1 )B. The inner 

plug and outer ring were used to protect the edge of the specimens



- 13 -

and to prevent local s p litt in g . Three g .r .p . specimens and three 

c .g .r .p .,  specimens each of length 100mm, were strain gauged and 

tested in compression in an Instron machine. In addition, using 

a crosshead speed of lmm/min, 10 g .r .p . specimens and 5 c .g .r .p . 

specimens, a ll 100mm long, were tested but without measuring 

strains.

(b) The Results

Figure (2 .3 ) shows the relationship between stress and strain  for 

the compressive specimens and i t  w ill be seen that the three sets 

of results are very close. The relationship is lin ear, as 

confirmed by the testing of the monitor Instron chart specimens and 

as shown in Figure (2 .4 ) . The e lastic  modulus of the g .r .p .
(E1cl)» obtained by averaging the results from the tested 

specimens, was found to be equal to 22058 N/mm2 , whilst the 

corresponding test results of the c .g .r .p . (E2q_) was 70994 
N/mm2 . The averaged results of both compressive and te n s ile  tests  

of g .r .p . and c .g .r .p . were plotted on the same graph shown in 

Figure (2 .5 ); th is allows a direct comparison of the material 

behaviour. The results indicate that the material has the same 
stress/strain  behaviour under compression and tension and that the 

ultimate compressive strength obtained lies between 31 and 36 kN. 
The ultimate loads obtained from the testing of the 10 g .r .p . and 5 

c .g .r .p . specimens are shown in Table (2 .1 ). The mode of fa ilu re  

of the compressive specimens c learly  showed that the longitudinal 

fibres underwent local microbuckling and local matrix crushing. I t
is unlikely that local shell buckling took place as the ra tio  of

wall thickness to the tube radius is high; this aspect w ill be 

discussed in Section 2 .3 . The testing of the 5 c .g .r .p . specimens 

showed a sim ilar mode of fa ilu re . The minimum, maximum and average
values of the ultim ate compressive load obtained were 23.75 kN,

37.5 kN and 32.55 kN respectively. The average ultim ate  
stresses obtained were 229 N/mm2 and 221 N/mm2 for g .r .p . and 

c .g .r .p . respectively.
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2 .2 .3  TORSIONAL TESTING

(a) Specimens and Testing Arrangement

Three specimens of g .r .p . and two specimens of c .g .r .p . ,  of 
identical dimensions to those described in Section 2 .1 , were tested 

by means of a 'Tecquipment* torsion testing machine. The test 
specimens were f it te d  with two machined steel end blocks to allow 

them to be mounted into the testing machine. Each end consisted of 
a steel block A with a cylindrical hole, to accomodate the 

specimen, at one side and a pin of hexagonal cross-section B to be 

fixed on to the testing machine at the opposite side; Figure (2 .6 ) 

shows the arrangement. The end blocks were machined to a high 

precision, with the centre of the hole coinciding with the axis of 

the pins. Epoxy resin was used to f ix  the specimen to the end 

blocks. A special j ig  was used to bond the components and to give 

the specimen an e ffec tive  length of 250mm. During tes tin g ,th e  

applied torsional moment and the corresponding deflections, di and 

d2 , (of two marked positions on the two rods) were recorded. The 

two deflections were measured by means of dial gauges in a 

direction perpendicular to the plane containing the rod and the 

axis of the specimen.

(b) The Results

The value of the shear modulus (Glh) was obtained from the 

displacements di and d2 , the applied torque, and the geometrical 

dimensions of the tested specimens.

The values of J x 0 (Polar moment x angle of tw ist per unit length) 
were plotted against the applied torque T for a ll tests as shown in 

Figure (2 .7 ). The value Glh was obtained by averaging the 

results of a ll the specimens tested. These la t te r  results fo r both

g .r.p . and c .g .r .p . were plotted on the same graph of Figure
(2 .7 ) . The tangent to the in i t ia l  section of these last two curves 

gave a value of 4490 N/mm2 for G1^  of g .r.p . and 5960 N/mm2 for  

G2lh of c .g .r .p .
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2 .2 .4  PRESSURE TESTING FOR HOOP CHARACTERISTICS

(a) Specimens and Testing Arrangement

The g .r .p . specimen tested was 1 metre long with four metal fo i l  
strain gauges bonded to the external surface midway along its  

length, two circum ferential and two longitudinal. At the two ends 

of the g .r .p . tube an aluminium sleeve 70mm long was crimped and 

bonded following the same procedure described in Section 2 .1 .1 . A 

thread was then cut onto the aluminium sleeve and two steel caps 

were f it te d . .  The two steel caps were d rille d  and tapped to allow 

for influx of hydraulic f lu id  and bleeding. To prevent seepage 

leaks due to porosity, a polythene inner tube was used. The 

internal pressure loads were applied hydraulically  by a small hand 

operated jack as shown in-P late (2 .1 ).

(b) The Results

The results are summarized in the two curves shown in Figures (2 .8) 
and (2 .9 ). The stress values used in Figure (2 .8 ) were obtained 

from the internal pressure by simple equilibrium considerations.
The tensile  e las tic  modulus (E1^) in the hoop direction was 

obtained from the best f i t  to the experimental points in Figure
(2 .8 ) . The Poisson's ra tio  v1^  was obtained from the curve of 

Figure (2 .9 ) . In order to obtain the e las tic  modulus in 

compression, the specimen should have been subjected to external 
pressure. However, as the modulus of e la s tic ity  in tension and 

compression in the longitudinal direction were of s im ilar value, i t  

was not f e l t  necessary to undertake a compressive test in the hoop 

direction and the two hoop moduli values were assumed equal. As 

the value v '^l obtained experimentally was very close to the 

theoretical value obtained from the relationship

VHL = —  x VLH»
EH

i t  was fe l t  that only one hoop tensile  test was required. The
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values obtained for Ê  and v^l were 10666 N/mm2 and 0.118 

respectively.

2 .2 .5  DISCUSSION

The material mechanical properties required for the theoretica l 
analysis of skeletal systems made of g .r.p . and c .g .r .p . were 

obtained by experiment. I t  has been shown that the differences, 
under compressive and tens ile  force, in the values obtained were 

in s ign ifican t, with the exception of the ultimate strengths. 
Consequently, for the theoretical analysis, the properties were 

assumed equal and no testing under bending was required.

Full material mechanical properties, required for the f in i t e  

element analysis assuming the element to have orthotropic material 
properties, were obtained for the g .r.p . only. However, the 

results of th is analysis could be extended to the c .g .r .p .  
m aterial. The mechanical properties obtained experimentally are 

summarised in Table (2 .2 ).

I t  must be mentioned that the v a ria b ility  of the results from the 

testing of g .r .p . specimens, which were obtained from the supplier 

from d iffe ren t batches, was a minimum, as the small scatter 

indicates. The number of c .g .r .p . specimens tested was lim ited  

and, although the v a r ia b ility  of results were small, no conclusion 

can be drawn.

2.3 AXISYMMETRIC FINITE ELEMENT ANALYSIS

2 .3 .1  THE ANALYSIS

The mechanical properties obtained as a result of subjecting 

f . r .p .  specimens to axial loading were based on the assumption that 
a uniform stress d istribution in the cross-section existed and that 
the effect of end constraints was negligible. To v e rify  th is  

assumption and to provide a greater understanding of the m aterial
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behaviour, a theoretical analysis was undertaken on a x ia lly  loaded 

members under two d iffe ren t boundary conditions. This analysis did 

not include the stress concentration in the region of end 

constraints as this has been fu lly  investigated by Pickett [1 1 ].

For this analysis, the LUSAS f in ite  element program, w ritten by 

F in ite  Element Analysis L td ., was used. A 50mm long g .r .p . 

pultruded c ircu lar hollow section member, with an external diameter 

of 25.4mm and a wall thickness of 2mm was analysed. The member was 

subjected to a uniform axial force and with boundary condition 

symmetric about the axis of the tube. The discretisation of the 

tube and the constraints is shown in Figure (2 .10 ). In th is  linear 

analysis, with orthotropic material properties, an eight node 

quadrilateral axisymmetric element was chosen. This high order 

'quadratic' element allows stress and strain variation across the 

element. The mechanical properties required for the analysis were 
Ej_, Er , Eh, Gr l , v rl, v l h  and vRH, where suffices L,

R and H indicate the principal material directions in the 

longitudinal, radial and circumferential or hoop directions  

respectively, as shown in Figure (2 .10 ). Symmetry of the material 
properties in the plane RH was assumed as the reinforcement was 

mainly in the axial d irection. Consequently, Ê  = ER and v lR 
= vLH. From the material testing , a ll the properties required 

for the analysis were available, except for vR̂  which was 

d if f ic u lt  to determine and for this reason two t r ia l  analyses were 

undertaken using d iffe ren t values of vR̂ . The f i r s t  was equal to 

the cured polyester resin value and the second was smaller. Since 

the difference in the results of the two t r ia l  analyses was 

negligible (less than 1%) i t  was concluded that i t  was possible, 

without affecting the outcome of the analysis, to use e ither of the 
two values.

Although the results were for tens ile  loading, as the analysis was 

linear i t  could also represent a compressive loading by simply 
changing the sign of the resu lts.
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The two boundary conditions assumed for the analysis were:

(a) A set of ro lle rs  which provided the constraint for a ll end 

nodes in the longitudinal d irection . The constrained nodes, 
however, were free to move in the RH plane.

(b) The same boundary conditions mentioned in (a) were applied but 
with an additional ro lle r  to prevent movement of the outer 

constrained end node in the radial d irection . This boundary 

condition simulates, with a fa ir  degree of accuracy, the end 

arrangement of the specimens under compression. This is an 

extreme condition in the case of the tensile  specimens, as the 

crimped aluminium end cap had a certain amount of f le x ib i l i t y
and the constraint in the radial direction should have been
represented by a spring.

2 .3 .2  THE RESULTS OF ANALYSIS

The results obtained from the f in ite  element analysis were:

(a) The longitudinal and transverse displacements.
(b) The stress in the three principal directions.

(c) The shear stress.

The results are displayed in isometric projection graphs. In these 

graphs the X-axis represents the radial d irection , the Y-axis the 

longitudinal direction and the Z-axis contains the results from the 

f in ite  element analysis. The two graphs representing the same 

results re la tive  to the two boundary conditions are displayed in 

the same figure to allow a d irect comparison. This representation 

gives a clear, general view of the d istribution  of the resu lts .

Since the area of interest was lim ited to the stress d istrib u tio n  

in the pultruded members, and the stress concentration in the
region of the constraints was not of particu lar in teres t, a fin e

mesh was not used and the elements with constrained nodes 

were omitted from the results.
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Of the two graphs displayed in each figure, the top graph relates  

to the boundary condition (b) whilst the bottom one relates to the 

boundary condition (a ). The above results are for an externally  

applied tens ile  load of 1508N.

The longitudinal displacement graphs, shown in Figure (2 .1 1 ), 
indicate that the extra constraint resulted, in general, in a 

reduction of the displacements. The graph for boundary condition 

(a) showed that near the constrained end the displacements were 

uniform across the section and at the fa r end the displacements 

were larger towards the external surface. The top graph showed 

that with boundary condition (b) displacements near the external 
surface were generally higher than those near to the internal 
surface and the nearer the position was to the constrained nodes 

the larger the difference. The radial displacements, as shown in 

Figure (2 .1 2 ), were a ll negative which meant that a ll nodal points 

moved towards the centre of the tube. However, the values were 

very small (of the order of 10”2mm). The results for boundary 

condition (a) indicated a uniform displacement, with values ranging 

between -0.93 x 10"2 and -0.83 x 10“2 , and the introduction of 

the extra radial constraint reduced the displacements lo ca lly  near 
the constrained end. .

The axial stresses are shown in Figure (2.13) where boundary 

condition (a) produced a lin e a rly  variable stress with a value of
11.1 N/mm2 near the external surface of the tube and a value of 9.7  

N/mm near the inside surface. This d istribution  was altered near 
the loaded nodes. The top graph of this figure shows the effects  

produced by the extra radial constraint which resulted in reducing 

the stresses lo ca lly  and in the v ic in ity  of the constrained end.

The situation was sim ilar to the constrained end region o f the 

bottom graph. The stresses in the radial direction are shown in

Figure (2.14) where the bottom graph shows the stresses varying
between zero, at both surfaces and a maximum value, at mid wall
thickness, of approximately -0.018 N/mm2 . This maximum value is

very small compared to the longitudinal stresses. Although the 

extra radial constraint increased the stresses lo ca lly , elsewhere 

they maintained values sim ilar to those of boundary condition (a ).
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The local e ffect was only lim ited to approximately 15imi from the 

constrained end. The hoop stresses were nearly non-existent with 

boundary condition (a ), whilst boundary condition (b) produced 

local hoop stresses with values varying across the wall thickness 

of the tube. These stresses were positive near the external 
surface, negative at mid wall thickness, nearly zero near the 

internal surface, and with parabolic shape as shown in Figure 

(2 .1 5 ).

As the geometry, loading condition and boundary conditions were 

axisymmetric, the only shear stress present was tlr . The two 

graphs of Figure (2.16) show its  d istribution  for boundary 

conditions (a) and (b ). With boundary condition (a ), the shear 
varies lin ea rly  across the wall thickness of the tube, with two 

extreme values of approximately 0.4 N/mm2 and -0 .4  N/mm2 . Such a 

distribution  of shear was compatible with the stress d istrib u tio n  

shown in Figure (2 .13 ). The extra constraint added to boundary 

condition (b) increased the shear lo ca lly .

2 .3 .3  DISCUSSION

The results of the f in ite  element analysis reveal some important 
points. F irs t ly , they show the effect which is produced by the 

radial constraints (which represent the end mountings). The region 

affected was lim ited to a small zone approximately 20mm from the 

boundary at which point this e ffect becomes negligible as is shown 

in Figures (2.12) to (2 .16 ). Secondly, the geometry of the 

specimen tested had some influence on the stress d is trib u tio n . The 

longitudinal stress varied lin e a rly  across the wall thickness with 

the higher value close to the internal surface. Consequently, the 

e las tic  modulus, which was determined experimentally by stra in  

gauges bonded to the external surface, should be factorised by a 

quantity equal to the ra tio  of the stress in the external surface 

to the average stress. I t  was also shown that the values of the 

other stresses, such as the hoop stresses, were very small when 

stress concentration near the constrained ends were not taken into  

account.
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The stress d istribution  obtained may explain the mode of fa ilu re  of 
specimens tested in tension. As the longitudinal stress varies 

lin e a rly , with higher stress near the external surface, some of the 

external fibres reach th e ir fa ilu re  load. The load is 

redistributed to neighbouring fib res , resulting in the eventual 
fa ilu re  of the composite. I t  appears that the shear in the matrix 

around the fa iled  fib re  or group of fib res , increases considerably 

causing longitudinal interface shear fa ilu re  and the debonding of 

fib res . A dynamic factor must be involved as the release of 
stresses, a fter a fib re  has fa ile d , occurs dynamically. The 

eccentric ity , which is always present, and the bending moment 
associated with i t ,  increases the stresses at one extreme of the 

tube’s cross-section and causes a premature fa ilu re . Plate (2 .2 ) 
shows the mode of fa ilu re  of two specimens, where debonded fibres  

can be seen.

2.4 BUCKLING OF PULTRUDED C.H.S., G.R.P. AND C.G.R.P.

2 .4 .1  INTRODUCTION

Circular hollow section members are extensively used in skeletal 

structures in which the load is carried by axial force action.
From a design point of view, local or general in s ta b ility  often 

represents the lim iting  force that the member can carry.

Although a considerable amount of theoretical and experimental 
information is available for isotropic m aterial, th is is not the 

case for anisotropic m aterial. With the introduction of f ib re  

reinforced polymers in the f ie ld  of structural engineering and its  

use in reticulated type structures, extensive theoretical work was 
undertaken to extend the classical theory to cover the new 

m aterial. Experimental work to back-up the theoretical work and to  

provide data for various types of composite material was also 

carried out. A review of the s ta tic  buckling theory for 

anisotropic composite c ircu lar cylinders was presented by Tennyson, 

R C [12] in 1975. In this review, geometric imperfection and 

combination of loading tests were discussed.



-  22 -

In this section, the buckling behaviour of e .g .r .p . pultruded 

circu lar hollow sectioned members, of the same dimensions as 

considered in the previous sections, is considered only from a 

theoretical viewpoint,, whilst the g .r.p . members are analysed both 

from a theoretical and an experimental consideration. The testing  

of g .r .p . was carried out to permit a comparison with theory and to 

determine the buckling load, the amount of deformation before 

fa ilu re , the recovery, the mode of fa ilu re  and the r e l ia b i l i t y  of 

the m aterial.

2 .4 .2  THEORETICAL BACKGROUND AND APPLICATION TO G.R.P. AND C.G.R.P. 
MEMBERS

(a) Local In s ta b ility

The c r it ic a l load of a strut may be improved by increasing the 

cross-sectional in e rtia . This may be achieved without extra  

material by simply d istributing the material as fa r  as possible 

from the principle axis of the cross-section by reducing the wall 

thickness and increasing the transverse dimensions. There is a 

l im it ,  however, beyond which the wall i t s e lf  could become unstable 

and the local in s ta b ility  could occur before the column 

in s ta b ility .

The stress fa ilu re  by local in s ta b ility  (local c ripp ling ) fo r  

anisotropic composite materials as given by Baker et al [2] and 

Norris and Rosen [13] is:

„  .  . t
2 R

where
2

/ 3 ( 1 - v t l v l t )

$ is the smallest of the following two values: 

$ = 1

4 = TElet 1̂+Vtl' V l t ^



Y is a buckling coe ffic ien t, and its  value is less than or 
equal to unity depending on the m aterial.

t  is the wall thickness.

R is the radius to the middle plane of the tube's w all.

When the geometrical dimensions and the mechanical properties of 

the g .r .p . which were obtained experimentally were substituted in 

the formule, the value of K became equal to 1.17, of $ = 0.74 and 

aLi = Y x 11^0 N/mm2 .

Column Buckling

When a perfect pin ended e las tic  column, of e lastic  modulus E,
ultimate compressive stress auc and a slenderness ra tio  of j. is

r
subjected to compressive axial force then the Euler buckling stress 

a^, as given by Timoshenko [1 4 ], is:

= ir2 E / ( L / r ) 2

The lim iting  value (L )* , below which the Euler stress is not
r

applicable because the member reaches its  ultimate strength auc, 

before the Euler stress is:

(L )*  = tt/ ~

In the case of a member with fixed ends the c r it ic a l Euler stress



- 24 -

For a composite m ateria l, the e lastic  modulus E is replaced by the 

longitudinal e lastic  El and a shear correction term, which is 

sign ificant for high anisotropic m aterial, is introduced to give a 

c r it ic a l stress equal to:

a = aF
( l+ 2aE/GLT)

2 .4 .3  TESTING OF G.R.P. MEMBERS

(a) Specimens and Testing Arrangement

The experimental investigation, as mentioned previously, was 

lim ited to 25.4mm diameter g .r .p . tubes and only column buckling 

was considered as local buckling stress was much higher than the 

ultimate compressive strength of the m aterial. The testing of 24 

members, of lengths varying between 200mm and 1000mm, was 

undertaken. A ll members were fixed ended and had the same 

identical end support arrangements for the Instron testing machine, 

as has been discussed in Section 2.2.2 and shown in Figure (2 .1 )B. 
Great care was exercised in cutting the member, fix in g  the ends 

into th e ir supports and ensuring minimum eccentric ity . A low 

crosshead testing speed (lmm/min) was selected. The load-crosshead 

displacement curves were plotted by the machine chart recorder.

In order to study the member deformation two, one metre long 

members were tested. The members were pin ended in order to have a 

low buckling load and large measureable la teral deformations. The 

end arrangements in this case were sim ilar to the fixed ends with . 

the exception that the end caps had a smaller outer diameter and a
ball bearing with seating. The length of the members were measured

between the centres of the two ball bearings. The members were 

subjected to more than one non-destructive buckling test and they 

were allowed to recover between two successive tests; eventually
they were fa ile d . Plates (2 .3 ) and (2 .4) show the column before

and after buckling.
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(b) The Results

The results obtained from the testing of the 24 g .r .p . specimens 

are plotted on a graph that includes the two theoretical curves of 
P[r and Pq against the length of members. For practical 
reasons, the graph, shown in Figure (2 .17 ), was plotted in the form 

of load against member lengths and not in the standard 

non-dimensional form. The same graph also includes the theoretical 
curves for the c .g .r .p .

Comparisons of the deflections, due to repeated buckling loads on 

the above mentioned two specimens, were recorded on the Instron 

chart. A fter the fourth loading cycle, the average value, just 
prior to fa ilu re , of the maximum central deflection for the two 

specimens was recorded and was approximately equal to 98mm.

2 .4 .4  Discussion

The theoretical and experimental results of g .r.p . indicated good 

agreement, with a maximum difference in the order of 25%. The 

difference between the two theoretical curves of Pf and Pq was 

very small. The results were consistent but where a v a r ia b ili ty  of 
buckling loads did occur i t  did not exceed 20% and, therefore, the 

c r it ic a l loads for this material could be predicted with a good 

degree of accuracy.

The g .r .p . members, a fter a small number of cycles, showed perfect 

recovery a fter non-destructive buckling. Q uasi-s ta tica lly  applied 

loading and a recovery period of three hours between two successive 

loadings prevented the test specimens being subjected to fa tigue or 
dynamic loading.

The amount of deformation at fa ilu re  was re la tiv e ly  small.

However, the value obtained when compared with the local 
deformation of certain types of structures was considerable and 

could allow for red istribution  of forces before fa ilu re  in a 

prototype structure system. The load against crosshead 

displacement was linear except for the last section where the
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non-linearity  was caused by the change of geometry. Failure of 
members was always sudden.

I t  is important to mention that the local buckling stress was very 

high compared with the ulimate compressive stress of the material 
which indicates that this tube size was not very effic ient.-



Ultimate load in kN

Specimen
No. g .r.p . c .g .r .p .

1 3.350 2.975 -

2 3.200 3.300

3 3.525 3.150

4 3.600 3.100

5 3.350 3.750

6 3.150 ■ -

7 3.350 -

8 3.100 -

9 3.550 -

10 3.500 -

Average 3,3675 3.255

Table (2 .1 ):  Ultimate Compressive Strength of 100mm

long pultruded g .r.p . and c .g .r .p . specimens

Mechanical Property g .r.p . c .g .r .p .

E lastic Modulus in L direction 21600 N/mm2 71210 N/mm2

Elastic Modulus in R+Hdirection 10666 N/mm2

Shear Modulus G, R 4490 N/mm2 5960 N/mm2 .

Poisson's Ration 0.2534 -

Poisson's Ratio 0.1176 -

Tensile Strength 301 N/mm2

Compressive Strength 229 N/mm2 . 221 N/mm2

Table (2 .2 ) Mechanical properties obtained experimentally fo r g .r .p .

and c .g .r .p .
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End Cap

Steel Ring

r Adhesive

Steel Plug

Outer Aluminium 
tube

Inner Aluminium 
tube

f . r .p .  tube

A  B

Fig (2 .1 ) End Arrangement for Tensile and Compressive

Testing of f . r .p .  Specimens
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Plate (2 .1 )  Testing arrangement for  g . r .p .  specimen subjected 

to internal pressure

Plate (2 .2) Typical fa i lu re  of tensi le  g . r .p .  specimens
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C H A P T E  R T H R E E  

NON-LINEAR ANALYSIS OF SKELETAL STRUCTURES

3.1 INTRODUCTION

One of the results of the technological developments achieved over the 

last few decades is the introduction of high quality  structural m ateria l, 

such as lig h t weight high strength alloys and fib re  reinforced polymers; 
the use of which produced very e ffic ie n t ligh t structures. However, 

these types of structures bring new problems, especially in the area of 
analysis and design. The response of these structures is generally non

linear with high risk of in s ta b ility  and the consequences of th is  can be
disasterous. The analysis empoyed fo r such structures must guarantee the 

prediction of the response to the design loads which may occur during the 

life tim e  of the structure.

A large amount Of work has been carried out on the subject of in s ta b ility  

of structures. Many investigators have studied the phenomena, analysed 

the in s ta b ility  process and laid the foundations for the practical 

methods of analysis. The basic principles of the general theory of
e las tic  s ta b ility  associated with conservative systems are now well 

established; the notable pioneers in this f ie ld  have been Koiter,
Z ieg ler, Chilver, Britvec, Thompson, Sewell, Budianski and Hutchinson.

The lite ra tu re  is extensive and consequently, the discussion w ill be 

lim ited to discrete e las tic  conservative systems which apply to skeletal 

structures.

Only the basic concepts of e lastic  s ta b ility  w ill be discussed here. The 

concepts are important for the development and the understanding of the 

practical methods of analysis and the problems associated with the loss 
of s ta b ility  and the post-buckling behaviour.

The s ta b ility  of an a rb itra ry  equilibrium state of a discrete e las tic  

conservative system is discussed. I t  is based on the energy c rite rio n  

with particu lar importance given to the points of transition  between the 

prebuckling and post-buckling state. These points are known as the 

c r it ic a l points.
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The practical methods of non-linear analysis based on the f in ite  element 
method are discussed and relevant previous work is presented.

A description of a method of analysis for skeletal systems and the 

computer implementation is presented. This method is used for the 

analysis of various skeletal configurations made of fib re  reinforced  

polyester.

3.2 SOME RELEVANT BASIC PRINCIPLES OF ELASTIC STABILITY

3 .2 .1  EQUILIBRIUM OF STRUCTURES

The class of problem discussed in this section re la te  to discrete  

elastic  systems under conservative loading condition. I t  is well 

known that the potential energy function of these systems contains 

information relevant to equilibrium and s ta b ility . The equilibrium  

configuration of these systems is defined by a set of N generalised 

coordinates,

Q ■— 9l 5 Q2 » •■•••»   3.1

In addition to the generalised coordinate external load parameters 

are introduced. The simplest and most common case is the one 

parametric load (the loading of a structure is dependent upon a 

single in tensity  parameter A). In such a case, the analysis is 

lim ited to proportional loads.

P = AP . . . . .  3.2

where P is the load vector and A is a scaler m u ltip lie r . The 

potential energy is given as a function of N+l variables

V = V(q,A) . . . . .  3.3

The equilibrium equations are obtained by:

8V(q,A) = 0 For i = 1 ,  . . . . ,  N 
9 qi

3 .4
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For practical reasons repeated subscripted notations are used, 
where subscripts on V represent d iffe ren tia tio n  with respect to the 

corresponding generalised coordinate and repeated subscript w ithin  

an expression implies summation from 1 to N. The previous 

equations w ill be w ritten as follows:

V-j(q-j,X) = 0  . . . . .  3.5

The N equations in the N+l unknowns are generally Nonlinear in q 

and X. The solution of this system describes what is known as the 

equilibrium path with a ll points on the path satisfying  

equilibrium . The undeformed state is assumed to be the reference 

state with q̂  and x equal to zero. The configuration (q^,x) 

can be visualised as a point in N+l dimensional Euclidian space.

The solution of the equilibrium equations can be expressed in 

parametric form by:

q = q(n) X = X(n) ......... 3.6

where n is a path parameter. The parameter may be taken as X and 

the parametric expression takes the form

q = q(X) X = X . . . . .  3.7

3 .2 .2  THE STABILITY OF EQUILIBRIUM

In order to investigate the s ta b ility  of an equilibrium state the 

quadratic form is formulated

VijSqiSqj

The s ta b ility  of the equilibrium is ensured i f  th is  form is 

positive d e fin ite .

Consider now an equilibrium state E and introduce the 

transformation
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Pi = Pi + APi 3.9

and

AcM = a i j^ j  with |a i j |  *  0 3.10

where th is last equation diagonalizes the quadratic form of the 

energy function; note that the matrix [ a i j ]  is not in general 

unique, and to ensure a unique transformation at a given 

equilibrium state an orthogonal transformation matrix [ « i j ]  is 
specified.

Here we assume that complete re la tive  minimum of the potential 

energy is necessary and su ffic ien t for s ta b ility . A n a ly tica lly , 
th is corresponds to the positive conditions of the second variation  

of the energy function. Thus, i f  a ll poincaries coeffic ients  
H-jj ( i = 1 , . . . ,  N) are positive then the state is stable.

However, i f  at least one coeffic ient is negative then the state is 

unstable. The equilibrium state is called c r it ic a l in the case of 

one or more zero coeffic ients. Such a state is unstable i f  any of 
the other coefficients are negative, and are tru ly  c r it ic a l i f  none 

of the other coefficients are negative and i t  is usual to re fer to 

the la tte r  as primary c r it ic a l.  A decision regarding the s ta b il i ty  

of this state cannot be made at this stage, as the second variation  

of energy does not give enough information so that higher order 

variations are needed. A necessary condition of a c r it ic a l state  

is the zero value of the s ta b ility  determinant

Vi j (q,A)  = H^j(u,X) = Hu x H22 x . . . .  x HNN

H(ui ,A ) = V {^  + a^-u^A) 3.11

. with the properties

H jj = 0 For i *  j 3.12

3.13
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3.2.3 THE CRITICAL POINTS

The s ta b ility  of a structural system is usually terminated in one 

of two ways:

(a) snap through ( lim it  po int);
(b) b ifurcation.

The bifurcation is categorized in three forms,

(a) asymmetric;

(b) stable symmetric;
(c) unstable symmetric,

as shown in Fig (3.X) ,  for a single degree of freedom system.

These geometrical concepts follow from the analysis of the solution  

of equilibrium equations, expressed in parametric form, in the 

neighbourhood of the c r it ic a l points. Only lim it points are 
considered in more d e ta il.

Expressing the generalised coordinates Uj as a function of an 

arb itrary  parameter n which defines progress along the path; i t  

could be either of the generalised coordinates or the load 

parameters X

Uj = Uj(n) 
x = x(n) 3.14

The equation expressing equilibrium

3.15

d iffe ren tia tin g  with respect to n

Hi j “j  + H-jX = 0 3.16

note that dots denote d iffe re n tia tio n  with respect to n and primes 

with respect to X.



-  49 -

A further d iffe re n tia tio n  gives

Hi j k V k  + 2Hl j i j i  + Hi j'u'j  + + HV * = 0
3.17

I t  is usual to re fer to these equations as f i r s t  and second order 
equilibrium equations.

The way in which the fundamental stable path loses its  s ta b il i ty  

depends on the properties of the structural system as reflected in 

the various derivatives of the to ta l potential energy function. 

However, the behaviour at loss of s ta b ility  must f a l l  into one of 
two categories; these are either lim it point or b ifurcation.

3 .2 .4  LIMIT POINT BEHAVIOUR

The lim it point behaviour is characterised by a loss of s ta b ili ty  

coinciding with a local maximum of the load parameter X.

The important coeffic ien t that d ifferentia tes  lim it point from 
/  /  

bifurcation is Hj. At point E, Hj must not vanish.

In the f i r s t  order equation, putting i = 1 and n = ui and 

evaluating at the c r it ic a l point E gives:

8 ux 'E Hj 'E 3.18

3.19
3.20

Thus i t  is clear that the path slope is zero.

I f ,  instead of i = 1, i = r  *  1, the f i r s t  order equilibrium  

equation gives,
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Hj»y» u^ J E = 0   3.21

since Hrr  *  0 for r *  1 we get . 3.21

uri = 0  . . . . .  3.22

which shows that the tangent to the equilibrium path is para lle l to

ui •

For i = 1 and exluding the zero terms from the second order 

equilibrium equation when evaluated at the c r it ic a l point E.

Hixi + Hi ' iE| E = 0  . . . . .  3.23

Therefore,

'xE = - H ill I
Hi E .........  3.24

•• C
Having maximum load at E means that A *  0 and consequently H m  

should not vanish.

3.3 GEOMETRIC NONLINEARITY OF SKELETAL SYSTEMS BY THE FINITE ELEMENT 

METHOD

3.3 .1  GENERAL

The direct stiffness method o f f in ite  element analysis is by now 

well established and widely used for the solution of e las tic  linear  

problems [15 ]. A wide variety  of elements have been developed, and 

several general purpose computer programs with the cap ab ility  of 
dealing with any linear e las tic  structural problems are now in use 

[16 ]-
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Since the establishment of the f in ite  element method, there has 

been a great deal of in terest in extending the method to nonlinear 

analysis and various approaches have become available, including 

several computer programs. However, these approaches are s t i l l  

under development.

The nonlinearity arises from two sources:

(a) geometric nonlinearity , and
(b) material nonlinearity.

The former is divided in two classes, the large deformation small 

strain  condition, and the large deformation large strain  

condition. Each class is usually treated separately as the large 

strain condition greatly complicates the theoretical formulation of 
the problem. Regarding the material nonlinearity, the most 

commonly used nonlinear material is the e las tic -p las tic  m aterial 
for which a linearized incremental method is usually adopted. 

However, the material nonlinearity is not of interest here and, 
therefore, w ill not be discussed further.

Nonlinear theory is inevitably more complex than the linear theory 

because of the mathematical problems which are usually 

in tractab le . Sim ilar d if f ic u lt ie s  may occur even in connection 

with certain linear problems. I t  was the complexities of 
theoretical stress analysis that lead to the development and spread 

of the f in ite  element method. The extreme mathematical complexity 

involved in obtaining quantitative solutions to nonlinear problems 

in f in ite  e la s tic ity  resulted in a f in ite  number of solutions to 

the problems being dealt with in the lite ra tu re . The solutions 

available pertain to structures with a very simple geometry. 
Moreover, even in the case of simple geometries, approximate 

numerical techniques are often introduced in the fin a l steps of the 

solution. At the present time the f in ite  element method represents 

the most practical method for solving complex nonlinear problems, 
since the fundamentals for dealing with nonlinear problems, using 

the f in ite  element methods, are by now well established.
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Geometric nonlinearity results in two classes of problems that are 

well known to the structural engineer; the large deformation and 

the structural s ta b ility . The term 'large deformation' is 

misleading as not a ll problems fa llin g  within this category have 

large deformations. However, the deformed configuration of the 

structure must be used when w riting the equilibrium for the large 

deformation problem. In addition, the strain displacement 
equations must include the higher order nonlinear terms; the 

problem of in s ta b ility  of a structure is generally considered 

separately from the basic analysis. There are several matrix 

methods at present available which allow the c r it ic a l load of 
skeletal structures to be determined. The main methods usually 

f a l l  into one of the two following groups:

(a) Those using a single standard matrix Ko with certain s ta b il i ty
correction factors.

(b) Those using the combination of a standard stiffness matrix K0
and the so called Geometric matrix.

In the second method the application of the direct stiffness method 

is associated with the derivation of the geometric (an in i t ia l  
stress) stiffness matrix that takes into account some of the higher 

order terms of the strain displacement relationship. Using these 

matrices an eigenvalue problem is established from which c r it ic a l  

loads can be evaluated. This approach is well suited to problems 

in which the in tensity of the internal forces varies lin e a rly  with 

the applied load. Furthermore, only eigenvector (buckling mode 

shape) could be predicted and no knowledge of the post-buckling 

behaviour could be obtained. However, with the righ t mathematical 

model that includes the effects of the change of geometry, and with 

the advantage of d ig ita l computers, a fu l l  analysis could be 

carried out with the construction of the whole load deflection  

curve, including the detection of any in s ta b ility  that may occur.

I t  was fe l t  that the stiffness (displacement) method was generally  

more suitable than the f le x ib i l i t y  (force) method for an analysis
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involving the change of geometry. One reason was that the effects  

of change of geometry could be more readily evaluated i f  the 

deformations rather than the forces were defined. This resulted in 

the use of the stiffness method in most of the developments.

The nonlinear f in ite  element method of analysis may be considered 

to have two basic components. These are an element mathematical 
model and a solution procedure to determine the equilibrium  

conditions.

There are two basic classes of methods that u t i l iz e  the f in i te  

element technique; these are the asymptotic methods and the d irect 

methods. The asymptotic methods build the equilibrium path in the 

v ic in ity  of a known equilibrium state by using the power series 

expansion. The coefficients of the power series are the 

derivatives of the to ta l potential energy function of the 

structural system. The asymptotic methods are considered as 

application and extension to Koiters perturbation method. The 

general nonlinear theory developed by Thompson [17] and Sewell [18]
represents an example of this method.

The direct f in ite  element methods are u tilize d  more than other - x
methods and are generally accepted as more powerful. The energy 

search method is an example of the direct method, in which the 

potential energy function is used as the mathematical model and the 

solution is obtained by mathematical search techniques for the 

stationary values. The sim plic ity  of this method exists in the 

fact that the potential energy of a structure is equal to the sum 

of the energy contribution of each element which, in the f in i te  

element method, is constructed with re la tiv e  ease, but care should 

be taken in the selection of the displacement mode to avoid 

excessive a r t i f ic ia l  s tiffness. The major drawback of th is  method 

is the computational e ffo rt required for the unconstrained 

minimization of a function of many variables.

The direct solution of the nonlinear equilibrium equations which 

represent the relationship between displacements and the applied
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load, to provide the equilibrium configuration, is used more 

frequently but, the cost of performing the solution is often 
considerable. More e ffective  methods of solving the nonlinear 

systems of equations can be of significance both in reducing the 

cost of analysis and improving the solution.

3 .3 .2  HISTORICAL REVIEW

The lite ra tu re  on the nonlinear analysis is vast and several 
publications reviewing the work done on nonlinear analysis have 

appeared. For example, Martin [19] reviews some of the methods 

dealing with geometric nonlinearities and S tric k lin  et al [20] 

reviews solution procedures. As there is a considerable volume of 
l ite ra tu re  on this topic, most of the work discussed in this  

section is concerned with the f in ite  element geometric nonlinear 
analysis of skeletal systems, which is closely related to the 

topic of th is research work.

The in i t ia l  paper treating geometric nonlinearity by f in ite  

elements was published by Turner et al in 1960 [21 ]. An 

incremental technique was used in which the load was applied in 

small increments; during each increment the response of the 

structure was assumed linear. Displacements and internal stresses 

were evaluated at the end of each increment and used to form 

various corrective stiffness matrices. These matrices account for 

higher order terms in the strain displacement relationship and are 

essential for investigating large deflection and s ta b ility  

problems. The updated stiffness matrices were then used for the 

successive increment. In th is paper matrices for pin-jointed bar 
and triangular plane stress elements were derived.

Renton [22] in 1962 presented a formulation as an extension to the 

three dimensional case of a previous work by Livesly and Chandler 
[23] in which the la tte r  calculated the s ta b ility  functions that 

take into account nonlinearity. The s ta b ility  correction factors  

used by Renton took account of the gusset plates and the d ifference  

between the centroidal axis and the shear centre.
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Gallagher and Pad!og [24] in 1963 presented a consistent procedure 

based on the principle of minimum potential energy for introducing 

geometric nonlinearity in the f in ite  element stiffness method.

This formulation was limited to a linearized s ta b ility  analysis.
As an example, the stiffness matrix for a beam column was 

developed. Linearized s ta b ility  analyses are convenient from a 

mathematical point of view but quite re s tr ic tiv e  and could be 

applied to a special class of structures. Also in 1963, Saafan 

[25] presented a nonlinear formulation for rig id -jo in te d  or pin- 

jo inted frames considering the effects of axial load, f in ite  

deflection and bowing of the deformed members. An important point 

illu s tra te d  by Saafan's examples was that end shortening due to 

bowing may be of the same order of magnitude as the linear 

extension term.

Real progress in the application of the f in ite  elements to 

geometric nonlinear analysis began in 1964 when Argyris [26] 

discussed a step-by-step linearized technique to determine the 

approximate nonlinear load deflection behaviour of r ig id -jo in te d  

space frames. The tangent stiffness matrix used is evaluated at 
the in i t ia l  position of each increment. In forming the tangent 

stiffness matrix the above author neglected the e ffec t of axial - 
force on the member f le x ib i l i ty .  Martin [27] developed s tiffness  

matrices for beam element and triangular plate element in plane 

stress. Oden [28] in 1966 presented a general formulation fo r  

evaluating the geometric stiffness matrices for the s ta b ili ty  

analysis of discrete systems. The development fa l ls  w ithin the 

framework of the classical theory of e lastic  s ta b ili ty .

In 1966 M alle tt and Berke [29] presented a computer program for the 

geometric nonlinear analysis of three dimensional truss and frame 

assemblies. The solution was based on the d irect minimization of 
the to ta l potential energy with respect to displacements. The same 

principle of minimizing the to ta l potential energy to determine the 

equilibrium configuration was used in the theoretical formulation 

presented by M alle tt and Schmit [30] in 1967. In th is  paper the 

function minimization techniques wer discussed in more de ta il and a
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few examples of structural configurations with truss element 
werepresented. Oden [31] in the same year extended the f in ite  

element method to the analysis of e lastic  bodies that experience 

large deformation and f in ite  s tra in . Another application of the 

minimization of the potential energy method for the analysis of 
three dimensional bar structures was also presented, in 1967 by 

Berke and M a lle tt [32 ].

In 1968 Connor et al [33] presented a nonlinear formulation for a 

rig id -jo in te d  space frame with prismatic linear e lastic  members 

loaded only at the jo in ts . This derivation was restric ted  to small 
rotations, ie , cases in which the squares of the rotation angles 

are negligeable with respect to unity, torsion flexure coupling was 

neglected to sim plify the formulation. A Newton-Raphson ite ra tiv e  

technique of solution was used. Also, in 1968 M alle tt and Marcal 

[34] presented three d iffe ren t solution procedures, an incremental, 
an ite ra tiv e , and an energy minimization, a ll based on the same 

formulation. In th is formulation, higher order terms, which were 

previously neglected, were included. New element matrices were 

obtained and a heirarchy of nonlinearity was id e n tifie d . This 

formulation was in Lagrangian-SR coordinates. In the same year 

Euler coordinates were used by Jennings [35] in a method which 

incorporated the effect of change in geometry into a displacement 
transformation for members of plane frames. This method includes 

flexure shortening in the formulation, and i t  can also be adopted 

in the case of large deformation.

Powell [36] in 1969, presented a consistent derivation of stiffness  

matrices. The effects of the various types of nonlinearities were 

illu s tra te d  by separating the nonlinear transformation. The 

matrices of beam column element were given. However, the 

formulation is general and could be applied to derive the matrices 

of various elements. In 1970, H ibb itt et al [37] proposed a large 

strain  large displacement formulation which may be implemented in a 

computer program. In this approach the author adopted the 

incremental approach and the development was made in a Lagrangian 

frame reference.
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A unified formulation of large deformation f in i te  s tra in , and 

material p la s tic ity  problems were given by Zienkiewicz and Nyak 

[38] in 1971. Both Lagrangian and Eulerian formulations were 

discussed. S tr ik lin  et al [39] proposed a se lf-correcting  in i t ia l  
value formulation as an a lternative to the incremental approach. 
This formulation was proposed to reduce computing time, especially  

fo r large systems. Another paper by S tr ik lin  et al [40] also 

presented in 1971, described three d ifferen t formulations for the 

analysis of geometrically nonlinear problems by the direct 
stiffness method. The direct energy formulation was compared with 

that of Turner et al [21] and Argyris [26] for simple truss 

members. The comparison showed the equivalence of the two 

formulations. Another relevant conclusion was that the in i t ia l  
value approach was in ferio r to the modified Newton-Raphson approach 

and the incremental approach as w ell. Haisler et al [41, (1971)] 
presented a review and a comparative study of the solution 

technique of nonlinear equations characterizing geometric nonlinear 

structural problems. A simple truss-spring problem was one of the 

examples used for the applications.

In 1972 an extensive l is t  of references on reticu lated  shells was 

compiled by the ASCE subcommittee on la tticed  structures [4 2 ],

These references have been categorized according to analysis, 
s ta b ili ty , design, etc. Ebner and Ucciferro [43, (1972)] presented 

a theoretical and numerical comparison of fiv e  f in i te  element 
formulations used for the nonlinear e lastic  analysis of planar 

skeletal structures. The nonlinear force displacement equations 

associated with these formulations were derived from a common 

starting point. Ite ra tiv e , load increment and displacement 

increment solution procedures were used with a group of problems 

that cover a wide range of types of nonlinearity . The authors 

concluded that Jenning's direct formulation [35] yielded excellent 

results fo r a ll classes of nonlinear problems. Powell's d irec t 

formulation [36] yielded good results only for problems of 
re la tiv e ly  small displacements whereas with large deformation 

problems more elements were required. The M allett-M arcal 
formulation [34] produced good results for small displacement but
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could not be used for large displacement problems. Both Martin's  

[27] and Argyris's [26] appear to give excellent results and, in 

addition, the use of displacement incrementation yielded the whole 

load-displacement curve for snap through buckling problems.

In 1973 S tr ik lin  et al [44] presented an assessment of the solution 

procedures available for the analysis of nonlinear systems. 
Attention was focused on computational and solution techniques.

The accuracy and economy of each solution technique was evaluated 

as a result of applying solution procedures to c ircu lar plates and 

shells of revolution. Oran [45, (1973)] developed a tangent 
stiffness matrix for the analysis of geometrically nonlinear space 

frames based on the assumption of small strain but large 

rotations. The approach was based on the beam column theory.

Noor [46, (1974)] presented a mixed method (s tiffness  and 

f le x ib i l i t y )  fo r the analysis of pin-jointed trusses with both 

geometric and material nonlinearities. The formulation involved 

member forces and jo in t displacements. The resulting nonlinear 

algebraic equations were solved by means of ite ra tiv e  techniques. 

Numerical examples of plane and space trusses with geometric and 

material nonlinearities helped to prove the r e l ia b i l i t y  and 

sim plic ity  of applications.
v •

In 1975 Jagannathan et al [47] presented a nonlinear f in i te  element 
method based on a Lagrangian formulation in which lin e a rly  e las tic  

truss elements were considered and the importance of the higher 

order terms in the strain displacement relationship was stressed.

A Newton-Raphson method was used to solve the system of nonlinear 

equations with convergence c r ite r ia  based on the displacements. An 

approximate method to derive the c r it ic a l snap-through load was 

also considered.

The computational capab ilities  of a general type method, which was 

previously developed by Oran [45] was the subject of investigation  

by Oran and Kassimali [48, (1976)]. The method could use e ither 

Eulerian or Lagrangian coordinate systems. Extensive numerical 
studies were carried out on a group of simple structural systems. 

The method was claimed to be practical and accurate.
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In 1977 Wood and Zienkiewicz [49] presented a geometrically 

nonlinear analysis of e lastic  inplane skeletal structures in a 

Lagrangian coordinate system. A continuum approach was adopted with 

paralinear isoparametric element. Displacements and rotations were 

unrestricted in magnitude. A Newton-Raphson ite ra tiv e  method was 

used for the solution of the nonlinear equilibrium equations and 

some examples were given. The derivation was extended to include 

axisymmetric structures.

The paper by Kiciman and Popov [50] in 1978 considered, f i r s t ,  the 

problem of the calculation of the c r it ic a l loads and second, the 

problem of overcoming the singularity  of the c r it ic a l point to 

trace the post-buckling path. Eigenvalue and determinant 
approaches were discussed for the f i r s t  problem, and a perturbation  

technique, where the Eigenvector of the singular tangent s tiffness  

matrix could be used as perturbation on the displacement vector, 

was suggested for the second. Numerical examples were given of 
cylindrical shells. Another much more e ffic ie n t approach for 

overcoming the point of singularity  where an incremental approach 

was adopted, was given by Riks [51, (1979)]. A major 
characteristic  of this method was the use of the length of 
equilibrium path as control parameter. A modified version of the 

Riks approach was given la ter by C ris fie ld  [52, (1981)] and th is  

was applied in conjunction with a Newton-Raphson method in both the 

original and accelerated forms. The modified method is more 

suitable for use with the f in ite  element method. Mohr and Milner 

[53, (1981)] compared the fic t it io u s  load approach developed fo r  

prismatic beam elements by Kohnk with the general procedure 

outlined by Zienkiewicz. The two methods produced identical 
results with problems involving only axial s tra in , but with 

problems involving flexural effects the general method performed 

poorly. A means by which large displacements may be taken into  

account in the evaluation of flexural strains, was proposed in th is  

paper; th is was required to enable an improvement to be made in the 

performance of the general procedure.

In the same year, Papadrakakis [54] presented a study on the 

application of the large deflection behaviour of space structures.
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The dynamic relaxation and the f i r s t  order conjugate gradient do 

not require the computation of a tangent stiffness matrix. I t  was 

shown that these methods, combined with the basic element force 

deformation re lations based on the conventional beam column theory, 
provided a re lia b le  method in studying the post-buckling behaviour 

of space structures. Numerical examples were used for the 

comparison with previous results.

Although the above lis tin g  is not complete, i t  can be seen that 

methods of analysis of geometrically nonlinear problems are 

numerous and the trend is that the la test publications were more 

concerned with effic iency  in storage requirements and computer 
time.

3 .3 .3  SOLUTION OF NONLINEAR EQUATIONS

The two basic types of techniques used to solve the system of 
nonlinear load-displacement equations are incremental and 

ite ra tiv e . A combination of the two techniques is also used where 

at each load increment iterations are carried out to ensure 

equilibrium.

A. Incremental Techniques

(a) Load Increment. In this technique the load is applied in 

small increments and the resulting displacement is obtained. Each 

increment is considered linear with the stiffness coeffic ients  

evaluated at the beginning of each load increment. An example of 

one degree of freedom is shown in Fig (3 .2 )A.

(b) Displacement Increment. This technique is used mainly to 

overcome problems associated with lim it points (snap buckling) or 

where the load displacement curves have a f la t  section with 

m ultiple equilibrium states corresponding to a prescribed load 

leve l. The load increment technique does not y ie ld  a solution in 

these conditions. A solution represented a single degree of 

freedom is shown in Fig (3 .2 )B.



When u tiliz in g  this method, the solution tends to d r i f t  away from 

the real curve, and to reduce this d r i f t ,  smaller load or 
displacement increments have to be used.

Ite ra tiv e  Techniques

(a) Newton-Raphson. This is a direct solution of the nonlinear 

equilibrium equations where at a prescribed load level ite ra tions  

are carried out. To explain this technique a single degree of 
freedom is considered, Fig (3.2)C. Suppose that the load applied 

is PA. The solution sought is the displacement DA. The 

tangent stiffness matrix is evaluated at the origin K0 and the 

following equation is solved:

K0 (ADi) = PA . . . . .  3.25

The f i r s t  solution estimate is Di = ADi. The next ite ra tio n  uses 

the tangent stiffness matrix evaluated at point 1 to enable a 

solution aD2 to be obtained for the out of balance force PA-Pi»

h  (AD2 ) = PA-Pi  3.26

The second estimate of the solution D2 = Dx + AD2 . The ite ra tio n s  

are repeated u n til convergence is achieved.

(b) Modified Newton-Raphson. This method is s im ilar to the 

previous method except that the tangent stiffness matrix is not 

formed during the iterations; Fig (3 .2 )D illu s tra te s  the technique 

for a single degree of freedom system. I t  w ill be seen that th is  

method requires more iterations to enable convergence to be 

achieved, but the expensive operation of forming and triangu la iz in g  

the stiffness matrix in each step is .avoided. I t  is important to 

mention that there are various techniques to improve and accelerate  

convergence.

(c) Riks and Modified Riks (arch length). This method is used in 

conjunction with Newton-Raphson and Modified Newton-Raphson methods 

and i t  is characterized by having an extra constraining equation.
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This extra constraint prevents the iterations from diverging at 

lim it points.

Fig (3 .2 )E & F il lu s tra te  the application of this procedure to the 

solution of a one dimensional problem. Riks used the normal to the 

tangent whilst in the modified version presented by C ris fie ld  [2 9 ], 
the c ircu lar path was used for a problem with N displacement 

variables. The following constraint equation is added to the usual 
N equilibrium equations:

aPt .aP + AX2 qqT = Al2   3.27

AP is the incremental displacement vector and q is the to ta l 

applied loading vector. The scalar X is the loading parameter 
while Al fixes the length of the increment in the N+l dimensional 

space. In this method a load increment is applied and during the 

iterations the value of load increment is altered to sa tis fy  the 

constraining equation. The dotted line  in Figs (3 .2 )E & F 

represent the constraining equation.

3.4 COMPUTER PROGRAMS FOR THE GEOMETRICALLY NONLINEAR ANALYSIS OF 

SKELETAL SYSTEMS

3.4 .1  THE COMPUTER PROGRAMS

The linear and nonlinear s ta tic  analysis program for skeletal 

systems was developed to enable a research program to be undertaken 

into the response to loading of skeletal structures manufactured 

from pultruded tubular fib re  reinforced polyester members. In th is  

program the following assumptions are made:

(1) A perfectly  linear e las tic  material behaviour up to fa ilu re .

(2) Small strains but large displacements.
(3) Constant cross section with double symmetry about the 

principle axis.
(4) Torsional stiffness completely uncoupled to bending and axial 

stiffness.



-  63 -

(5) Shear deformations are neglected.

(6) Only lim it point in s ta b ility  is dealt with.

As the whole load deflection curve is of in terest, an incremental 
solution scheme with iterations at each load step was required, 

thus avoiding d r ift in g  from the real equilibrium path and also 

enabling the c r it ic a l point to be dealt with, the la tte r  being of 

greater importance than the former. The modified Riks method 

in conjunction with modified Newton-Raphson method was used.

The nonlinear element stiffness matrix was derived a n a ly tica lly  and 

took into account axial strain only. The stiffness m atrix, the 

derivation of which w ill be discussed la te r , consists of three 

parts, which are:

(a) The e lastic  linear matrix Kjr.
(b) The in i t ia l  stress matrix K6 which is dependent upon the 

element internal stresses.
(c) The in i t ia l  displacement matrix K$ which is a function of 

element nodal displacements.

In the case of structures in which the loss of s ta b ility  occurs by 

bifurcation buckling, as is the case in double-layer grids, a set 

of imperfections are introduced to degenerate the behaviour to a 

lim it point type behaviour. A m ultiple of the Eigenvectors of the 

singular tangent stiffness matrix is used to introduce 

imperfections and for this purpose another computer program was 

developed. This program is based on small displacements where 

and were used to establish the Eigenvalue problem. The 

smallest Eigenvalue and the corresponding Eigenvector, which 

represent the f i r s t  buckling mode of the structure, were usually  

derived and used. However, other Eigenvalues and Eigenvectors 

could also be considered. This second program can be used to 

determine the f i r s t  buckling of s t i f f  types of space structures. 
This program is very simple and there is no need to discuss i t ;  

however, a flow chart is shown in Fig (3 .3 ). The flow chart of the 

main geometrically nonlinear analysis program is shown in Fig 

(3 .4 ) . The steps and methods of assembling the overall s tiffness
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matrix, implementing boundary conditions are standard and are 

described in many text books; Refs [55] and [56 ]. A ll load 

increments, other than the f i r s t ,  are obtained from the magnitude 

of the previous load increments and the number of iterations which 

are required to achieve convergence. The higher the number of 
iterations within a load increment the smaller the successive load 

increments. The convergence criterium  in this program is based on 

the ra tio  of the norm of out of balance forces to the norm of the 

applied load. This value and the maximum number of iterations  

are specified according to the problem, degree of accuracy 

required, etc.

For the solution of the linearized system of equations the modified 

Chelosky method is used, where the factorization  of the stiffness  

matrix takes the form

The sign of the elements of the diagonal matrix D shows when the 

stiffness matrix ceases to be positive d e fin ite , and in that case 

the load increment is applied with a negative sign.

The program deals only with conservative loadings applied to the 

nodal points. A d iscretization  of the member is required for 

structures having highly nonlinear behaviour. The program makes 

use of the active column (skyline) storage technique, Ref [57] and 

[5 8 ], which minimizes storage requirements and i t  is possible to 

use fixed or updated Lagrangian-SR coordinate systems.

3 .4 .2  DERIVATION OF THE STIFFNESS MATRIX

The derivation of the element stiffness matrix is based on the 

following strain displacement relationship:

K = L0Lt 3.28

ex = * i + I  ( ^ ) 2+ ( d W )2 Y _ i

dx2 dx2dx 2 dx dx 3.29
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This represents the longitudinal strain at a coordinate point (X,
Y, Z) where u, v and w are displacements in X, Y and Z directions  

of a generic point on the member axis.

A linear displacement function in X was chosen for u and a cubic 

function in X for both v and w, which means that loads can only be 

applied to the nodal points, since this assumption res tric ts  the 

member to carrying only constant shear, and lin early  variable  

bending moment.

u = ao + ai x

v = a2 + a3 x + â  x 2 + a5 x 3

w = a 6 + a7 + a8 x 2 + a9 x 3 . . . . .  3.30

The above coefficients are derived from boundary conditions and are 

expressed as functions of nodal displacements. Substituting the 

expression for displacement in the strain displacement 

re lationship , we obtain:

The strain energy of the element caused by a load increment is 

given by:

F(UA, va 0BY» 0BZ»
3.31 ,

U [ ^0+£x 6  de] dxdydz

ex dxdydz + — 
2

ede] dxdydz

If e2 dxdydz 3.32

where i t  is assumed that the member was in a deformed sta te , which 

is denoted by £q> before the load increment.
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A substitution of ex from 3.31 in the strain energy expression 

3.32, integrating and making use of C atig lian 's theorem to derive 

the coefficients of the stiffness matrix leads to:

K j  =  K f  +  Kq  +  K$

A linear tw ist rate is assumed and the relation is added to the 

element stiffness matrix.
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(a) Limit Point (b) B ifurcation asymmetric Point

 ■ Perfect stable system — — — Perfect unstable system

  Imperfect stable system    Imperfect unstable system

s ' ' ' '

N
 -

(c) Bifurcation stable-symmetric (d) Bifurcation unstable-symmetric
Point Point

Fig (3 .1) Equilibrium paths of perfect and corresponding imperfect 

systems in the v ic in ity  of c r it ic a l points
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Input data

Load factor = 1 
No of iterations = 0

For elements 1 to n

Form element stiffness  
matrix k = k + k

Plant k into K

Imp. boundary conditions

Decompose K into LDL

YESAny negative element 
of D?

Reduce load factor

Increase load factor

-*—(No of negative elements

Solve fo r Displacement v = 1

Count iterations
Determi ne internal forces

tYES

Solve fo r EigenvectorOutput results

Fig (3 .3 ) Flow chart of the f i r s t  buckling analysis computer program
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For elements 1 to n

YES Any output of 
results required?

YESAny negative element 
of D?

' /  Convergence or excess 
. of No of iterations?YES

Max No of load
increments
reached?

Count No of load inc

Input data

Solve fo r 6 and F

Determine O.B.F

Imp. boundary conditions

Decompose K into LDL

Plant k into K

Determine new O.B.F

Apply positive load inc.

Output results

Apply O.B.F and solve 

fo r AS and AF

Apply negative 

load increment

Count No of 
ite ra tio n s

Form element stiffness  
matrix k = kr + k~ + k

Update displacements 

and internal forces

Correct 6 and F and 

adjust the load increment 

to satisfy  the const, eq.

Fig (3 .4 ) Flow chart of the nonlinear analysis computer program
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C H A P T E R  F O U R  

STIFF SKELETAL STRUCTURES IN PULTRUDED F.R.P.

4.1 INTRODUCTION

Double-layer grids are an example of s t i f f  space structures which are 

characterised by small deflections and large internal stresses. The 

applied loads are carried mainly by axial force; shear, bending and 

torsion are very small in the members.

The systems have an international appeal and over the years many have 

been designed and constructed using a variety of configurations and 

joining methods [5 9 ]. The success achieved by these structures is due to  

several factors, such as th e ir  pleasing visual appearance, ease and fast 

production and erection, the characteristic  of covering large spans with 

no internal supports and economy. The two factors that in the past 

affected the economy of such systems were the cost of analysis and the 

cost of the node jo in ts . With the development of computers, the f i r s t  

factor does not now present a problem, and the second factor has been 

solved quite successfully for steel and aluminium structures.

The pultruded fib re /m atrix  composite tube m aterial, although generally of 

lower modulus of e la s t ic ity  than that of s teel, is believed to be 

suitable for use in the manufacture of skeletal systems for medium to 

short span structures. One great advantage of this material is that the 

reinforcement fibres can be positioned in the composite to enable the 

most e ffic ie n t use of the two component materials. There is , however, 
d if f ic u lty  in the jo ining of pultruded tubes together at nodal points 

where the members meet at d iffe ren t angles. Just recently the 

development of two or three systems, Ref [ l ]  and [4 4 ], have been reported 

and i t  is now possible to fabricate  skeletal systems manufactured from 

pultruded tubes.

The structural performance of any pultruded member can be up-graded by 

the use of hybrid fib res  and the percentage ra tio  of high to low modulus 

fibres can be varied to provide the required properties. One p a rtic u la r
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type of these members, which have been discussed previously, w ill be 

discussed in connection with double-layer grids.

The use of pultruded fib re  reinforced members manufactured in the form of 
double-layer grids is discussed in this chapter. The results obtained 

from the theoretical linear and nonlinear analysis and the testing of 
short and long span large scale experimental models are compared.

A further theoretical parameter study based on f ir s t  buckling analysis is 

discussed to provide more information on the combination of more than one 

type of composite members.

4.2 SMALL SPAN MODELS

4.2 .1  THE MODEL STRUCTURES

Two structures were analysed, one an a ll glass reinforced polyester 

system and the other a g .r .p . /c .g .r .p .  system.

The Glass Reinforced Plastics System (1A)

The model is a skeletal double-layer grid system of the type square on 

square and has rig id  jo in ts . The grid system consists of four basic 

pyramidal units each having a square base, with 1 metre length members 

manufactured from glass reinforced plastics (g .r .p .) ;  the inclined  

members (diagonals) also are 1 metre in length. The apices of the four 

units are connected by sim ilar pultruded members. Plate (4 .1 ) shows a 

photograph of the model.

Figure (4 .1) shows the member configuration, the member d iscre tiza tio n  

and the jo in t numbering system. The thick fu ll  lines represent members 

adjacent to the nodal points which have increased stiffness parameters. 
This modification of the properties of the members enables the e ffec t of 
the s t i f f  nodes to be included in the computation.

The skeletal members have been manufactured from pultruded g .r .p . tubes 

with a fibre /m atrix  ra tio  by weight of 6036/40% respectively. The outside
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diameter of the tubes was 25.4mm and the wall thickness was 2mm.

The nodal jo in ts  of the bottom members of the skeletal structure were 
made by crimping and bonding aluminium tube onto the ends of the g .r .p .  

tubes; the internal diameter of the aluminium tube was 29mm, the wall 
thickness was 3mm and the crimped length was 70mm. The aluminium ends 

were then threaded and f in a l ly  screwed into the aluminium node jo in ts .
The nodal jo in ts  are made of aluminium block machined to sizes and shape 

and provided with the threaded holes in the right location with the 

required oreientation to accommodate the members. Plate (4 .2 ) shows the 

eight skeletal members of the central aluminium nodal jo in t . The top 

nodes of the space structure were manufactured by means of a mould which 

was made from plaster and s ilicon  rubber. I t  was formed in two halves 

round a prototype node made in the Department of C iv il Engineering 

Workshop. Polyester resin and glass fib re  were used to form the nodes. 
These nodes were spherical and hollow with openings moulded into them to 

receive the skeletal members. The spheres were then f i l le d  with epoxy 

resin to form the bonded jo in t . The manufacture of these nodes was 

undertaken so that any of the skeletal members could be replaced i f  they 

fa ile d  during a te s t. Plate (4 .3 ) shows the detail of th is jo in t .

The g .r .p . /c .g .r .p .  System (IB )

A geometrically s im ilar model to the above was also tested. This 

structure had a ll members made from pultruded g .r.p . except for the four 

external corner diagonal members which were made from a hybrid composite 
(c .g .r .p .)  of carbon fib re /g lass fibre /polyester resin with percentage by 

weight of 30/30/40. The external diameter and wall thickness of the 

composite members were the same as the g .r.p . pultruded tubes but the 

stiffness of the former composite was three times that of the la t te r .

The double-layer grid was assembled by screwing the bottom layer members 

into th e ir  respective jo in ts . In order to achieve th is , three p a ra lle l 

adjacent members had a le f t  handed screw thread at one end and a r ig h t  

handed screw thread at the other. The inclined members were then screwed 

into the bottom nodal jo in ts  and the other ends, together with the top 

horizontal grid members, were positioned in the top nodal points. Before
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bonding, the internal surfaces of these nodes and the members entering  

them were separated by a polythene sheet; the sphere was then f i l le d  with 

epoxy resin.

4 .2 .2  TESTING OF THE MODELS

(a) Support Conditions

The two skeletal structural systems were supported at the bottom 
four extreme corner nodes on ball bearings in order to allow 

horizontal displacements and rotations about any axis at these 

nodes caused by deformations of the structures. Four steel plinths  

fixed to the flo o r were used to sustain the structures and to raise  

th e ir  level to allow for the displacement transducers to be placed, 

as well as providing space for deflection of the system to take 

place.

(b) Loading

The top four nodes were loaded by means of hydraulic jacks through 

a c ircu lar steel p late , in order to d istribute the stresses evenly> 
and prevent any local damage to the g .r .p . nodes, and spherical 

bearings in such a way that the loads were applied through the 

centre of the node jo in t .  The hydraulic pressure was applied by 

means of an e le c tric  hydraulic pump and the magnitudes of loads 

were monitored by load cells  in series with the hydraulic jacks.

(c) Instrumentation

Selected members of the skeletal structure were strain  gauged, with 

metal fo i l  strain  gauges of 120 Ohms resistance and having a gauge 

factor of 2.09, to enable axial and bending strains to be 

measured. At each point three gauges were used and were spaced 

equally around the member. Certain symmetric members were gauged 

to enable checking of imperfections in the system which are 

unavoidably introduced during manufacturing and assembly of the 

various .components of the model.
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Stoke potentiometric transducers were used to measure the vertica l 
displacements at nodal points 5, 26, 50 and 55 (Fig 4 .1 ). The
s tra in , displacements and load values (through load c e lls ) were

recorded by means of a data logging system.

(d) Testing Procedure

In i t ia l ly  structure 1A was loaded in the linear range in increments 

of 0.5kN per node up to a maximum load of 3kN, a fter which the load 

was removed. A fin a l test was undertaken during which the 

structure was loaded beyond the linear range with smaller load 

increments u n til fa ilu re  of one of the members occured; in th is  

case i t  was one of the external corner diagonals. The fa ilu re  of 
model 1A is shown in Plate (4 .4 ) and a deta il of the fa iled  member 
is shown in Plate (4 .5 ). A fter this te s t, the structure was 

dismantled and any member which had been subjected to high internal 

stresses was replaced and structure IB was assembled.

The test of structure IB followed the same cycle as structure 1A 

and the strains and displacements were recorded. As in the 

previous structure, fa ilu re  occured in one of the corner diagonals.

(e) Possible Sources of Imperfections in the Models

Although a great deal of care had been taken in the fabrication and
assembly of both the models, imperfections did exist and the 

experimental results verified  th is .

Some of the possible sources of imperfections are stated below:-

( i )  Due to the method of fabrication  a maximum of 0.5nm error in 

the nodes was possible.

( i i )  A small variation of wall thickness in some pultruded tubes 

could have existed.

( i i i )  Some members may have had in i t ia l  curvature.

( iv ) In the fabrication of such skeletal structures i t  is
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inevitable that some lack of f i t  in the system w ill occur.

(v) Due to fr ic tio n a l effects on the hydraulic jacks the load

applied to the top four nodal jo in ts  were not exactly equal.

( f )  S tiffening Effects of the Nodal Joints

In conventional steel space structures the effects of the nodal 
jo in ts  on the stiffness of members is usually negligible and the 

actual length of the member is taken as the distance between the 

centres of the nodes to which the member is joined. I f  the members

are manufactured from a re la tiv e ly  low modulus material the jo in ts
and end fixings do have an e ffect on the f le x ib i l i t y  of the

structure and i t  should be taken into account in the analysis of
such a skeletal system. The effects can be incorporated in the 

analysis by having short s t i f f  members connecting the centre of the 

node to a nodal point where the member and node surface meet.

4 .2 .3  THE THEORETICAL ANALYSIS

A linear analysis and a nonlinear analysis were undertaken on the 

fib re /m atrix  space structures 1A and IB. The two analyses were

performed in order to compare them with the actual performance of
the structures. Attention was focussed on the accuracy of the 

nonlinear analysis to predict the behaviour of both structures up
to fa ilu re . In addition, the effects of certain imperfections on

the behaviour and on the value of the ultimate load were 

investigated.

The nonlinear method, which was fu lly  discussed in Chapter 3, takes 

only geometric nonlinearity into account. This is fu l ly  ju s t if ie d  

as the material from which the space structures were manufactured, 

has a linear stress-strain  characteristic  to fa ilu re .

This computer program has been written for the solution of 
structures which only have a lim it point behaviour. Therefore, fo r  

these structures i t  is necessary to introduce imperfections in
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order to degenerate th e ir  behaviour from a bifurcation mode to a 
lim it point one. Any attempt in using the perfect geometry with 

th is program w ill resu lt in a breakdown of the computation at the
f i r s t  bifurcation point. The procedure here is to use a linear

s ta b ili ty  analysis in order to obtain the buckling mode 

(Eigenvector) corresponding to the smallest buckling load, and 

introduce geometric imperfections proportional to th is buckling 

mode. Other buckling modes on random imperfections could be used 

to produce asymmetric behaviour. Another imperfection introduced 

in the analysis of these structures was eccentric ity  given to one 

of the top four nodes.

4 .2 .4  RESULTS AND DISCUSSION

In the following resu lts , the load factor is a function of the load

on any one nodal jo in t .

Figures (4 .2 ) , (4 .3 ) , (4 .4 ) and (4.5) show the relationship between 
the load factor and deflection for the analytical and experimental 

solutions of models 1A and IB for the four jo ints  5, 26, 50 and 55 
respectively. The s tiffen in g  effect of the nodes was taken into  

account in the analysis. I t  w i11 be seen that the behaviour is 
linear up to about 80% of the ultimate load. For external loads in

excess of th is value a nonlinear relationship exists to a point at
which the structure is incapable of taking further load and

commences to deflect excessively. Throughout the loading cycle the
experimental and theoretical nonlinear analyse results compare 

favourably.

For both models, graphs have been drawn for d iffe ren t degrees of 
imperfections, two of which have been considered. The f i r s t ,  is an 

in i t ia l  curvature compatable with the f ir s t  buckling mode, as 

previously mentioned, and given to the members of the structure  

with variations in maximum deformation of 0.1 to 1.0mm and the 
second, is an eccentric ity  of 2mm at the top node of the system.

The effects of these imperfections are c learly  shown in Figures 
(4 .2 ) , (4 .3 ) , (4 .4 ) and (4 .5 ). I t  is noticeable that the former
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imperfections did not have any appreciable effect on the results of 

the linear analysis and only the la tte r  imperfection produced 

s lig h tly  d iffe ren t behaviour.

A point of in teres t, obtained from the theoretical nonlinear 

analysis, is the effect of imperfections on the ultimate load. For
the most severe conditions considered in the present investigation

( i .e .  a type 1 imperfection of maximum deformation of the curved 

member equal to 1.0mm and a type 2 imperfection with eccentric ity  

of 2mm at one of the top nodes) there is a reduction in ultim ate  

load of about 3.9 and 3.6 per cent of the smallest imperfection 

considered ( i .e .  0.1mm for models 1A and IB respectively).

An investigation was undertaken into the accuracies caused by
ignoring the s tiffen in g  effects of the nodes and end fix in g s . In 

order to do this the two models were analysed again, without 
considering the s tiffen in g  effects and using the same material 

properties and imperfections as fa r as the previous analyses.
Figure (4 .6 ) shows the load factor plotted against the central 

jo in t displacement where an ultimate load reduction for models 1A 

and IB of 21.3 and 12.6 per cent respectively are obtained.

Although great care was exercised in the fabrication and assembly 

of the models, symmetric deformations, especially at high load 

levels, were not obtained. Figure (4 .7 ) shows a plot of the load 

against vertica l displacement of two symmetric nodes (v iz  5 and 50) 
for model 1A. The difference between the two readings is in excess 

of 20% immediately before fa ilu re .

In double-layer grids i t  is well known that axial forces are the 

predominant member loadings and consequently, only axial forces are 

considered here. Figures (4 .8) to (4.13) show relationships  

between the load factor and axial force in the most highly stressed 

members of models 1A and IB; each plot contains the results of the 

linear and nonlinear analyses as well as the experimental 

solution. The la tte r  results apply to symmetric members.
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There is very l i t t l e  difference between the results of the linear  

and nonlinear theoretical analyses under the applied loads below 80 

per cent of ultimate value, and indeed above 80 per cent of
ultimate value of difference is small.

Imperfections had no noticeable effect on the internal forces of
those members which were highly stressed but did have an e ffec t on
the members which were under low internal stresses. The reason for 

th is is that only imperfection in the highly stressed members 

results in very small changes in th e ir internal forces, but to 

balance these changes large re la tive  forces are imposed on th e ir  

neighbouring members which have only a small stress imposed by the 

external loads. One such example is shown in Figure (4.14) where 

the maximum axial force imposed by the external loads on the 

structure is less than 1 per cent of the highly stressed member 
meeting at the same node.

4.3 LARGE SPAN STRUCTURES

4.3 .1  THE MODEL STRUCTURES

The decision to test longer span models was made for two reasons:

1) As the mode of fa ilu re  of the two small span models was caused 

by shear e ffe c t, fa ilu re  occured in diagonal members in both 

models. For practical double-layer grids, bending effects  are 

usually predominant with the result of possible fa ilu re  of top 

or bottom layer chord members for load acting v e rtic a lly
downwards and upwards respectively.

2) The small span might have magnified or minimized certain
characteristics of the model tested.

Two large span structures were analysed in a sim ilar way to the 

previous models. The f i r s t  one was a ll glass reinforced polyester 

and the second a g .r .p . /c .g .r .p .  system.
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The Glass Reinforcement System

The model is a rig id  jo inted double-layer grid of the type square 

on square. The basic pyramidal units are identical to those of the 

previous two models. A ll members are manufactured of g .r .p . and 

were 1 metre long. This structure is 4 metres long and 2 metres 

wide with 12 aluminium nodes at the bottom layer and 8 g .r .p . nodes 

at the top layer. A photograph of the model is shown in Plate  

(4.6)-.

Figure (4.15) shows the member d iscretization and jo in t numbering 

system. The fu l l  lines represent the bottom layer members, the 

dashed lines the top layer members and the dotted lines the 

diagonal members. The s t i f f  members representing the nodal points 

are not shown for the sake of c la r ity  but they are assumed to  

connect the centre of the node with the neighbouring nodal points.

The skeletal members, bottom nodes and top nodes, are a ll s im ilar 

to those of the previous models 1A and IB. Only top members 

entering the spherical top nodes were separated from the nodes by a 

polythene sheet to allow replacement, whilst the diagonal members 

were embedded in the epoxy resin a fter putting a pin through them _  

to improve th e ir  bonding. This pin is an additional item to the 

arrangement adopted in models 1A and IB because the prelim inary  

analysis showed that some of the diagonals in this model w ill  go 

into tension. . ,

The g .r .p ./c .g .r .p .  System (2B)

h i  model 1S geometrically identical to model 2A with a ll members 
made from pultruded g .r .p . except for the two top central 

longitudinal members which were made from pultruded c .g .r .p . with 

carbon fib re /g lass fib re /po lyester resin with percentage by weight 
of 30%/30%/40%. The geometric properties of these members are 

identical to the g .r .p . pultruded members but, th e ir  axial 
stiffness is about three times that of the g .r.p .
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The same procedure of assembly was adopted as used in the previous 

models. A le f t  handed screw thread at one end of a member and a 

righ t handed thread at the other end were used for certain bottom 

layer members to allow the bottom layer grid to be formed. Top 

nodes were f i l le d  with epoxy resin after completing the assembly 

and checking the geometry of the structural system. Great care was 

taken to minimize imperfections and any possible lack of f i t  at 

th is c r it ic a l stage.

4 .3 .2  THE MODELS TESTING

(a) Support Conditions

The two large span models were supported at the bottom four extreme 

corner nodes (nodes no. 1, 9, 207 and 215). Four ball bearings 

were used to allow the rotation of the nodes about any axis. One 

of the nodes was position fixed , a second was fixed in two 

directions only and the other two were free in the horizontal 
plane. These constraints prevented any rig id  body movement and 

allowed any displacement of the constrained nodes as a resu lt of 

structural deformation caused by applied loading. Four steel 
points bolted to the laboratory flo or were used to support the two * 
models.

(b) loading

The same loading arrangement was used for the previous models 1A 

and IB consisting of four hydraulic jacks, the e lec tric  hydraulic 

pump and the four load ce lls  for load level monitoring was 

adopted. The top four central nodes were loaded through c irc u la r  

steel plates and ball bearings. Attention was given to the 

hydraulic system to ensure even pressure and avoid overloading any 

one of the four nodes. The load cells  were carefu lly  calibrated  

against a proving ring by loading the two in series in the Instron  

testing machine.
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(c) Instrumentation

Fifteen members of each model were strain gauged. For each member 
three strain gauges were used and were spaced equally around the 

member. The strain gauges were e lec trica l resistance metal fo i l  
ones with gauge factors of 2.09 and resistance of 120 Ohms. Out of 

the fifte e n  members strain  gauged, four pairs were symmetric 

members.

The vertica l displacements of nodes 5, 31, 55, 60, 84, 103, 108,

113 and 156 for both models were measured by means of stroke 

potentiometric transducers.

(d) Testing Procedure

Both structures were tested in the same identical manner. An 

in i t ia l  testing under a re la tiv e ly  low load was necessary to check 

the instrumentation, to assess the behaviour of the model in the 

linear region and ensure that everything was in order before 

proceeding with the f in a l testing of the structures up to fa ilu re .  
The theoretical analysis was carried out before testing , and here 

i t  is discussed subsequently to the experimental testing . I t  was 

found more convenient to perform the analytical analysis f i r s t  so 

that the behaviour of the structure and its  fa ilu re  load could be 

predicted for the experimental model and hence, i f  necessary, to 

adjust the loading increments, especially near to the ultim ate  

load.

The readings were recorded on a punch tape by means of a data 

logger. The instruments were connected to the channels of the data 

logging system such that the load ce lls  readings were scanned 

f i r s t ,  those of displacements transducers second and f in a l ly ,  the 

readings of the various strain  gauges were scanned. This 

arrangement was used so that in case of a sudden fa ilu re , which was 

expected with these types of structures, the important readings 

were recorded f i r s t .



-  83 -

The f i r s t  model testing led to a sudden fa ilu re  of one of the top 

central longitudinal members (member 84-137). Plate (4 .7 ) shows 

the fa ilu re  model (2A). The buckled member did not undergo large 

deformation before fa ilu re  and the mode of fa ilu re  of the member 

was sim ilar to that of model 1A.

The same procedure used in testing model 2A was followed in testing  

model 2B. Failure in this model was sudden with two members 

fa ilin g  simultaneously. These two members were member numbers 
79-132 and 137-190, the former was made of c .g .r .p . and the la tte r  

of g .r .p . The fa ilu re  of model 2B is shown in Plate (4 .8 ).

The experimental resu lts , obtained on the punch tape, were 

transfered to the University main computer (Prime 750) where a 

routine was written especially for processing the experimental 
data. This data was combined with the theoretical analysis results  

and two forms of output could be obtained: tables or graphic p lots.

4 .3 .3  THE THEORETICAL ANALYSIS

The linear and nonlinear analyses of the models 2A and 2B were 

undertaken using the two programs developed for th is research work; 
these are discussed in Chapter 3. The same steps as those used for 

the analysis of models 1A and IB were followed here. Geometric 

imperfections proportional to th e .f irs t  buckling mode had to be 

introduced because of bifurcation buckling characteristic  of these 

structures. No other imperfections were considered. The node 

stiffen ing  effect was dealt with in the same way as discussed 

previously. Only three theoretical (lin ear and nonlinear) analyses 

were undertaken for each model. These correspond to three deformed 

shapes with factors of 0 .5 , 1.0 and 2.0 used with the f i r s t  

buckling mode.
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4 .3 .4  RESULTS AND DISCUSSIONS

The load-deflection curves of the seven nodes 5, 31, 55, 60, 84,

108 and 113 are shown in Figures (4.16) to (4 .19 ). The 

experimental and theoretical analyses results for both models 2A 

and 2B were plotted on the same graph so that d irect comparison can 

be made. The results of the theoretical analysis, shown in these 

figures, are of the models with three degrees of imperfections.
The imperfections being an in i t ia l  member curvature compatable with 

the f i r s t  buckling mode with a maximum member deformation of 
0 .5 , 1.0 and 2.0mm. These imperfections had sim ilar effects on 

both models. The linear analysis was hardly affected, as for the 

nonlinear analysis, i t  can be seen that the larger the 

imperfections the higher the degree of rionlinearity and, at the 

same time, the lower the ultimate load. The difference in the 

values of ultimate load between the smallest and largest 
imperfections considered here is of about 3.6% for model 2A and 

3.5% for model 2B.

The behaviour of the two models was linear almost up to fa ilu re  

load where the nonlinear relationship starts to curve, becoming 

nearly horizontal. Due to the fact that any small increase of load 

in th is  region results in a large deformation, only a small number 

of experimental points were obtained before the sudden fa ilu re .

A ll figures show that the load-deflection nonlinear curves compare 

favourably with the experimental results, when the general 
behaviour and the ultimate level ( f la t  horizontal section of the 

nonlinear curve) are predicted with good accuracy.

A point of in terest here is that, although the model 2B varied from 

that of model 2A by the two hybrid members only, the former model 

had a much greater stiffness and a much increased fa ilu re  load over 

that of the la t te r . The respective fa ilu re  loads per node were 

4.28kN and 3.2kN.
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The experimental deflections of the two symmetric nodes 60 and 156 

for both models are shown in Figure (4 .20 ). I t  w ill be observed 

that, for both models, the deflections of node 60 are always 

greater than those of node 156, with a maximum difference of about 
10%. Figure (4.21) shows the deflections of symmetric nodes 103 

and 113, and i t  w ill be seen that the deflections of node 113 are 

greater than those of node 103. For the model 2A the difference  

consistently increased with the load, where the maximum difference, 
of about 17%, was reached just before fa ilu re . For the model 2B 

the difference increased with load up to about 3.2kN per node (76% 

of ultimate load) where a sudden jump occured in the displacements 

of node 103. The sudden increase in displacements of the node 

brought the value of displacements for those two symmetric nodes 

closer together u n til just before fa ilu re , at which point the 

difference reached a value of about 23%. The sudden increase in 

displacements had l i t t l e  e ffec t on other displacements of nodes and 

internal forces of members.

The load-axial force relationship in the most highly stressed 

members of the double-layer grid models 2A and 2B are shown in 

Figures (4.22) to (4 .2 7 ). The results of the theoretical linear  

analysis and nonlinear analysis as well as the experimental results  

of the models 2A and 2B are plotted on the same graph. As the 

axial forces of the theoretical analyses of the models with the 

different degree of imperfections are almost id en tica l, only the 

graphs with maximum imperfections are plotted.

There is very l i t t l e  difference between the linear and nonlinear 

theoretical analyses results under the applied loads up to almost 

the fa ilu re  load and only in the last section (of about 10% of the 

to ta l length of the curve) was there any difference and there the 

maximum value did not exceed 10%. Furthermore, the difference  

between the axial forces of the two models, at any load le v e l, was 

insign ificant.

The results of the experimental and theoretical analyses compare 

favourably, with good agreement fo certain members (v iz Figures
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(4 .2 2 ), member 60-84, Figure (4 .23 ), member 9-31 and Figure (4.24) 
member 60-113), but for others the agreement is not as good. 
However, some of the experimental results of the symmetric members 

shown in Figures (4.28) and (4.29) may explain the reasons for the 

discrepancies in the resu lts . These two figures show the axial 
forces at symmetric members. When the figures are observed in 

conjunction with Figures (4.20) and (4.21) a greater understanding 

of the imperfections within the models is obtained. These results  

show that the axial forces on the right-hand side of the 

longitudinal central axis of the model (containing node 113) were 

smaller than those on the left-hand side, whereas the deflections  

on the right-hand side were larger. This indicates a certain  

amount of tw ist in the model. A ll considered, i t  can be said that 

the results were satisfactory. Another important point to be 

mentioned is that in the nonlinear part of the load axial force, 

most of the experimental results tend to follow the theoretical 
nonlinear curves.

4 .4  PARAMETER STUDY

4 .4 .1  INTRODUCTION

A sim plified theoretical parameter study, based upon f i r s t  buckling 

analysis was carried out on three skeletal configurations. The 

study which consisted of successive analyses of the three 

configurations involved two member types only, viz a pultruded 

g .r .p . and a pultruded c .g .r .p . (hybrid composite). The former 

consisted of 60/40 per cent weight of glass fib re /po lyester resin  

and the la tte r  contained 30/30/40 per cent by weight of carbon 

fib re /g lass fib re /po lyester resin. The mechanical properties of 
the two types of material were determined experimentally (Chapter

2 ). Both types of members had an external diameter of 50mm and 

wall thickness of 2mm. The three structural configurations 

analysed were in i t ia l ly  assumed manufactured from g .r.p . members. 
The c r it ic a l buckled members were determined and replaced by the 

s t if fe r  c .g .r .p . members and the analysis was repeated.
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Nonlinear analysis of the three structures of the square on square 

type was undertaken. The three structures consisted of the a ll 

g .r.p . and the two successive improved g .r .p /c .g .r .p . structures. 
The nonlinear analysis helped in assessing the v a lid ity  of f i r s t  

buckling c r ite r ia  used in this study as well as obtaining 

information about the post-buckling behaviour.

4 .4 .2  THE STRUCTURAL SYSTEMS

In the three double-layer grid systems which were investigated the 

bottom layer configuration and the height and spans of the 

structures were iden tica l; they a ll had mansard edges and were 

simply supported along the edge of the bottom layer. The three 

configurations were:

(a) Square on square, system 1, which had a two-way top and bottom 

grid with diagonal bracings. A ll the members were 1 metre 

long and there were 144 and 188 members in the top and bottom 

layers respectively; there were 324 bracing members. The 

to ta l length of the members in the structure was 698 metres. 
The configuration is shown in Figure (4 .30 ).

(b) Diagonal on square, system 2, had an identical bottom layer - 

and diagonal bracing configuration to that of type (a) but the 

top layer d iffered from that of system 1 in that i t  consisted 

of a diagonal configuration made up of 256 members, each of 
length 0.5 /2  metres. The to ta l length of members fo r th is  

structure was 717 metres. The configuration is shown in 

Figure (4 .31 ).

(c) Three way on square, system 3, in which the top layer was a 

three way grid and consequently the diagonal bracing 

configurations differed from those of the previous two 

systems. The top layer consisted of 128 members of length 

0.5/5  metres, 84 members of length 1 metre and 8‘ members of 

length 0.5 metres. The to ta l member length of the top layer 

was 231 metres and the to ta l length of the members in the 

whole structure was 678.6 metres. The system is shown in 
Figure (4 .3 2 ).



The type (a) system was chosen because of its  sim plistic  

configuration and ease of fabrication with a ll members having equal 
lengths. The choice of the other systems was based upon the f i r s t  

choice. The top layer of the f i r s t  system was replaced, in the 

second system, by a higher density layer but the diagonals and 

bottom layers were unaltered. In the third system a high density 

layer was used compared with the second system but because of the 

d if f ic u lty  in connecting the increased number of nodal jo in ts  in 

the top layer to the bottom, a modified diagonal arrangement had to  

be used. However, i t  must be stated that the geometry, the member 
lengths and the height of the grid systems, although p ractica l, are 

not the optimum. /

4 .4 .3  THE THEORETICAL ANALYSIS

The f i r s t  buckling analysis program, details of which were given in 

Chapter 3, was used throughout this study to undertake successive 

analyses of the three systems. In these analyses, the smallest 

Eigenvalue is derived as is the corresponding Eigenvector, which 

represents the buckling mode of the structure. From this mode the 

c r it ic a l members are read ily  obtained. These members are then 

replaced by s t i f f e r  c .g .r .p . ones and the process is repeated u n til 

buckling occurs in s t i f f  members or for some other practical 
reasons.

Nonlinear analysis of three successively upgraded structures of 
type (a) was carried out. As has been mentioned previously, 
geometric imperfections are required to be introduced in order to  

be able to apply the nonlinear analysis computer program to these 

types of structures (Chapter 3 ). Eigenvectors associated with the 

f i r s t  buckling analysis were used, where a maximum member 
deformation of 2mm was used. The relevant results of these 

analyses are displayed in a graph form.

A ll analyses assumed a uniformly distributed load acting over the 

whole area of the structure. The uniformly distributed load is 

converted to a system of loads which act on the nodes according to 

the area of influence around each node.
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4 .4 .4  RESULTS AND DISCUSSION

Only a b r ie f discussion of the results of the nonlinear analysis 

w ill be given as i t  is intended not to deviate from the main 

objective which is the improvement that could be achieved by 

combining the two types of members (g .r .p . and c .q . r .p . ) .

The load deflection curves of the nodes marked I I  to V I I I  of the 

f i r s t  system, with a ll members assumed to be g .r .p . ones, are shown 

in Figure (4 .33 ).

Three points may be observed:-

(1) The nonlinear load deflection curve is very close to the 

linear one up to buckling.

(2) The magnitude of the c r it ic a l load obtained from the f i r s t  

buckling analysis is very close to the magnitude of load at 

which a change in stiffness occurs in the nonlinear analysis. 
At this point load increments become small as an indication of 

d if f ic u lty  in convergence.

(3) The reduction in stiffness which has taken place a fte r  the 

f i r s t  buckling indicates that buckled members were incapable ** 

of taking more load; however, the excess load was transmitted  

and distributed to adjacent members, thus making i t  possible 

for the structure to take more load.

Load factor-deflection  curves for node I I  obtained from the
nonlinear analysis of:

(a) system 1 with no c .g .r .p . members,

(b) system 1 with 8 c .g .r .p . members and,
(c) system 1 with 16 c .g .r .p . members,

is shown in Figure (4 .3 4 ). These results confirm the points
discussed above and indicate the increase in stiffness of the 

structure as a resu lt of replacing the c r it ic a l g .r .p . members with 

the s t if fe r  c .g .r .p . The load fa c to rJ n  these two graphs represent
the applied load/1.5kN per square metre.
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The main discussion in th is section is related to the f i r s t  

buckling loads in the three structures. For systems 1, 2 and 3 in 

which a ll members were assumed to be manufactured from g .r .p .  
pultruded tubes, the external loads applied to the structures to 

cause in it ia l  buckling were found to be 6.5kN/m2 , 9.4kN/m2 and 
9.8kN/m2 respectively when these were applied v e rtic a lly  

downwards. When, however, the external loads were applied upwards, 
the corresponding values for the three structures were 5.5kN/m2 , 

S^kN/m2 and 4.58kN/n? respectively. These results indicate th a t, 
for a downward load, as the top member density increases the 

buckling resistance of the structure also increases but fo r an 

upward load the buckling load decreases. However, by replacing the 

c r it ic a l g .r.p . member with a c .g .r .p . one the buckling resistance 

of the structural configuration is increased.

Structural System 1 ' ' i<

(a) V e rtic a lly  downward acting load

Figure (4.35) shows the relationship between the c r it ic a l load and 

c .g .r .p . member length and i t  may be c learly  seen th a t, as certain., 

g .r.p . members buckle and are replaced by c .g .r .p . ones, the 

c r it ic a l load increases. For system 1 four analyses were 

undertaken, the f i r s t  three predicted the c r it ic a l buckling in 

members which were manufactured from g .r.p . but during the fourth 

analysis the c r it ic a l buckling took place in the f i r s t  replacement 
c .g .r .p . members. Consequently, th is investigation was terminated 

as i t  would have required a higher percentage of stiffness in these 

c .g .r .p . members to enable a higher external load to cause buckling 

of the new system. Figure (4.30) shows the sequence of buckling of 
the top members. Members a (eight in number) buckled during the 

second analysis and members y (eight in number) during the th ird  

analysis. F in a lly , during the fourth analysis, members a, the 

f i r s t  substituted c .g .r .p . member buckled.
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Figures (4.36) and (4.37) show the relationship between deflection  

and to ta l length of replaced c .g .r .p . members a fter successive 

analyses; for positions I ,  on the top grid, and I I  and V I, on the 

bottom grid of the configuration shown in Figure (4 .30 ). The
o

results of these curves are re la tive  to a u .d .l . of 1.5kN/m .
Clearly the deflection of the structure w ill decrease as the 

s t if fe r  c .g .r .p . members are increased in number; there is a 20 per 
cent decrease in deflection at position I for a to ta l c .g .r .p . 

replacement length of 24.0 metres.

(b) V e rtic a lly  upward acting load

Four analyses were undertaken with a v e rtica lly  upward load applied 

to the structure. Figure (4.38) shows the relationship between the 

c r it ic a l load and the to ta l length of c .g .r .p . members which 

replace the g .r .p . members in the bottom layer configuration. The 

c r it ic a l load was increased by 62 per cent by replacing 20 metres 

of g .r .p . pultruded tube with c .g .r .p . ones.

The sequence of buckling of the lower grid members is shown in 

Figure (4.30) where members 6 (four in number) buckled during the 

second and members w (eight in number) during the th ird  analysis. „ 

During the fourth analysis the c .g .r .p . members in position 6 
buckled and the analysis was terminated.

Structural System 2

(a) Vertical downward acting load

Seven analyses were undertaken on this structure and Figure (4 .35) 
also shows the relationship between the c r it ic a l load factor of 

each successive analysis and the c .g .r .p . member lengths. I t  may 

be seen that even a fter the seventh analysis i t  would have been 

possible to improve upon the c r it ic a l load value by replacing other 

g .r.p . members with c .g .r .p . ones, but the analysis was terminated 

at this point because of the excessive length of c .g .r .p . members 

being used.
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The seventh, and ultim ate, increment shows that a to ta l of 67.58 

metres of g .r .p . was replaced by c .g .r .p . members with an 

improvement in c r it ic a l f i r s t  buckling load of 79 per cent.

I t  is important to realise  that the replacement of the c r it ic a l  

g .r.p . members by c .g .r .p . ones does not always increase the 

c r it ic a l buckling load of the structure. Referring to Figure 

(4.35) i t  can be seen that the th ird  point on the curve related to 

the structural system under consideration shows a lower c r it ic a l  

buckling load than the second one. A possible reason for this is 

that the replacement of the low elastic  modulus members by higher 

stiffness c .g .r .p . ones causes changes in the force d istribu tion  in 

the structure and th is replacement may have the undesirable effect 

of overstressing members already subjected to high forces which in 

turn causes a drop in the c r it ic a l load of the structural system. 

From the curve i t  may be seen that, in the second analysis, a 

replacement of 11.3 metres of g .r.p . members in the top layer 

increases the external load values, applied to the structure to  
cause buckling, to 19.2kN/rr? but a further replacement of 11.3 

metres reduces th is value to 12.SkN/m2 .

(b) Vertical upward acting load

Figure (4.38) shows that an improvement in the c r it ic a l f i r s t  

buckling load value of 20 per cent was achieved by replacing 4 

metres of g .r .p . members by c .g .r .p . ones in the bottom layer but 

no further improvement was possible because of the buckling of the 

c .g .r .p . members. I t  is important to point out that the increase 

of density of members in the top layer grid had the e ffec t of 
reducing the buckling load for the upward condition of loading.

Structural System 3

(a) V e rtic a lly  downward acting load

Ten successive analyses were undertaken on this structure and 

during the last analysis a diagonal member buckled. The analysis
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was terminated at th is stage because the investigation was lim ited  

to the buckling of top or bottom members resulting from bending 

moment action. The maximum length of g .r.p . top layer members 

replaced by hybrid ones was 35.3 metres and the corresponding 

increase in the c r it ic a l load was 55.5 per cent. As was shown in 

structural system 2, the replacement of g .r.p . members by the 

s t if fe r  c .g .r .p . members does not necessarily produce a structure  

with higher c r it ic a l load.

(b) Vertical upwards acting load

Again only two solutions were possible for this structural system 

as during the second one the replacement of 4 g .r .p . members in the 

bottom layer increased the f i r s t  buckling c r it ic a l load value by 20 

per cent.

I t  has been shown that i t  is possible to improve the s ta b il i ty  of 
double-layer grid systems made of g .r.p . by e ither increasing the 

density of the layer under compressive action or by introducing 

s t if fe r  composite members in the c r it ic a l regions of the 

configurations. I t  is important to remember however, that fo r  

structures manufactured from re la tiv e ly  low modulus m aterials the , 

deflections must also be investigated.

Consequently, the deflections at positions I ,  I I  and VI shown in 

Figures (4 .3 0 ), (4.31) and (4.32) for the v e rtic a lly  downwards 

external load on the three structural systems were investigated and 

were plotted against the length of hybrid membrs which replaced the 

buckled g .r .p . members at each analysis.

The strains imposed upon double-layer grid systems by external 
loads applied at the nodal jo ints  of the system are mainly axial 

and as deflections are caused by axial deformations of members, the 

replacement of the c r it ic a l g .r.p . members by the high s tiffness  

ones must reduce the deflections of the structure. Figure (4 .36) 
shows the vertica l deflections for the three systems at or near the 

centre of the doube-layer grid structure at positions I and I I  on 

the top and bottom grids respectively. I t  w ill be noticed that a
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reduction in deflection takes place as g .r .p . members are replaced 

by the higher modulus c .g .r .p . members to enable a greater buckling 

load value to be obtained. The deflections of the lower grid point 
VI against replacement c .g .r .p . member lengths for a ll structures 

is shown in Figure (4.37) and i t  w ill be observed that the 

reduction in deflection is not a localised effect in the v ic in ity  

of the replaced members but one that is associated with a ll nodal 
points in the structure.

Sim ilar deflection results were obtained for v e rtic a lly  upward 

applied loads and these are shown in Figure (4.39) and (4 .4 ) fo r  

positions I I  and IV (as shown in Figures (4 .3 0 ), (4.31) and 

(4 .3 2 )).

4.5 OBSERVATIONS

The behaviour of light-w eight double-layer grid systems manufactured from 

g .r.p . and c .g .r .p . is linear for much of the load-deflection curve. The 

fact that th e ir  structural behaviour becomes highly nonlinear only a fter  

f i r s t  buckling means that the linear eigenvalue method of analysis, which 

enables the f i r s t  buckling to be obtained and also the corresponding mode 

of buckling to be determined, can be used to find the point at which 

linear analysis is acceptable (a margin of safety has to be taken into 

account as imperfections may lower the f i r s t  buckling load).

I f  the structures post-buckling behaviour is required, nonlinear analysis 

must be used. This analysis used in the double-layer grid investigation  

proved to be a useful tool to predict accurately the behaviour of the 

system; this has been c learly  shown in the solution to the model tes ts .

A ll double-layer grid structures analysed in th is chapter showed a 

reduction in stiffness a fter the f i r s t  buckling. This reduction in a ll  
models tested (Figures 4.1 and 4.15) was much more severe than that for 

the double-layer ,grids shown in Figures (4.30) to (4 .3 2 ). This variation  

is stiffness was c learly  caused by the geometry of the structural 

configurations. In the model analysis the loads in members were unable
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to d istrib u te  th e ir  forces to adjacent members due to the small overall 
dimensions of the structure but in the la tte r  case the structure had 

breadth and was able to d istribute  forces to a larger number of members.

In these types of structures the fa ilu re  seemed to occur as a result of 
buckling of members subjected to compressive axial forces. To overcome 

th is problem and to produce more e ffic ie n t structures, two approaches 

were explored; these are either to increase the density of members in the 

area under the compressive action or to introduce member types of higher 

stiffness in the region of c r it ic a l comnpressive forces. The la tte r  

method is usually more practical and the results appear to be good. 
However, the assembly of such structures becomes a c r it ic a l operation 

where error in positioning any of the high stiffness members may have 

negative e ffects . Careful analysis and understanding of the structural 

problem is also required because replacing a highly stressed member by a 

s t if fe r  one does not always improve the performance of the overall 

structure.

During the testing of the structures re la tiv e ly  small deformations of the 

buckled members were noted. The members fa iled  suddenly by a b r i t t le  

fa ilu re . The overall deflections of the structure are large when 

compared with m etallic  systems, but using high stiffness members in the 

region of high internal forces w ill tend to reduce the overall 
deflections considerably.

Imperfections can affect deflections and internal forces which in turn 

w ill affect c r it ic a l load and mode of buckling. The e ffec t of 
imperfections on structures can be readily incorporated in nonlinear 

analysis where th e ir  effects can be studied.
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Fig (4 .35) Relationship between c r it ic a l load and c .g .r .p . member length
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Plate (4 .2 )  Central bottom layer aluminium node

Plate (4 .3 )  Top layer g . r .p .  node



Plate (4 .4 )  The model a f te r  f ina l  testing showing the fa i led  

diagonal member

Plate (4 .5 )  Detai l  of the fa i led  g . r .p .  model
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Plate (4 .7 )  Model 2A a f te r  f ina l  test ing showing the fa i le d  

top central  member

Plate (4 .8 )  Model 2B a f te r  f ina l  testing showing the fa i led

top longitudinal members
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C H A P T E R  F I V E  

FLEXIBLE SKELETAL STRUCTURES IN F.R.P.

5.1 INTRODUCTION

A wide variety  of re ticu lated single layer shell structures have been 

b u ilt  over the last few decades using various materials such as s tee l, 
aluminium, concrete and timber. Domes and barrel vaults have probably 

been the most popular of the single layer shell type structures. Both 

types have curved surfaces composed of members with a wide variety of 
possible configurations; a detailed description given by Makowski, Ref 
[6 2 ]. Each of these configurations has particu la r advantages associated 

with i t ,  however, a consideration should always be given to minimizing 

the variety  of members and connections required. One of the simplest and 

most e ff ic ie n t configurations is that of the three-way system. This type 

has been selected for the shallow dome model and the barrel vault 
configuration used for the parameter study.

These structures are inherently nonlinear, and consequently a lin ear  

analysis should be used with caution. When using the linear method of 

analysis the displacements of the structures would be underestimated when 

considering downward acting loads, but would be overestimated when the 

loading is acting upwards. Geometric nonlinearity can be c r i t ic a l ,  
especially with shallow structures and i t  is essential to check for 

possible in s ta b ility  that may occur.

The computer nonlinear analysis program, described in Chapter 3, which 

was used to analyse the structures discussed in th is  Chapter is also 

capable of dealing with any type of in s ta b ility  that may occur, whether 
i t  is a local snap buckling occuring in one location, or a snap buckling 

occuring simultaneously in d ifferent locations or a general buckling.

The program w ill trace the post-buckling load deflection curve for any 

degrees of freedom for these structures.
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The load deflection curve characteristic of the snap buckling associated 

with these structures is shown in Fig (5 .1 ) . This curve shows the 

continuous line representing the stable section of the path whilst the 

dotted line indicates the unstable section. During the loading stage the 

load deflection curve w ill follow the section 0 to A then at the c r it ic a l  
point A a dynamic jump occurs from position A to position B. S im ila rly , 
when the structure is unloaded i t  w ill follow the load deflection curve 

down to position C where i t  w ill swap to position D. I f  the 

displacements were controlled, the structure during loading could be 

forced to follow the whole load deflection curve from the point A to C 

and then to B. The snap buckling is discussed in more deta il in Chapter 
3.

In these structures the snap buckling is usually local and occurs when 

one of the nodes snaps and the local curvature becomes negative; local 

buckling often leads to general buckling as a result of the structure  

being unable to resist the shear loads. These loads are transmitted by 

the buckled unit to the neighbouring members, thus, causing the area of 
buckling to increase. General buckling and eventual fa ilu re  could be 

caused by a series of local bucklings occuring at d iffe ren t locations 

affecting more than one node. The s ta b ili ty  of such structures is 

affected by several factors such as the geometry, boundary conditions, 
type of loading and material properties.

This chapter investigates the construction of this type of structure  

using pultruded glass reinforced members. The main points w ill 

concentrate on the general behaviour and its  prediction, mode of fa ilu re  

and the p o ss ib ilities  of improving the performance. A ll th is is carried  

out by means of experimental testing and theoretical analysis.

5.2 SHALLOW DOME MODEL

5.2 .1  THE MODEL STRUCTURE

The three way grid dome was fabricated from pultruded glass 

reinforced polyester composite members of 25.4mm external diameter 

and 2mm wall thickness. The members chosen for the construction 

were as free from in it ia l  imperfection as possible. The glass
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fib re /p o lyester resin ra tio  by weight was 60/40 per cent. The dome 

was a portion of a sphere of diameter 9000mm and had a span of 

3000mm and a rise  of 280mm to the central node. The dimensions of 
th is  test structure were consistent with the laboratory fa c i l i t ie s  

and represented a large scale model.

The members of the domes were cut to size and a special technique 

was used to manufacture and assemble the nodal jo in ts . Six members 

met at a ll internal jo ints  and into each end of the members a 

m illed cy lindrical aluminium plug was placed from which fle x ib le  

metal pins protruded to enter ra d ia lly  another milled cy lindrical 
aluminium disc which formed the centre of the nodal jo in t . Plates

(5 .1 ) to (5 .3 ) shows the operations to form this jo in t to th is  

stage. The perimeter nodes which connected three or four members 

were formed in an identical manner. When every jo in t on the 

structure was p a r tia lly  made a theodolite and a level were used to 

adjust the dome to its  correct geometry which was read ily  deformed 

by the application of a small pressure to the temporary f le x ib le  

nodal jo in ts . Plate (5 .4 ) shows the dome at this stage of 
manufacture. An adhesive was then used to f ix  the temporary nodes 

and to ensure a degree of r ig id ity  of the structure; pins, made of 
pultruded g .r .p . rods, are inserted in the end of each member to - 

ensure fu l l  connection. Plate (5 .5 ) illu s tra te s  this stage of 
completion of the temporary nodes. A silicone rubber mould, shown 

in Plate (5 .6 ) was manufactured from an aluminium die and was used 

to cast a glass reinforced epoxy composite around the temporary 

nodes to complete the nodal jo in t . Plate (5 .7) shows one of the 

completed internal nodes and Plate (5 .8 ) shows the assembled moel 

with a ll nodal jo in ts  completed. The centre of curvature of the 

bottom of the six peripheral support nodes was coincident with the 

centre of the node in order to allow rotations to take place about 
the same point and to avoid any eccentric ity . A V-shaped steel 

channel, with adjustable supports, provided constraints against 
level displacements as shown in Plate (5 .9 ).
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5.2 .2  TESTING ARRANGEMENT AND LOADING

The load was applied through a ball bearing and two load ce lls  to 

the central node only. The f i r s t  load cell was connected to a 
monitoring device, to enable a constant check to be made on the 

applied load leve l, and the second load 'cell was connected to a 

data logging system to record the load readings. To control the 

displacements at the central node, a manually operated mechanical 
jack, in series with a load ce ll and an aligning ball bearing, were 

placed under the loaded node. This la tte r  load cell was also 

connected to the data logger. The two ball bearings on both sides 

of the loaded node were perfectly  aligned thus ensuring that no 

appreciable rotational constraints were imposed. This arrangement 

was used as a displacement controlled actuator was not availab le . 
The displacement of the central node was controlled by the 

mechanical jack and the actual load applied to the structure was 

equal to the difference between the readings of the load cells  

above and below the node point. This arrangement shown in Plate
(5.10) allowed the whole load-deflection curve to be traced 

including the unstable section; i t  prevented the dynamic snapping 

from taking place.

5 .2 .3  INSTRUMENTATION

E lectric  resistance metal fo i l  s tra in  gauges were used with 

resistance of 120 Ohms and gauge factor of 2.09. Selected members 

of the skeletal structure were stra in  gauged to enable axial and 

bending strains to be measured. At these points three gauges were 

used and were spaced equally around the member. Certain symmetric 

members were gauged to enable a study to be made of imperfections 

in the system which were unavoidably introduced during the assembly 

of the model.

Stroke potentiometric transducers were used to measure the v e rtic a l 

displacement of the central node and other selected nodes. A ll 
transducers were calibrated by means of a micrometer and th e ir
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behaviour was found to be lin ea r. The coefficients of ca lib ration  

were fed to the computer with the data to be processed.

The load cells  used were calibrated in the instron and extra checks 

on the calibration were obtained by means of a proving ring.

The data obtained from the model testing, which was stored on a 

punch tape, was transferred to the University main computer to be 

processed and produced in forms of graphs and tables.

5 .2 .4  TESTING PROCEDURE

A series of preliminary tests were undertaken for the following  

reasons

(a) To check a ll instrumentation, the data logging system and the data 

recording system during testing in order not to lose any important 
information when testing the structure up to fa ilu re .

(b) To adjust the supports and ensure that a ll six were imposing the 

same constraints.

Subsequently, the model was loaded twice; during the f i r s t  tes t the 

magnitude of the load was such that snap of the central node took 

place and during the second test the structure was loaded to 

fa ilu re .

The loading sequence consisted of applying a load of a magnitude 

s lig h tly  higher than the snap load, obtained from the computer 
analysis through the hydraulic jack. This load was supported by 

the dome and by the mechanical jack; however, only a small part of 
i t  was supported by the dome in i t ia l ly .  As the mechanical jack was 

lowered manually the share of the load taken by the dome was 

increased un til the c r it ic a l load value was'reached. At th is  

point, as the mechanical jack was lowered further, the load taken 

by the structure decreased u n til i t  reached a position of stable  

equilibrium (equivalent to position C on the curve shown in Figure
(5 .1 ) and then commenced to increase its  share again.
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5 .2 .5  THE THEORETICAL ANALYSIS

Linear and nonlinear analyses of the shallow dome were carried out 

by means of the computer program developed for this purpose and 

fu l ly  explained in a previous section of this work. The structure  

was analysed under three d iffe ren t boundary conditions; however, 
only one of these conditions represented that of the constraint of 

the tested model. The three boundary conditions considered were as 
fo llow s:-

(a) The six support nodes which are shown in Figure (5 .2 ) were position  

fixed only.

(b) The six support nodes were position fixed in the vertica l d irection  

and, in addition, node numbers 1, 127 and 217, shown in Fig (5 .2 ) ,  

were position fixed in the horizontal d irection.

(c) The six support nodes were position fixed in the vertica l d irection  

only.

A ll assumptions made for the computer program are valid fo r th is  

structure and in particu lar there was no need to introduce 

imperfections as the behaviour was characterized by the lim it  point 

(snap buckling) behaviour. In these analyses every member of the 

structure was discretized into six segments. Two short ones at the 

end of each member with higher stiffness and with dimensions equal 
to the distance from the centre of the node to its  face. These two 

segments idealised the physical dimension and the extra s tiffness  

of the nodal jo in ts . A deta il of the nodes is shown in Plate  

(5 .7 ) . The other intermediate d iscretization was required in the 

case of this structure because of the large deformations involved, 

especially at higher load leve l.

5 .2 .6  RESULTS AND DISCUSSION

The results are divided into two sections; section A deals with the 

analytical and experimental techniques where only one boundary
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condition is considered, section B investigates the analytical 

solutions only when the structure is under the three boundary 

conditions discussed in the previous section.

(A) Analytical and Experimental Results for Fully Fixed Boundary 

Conditions

A ll supports to the model were constrained against vertica l and 

horizontal displacements and no rotational constraints were 

imposed. The results of the theoretical analysis are in a graph 

form and the experimental results are represented by symbols on 

these graphs. Figure (5 .2 ) shows the configuration and member 
discretization  for the dome.

The sign convention is such that downwards displacements and 

compressive axial forces are assumed to be negative. Two sets of 

graphs have been presented, one of load against vertica l
displacement and the other of load against axial force. Bending

moments for the analytical and experimental analyses agree closely  

as do the axial force and therefore, only the la tte r  graphs w ill be 

shown.

The theoretical and experimental load-displacement curves for the 

central node are shown in Figure (5 .3 ) and excellent agreement is 

achieved with a percentage difference between the theoretical and 
experimental snap buckling load, less than 5%, In addition, the

experimental and theoretical values of the load displacement
relationship for the inner ring nodes, Figure (5 .4) agree closely . 

The difference, however, was that in the pre-buckling state the 

experimental values were negative. This difference could have been 

caused by geometric imperfections or ineffective boundary 

conditions. Figure (5.10) shows the effect d ifferen t boundary 

conditions have on the behaviour of this node. From a 

consideration of the theoretical load deflection curves of the 

central and the inner ring nodes (viz Figures (5 .3) and (5 .4 ))  i t  

may be concluded that the snap buckling affects only the central 

node.
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The experimental strains in members A to K of Figure (5 .2 ) have 

been converted to axial forces and plotted against the load 

fac to r. Figures (5 .5 ) to (5 .8 ) show the results. A symmetrical 

behaviour was assumed when undertaking the theoretical analysis and 

a ll the experimental results for symmetric members have been 

plotted on these theoretical curves, using d iffe ren t symbols for 
d iffe ren t members. Figure (5 .5 ) shows the load plotted against the 

theoretical axial force, as a resu lt of the linear and nonlinear 

analyses, for the members connected to the central node and 

superimposed upon this curve are the experimental results for 

members A, B and C of Figure (5 .2 ) . S im ilarly Figure (5 .6 ) shows 

the load factor against the theoretical axial force for the inner 
ring members and superimposed on this graph are the experimental 

results for members D, E and F. Figure (5 .7) shows a sim ilar 

theoretical curve and experimental results plotted on th is  graph 

for members G and H which are on the outer ring of the structure. 
The experimental relationship between the load factor and force in 

members I ,  J and K is shown in Figure (5 .8 ).

In general, the computer nonlinear analysis predicted with a good 

degree of accuracy the structure's performance but i t  must be 

stated that the assumption of symmetric behaviour was u n re a lis tic . 
The high values of axial force recorded in members C, E, H and K is, 

an indication that the non-symmetric behaviour is the cause of the 

discrepancies between the analytical and experimental solutions.

The central unit of the model which consists of the central node

and the six members connecting i t  did not sustain any damage during
the f i r s t  loading to snap and a comparison of the in i t ia l  and f in a l  

reading at no load condition confirmed th is . During the loading 

cycle to fa ilu re  and at a load in excess of that causing snap the 

two members C and L fa ile d  at th e ir  ends nearest to the central
node. From previous investigations on the material and from an

observation of the strain  gauge readings on the members i t  was 

clear that fa ilu re  was in it ia te d  in the compression fibres of the 

composite. In addition, i t  was clear that premature fa ilu re  was 

caused by imperfections which could have been caused by 

eccentric ities in the central node, due to the members not meeting
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at the same point, excessive size and non uniform stiffness of the 

node and geometric imperfections in the members. I t  was noticed 

that the value of force being taken by identical neighbouring 

members to those that fa ile d , and the compressive stress values in 

these members from the theoretical investigation, were lower in 

value.

I t  was expected that the model would f a i l  suddenly as the material 
contained a re la tiv e ly  high percentage of glass (60% by weight) 

and therefore, the composite would follow more closely the stress 

strain relationship and fa ilu re  behaviour of the fib re  which is a 

b r it t le  m ateria l.

( B) Computer Analysis Results fo r the Three Boundary Conditions

In this section only the load-displacements curves are considered 

as they contain a ll the information required. The effect of the 

boundary conditions on the internal forces was not considered as i t  

fa lls  outside the scope of the investigation. Figures (5 .9 ) to
(5.11) show the load-displacement curves for the central node, the 

inner ring nodes and the centre ring unrestrained nodes 

respectively. I t  should be noted that in the second support - 
boundary case, node point 50, for instance, w ill behave d iffe re n tly  

to node point 109 shown in Figure (5 .2 ) . Consequently, only the 

node points in sim ilar locations to that of node point 50 have been 

considered during the discussions of this support boundary case.

The perimeter members formed a tension ring beam when no horizontal 
support constraints were provided to the structure and consequently 

the value of the snap buckling load was sensibly the same fo r the 

three boundary conditions; this is shown in Figure (5 .9 ). The 

general behaviour of the central node was sim ilar in a ll cases 

considered here. However, there was a slight difference in the 

results for the structure with no horizontal constrained supports; 
these results showed a more fle x ib le  behaviour when the structure  

was under load and the snap buckling resulted a fter a more severe 

structural deformation had occured. The load-deflection curves fo r
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these nodes are sim ilar in form but vary in magnitude and direction  

p articu la rly  for the two extreme cases considered, viz for the 

to ta l horizontal constraint and for the tota l horizontal freedom.

5.3 PARAMETER STUDY

5.3 .1  INTRODUCTION

The reticu lated single layer shell structures are extremely 

fle x ib le  and, unlike double layer grids, are more sensitive to  

local buckling. Consequently, the introduction of s t i f fe r  members 

to improve th e ir  performance would not be an e ffic ie n t method as is 

the case with double layer grid structures. Local buckling, in the 

f le x ib le  structures, may occur anywhere and the introduction of 

s t if fe r  members in that location represents a solution for a 

particu lar problem and does not normally lead to general 

improvement of the structural performance. I t  appears th a t, in the 

case of these structures, geometric considerations are more 

practical and therefore, the investigation was lim ited to a pure 

geometric parameter study.

A c ircu lar braced barrel vault was selected for the parameter 

investigation. The span was maintained fixed with a value of 8 

metres and the rise  was chosen as the variable parameter. The 

member types considered were of dimensions identical to those used 

in the parameter investigation of the double layer grids which had 

a s lig h tly  large span.

A preliminary design and analysis of the barrel vault showed that 
the deformations of the structure, under a re la tiv e ly  small load, 

were excessively large. Consequently, a set of s tiffen in g  skeleta l 
ribs , with spacing of 4 and 6 metres, were introduced to make the 

structure more practical and to reduce the deformations. Four 
structures of the same configurations and with four d iffe re n t rises  

were then studied making use of the linear and nonlinear computer 
analyses programs.



-  144 -

5 .3 .2  THE BARREL VAULT STRUCTURES

The barrel vaults considered in th is investigation had various span 

to rise  ratios for a constant span of 8000mm and length of

16000mm. They were reticu lated of the three way type, a
configuration characterized by the small variety of member lengths

and connections. A ll structures have identical topography with an
equal number of members and nodes. The four span to rise  ratios  

investigated were 8000/4000, 8000/2000, 8000/1000 and 8000/500 and 

in this thesis are called types 1, 2, 3 and 4 respectively. Figure

(5.12) shows the configurations.

The change of geometry, caused by the difference in the r is e , 
affected only the length of the members. A ll the nodes of the 

barrel vaults lay on surfaces of c ircu lar cylinders with the larger 

rad ii corresponding to the smaller rises and vice versa. These 

configurations are symmetric about the two vertica l planes passing 

through the longitudinal and transversal centre lines.

The members of the structures were assumed to have been 

manufactured from 50mm external diameter, 2mm wall thickness 

pultruded tubes with a glass/polyester matrix percentage ra tio  by 

weight of 60/40. Their mechanical properties, required fo r the 

analysis, were assumed to be identical to those o f the smaller 

diameter members of the same glass content which were obtained 

experimentally.

A ll the configurations have four double layer skeletal curved ribs  

through th e ir length. For a ll the configurations the ribs have a 

constant height of 500mm which means that the nodes of the r ib  

connecting the diagonals are part of c irc les with centres lying on 

the axis of the cyclinders associated with the various barrel 

vaults. Two ribs are at the two ends of the barrel vaults and the 

other two are spaced 4 metres from the f i r s t  two with six metres 

distance between the two central ones. These ribs are to s tiffe n  

the overall structural systems; for a single layer braced barrel 

vault the re la tiv e ly  low modulus material was able to support only 

a fraction of the working load before deforming excessively.
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5 .3 .3  THE BOUNDARY CONDITIONS

For the analysis, a ll four barrel vaults were assumed to be 

position fixed in the x, y and z cartesian coordinate directions at 
the various nodal jo in ts  on the two longitudinal edges. However, 
when taking advantage of symmetry the nodes on the planes of 
symmetry have to be constrained such that deformations are 

conformable with symmetry. Displacements in those planes and 

rotations represented by vectors normal to the same planes must not 
be constrained.

5 .3 .4  THE LOADING OF THE STRUCTURES

The barrel vaults were subjected to a uniformly distributed load 

over plan area of the structures and, in addition, a uniformly 

distributed load was applied to half plan area of the span over its  

fu l l  length. The u .d .l .  was convered to concentrated loads applied 

to the nodes. The conversion was based on the plan area of 
influence of the nodes. The influence areas were computed from the 

projection of each of the structural configurations on the 

horizontal plane. In presenting the graphs the snow load of 750 

N/nf was used to normalize a ll applied loads. According to the 

directions of the loads and also whether they were applied on fu l l  
or ha lf structure, the applied loads were c lassified  as follows:

(a) a uniformly distributed load throughout the structure and acting  

v e rtic a lly  downwards;

(b) a uniformly distributed load throughout the structure and acting 

v e rtic a lly  upwards;

(c) a uniformly distributed load on half the structure and acting 

v e rtic a lly  downwards;

(d) a uniformly distributed load on ha lf the structure and acting 

v e rtic a lly  upwards.
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5.3 .5  THE THEORETICAL ANALYSES

A linear and a nonlinear analysis of the barrel vaults were carried  

out. Symmetry was u tilize d  in these analyses according to the 

loading condition. For the nonlinear analysis each member of the 

barrel vault was represented by two elements giving rise  to the 

analysis of a structure containing 424 members and 283 jo in ts  in 

the case of a half of the barrel vau lt, and 216 members and 147 

jo in ts  in the case of a quarter of the barrel vault. Lim iting the 

discretization  of each member to two members and taking advantage 

of the symmetry helped in reducing the computing time considerably.

By means of the computer program, described in Chapter 3, each of 
the four configurations were analysed under four loading 

conditions; thus, sixteen nonlinear analyses were undertaken. In 

a ll the analyses, no member bifurcation buckling occured and, 
therefore, no imperfections were introduced.

As the nonlinear analysis is extremely expensive, i t  was stopped 

when either deformation became excessive or the number of load 

increments exceeded a specified lim it ,  even i f  in s ta b ility  did not 
occur during the analysis.

5 .3 .6  RESULTS AND DISCUSSION

The nonlinear analysis includes over th ir ty  load increments and to  

each load level corresponds a set of displacements and internal 

forces which represent the solution. The results are usually 

displayed as a set of curves of any of the displacements or 
internal forces against the load leve l. As the number of nodal 
points and members is quite large, only the results of selected 

nodal points and members are displayed. For the load displacement 
curves two points on the reinforcing beams (A and C) and the two 

more f le x ib le  nodes (B and D) were selected. Also, the results of 
the internal forces of the members I to V are shown. The four 

nodal points A to D and the fiv e  members I to V, in the case of 
loads (c) and (d ), are within the part of the structure subjected
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to the loading. These nodal points and members are shown in Figure
(5 .1 2 ).

Figures (5 .1 3 ), (5 .1 4 ), (5.15) and (5.16) show the linear and 

nonlinear relationship between the load factor and displacements 

for the loading case (c ), as described in section 5 .3 .4 . The sign 

convention used in these analyses are that the v e rtica lly  downward 

displacements are assumed negative and the upward displacements 

positive.

Figure (5.17) shows the relationship between the load factor and 

vertica l displacement of nodal point D under load condition (c ).

The graph enables a comparison to be made between the behaviour and 

the degree of nonlinearity, associated with the node D, of the four 

types of structures as the span to rise ra tio  varies. I t  is shown 

that as the rise decreases the structure becomes more f le x ib le  and 

the degree of nonlinearity increases.

The linear and nonlinear load factor against vertical displacement 
relationship for node point D is shown in Figure (5 .18 ). Three 

sets of curves are drawn, each giving the behaviour of the node
under fu l l  and half load (load types (a) and (c )) for barrel vault

types 2, 3 and 4. The results of barrel vault type 1 were ommitted'
because of the partia l overlapping of its  results and with those of

type 2. The curves for barrel vault type 2 show that for both 

linear and nonlinear analyses, displacement under half load is 

larger than that under fu l l  load. Type 3 barrel vault shows a 
sim ilar linear behaviour when considering fu ll  and ha lf load 

conditions, whereas under low loads placed on half span only the 

nonlinear behaviour shows displacements larger than those for fu l l  

load conditions. However, fo r the high external load values the 

situation is reversed with the fu l l  load conditions having the 

larger deflection value for the same applied load. In the type 4 

barrel vau lt, which is a very low rise  structure, the displacements 

under the applied load for both the linear and nonlinear analyses 

are greater than those under sim ilar loadings applied on only h a lf 

the span of the structure. For the barrel vaults type 2 and 3, a 
local snap through in s ta b ility  occurs under fu ll  load condition,
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whereas under the half loading condition the rate of deformation 

increases as the higher loads are applied, although no in s ta b ility  

is evident. Both the fu l l  load and half load investigations of the 

barrel vault type 4 were stopped after large displacements had been 

recorded. I t  was f e l t  that th is  particu lar structure at th is time 

did not warrant the large amount of computer time required to cause 

snap through buckling to occur.

Figure (5.19) shows the relationship between load factor and 

vertica l displacements at positions A, B, C and D in the type 2 

barrel vault. The two loading cases considered are a positive and 

negative half load (load cases (c) and (d) ) .  I t  may be c learly  

seen that the linear analysis underestimates deformation when 

analysing a positive loading condition and overestimates i t  when 

analysing a negative loading condition. Figures (5.20) and (5 .21) 
show the load factor plotted against displacement of nodal point D 

for the barrel vault types 2 and 3. The graphs compare the results  

for one position on the vault (node D) under loading cases (a ),
(b ), (c) and (d ). I t  may be seen that fo r the linear curves of 
both graphs and the nonlinear curves of the f i r s t  graph, the 

displacements under ha lf load are larger than those under fu l l  
load. However, this is not so for the nonlinear behaviour shown in 

Figure (5 .21).

The criterion  for the design of fib re /m atrix  skeletal systems is 

invariably the deflection and to gain an appreciation of the 

general behaviour of the overall structure, especially on the 

nonlinear region, an investigation of the deformation of the en tire  

structure is generally undertaken. From these, a ll information 

regarding the e las tic  s ta b ili ty  is read ily  obtained. The in ternal 
forces, however, are obtained and checked against fa ilu re . Their 

nonlinear behaviour is a d irect consequence of the geometric 

nonlinearity, i f  the behaviour of the material is linear e la s tic . 

The few members, I to V, selected from d iffe ren t locations were 

used to show the effects of nonlinearity and the change of geometry 

on th e ir  internal forces. Figures (5.22) to (5.25) show the 

relationship between the internal applied load, in terms of load



-  149 -

fac to r, and the axial forces for the five  members of barrel vault 

types 1 to 4 under load case (c ).

The two main points to be noted from the four figures are, f i r s t ly  

the degree of non!inearity of the axial forces increases as the 

span to rise ra tio  of the barrel vault increases ( ie , the height of 
the barrel vault decreases). Secondly, the effect that the 

geometry of the barrel vault has on the axial forces. I t  w ill be 

seen that as the rise  of the structure decreases, axial forces 

increase in certain members and decrease in others. The general 
trend is that an increase occurs in the members which are highly  

stressed. The results also show that the divergence of the axial 
forces between the high stressed members and the low stressed 

members in the barrel vaults become larger and the rise decreases; 
th is is c learly  shown in Figure (5 .26 ).

Although internal forces are not of the main interest in th is  

study, a set of bending and torsional moments for members I to V 

is given for completeness. Only barrel vaults type 1 to 3 are 

included, type 4 being uncapable of carrying s ignificant loads.
The results are displayed for one loading level of 600 N/ntn2 . The

bending moments are given for the member ends furthest from the
centre lin e . Four values are given for each member of a p a rtic u la r

configuration. These are the linear and nonlinear results fo r the
two loading conditions (a) and (c ).

The general trend for the torsional moment which is generally  

expected in these types of structures, is that torsional moments 

are higher in the case of a uniformly distributed load acting on 

h a lf the barrel vaults than is the case for a uniformly d istributed  

load on a ll span. However, for the bending moments i t  depends on 

the location of members. Another point shown in this table is the 

difference between the linear and nonlinear results.

5.4 OBSERVATIONS

Single layer reticu lated structures manufactured from pultruded
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g .r.p . composites are sensitive to the change of geometry resulting  

from deformation and the shallower the structure the larger the 

nonlinear e ffects . Consequently, most of the time, a nonlinear 

analysis is required to obtain the exact state of deformation. 
In s ta b ility , however, is the main problem in these types of 

structures. Fortunately, the nonlinear method of analysis can 

predict th e ir occurance with good accuracy. Local snap through 

represents the more common type of in s ta b ility  in these structures.

The geometry is quite an important factor with this type of 
material as shown by the parameter study. The change of geometry 

may result in improving the overall stiffness of the structure. 
However, these particu lar configurations ( ie , the single layer 

reticu lated structures) could not be used for large spans, when 

manufactured from g .r .p . A combination with the s t i f fe r  type of 

structure, such as the double layer arches used with the barrel 
vaults, can result in more practical types of structures.

I t  has been shown that pultruded glass reinforced polyester tubes 

have a good recovery characteristic  a fter they have undergone large 

deformations and without sustaining any apparent damage. I t  is to  

be emphasised that this was the case with members of these f le x ib le  

structures, when internal stresses were not large. Because of the 

brittleness of these members the structure tends to collapse 
without warning.

Imperfection in these structures can be caused by several factors  

and any combination of these can be incorporated into the computer 
analysis. However, to be able to understand the effects of 

particu lar imperfections i t  is necessary to be able to study them 

independently of other imperfections. No particu lar imperfections 

were considered in this section except for the analysis of the 

shallow dome model under d iffe re n t support conditions. The resu lts  

obtained, related to the effects of imperfections to the lack of 
horizontal constraints of the structure and thus enabled a greater 

understanding of the problem.
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Type 1

Type 2

Type 3

Comparative elevations of the four 
types of Barrel Vaults.

Centre Line

Double-
Layer
System

Plan of Type 1 Barrel Vault. (H alf length)

Fig (5.12) Plan and Elevations of Types 1, 2, 3 and 4 
Braced Barrel Vaults.
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Fig (5.17) Load fa c to r— displacement of node point D 
for types 1, 2, 3 and 4 barrel vaults. 
(Load case (c ) ) .
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Fig (5.26) Load fa c to r— Axial force fo r types 1, 2, 3 and 4 barrel v a u lts . 
(Members I and I I .  Load case (c ) ) .
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Plate (5.2)  Position for connection of components



Plate (5.3)  F i rs t  members connected

Plate (5 .4 )  Assembly of the dome



Plate (5 .5 )  Completed temporary node

Plate (5.6)  The aluminium die and the s i l icon rubber mould



Plate (5.7)  Completed glass reinforced epoxy node

Plate (5 .8 )  The completed dome
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Plate (5.10)  The displacement contro l led testing arrangement
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C H A P T E R  S I X  

CONCLUSIONS AND RECOMMENDATIONS

In conclusion only a general observation on the research project w ill  be 

made. Specific observations dealing with the theoretical and 

experimental analysis of single members and skeletal structural 

assemblies are given at the end of each chapter dealing with p a rticu la r  

fundamental points. Of specific in terest was the study of structural 

assemblies from both an experimental and analytical viewpoint; the 

theoretical analysis included the development of a nonlinear analysis 

computer program suitable for low modulus linear m aterials. By using 

th is  program i t  was possible to perform parameter investigations. The 

following points represent the concluding remarks concerning the 

structural assemblies:

i ) .  METHOD OF ANALYSIS

The nonlinear analysis technique derived from the fundamental 

energy principles and the computer implementation proved to be a 

feasible method to predict the behaviour of both the s t i f f  type and 

the fle x ib le  type of the f . r .p .  skeletal structural systems with 

good accuracy; the excellent agreement between the results of the 

computer analysis and those obtained experimentally for a ll the 

models verified  this conclusion. However, i t  was found that the 

s t i f f  type of structure can be analysed by means of the simple 

linear method, i f  the applied load does not exceed the f i r s t  

buckling load, whilst for the f le x ib le  type, the linear method can 

only be used i f  low external loads are applied to the structure.

I f  the structure is of the shallow type the linear method of 
analysis must not be used.

i i )  THE STRUCTURAL PERFORMANCE

The s t i f f  type double-layer structures in f . r .p .  showed better 

behaviour than the f le x ib le  type with respect to the load carrying  

capacity and deflections. This is because the pultruded
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f . r .p .  members have th e ir main reinforcement oriented in the 

longitudinal direction and, therefore, are more suited to skeletal 

structures in which the internal forces are mainly axial ones.
i

The single-layer fle x ib le  type structures must be used for e ither  

the smaller span systems or in composite constructions of single 

and double-layer structures.

i i i )  DEFORMATION AND RECOVERY

The g .r .p . members which were tested as single elements and as 

components of structures, of varying degrees of stiffness under a 

small number of loading cycles, showed complete recovery a fte r  

buckling or bending deformation. The amount of e lastic  deformation 

which occured in buckled members was re la tiv e ly  small in the s t i f f  

structures compared to that in the fle x ib le  ones. In the la tte r  

structures large member deformations occured; however, these were 
caused by bending action (no member buckling was involved).

The deflections of the s t i f f  structures were not p a rticu la rly  

large, and considerable reduction can be achieved by replacing the 

highly loaded members with the s t i f fe r  hybrid ones.

iv ) MODE OF STRUCTURAL FAILURE

The fa ilu re  of a ll types of structures tested ( s t i f f  and f le x ib le )  

was abrupt and highly stressed members fa iled  in a b r it t le  manner, 
as did the single members.

v) EFFECT OF IMPERFECTIONS

No attempt was made to study fu l ly  the effect of various 

imperfections on the performance of the f . r .p .  space structures. 
However, in the case of the s t i f f  structures, imperfections in the 

form of in i t ia l ly  curved members, were introduced to deteriorate  

the bifurcation points behaviour to lim it  points. The larger the 

imperfections the larger the degree of nonlinearity and the lower 
the ultimate load became.
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The effectiveness of the constraints of the fle x ib le  model focussed 

the attention on the importance of the equivalence of the 

theoretical model and the real existing conditions of the 

structure.

v i)  IMPROVEMENT OF THE STRUCTURAL PERFORMANCE

The combination of the g .r .p . and the c .g .r .p . members proved to be

a very e ffic ie n t and an economical approach to improve the
structural performance of the double-layer grids. The improvement

included the stiffen ing  of the structure and the increase of the 

c r it ic a l load.

v i i )  RECOMMENDATION FOR EXTENSION

The nonlinear analysis program proved to be very useful for th is  

research; however, few modifications which could not be implemented 

because of the time factor but which would improve its  e ffic iency  

and u t i l i t y  considerably are:

a) The introduction of substructuring, where each discretized member
is considered as a substructure, could save on computing time.

b) A c r ite r ia  for fa ilu re  incorporated in the computer program, in

addition to the existing c r ite r ia  of maximum number of load 

increments, would be useful in case of fa ilu re  occuring before the 

completion of the maximum number of load increments specified.

c) The addition of a plate bending element within the framework of the
computer program would increase its  u t i l i t y .

The next logical extension to this research work is to study the 

long term behaviour, the fatigue characteristics of these 

structures and the effect of impact loading.

A study on the effect of imperfections on the behaviour of these 

structures would be useful to determine the c r it ic a l imperfections 

and draw the attention of designers to them.
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Another area of research would be the investigation of the skeletal 
continuum systems. The study of these systems up to f i r s t  buckling 

was undertaken in the past. However, the study of the 

post-buckling behaviour and the problems associated with i t  can 

follow the same line of work undertaken in this investigation.
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