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Abstract—This paper investigates a wireless powered sensor
network (WPSN), where multiple sensor nodes are deployed to
monitor a certain external environment. A multi-antenna power
station (PS) provides the power to these sensor nodes during
wireless energy transfer (WET) phase, and consequently the
sensor nodes employ the harvested energy to transmit their own
monitoring information to a fusion center (FC) during wireless
information transfer (WIT) phase. The goal is to maximize
the system sum throughput of the sensor network, where two
different scenarios are considered, i.e., PS and the sensor nodes
belong to the same or different service operator(s). For the
first scenario, we propose a global optimal solution to jointly
design the energy beamforming and time allocation. We further
develop a closed-form solution for the proposed sum throughput
maximization. For the second scenario in which the PS and
the sensor nodes belong to different service operators, energy
incentives are required for the PS to assist the sensor network.
Specifically, the sensor network needs to pay in order to purchase
the energy services released from the PS to support WIT. In
this case, the paper exploits this hierarchical energy interaction,
which is known as energy trading. We propose a quadratic
energy trading based Stackelberg game, linear energy trading based
Stackelberg game, and social welfare scheme, in which we derive
the Stackelberg equilibrium for the formulated games, and the
optimal solution for the social welfare scheme. Finally, numerical
results are provided to validate the performance of our proposed
schemes.

Index Terms—Wireless powered sensor networks, sum
throughput maximization, energy trading, Stackelberg game,
social welfare

I. INTRODUCTION

In recent years, wireless sensor networks (WSNs) have
been considered as one of the thriving technologies with
the advance of internet of things (IoT) [1]. WSNs have
wide range of applications, from environment monitoring,
i.e., pollution prevention, precision agriculture, structures and
buildings health, to event detection, i.e., intrusions, fire/flood
emergencies, and target tracking, i.e., surveillance [2]. A WSN
is composed of a large number of sensor nodes for data
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monitoring and a fusion center to process the data sent from
these sensor nodes. Traditionally, batteries or other embedded
energy sources are fixed to provide energy for these sensor
nodes in WSNs [3]. The short battery life limits their potential
applications in practice. Although the battery lifetime can be
extended by periodically replacing or recharging the batteries,
it may be difficult, costly, dangerous, or even impossible
in many applications due to the fact that the sensors can
be located inside toxic environments, building structures, or
human bodies [4]. Although there have been many efforts in
power management policies, the sensor nodes’ lifetime still
remains a performance bottleneck and makes the wide-range
deployment of WSNs challenging.

In order to address the energy-constrained issue, radio
frequency (RF) energy harvesting (EH) as one of the promising
techniques, has received much attention, since it can provide
unlimited power to the sensor nodes which scavenge energy
from the environment (i.e., solar, wind, etc.) [5], [6]. Among
these, RF energy radiated by ambient transmitters is almost
ubiquitous [7], which can be harvested more effectively from
wireless RF signals. Since RF signal can carry energy and
information simultaneously, energy harvesting (EH) and si-
multaneous wireless information and power transfer (SWIPT)
[8]–[10] is becoming a more and more promising research
direction.

With recent advance of RF EH and SWIPT, wireless
powered communication networks (WPCNs) has become a
new wireless networking technology, where wireless devices
(WDs) can be remotely powered by RF wireless energy
transfer (WET) [7], [11]. Devices in a WPCN are charged
by a dedicated wireless energy source [7], [11]. In addition,
the energy released by the energy source is adjustable to
satisfy different physical conditions and service criterion [7],
[12]. With the development of WPCNs, a well-known protocol
“harvest-then-transmit” was proposed in [13], where wireless
users harvest energy from the RF signals broadcasted by a
hybrid access-point (AP) in the downlink (DL). They further
use the harvested energy to send their own information to
the AP in uplink (UL). Recently, a dedicated wireless energy
transfer (WET) network was proposed to deploy multiple
power stations (PSs) near wireless information transfer (WIT)
network, where these PSs provide wireless energy services
to user terminals via RF signals [14], [15]. In [16], wireless
powered relays have been investigated in full-duplex two-way
communication to utilize the harvested energy from the access
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points (APs) and self-interference (SI) to transmit information
signal. Compared to SWIPT networks, WPCNs have a lower
implementation cost since implementing WET networks is
rather simple. Thus it is feasible to deploy PSs densely to
ensure a good coverage without the need for backhaul links
[17].

One of the potential applications of WPCN is the radio
frequency identification (RFID) system that usually consists
of a reader and many tags [11]. Specifically, a reader provides
the RF energy to the energy-constrained tags, and the tags
transmit their identification data to the reader via one-hop
backscatter communication using the harvested RF energy.
Backscatter communication is to efficiently reduce the power
consumption. However, this type of RFID system is restricted
to the short-range communications only. With the advances
of ultra low-power electronics and RF EH technologies, it
is feasible to envisage more sophisticated RFID-like devices
that are able to not only harvest RF energy, but also conduct
sensing, processing and active communication [18].

In order to circumvent the energy-constrained issue of
WSNs, wireless-powered WSNs is considered in the recent
work [19]–[21]. In [19], multi-antenna WPSN is investigated,
in which a PS transfers electric energy to a sensor node via
an electromagnetic wave, and a real-life multi-antenna WPSN
testbed was built to conduct extensive experiments. The work
in [20] proposed the power allocation and beam selection
for distributed estimation in wireless passive sensor networks,
where the sensors are charged by RF energy sources. [21]
studied power allocation for distributed estimation in WSNs
with a multiple-antenna fusion center (FC) and an unknown
scalar random source, in which the sensor nodes are equipped
with RF-based EH technology. Observation from sensor nodes
is locally processed by using an uncoded amplify-and-forward
(AF) scheme. The processed signals are sent to the FC and are
coherently combined at the FC, where the best linear unbiased
estimator (BLUE) is adopted for reliable estimation [21]. To
incorporate this imperfect CSI, the robust design is considered
in existing channel uncertainty model [22], where the authors
investigated the physical layer security problem in relay WSNs
with SWIPT by incorporating a spherical channel uncertainty
model.

The deployment of a dedicated WET network in the existing
WIT network was investigated in [14], where the updated
network provides both wireless access and energy services. By
considering quality-of-service (QoS) constraints on data links,
a tradeoff between the densities of base stations and that of
PSs was quantified by modeling the network using stochastic
geometry theory [14]. Note that it is assumed in [14] that the
WET network is deployed by the same service provider as
the existing network. However, in practice, WET and WIT
networks can be deployed by different service providers 1. In
such situations, energy incentives (e.g., monetary payments)
are needed for the WET network to provide wireless charging
services to the WIT network. Here, we call the demand and

1It is assumed that the WET service is provided by one service provider,
e.g., an energy supplier, while the WIT service is provided by another service
provider, e.g., a telecommunication supplier. Two service providers belong to
different authorities.

provision of the energy services as energy trading between
WET and WIT networks. To the best of our knowledge, there
have been no published works that model and investigate this
hierarchical energy interaction in WPSN. This knowledge gap
has motivated our research in this paper.

In this paper, we consider a WPSN that consists of a multi-
antenna PS belonging to the WET network, multiple wireless
sensor nodes and a FC belonging to the WIT network. Based
on this system model, major contributions of this paper are
highlighted in the following:

1) Cooperation based sum throughput optimization: First,
we consider an ideal case in which both PS and the
sensor network belong to the same service provider. The
PS and the sensor network work together to maximize
the mutual benefits and to formulate the sum throughput
maximization (STM) problem that jointly optimizes the
time allocation and energy beamforming.

2) Energy trading/social welfare based sum throughput
optimization: We further consider a more practical and
challenging scenario in which the PS and the sensor
network belong to difference service providers. In this
case, the hierarchical energy interaction (i.e., energy
trading) between PS and the sensor network is exploited,
where the energy incentives (i.e., monetary payments)
are charged to the sensor network to purchase the energy
services released from the PS.

a) We first consider the wireless charging model as
a quadratic energy trading process to facilitate the
derivation of the optimal power allocation policies
for the PS and the sensor network. Specifically,
we take into account strategic behaviors of the PS
and the sensor network and formulate this energy
trading process as a Stackelberg game.

b) As comparison, we further develop a linear energy
trading based Stackelberg game, which adopts a
linear energy cost model to exploit the hierarchical
energy interaction between the PS and the sensor
networks. We formulate this energy interaction as
a Stackelberg game for a fixed energy transfer time
allocation. We derive the Stackelberg equilibrium
for the formulated game, where both optimal en-
ergy transfer price and the PS transmit power can
be achieved by a closed-form solution.

c) We further formulate a social welfare optimization
scheme in order to exploit the performance loss
with the selfish behaviors in PS in energy trading
based Stackelberg games. In this case, both PS
and the sensor network cooperatively maximize
a social welfare, i.e., the difference between the
benefits obtained from the sum throughput at the
sensor network and the energy transfer operation
cost of the PS.

The rest of the paper is organized as follows. Section II
presents the system model. Section III solves the sum through-
put maximization problem for the WPSN, whereas the game
theory based WPSN is investigated in Section IV. Section V
provides simulation results to validate the theoretical deriva-
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tions. Finally, Section VI concludes the paper.
Notations: We use upper case boldface letters for matrices

and lower case boldface letters for vectors. (·)T and (·)H de-
note the transpose and conjugate transpose, respectively. Tr(·)
and E{·} stand for trace of a matrix and the statistical expec-
tation for random variables, respectively. λmax(A) represents
the maximum eigenvalue of A, whereas vmax(A) denotes the
eigenvector associated with the maximum eigenvalue of A.
A � 0 indicates that A is a positive semidefinite matrix.
[x]+ = max(x, 0). Finally, |·| and ‖·‖ represent the magnitude
and Euclidean norm, respectively.

II. SYSTEM MODEL

Fig. 1: System model consisting of a power station equipped
with NT transmit antennas, a single-antenna fusion center and
K single-antenna sensor nodes.

We consider a WPSN, shown in Fig. 1, that consists of one
PS2 equipped with NT transmit antennas, K single-antenna
sensor nodes Uk, ∀k = 1, ...,K, and a single-antenna FC.
The sensor nodes monitor the surrounding environments, e.g.,
temperature, pressure, humidity, or even emergency scenarios,
and send their own monitoring data to the FC. It is assumed
that all sensor nodes are only powered by harvested ambient
RF energy provided by the PS and a harvested-then-transmit
protocol is adopted in these sensor nodes. The PS first provides
energy to those single-antenna sensor nodes. Then those
sensor nodes employ “harvest-then-transmit” protocol to send
their own information based on time division multiple access
(TDMA) scheme to the single-antenna FC, which collects
the monitoring data of the sensor nodes. It is assumed that
the whole operation time period is T . During the downlink
transmission duration θ0T , θ0 ∈ (0, 1), the PS employs an
energy beamforming to broadcasts the wireless RF power to
K sensor nodes. Further, during the uplink duration, each
sensor node Uk uses the harvested RF energy to send its
own monitoring information in θkT , θk ∈ [0, 1), to the FC
one by one.3 Without loss of generality, it is assumed that
T = 1 and thus we interchangeably use power and energy
throughout the paper. Hence, the total time constraint can
be written as

∑K
k=0 θk = 1. Let gk ∈ CNT be the channel

coefficients between the PS and the Uk while hk ∈ C be the

2The PS is powered constantly by a national grid or a micro grid, which
means that it can serve as a stable energy source to provide energy to the
sensor nodes.

3Note that θk = 0, ∀k holds if k-th sensor node is inactive and does not
involve the data transmission, whereas θk 6= 1 owing to the fact that each
sensor node has to harvest energy during the θ0 > 0 time period.

channel coefficient between the FC and the Uk. Let w ∈ CNT
(‖w‖2 = 1) be the normalized energy beamforming vector
sent by the PS, the harvested energy at Uk is

Ek = ξkθ0PB|gHk w|2, ∀k, (1)

where PB is the maximum transmit power available at the PS
and ξk denotes the EH efficiency at Uk, for all k. Since all the
harvested RF energy is used for the information transmission
at sensor nodes, the transmit power pk within θk time period
can be written as

pk =
Ek
θk

=
ξkθ0PB
θk

|gHk w|2, ∀k. (2)

Hence, the achievable throughput of sensor node Uk can be
expressed as

Rk(θ,w) = θk log

(
1 +

pk|hk|2

σ2
k

)
= θk log

(
1 +

θ0ξkPB|gHk w|2|hk|2

σ2
kθk

)
, ∀k. (3)

θ = [θ0, θ1, ..., θK ]T and σ2
k denotes the variance of a zero

mean circularly symmetric complex Gaussian noise at sensor
node Uk. Note that in our paper, it is assumed that each sensor
node (i.e., Uk, ∀k) consumes all the harvested energy during
θ0 time period to transmit its own information signal to the
FC during its time allocation θk.

III. COOPERATIVE SUM THROUGHPUT OPTIMIZATION

In this section, we consider an ideal scenario where both PS
and sensor nodes belong to the same service operator. Hence,
they can cooperatively work to maximize their common bene-
fits, i.e., system sum throughput. In the following, we propose
a global optimal solution with a low complexity to jointly
design the energy beamforming vector w and time allocation
duration θ.

A. Global Optimal Solution

In this subsection, we formulate the sum throughput max-
imization (STM) problem with semidefinite programming re-
laxation (SDR) (i.e., W = wwH ) as

max
θ,W

K∑
k=1

θk log

(
1 +

tkθ0PB
θk

gHk Wgk

)
,

s.t.

K∑
k=0

θk ≤ 1, θk ≥ 0, ∀k, Tr(W) ≤ 1, W � 0, (4)

where tk = ξk|hk|2
σ2
k

. Letting Q = θ0W, (4) can be equivalently
modified to

max
θ,Q

K∑
k=1

θk log

(
1 +

tkPB
θk

Tr(gkgHk Q)

)
,

s.t.

K∑
k=0

θk ≤ 1, (5a)

θk ≥ 0, ∀k, (5b)
Tr(Q) ≤ θ0, Q � 0.

The problem formulated in (5) can be proved to be a convex
optimization problem. First, the objective function in (5) is
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the sum of concave function.4 Hence, the objective function
is a concave function. In addition, all the constraints in (5) are
linear and thus are convex constraints [23], [24]. Therefore, (5)
is a convex optimization problem. Note that we have relaxed
rank-one constraints on W and Q in (4) and (5), respectively.
To that end, we introduce the following lemma.

Lemma 1: The optimal solutions to (4) and (5), i.e., W∗

and Q∗, respectively, are rank-one matrices.
Proof: See Appendix A.

Since (5) is a convex optimization problem, it can be
efficiently solved by using interior-point methods to obtain
the global optimal solution [23]. Having the rank-one optimal
solution W∗, the optimal energy beamforming vector w∗ is
obtained as the product of the eigenvector and eigenvalue of
W∗.

Although there are existing optimization packages, e.g.,
CVX, to solve convex optimization problem (5), it is desirable
to develop an independent algorithm that can be deployed on
the sensor nodes. To that end, we derive an optimal closed-
form solution for (4) to reduce the computation complexity of
global optimal solution in the following.

B. Closed-form Solution

In this section, we propose a new optimal closed-form
solution to the problem in (5). We first derive the closed-form
solution to θk, ∀k, which is written as a function with respect
to θ0 for a given Q. Then, the optimal solutions to Q and
θ0 are derived. To proceed, we consider the Lagrange dual
function for a given Q, as follows:

L(θk, ν) =
K∑
k=1

θk log

(
1 +

tkPB
θk

Tr(gkgHk Q)

)

−ν

(
K∑
k=1

θk − 1 + θ0

)
, (6)

where ν is the non-negative Lagrange dual multipliers associ-
ated with constraints (5a). Thus, its associated dual problem
is given as

min
θk∈S

L(θk, ν),∀k, (7)

where S is the feasible set of any θk, ∀k, and has been shown
in the constraints (5a) and (5b). Note that the problem (5) is
convex and satisfies Slater’s condition,due to to the fact that
θk ∈ S , θk > 0, for any k, with

∑
k=1 θk < 1. Thus, the

strong duality holds such that the global optimal solution for
(5) satisfies the Karush-Kuhn-Tucker (KKT) conditions, which
is given by

ν∗

(
K∑
k=0

θ∗k − 1

)
= 0, (8a)

∂L
∂θk

= 0. (8b)

From (8a), it is verified that ν∗ > 0 since
∑K
k=0 θ

∗
k = 1

always holds for the problem (5). Thus, according to (8b), we

4Each term/function in objective function of (5) is in a form of y log(1+ x
y
)

which is jointly concave with respect to x and y.

consider the first-order derivative of (6) in terms of θk and set
it to zero, as follows:

log

(
1 +

tkPBTr(gkgHk Q)

θk

)
− tkPBTr(gkgHk Q)

θk + tkPBTr(gkgHk Q)
= ν.

(9)

From (9), it is easily verified that f(y) = log(1+ y)− y
1+y is

a monotonically increasing function with respect to y. Thus,
in order to satisfy the above K equations in (9), we have the
following equations:

t1PBTr(g1g
H
1 Q)

θ1
= ... =

tKPBTr(gKgHKQ)

θK
. (10)

Let 1
ρ =

tkPBTr(gkgHk Q)
θk

, we have

θk = ρtkPBTr(gkgHk Q). (11)

Substitute the above equality into the constraint (5a),

ρ

K∑
k=1

tkPBTr(gkgHk Q) = 1− θ0,

⇒ ρ =
1− θ0∑K

k=1 tkPBTr(gkgHk Q)
. (12)

From (11) and (12), the optimal solution to θk is derived as a
function with respect to θ0 for a given Q, as follows:

θ∗k =
(1− θ0)tkTr(gkgHk Q)∑K

k=1 tkTr(gkgHk Q)
. (13)

Substitute (13) into (5), we have the following problem

max
θ0∈(0,1),Q�0

(1− θ0) log
(
1 +

PB
∑K
k=1 tkTr(gkgHk Q)

1− θ0

)
s.t. Tr(Q) ≤ θ0. (14)

The problem (14) can be equivalently written as

max
θ0∈(0,1),Q�0

(1− θ0) log
(
1 +

PBTr(GGHQ)

1− θ0

)
s.t. Tr(Q) ≤ θ0, (15)

where G =
[√

t1g1 , ...,
√
tKgK

]
. In order to solve (15),

we temporarily fix θ0 and find the optimal solution Q∗ by
solving the following optimization problem:

max
Q�0

Tr(GHQG), s.t. Tr(Q) ≤ θ0. (16)

To that end, we introduce the following lemma.

Lemma 2: The optimal solution to (16) is given by Q∗ =
θ0vmax(GGH)vmax(GGH)H .

Proof: Please refer to [4].

Given Q∗ and exploiting Lemma 2, (15) can be rewritten
with respect to θ0 as follows:

max
θ0∈(0,1)

(1− θ0) log
(
1 +

θ0
1− θ0

PBλmax(GGH)

)
. (17)

Although the optimal energy time allocation θ∗0 can be
attained by using one-dimensional line search, e.g., golden
search, we propose a closed-form solution to achieve θ∗0
without using such an exhaustive search.

Lemma 3: The optimal energy time allocation θ∗0 can be
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obtained by

θ∗0 =
eW(

PBλmax(GGH )−1

e )+1 − 1

PBλmax(GGH)− 1 + eW(
PBλmax(GGH )−1

e )+1
, (18)

where W(x) is the Lambert W function.
Proof: See Appendix B.

The proposed closed-form solution to problem (5) is summa-
rized in Algorithm 1.

Algorithm 1 Closed-form solution

1: Input: G, PB
2: w∗ = vmax(GGH)
3: Obtain θ∗0 using (18)
4: Q∗ = θ∗0w

∗w∗H

5: Obtain θ∗k =
(1−θ∗0 )tkTr(gkgHk Q∗)∑K
n=1 tnTr(gngHn Q∗)

∀k ∈ {1, · · · ,K}
6: Output: w∗, θ∗0 , and θ∗k, ∀k ∈ {1, · · · ,K}

IV. ENERGY TRADING OR SOCIAL WELFARE BASED SUM
THROUGHPUT OPTIMIZATION

In this section, we consider a more practical scenario that
the PS and the sensor network belong to different service
operators. Specifically, monetary payments are required by the
sensor network to purchase the energy services released from
the PS to support WIT. In the following, we first introduce
a quadratic energy trading process, which formulates this
case as a Stackelberg game. Then linear energy trading
based Stackelberg game is studied to provide a comparison.
In addition, we formulate a social welfare scheme to capture
the “cooperative” energy interaction between the PS and the
sensor network. For the formulated Stackelberg games, we
analyze the associated Stackelberg equilibrium, where both the
WET network and the sensor network reach an agreement on
power allocation and energy price to achieve the maximum
sum throughput of the sensor network. While, the social
welfare scheme aims to obtain the optimal power allocation
to maximize the sum throughput.

A. Quadratic Energy Trading based Stackelberg Game

In this scheme, there is no cooperation between the PS
and the sensor network. Instead, the sensor network purchases
energy services from the PS. quadratic energy trading is
introduced to exploit the strategic behaviors of these two
networks and then the energy interaction is formulated as a
Stackelberg game.

1) Stackelberg Game Formulation:

• Leader: The sensor network plays the leader role and
announces/pays a price for the energy services provided
by the PS. The leader maximizes its utility function
defined as the difference between the benefits obtained
from the achievable sum throughput and the payment for
the energy services. Thus, the leader-level problem can

be formulated as:

max
θ0,τ

UL(PB, τ, θ0)=µ(1− θ0) log
(
1+

θ0PBλmax(GGH)

1− θ0

)
−τθ0PB,

s.t. 0 < θ0 < 1, (19)

where µ > 0 is the price per unit sum throughput of the
sensor network; τ denotes the energy price paid by the
sensor network.

• Follower: The PS is the follower and optimizes its
transmit power based on the energy price announced by
the leader. Specially, the follower maximizes its own
utility function defined as the difference between the
energy payment and its quadratic operation cost.

max
PB

UE(PB, τ, θ0) = τθ0PB − θ0F(PB), s.t. PB ≥ 0,

(20)

where F(x) = Ax2 + Bx (A and B are pre-determined
parameters) is a quadratic function5, which is employed
to model the cost of the PS per unit time for wirelessly
charging the sensor nodes with the transmit power PB.

In the sequel, we analyze the optimal strategies for both PS
and sensor network to derive the Stackelberg equilibrium of
the formulated game in order to maximize their own utility
functions.

2) Stackelberg Equilibrium: In this subsection, we derive
the Stackelberg equilibrium for the formulated game in Section
IV-A1, which can be formally defined as:

Definition 1: Let (θ∗0 , τ
∗) denote the solutions to the prob-

lem (19), while P ∗BS represents the solution to the problem
(20). The tuple (P ∗B, θ

∗, λ∗) is the Stackelberg equilibrium of
the formulated game provided that the following conditions
are satisfied.

UL(P
∗
B, τ
∗, θ∗0) ≥ UL(P ∗B, τ, θ0), (21)

UE(P
∗
B, τ
∗, θ∗0) ≥ UE(PB, τ∗, θ∗0), (22)

for 0 < θ0 < 1, τ ≥ 0, and PB ≥ 0.
According to Definition 1, we first derive the closed-form
optimal power allocation PB by solving the follower game
(20). Given θ∗0 and τ∗ announced by the leader game (19), (20)
is a convex optimization problem since its objective function
is a quadratic function in terms of PB with a linear constraint.
Hence, the optimal solution P ∗B can be given in the following
lemma:

Lemma 4: The optimal solution to the problem (20) is

P ∗B =

[
τ −B
2A

]+
. (23)

Proof: The proof of this lemma can be derived by taking
into consideration that the first derivatives to the objective
function in (20) equals to zero. However, it is omitted here
due to space limitation.

With a given optimal transmit power P ∗B of the PS, the

5Note that this quadratic function has been applied in the energy market to
model the energy cost [25].
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leader problem (19) can be rewritten as

max
θ0∈(0,1),τ≥0

UL(τ, θ0)=µ(1−θ0) log
(
1+

θ0λmax(GGH)

1−θ0
(τ−B)

2A

)
− τθ0

(τ −B)

2A
. (24)

From (24), it is hard to find the optimal solutions of τ and
θ0 at the same time due to the complexity of its objective
function. In order to circumvent this issue, we propose a two-
step approach to solve (24). We first derive the optimal closed-
form solution to τ for a given θ0. Then, the optimal value for
θ0 can be achieved via a numerical search.

First, we derive the optimal solution for τ by introducing
the following lemma.

Lemma 5: The optimal solution τ∗ can be derived as

τ∗ =
−θ0(1− 3bD) +

√
θ20(1− bD)2 + 2θ0ab2C

2θ0bC
, (25)

where a = µ(1− θ0), b = θ0λmax(GGH)
1−θ0 , C = 1

2A , D = B
4A .

Proof: See Appendix C.

Next, substituting τ∗ into (24), we have the following
optimization problem with respect to θ0:

max
θ0∈(0,1)

UL(θ0, τ
∗) = µ(1− θ0) log

(
1 +

θ0
1− θ0

d1

)
− θ0d2,

(26)

where d1 = P ∗Bλmax(GGH) and d2 = τP ∗B. It is easily
verified that (26) is a convex optimization problem, however,
it is hard to find the closed-form optimal solution for θ0. Thus,
the optimal solution for θ0 can be efficiently achieved via
numerical search, which can be given by

θ∗0 = arg max
θ0∈(0,1)

UL(θ0, τ
∗). (27)

The Stackelberg equilibrium for the formulated game, i.e.,
P ∗B, τ∗, and θ∗0 , can be obtained via (23), (25) and (27).

B. Linear Energy Trading based Stackelberg Game

In the previous subsection, we exploit the quadratic energy
trading between the PS and the sensor nodes, where the
quadratic energy trading based Stackelberg is proposed. As
a comparison, in this subsection, we propose linear energy
trading based Stackelberg game to exploit the energy inter-
action between the PS and the sensor nodes with a fixed
energy transfer time allocation θ0. In this formulated game,
the PS is modeled as the leader determining the energy price
to maximize its own utility, which is defined as the difference
between the payment from the WSNs and the linear energy
transfer cost. Thus, the utility function of the hybrid BS can
be written as

UE = (τ − κ)θPB, (28)

where τ denotes the energy price released from the PS, κ
captures the operational cost per unit transmit power. Note
that κ satisfies κ ≤ τ to guarantee the utility function (28)
is non-negative, whereas if κ ≥ τ , which means that the PS
would refuse to sell the energy.

Remark 1: From (28), one can observe that the PS’s utility
function is a linear function with respect to κ, which is the

linear energy operation cost per unit transmit power. However,
(28) is a concave function in terms of τ , which is shown in
the following.

Stackelberg Game Leader Level
max
τ

UE , s.t. τ ≥ κ ≥ 0. (29)

In addition, the sensor nodes play the follower’s role to
guarantee that they can harvest sufficient energy to transmit
the monitoring data to the FC. Specifically, these nodes
aim to maximize their own utility function defined as the
gap between the benefits of the achievable sum throughput
and their total payments to the PS for wireless energy transfer.

Stackelberg Game Follower Level
max
θ,PBS ,

UL(θ, PB), s.t. 0 ≤ θ ≤ 1, PB ≥ 0. (30)

where

UL(θ, PB)=µ(1− θ0) log
(
1+

θ0PBλmax(GGH)

1− θ0

)
−τθ0PB.

Then, we focus on the optimal solution of the PS’s transmit
power by solving the problem (30). It is easily verified that
the utility function in (31) is a concave function with respect
to PBS . Now, we set its first-order derivative equal to zero,

∂UL
∂PBS

=
µθ0λmax(GGH)

1 + θ0PBλmax(GGH)
1−θ0

− τθ0 = 0. (31)

After some mathematical manipulations, the optimal power
allocation of the PS with respect to λ is given by

P ∗B(λ) =

[
µ(1− θ0)
θ0τ

− 1− θ0
θ0λmax(GGH)

]+
. (32)

Substituting (32) into (29) yields

UBS = (τ − κ)θ0P ∗B(λ). (33)

Taking the first-order derivative to (33) and setting it to zero,
we obtain

∂UE
∂τ

= θ0

(
µ(1− θ0)
θ0τ

− 1− θ0
θ0λmax(GGH)

)
+ (τ − κ)θ0

(
−µ(1− θ0)

τ2θ0

)
= 0,

⇒ 1− θ0
λmax(GGH)

=
κµ(1− θ0)

τ2
(34)

By solving the equation (34), the optimal energy transfer price
τ∗ is given by

τ∗ =
[
κµλmax(GGH)

] 1
2 . (35)

Thus, the optimal power allocation of the PS can be achieved
by substituting (35) into (32) as

P ∗B =

[
µ(1− θ0)

θ0
√
κµλmax(GGH)

− 1− θ0
θ0λmax(GGH)

]+
. (36)

Note that both UE and UL are concave functions in terms
of τ and PB for a fixed θ0. Thus, we have completed the
derivations of the Stackelberg equilibrium (τ∗, P ∗B) for the
formulated Stackelberg game shown in (36) and (35).
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C. Social Welfare Scheme

In Section IV-A and Section IV-B, quadratic energy trading
and linear energy trading based Stackelberg games are formu-
lated to exploit the hierarchical energy interaction between the
PS and the sensor network. However, these two game based
schemes may lead to the performance loss of both PS and the
sensor network due to the possible selfish behaviors of these
players. In order to circumvent this issue, we propose in the
following a social welfare scheme, where cooperation between
the WET and sensor network is allowed. This scheme does
not consider the energy price. Instead, the PS and the sensor
network cooperatively maximize a social welfare, which is
defined as the difference between the benefits obtained from
the sum throughput at the sensor network and the quadratic
energy transfer operation cost of the PS. This social welfare
maximization is performed by jointly optimizing the energy
transfer time allocation and the transmit power of the PS.
Mathematically, the social welfare utility function can be
formulated as

USW (PB,θ0) =µ(1−θ0) log
(
1+

θ0λmax(GGH)

1−θ0
PB

)
−θ0(AP 2

B+BPB). (37)

Thus, the social welfare maximization problem is given by

max
PB,θ0

USW (PB, θ0), s.t. PB ≥ 0, 0 < θ0 < 1. (38)

It is easily verified that (38) is a convex optimization problem
due to the concave function (37) and the linear constraints.
Hence, we first take the first-order derivative of (37) with
respect to PB for a given θ0, and set it to zero.

∂USW
∂PB

=
ab

1 + PBb
− (2Aθ0PB +Bθ0) = 0, (39)

where a and b have been defined in (25). After some mathe-
matical manipulations, we have

P ∗B=
−(2Aθ0+Bbθ0)+

√
(2Aθ0−Bbθ0)2+8Aab2θ0
4Abθ0

. (40)

Then, we substitute the optimal solution P ∗B (40) into (38),
the optimal energy time allocation θ∗0 can be achieved via
numerical search similar to (27).

V. NUMERICAL RESULTS

In this section, simulation results are provided to validate
our theoretical derivations in Section III and IV. In simulation,
we consider a wireless powered sensor network that consists
of one PS equipped with four transmit antennas, i.e., NT = 4,
four single-antenna sensor nodes, i.e., K = 4, and a single-
antenna FC. It is assumed that the channel coefficient gk
between the PS and Uk is modeled as |gk|2 = A(dkDL)

−αg,
where A = 10−3, α = 3 is the path loss exponent, dkDL
denotes the distance between the PS and Uk, and g ∼
CN (0, I). Similarly the channel coefficient between Uk and
the FC, i.e., hk, is modeled as |hk|2 = A(dkUL)

−αh, where h
follows the standard Rayleigh fading and dkUL is the distance
between Uk and the FC. Without loss of generality, we assume
dkDL = dDL, dkUL = dUL, and the total distance between
the PS and the FC is set to be d = dDL + dUL. The
maximum transmit power PB is set to be 1 W, i.e., 30 dBm,

unless otherwise stated. The noise power is assumed to be
σ2 = 10−8 W, and the energy harvesting efficiency is assumed
to be ξk = ξ = 0.5 at Uk, ∀k.
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Fig. 2: Sum throughput versus energy time allocation θ0.

A. Sum Throughput Optimization

First, we evaluate the performance of the joint-optimization
approach, where both PS and sensor network belong to the
same service operator. Fig. 2 shows the sum throughput,
obtained by exhaustive/numerical search, versus the energy
time allocation θ0. From this result, one can observe that the
sum throughput function is a concave function. As comparison,
both global optimal solution and closed-form solution are
presented. Optimization package CVX [26] is utilized to solve
problem (5) while Algorithm 1 is executed to obtain the
closed-form solution. It is clear that both solutions yield
identical results which validates the accuracy of the proposed
closed-form solution.
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Fig. 3: Sum throughput versus PS’s transmit power PB.

In Fig. 3, the sum throughputs obtained by our proposed
approaches, the fixed energy time allocation scheme (i.e., θ0 =
0.5) as well as the equal time allocation (ETA) scheme in
[12] are shown versus the PS’s transmit power PB. It is clear
that the sum throughput increases as either PB or NT or K
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increases. The results again confirm that the proposed closed-
form solution attains the same performance as the proposed
global optimal solution does. It can be observed that both of
our proposed solutions outperform the scheme with θ0 = 0.5
and the ETA scheme.
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Fig. 4: Sum throughput versus dDL.

Then, we evaluate the impact of the sensor deployment to
the sum throughput. In Fig. 4, the sum throughput is plotted
versus the distance between the PS and a sensor, i.e., dDL
with different total distances between the PS and the FC, i.e.,
d = 10 m and 15 m. It can be seen from the figure that at a
given dDL, the sum throughput decreases as d increases. This
is due to a fact that the channel path loss between the sensors
and the FC increases. When the distance between the PS and
the FC is 10 m, deploying sensors closer to the FC results in a
higher sum throughput. However, when the distance between
the PS and the FC is 15 m, sensors should be placed nearer
to the PS in order to obtain a higher throughput.
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B. Energy Interaction Approaches

Next, we evaluate the performance of the energy-interaction
approach, where both PS and sensor network belong to dif-
ferent service operators. In Fig. 5, the utility functions of

the sensor network for both quadratic energy trading based
Stackelberg game and Social welfare scheme are plotted versus
the energy time allocation θ0. From the figure, one can easily
observe that utility functions are concave functions in terms
of θ0. To compare, a numerical/exhaustive search is performed
for the utility function of the sensor network and the results are
shown in the figure. It is clear that the numerical/exhaustive
search obtains the optimal energy time allocation, i.e., θ∗0 . It
can also be observed that the Social welfare scheme outper-
forms the quadratic energy trading based Stackelberg game in
terms of utility function. This is due to the fact that the PS is
selfless in the Social welfare scheme but not in the quadratic
energy trading based Stackelberg game.
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Fig. 6: Energy price versus energy time allocation θ0.

In Fig. 6, we plot the energy price τ versus the energy time
allocation θ0 for the quadratic and linear energy trading based
Stackelberg games. From this result, it is easily observed that
the quadratic energy trading scheme decreases as θ0 in terms
of the energy price paid by the WSN. This is owing to a fact
that a larger θ0 leads to the lower prices to be paid by the
WSN. Whereas the energy transfer price is a constant in the
linear energy trading, which confirms that (35). In addition, the
WSN pays a higher price when employing quadratic energy
trading scheme than employing linear energy trading in low
energy time allocation regimes. However, the quadratic energy
trading shows its financial advantage over the linear energy
trading after θ0 ≈ 0.1, since the former pays lower energy
price than the latter.

Fig. 7 evaluates the power consumption of the PS versus the
energy time allocation θ0 in the three proposed schemes. From
this result, one can observe that the three schemes decrease
with θ0 in terms of power consumption. This is owing to a
fact that a larger θ0 allocated for WET phase will lead to a
smaller power consumption. In addition, it is interesting that
both quadratic energy trading based Stackelberg game and
social welfare scheme consume less power than the linear
energy trading based Stackelberg game in the low energy time
regime. However, this trend will be reversed as θ0 increases
in the high energy time regime.

Then, we evaluate the utility function of these three
schemes. Fig. 8 shows that the utility function versus the
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distance between the PS and the sensor nodes dDL. From
this result, the utility functions of the sensor network for
the quadratic energy trading based Stackelberg game, the
Social welfare scheme and the linear energy trading based
Stackelberg game are plotted versus the distance between the
PS and the sensors, i.e., dDL, with total distance between the
PS and the FC, i.e., d = 10 m. It can be seen from the figure
that at a given dDL, the utility function decreases first and
then increases after dDL ≈ 3 m. This means that we deploy
the sensors closer to the FC results to achieve a higher utility. It
also can be observed that both quadratic energy trading based
Stackelberg game and social welfare scheme outperforms the
linear energy trading based Stackelberg game, which highlight
our proposed quadratic energy trading interaction between the
WET and the sensor network.

In Fig. 9, we evaluate the utility function versus the EH
efficiency ξ, where the utility of these three schemes increases
as ξ increases. While Fig. 10 shows that the utility function
with different number of sensors K, where it confirms that a
larger number of sensor nodes K will lead to the increasing
of utility for these three schemes. From Fig. 9 and Fig. 10,
we also observe that both quadratic energy trading based
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Fig. 9: UL versus ξ.

game and social welfare scheme perform better than the linear
energy trading based game. This is because, the quadratic
energy trading process outperforms the linear energy trad-
ing process, which confirms the advantage of our proposed
quadratic energy trading interaction.
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Finally, we compare the proposed cooperative sum through-
put scheme6 and the proposed energy interaction schemes.7

Fig. 11 shows that the sum throughput performance versus
the distance between the PS and the sensor nodes dDL. It
can be observed that the cooperative sum throughput scheme
outperforms these three energy interaction schemes in terms
of the sum throughput. This is owing to a fact that there is
a cooperation between both WET and sensor networks such
that the cooperative sum throughput scheme does not need to
make payment for the energy transfer. Meanwhile, both WET
and sensor networks operate in a competitive manner in the

6The cooperative sum throughput scheme exploits the STM problem, where
the global and closed-form optimal solutions are achieved via CVX package
and Algorithm 1, respectively.

7The energy interaction schemes include quadratic energy trading based
Stackelberg game, linear energy trading based Stackelberg game, and social
welfare scheme.
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proposed energy interaction schemes, in which the incentives
are required by the PS for the energy service to assist the WIT
in the sensor network, leading to the energy trading payment.
This comparison confirms the advantage of the cooperative
sum throughput scheme. In addition, the fixed time allocation
scheme (i.e., θ0 = 0.5) outperforms the linear energy trading
based Stackelberg game in terms of the sum throughput. Fig.
12 shows that the sum throughput performance versus the
number of sensor nodes (i.e., K). From this result, one can
observe that the cooperative sum throughput scheme outper-
forms the energy interaction schemes when K ≤ 7. After
that the cooperative sum throughput scheme still increases
slowly but it falls below the sum throughput in the energy
interaction schemes. However, the sum throughput in the
quadratic energy trading based Stackelberg game decreases
after K = 8 and becomes lower than the cooperative scheme
again when K = 10. Additionally, the fixed time allocation
scheme (i.e., θ0 = 0.5) outperforms the linear energy trading
based Stackelberg game, which highlights the advantage of the
cooperative sum throughput scheme.
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VI. CONCLUSION

This paper investigated a WPSN in IoT system, where a
PS provides power wirelessly to multiple sensor nodes which

send their monitor data to the FC. We first considered an
ideal scenario where the PS and sensor network belong to the
same service provider. In this case, we maximized the system
sum throughput to jointly optimize the energy beamforming
vector and time allocation. Then, for the second scenario
where the PS and the sensor network belong to the different
providers, we formulated quadratic energy trading and linear
energy trading based Stackelberg games as well as the social
welfare scheme. A higher utility level is achieved if social
welfare responsibility is taken into account as all parties work
together to maximize a common target. At the same time,
the energy buyer, i.e., the sensor network, would have to pay
a higher price for energy purchase if the seller, i.e., the PS,
has a monopoly authority to dictate and lead the market, as
shown in the non-energy trading scenario. However, in an
environment where there are potential competitors for energy
selling, the sensor customer can become the leader who would
negotiate for a much better energy price, as reflected in the
energy trading case of our proposed game. Numerical results
were provided to validate our proposed schemes and showed
that both energy trading and social welfare schemes provide
a better energy cost efficiency. For future works, we can
consider a more challenging scenario such that each sensor
node works in the full-duplex (FD) mode. Specifically, the
FD operation of the sensor nodes enables the simultaneous
transmission/reception of information signals/energy in the
downlink and uplink, respectively. In addition, the sensor
nodes can employ the harvested energy to transmit a series
of information data to the FC during multiple time periods,
which leads to the energy and data queues at each sensor
node. These would change the dynamic of the optimization
problems, which may require different design/solutions.

APPENDIX A
PROOF OF LEMMA 1

Provided that the optimal energy time allocation to (5)
exists, and for given θ, we consider the following problem

max
Q

K∑
k=1

θk log

(
1 +

tkPB
θk

Tr(gkgHk Q)

)
,

s.t. Tr(Q) ≤ θ0, Q � 0. (41)

The objective function in (41) is concave but nonlinear. In
order to linearize this objective function, we consider the
successive convex approximation (SCA) to convert (41) into
a series of linear programming (LP) as follows.

Q(n+1) = argmax
Q

K∑
k=1

tkPBTr(gkgHk Q)

1 +
tkPBTr(gkgHk Q(n))

θk

s.t. Tr(Q) ≤ θ0, Q � 0, (42)

where Q(n) is the optimal solution at n-th iteration. According
to [27], it is clear that Q(n+1) can be achieved by solving (42)
and yields a rank-one solution.

Sine Q∗ is a rank-one matrix and Q = θ0W, W∗ is also
a rank-one matrix.
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APPENDIX B
PROOF OF LEMMA 3

Define c = PBλmax(GGH), we write the sum throughput

T (θ0) = (1− θ0) log
(
1 +

θ0
1− θ0

c

)
. (43)

We take the first-order derivatives of T (θ0) with respect to θ0,
and set ∂T (θ0)

∂θ0
= 0,

c+
θ0

1− θ0
c =

(
1 +

θ0
1− θ0

c

)
ln

(
1 +

θ0
1− θ0

c

)
. (44)

Let z = 1 + θ0
1−θ0 c, the above equality can be modified as

c− 1 + z = z ln z. (45)

After a series of mathematical manipulations, we have

ln
(z
e

)
eln(

z
e ) =

c− 1

e
. (46)

The equation (46) is a standard Lambert W function. Hence,
we have

ln
(z
e

)
=W

(
c− 1

e

)
. (47)

After some mathematical manipulations, the optimal energy
time allocation θ∗0 can be given by

θ∗0 =
eW( c−1

e )+1 − 1

c− 1 + eW( c−1
e )+1

. (48)

We have completed Lemma 3.

APPENDIX C
PROOF OF LEMMA 5

It is easily verified that the objective function in (24) is a
concave function in terms of τ for a given θ. Thus, in order
to find the optimal solution to τ , we consider its firs-order
derivatives that equals to zero as
∂UL
∂τ

=
abC

1 + b(τC −D)− bD
− 2θ0(τC −D) = 0. (49)

After a few of mathematical manipulations, we have

2θ0b(τC −D)2 + 2θ0(1− bD)(τC −D)− abC = 0. (50)

By solving the above equation, we can obtainτ1 =
−θ0(1−3bD)+

√
θ20(1−bD)2+2θ0ab2C

2θ0bC
,

τ2 =
−θ0(1−3bD)−

√
θ20(1−bD)2+2θ0ab2C

2θ0bC

(51)

Now, let us verify the validity of both solutions shown in (51).
The objective function (24) includes the logarithm term, which
should be non-negative. Thus, we check the validity of these
solutions by substituting τ1 and τ2 into the logarithm term of
(24), respectively. We first check τ1 as follows:

1+b

(
−θ0(1−3bD)+

√
θ20(1−bD)2+2θ0ab2C

2θ0b
−2D

)
> 1 + b

(
−θ0(1− bD) + θ0|1− bD|

2θ0b

)
≥ 1. (52)

Similarly, we check τ2 as

1+b

(
−θ0(1−3bD)−

√
θ20(1−bD)2+2θ0ab2C

2θ0b
−2D

)
<1

(53)

Thus, τ1 is a valid stationary point. Due to the concavity of
the objective function in (24), its second-order derivatives with
respect to τ is less than zero, which indicates that its maximum
value is the stationary point τ1. Also, it is easily verified that
τ1 > 0, which satisfies the constraint in (24). Thus, the optimal
solution to the problem (24), denoted by τ∗, is the stationary
point τ1, which completes the proof.
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