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SUMMARY

There is a need for low-cost switching and proportional electro-hydraulic 

valves with low contamination sensitivity and good reliability. In an 

attempt to meet this need, a novel electro-hydraulic floating double-disc 

valve has been developed to the stage where it can be used to control 
hydraulic cylinders or motors directly. As the valve is significantly 

underlapped, problems still remain in achieving adequate hydraulic 

stiffness in the proportional mode of operation.

The valve operation, which relies on the complex interaction between fluid 

and electro-magnetic forces acting on the valve discs, is described and a 

theoretical model of the fluid and electro-magnetic characteristics of the 

valve is presented. The theory shows satisfactory agreement with 

experimental data.

A pre-production version of the double-disc valve has been designed and 

manufactured and it incorporates ideas for manufacturing cost reduction 

while at the same time conforming to CETOP 3 international valve port 

standards. This valve has been successfully tested as a switching or 

proportional device when controlling two different cylinders. Proportional 

control of the valve is achieved using Pulse-Width-Modulation technique. 

British Technology Group and University of Surrey have applied for a patent 

on the valve. The patented floating-disc valve has the following features:

(a) 3 way or 4 way 2-position or proportional action with minor changes to 

produce the two types of action, (b) cartridge construction with inter­

changeable components, (c) low contamination sensitivity, (d) few critical 

dimensions, (e) no sliding surfaces, (f) CETOP valve port configuration and 

(g) potentially capable of operating with corrosive or non-lubricating 

fluids.
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Nomenclature

A.,AofA,,A. = curtain areas between nozzle and disc as denoted in
1 2 3 4  Fig.6.1

A ,A ,A s cross-sectional areas of coil,supply and drain nozzlesc sn nD
/A ■ non-dimensional area ratio (=A _/A )nD' sn

B ,B ,B ,B = flux densities of armature (disc), working gap, pole
a ® ^ ^ core and yoke

B̂ , = transient flow force damping constant

b = passage height between the rod and drain nozzle

C ,C ,C ,C = flux coefficients of disc,working gap,pole core and
a 8 p y yoke

C„T,C = electro-magnetic force coefficients
if I J?a

^Dns’̂ DnD = an(* drain nozzle discharge coefficients
d * coil wire diameterc
D ,,D 0 = supply nozzle diameter with respect to disc 1 and 2nsi ns2
D,D = disc, drain and rod diametersnD R
f ,f_ = space factor and coil leakage factors L
F ,F_ = electro-magnetic and fluid forcesm f
- = non-dimensional fluid force (=F_/P .A )F f s sn
F ,F ,F * total fluid,transient flow and dynamic pressure forcesx w r w 9u
g = distance between the disc and the coil surface

h. T ,h._,hOT ,h^-, = distance between disc and its chamber walls1L IR db da

H ,H ,H = magnetic intensities of armature,pole core and yokea p y
HG = holding gap

i,I = instantaneous current and current in the coil

K ,K ,K = flow gain,flow-pressure coefficient and pressure
^ c ^ sensitivity

K ,K ,K = valve null coefficientsqo co po
* steady state flow force spring constant

k = heat-dissipation coefficient

L = coil inductance
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L ,L ,L = magnetic circuit lengths of armature,pole core anda' p y yoke

L = total magnetic circuit lengthX *
L . .,L_ . = supply and drain nozzle tube lengthssnt Dnt

= mass of moving bodies with respect to the valve 

N,NI ■ number of coil turns and magnetomotive force

n^ - number of working gaps
P = pressure

P, 4 ,P^ofP , ,P „ = local pressures as defined in Fig.3-1b1 b2 u1 u2
P(r) = pressure at radius r

P^ • load pressure (=P^-P^)

P ',P ,P * total effective, useful and total gap permeanceste ug u
P_.,P„ ,P_ = inner, outer pole fringing and leakage permeancesii I o 1
Q,q - flowrate

Q.jQ-jQ-jQ. = flowrate through the four orifices denoted in Fig.6.1

r = radius

r 4,r „ * radius at which flow is assumed to be reattached withn] a2 respect to discs 1 and 2 respectively
r ,r = mean radius of supply nozzle land with respect to

discs 1 and 2

r,^ = mean radius of drain nozzle landat
r,„ = radius at which the inward flow separate from the discdtr
r ■ ■ radius of hole through coil inner pole or the supply
0 nozzle outer radius

r^r^ = inner and outer wire bobbin radius.
r, = outer coil body radius
j

r ,r ^ = supply and drain nozzle radiusns nD etr

R^ = local Reynolds number based on supply nozzle diameter

R * disc radius

t = time

t ,t = disc thickness and coil pole thicknessa P •
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T ,T = period of sawtooth waveform and coil time constantS C
= total disc travel

= dynamic velocity of fluid through supply nozzle 

x = disc displacement
x = non-dimensional disc displacement (=x/Tp)

X = gap between disc and coil surfaceg
z = disc displacement from valve neutral position

z .. ,z „  * distances between the supply and drain nozzle tips and
the faces of the disc

* coefficient of linear expansion of the disc material

= final temperature rise of coil

9 = angle of tilt

p - fluid viscosity

p = permeability of gapg
p = oil density

w = natural frequency

^  * damping ratio

Suffices

d,D = drain

h = hydraulic

L,R = left-hand side and right-hand side

n = nozzle
s,S = supply

v = valve
1,2 = disc 1 or disc chamber 1 and disc 2 or disc chamber 2

1L,1R = left and right-hand sides of disc 1

2L,2R = left1and right- hand sides of disc 2
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CHAPTER 1

INTRODUCTION



Introduction 1

1. Introduction 

1 • 1 Servomechanisms

Servomechanisms can be used to control position, velocity, or force and 

have been used in practice for three to four decades in the industrial 

field of engineering [l].

A servomechanism is a feedback control system in which one or more of the 

system signals represent mechanical motion. The different types of 

servomechanisms are pneumatic, hydraulic, electric and electro-hydraulic.

1.1.1 Pneumatic servomechanisms

Pneumatic servomechanisms have received relatively little attention in 
comparison to other type of servomechanisms owing to the following 
disadvantages: (a) the fluid is compressible, the servomechanism will 

exhibit a lack of stiffness, especially to external load disturbances, (b) 

low efficiency, (c) it is difficult to achieve satisfactory low pressure 

sealing, and this puts a limit on system pressure.

However, owing to the constantly increasing temperature requirements for 
missile and aircraft components, high speed pneumatic control devices are 
being used [2].

1.1.2 Hydraulic servomechanisms

Hydraulic servomechanisms are widely in use in the machine tool industry 

for both the basic drive mechanism and the control of cutting tool [3»4-]* 
In general, the advantages of hydraulic components are: (a) good stiffness 

characteristics, (b) ease of accurate control of working table position and 
velocity, (c) zero backlash, (d) rapid response to change in speed or 
direction and (e) low rate of wear.
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Introduction 2

In the aircraft industry hydraulic servomechanisms are used for power 

operated controls, autostabilisers and autopilots. In general industry it 

finds favour in speed control systems for prime movers, and in the 

operation of process control valves. The hydraulic servomechanism in its 

basic form has a hydraulic valve, actuator and a mechanical or electric 
feedback.

1.1*3 Electro-hydraulic servome^hwrH«ms

The increasing demands from modern control systems require greater 

flexibility between controlling elements. This has resulted in the 

combining of electrical signalling with fluid power actuators. The need to 

change from electrical to hydraulic control at some point in the loop has 

led to the development of an electric torque motor to actuate the hydraulic 

valve. The torque motor receives its inputs from an electronic amplifier. A 

block diagram of a typical electro-hydraulic servomechanism is shown in 
Figure 1.1.

In the last three decades, electro-hydraulic servomechanisms have been used 

for a wide variety of analogue control systems due primarily to their high 

power-to-weight ratio, inherent stiffness, compact construction, high 

accuracy, positive locking action, and fast dynamic response.

Recently, the rapid change in electronic technology and the development of 

microprocessors have presented an opportunity for the use of electro- 
hydraulic servomechanism in a digital mode. Now, microprocessors are being 

used in systems, either for presenting input data to the control system or 
as part of the control loop. As a result, there is considerable interest in 

hydraulic valves which are compatible with this concept.

Clearly, switching valves offer the best opportunity for digital electro-
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hydraulic servomechanisms due primarily to their simple construction and 

cheapness. Digital electro-hydraulic servomechanisms have the following 

advantages over their analogue counterparts:

(a) Systems are generally cheaper and more reliable because of the 

simplicity of the basic two state element.

(b) Friction, non-linearities, and hysteresis have less influence on 
digital devices than on analogue systems.

(c) Control elements, such as valves of digital devices have switching 

functions and are therefore less sensitive to contamination.

(d) Switching states of digital control systems are less influenced by 

load changes and other disturbances compared to analogue systems.
(e) It is simple to programme digital systems.

Despite the above advantages, digital electro-hydraulic systems have the 
following undesirable and disadvantageous features:

(1) Input pulses may result in stepping and sometimes jerky movements of 
the output Inember.

(2) Resolution is not infinite.

(3) Dynamic response does not meet requirements in certain applications 

owing to the high data transmission rates required.
(4) Wear of valve seats.

(5) The additional cost of digital to analogue conversion where necessary.

(6) Pulsatile flow output may be a disadvantage in some applications.

(7) Problem of decoding digital data into analogue outputs (e.g. 
pressure).

Early development started with the adaptation of conventional servo-valves 

for’ a switching mode of operation [5,6]. Several investigators [6—13] have 

all looked into digital electro-hydraulic system in one form or the other. 

A brief discussion of digital electro-hydraulic control mechanisms are 
described by Gunter [6] and Mansfeld [13]« Gunter [6] also stressed that
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digital electro-hydraulic control mechanisms require fast switching valves 

with low pressure drop. It is evident from their studies that the most 

important component for development in an electro-hydraulic servomechanism 

is the valve.

1.2 Electro-hydraulic valves

An electro-hydraulic valve, which is the most complex element in an 

electro-hydraulic control system, receives an electrical signal and 
converts it to an output flow to drive an actuator. Electro-hydraulic 

valves may he classified as a proportional (servo-valve) or digital 

(directional valve).

1.2.1 Servo-valves

Servo-valves are highly developed and sophisticated devices which provide 

control for a wide variety of analogue control systems [1]. They are 
designed so that the output flow rate is proportional to the electrical 

input signal under constant load conditions.

Servo-valves use an electric torque motor as their low power device to 

convert an electrical signal into hydraulic signal. For hydraulic power 
amplification purposes, servo-valves have at least two stages. The first 

stage has a flapper moving between two nozzles and the second stage has a 
conventional four-way sliding spool.

In spite of the advanced development of servo-valves, they have the 
following disadvantages:

(a) Precision components within the valve and caliberation requirements 

make the unit costs high. Typically the prices range from £700 to 
£2,000.
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(b) Very small clearances, of the order 2.5 micrometer, within the valve 
make it very sensitive to fluid contamination. Hence, fine filteration 

of the hydraulic system and good maintenance is required for reliable 

operation.

(c) Jamming of the spool caused by silting when the valve has a period of 

inoperation.

Traditionally, servo-valves are used for analogue control applications but 

recently their use as switching devices have been investigated [14-18]. The 
major disadvantages of this approach are inertia limitations, increase wear 

and possible structural fatigue of the spool and its sleeve.

Murtaugh [18] was an early investigator of the pulse-width-modulation 

technique to operate an acceleration switching valve. The configuration of 
this valve was similar to that of a conventional electro-hydraulic flow 
control valve, except that the spool restraining springs were removed. 

Because of the double integration inherent in this two-stage valve, the no- 

load cylinder rod acceleration was proportional to the system error signal 
- hence the name 'acceleration switching valve'. The valve thus had a zero 

steady state velocity error. Levine [ 19] found that due to the removal of 

the restraining springs, the valve became sensitive to flow reaction 

forces, thus limiting the valve operation to a low flow range.

An intensive study made by Gorden [20] has shown that the PWM mode of 

operation does improve the stiction problem of the electro-hydraulic valve 

when compared to the conventional mode of operation.

1.2.2 Directional control valves

Directional control valves determine the flow path of the fluid in the 

system. They function to stop, start, check, divert, shuttle, proportion, 
the flow of oil in an actuator.
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Traditionally, directional valves perform only switching functions and they 

operate on the on/off principle. Recently, solenoid proportional valves 

have heen introduced in mobile applications. In these designs, either the 

armature position, or the force applied to it can be controlled.

With force controlled solenoids only a small movement results and these are 

normally used to operate a poppet valve which controls the flow of a pilot 

valve operating the main directional valve spool. With position controlling 

solenoids there is a closed loop control over the armature position and 

this is maintained irrespective of the opposing force. The electrical input 

current produces a movement of the armature which is transmitted directly 

to the valve spool. This movement is sensed by an inductive linear 

transducer, fedback to a servo amplifier and compared with the command 

input voltage. Using this form of closed loop positional control the valve 
spool can be operated remotely and moved to any desired position.

Depending on the flow capacity of these valves, they are used in either 
direct operated or pilot operated modes. To meet large flow rate 

requirements, most of the commercially available directional valves use a 

solenoid first stage and have a conventional 4-way spool type valve as the 

second stage. This may be augmented by a third stage spool valve for large 
flowrates.

Conventional directional valves are spool type valves and they have the 
following inherent disadvantages:

(a) jamming of the spool caused by contamination in the oil. This is 

mainly caused by silting when the valve has a period of inoperation.
(b) precision components within the valve increase the cost. Typically the 

prices range from 55 to 500 Pounds sterling for the directional 
control valves. The KG model of Sperry Vickers, for example, which is
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essentially an electro-hydraulic directional control valve costs 1,300 
Pounds sterling.

(c) relatively high power is required to operate these valves and their 
dynamic performances is very modest.

These disadvantages had led to a growing demand for directional valves with 
improved properties in respect to function reliability, longlife, leakproof 

end positions without increased production accuracy and extremely short 

switching times to increase the dynamic performance. These requirements 

could be met with seating valves. Seating valves use elements such as 

poppets, foils, balls, discs, etc.
N

In low-pressure pneumatic systems, fluidic seating valves with moving parts 

like the foil element [21 ] were developed for complex switching functions. 

Other fluidic elements, the ball element [22] and the disc element [23]* 
may be used in high pressure hydraulic systems.

In 1971, Post [22] introduced the concept of a ball element valve into 

hydraulic systems. In his recent study [2 4], a switching valve system 

consisting of small diameter ball elements as the first stage, and fluid- 

controlled ball elements as the second stage was developed. He has shown 

that the complete switching times of multistage electro-hydraulic valves 

are in the range 1-20ms depending on system pressure and size of the 

desired output stage. The ball valves are being used in hone-machines, 

hydraulic break hammers and pile hammers applications. Mansfeld [25] has 

used ball elements in switching valves as digital control elements for an 
electro-hydraulic servo actuator used in flight-control systems.

The main disadvantage of a ball element valve is the problem of 

contamination. Although Post [24] pointed out that large particles in the 
convergent passage are pushed aside or impressed into the wall material by
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the ball if it is operated with high pressures* This claim is doubtful in 

that this might lead to blockage after long use. Another major disadvantage 

of ball valves for direct actuation by an electro-magnetic field is that 

the flux density is poor thereby providing a low attracting force to 
overcome the fluid forces. Severe water hammer effects as the ball switches 

are also said to be a problem.

A simple geometric shape which overcomes these disadvantages is a free- 

floating disc valve element [23]. This type of disc was first considered by 
Schrenk [26] in his pioneering work on disc valves. Schrenk* s interest was 

in the flow patterns and discharge coefficient of disc valves. His work has 
shown that if the valve land was large two major flow patterns would be 

possible. At low openings the flow clings to the land face and the 

discharge coefficient is high, at large openings the flow separates from 

the land and the discharge coefficient is smaller.

In 1965, Bahr [21 ] used a floating disc as a small fluidic logic element 

working on air with no electrical input signal. Later its use as a power 
device in an all pneumatic pulse-width-modulation scheme was investigated 

by Goldstein et el [27]•

The flow around the nozzle land region of disc valves is similar to that of 

flapper valves. A vas-t number of papers [28-31 ] have been presented on the 
effect of discharge coefficient on flow and force characteristics of 

flapper valves. Takenaka et el [32] in their study of the dynamic and 

static characteristics of hydraulic control valves also pointed out that 

the main unknown factor in designing valves was the discharge coefficient. 
Lichtarowicz et el [33] also made some contribution on the discharge 

coefficient of valves. Later in 1975, Lichtarowicz [34] discussed the 

effect of valve land on flow and force characteristics of flapper valves.
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Although many robots are now being produced for industrial use, capital 

costs of installing robots for new applications is high and as a result 

there is considerable interest in cheaper robots. Also in the hydraulic 
industry there is a great demand for cheap, simply constructed and reliable 

electro-hydraulic valves* One purpose of this investigation is to assess 
whether cheap hydraulic control systems have a role to play in these 

developments. As electro-hydraulic servo-valves are expensive and 

contamination sensitive, alternative types of cheap valve have been 

proposed which do not have these limitations [35]•

The main objective of the present research is to develop two versions of a 

novel disc type electro-hydraulic valve to the stage where they can be used 
to control hydraulic cylinders. Such valve-cylinder combinations can be 

used for low-cost manipulators in the robotics and programmable automation 

fields. The valve can also be geared towards mobile plant and remote 

control applications. As a result of its simplicity in construction, the 

disc type valve is aimed to fill the gap between the highly sophisticated 

servo-valve and the normal digital on/off or directional valve.

1.3 Description of the disc valve

There are two versions of the valve that have been investigated in this 

thesis based on single- and double-disc configurations.

1.3*1 Single-disc valve

Figure 1.2 illustrates the main features of the single-disc valve which 

acts as a 4-way 2-position device. A free-floating disc moves axially 
between two opposing nozzles under the influence of electro-magnetic and 
fluid forces. The disc is constructed of magnetic material and forms a 

strong flux path with the magnetic material surrounding either coil when it
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is energised. Each nozzle is connected to the hydraulic oil supply and load 
ports 1 and 2 are connected downstream of a restrictor but upstream of the 

tube through the coil. When, for example, coil 1 is energised and coil 2 
de-energised the disc closes of the left-hand nozzle and the pressure P-j in 

load port 1 rises to supply pressure, Pg. At the same time flow is 

discharged radially from the right-hand nozzle into an annular drain port 

so that ?2 l°a<* port 2 falls to a value dependent on the relative

restrictions of the restrictor and the coil tube. Hence a large load 

pressure difference (P^-P2 ) is generated which may be used to drive an 

actuator.

On the other hand if coil 1 is switched off and coil 2 switched on, the 

disc is attracted towards the right-hand nozzle by the attractive force of 

coil 2 and this force is augmented by the pressure gradient over the whole 

left-hand side of the disc until it seals off the right-hand nozzle. When 

this happens, the pressure P2 rises to supply pressure Pg and P̂  falls to a 
value dependent on the relative restrictions of the restrictor and the coil 

tube. This generates a load pressure difference (P2-P1) to.' drive an 
actuator in the opposite direction.

The main use of the single-disc valve is probably a3 a pilot valve as there 

is no inherent facility for closing off supply flow in the switched state 

with a corresponding loss of power. Accordingly, the restrictors are quite 
small to limit the quiescent power loss thereby giving potential problem 

with contamination. However, the second variation of the valve employing a 

two disc arrangement does not have these limitations and may be used to 

control significant load flows as a single stage valve. The present 

research is concentrated on the double-disc valve configuration owing to 

these potential advantages.
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1*3*2 Double-disc valve

The double-disc valve is shown in Figure 1*3 and has two single-disc 

chambers back-to-back with a loose push rod between the floating discs. The 
figure shows the valve fully switched to the right. In this position disc 2 

closes off the drain nozzle and disc 1 closes off the supply nozzle. Coil 2 
is de-energised and coil 1 is energised. Under these conditions disc 1 is 

held on the supply nozzle seat by the attracting force of coil 1, despite 
the axial pressure force exerted by the fluid in the supply nozzle tube 

trying to push the disc off its seat. On the other hand, disc 2 is held on 

the drain nozzle seat by the excess disc chamber pressure acting 
approximately over the drain nozzle area.

When the valve is switched the action is initiated by an electronic 

switching amplifier starting to de-energise coil 1 and at the same time 
energising coil 2. As the electro-magnetic force in coil 1 falls, disc 1 

starts to move to the left owing to the excess pressure force from the 

supply. It is free to move until the axial clearance of the rod is taken 

up, (see Fig. 1*4), at which point disc 1, the rod, and disc 2 will start 

to move as a solid body if the total axial forces on the body produces a 

net force to the left. For the normal sizes of the supply and drain nozzles 
this net force will only give reliable switching under all load conditions 

if additional thrust can be generated over and above that available 

statically at the start of switching. By a careful choice of the rod 

clearance and its diameter, the radial flow outwards from the supply to 
load ports 1 is in a laminar, incompressible flow condition during the 

first movement of disc 1. This gives a pressure gradient over the whole 
disc chamber, rather than just the nozzle, thereby giving a thrust 

augmentation in a similar manner to a hydro-static thrust bearing.

The final stage of switching (Fig. 1.5) involves accelerating the two discs
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and the rod to the left with the attracting force of coil 2 increasing as 

disc 2 approaches the supply nozzle. Just before disc 2 reaches the supply 

nozzle it ceases to be pushed by the rod as disc 1 has already sealed off 
the drain nozzle.

From Figures 1.3 to 1.5 it will be seen that the nozzles are not flush with 
the chamber end faces. The reasons for this are:

(a) it allows as much pressure balancing as possible round the disc in the 

steady-state conditions and

(b) the magnetic attraction force and remanence would be too large if the 

disc is allowed to adhere to the coil face.

Clearly, the correct choice of this gap, the disc travel, nozzle seat 

areas, diametric clearance between the disc and its chamber, and so on have 

to be carefully chosen for a successful design based on a wide range of 
operating conditions.

It is possible to operate the valve in a proportional mode as well and for 

this purpose pulse-width-modulation (PWM) techniques have been used to 
energise both coils to move the disc assembly around the mid-position 

without touching the nozzles. The feature which distinguishes the PWM mode 

of control from the conventional proportional control is that, instead of 

generating a signal proportional to the error, the amplifier generates a 
series of time width varying pulses which alternately drive the valve to 

its two extreme positions (see Fig. 1.6). A relaxation in machine 

tolerances is feasible with the use of PWM techniques. Several authors 

[20,27,36-43] have employed PWM techniques to linearise the non-linear 
characteristics of electro-hydraulic valves.

The frequency characteristics of a pulse-width-modulator was theoretically 

analysed in detail by Ikebe et el [41 ]• This was done from the viewpoint of
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both the removal of the hysteresis characteristics and the use of the 
piezoelectric flapper type servo-valve they developed as the input member 

to the valve. It can be concluded from their work that for a sinusoidal 

input, the ratio of carrier frequency to the input frequency must not be 

less than 7, and the carrier frequency should be chosen to be high enough 

so that the amplitude of this frequency component can be ignored in a 

control system output and does not excite structural modes of the system.

Optimal control of hydraulic valves operating on the on-off principle have 

been considered by several workers [44-49]-

1.4 Outline of project

As stated earlier, the aim of this research is to develop an electro- 
hydraulic double-disc valve to the stage where it can be used to control 

hydraulic cylinders. To achieve this objective, the internal operation of 

the valve needs to be accurately known. Experiments have to be carried out 

to verify any assumptions made in theoretical models of the valve.

The basic descriptions of the two types of experimental valves used in this 
work are described in Chapter 2. Also described are the associated 

electronic controllers.

The double-disc valve performances rely on the complex interaction between 

the fluid and electro-magnetic forces acting on the valve discs. Chapter 3 
deals with the steady-state theoretical fluid and electro-magnetic 

characteristics of the valve.

In Chapter 4, the design of a physical model for the valve is described. 

Experiments carried out to determine the internal fluid mechanisms of the 

valve are presented. With the same experimental equipment, the electro­

magnetic characteristics of the valve are also determined. The results are
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compared to that of the theoretical model in Chapter 3*

The design considerations for the double-disc valve, based on the results 

of Chapters 3 and 4, are dealt with in Chapter 5* It is necessary to be 

able to establish the criteria for system stability and performance. To 

achieve this, dynamic equations of the valve are developed in Chapter 6 

based on approximate lumped parameter concepts.

Chapter 7 deals with experiments carried out with the prototype and pre- 
production valves and possible applications of the valve are outlined. 

Chapter 8 draws conclusions and gives recommendations for further work.
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2 Experimental valves and controllers

During this study, two experimental double-disc valves were used. They were 

a prototype double-disc valve and the pre-production version of the valve. 

Extensive tests were carried out with the prototype valve to determine its 

characteristics and also to note the effect of parameter changes on it 

performance. In spite of several disadvantages of the prototype valve, the 

experience gained from experiments with it helped in the design and 

construction of the pre-production valve. This chapter describes the 

prototype valve and the design and production of the pre-production valve. 

The principle of operation of both valves, which remain the same, is as 

described in Chapter 1.

2.1 Description of a prototype double-disc valve

The prototype double-disc valve consists of three major components:- two 
identical valve end-covers and valve centre section. Fig. 2.1 shows an 

exploded view of the Prototype valve. The valve end cover incorporates the 

electro-magnetic coil assembly, supply nozzle tube, coil adaptor and a 

supply pipe fittings (see Fig. 2.2). The valve centre section has recesses 

for two disc chambers, two load ports and a drain port connections. For 

experimental purposes, the drain seats incorporating the drain nozzles, are 

screwed into the chamber faces of the centre section. This allows different 

drain nozzle configurations to be investigated.

Six radial slots are equally located around the disc chambers (see 
Fig. 2.2) which allows pressure balancing across the discs. There is also 

an annular groove in each valve end cover that links the radial slots in 

the valve centre section. Radial flow from each slot is collected in the 
annular grooves before it goes to the load ports. With this arrangement, 
the radial flow leaves the disc chamber to the load ports with low
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hydraulic resistance and also ensures even flow distribution around the 
disc* The valve centre section incorporates two cross-drillings to allow 

miniature piezo-electric pressure transducers to be connected into the 

annular grooves to measure the load pressures in the two disc chambers*

The diameter of the disc chambers are slightly less than the outside 

diameter of the electro-magnetic coils to prevent the coils being pushed 

into the chambers by the flow through the supply nozzle tubes. The diameter 

of each of the disc chamber is 25*4 mm and the outside diameter of the coil 

is 27-0 mm* Both the supply and drain nozzles have projections (called the 
supply and drain side holding gaps respectively) into the disc chambers. 

The supply and drain side holding gaps are 0.13 mm and 0*38 mm 

respectively. The stops on the discs (see Fig. 2.3) associated with the 

holding gaps, are required to prevent the discs from damaging the nozzle 
seats. Initially, the depth of the stops on the discs is slightly less than 

that of the nozzle projections to ensure a good seal on the nozzle seats as 

it beds in with the disc after a few switching cycles. Damage to the soft 

iron disc is prevented by using a hard disc insert screwed into the disc. 

The supply nozzles are of diameter 2.54 mm and the drain nozzles are of 

diameter 3*80 mm. The drain nozzles are larger than the supply nozzles to 
accommodate the stainless, steel rod of diameter 2.38 mm and length 38.0 mm. 

The floating disc is of thickness 3*60 mm and diameter 25*30 mm. The disc 

maximum travel in its chamber is 0.23 mm.

The valve housing and the nozzles are made of brass to reduce magnetic flux 
loss and remanence. The valve end covers and the coils are sealed by using 

0 - rings. The coil has 380 turns of 34/35 SWG copper wire on a brass 
spool. It is sealed in the magnetic iron core with araldite cured by 

heating to 60°C for 2 hours. The araldite seals two external wires to the 

coil and also provides a smooth face on the disc chamber end of the coil.
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The core around the coil and discs are made of REMKO magnetic iron and heat 

treated after final machining operation to obtain good magnetic properties 

from the material. Owing to the difficulty of machining a narrow and deep 

annular housing for the coil windings, the magnetic core is made in two 

parts and pressed in afterwards to make a single body. The centre of the 

core is drilled for a supply nozzle tube used as a passage for oil from the 

supply. Copper coil windings around a brass spool are cemented into the 

housing of the core with apoxy resin. The winding terminals are brought out 

via a hole through the rear of the housing before being cemented.

2.2 Design and production of the pre-production valve

The prototype valve suffers the following disadvantages:
(1) wear of the nozzles and discs as the nozzles are made of soft brass. 

Shape not optimised to prevent cavitation.
(2) the clearance between the disc and the chamber diameters is not 

optimised and thus leading to disc jamming.

(3) the push rod is too long and buckling cannot be neglected.

(4) the disc thickness is not optimised.
(5) thermal effects are not taken into account in the rod dimension as 

well as non-optimal diametric clearance between the disc and its 

chamber.
(6) the two disc chambers cannot easily be made identical as the chambers 

are not accessible in the same way. They are also not interchangeable.

(7) oil leakage through the electro-magnetic coil assembly.

The supply and the drain nozzles of the prototype valve are not flush with 
the chamber end faces. This allows as much pressure balancing as possible 

round the disc in the steady-state condition and the attraction force and 

remanence would be too large if disc adhered to the coil surface. In 

consequence, the disc has to impact on the protruding nozzles, thus the
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nozzles are prone to damage over a period of time. Damage could result in 

incomplete sealing on one side and hence lack of symmetry of performance. 

In addition, the push rod ( made of silver steel) tends to dent the soft 

iron disc. This implies that the discs are also prone to wear. This wear 

problem in the prototype valve was overcome by making the following 

modifications:

(a) stops were added to the edge of the disc (see Fig. 2.3)*
(b) having a silver steel disc insert in the disc (see Fig. 2.3) and
(c) replacing the brass nozzles with silver steel nozzles.

This implies that the central section of the valve is now made of hard 
material and that the push rod now impacts on the hard disc insert while 

the latter impacts on the hard protruding nozzles.

The wear problem becomes insignificant when operating the valve in a 

proportional mode using pulse-w idth-modulation techniques. With this mode 

of control, if the carrier frequency is high, the disc (armature) 

oscillates in the disc chamber without touching the nozzles.

The pre-production valve design is aimed at eliminating these disadvantages 

and the following are its advantages:

(a) The design is in cartridge form and is easy to assemble and dismantle.
(b) The valve is designed to suit both ISO and CETOP standards. The 

construction is simple and reduces pressure drop through the system to 

a minimum.
(c) There are few critical dimensions in the design. All the important 

components of the valve are produced by grinding or turning 
operations. With grinding operations, accuracy of +0.01 inm can be 

obtained.

(d) The stops on the discs of the prototype valve have now been removed 

from the pre-production valve. This means that the discs are now flat
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and easy to produce* From the magnetic force-stroke characteristics, 

tests carried out with discs with stops indicate a highly non-linear 

behaviour which is less pronounced when the stops are removed.
(e) The stops on the discs of the prototype valve are now replaced with a 

stopping ring. The purpose of which is to prevent the hammering force 

of the disc on the protruding supply nozzle. The depth of the 

projection is important. It determines the amount of magnetic force 

available when the disc closes off the supply nozzle and also the 

pressure drop across the disc. The smaller the projection (supply 
holding gap), both the pressure drop and the magnetic force available 

increases. This holding gap can be altered by simply increasing or 

decreasing the thickness of the stopping ring and altering the length 

of the supply nozzle accordingly.

(f) Unlike the prototype valve, the drain nozzle and the drain seat are 

combined as one item. This item has four stops which are flush with 
the drain nozzle and thus the latter is protected from damaging. The 

drain seat is secured to the valve centre section with four 8BA 

screws. The outside diameter of the drain seat is slightly greater 

than that of the disc but less than that of the disc chamber diameter. 
To prevent internal leakage, an annular 'O’ seal groove is provided. 

The amount of projection of the drain 3tops, which is called the drain 
holding gap (HĜ ), can be altered at will in the pre-production valve 

by simply grinding the drain seat to suit the required depth. This is 

not possible with the prototype valve design. To adjust the holding 

gap in the prototype valve, the drain seat has to be unscrewed and 

turned to the required depth. This approach is unsatisfactory because 

there is no guarantee that the drain seat will be fully screwed to the 
required depth*

(g) The total disc travel in both disc chambers can easily be measured and
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a correction made by grinding.
(h) For a given rod clearance, the length of the rod can easily be 

obtained without assembling the valve. The required dimensions are the 

total disc travel, the disc thickness, and the length of the valve 

centre section. These dimensions are available without assembling the 
valve. On the other hand, with the prototype valve, one side of the 

valve end cover, one disc and the centre section has to be assembled 

before the actual rod length could be obtained. In most cases, the 
other side of the valve has to be assembled and the rod length taken 

again. The average value then determines the rod length as the two 

disc chambers might not be identical. The drain diameter is greater 

than that of the rod and as such the measurement taken might not be 

accurate.
(i) The pre-production valve can be used as a switching or proportional 

device by simply changing any of the following items: (1 ) the push 

rod, (2) the drain seat, (3) the disc thickness and (4) the supply 

nozzle.

(j) The valve can be used for both high and low pressure applications by 

changing the quantities mentioned in (i) and making the necessary 

adjustments to the magnetic properties.

2.2.1 Design considerations

The design of the pre-production valve is as shown in the general assembly 

drawing number CDL3-1/1. Section D-D of the drawing is as shown in drawing 

number CDL3-2. Functionally, the valve has five major components: valve 

body, valve end cover, valve centre section, floating disc and flat-faced 

electro-magnetic coil.

(a) The valve body (1 3) made of dural aluminum alloy, incorporates the 
cross-drilling for the supply pressure P, drain T, service ports A and
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B. The detail drawing of the valve body is given in drawing number 

CDL3-3* The port holes are counterbored for 'O' seals (7). The load 
ports are at inclined angle to have CETOP 3 standard base mountings.

(b) The valve end cover (1) also made out of dural incorporates a recess 

to house a flat-faced electro-magnetic coil assembly and a coil 
adaptor. The detail drawing of the valve end cover is shown in drawing 

number CDL3-4. There are two identical valve end covers and they 

incorporate cross-drilling and annular grooves for supply of hydraulic 

oil into the valve chamber. The cross-drilling for the supply in the 

valve body links the annular grooves in the valve end cover. The valve 

end cover is fastened to the valve body with six M6 screws. Two holes 

tapped M6 are also provided in item (1) to be used when dismantling 

the valve assembly. A stopping ring (6) which is secured onto item (1) 

by four 8 BA screws acts as a stopping pad for the floating disc (10) 

and thus protect the protruding supply nozzle (2). The stops on item

(6) flushes with the supply nozzle (2) tip. The stopping ring (6) is 

as shown in drawing number CDL3-7 and is made of non-magnetie 
stainless steel to reduce magnetic flux loss and remanence.

(c) The valve centre section (8), made of dural, incorporates cross­

drilling for drain passage and annular grooves for the service ports 
and 'O' seals. The valve centre section also have recesses for two 

drain seats (17) and two disc chambers that house the floating discs 

and the clearance left in the chamber for the disc movements. The push 
rod (15) made of stainless steel is also part of the valve centre' 

section and is of length 24*89 mm and diameter 3*18mm. The detail 
features of the valve centre is shown in drawing number CDL3-5. Item 

(17), is shown in drawing no CDL3-7. Item (17) which is made of non­
magnetic stainless steel, is secured into (8) with four 8BA screws. 

The drain nozzle is of diameter 3*81 mm and it accommodates the push
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rod. The drain holding gap is 0-51 mm.
(d) The floating disc (10), made of REMKO soft magnetic material, 

incorporates a disc insert (16) which is made of harden silver steel. 

The detail feature of the disc and its insert is shown in drawing 

number CDL3-7/1. The disc form part of the electro-magnetic circuit of 

the valve. The floating disc is of thickness 0.38 mm and diameter 

31.65 mm. The disc maximum travel in its chamber is 0*51 mm.
(e) The flat-faced electro-magnetic coil assembly has a supply nozzle (2), 

magnetic core (3)» coil spool made of brass and a coil of copper wire 
type 34/35 SWG. The cross-section of the electro-magnetic coil 

assembly is shown in drawing numbers CDL3-6 and CDL3-6 MK2. The 

magnetic inner pole core and the outer pole core of drawing number 
CDL3-6 are combined as one item and made from REMKO soft magnetic 

iron. The detailed design procedure for the electro-magnetic coil is
j

given in appendix A1. The supply nozzle is made of non-magnetic 
stainless steel. It has a diameter of 2.54 mm and it projects 0.13 mm 

into the disc chamber. The outside diameter of the electro-magnetic 

coil is 27 mm and the coil has 438 turns of copper wire of insulated 

diameter of 0.22 mm.

The pre-production valve was fabricated in the Mechanical Engineering 

Departmental workshop-of University of Surrey, England. The exploded view 

of the valve is shown in Figure 2.4* Also shown in the figure is the CETOP 

size 3 sub-base mounting block which allows the complete valve assembly to 

be removed without disturbing the connecting pipes. Figure 2.5 shows the 
photograph of the assembled valve. The design was simple to construct and 

there were no problems experienced while fabricating the valve. The overall 

size of the valve is 70.0 mm x 76.0 mm x 127*0 mm long and weighs 1.8 Kg.
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The electro-magnetic coil components are shown in Pig. 2.6. The magnetic 

cores of the electro-magnetic coils and the floating discs made of REMKO 
magnetic iron were heat treated after the final machining operation to 

obtain good magnetic properties from the material.

The strength of the bolts used to fasten the valve end cover to the valve 
body are established by BS84 standard [50] and Engineering Sciences Data 
Items No. 67019 and 72022 [51>52]. The result shows that six M6 socket head 
screws have sufficient strength with a factor of safety of 3* 5*

2.3 Valve electronic controllers

Both switching and proportional modes of operation have been demonstrated 

in open and closed - loop position control modes. Chapter 7 deals with the 

experiments conducted with the valve in these modes. Digital and analogue 

pulse-width-modulator (PWM) and switching amplifiers have been constructed 

for use with the valves. The functions of the various amplifiers are 

presented below.

2.3.1 Four-level switching amplifier

The switching action of the valve is effected with a four-level switching 
amplifier. The current to each coil is controlled by the switching 

amplifier consisting of operational amplifiers, timers, diode wave clippers 

and a power transistor output stage. The detail design of this amplifier is 

given in appendix A2. The switching speed of the valve may be enhanced by 

using the established technique of overdriving the coil with a large 

amplitude pulse at the commencement of switching (see Fig. 2.7). The 
holding voltage provides enough electro-magnetic force to hold the disc on 
the supply nozzle seat after switching is completed. The input to the 

amplifier is a square wave and the timers in the amplifier provide the add­
on pulse. The amplifier can generating a maximum current of 2 A when driven
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by +15 v power supply.

2*3*2 Analogue pulse-width-modulator

The proportional action of the disc valve may be achieved if a simple 

analogue pulse-width-modulator is used with the four-level amplifier. The 

analogue pulse-width-modulator has operational amplifiers and a comparator. 

The detail design of this amplifier is given in appendix A3* The principle 

of a pulse-width-modulation is described in appendix A4.

The constructed four-level switching amplifier has a limitation when used 
with the pulse-w idth-modulator (PWM) amplifier. The period of the add-on 

pulse from the monostable circuit of the four-level switching amplifier is 

constant at a set value. Under PWM mode, the add-on fixed time duration 
pulse from the monostable circuit dominates the control of the system at 

small mark/space ratios so that the PWM has no effect on the system. On the 
other hand, at large mark/space ratios, both the add-on pulse and the PWM 

controls the system. For a given carrier frequency, the add-on pulse width 

or duration remains constant when the mark/space ratio of the PWM changes. 

The effect of this is to create a hold-on ( or step) current on one coil 

when the other coil current changes in a linear fashion with the mark/space 

ratio of the PWM. Typical results of an add-on pulse of duration 1.5 msec 

at a high carrier frequency are shown in Fig. 2.8. The figure shows that 

the add-on pulse introduces some non-linearity into the coil current as the 
d.c. input voltage of a PWM is varied for high carrier frequency. It also 

shows that the add-on pulse duration of 1.5 msec is too large for carrier 
frequency of 250 Hz. To operate the PWM at high carrier frequencies, the 

add-on pulse duration should be selected to be less than one-quarter of the 
maximum period of carrier signal. The add-on pulse duration can easily be 

altered by adjusting the timing resistor of the monostable circuit.
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This limitation can be overcome by removing the add-on pulse from the 

switching amplifier. This implies that proportional control may be provided 

using the established pulse-width-modulation technique in which there is no 

over-driving of the coil with a large initial pulse. A special amplifier 

incorporating both pulse-width-modulator and switching amplifiers without 

add-on pulse is described in the next section.

2.3*3 Disc valve amplifier

The disc valve amplifier has an analogue PWM and a switching amplifier and 

the detail design is given in appendix A5* The pulse-width-modulation 

action of the amplifier is obtained with the aid of a built-in sawtooth

waveform generator whose output is compared with an error signal to

generate a PWM signal. This PWM signal drives the switching section of the 

disc valve amplifier. This amplifier can be used to provide both open and 

closed- loop control of the valve. The amplifier uses only one power supply 

as against two used in the four-level switching amplifier. With +15 V power 

supply, the amplifier can providing a maximum current of about 1.55 A.

2.3*4 Digital pulse-width-modulator amplifier

The valve can be controlled remotely via a microprocessor with the aid of a 

digital pulse-width-modulator. A 12-bit digital PWM amplifier, whose detail 

design is given in appendix A6, may be used with the switching section of 
the disc valve amplifier. To use the 12-bit digital PWM to control the 
valve, a 12-bit ADC (analogue to digital converter) board is required to

i
convert the analogue command feedback signal to digital form for closed- 

loop operation. The 12-bit ADC board is also required to carry out the 

arithmetic summation of the command signal and the feedback signal.

An SBC-100 bus system was used as the micro-computer. The SBC-100 bus
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system has a Cremenco board which has two serial and two parallel ports 
( the two parallel ports were used for the input/output transmission 

although only one serial port was used to communicate with an operator via 
a system console or VDU ), ROM boards were used to store the computer 

software*

A computer program has been written in INTEL 8080 language to control the

digital PWM. A flow chart of the computer program is shown in Fig. 2.9*
PACL is the package command level and is the SBG-100 controller parameter

access routine. The package can be loaded into read-only-memory (ROM) chips
on the ROM board. To start the package power must be applied to the

computer system when an automatic entry to the initialisation routines is
made; if these procedures are successful an identification message is

displayed on the system console.

PACL ddmmyy:
*

where ddmmyy/ is the day, the month, and the year of creation of the 

current version of PACL;

* is the package command request indicating that the system is

ready to accept a command.

Alternatively, the package may be loaded from an external source into the 

RAM area of the computer system which enables the operator to undertake 
debugging, via the computer system monitor, during software development.

When the system is first activated, all system files are initialised with 

null arrays and the command level of package is entered. At this stage the 

user can ask for help by typing H or HELP and the following message will 
appear on the system console.
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PACL FACILITIES AVAILABLE TO USER

DISPLAY - Display current values of controller parameter

RUN - Request to enter digital-pulse-width-modulator routine

EXIT - Request to jump to SBC-100 monitor level

HELP - Request for help

MSPT - Modify "SPT**

where SPT holds the current values of controller parameter.

The control words to the digital PWM is initiated by the RUN command and 

the control words can be modified via MSPT command. The current content of 

the control words can be displayed via DISPLAY mode and EXIT stops any 

processing of the computer system and return command level to SBC-100 

monitor. The package can trap errors and each error is displayed. All error 

service routines are treated as non-fatal and control is returned to the 
user.

This chapter has described the two experimental double-disc valves and 

their associated electronic controllers used in this work. The double-disc 

valve characteristics rely on the complex interaction between the fluid and 

electro-magnetic forces acting on the valve discs. The next chapter 
develops the steady-state theoretical fluid and electro-magnetic 

characteristics of the valve.
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3* Steady-state theoretical node! of a double-disc valve

In this chapter, a steady-state theoretical model will be developed to 

predict both the fluid and electro-magnetic forces acting on the valve 
discs. The fluid mechanics of the valve will be dealt with first, followed 

by the electro-magnetic characteristics.

3.1 Steady-state fluid characteristics of valve

An understanding of radial flow between confined boundaries is of practical 
importance in the design of disc valves which employ the hydrostatic 

bearing principle. This study presents a combination of experimental data 

and a theoretical analysis of radial flow between the parallel space formed 
by the free-floating disc and its chamber wall using hydraulic oil.

Limited publications have been made of general radial flow between parallel 
discs. Their analyses, however, have been accomplished under different 

conditions, as the problems to which the results of their analyses are 

intended to apply are different. The characteristics of flat disc valves 

have been investigated by Oki [29] for the conditions that the region of a 

radial-flow is short and the clearance is wide. In 1964, Takenaka et el 

[28] also presented work on thrust on disc valves. Hagiwara [53] studied 

the characteristics of radial-flow nozzles. Moller [54] also investigated 

the radial flow between parallel discs.

In all these studies, the fluid from the source is supplied through a 

central tube or nozzle into the parallel space between the two discs and 
discharges to the atmosphere. In case of the double-disc valve under 
investigation, the free-floating disc is in contact with both an inward and 

outward radial flows. That is the free-floating disc is completely 

submerged.
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Figure 3*1 shows the general geometry of the double-disc valve under 

investigation. The notation used through out this analysis is as shown in 

the figure, in which six distinct flow regions are defined. They are 
regions A, B and C denoted for the supply side of each of the disc 

elements, and regions D, E and F denoted for the drain side. Region A 

comprises the supply tube nozzle. Region B is defined for the supply nozzle 

land region and up to the point where the flow leaves the nozzle is 

assumed to be re-attached. Region C is the radial outward flow region 

formed between the floating disc and the supply side chamber wall. Region D

is the radial inward flow region formed between the disc and the drain side

chamber wall. Region E is defined for the curtain volume where the radial 

inward flow is affected by the drain nozzle protruding into the disc 

chamber. Region F is defined by the annular volume between the rod and the

drain tube up to the drain port.

In Fig. 3«1> the flow from the supply, at pressure Ps, passes through both 

the curtain areas of the two supply nozzles into the supply side of the 
disc chambers. From the curtain areas, the flow is discharged radially 

outwards into annular grooves. The annular grooves link both the drain side 

of the disc chambers and the external load ports. From the annular grooves, 

either all or part of the flow discharges radially inwards into the drain 
side ofithe disc chambers. At the same time, some of the flow either passes 

into or comes from the external load into the disc chambers depending on 

the external load and the position of the discs. Finally, from the drain 

nozzles, the flow leaves the valve at drain pressure through an annular 

passage way formed by the drain nozzles and the push rod.

3.1.1 Pressure - flow equations

Region A : Assuming in this region that the flow is laminar, fully
developed and incompressible, the flow through the supply nozzle tube is
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given by

'ns1itd?
9 L S ----------------(pa - pb1> (5.1)

128 Lsnt1

Region B s In this region, the valve is assumed to be operating on the 

orifice principle. The flow is further assumed to reattach at some distance 

of radius ra-j in a similar fashion to nozzle-flapper, arm configuration. The 

flow is given by [55]

2^bi - pu (*.iJ) „ „ v
^1L /'Dns ^ rns1 XJ  (3*2)

This equation can be rewritten as

P1I,(ral) = Pb1 “ c12 ---
X2

where

C12 = ? / 8̂^ 2cDns rns1 ̂  (3-4)

As x is increased the annular curtain area (TtDng.jx) increases till

x 53 Dnsi/4 when it is equal to the supply nozzle cross-sectional area. It 
can be seen therefore that the sensitivity of the valve will decrease since 

the importance of the nozzle resistance will increase as the disc travel 

(valve gap) is increased. At large openings the flow will be entirely 

controlled by the nozzle and changes in the disc travel will not influence 

the flow.

Owing to manufacturing constraints and because of the strength requirements 

the tip of the nozzle is not sharp and the land so produced can easily be 
greater than the disc travel or valve gap. Under such conditions, according 

to Lichtarowicz [34], the flow mechanism is no longer simple and

considerable variations of the flow and force characteristics can be

expected.
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Region C : In this region, the following assumptions are made: (a) the flow 
is steady, (b) the flow is incompressible, (c) the flow is fully developed, 

(d) no rotation of the disc in its chamber, (e) the flow is only in the 

radial direction, (f) convective acceleration is negligible, (g) the disc 

is parallel to the chamber end walls and (h) the fluid films are so thin in 

relation to the dimensions of the components, measured within the plane of 

the surface, that the flow of fluid may be considered to be determined by 

viscous forces only, inertia effects being temporarily ignored. v

Assumption (a)-(c) implies that laminar flow exist in this region. Under 

these conditions, the radial flow Navier-Stokes equation applies

^n ^n c ̂ n ^n . c£
—  +  n  —  +  -  —  +  m  —  - -
^t ^r r Bt r

1 -3P 
-■  fr    +  V

O r

1 1  

r ̂ r

^n\ 1 ^ 2n ^2n

\ <Jr I r2 3$2 ^z2

n 2 ^c 

r2 r2
(3.5)

The continuity equation is given by

' J 1 V  v
- f  (nr) + - -  + _  = 0
r dr r oG dt

(3.6)

If the fluid is assumed to be incompressible and uncavitated, then under 

assumptions (a)-(h) and from equations (3*5) and (3*6), the flow, q, across 

any annulus of radius r can be shown to be [56]
1f rh^ dp

(3-7)
6 ji dr

The negative sign signifying that flow will be outwards when dp/dr is 
negative and inwards when dp/dr is positive.

Integrating equation (3*7) and applying the boundary condition of r = R^,
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p = Pj we have

6 J* 11L
P1L(r) - P., + ----—  In (HL/r) (3-8)

^ h?L

where

h1L = HGg + I (3.9)
Equation (3*8) ignores inertia effects completely and represents, simply, a 
balance between pressure forces and viscous shear forces. In many low 

Reynolds number flows acceleration is present and inertia effects may be 

significant [57]- The most common field in which equation (3.8) is applied 

is that of hydrodynamic lubrication. Recent work in this field has focussed 

attention on inertia forces, and several workers [57-59] have indicated 

methods of analysing the viscous flow which include inertia effects. The 

methods described amount to solving the equation of motion approximately, 

in its integral form, as first suggested by Karman in his momentum-equation 

approach to boundary layer theory. Jackson et el [59] obtained an 

expression for the pressure distribution in a hydrostatic thrust bearing 

using an existing series expansion solution for radial flow between 

parallel planes.

The inertia term quoted by different authors are

0.150 CQ2

Tf2h2

1 1

rf 4
Liversey [57]

0.193 (Q4

2v2Jf ti

0.125 i Q2

H 2h2

1 1

r2 r2 
1 2

1 1

r2 r2 r1 *2

Savage [58] and Jackson et el [59]

McCandlish [60]
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Savage [58] results agrees quite well with experimental data of Moller [54] 
using air as the fluid, except near the channel entrance where it falls 

below experimental data. Savage also agrees with that of Jackson et el 

[59]* It can be seen that the inertia effect predicted by Liversey [57] is 

some 23 per cent below that of Jackson et el [59] and Savage [58] and 17 
per cent above that of McCandlish [60]. Jackson et el [59] results provide 
a reliable estimate of the pressure distribution in a hydrostatic thrust 

bearing taking account of inertia effects as well as viscous effects. Their 

result demonstrated that the inertia effect correction is underestimated by 

the momentum integral approach.

Using Jackson et el [59] inertia term, equation (3*8) becomes

6juqiL 0.193 fqfL
P1L(r) - Pt + -----  In (Rj/r) + ---------

2 r

TTh?1L Tf2h?L T?2 -,,2rL r

(3*10)

It can be seen that this is made up of a viscous pressure drop and an 
inertia contribution which is opposite in sense and which becomes

progressively more important as the flowrate or the gap increases.

t?2 —2rL ra1

When r * ra-j, the radius at which the flow is assumed to be reattached to 
the disc, equation (3*10) becomes

6/iqn, 0.193 fqfi, T 1 1
p1l/ra1) = P1 + -----  la (Hl/ra1> + ----   “     (3-11 >

-Tfĥ L ' M l

The reattached radius ra-j is known from experiments to be equal to 
approximately 1.5 times the supply nozzle radius. That is

ra1 = 1 *5 ras (3.12)

Moller [54] theoretical and experimental results showed that with the flow 

separating at the channel inlet, the reattachment distance is a function of 
the channel width (distance between the disc and the channel wall) for a
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given inlet nozzle diameter and is independent of Reynolds number and the 

diameter of the discs.

Region D : The flow in this region is similar to that of region C except

that the flow is now inwards. Some work has been done on radial inward flow 

by Hagiwara [53] who carried out both theoretical and experimental 

investigations into radial outward and inward flow by using the Navier- 
Stokes equations. His results showed that the pressure loss as a result of 

inwards flow is greater than that of outward flow. The same inertia terra 

but opposite in sense to that used in the outward flow is assumed to apply 

in this region. Therefore,

6M ‘11E /  , °*195CE1HP1E(r) = pr + ------- In (r/BL) + ---------

Ttb?E * 2>?r

1 1

.2 1)2■ SL

(■3.13)

where

h^R = HGjj + Tjj - x (3*14)
When r = r^g, the radius at which the inward flow separate from the disc, 

equation (3*13) becomes

rdG

6>i qiR 0.193 fq-jR 1 1
Pm ( rdG^ = P1 + ------  ln +      (3.15)

Tfl^g "rt2h1E
Again r^g is assumed to be 1.5 times the drain nozzle radius. That is

rdG “ 1•9 rDn (3.16)

Region E : In this region, the flow is assumed to follow an orifice type
equation. The flow is given by

<11R " CDhD rnD (TD "
p(P1R(rdG^ " Pu1)

( (3-17)

Equation (3*17) can be rewritten as
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P1R^rdG^ = Pu1 * C11 (3.18)

(Tn - X)2

where

C11 = (/ (Stt^CpnB rnD) (3.19)

Region ? : In this region, the flow passes through the annular passage

formed by the rod and the drain nozzle. The annular flow is by [55]

TfDnD ' * ’-5(f [Pu1 * Pd]
^IR (3.20)

12^ LDnt1

where b = (D^ - DR )/2 , passage height
£ * misalignment of rod from centre

If there is no misalignment ( that is £ = 0) then equation (3*20) can be 

rewritten as

12/* LDnt1 R
Pu1 ' PD + (3.21)

1)3
Equating equations (3*15) and (3*18) and substituting for from equation 

(3*21) gives

P1 = PD + c18 <HR + C11
n2^ R

(TD -

<11R
c1 5 ----- C13

h?R

n 2 <11R

yZh1R
where

13
0.193 {

-n2

1 1

tj2 _2HL dG

(3.22)

(3.23)

(3-24)
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12^ L])nt1
18

Tf Dh b3
From equations (3*3) and (3• 11) we have

P1 = Pb1 " C12
4?L - C16

<11L - C14
41L

1L
where 2 is as defined in equation (3*4) and

0.193 ( 1 1 •

n 2 r l
r2a1

'14

6 ^
C16 " -T" ln (RL/ra1>

Equation (3*1) can he rewritten as

Ph1 = Ps ' C17 ^LS 
where

17
128^iLgnti

Under no load condition,

^LS = 4il = 41R 53 <11

From equations (3»22), (3*26), (3-29) and (3»31 ) we have

A1<1? + B1q1 - (Pg - PD) = 0 
where

C
A, = '11 c12 c13 c14

(Tj) - x)2 x2 h?E h?L

B, = - c15 + °16 

h?R h?L

+ --  + C.J7 + C18

56

(3.25)

(3.26)

(3.27)

(3.28)

(3-29)

(3-30)

(3-31)

(3-32)

(3.33)

(3-34)
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Equation (5*52) can be solved for ^  as
-  B, ♦ ♦ 4A, (P„ -  Pp)

^    (3-35)
2 A-j

For a given value of disc displacement, x, equation (3-35) describes the 

flow through the disc chamber 1. Similar expressions apply to the valve 
disc chamber 2 with suffix 2 instead of 1, R instead of L, and x replaced 

by (Tp-x).

The net flow q«p, through the valve is given by the sum of flows through the

disc chambers 1 and 2 under blocked-load conditions. That is,

q<P = q-j + q.2 (3*36)
The valve load pressure P^ is given by

PL * P1 * p2 (3.37)
Dividing equation (3*37) by tbe supply pressure, Pa> give the non-
dimensional load pressure characteristics of the valve.

3*1 .2  S ta t ic  f lu id  forces

The steady-state force acting on the supply side of disc 1 is given by

e i?  %,

* 1L = —  + TTr^  Pb1 + 2TfJ P1L( r ) r d r  (3 -3 8 )
2 Asn ra1

Substituting for P-jĵ r) from equation (3*10) and integrating we have

<1? *1
F1L = -----  + Pb1 + C11L P1 + Ĉ12L “ c 13l ) --  * C14L   (3*39)

2 Asn h?L h?I»
where

C11L “ 1T [ PL -  (3 .4 0 )
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0.193 e r  ~'
°12L = — “ —  I 1 " (ra1 /®L^ (3-41)

0.386?
C13L ‘ ( V ral) (3-42)

°14L ■ 3 P fag - *2, |2 In (EL/ra1) ♦ 1} J  (3-43)

The fluid force acting on the drain side of disc 1 is given by

P1R * 2^1 pia(r> r dr (3*44)
rdG

Substituting for p-jg(r) from equation (3• 13) and integrating we have

<1? 1̂
f 1R = C11R P1 + (°13R -  c 12r ) ~  " C14R  (3.45)

h?R h1R
where coefficients to are the same with that of to with

suffix dG instead of a1. Again similar expressions apply to the valve disc 

chamber 2 with suffix 2 instead of 1, R instead of L, and x replaced by 

(TD - I).

Now the resulting static fluid force F^ acting on the two discs and the

push rod moving together as a rigid body is the difference of the net fluid 

forces F-j and F2 acting on the discs. Thus

Ff = F1 “ F2 ” (p1L “ F1R) ” (f2R ~ f 2L^ (3*46)
The net fluid force can be expressed in non-dimensional form as F by

dividing equation (3*46) by the static pressure force acting on the

floating disc when it closes off the supply nozzle.

3.1.3 Boundary Conditions

As earlier stated, the steady state analysis of the valve fluid mechanics
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is based on a blocked-load conditions. Under these conditions, when the 

disc displacement is zero, (that is the left-hand disc closes off the 

supply nozzle and the right-hand disc closes off the drain nozzle (see 

Fig.3*1 ) equations (3*47) through (3*53) applies.

q, = q2 = P, = F1E = 0 (3.47)

F1L “ ttrl, Ps (3.48)

where rt1 * (DsnL1 + Dns1 )/4 (3-49)

P2L = tj(rR - rdt) ps (3.50)
where rdt = (D^ d + D^) /4 <3-51 )

P2r =TTh| Pa (3-52)

P2 = Ps (3-53)
Similarly when the disc displacement is equal to the total disc travel, 

(that is the left-hand disc closes off the drain nozzle and the right-hand 

disc closes off the supply nozzle) equations (3*54) through (3*59) applies, 

qf = q2 = P2 = F 2L = 0 (3*54)

P1L =Tf8L ps (3.55)

p1H ■ (rL - *dt> Ps (3-56)

P2R " ̂ rt2 p3 (3-57)
where rt2 = (DanL2 + Bns2)/4 (3.58)

P1 - ?3 (3-59)
In equations (3*48),(3*51),(3*57) and (3*58) it is assumed that the static 

pressure acts approximately on the projected area of the mean radius of the 

nozzle land on the floating disc.

3*1.4 Numerical computations of valve fluid characteristics and results

The basic steady-state fluid characteristics of the double-disc valve are 

as described by equations (3*1 ) to (3*59)* In formulating these equations, 

it was assumed that the two disc chambers could be different and as such 

different notations were used for the two chambers* For example, the two
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discs might have different diameters and thus making the valve 

unsymmetrical. For the symmetrical double-disc valve, all the 

corresponding parameters of the two disc chamber would be equal. This 

implies that the same equations could be used to simulate both symmetrical 

and non-symmetrical double-disc valve.

A computer programme has been written in FORTRAN 77 to determine the 

steady-state fluid characteristics of the double-disc valve model based on 

equations (3*1) to (3•59)• These equations are solved numerically at a 

given disc displacements x using Shell Tellus R37 oil as the valve fluid 

medium. For a given total disc travel Tp, the disc is given an incremental 

displacement of one per cent of T^ and the valve discharge coefficients are 

obtained from the empirical formulae developed in Chapter 4. Using this 

discharge coefficient data, the chamber pressures, flowrates and the fluid 

forces acting on the floating discs are estimated. The computer programme 

is made highly interactive and several subroutines have been developed to 

display the package results graphically. To aid understanding of the 

steady-state characteristics of the double-disc valve, the programme has 
been made into a computer-aided design package. A flow chart of the package 

is given in appendix A7* The package displays all results graphically and 

the user may select which results are to be displayed.

The valve main parameters used in the package are: DSD, Disc diameter;

TD, Total disc travel; HGS, Supply side nozzle holding gap; HGD, Drain side 

nozzle holding gap; SND, Supply nozzle diameter; SNLD, Supply nozzle land 

diameter; DNLD, Drain nozzle land diameter; SNTL, Supply nozzle tube 

length; PS, Supply pressure; CR, Rod clearance; RODD, Rod diameter; 

DND, Drain nozzle diameter; DNTL, Drain nozzle tube length; VSCO, Oil 

viscosity; VSCF, Valve linear scaling factor; CRNT Coil current. The values 

of these parameters used in the package are shown in Table 3*1•
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Table 3-1 Physical constants of the valve main parameters

DSD = 31.65 mm PS = 105*0 bar

TD = 0.51 mm CR = 0.00 mm

HGS = 0.13 mm RODD = 3*18 mm

HGD = 0.51 mm DND = 3*81 mm
SND = 2.54 mm DNTL a 3*81 mm

SNLD = 3.05 mm VSCO = at 35 °C
DNLD = 4.57 mm VSCF = 1.00

SNTL = 15.88 mm CRNT = 0.00 A

The package allows any of the main parameters governing the valve 

performance to be varied independently. The package will be used to sfciow 

the effect of the main parameter changes in Chapter 5*

Figure 3*2 shows a typical fluid forces acting on a single disc chamber as 

the disc move3 from the supply nozzle land to drain nozzle land. Noting

that positive disc displacement is defined for disc movement from left to

right in Fig 3*1 and positive fluid force are assumed to act in the same 

direction. In Figure 3*2, when the disc is given a small displacement, the 

fluid forces increases to a maximum and then decreases to a minimum near 

the mid-position of the disc travel. From the supply nozzle tip to the mid­

position of disc travel, the supply nozzle curtain area dominates the 

control of the valve. The position where the maximum fluid forces first 

occur is about 10 per cent of the disc total travel Tp. When the disc 

displacement is further increased pass the mid-position, the drain nozzle 

now dominates the valve control and the fluid force rises to a maximum

before it decreases to a value depending on the drain nozzle land diameter.

The rise in the fluid force is due to flow restriction that occurs when the
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disc approaches the drain nozzle.

The rise in fluid force that occurs when the disc is approaching the drain 

nozzle is disadvantageous in a double-disc valve operation as this will 

cause unstable valve performance near its null position. That is, there 

will be point of inflexion near the valve null which is not desirable in 

proportional operation of the valve (see Fig.3»3)* The theoretical steady- 

state fluid model for the valve has shown that the ratio of the drain 

nozzle area to that of the supply nozzle influences the fluid forces acting 

on each disc in its chamber. The level of rise in the fluid forces when the 

disc approaches the drain nozzle can be controlled by the correct choice of 

drain nozzle geometry and drain holding gap.

Where the net fluid force curve crosses the displacement axis it 

corresponds to the position of zero net fluid force and the discs and the 

rod assembly is stationary at that point if the curve gradient is negative. 

From Fig.3*3 it is seen that when x=0, the net fluid force is negative and 

the disc will not lift from its supply nozzle seat. For this reason, a rod 

length is used with a clearance which is greater than the distance between 

the supply nozzle tip and the position where the fluid force cease to be 

negative.

Figure 3*4 shows typical total drain flow under blocked-load conditions. 

The leakage flow is maximum at the mid-position of the disc travel and 

decreases rapidly with disc displacement away from this position because 

the disc modulates the valve orifices. This curve is a measure of hydraulic 

power loss if the valve is modulated under blocked load conditions. Figure 

3*5 shows a typical non-dimensional load pressure curve obtained from the 

theoretical model under blocked load conditions. The load pressure 

difference exhibits reasonable linearity for small changes from the null 
condition although the hydraulic stiffness of the valve is low compared to
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a conventional servo-valve.

3.2 Electro-magnetic characteristics of a flat-faced type coil

The flat-faced armature type of electro-magnetic coil used to actuate the 

double-disc valve is illustrated in Fig. 3*6. It has a flat-faced armature 

(disc) made from REMKO soft magnetic iron, and a magnetic core having a 

central hole. The central hole admits a supply nozzle tube through which 

hydraulic oil flows into the valve. The electro-magnetic coil has two 

working gaps that are mechanically in parallel but magnetically in series. 

This type of electro-magnetic coil produces a large force through a short 

stroke compared to the plunger type of magnet.

There is little literature on this type of electro-magnetic coil. However,

the design and analysis is well covered in.books by Roters [61] and 

Hazeltine [62]. Yiiksel [35] uses this type of electro-magnetic coil in his 

study. The electro-magnetic characteristics of the coil based on the semi- 

empirical formulae of Roters [61] will now be developed.

3*2.1 Magnetic circuit calculation

Fig. 3*6 shows a section of a flat-faced electro-magnetic coil. The iron

paths of the magnet are so designed that the cross-section of the inner 

pole core equals that of the outer, and the free-floating disc (armature) 

cross-section at the radius (r̂ j* t^) is equal to that of the pole cores.

The force exerted by the coil is given by 

Bg AcF (3.60)
2 H

where nw is the number of working gaps, Bg the flux density in the working 

gap, /ig the permeability of the working gap and Ac is the cross-sectional
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area of each of the working faces.

The exciting magnetic magnetomotive force NI, which provide the flux 

required for the given force and stroke, is determined by the magnetic 

circuit equation for the electro-magnetic coil. This equation is given by

n  - 1-2-55 ♦ ■ X h 1 Li (3.61)
**g

where the first term represents the magnetomotive force necessary to 

establish the flux at a density of Bg across a working gap xg, and the 
second term represents the magnetomotive force necessary to establish the 

flux in the iron paths of the circuit.

There are two working gaps in series in this type of electro-magnetic coil 

hence the factor of 2 in equation (3*61). This implies that ^  in equation 

(3*60) will take the value of 2. If it is assumed that is small

compared to 2 Bg xg/jig we have

2 B x
NI - ---—  (3*62)

^g

Substitution of equation (3*62) into equation (3*60) with ^  = 2 gives

Fm = ,ig Ac (Nl)2/(4 *|) (3.63)

Equation (3*60) takes into consideration both the magnetic leakage and iron 

saturation of the electro-magnetic coil while equation (3*63) ignored these 

factors. Therefore for a given magnetisation curves of a magnetic material 

used in the coil, equation (3*60) will describe the electro-magnetic force- 

stroke characteristics of the coil better than that obtained from equation

(3.63).

The ratio of the magnetic forces in equations (3*60) and (3*63) can he 

expressed as the coil leakage factor as
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fr. - -
NI

^ Bg Xg

2
(5.64)

The flux distribution of the various parts of the magnetic circuit can only 

be determined from the coil leakage coefficient. To determine the leakage 

coefficient, the permeance of the various parts of the magnetic circuit had 

to be estimated. These permeances are given by the semi-empirical formulae 

of Roters [61] and they are quoted below.

The inner pole fringing permeance is given by

r2 - ri
Pfi - 3-26 p g + 4 p g rr In

Tf x,
(3.65)

The outer pole fringing permeance is given by

rf r 2 “ r 1Pfo « 1.65 jig 1*3 + 2 )ig Tj In 1 + — + 3*26 jig r2 + 4 jig r2 In L rr xg Jxg*
(3.66)

The useful gap permeance PUg is given by

T r1 - Tq )21
(̂ uĝ inner “ ^ug'outer ~"̂ ug (3-67)

The total effective permeance P^e through the disc between the inner and 

outer pole core, is

1

te

*ug + ^fi *ug + pfo -1

(3.68)

A. Usman AUGUST 1984



Steady-state theoretical model 66

The leakage permeance between pole cores, is

L = Pi 1.57 h
(r2 + (r2 + i^)
(r2 - r1 ) 2

1 -

r2 - ri
(3.69)

The total useful permeance Pu of the coil is given by 

'tr ( r 1 - ro )2
u (3.70)

2 I.
The effective permeance of the pole cores is given by

effp ” Mie ’’’ “ (3-71)

The leakage coefficient which is the maximum flux linking with the 

exciting coil to the useful flux (i.e. flux in working gap) is given by

lk
Pte + PL

u
(3.72)

The useful density of the various parts of magnetic circuit are obtained 

from the following semi-empirical formulae from Eoters [61 ]. It has been 

assumed that the smallest value of the flux density is equal to that of the 

yoke, By.

The flux density of the working gap is given by

Bg = Cg B7 
where Cg = 1/Clk
The flux density of the armature is 

®a ^a ®y
where Ca =• Pte/(PU Clk )
The flux density of the pole core is given by

b p ■ c p By

(3.73)

(3-74)

(3-75)

where Cp « Peffp/(PU Cllc )

By definition, the flux of various paths of the magnetic circuit is 

obtained by multiplying the various flux densities by the appropriate
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cross-sectional area.

The magnetomotive force NI, for the iron parts of the magnetic circuit are 

obtained from equation (3-61) with the following equation

iHiLi = HaLa + HpLp + HyLy (3-76)

The magnetic intensities (H) are obtained from the experimental 

magnetisation curves for the REMKO magnetic material used (see appendix 

A8). The exciting current can be obtained from equation (3*61) and 

knowledge of the total number of coil turns.

From Fig. 3*6, the total length of the magnetic circuit is seen to be 

equal to the sum of twice the length of pole core (LpC), the length of the 

armature La and the length of the yoke, Ly. That is

It -la + L p +Ly (3.77)
The lengths Lp, La and Ly can all be express in terms of the electro­

magnetic coil geometry as follows

La - (rj + r2 - r, - r0)/2 (3.78)

Ly = La (3.79)

Lp * 2 Lp<= = 2(h + V  + tp' + V  (5.80)
For a good coil design, the disc (armature) thickness tfl, must be equal to 

tp, the coil pole thickness.

The cross-sectional area of each of the working surfaces is given by

Ac -Tf(rf - r^) = Tf(r^ - r|) =7T(r1 + r2)ta ^ ( ^  + r2)tp (3.81 )

and the following inequality should hold for weight economy [61]

3 £  h/(r2 - r} ) £  4 (3*82)
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3.2.2 numerical computations of valve magnetic characteristics and results

From equations (3*60) through (3*82), it can he seen that the electro­

magnetic characteristics of the coil are highly non-linear. These equations 

are best solved using a numerical technique. A FORTRAN 77 program has been 

written to compute the steady-state electro-magnetic characteristics of the 

coil. A flow chart of the program is given in appendix A9*

The method used involved an iterative approach in which the flux densities 

needed were obtained from the experimental magnetisation curves supplied by 

SKF REHKO magnetic iron manufacturer (see appendix A8 )• The B-H data were 

obtained from these curves and a polynomial function of the form HBN = f(B) 

was obtained using a Chebyshev series with a NAG library routine E02AEF 

[63]. The program whose flow chart is shown in appendix A9 is divided into 

two parts.

The first part of the program compute the relationship between an electro­

magnetic force and magnetomotive force for various working gaps (disc

displacements) in the range 0.13 to 0.64 mm. For each of the disc 

displacements, the coil permeances and the coil leakage flux coefficients 

are calculated. After which the flux density of the yoke of the REMKO

magnetic iron is assumed and the flux densities of the armature (disc) and 

magnetic pole piece are calculated. From these flux densities, the flux 

intensities of the various part of the magnetic circuit are calculated from 
the function HBN. Finally, the electro-magnetomotive force and magnetic 

force are calculated. Fig. 3*7 shows the relationship between the electro­

magnetic force and the magnetomotive force NI for various distances between 

the coil face and the disc. Each curve represents the magnetic force

against ampere-turns for a constant gap between the coil and the disc.

Curve OAB represents the case when the gap is a minimum which correspond to 

the point where the disc is touching the supply nozzle land. The supply
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nozzle projects above the coil surface and the amount of projection is 

called the holding gap (see Fig* 1*3)* Curve OCD represents the case when 

the gap is a maximum. That is the disc has moved its total travel and is 

touching the drain nozzle land. Curve OAB is seen to represent the force 

holding the disc against the supply nozzle before switching occurs while 

curve OCD represents the attracting force pulling the disc towards the coil 
immediately after switching is initiated. For magnetomotive force and gap 

values below the line marked AC, the gradient of the curves are much 

greater than when above the line. This is due to the transition in the B-H 

characteristics from the unsaturated region into the saturated region. Best 

results can be obtained from the electro-magnetic coil if it is operated in 

the unsaturated region. For a given coil size, the number of coil turns N,

is constant and the minimum current Im^n to operate the coil in the
OFunsaturated region is given by ^  where distance OE is as shown in 

Fig. 3*7. The maximum current IM X  is given by where OF is as shown in 

the Figure.

The second part of the program computes both the magnetic force and the 

coil leakage factor f^ as obtained from equations (3*60) and (3*64) 

respectively for a given coil current and various disc displacements. An 

iterative method is used and the approach is described below. For a given 

current and coil turns, NI is known. This is denoted as EMFT in the 

program. Based on the permeances and flux densities, the flux intensities 

of the various parts of the electro-magnetic circuit are obtained from the 

polynomial function HBN - f(B). This polynomial function describes the H-B 
relationship of the REMKO magnetic iron used to construct the electro­

magnetic coil. From the flux intensities and the magnetic circuit lengths, 

NI is estimated (see equation (3*61)). This is denoted as EMFTC in the 
program. The difference between EMFTC and EMFT is calculated. If EMFTC <
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EMFT, the flux density of the yoke is given an incremental value and EMFTC 

estimation process is repeated. This iterative process is carried out 

until the estimated value of NI ,EMFTC, is about equal to the known value, 

EMFT. The maximum iterative process is limited to 100. When the estimated 

NI (EMFTC) equal to the known value (EMFT), the magnetic force is 

calculated based on the flux density of the working gap.

The theoretical magnetic force-stroke curves of the coil are shown in 

Fig. 3*8. Each of the curves represent a magnetic force against disc 

displacement for a constant coil current, CRNT. The Figure shows that the 

magnetic force rises sharply as the disc approaches the coil surface. In 

practical applications of the electro-magnetic coil, the disc is not 

allowed to touch the coil surface to prevent excessive magnetic force 

remanence. For this purpose the holding gap is provided and the useable 

region of the force-stroke characteristics is shown in Fig. 3*8 as the

total disc travel. Increasing the disc travel further than this region,

might not provide enough magnetic force to pull the disc towards the supply 

nozzle.

The coil leakage factor f^, as expressed in equation (3«64)» is shown in

Fig. 3«9 for various coil currents, CRNT and is the ratio of the magnetic
force obtained from equation (3.60) to that from equation (3*63)• The 

magnetic force as expressed in equation (3*60) takes care of iron 

saturation while that of equation (3*63) ignores iron saturation. From 

Fig^3»9 it can be seen that the coil leakage factor is high for small gaps

between the coil surface and the disc. For a small coil current, the coil

leakage factor approaches unity at a faster rate as compared to higher coil 

current. Decreasing the coil current from 1.5 to 0.5 mA, the coil leakage 

factor drops from about 77 to 10 for a working gap of 0.03 mm. As the disc

displacement is increased beyond 0.30 mm, the coil leakage factor tends to
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unity for all coil currents. It can therefore he concluded that equation 

(3*63)♦ which ignores iron saturation, may he used to estimate the magnetic 

force-stroke characteristics of a flat-faced type electro-magnetic coil for 

disc displacement greater than 0.30 mm. However, as most disc displacements 

are helow this value, equation (3*60) should he used to estimate the 

magnetic characteristics. For low magnetic hysteresis, the disc should not 
he operated close to the coil surface. Hence the correct selection of 

holding gap is critical in the valve design.

The steady-state theoretical fluid and electro-magnetic characteristics of 

the douhle-disc valve have heen presented in this chapter. The experiments 

carried out, on a physical model of the valve, to validate hoth the 

theoretical fluid and electro-magnetic models are presented in the next 

chapter.
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oso = 31.65 mm DNLD = 4 .57 mm
TO = .51 mm SNTL = 15.87 mm
HGS = .13 mm PS = 105.0 barHGO = .51 mm CR = .00 mm
SND = 2.54 mm ROOD = 3 .18 mmSNLO = 3.05 mm 0N0 = 3.81 mm
4.30.

a  3.66.

^  3.02.

S  2.38.

1 .74.

.20 .60
NON-DIflENSIONAl DISC OISPLACEflENT

Fig. 3«2 Typical fluid forces acting on a single disc valve.

DSO = 31.65 mm DNLD = 4.57 mmTO = .51 mm SNTL = 15.87 mmHGS = .13 mm PS = 105.0 barHGO = .51 mm CR = .00 mmSNO = 2.54 mm ROOD = 3.18 mmSNLO = 3.05 mm DND = 3.81 mm

- I .26.

.20 .40 .60
NON-OIHENSIONAl DISC OISPLACEflENT

Fig. 3*3 Typical net fluid forces acting on a double-disc valve.
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DSD = 31.65 mm DNLD = 1.57 mmTD = .51 mm SNTL = 15.87 mmHGS = .13 'mm PS = 105.0 barHGD = .51 mm CR = .00 mmSND = 2.51 mm RODO = 3.18 mmSNLO = 3.05 mm 0N0 = 3.81 mm
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4* Experimental investigation of fluid forces and electro-magnetic effects.

4*1 Introduction

A disc valve operation is controlled by the complex interaction between the 

fluid and electro-magnetic forces. To gain an insight into the valve 

performance, these forces must be clearly studied. It is the purpose of 

this chapter to discuss the tests carried out to determine both the fluid 

and electro-magnetic force characteristics of the valve. The description of 

the physical model of the disc valve (test valve) and the associated test 

rig are presented. The test valve has a single disc in a single chamber and 

is intended to simulate both single and double-disc valve flow patterns. 

The rig has the facility for allowing radial flow across the disc faces in 

both directions to simulate flow into and out of the load port and into the 

drain connection. The experimental data obtained will be used to compare 

with the theoretical results of Chapter 3*

4.2 Fluid mechanics of valve.

4*2.1 Description of fluid force test-rig

The fluid force test-rig has a hydraulic power pack unit, Hounsfield 

Tensometer, the test valve, air cooling fan and hydraulic pipe network that 

includes two turbine meters with overlapping flow ranges. The fluid force 

test-rig is schematically shown in Figure 4*1 • The essential components of 

the test-rig are shown in Figures 4.2 and 4*3*

The hydraulic power pack has a pump (27) which is driven by 3 phase 

induction motor, relief valve/pressure regulator (26), pressure gauge (35) 

and oil temperature indicator. The electric motor is mounted on top of the 

unit and is connected to the pump via a shaft. The pump, relief valve and 

the pressure regulator are totally submerged in the oil reservoir. The
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hydraulic power unit have one supply line and two return lines. When there 

is no demand, the relief valve circulates the oil in the reservoir. The 

pressure regulator (26) set the working pressure. The hydraulic power unit 

can supplying oil up to a pressure of 105 bar. An electric air cooling fan 

(28) driven by an induction motor cool the oil in the hydraulic power unit. 

With the aid of this air fan, the oil temperature was kept constant within 

+2°C. The oil from the hydraulic power unit is filtered before going to the 

test valve (1 ).

The exploded view of the test valve is shown in Figure 4*4* The valve has 

two major components:- (a) valve end-cover and (b) valve main body. The 

valve end-cover consists of an electro-magnetic coil, supply nozzle tube 

and oil supply fittings. The valve main body has a disc chamber, cross 
drilling for both drain and load ports and axial hole to incorporate a rod 

(10) and a linear bearing (11). The rod one end is screwed into the central 

hole of the disc while the other end is attached to a proof-ring type force 

transducer [64]* The force transducer measures the forces acting on the 

disc. The disc displacement is recorded by a dial gauge through a beam 

attached to a spindle linking the force transducer and the operating screws 

of the Hounsfield Tensometer. The beam is rigidly attached to the spindle 

with two nuts. Figure 4*5 shows the internal view of the disc chamber. The 

disc chamber houses the disc and it incorporates drain seats and radiail 

slots 'to collect fluid to annular groove in the valve end cover. The 

assembled test valve is mounted on the Hounsfield tensometer as shown in 

Figure 4*3* Care is taken to ensure that the disc, rod, force transducer, 

and the operating screws are aligned to avoid unnecessary frictional 

forces.

Depending on the port connections, the test valve could be used to 

reproduce both single and double-disc valve configurations. For a single­
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disc valve configuration, the disc chamber port acts as a drain port and 

for a double-disc valve configuration, the disc chamber port acts as load 

port and the other port in the test valve main body acts as drain port* In 

this work, only the double-disc valve configuration is considered. Hence 

the chamber port or load port is blocked and the drain port connected to 

the turbine flow meter hydraulic pipe network.

The flow meters pipe work incorporates a relief valve (29) to act as a 

safety valve against accidental closure of the two directional valves 

associated with the turbine type flow meters used. The output of the 

flowmeter pipe network is return to the hydraulic power unit. The relief

valve is also connected to a spare return line in the unit (see

Figure 4*2). The linear bearing in the valve reduces the frictional force 

associated with the movement of the rod. As a result there was a small oil 

leakage through the bearing and this is collected through a flexible tubing 

to a point upstream of the turbine meters. The turbine meters thus measure 

the total flow through the valve.

4.2.2 Experiment 4.2.1 : Fluid characteristics of test valve

The aim of this experiment was to determine the fluid forces and the 

pressure-flow characteristics in a floating disc chamber. The main physical 

dimensions of the test valve were as follows:

supply tube length = 1 9*05 mm, Supply nozzle diameter = 2.54 mm

Supply nozzle land diameter = 3*05 mm, Supply nozzle projection = 0.13 mm 

Disc diameter = 25*27 mm, Disc thickness = 4*06 mm

Total disc travel = 0.51 mm, Rod diameter . = 2.38 mm

Drain nozzle diameter = 3*81 mm, Drain nozzle land diameter = 5*66 mm
Drain nozzle projection = 0.38 mm, Drain tube length- = 19*05 mm

After setting-up the test-rig as shown in Figures 4*1, 4*2 and 4*3» the
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aero disc displacement which was the position where the disc touched the 

supply nozzle land was established. The zero position was established as 

follows:
(a) The operating handle (16) was adjusted clockwise or anti-clockwise 

until there was free movement of the disc (6) as indicated by the dial 

gauge (17).

(b) The force transducer amplifier (20) was zeroed.

(c) The operating handle was turned anti-clockwise until there was no more 

changes on the dial gauge reading but increased compressive force as 

read by the force transducer. This step ensured that the disc was flat 

on the supply nozzle land.

(d) The dial gauge pointer was set to zero.

(e) The operating handle was turned clockwise until the force reading was 

zero and the dial gauge reading was still zero.

The zero position of the disc could also be determined from the readings of 

the flow meter, the force transducer and the dial gauge. At zero position, 

the flow through the valve should be zero and there should be no changes in 

the dial gauge reading but a compressive force on the disc as a result of a 

static pressure force acting approximately across the supply nozzle area. 

The flow meter (31 ) is rated 1.5 to 15 GPM while (32) is rated 0.1 to 1.0 

GPM. This shows that the turbine meters were not well suited for low 

flow rates and as such the actual zero disc position could not be accurately 

determined from the flowrate measurement alone. For small disc 

displacements from either the supply or drain nozzle, the turbine flowmeter 

(32) was used for its low flow rating. The other turbine meter (31) was 

used in the middle range of the disc travel as more flow passed through the 
valve in this region.

After zeroing the instruments and establishing the zero disc position, the
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required supply pressure was set with the aid of the pressure regulator 

(26). The disc was given an incremental displacement step of 0.03 mm with 

the operating handle (16) of the Hounsfield tensometer. At each disc 

position, the fluid force acting on the disc, the various pressures, 

flowrate and the disc displacement were recorded. Throughout the test, care 

was taken to avoid reversal of disc displacement as the frictional forces 

associated with the test rig were not the same in both directions.

Figure 4«6 shows the comparison between computed and experimental fluid 

forces for a single disc moving in a chamber with a supply nozzle land 

diameter of 3*05 mm. This value of land diameter (about 1.2 times the 

supply nozzle diameter) gave a good compromise for fluid forces, flow 

pattern and pressure balance in the disc chamber. For a supply pressure 

greater than or equal to 56 bar, it was found that the disc and the rod 

assembly were pushed towards the drain seat as the disc approached its mid­

stroke. A lock nut mechanism (see Figure 4*1) was incorporated in the test- 

rig to prevent this from happening but this may have increased the 

frictional force of the rig and thus caused the measured fluid forces to be 

more than that predicted.

For a larger land diameter, cavitation was prominent and this caused 

reduction in fluid forces, flowrate and pressure. In addition, negative 

fluid forces may be experienced when the distance between the disc and the 

nozzle tip was increased. Fig.4.7 shows a comparison between a cavitating 

and non-cavitating fluid forces acting on a single disc moving in a chamber 

with supply pressure of 100 bar. The supply nozzle diameter used with the 

non-cavitating valve was 3*05 mm while that of the cavitating valve was 
3*56 mm. The two fluid force curves followed the same trend until the disc 

displacement was about 0.15 mm where cavitation was observed for the larger 

land diameter. From this point onward, it can be observed from the figure
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that the cavitating fluid forces are much lower than the non-cavitating 

values. Negative fluid forces occurred for the cavitating valve for disc 

displacement between 0.25 mm and 0.40 ram from the supply nozzle tip. This 

negative fluid force is not desirable in a double-disc valve operation. 

Cavitation is a phenomena associated with a local pressure in a hydraulic 

system falling below the vapour pressure of the fluid used in the system. 

When cavitation occurred in the test valve, violent noise was generated as 

the vapour cavities collapsed on entering regions of higher pressure. The 

presence of cavitation can lead to erosion of the valve lands and it can be 

avoided by decreasing the upstream pressure or by increasing the back 

pressure. The cavitation might be caused by any of the following reasons: 

(1) flow restriction in the nozzle land region (i.e. if nozzle land 

diameter is too large), (2) presence of air in the system and (3) the local 

pressure in the valve chamber falling below the vapour pressure of the oil 

used. The third reasons could be minimised by either decreasing the supply 

pressure or increasing the back pressure. For best valve performance it is 

preferable if the cavitation phenomena can be eliminated through the valve 

design instead of altering the system pressure. Hence the flow restriction 

must be considered and the supply nozzle land diameter must not be greater 

than approximately 1.2 times the supply nozzle diameter.

From the measured supply pressure Ps, chamber pressure Pc and drain 

pressure Pp, the non-dimensional load pressure (PQ - Pp)/(PS - Pp), is 

computed. The disc displacement is non-dimensionalised with respect to 

total disc travel. The resulting load pressure curves are shown in Fig.4.8. 

The figure shows the blocked-load pressure sensitivity and there is a good 

agreement between the measured and the predicted pressures. Figure 4*9 

shows the flowrate characteristics of the disc valve as the distance 

between the supply nozzle tip and the disc is increased. The leakage flow 

is a maximum at approximately the mid-position of the disc travel and
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decreases rapidly with disc displacement away from this position because 

the discs modulated the valve orifices. These curves are a measure of the 

hydraulic loss. From the figure, it can be seen that the predicted and the 
measured flow rates agree reasonably well.

4*2.3 Disc valve discharge coefficients

In the literature little information could be obtained on discharge 

coefficients associated with a floating disc which is totally submerged in 

a fluid and also communicating with both inwards and outwards flows. Some 

of the published work deals with compressible air flow and, in many, 

compressibility effects mask other effects. In other papers some important 

parameters are not specified or one is not sure if the valve discharge is 

into air or is submerged.

Oki [29] was working mainly with a disc valve discharging water into air 

but he also quotes a few results for submerged flows. The ratio of the disc 

diameter to the supply nozzle used range between 1.2 to 1.55* Takenaka et 

el [2S] investigated the flow and force characteristics of disc valves. The 

valves used had an infinite land and discs were 1.5* 2.5 and 3*0 times the 

valve nozzle diameter. He has observed that at small valve openings the 

flow may be considered laminar and increases to a maximum and then as 

the gap is further increased it decreases, the rate of decrease reducing 

as the valve opening increases. Feng [65] shows relationship between and 

Reynolds number, Re, for a valve with large land but not all parameters 
were specified. It appears from his results that the valve land has not 

much effect, which is doubtful because of all other results and that 

obtained from this present work. Hagiwara [53] carried out both theoretical 

and experimental investigations into radial outwards and inwards flows with 
sharp and rounded entry corners.
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From the measured supply pressure Ps, chamber pressure Pc and drain 

pressure Pj) and the flowrate Q through the valve , the valve discharge 

coefficients can be calculated from an orifice type of flow equation. The 

supply nozzle side discharge coefficient is given by

Q
CDns = ;  .■■■ ■ (4.1 )

rTDns X /2(PS - P0)7 e
Similarly the drain nozzle discharge coefficient is given by

Q
CDnD =  ---- ;------ -— ---- — ■= (4.2)

(tD - x ) /2(PC - PD)
/ e

The corresponding Reynolds number based on the nozzles geometry are given 

by the following equations: 

for supply nozzle

4 Q
®ens = (4*3)

^ V D ns
and for drain nozzle

4 Q
EenD = —  ----  (4-4)

TTVD^

Figures 4.10 and 4-11 show the relationship between discharge coefficients 

and Reynolds number with respect to the supply nozzle and the drain nozzle 
respectively. From the Figures it can be seen that the discharge 

coefficients first increase with increase in Reynolds number and remain 

constant at a value close to 0.45 • The maximum Reynolds number encountered 

are 1500 and 1000 for the supply and drain nozzles respectively. Fig.4-12 

shows a typical relationship between discharge coefficient and Reynolds
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number Re for a constant system pressure. The discharge coefficient first
\

increases until the Reynolds number is maximum which corresponds also to 

maximum flow through the valve. This occurs when the disc is in mid­

position of its stroke. As the disc approaches the drain nozzle from the 

mid-position the valve flowrate decreases and consequently both the 

discharge coefficient and the Reynolds number decreases. The rate at which 

the discharge coefficients decrease with the Reynolds number in this region 

appears to be almost constant. For a small disc displacement, increases
O '

with Re to a maximum value (curve AB). As the disc displacement is further 

increased, decreases to a constant value near the mid-stroke of the disc 

with increase in Re (curve BC). Further increase in disc displacement (i.e. 

disc getting closer to drain nozzle) both and Re decreases rapidly at an 

approximate constant rate to zero (curve CA).

From Figure 4*12, it can be seen that Cd-Re relationship is complex. To 

utilise the raw data, empirical formulae were developed to express the 

discharge coefficient as a function of both system pressure and disc 

displacement. A good agreement was obtained between the empirical formulae 

and the experimental data. It has been reported by J.F. Blackburn [ 

according to the work of V.A. Khokhlov, "hydraulic loss and flow discharge 

coefficients through the orifices of a cylindrical spool-valve hydraulic 

performance mechanism" Avtomat i Telemekh, Vol 16, No. 1 ,pp.64-70, 1955 ] 

that discharge coefficients varies not only with Reynolds number but with 

system pressure. Since flowrates varies with disc displacement, it would be 

expected that discharge coefficient would also vary with disc displacement. 

The discharge coefficient obtained from experiment 4*2.1 was found to vary 

with nozzle geometry and supply pressure. A polynomial of the form

CDns = *0 + a1 z + a2 22 

was fitted to the supply nozzle discharge coefficients for a given supply
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pressure, where Z = x / Tp, is the non-dimensional disc displacement with 

respect to the total disc travel. The resulting values of aQ, a-j and a2 

are given in Table 4.1 for various supply pressures.

Table 4*1 Supply nozzle coefficients values

P8
(bar)

*0 a1 a2

14*0 0.161 1.559 -1.592
28.0 0.156 1.212 -1.521

42.0 0.308 0.716 -0.951
56.0 0.372 0.559 -0.778

70.0 0.376 0.541 -0.788

From Table 4.1 it can be seen that the coefficients slq, a-j and a2 vary 
with supply pressure. Assuming these coefficients have linear relationships 

with supply pressure, we can represent the supply nozzle discharge 

coefficients in the form, .

CDns = (A00 + A01Ps) + <A10 + A11Ps^Z + (A20 + A21Ps^z2 (4*6) 

This equation applies for Z ^ 0.0, 1.0.

The unknown coefficients Aqq ... A'2<| were determined using a statistical 

matrix regression analysis routine. The values of the unknown coefficients 

are as follows
*

Aqq = 0.08080 A01 = 0.000323 r  = 0.87
A10 - 1.56610 A-j -j * -1.1545E-03 r  * 0.89

A20 * -1*7273 A21 = 1.0755E-03 r  = 0.89

Similarly, the drain nozzle discharge coefficient can be express in the 
form
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cDnD = *0 + b1 z + B2 z2 (4-7)

The resulting experimental values of bQ, b-j and ^  ^or the various supply 
pressures are shown in Table 4*2.

Table 4.2 Drain nozzle coefficient values

Ps
(bar)

*0 *1 V

14.0 -0.031 1.916 -1.824
28.0 0.067 1.462 -1.161

42.0 0.131 1.185 -0.947
56.0 0.241 0.881 -0.871

70.0 0.243 • 0.888 -0.883

Again the coefficients b*s are found to vary with supply pressure and the 

drain discharge coefficients can be expressed in a polynomial of the form

cDnD “ (B00 + B01Ps^ + (B10 + B11Ps^Z + (B20 + B21Ps^z2 (4*8)

This equation applies for Z f 0.0, 1.0.

The unknown coefficients Bqq ... B21 were determined using a statistical 

matrix regression analysis routine. The values of the unknown coefficients 
are shown below.

Bqo “ -0.08640 B01 = 0.00036 r = 0.95
B10 = 2.05750 Bn  = -0.00132 r = 0.92

b2q = ~1•78880 B21 = 0.00109 r = 0.73

The values of Aqq - A21 and Bqq - B21 as obtained in these forms were used 
in the steady-state theoretical model of the valve in Chapter 3* It should 

be worth noting that the discharge coefficients as obtained from experiment 

4.2.1 used in this polynomial fittings did not include that obtained from
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supply pressures greater than 70 bar because cavitation was encountered in 

the valve*

The discharge coefficients of the supply and drain nozzles are shown in 

Figures 4*13 and 4*14 respectively as a function of non-dimensional disc 

displacement. From Figures 4*10 and 4*11, the transition Reynolds number R-j. 

is about 200. Orifice flow is laminar for Reynolds number Re < R^ with 
flowrates directly related to pressure drop. In the vicinity of R̂ ., both 

inertia and viscosity are important. For Re > R^, the flow can be treated 
as turbulent and described by the orifice equation (4*1) or (4*2). The 

orifice equation is used for all situations with a total disregard for the 

types of flow that can be encountered. Hence, the discrepancy between the 

measured discharge coefficient and that obtained from the derived empirical 

formulae as noted in Figs 4.13 and 4.14 near transition Reynolds number 

where disc displacement from both supply and drain nozzles is small.

The discharge coefficient results can only be compared qualitatively 

because the geometry of the free-floating disc valve is different from the 

existing flapper and disc valves in the literature. For example, the disc 

diameter to the supply nozzle ratio varies from one valve to another. That 

used by Takenaka et el [28] range from 2.5 to 3»5* In general, the flapper 

valve ratios are less than 5*0 compared to the disc valve investigated 

which has a minimum ratio of 10.0 . Clearly, the larger the diameter ratio, 

the smaller the discharge coefficient.

4.2.4 Experiment 4.2.2 : Repeatability of fluid force measurements.

The test procedure was the same as in experiment 4.2.1 except that the 
supply pressure was kept constant at 105 bar. The fluid force measurements 

were taken at two different periods and the results are shown in Figure 

4*15* The two fluid force curves show that the fluid force measurements are
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consistent with disc displacement. This reflect the repeatability of the 

fluid force measurements from the test-rig.

4-2.5 Experiment 4*2.3 s Effect of back pressure on fluid force 
characteristics.

The supply pressure was kept constant at 105 bar and the system back 

pressure was adjusted with the aid of a needle valve (34) {see Fig.4.1 } 

situated downstream of the drain port (8). The disc zero position was 

determined as in previous experiments and the needle valve was fully- 

opened. The disc was given an incremental displacement in step of 0.03 mm 

from the supply nozzle land. The disc position was recorded by a dial gauge 

(17) and the corresponding fluid forces, pressures, and flow rates were 

registered by the appropriate instruments. The experimental procedure was 

repeated with the needle valve 87 and 67 per cent opened.

The results of varying the back pressure of the test valve on the fluid 

force curves are shown in Figure 4*16. From the Figure it can be seen that 

increasing the back pressure raises the fluid force in the region where the 

curve exhibits a minimum. The negative fluid force readings that occur 

within the region of cavitation in the valve disappear with increasing back 

pressure. This result suggests that a careful selection of the drain 

geometry will alter the fluid force characteristics of the valve. This will 

be discussed in Chapter 5 where the effect of the various parameters such 

as rod diameter, drain nozzle diameter, nozzle land diameter, etc are 

investigated based on the steady-state theoretical representation of the 

disc valve in Chapter 3*

4*3 Electro-magnetic force characteristics

In this section, the electro-magnetic characteristics of the electro-
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magnetic coil used in the test valve were determined experimentally* Two 
different types of discs were used. They were: (1) a disc of 3*61 mm

thickness with stops and (2) two flat discs of 2*54 mm and 4*06 mm

thickness without stops. The stops were to prevent the disc from adhering 

to the coil surface otherwise the magnetic attraction force and the 

remanence would be too large. The discs are shown in Figure 4.17. The main

dimensions of the electro-magnetic coil were as follows:

Effective coil outside diameter s 25.40 mm

Effective coil length = 15*88 mm

Total number of coil turns = 420 turns

Wire diameter = 0.22 mm

Coil Resistance =1 1 . 2  ohm

4*3*1 Experiment 4*3*1 s Electro-magnetic force characteristics of a 
coil using disc with stops.

The apparatus used is shown in Figure 4*3 except that the hydraulic pipe 

network associated with the flow-force test rig were removed. The electro­

magnetic force were determined with the disc in still air. The current 

level of the coil was provided by a special four-level switching amplifier 

(see Section 2.3*1 of Chapter 2 or appendix A2). The disc used had a 

diameter of 25*35 mm and therefore had a diametric clearance of 0.05 mm 

between the disc and the chamber diameter. The disc had stops of 3*61 mm 

thickness. The magnetic force acting on the disc was measured by the force 

transducer and the associated force transducer amplifier described in 

experiment 4-2.1. The electro-magnetic coil (5) used in the test valve (1) 

is shown in Figure 4*1. The wire leads were brought out to a BNC socket 

(2 ).

After setting up the apparatus, the zero position of the disc was 

established in the same manner as for the fluid characteristics
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\
experiments. The required current level was selected after zeroing the 

force transducer and the dial gauge pointer. The disc was given an 

incremental displacement in steps of 0.03 mm with the aid of an operating 

handle (15)* At each step, the disc displacement and the force acting on 

the disc were recorded. On reaching the maximum disc travel, the current 

was switched off and the disc was returned to its zero position before 

changing the current level of the coil. The frictional forces associated 

with the test rig for a positive disc displacement (i.e. disc moving away 

from the supply nozzle land) was greater than that of negative disc disc 

displacement and as such the tests were conducted without any reversal in 

disc displacement. The experiment was conducted for the coil current set at 

500, 1000 and 1500 mA respectively and the results are shown in Fig.4.18. 

From this figure, it can be seen that the electro-magnetic force decreases 

almost inversely with an increase in disc displacement. The electro­

magnetic force-stroke curves exhibit some local hump as the disc moves 

passed the mid-position of its stroke. This local hump is consistent as the 

coil current is increase from 500 to 1500 mA. The local hump which is more 

pronounced with large coil current, could be attributed to any of the 

following reasons: (a) the stops on the disc, (b) a possible jamming of the 

disc that might result from small clearance between the disc and its 

chamber and (c) the rod linking the disc to the force transducer might be 
bent and thus caused a frictional force between the rod and the linear 

bearing fitted into the valve body.

4*3»2 Experiment 4.3.2 : Examination of the local hump associated with 

the disc with stops.

To verify the causes of the local hump associated with the electro-magnetic 

force-stroke characteristics of a coil using a disc with stops, the 

diametric clearance between the disc and its chamber was increased to 0.13
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mm. In addition, the rod was replaced with a newly fabricated one to 

eliminate any unevenness in the rod. Experiment 4.3*1 was repeated and the 

results were the same.

4.3.3 Experiment 4*3*3 1 Electro-magnetic characteristics of coil using 

flat discs without stops.

In this section, two flat discs without stops were used to examine their 

magnetic characteristics. The discs were of thickness 2.54 and 4.06 mm 

respectively and the test procedure was the same as in experiment 4.3*2 

except that flat discs without stops were used. The electro-magnetic forces 

were determined for coil currents from 500 to 1500 mA in steps of 250 mA 

and Figure 4.19 shows the results of the 2.54 mm disc thickness. The 

results of the 4.06 mm disc thickness are shown in Figure 4.20. From the 

two Figures it can be seen that the electro-magnetic force-stroke 

characteristics follow an inverse-square law for the flat discs without 

stops. The chained lines in the figures are the computed electro-magnetic 

characteristics of the coil based on the highly non-linear equations (3*60) 

through (3*82) of Chapter 3* The theory uses design data concerning the 

coil turns, cross-sectional areas of the core, magnetic lengths, coil 

permeances, flux densities and flux intensities of the various part of the 

magnetic circuit. The magnetic properties are obtained from the 

magnetisation curve for REMKO magnetic iron. For a given current the 

magnetic force associated with the thicker disc is greater than the thinner 

disc. As the disc displacement increases from the supply nozzle land, the 

magnetic force follows the inverse-square law to a point close to the mid­

position of the disc total travel. For the next approximately 0.15 mm disc 
displacement, the magnetic force is constant. After which it drops sharply 

to follow the inverse-square law again. The position where the magnetic 

force becomes constant is seen to increase with current. Compared with the
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disc with stops, the initial magnetic force or the sealing-in force of the 

flat discs are lower than the discs with stops* This is because the stops 

provide an additional flux path and thereby generate additional magnetic 

force to cause the observed local hump. A flat disc has no local hump. 

Owing to the complex nature of the equations governing the magnetic 

characteristics of the coil, simpler empirical formulae are sorted from 

the test data to assist the designer without resulting into tedious 

computations.

4*3*4 Empirical formulae

To make it possible for the designer to obtain for a specific electro­

magnetic flat face coil the force - stroke characteristics for a given 

coil size, empirical formulae are developed from the series of test 

measurements carried out. Prom the experimental results, it was observed 

that the magnetic force -stroke characteristics for the flat discs without 

stops obeyed an exponential law. Expressing this relationship in a 

mathematical form we have

Fm = a ebX (4.9)
where Fm is the electro-magnetic force, X is the disc displacement from the 

supply nozzle land and a,b are coefficients that depend on current and disc 

thickness

To obtain coefficients 'a* and 'b', regression analysis are used. The 

resulting values of 'a' and 'b' and the determinating coefficient r for the 

2.54 and 4*06 mm disc thickness are shown in Tables 4*3 and 4*4 respective­

ly. The coefficient 'a' was also related to the current input to the coil 

in the form given by equation (4*10)
a = K 1° (4.10)

Using regression analysis, the values of K and C for the different discs
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used are shown in Table 4*5*

Table 4*3: Coefficients a and b for 2.54 mm disc thickness

Current

(mA)

a b r

500 81.060 -4.527 0.998

750 117.790 -3.994 0.992

1000 166.690 -3.478 0.999
1250 182.770 -2.978 0.999
1500 211.98 -2.631 0.995

Coefficients a and b for 4*06 mm disc thick:

Current
(mA)

a b r

500 133.290 -7.6145 0.951
750 168.740 -5.2080 0.983
1000 202.740 -4.5633 0.982

1250 225.300 -3.6765 0.993
1500 237.840 -2.8528 1.000

Table 4*5: Coefficients K ;and C

Disc thickness K 

T (mm)

C r

2.54 0.3397 0.88470 0.984

4.06 4.6538 O .54213 0.990

The exponent b in equation (4*9) has a linear relationship with the coil 

input current and can be written as

b = D + E I  (4.11 )

The values of D and E are shown in Table 4.6.
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Table 4*6: Coefficients D and E

96

Disc thickness D E r

T (mm)

2.54 -5.4448 1.9232E-03 0.994
4.06 -9.2050 4.42196E-03 0.930

Prom Tables 4*5 and 4*6, it can be seen that the coefficients K, C, D and E 

are functions of disc thickness used as an armature in a flat-faced 

electro-magnetic coil. The relationships between the disc thickness T and 

each of the coefficients K, C, D and E are expressed in equations (4*12) 

through (4*15) respectively using regression analysis.
K = 1.891 x 10"5 t 5.5688 (4.12)

C = 2.3369 / T1•°42 (4.13)

D * 0.8222 - 2.46732 T (4.14)

E =3.6887 x io“4 T1,77146 (4.15)

From equations (4*9), (4.10) and (4*11) the electro-magnetic force - stroke

characteristics of the flat face coil used in the disc valve can be 

expressed in the form

Fm = K IC e^D + E I X̂ (4.16)

This empirical formula gives good agreement between the various series of

tests for electro-magnetic coils of the flat-face magnet type (see Figs.

4*21 and 4*22) except for flat section of curves. With the aid of the

Reynolds law of similarity, this relationship can be extended to cover 

other electro-magnetic coil sizes. It must be noted that these empirical 

formulae are not used in the theoretical model of the valve. They only 

serve as a quick method of calculating the electro-magnetic force-stroke 

characteristics of a flat face coil, given the coil current, disc thickness

A. Usman AUGUST 1984



Experimental magnetic and fluid mechanics 97

and disc displacement.

With the aid of the empirical formulae, the effect of disc thickness on 

magnetic force-stroke curves for a given coil current and coil size were 

computed. Figure 4*23 shows for coil current of 500 mA the effect of 

varying the disc thickness from 2.5 to 5-0 mm on the force-stroke curves. 

From the Figure it can be seen that the force-stroke curves do not have 

significant change for disc thickness less than about 3*5 mm. For disc 

thickness greater than 3*5 mm, it can be seen that the initial force or the 

sealing-in force increases with disc thickness. However, this advantage 

must be offset against the low inertia of the thinner discs which improves 

the dynamic performance of the valve. For the disc thickness less than 3*5 

mm it can be seen from the figure that the force levels fall off slowly as 

the distance between the coil surface and the disc face is increased. On 

the other hand, the force levels of disc thickness greater than 3*5 mm fall 
off quickly with disc displacement. This could be explained from the flux 

across the working gap of the thinner discs which is saturated while that 

of the thicker discs have negligible flux losses when they are operating 

close to the coil surface.

This chapter has validated both the theoretical fluid and electro-magnetic 

models of the disc valve presented in Chapter 3. The next chapter will be 

dealing with some design considerations for the double-disc valve based on 

the theoretical and experimental results of Chapters 3 and 4*
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•TANK

(1) Test valve (19)

(2) Coil socket (20)

(3) Supply port (21)

(4) Supply nozzle (22)

(5) Electro-magnetic coil (23)

(6) Disc (24)

(7) Load port (25)

(8) Drain port (26)

(9) Drain seat (27)

(10) Push rod (28)

(11) Linear bearing (29)

(12) Fbrce transducer (30)

(13) Lock nut (30

(14) Quick return wheel (32)

(15) Operating screws (33)

(1 6 ) Operating handle (34)

(17) Dial gauge (35)

do) Beam (36)

Digital voltlmeters 

Force transducer amplifier 

Piezo-electric pressure transducer 

Amplifier for item Wo. 21 

Supply pressure transducer 

Amplifier for item t!o. 23 

Filter

Pressure regulator/relief valve 

Pump

Electric air fan

Relief valve

Flowmeter amplifier

Turbine meter type B/^"/l5 Gftf

Turbine meter type B/j"/l GPM

Directional valves

fleedle valve

Pressure gauges

Flexible tubing

Fig. 4*1 Schematic lay-out of fluid force test-rig.
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Fig.4.7 Effect of cavitation on fluid forces.
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A PS = 1 1 .0 bar
7 PS = 28.0 bar
+ PS = 1 2 .0 bar
X PS = 56.0 bar
□ PS = 70.0 bar

2 0.

.6000 20 .10 80 1.00
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Fig. 4*8 Load pressure curves for 3*05 mm land diameter.
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.60.20 .10

NON-OIMENSIONAl LOAO PRESSURE

Fig. 4*9 Flowrate curves for 3*05 mm land diameter.
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4 PS = 11.0 bar7 PS = 28.0 bar+ PS = 12.0 barx PS = 5S.0 bar0 PS = 70.0 bar
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Fig. 4*10 Discharge coefficient as a function of Reynolds number 
(supply nozzle side).
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Fig. 4*11 Discharge coefficient as a function of Reynolds number 
(drain nozzle side).
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A PS = 42.0 bar
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Reynolds Number (Re)

Fig. 4-12 Typical relationship between supply discharge coefficient and 
Reynolds number as a disc moves through the disc chamber.
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• • - a PS = 11.0 bar
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- - - + PS = 12.0 bar
— - — X PS = 56.0 bar
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Fig. 4»13 Discharge coefficient as a function of disc 
displacement (supply nozzle side).
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Fig. 4.14 Discharge coefficient as a function of disc 
displacement (drain nozzle side).
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Fig. 4*15 Consistency of fluid force measurements.
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Fig. 4.16 Effect of back pressure on fluid forces.
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.18 Electro-magnetic force-stroke curves (3*61 mm disc 
thickness with stops).

4 CRNT = .50 A
V CRNT = .75 A
+ CRNT = 1.00 A
X CRNT = 1.25 A
□ CRNT = 1.50 A
XI023.30_

1.98.
U J<_JocoLU
CJ
►—
UJ2CD*<C \  ^ S X  X

,00 .13 .27 10 51 .87
DISC OISPLACEnENT (mm>

19 Showing the comparison of experimental and theoretical 
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Fig. 4.20 Comparison of experimental and theoretical magnetic 
force-stroke curves for disc without stops of 4«06 mm thickness.
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Fig. 4*21 Empirical Magnetic force - stroke curves for disc without stops 
of 2.54 mn thickness.
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Fig. 4*22 Empirical Magnetic force - stroke curves for disc without stops 
of 4.06 mm thickness.
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Fig. 4*23 Effect of disc thickness DS? on magnetic force-stroke 
curves for coil current of 500 mA.



CHAPTER 5

DESIGN CONSIDERATIONS FOR THE DOUBLE-DISC VALVE



Design considerations for the double-disc valve 113

5. Design considerations for the double-disc valve 

5*1 Introduction

In Chapter 4, the fluid mechanics of the disc valve was established from a 

special flow-force rig constructed to determine the complex fluid forces 

acting on a single disc. The rig had the facility for allowing radial flow 

across the disc faces in both directions to simulate flow into and out of 

the load port into the drain connection. The fluid forces obtained from the 

experiment agreed well with that of theoretical prediction in Chapter 3*

Two different supply nozzle land diameters were used. They were in ratios 

of 1.2 and 1.4 to the supply nozzle diameter respectively. Cavitation was 

prominent with the larger land diameter and occurred for disc displacements 

from the supply nozzle tip of less than about 30 per cent of the total disc 

travel. The presence of the cavitation caused a reduction in fluid force, 

flow rate, and load pressure. The cavitation was due to the flow restriction 

in the nozzle land region as decreasing the supply nozzle land diameter to 

nozzle diameter ratio to a value less than 1.2, reduced the occurrence of 

cavitation. Increasing the back pressure or decreasing the system pressure 

tended to reduce the onset of cavitation. However, altering the system 

pressure is not the best compromise and in good valve design the flow 
saturation or restriction should be considered in selecting the valve 

variable geometries and this is the subject of this chapter.

With the smaller supply nozzle land diameter, negative flow-forces. were 

measured for disc displacements in the region of 25 to 45 per cent of total 

disc travel for a supply pressure of 105 bar. This could be owing to the 
large pressure drop across the drain side of the disc. The flow restriction 

may be eliminated by increasing the drain holding gap as noted in the 
geometrical equations derived in this chapter.
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Tests, using the same rig as for the flow-force experiments, were made 

to measure the electro-magnetic force induced in the disc for various 

current levels in the coil and also for the force variation with distance 

of the disc from the coil face. This is particularly important for 

determining the correct holding gap between the coil face and the nozzle 

abutment for the disc. Theoretical predictions agree well with electro­

magnetic force data for a single disc thus allowing the theoretical model 

to be used with some confidence for determining suitable values for the 
main geometric variables of the double-disc valve.

In this chapter some geometrical design considerations for the double-disc 

valve will be present together with their effect on the double-disc valve 

characteristics. The theoretical model of Chapter 3 conveniently allows any 

of the main geometric parameters to be varied independently.

5•2 Some geometrical design considerations

5*2.1 Geometrical relationship between a disc and its chamber

In selecting the clearance between a disc diameter and its chamber 

diameter, the following points were considered: (i) Thermal expansion of

the disc material and (ii) Possible jamming or tilting of the disc inside 

its chamber.

(a) Thermal expansion

For a given temperature rise, dO, the expansion, dD, on the disc diameter 

is given by:

dD = 9c.D.d0 (5*1)

where 9C is the coefficient of linear expansion of the disc material, D is
the disc diameter and dQ is the rise in temperature.

To avoid any jamming of the disc in its chamber, dD must be less than the
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diametric clearance between the disc and its chamber. For REMKO magnetic 
iron used for the disc, 9C = 17x10“*V°K and assuming a temperature rise of 

35°K and disc diameter of 31*75 mm approx., the maximum expansion on the 

disc diameter would be 0.02 mm and is therefore acceptible in comparison 

with the diametric clearance of approximately 0.1 mm.

(b) Disc tilting in its chamber

Figure 5*1 shows a disc PQRS jammed in its chamber KL14N. The aim of this 

section is to establish a necessary condition to avoid this effect.

From triangle PQR or PRS, it can be seen that if PR > CD, there will be no 

disc jamming in its chamber. In mathematical form we have

D2 + t 2 > CD2 (5.2)cl
where ta is the disc thickness, D is the disc diameter and CD is the 

chamber diameter.

For a flat and uniform disc, the distance SP must be equal to RQ and PQ 

parallel to RS. From triangle RPQ,

tan9t = RQ/PQ = ta/D (5-3)
where Q-j. = angle of tilt.

Also from triangle PLQ,

sin0t = PL/PQ (5.4)
From triangle PKS we have,

cos9t = KP/SP (5.5)
The chamber width is given by

KL = PQsinO^. + SPcosQ^. = Dsin9^ + tacos9̂ . (5.6)

From equation (5*3), Dsin9^ = tacos9i. which can be substituted in equation 
(5*6) to give
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KL = 2tacos9t (5.7)

For normal valve operation, the disc chamber is given by

KL = Tj) + ta (5.8)

where Tp is the total disc travel.

Equating equations (5*7) and (5*8) to get

Td = ta(2coset - 1) (5.9)
The disc chamber diameter is given by

CD = D + dD (5.10)

where dD is the diametric clearance between disc and its chamber.

From equations (5*2) and (5*3) we have

tan8.t = ta/(CD2 - ta2)1/2 (5.11)

Equation (5*11) gives the relationship between the disc thickness and 

maximum angle of tilt, for a given disc chamber diameter.

Using equation (5*10) in (5*2) gives
dD = CD - (CD2 - t 2 )1/2 (5.12)a

Equation (5*12) gives the maximum theoretical diametric clearance between 

the disc and its chamber for which tilting is likely to occur. From a 

practical point of view, the author recommends that a clearance of less 

than 40 per cent of that given in equation (5*12) should be used.

From equation (5*9), if there is no disc tilting, (that is 9t = 0), we have

•̂Dmax ^a (5*13)
In the valve design, Tj) is less than ta/10 owing to the limitation of 

magnetic force available over a long stroke. From the electro-magnetic 

properties of the disc, it is found that the magnetic force increases with 

disc thickness for a given displacement. From this discussion, it follows 

that the disc thickness controls both the magnetic force required and the 
tilting action of the disc. The thinner the disc, the smaller the diametric

A. Usman AUGUST 1984



Design considerations for the double-disc valve 117

clearance becomes. This will consequently increase the contamination 

sensitivity of the valve. The thicker the disc, the greater the disc 

inertia and the speed of response decreases. In selecting the disc 

thickness, therefore, there should be a compromise between the magnetic 

properties, the dynamic performance and the jamming possibilities of the 

disc in its chamber. For this valve design, the diametric clearance, dD, is 

about 0.3 per cent of chamber diameter of 31*75 mm and the disc thickness 

is about 7*5 times the total disc travel of 0.51 mm.

5*2.2 Effect of disc chamber geometry on valve leakage flow

Leakage flow for proportional action of the valve is defined as the flow 

through the valve, owing to underlap only, with the valve in its neutral or 

null position and under no load conditions. This flow is of the orifice 

resistance type, i.e., it is proportional to the port area and the square 

root of the pressure drop and is largely independent of temperature. Total 

leakage flow does, of course, include viscous losses which are a function 

of the design of the valve, diametral clearances and temperature. Figure 

5*2 shows the disc valve chamber in which the disc is in its null position. 

The aim of this section is to derive expressions for the geometry of the 

disc chamber with a view to limiting the valve null leakage flow.

In the neutral position, the leakage flow is governed by the supply nozzle 

curtain area, the drain nozzle curtain area and the annular space formed by 

the push rod and the drain nozzle diameters. The supply nozzle area must be 

greater than or equal to the maximum supply curtain area for the supply 

nozzle to act as an orifice. That is

Dn a > 4 T D (5.14)

To limit the null leakage flow it is desirable that the supply curtain area
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is greater than that of the drain. In mathematical form we have

Dns Xf1 i  DnD xf2 (5.15)

To further limit the leakage flow, the push rod diameter can be used to

restrict the flow through the drain port. That is

4 DnD Xf2 (5.16)

For effective valve design equations (5*14) through (5*16) should be 

satisfied. From Fig.5*2 it can be seen that the total disc travel Tp is 

given by
Td = Xf1 + Xf2 (5.17)

where Xf-j and X^2 are the respective supply and drain neutral gap between 

the disc surfaces.
The rod clearance Cr is given by

CR = Xf1 - X^2 (5*18)
The values of Dr and X ^  are governed by the maximum allowable leakage flow 

through the valve. The total null leakage flow is given by

f t
%  = 2 cDnDTTDnD Xf2 / ---- (5.19)

J  P

The total centre flow through the valve is useful because it gives the 

power loss at the null operating point. The valve total disc travel Tp 

should be as small as- possible to achieve largest pressure sensitivity and 

smallest null leakage. However, it must be large enough to permit passage 

of dirt particle sizes expected in the fluid. It may be of interest to 

tabulate some compatible values of the quantities involved in equations 

(5*1 4) through (5-19). Selecting five TD values, the results are given in 

Table 5.1* The null leakage flow is computed from (5*19) with Ps=70 bar, 

Cr =0.5 and tabulated to show the large increase in this flow with 
increasing total disc travel. It should be emphasized that Table 5«1
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contains recommended design values based on the use of equations (5*14) 

through (5*18) with an equality sign assumed.

Table 5*1 Typical design values of Tp, Dns» ®nD* cr» 1» Xf2 and Qc

td(mm) ®ns . (mm; Xf1(mm) ! & , ,CH,i (mm; , ®nD . i (mm) (mm; V(Lt/min)

0.25 1.02 0.15 0.10 0.05 1.52 1.27 2.70

0.38 1.52 0.20 0.18 0.02 1.75 1.35 5.43

0.51 2.03 0.30 0.20 0.10 2.03 1.59 7.20

0.64 2.54 0.40 0.24 0.16 2.54 2.00 10.70

0.76 3.00 0.46 0.30 0.16 3.00 2.38 16.20

5.2.3 Effect of disc chamber geometry on valve flow saturation

It is possible to obtain a design relation between T^ and HGj) from a 
consideration of flow saturation. The disc chamber passage volumes (see 

Fig. 5*3) should be at least four times the maximum orifice volumes to 

prevent flow saturation and to ensure that the orifices are the controlling 

restrictions [55]* This implies that the drain side of disc chamber volume 

must be greater than that of the supply nozzle tube,

( D2 - D ^ d) HGH 4 D23( Lsnt + Td ) (5-20)

and the supply side of disc chamber volume must be greater than that of the 

supply nozzle tube

( 1)2 -DlnL)( HGs + TD)] 4 H2S( Lsnt ♦ Tb )
From equations (5*20) and (5*21) it implies that 

1 - (DnsL / D)2'->
h g d > ( HGg + Td )

(5.21)

(5.22)
- 1 " (DnLD / D) 2 -

If DjjgL / D << 1 and D ^ p  / D << 1 then equation (5*22) can be rewritten as

HGd > ( HGS + Td ) (5.23)

A. Usman AUGUST 1984



Design considerations for the double-disc valve 120

Equation (5*23) suggests that the total disc travel should be less than 

the drain holding gap HGp to avoid flow saturation in the valve. Experience 

has shown that cavitation are likely to occur in the valve if there, is flow 
restriction within the valve. Dividing equation (5*20) by D and assuming 

that Djjj^/D << 1 and Tp << Lsnt we have

HHGD / Lsnt > I 4 ( Dns / D )■ (5.24)

Equation (5*24-) shows the geometrical relationship between the drain 

holding gap HGp and the supply tube length Dsrrfc.

5*3 Effect of parameter changes on valve theoretical steady-state model

In Section 3*1 of Chapter 3, a theoretical steady-state fluid 

characteristics model of the disc valve was developed. In Section 4*2 of 

Chapter 4, the complex fluid forces acting on a single disc were determined 

under blocked-load conditions and the force data agreed well with 

theoretical predictions. This allows the theoretical model to be used with 

some confidence for determining suitable values for the main geometric 

variables of the double-disc valve. In this section, the effect of changing 

different parameters in the model will be presented with one parameter 

varied at a time. Table 3*1 shows the assumed values for the parameters.

Using these values far the valve parameters, the theoretical model shows 

that the level of rise in the fluid forces when the disc approaches the 

drain nozzle, noted in Chapters 3 and 4, can be controlled by the correct 
choice of drain nozzle geometry and drain holding gap. The theoretical 

steady-state fluid model for the valve shows that the ratio of the drain 

nozzle area to that of the supply nozzle influences the fluid forces acting 
on a single-disc in its chamber. The net fluid forces acting on a double­

disc valve configuration under blocked load conditions are shown in Fig.5*4
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for various drain-to-supply nozzle area ratios. From the figure it can be 

seen that when the area ratio is increased from 1.08 to 1.85, the gradient 

at null, position falls of f quickly and a point of inflection is observed 

for area ratio of 1.85* For best stable characteristics of the valve near 

null position, figure 5*4 suggests equal areas for the drain and supply 

nozzles. Where the net fluid force curve crosses the displacement axis it 

corresponds to the position of zero net fluid force and the discs and the 

rod assembly is stationary at that point if the curve gradient is negative. 

The theoretical model has shown that increasing the drain holding gap 

lowers the fluid force rise that occurs after the disc displacement passes 

its mid-position. The effect of drain holding gap will be fully discussed 

later. Using equal areas for the drain and supply nozzles, the new assumed 

values for the parameters used in the iibdel are shown in Table 5*2.

Table 5*2 Physical constants of the valve main parameters

DSD =51.65 mm PS = 70 bar

TD = 0.51 mm CR = 0.00 mm
HGS = 0.13 mm RODD = 2.38 mm

HGD = 0.51 mm DND = 3.18 mm
SND = 3.18mm DNTL = 3.81mm

SNLD = 3.81 mm VSCO = at 35 °C

DNLD = 3.81 mm VSCF 1 .00

SHTL =15.88 mm CRNT = 0.00 A

The valve disc diameter DSD is varied in the theoretical model between 12.7 

and 38.1 mm (which corresponds to disc-to-supply nozzle diameter ratio of 

4*0 to 1.2,0). Figure 5*5 shows the effect of disc-to-supply nozzle diameter 

ratio on net fluid forces acting on a double-disc valve. From the figure it 

can be seen that when the diameter ratio is increased from 4*0 to 12.0, the
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gradient at null position increases quickly. The figure suggests that for 

proportional valve operation, a high diameter ratio (possibly greater than 

10) should be used and a small diameter ratio for a switching action as the 

net fluid force decreases with decrease in diameter ratio. This is because 

small net fluid force will demand a small electrical power. Increasing the 

disc diameter DSD has no effect on the load pressure but the null leakage 

flow rate decreases slightly with increase in disc-to-supply nozzle diameter 

ratio.

To see how the total disc travel TD influences the valve fluid 

characteristics, five different values of TD ranging from 0.25 to 0.76 mm 

( _+ 50 per cent of the value shown in Table 5*2) are used in the valve 

model. Figure 5*6 shows the net fluid forces acting on a double-disc valve 

for various total disc travel. From the figure, it can be seen that the 

null fluid force gradient decreases with increase in total disc travel and 

a point of inflexion near the null position is possible for total disc 

travels greater than 0.76 mm. From Fig.5*6, it can be observed that the 

maximum fluid force that occurs as the discs and rod assembly moves away 

from left to right remains constant for TD greater than 0.38 mm. For this 

valve configuration, the best compromise between the null gradient and 

force level is achieved for total disc travel equal to 0.51 mm. Total disc 

travel TD has no significant effect on load pressure but the null leakage 

flow rate increases with TD.

Fig.5«7 shows the effect of varying supply nozzle holding gap HGS, from 

0.03 to 0.25 mm on net fluid forces acting on a double-disc valve. From the 

figure it can be seen that the net fluid force first increases with 

positive gradient to a maximum and then decreases with negative gradient. 

Increasing the supply holding gap is seen to reduce the level of the first 

maximum fluid force. This can be attributed to flow restriction on the
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supply side of disc for small HGS. This implies that HGS and rod clearance 
must be carefully chosen to match the maximum fluid force for switching 

action of valve. The null fluid force gradient decreases with increase in 

HGS. Hence for proportional valve operation select a small value of HGS 

(say HGS < 0.13 mm ) and for a switching action select a large value of HGS 

(say HGS > 0.13 mm). For both switching and proportional operations of 

valve, the best compromising HGS is 0.13 mm. Supply holding gap HGS, has no 

significant effect on load pressure but the flow rate increases slightly 

with increase in HGS. The most important effect here seems to be that with 

a suitable choice of HGS the fluid forces are almost reduced to zero 

although this has to be balanced against the rapid reductions in electro­

magnetic force available with increasing HGS.

Fig. 5*8 shows the effect of varying the drain holding gap HGD, between 

0.13 and 1.02 mm, on the net fluid force acting on a double-disc valve. The 

null gradient is seen to increase with increase in HGD but the rate of 

increase, decreases for HGD>0.25 mm and there is no significant effect for 

HGD>0.51 mm. This confirms the geometrical relationships derived in section 

5*5*4 in which HGD is required to be greater than the sum of the total disc 

travel TD (0.51 mm used in the model) and the supply nozzle holding gap HGS 

(0.13 mm used in the model). There is a large decrease in net fluid force 

level with decrease in HGD below 0.51 mm which could be attributed to flow 
restriction on the drain side of the disc chamber. A point of inflexion 

near valve null position occurs for HGD = 0.13 mm which suggests that for 

proportional valve operation, HGD must be at least equal to 0.51 mm and HGD 

less than 0.25 mm for switching operation. Drain holding gap HGD, has no 

significant effect on both load pressure and flow rate but null leakage flow 

increases slightly with increase in HGD.

The supply nozzle diameter SND, is varied between 1.90 and 4*44 mm ( which
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corresponds to a disc-to-supply nozzle diameter ratio of 16.7 to 7*2 and 
also to a drain-to-supply area ratio of 2.8 to 0.51 ) and the resulting net 

fluid force acting on a double-disc valve is shown in Figure 5*9* The 

figure shows that the null fluid force gradient decreases with decrease in 

SND (with decrease in both disc-to-supply nozzle diameter ratio and drain- 

to-supply area ratio) and at null conditions, the net fluid force is 

negative for SND<3«18 mm. For a switching valve operation this will simply 

introduce a time delay as the disc will not lift off its supply seat. This 

can be overcome by using a shorter rod. A point of inflexion is observed 

for SND=1.90 mm (area ratio of 2.8). The theoretical steady-state model has 

shown that a negative fluid force occurs for a drain-to-supply area ratio 

less than 0.7 and disc-to-supply diameter ratio less than 8.0. This implies 

that the disc will not close off its drain nozzle seat and this will not be 

a good configuration for a switching valve. For a switching valve, 

therefore, the area ratio should not be less than 1. For proportional 

operation, Fig.5*9 suggests an area ratio not greater than 1 is required to 

obtain the best null valve stability. The best compromising area ratio for 

both switching and proportional valve operations is seen to be one.

Fig. 5*10 shows the effect of SND on non-dimensional leakage flow under 

blocked-load conditions. From the figure it can be seen that the percentage 

of leakage flow increases with decrease in SND. The supply nozzle diameter 

has a slight effect "on valve load pressure with the best null pressure 

gradient occurring for a drain-to-supply nozzle area ratio of one.

Varying both the supply nozzle diameter SNLD and drain nozzle land diameter 

DNLD over the range +_ 13 per cent of their nominal values has no 
significant effect on fluid force, pressure and flowrate. From practical 

experience, an increase in SNLD or DNLD will increase the chance of oil 

cavitation in the valve which will consequently cause a reduction in
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flow rate, pressure and fluid forces. This is because of flow restriction in 

the valve land regions. From the experimental results of Chapter 4, both 

the drain and nozzle land diameters should not be greater than 1.2 times 

the respective nozzle diameters.

Varying both the supply nozzle tube length SNTL and the drain nozzle tube 

length DNTL over the range +33 per cent of their nominal values has no 

significant effect on fluid forces, flow rate and load pressure.

Figure 5*11 shows the effect of varying the supply pressure PS between 17*5 

and 140.0 bar on the fluid forces acting on a double-disc disc. The figure 

shows that the valve is stable around the null region over the supply 

pressure range used in the model. It also shows that for a given valve 
there is a maximum pressure above which the valve destabilises. For drain- 

to-supply nozzle area ratio of one, the maximum pressure is 140 bar as the 

valve flowrate saturates for pressures greater than this value. However, 

for an area ratio greater than unity, this maximum pressure is reduced. For 

example, when the area ratio is 2.25, the maximum pressure is 70 bar. 

Increasing PS is seen in Fig. 5*12 to cause a large increase in flowrate. 

The non-dimensional load pressure is independent of supply pressure over 

the range used in the computer model.

From the fluid force characteristics shown in Fig.4.6 and the magnetic 

force characteristics shown in Fig.4.20 in Chapter 4, it can be seen that 

when x=0, the magnetic force might be greater than the fluid forces acting 

on a single-disc of the valve. In a double-disc valve operation, the net 

fluid and magnetic forces will be negative for x=0 and the disc will not 

lift from its supply nozzle seat. For proportional operation of the valve, 
the discs and rod assembly are not to be operated within the small region 

where the net fluid and magnetic forces are negative. For this reason, a 

rod length is used with a clearance which is equal to twice the distance
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between the supply nozzle tip and the position where the net fluid and 

magnetic forces cease to be negative.

The effect of varying the rod clearance CR between 0.00 and 0.20 mm on the 

net fluid forces acting on a double-disc valve is shown in Fig. 5*13* From 
the Figure it can be seen that CR significantly influences the shape of the 

fluid forces. The null gradient reduces with increase in rod-clearance. 

From the figure, it can be seen that when x=0, the net fluid force is zero 

for CR^O and is about 1.2 times the product of supply pressure and supply 

nozzle area for CR>0. For CR=0, the gradient of the net fluid force is 

first negative for disc displacement of about 12.5 per cent of Tp and the 

maximum fluid force occurs here. For switching valve operation, the point 

where the disc takes up the rod-clearance should be the place where the 

maximum fluid force occurs. For this reason, the best rod-clearance is seen 

to be about 12.5 per cent of total disc travel (which is about 2 per cent 

of supply nozzle diameter). For proportional valve operation, the fluid 

force gradient should be negative and this implies that the discs and the 

rod assembly moving together as a solid body should operate within the 

region of negative fluid force gradient which is about 75 per cent of total 

disc travel. Hence the best rod-clearance should be 25 per cent of total 

disc travel (about 4 per cent of supply nozzle diameter) which is twice 

that for switching ac.tion. For a rod clearance greater than 25 per cent of 

total disc travel, the valve requires a powerful electro-magnetic coil to 

be able to pull the disc towards its adjacent nozzle for switching action.

Fig.5«14 shows the effect of rod clearance CR on the total drain flow 
through the valve under blocked-load conditions. The flowrate is seen to 

decrease with increase in CR. This is because the discs are close to the 

drain nozzles for a large CR and thereby reducing the curtain areas through 

which flow can pass. The rod clearance has no significant effect on null
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pressure gradient (see Fig.5»15)* However, increasing the rod-clearance 

from 0*00 to 0.20 mm (about 0 to 20 per cent of total disc travel), the 

range of load pressure drops from 100 to 56 per cent of supply pressure. 

For CR>0, the pressure at each load port is greater than 50 per cent of 

supply pressure and this result in increase in hydraulic stiffness.

The theoretical model has shown that the push rod diameter has no 

significant effect on fluid force, flowrate and load pressure when the rod 

diameter is less than or equal to 80 per cent of drain nozzle diameter. For 

rod diameters greater than this value, the flowrate, fluid force and null 

load pressure drop dramatically as the flow passing through the drain 

annular passage is highly restricted. From Table 5*1, it can be seen that 

the best compatible rod diameter should lie between 77 and 80 per cent of 

drain nozzle diameter. For a given rod diameter, there is a correct choice 

of rod length to avoid buckling in the annular space formed by the rod and 

the drain diameter. The influence of rod geometry on the likelihood of 

buckling is given in appendix A10. Fig. 5*16 shows the effect of rod 

length on buckling load. The critical load gives an idea of the maximum 

force that a given double-disc valve size can withstand without any failure 

and is well in excess of any possible fluid and electro-magnetic forces 

likely to be encountered.

When the valve is operated in proportional mode, the electro-magnetic coils 

receive a differential current from the PWM amplifier. The discs and rod 
assembly then adopt a position where the net fluid forces balance that of 

the magnetic forces acting on the discs. Fig.5.17 shows the combined fluid 

and magnetic forces acting on a 31 mm diameter double-disc valve under 

blocked load conditions. The maximum current that can be generated by the 

PWM amplifier is 1500 mA and the currents in coil 1 and 2 are given a 

differential coil current, Al, ranging from 0 to 1500 mA. The total disc
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travel Tp for zero rod-clearance is shown in Fig. 5.17 as AB and the mid­

position is denoted as 0. With rod-clearance, the disc travel is limited to 

A*B' with mid-stroke of discs and rod assembly now at position O'. The rod- 

clearance here is given by distance AA' + BB\ The distance 00' is equal to 

one-quarter of the rod-clearance. In the figure, when the differential coil 

current, AI=1 500mA, the net forces acting on the discs and the rod 

assembly are positive throughout the disc displacement. This shows that the 

valve acts as a switching device at a differential coil current of 1500 mA 

as the right-hand disc closes the right-hand supply nozzle at the same time 

that the left-hand disc closes off the left-hand drain nozzle. When 

Al=900 mA, the net force crosses the displacement axis at point c which 

corresponds to the position where the net fluid forces balance the net 

magnetic forces. Position d, e and 0’ correspond to the balance points for 

Al= 600, 300 and 0 mA respectively.

The resulting position of the discs and rod assembly for a range of 

differential coil currents is shown in Fig.5.18. The figure shows that the 

position of the discs and rod assembly is proportional to the differential 

current applied to the valve electro-magnetic coils over most of the disc 

displacement range. The solid line in Fig.5.1 8 is merely a straight line 

drawn through the data to show the very good linearity. From Fig.5.1 7, it 

can be seen that the disc displacement should not be greater than O'B' to 

be within the proportional region of the valve and the corresponding 

maximum differential current to operate the valve for a supply pressure of 

70 bar is 1200 mA (from linear regression analysis) for the valve 

configuration used.

Shell Tellus oil R37 was used throughout the experiments conducted with 

both the prototype and pre-production versions of the double-disc valve. 

Typical viscosity-temperature characteristics of Shell Tellus oils R are
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shown in appendix A1 1. The normal working temperature range for most 
commercial valves is 20° through 60°C and the corresponding viscosities, as 

extracted from appendix A11, are shown in Table 5-3*

Table 5*3 Shell Tellus H37 oil viscosity at different oil temperatures.

Temperature

°C

Kinematic 

viscosity 
cs (in^/sec)

Absolute

viscosity
plb-sec/in

20 95.0 (0.15) 1.21

30 58.3 (0.09) 0.74
40 36.2 (0.06) 0.46

50 24.6 (0.04) 0.31
60 17.5 (0.03) 0.22

The viscosity is seen to decrease markedly with temperature. The values of 

the absolute viscosities as shown in Table 5*3 are used to calculate the 

effect of oil viscosity on the fluid forces acting on the double-disc 

valve. Pig. 5*19 shows the effect of oil temperature (TEMP) or viscosity on 

fluid forces acting on a double-disc valve. Both the fluid force level and 

null fluid force gradient are seen from the figure to decrease with oil 

temperature (or with decrease in oil viscosity). When the valve is operated 

in a proportional mode, the electro-magnetic coils receive a differential 
current from a PWM amplifier. The discs and rod assembly then adopt a 

position where the net fluid forces balance that of the magnetic forces 

acting on the discs. For a given differential current, the magnetic forces 

acting on the discs remain constant with oil temperature while the fluid 
forces vary. This must mean that the valve is always viscosity-temperatue 

dependent which is a major disadvantage. Figure 5*20 shows the resulting 

position of the discs and rod assembly for a range of differential coil 
currents with oil temperatures of 20 °C, 35 °C and 50 °C. The figure shows
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that the position of the discs and rod assembly is proportional to the 

differential current applied to the valve electro-magnetic coils over most 

of the disc displacement range. The slope of differential coil current 

versus discs and rod assembly position reduces with increase in oil 

temperature. This implies that the valve must always be designed for the 
worst case i.e maximum operating temperature. Oil viscosity has little 

effect on load pressure while flow rate increases with decrease in viscosity 

as the oil becomes thinner.

All the valve geometrical parameters shown in Table 5*2 are scaled linearly 

between 0.5 and 4.0. Fig.5.21 shows the effect of scaling, VSCF, on net

fluid forces acting on a double-disc valve for equal drain-to-supply nozzle 

area. From the figure, it can be seen that the gradient at null position 

falls off quickly and a point of inflection is observed for linear scaling 

greater than or equal to 3*0. For best stable characteristics of the valve 

near null position, Fig.5-21 suggests that the valve must not be scaled-up 

more than 3«0. For a valve with drain-to-supply nozzle area greater than 

unity, the valve becomes unstable for geometrical scaling greater than 1.5« 

It can be concluded that linear scaling or geometrical scaling should be 

done with care as the valve general performance depend on many parameters 

which may be inter-related. The nozzle land diameter, for example, must be 

less than 1.2 times the nozzle diameter to avoid cavitation. In scaling the 

valve, the various geometrical relationships derived in section 5*2 must 

be considered to effect a good valve performance. Flow rate increases with 

valve scaling as shown in Fig. 5*22 for unity drain-t o-supply nozzle area 

ratio. However, the flowrate flattens out near the valve mid-stroke when 

VSCF > 1.5 for valves whose drain-t o-supply nozzle area ratio greater than 

unity. This can be attributed to valve flow saturation. Pressure gain is 

unaffected by linear scaling.
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The geometric design considerations for the double-disc valve have been 

presented in this chapter. The next chapter will be looking at dynamic 

characteristics of the valve based on an approximately lumped parameter 
model.
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Fig. 5«1 Jamming conditions of a disc in its chamber.
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Fig. 5*2 Effect of disc chamber geometry on valve null flow.
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Fig* 5*9 Effect of SND on net fluid forces acting on a double-disc valve.

SNO = 1.90 mmSNO = 2.51 mmSND = 3.18 mmSNO - 3.81 mmSNO = 1.11 mm

3.O_J
u_

.30.UJ

CD

00 .20 10 .80 00 I .00

N0N-0IMENSI0NAI DISC OISPLACEflENT

Fig. 5*10 Effect of SND on total drain flow.



Design considerations for the double-disc valve 137

. . . PS = 70.00 bar. . . PS = 105.00 bar_ _ _  PS = 110.00 bar_ _ _  PS = 175.00 barPS = 210.00 bar

2 .10. A, t \
> V; \  XX

.00 .20 .10 .60 .80 1.00 
NON—DI flENS IONAL 01 SC D I S P L A C E D

Fig. 5»11 Effect of PS on net fluid forces acting on a double-disc valve.

PS = 70.00 barPS = 105.00 barPS = 110.00 barPS = 175.00 barPS = 210.00 bar

.61

///;;
/ / / , ; • %

X

X :h

/in';
- 7/7,V 

In,';
iiil;
ijii;
in;; Ai: i

F- " r~~' .. i' 1 .. \
NON-OI MENS I ONAL OISC 0 1SPL ACEflENT

Fig. 5*12 Effect of ?S on total drain flow.



Design considerations for the double-disc valve 138

Fig* 5

CRCRCRCRCR
X101.35

.00 mm .05 mm .10 mm .15 mm .20 mm

.2 1.

.07.

£ ‘-07.

-.21

.35.

■■

/' il 
/• ! j!
/1- *

%

i -̂ >' /
!! 1V
Hi /

.20 .10 ■■ .60 .80 I
NON-OWENS I ONAL OISC OlSPLACEflENT

13 Effect of CR on net fluid forces acting on a double-disc valve.

CR = .00 mm
CR = .05 mm
CR = .10 mm
CR = .15 mm
CR = .20 mm

O
u. 38.

cn

o2:

00.60 802000

NON-OWENS I ONAL OISC OlSPLACEflENT

Fig. 5*14 Effect of CR on total drain flow.



Design considerations for the double-disc valve 139

Fig. 5

CR = .00 mmCR = .05 mmCR = .10 mmCR = .15 mmCR = .20 mm

1.00.

60.

.20.

-.60.

.20 1.00

NON-OinENSIONAL OISC OlSPLACEflENT

1 5 Effect of CR on load pressure curves.

RODL = 19.05 mmROOL = 2 5 . 1 0  mm ROOL = 31.75 mmROOL = 38.10 mmROOL = 11.15 mmRODL = 50.80 mm
X104
1 .10-

3.28.

a«<o-jCO2

2.82 3.502.18
ROD DIAHETER (m m)

Fig. 5* 16 Effect of rod length RODL or. buckling load.



Design considerations for the double-disc valve 140

A IA IA IA IA I
X10

1500.0 b A900.0 mA600.0 mA300.0 mA .0 mA

,33.

,07.

.20.

1.00

NON-OMENS I ONAL DISC DISPLACEMENT
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disc valve for proportional control.
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6. Approximate lumped parameter dynamic model for proportional control

6.1 Introduction

The double-disc valve is a device that uses mechanical motion to control a 

source of fluid power. Because the valve is the raechanical/electrical-to- 

fluid interface in a hydraulic system, its performance is crucial in the 

overall control system design. Therefore a dynamic model of the valve 

performance characteristics is useful to the system designer.

In analysing the fluid forces of the valve under steady-state conditions, 

it is possible to use a spatial distributed parameter approach. This was 

because the flow is assumed to be radial, laminar and fully developed 

within the valve chamber. Even with all these assumptions, the accurate 

theoretical evaluation of the fluid forces is complex owing to the 

difficulty in precise assessment of the flow patterns in the nozzle land 

regions. Evidently under dynamic flow conditions, the determination of the 

fluid forces becomes even more complicated because of acceleration and 

deceleration of the flow and the movement of the discs.

The purpose of this chapter is to establish an approximate lumped parameter 

dynamic model of the valve under investigation. The relationship between 

pressure and flow are non-linear and a linearized approach is therefore 

used throughout the analysis. The dynamic characteristics of the electro­
magnetic solenoid used in the valve are also included.

6.2 Flow equations

Consider the four-way double-disc valve shown in Fig. 6.1. The orifices are 

completely analogous to the four arms of a Wheatstone bridge, and this 

analogy is helpful in visualizing valve operation. Arrows at the ports 

indicate the assumed directions of flows, and the numbers at ports refer to
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the subscripts of the flow and the area at the ports. The two floating 

discs are assumed to be moving as a solid body. Let the valve be given a 

positive displacement from the null or neutral position, that is, the 

position z = 0, which is chosen to be the symmetrical position of the discs 

in the chambers.

Flow through the valve restrictions are described by the orifice type of 

equation:

where Q is the flow rate, p is the pressure difference across the orifice, 

is the density, A is the annular curtain area and Cp is the discharge 

coefficient.

Therefore

1̂ “ cDns A1 /-----   (6.1)

, 2(P1 - PD)
Q2 = cDnD a2 / a  (6.2)

2(P2 - P ]))
^3 “ cDnD a3 /-----   (6.3)

2(PS - P2)
7Q4 " cDns a4 /-----   (6.4)

The return line pressure P^-will be neglected because it is usually much 

smaller than the other pressures involved. If the return pressure is 

appreciable, then Pg can be interpreted as the pressure difference, that 

is, supply pressure minus return pressure, across the valve. The orifice 

areas depend on valve geometry and four equations are required to define 

the areas A-j, A2, A^,and A^ as a function of valve displacement.
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Therefore,

A1 ’^ n a  (zf1 +
A-2 -  TT DqJ) (z f 2  “  2 )

A^ - TtDnj) (z f2 + z)

^4 “ (z f1 “ z ̂

(6.7)
(6.8)

(6.5)
(6.6)

Considering only the steady-state characteristics, the compressibility
flows are zero and the continuity equations for the two valve chambers are

A dynamic analysis would require inclusion of the compressibility flows 

which depend on the valve chamber volumes. However, this is best achieved 
by considering the combination of valve and actuator, because the actuator 

and lines contribute appreciable volumes. Now, by definition,

is the flow through the load and Pj, is the pressure drop across the 
load.

Equations (6.1) through (6.11) are required to define the pressure-flow 

behaviour of a four-way valve. These 11 equations can be solved 

simultaneously to yield load flow as a function of valve position and load 

pressure; that is

The plot of equation (6.12) is known as the pressure-flow curves for the 

valve and is a complete description of steady-state valve performance. All 

the performance parameters, such as valve coefficients, can be obtained 
from these curves. Fpr. example, selecting a value for z will numerically

QL = Ql - Q2 

= Q3 " Q4

(6.9)
(6.10)

(6.11)

Ql - f(z,PL) (6.12)

determine all the orifice areas. Then choose a series of values for and 
solve (6.9) and (6.10) for P-j and P2, respectively, for each value. Thus 

it is possible to tabulate z, Q^, P-j, P2, and also P^.
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Assuming ' P^ is very small compared to the other quantities and using 

equations (6.1), (6.2), (6.5) and (6.6) in (6.9) gives

2 (P — P )
= CDnsM^ns (zf1 + z) /  p " GDhD^,DnD (zf2 “ z) (6.13)

Similarly using equations (6.3), (6.4), (6.7) and (6.8) in (6.10) gives

w  F * 2 / 2(PS - p2)
Ql = cDhD^I)n3) (zf2 + z) J  CDns^ Dns ẑf1 “ z\ J  "p  (6.14)
The total leakage flow through the valve is given by

Qc = Q2 + Q3 (6-15)
The total centre flow or leakage through the valve is useful because it 

gives the power loss at the null operating point. At this point, z = P^ = 0 

and P| * P2 = Ps/2 so that A2 = A^, and equation (6.15) gives the total 
leakage flow as

Qc = 2 CDnD*ff ̂ nD zf2 (6.16)

6.2.1 Linearized analysis of valve

Using linearized analysis, the valve coefficients at null, that is, at the 

point where z = = P^ = 0 and P̂  = P2 = Ps/2 can be determined. The

values of the valve coefficients vary with the operating point. The most 

important operating point is the origin of the pressure-flow curves ( that 

is, where = Pj, = z = 0  ) because system operation usually occurs near 

this region, the valve flow gain is largest, giving high system gain, and 

the flow-pressure coefficient is smallest, giving a low damping ratio. 

Hence this operating point is the most critical from a stability viewpoint, 

and a system stable at this point is usually stable at all operating 

points. The linearized form of equation (6.13) is

i>QL
A « l “ -r-

0 z A z +
>*1
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The null valve coefficients can be obtained by differentiating equation 

(6.13) and evaluating the derivatives at null. Therefore

bQj,
fcz

pi

“ fipDns Dns + CDnD Dn»

Tf[cCDns Dns Zf1 + cDnD DnD zf2

J T

(6.18)

(6.19)

In a similar fashion equation (6.14) may be linearized about null to obtain

b<3
A q, = —

bz
where

apL r— = IT
bz L

0

«L s
P2 O

A z +
bQ]
6p, A p2 (6.20)

/T

iri5

iuj p

Dns Dns Zf1 + CDnD DnD zf2•2]
■JTT,

(6.21)

(6.22)

Addition of equation (6.17) and (6.18) and combining with (6.11) yields 

A«L “ KqoAz - KcoApL (6-23)
This is the linearized form of the pressure-flow equation of the double­

disc valve for operation at null. The null coefficients are obtained 

directly from this equation.

qo
A ^ L

A z A p l=°
' - h F 3=0 L

-1 /P
Dns ^ns + ^DnD ®nD / p (6.24)

^po ~ A z

1 + CDnD DnD

^Dns ^ns _

A qL=0 cDnD DnDZf1 +   Zf2
CDns Dns

(6.25)
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K  - —00" A pl A z=0
tfjfina Dns Zf1 + cDnD DnD zf2J (6.26)

2J F ^

6.3 , Fluid forces

The significant fluid forces acting on the valve are:-

(a) that resulting from the static pressure acting on the nozzle area 
projected onto the disc,

(b) the velocity or dynamic pressure,

(c) that due to both the radial outward and inward flow and
(d) transient fluid force.

6.3*1 Steady-state fluid forces

Consider the double-disc valve configuration in Fig. 6.2 in which the two 

discs and the rod are moving as a rigid body to the right. It has been 

assumed that the current in coil 2 is greater than that of coil 1.

Considering disc 1, the fluid forces acting on it are the static pressure 

P3 acting on the nozzle area projected onto the disc, the velocity or 
dynamic pressure and that resulting from both the radial outward and inward 

flows. Using Bernoulli's equation, the static and dynamic- pressure force 

FS(j on the disc is given by

where u-j is the fluid velocity at the plane of the nozzle diameter and is 

given by

The radial outward fluid force P-iro acting on disc 1 (from chapter 3) is 
given by

Asn (6.27)
2

U1 = V Asn (6.28)
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F1ro = J p 1l W  r dr
ra1

where

6AIQ! k ' 0.193PQ? ~ 1 r
---—  In — * + --- - - —  — —

r , T?2 T *2  

_ L  -

p1I,(r) = P1 +

Combining equations (6.27), (6.28), (6.29) and (6.30) gives

F1L = Asn Ps + C1L P1 + C2L Q1 + C3L 
where

7TD:ns
lsn

C1L ” ra1 )
3M

f

PL
*s

InCM
O

e l - 2 In --- + 1 >

»?L I , ra1 . J

c - i _C3 L -----
0.193?

1 - ( ra1 2

- 2 In
/ R \

L

2A^ s n TI2hfL i [ ra1 J
From chapter 3, the radial inward fluid force is given by

1R 

where

= 2l\ J P1R(r) r dr
rdG

6/a q 2 
... In

r
+ 0.193? Q| 1 1

^ h?R rl I 1X2hpR 2 p2 r Rl
p i r«  “ P1 +

Using equation (6.37) in (6.36) and integrating gives 

P1R = C1R P1 + C2R ^2 + C3R Q2

A. Usman

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38) 
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where

C1R = 1f(RL " rdG) (6.39)

-3JU * V 1

C2R = -- T? ̂RL " rdG ̂ 2 In -- + 1 >

h?R rdG j

(6.40)

0.19 3p M 2 f h )

0 11 -1 + --I + 2 In "

T T M r J I rdGl

h1L = HGs + Zf1 * z

(6.41)

(6.42) 

(6.43)
Similar reasoning leads to the equations for the fluid forces acting on 

disc 2. The fluid force acting on the supply side of disc 2 is given by

P2R = Asn Ps + B1R P2 + B2R ^4 + B3R Q4 (6.44)
where coefficients B-ĵ  to B^r are the same with that of to with
suffix R instead of L, a2 instead of a1 , 2R instead of 1L, and z replaced 

by -z.

The fluid force acting on the drain side of disc 2 is given by

P2L = B1L p2 + b2L q3 + b3L Q3 (6.45)

where coefficients B ^  to B̂ j, are the same with that of C-jjj to C ^  with 

suffix R instead of L-, 2L instead of 1R and z replaced by -z.

Now the resulting fluid force Ff acting on the two discs and the push rod 

moving together as a rigid body is the difference of the net fluid forces 

F̂  and F2 acting on the discs. Thus

Pf = P 2 “ P1 = P̂2R “ P2L ^ " ^ P1L ” P1R^ (6.4 6)

A linearized analysis would be used as the equations are highly nonlinear 

and the following assumptions would be made:
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(a) the valve operations are close to null so that

(b) the absolute viscosity of the fluid is constant

(c) the fluid density is constant

(d) the valve displacement z is small so that h^, ^IRj^ R  an(* can
approximated by the following equations:

(e) the two disc chambers are identical so that R^ = Rg and ra  ̂ 58 ra2 *

From conditions (d) and (e), the coefficients C ’s and B's are related as 

follows:

Equation (6.52) is the steady-state fluid force on a double-disc valve. 

Because this force depends on valve displacement, it is completely 

analogous to a centering spring on the valve.

The forces so far discussed are static and their value can be calculated 

for a given static disc displacement and flow rate. However, during 

unsteady or transient conditions the flow rate is not steady and the fluid

h1L * Zf1 + HGs 
h1R = zf2 + HGD

h2L = 2 f2 + HGD 

h2R = Zf1 + HGs

(6.47)
(6.48)

(6.49)
(6.50)

Under these assumptions, equation (6.46) can be approximated by

Ff - - Kf z (6.52)
where

(6.53)

6.3*2 Transient fluid forces
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accelerations involved cause additional fluid forces* Consider the fluid 

slug, of length f a&d cross-sectional area Ansj, in the valve left-

hand supply nozzle tube in Pig. 6*5*

The magnitude of the transient fluid force is given by Newton's second law 

as

Force F = mass x acceleration

i.e
d Q-i

F = *^nst1 Ans1 —  dt Ans1

dQf
f^nstl <6-54)dt

Here the fluid is assumed to be incompressible so that the volumetric flow 

rate through the valve supply nozzle tube equals that through the orifice. 

In addition the slug is assumed to move at velocity /A^i • F is the force

required to produce the rate of change of momentum; the reaction Fr on the 

left hand disc is equal and opposite to F. For example, if the flow Q-j is 
increasing, the accelerating force must be in the positive z direction, but 

the reaction Fr on the disc is opposite and tends to close the drain 

nozzle. Fr is thus stabilising. If, however, the same analysis is applied 

to the right-hand supply nozzle tube flow Q4, it is seen that as Q4 

increases, Fr is destabilising and tends to open the left-hand drain nozzle 

curtain area further. The transient force on the left hand disc in Fig. 6.3

is

dQ!
Frt1 " eLn3t1 —  (6-55)dt

Similarly, the transient force on the right hand disc is given by 

dQ4
Frt2 = ?Lnst2 --  (6.56)dt
The resultant transient fluid force is given by

Trff " Prt2 ' Frt1 <6*57)
Differentiating the flow rates in equations (6.1) and (6.4) with respect to
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time t and neglecting the drain pressure Pp, the respective transient fluid 

forces are

Thus we note that the transient fluid forces are proportional to the disc 

velocity and pressure changes. The velocity term is the more significant 

because it represents a damping force. There is little direct evidence to 

indicate that the pressure rate term contributes substantially to valve

analysis it is sufficient to consider P^ = 0. That is P-|-P2~Ps/2 for valve 

operation near null position. This value also gives the largest fluid 

forces.

Neglecting the pressure derivative terms, the final expression for the 

transient fluid force- becomes

dQ-j ---------
P Lsnt1 —  " Lsnt1 CDn3T(Dn3 7 2  f(Ps-P

dt J (6.58)

e

d®4 i — ^ — —

?Lsnt2 --  * L3nt2 cDns'^I,ns V 2 P (ps-p2)
dz

dP2
(zf1 - z) ---

dt

J (6.59)
dt dt /2(Pa-P2)

dynamics, and therefore it is usually neglected [66]. In most dynamic

dz
Trff " “ Bf — (6.60)

dt
where

(6.61)
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6.4 Electro-magnetic subsystem

The double-disc valve have two coils. Each of the coils has an inductance L 

in series with resistance R. In general, L varies with z ( disc 

displacement ) but its variation is small compared to other factors and has 

been ignored in the analysis.

The resulting equation for coil current is 
V

I - - (1> T„ s) (6.62)
Ec

where Tc = L/Rc the coil time constant and V  is the Laplace operator.

The magnetic force Fm exerted on the disc is a nonlinear function of I and 

Z ( disc displacement ). That is = f(I,Z) and using the normal 

linearization techniques 

^F_ V ™
£Fm = *1 + —  ^Z or fm = Cpj i + Cpj z (6.63)

&I OZ

where lower case letters represent small pertubations of the parameters 

represented by the higher case symbols and C^j = ^Fm/&I, Cj>̂  = bFm/^Z both 

measured at reference condition. Equation (6.62) is transposed to small 

pertubations by replacing I and V by i and v.

Referring to Fig. 6.4,- the two coils on an electro-magnetic solenoid are 

generally supply from a push-pull source. A voltage Vcc in the amplifier 
driving the solenoids establishes a quiescent current Iq in each coil but 

there is no net force on the two discs and the push rod solid body because 

the currents oppose each other and the fluid force acts against the motion 

of the discs. An increase in the input to the amplifier causes the current 

in one coil to increase as the current in the other coil decreases 

simultaneously by the same amount. Hence the current in the two coils may
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be written

H  “ ^o “ ^ (6.64)
(6.65)

where i^, i2 - current in each coil, respectively,

IQ = constant quiescent current in each coil,amp 

i = signal current in each coil, amp

The quiescent current IQ is usually about one half the maximum signal input 

to the amplifier, the current in one electro-magnetic coil will be zero so 

that the maximum differential current will occur in the coil. With such a 

quiescent current level, which is required because of the amplifier 

characteristics, the efficiency is only 50 per cent. This is a minor point, 

however, because the electrical power involved is small compared with 

hydraulic losses.

Figure 6.5 is a sketch of the coils configuration employed in the double­

disc valve. The electro-magnetic force exerted on each of the discs is 
given by

The value of z-j and Z2 are the same and equal to HGS + z ^  when the discs 

are centred. When the discs are displaced z from the centre or neutral 

position, -

The resultant electro-magnetic force fm in the positive z direction is given

fm1 " CFI i1 + CFX Z1 

fm2 = CFI *2 + CFX z2

(6.66)
(6.67)

z-j = HGS + z ^  + z 

Z2 = HGg + Zfi - z

(6.68)
(6.69)

^m * ^m2 “ m̂1 (6.70)
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Using equations (6.64) through (6.69) in equation (6.70) gives

= 2 Cpj i - 2 z (6.7 1)

The coefficients Cpj and would be obtained from the definition of 

electro-magnetic force of a flat-face magnet used in the valve.

The electro-magnetiq force Fm is given by [61]

J>g *t w 2'*« -   (6.72)
4 g2

where jig is the permeability of the oil gap, I is the current in the coil, 

N is the number of coil turns, g is the distance between the disc and the 

magnetic surface and Ac is the cross-sectional area of the iron core

Now

CF I ----
*1

6pm 
CFX = --

is

u- A. N2In
^ ----—  (6.73)

2 4

Mg Ac ,- ----------- (6.74)
2 g?60

g - HGg + Z f1 _+ z (6.75)
where IQ is the constant quiescent current in each coil, g0 is the value of 

g when discs are centred i.e. z = 0 , HGS is the supply nozzle holding gap 

and Zf-j is the neutral position of the disc from the supply nozzle tip.

6.5 Mechanical characteristics of a double-disc valve

An approximation to the dynamic performance of the double-disc valve can be 
found by summing the forces acting on such a system. Therefore, by 

combining the fluid forces and the electro-magnetic force with the discs
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inertia force, the force balance becomes 
d2z

fm + fft " Mv --  <6-T6')
dt2

where fm is the resultant electro-magnetic force, f^t is the sum of

transient and steady state fluid forces and My is the mass of moving parts

of the valve.

Equations (6.52), (6.60), (6.71) and (6.76) are the four basic equations

and may be solved simultaneously to obtain

z 2 Cfi/H
- = --------------------------------- (6.77)
i

s2 + (Bf/Kv) 3 + (Kf + 2 CPX)/H,

Using equation (6.62) in (6.77), the valve transfer function can be 

rewritten in terms of coil voltage V as

z Kv
v

(1 + Tc s) [s2 + (2 wv) s + w2] 

where

(6.78)

K|. .+ 2 Cpx 2 Cpx
V l » vy V

My 2 Mv wv Rc Mv

The transfer function of a servovalve alone can be defined as [66]

A * v  r Ko wo
A

(6.79)
(1 + s/wr) [s2 + (2 w0) 3 + w2]

where the coefficients in equation (6.79) are define in appendix A12. 
However, usual practice is to use no load (i.e., Pl=0) flow /\Qj=K^/\x„ as 

an output parameter rather than spool position. Comparing equations (6.78) 

and (6.79), it can be seen that the transfer function of a double-disc
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valve has the same form as that of a servovalve. Except that the numerical 

values for the damping ratios, natural frequencies, time constants of the 

coils and the static gain constants are different. Although, the two 

transfer functions have the same form, the double-disc valve can be 

described as a highly underlap servovalve. The hydraulic stiffness of the 

valve is low compared with conventional servovalve.

The transfer function of a valve-equal area piston combination can be shown 

to be [66]

5 ---------’W  4 ________ (6.70)

3 [s2 + (2 Wh ) s + w£]

where

rhWv =
(4fe Ap  = hydraulic natural frequency (6.71)
Vt Mt

_ ^ce /j3eMt ® / ^t . .5^ =  I   +   /   * damping ratio (6.72)
Ap V Vt 4Ap J  ̂ eMt

This transfer function assumes spring loads are absent, no load 

disturbance, all pressures are uniform, no line losses, negligible minor 
losses, no pressure saturation, constant fluid density and temperature and 

that the piston is centred as the natural frequency is lowest in this 

position. Variations in the gain constant K^/Ap, the hydraulic natural 

frequency w^, and especially in the damping ratio occur and cause 
considerable shifting in the frequency response with different operating 

positions of the piston.

This chapter has presented the transfer function of a double-disc valve 

based on approximate lumped parameter concepts. It shows that the double­
disc valve can be looked at as an underlap servovalve. The next chapter 

will describe the results of experiment conducted with the double-disc
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valves in position control configuration with two different cylinders. Some 

possible area of applications of valve will be outlined.

supply supply
HG,

i

LOAD

Fig. 6.1 Four-way double-disc valve operating about the mid-position. 
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F1R
-HG,

'ns

OISC 2 COIL 2c o m OISC I

Fig. 6.2 Fluid forces on a double-disc valve.

Fig. 6.3 Transient fluid forces.
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Fig. 6

dc amplifier with single-ended input 
and push-pull output cc

4 Schematic of electro-magnetic coils being driven from 
amplifier.

'm l

COIL 2
N TurnsCOIL i N Turns

an

Fig. 6.5 Electro-magnetic forces.
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7 Applications of double-disc valve
>

This chapter deals with experiments carried out with the prototype and pre- 

production valves. The tests were conducted with a long-stroke unequal area 

cylinder for flow calibration purposes and also with a short-stroke equal 

area cylinder. In the latter tests the cylinder was connected for closed- 

loop position control under conditions of constant load. Proportional 

control of the valve was achieved using pulse-width-modulation. Some 

possible areas of application of the valve are also presented.

7.1 Prototype valve - unequal area cylinder combination

To gain insight into the performance of the floating double - disc valve in 

working conditions, an experimental rig was set up. The experimental rig 

incorporated the prototype valve, high pressure hydraulic rig (see appendix 

A13)» long stroke cylinder, feedback potentiometer and valve mounting 

block.

A block diagram of the experimental set-up with the valve providing a 

position control system in open-loop is shown in Fig.7*1* The pressures in 
both disc chambers were measured with the aid of piezo-electric 

transducers. Pressure transducers were installed at the supply line and 

return line to record the supply and drain pressures. Cavitation is likely 

to occur in any hydraulic system. To check this, a needle valve was fitted 

just downstream of the valve so that the back pressure could be adjusted to 

any desired value. The piston or jack position was recorded by monitoring 

the feedback potentiometer. The various pressure time-histories of the 

system were also recorded. These recordings were accomplished with the aid 

of the RSP programme [67] used in conjunction with an Interdata 7/16 

Minicomputer and Micro-Consultants analogue data acquisition system. A 
permanent record of results were made with the aid of the associated X-Y
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plotter.

Fig.7.2 shows a typical jack output position time-history for the case when 

the valve was fully switched and the jack was extending. The speed of the 

jack remained constant at 6.7 in/s (170 mm/s) until it completed its 

stroke. The jack speed is given by the gradient of the jack output position 

time-history and the product of speed and effective piston area gives the 

average load flowrate. The flow rate in this case was 1 1.8 lt/min. Fig.7*5 

shows the corresponding pressure time-history associated with the jack 

output position time-history shown in Fig.7.2. From the figure it can be 

seen that the two chamber pressures on either side of the piston remained 

constant during the jack moving period. The pressure, P-j, in chamber 1 

remained constant at 240 Psi (17 bar) when jack was still moving and 

dropped to about 50 Psi (3*5 bar), the drain pressure, on completion of its 

motion. On the other hand, the pressure ?2» in chamber 2 rose from 160 Psi 
(11 bar) to 950 Psi (67 bar), the supply pressure.

Figs. 7*4 and 7*5 show the typical pressures and jack output position time- 

histories under retracting conditions. Under the retracting conditions, the 

pressure P2, dropped from 350 Psi (24.5 bar) to drain pressure and chamber 

pressure P-j, rose from 750 Psi (52.5 bar) to 950 Psi (67 bar). The jack 

speed was 5*0 in/s (127 mm/s) and the corresponding flowrate was 
8.8 lt/min.

7.1.1 Effect of carrier frequency on the prototype valve - sinusoidal test

For a given supply pressure, the range of carrier frequencies that the 

valve is controllable was determined with the aid of an analogue pulse- 

width-raodulator and a switching amplifier. The pulse-width-modulator 

amplifier has a summing operational amplifier and a comparator. The 

comparator was used to compared the d.c. voltage level of the carrier
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signal (sawtooth) with that of an input signal (sinusoidal).

The ratio of the carrier frequency to the input frequency was carefully 

chosen to be as high as possible. This was to ensure that the input signal 

did not make any contribution to the output position of the system. 

According to Ikebe et el [41 ], this ratio must be greater than 7* The main 

principle behind this approach was as follows: for a high ratio of carrier 

frequency to input frequency, the trigger level of the comparator was 

gradually varied and the mark/space ratio of the modulator output thus 

changed accordingly. The valve responded with the puls e-width-modulator 

output.

The speed, control of the valve was varied sinusoidally by using a sine wave 

input to trigger the comparator of the analogue Pulse-width-modulator. In 

so doing, the mark/space ratio of the output waveform varied with the sine 

wave input. The experimental set up was the same as for the flow capacity 

estimation. The jack output position was recorded using the RSP programme 

for various carrier frequencies. The speed of the jack at any point on the 

position time-history shown in Fig.7.6 is given by the slope at that point. 

Clearly, it can be seen that the jack speed is not symmetrical for both 
extending and retracting situations. This could be attributed to the 

cylinder which is not symmetrical and the two valve chambers might not be 

identical. A typical speed versus carrier frequency curve for the four-way 

arrangement of the valve is as shown in Fig.7.7* The figure shows that the 

full jack speeds in extending and retracting conditions were 6.7 in/s (170 

mm/s) and 8.1 in/s (206 mm/s) respectively. For carrier frequency of 100 

Hz, the speed control ranges of the valve in extending and retracting 

conditions were 0 to 4»4 in/s (112 mm/s) and 0 to 0.76 in/s (19 mm/s) 

respectively. When the carrier frequency was increased to 200 Hz, the speed 

control ranges were increased to 5*7 in/s (145 mm/s) in extending
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situations and 0.95 in/s (24 mm/s) in retracting conditions.

Generally, valves using pulse-w idth-modulation techniques often generate 

large hydraulic noise downstream of the valve which may adversely affect 

the accuracy of a positioning system. This hydraulic noise was found to be 

controllable by selecting the correct choice of carrier frequency and the 

hydraulic pipe network. For a quiet valve operation, the carrier frequency 

must be greater than the natural frequency of the complete hydraulic system 

and the structural modes of the equipment or environment. For the prototype 

valve under investigation, it was found that the valve was quiet for 

carrier frequencies greater than 200 Hz. When a PWM signal was applied to 

the valve, the discs couldnot completely respond to the high frequency 

switching because of the disc and fluid inertia forces. Instead, the discs 

tended to follow the average value of the modulated signal as the PWM 

carrier frequency was approximately 2 KHz, which was well above the natural 

frequencies of the valve components. Each coil, in a sense, acted as a 

demodulator and each disc position was proportional to the amplifier input 

signal.

7.1.2 Prototype valve as a three-way valve

To have approximately symmetrical velocity characteristics for the long 
stroke cylinder, the valve was re-piped as a three-way valve. In this 

arrangement, side 1 load port was blanked-off and as a result the disc 

chamber 1 acted as a control chamber. Figure 7.0 shows the pipe 

connections. The supply oil was taken from the high pressure rig. In this 

configuration the piston end of the cylinder always communicated with the 

supply pressure while the blank end side communicated with load port 2. 
With this arrangement, when the jack was extending, there was a possibility 

of reverse supply flow from the piston end of the cylinder. To prevent this 
reverse flow, an in-line check valve was installed upstream of the valve.
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The full speed tests to estimate the valve flow capacity were repeated. 

Pig. 7.9 shows the typical jack output position and pressure time-histories 

of an extending jack under 3-*ay valve arrangement. The speed of the jack 

remained constant at 6.2 in/s (157 mm/s) until it completed its stroke. The 

corresponding valve flowrate was' 11 lt/min. From the figure it can be seen 
that the two chamber pressures on either side of the piston remained 

constant during the jack moving period. The pressure, P 2» in chamber 2 
remained constant at 860 Psi (60 bar) when jack was still moving and rose 

to 1500 Psi (105 bar), the supply pressure, on completion of its motion. On 

the other hand, the pressure P-j, in chamber 1 remained constant at drain 

pressure as disc 1 chamber acted as a control chamber.

Pig. 7.10 shows the typical pressure and jack output position time- 

histories of a retracting jack under 3-way valve arrangement. Under the ! 

retracting conditions, the pressure P2, dropped from 687 Psi (48 bar) to 

drain pressure and chamber pressure Pj, remained constant at supply 

pressure of 1500 Psi (105 bar). The drain pressure remained constant at 204 

Psi (14 bar) during the jack motion and dropped to 86 Psi (6 bar) on jack's 

completion of motion. The jack speed was 8.0 in/s (203 mm/s) and the 

corresponding flowrate was 14.1 lt/min.

All the experiments conducted so far with the valve employed discs with 

thickness of 3*73 mm and total disc travel of about 0.23 mm. In order to 
increase the flow capacity of the valve, the disc thickness was reduced to 

3.56 mm and this modification increased the total disc travel from 0.23 mm 

to 0.41 mm. The full speed test was repeated and a flowrate of 18.3 lt/min 

was observed for 1000 Psi (70 bar) pressure drop across the valve.

The pressure-flow characteristic from these results is shown in Pig.7.11. 
Prom the figure it can be seen that flowrate increases with total disc
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travel and supply pressure. Positive flow rates are defined for jack 
extending and negative for jack retracting. The linearity of the flow- 

pressure curves shows the laminar nature of flow.

7*2 Prototype valve on an equal area ram rig

The equal area ram rig consisted of the prototype valve, feedback 

potentiometer, a carriage, and a mounting block. One end of the piston was 

connected to the carriage which moved freely on a flat test bench with the 

aid of ball races. The output position of the piston was measured through 

the potentiometer connected to the carriage and mounted alongside the ram. 

The prototype valve - equal area cylinder rig is shown in Figure 7.12.

7.2.1 Initial problems with prototype valve - equal area ram combination

After calibrating the feedback potentiometer and the instruments, the 

prototype valve was used in a closed-loop to control an equal area ram. It 

was found that the valve could only perform switching functions and that it 

could only stop the actuator in one or two positions between the fully 

extended and retracted positions of the ram. In addition, a high error 

signal voltage was required to actuate the valve. This initial problems 

could be attributed to the following: (a) long disc travel, (b) the

magnetic forces are more than the fluid forces and as such the valve only 
performed switching actions, (c) the sawtooth waveform amplitude is far 

greater than that of the error signal and this might have caused the input 

dead-band. The ways in which these effects might influence the valve 

performance will now be discussed.

(a) Effect of error signal gain on input dead-band

The valve was used in a closed-loop as shown in Figure 7*1 The closed- 
loop position system consists of the prototype valve, the single output 

feedback potentiometer, disc valve amplifier, equal area ram and a carriage
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(see Fig.7.12). The supply pressure was set to 28 bar. The hydraulic pipe 

connection is shown in Figure 7*14* The error signal gain was set to 1 and 

the valve was given an incremental displacement by increasing the amplifier 

input voltage until the output position of the actuator changed. The error 

signal amplitude that resulted in change of the piston output position was 
recorded as the input dead-band. The error signal gain was increased in 

steps of 0.5 from 1 to 10 and the corresponding input dead-band were 

recorded. The result is shown in Figure 7.1 5* From the figure it can be 

seen that the input dead-band decreases as the error signal gain is 

increased. Using this technique, the input dead-band could only be reduced 

from 4.5 V to 0.5 V. The result shows the switching properties of the 

valve.

(b) Effect of carrier frequency on input dead-band

The test procedure and apparatus are the same as in the previous 
experiment. In this experiment, the input dead-band and error signal gain 

relationships were investigated at two distinct carrier frequencies of 250 

and 1 250 Hz. The results are as shown in Figure 7.1 6. From the figure it 

can be seen that increasing the carrier frequency has no effect on the 

input dead-band.

(c) Effect of sawtooth amplitude on input dead-band

The pulse-width-modulation action of the disc valve- amplifier was obtained 

from a comparator. This comparator compares the sawtooth waveform with the 

error signal. Consequently the amplitude of the sawtooth waveform must have 

a significant effect on the input dead-band. The amplitude of the sawtooth 

waveform was made adjustable with the aid of an output buffer used between 

the sawtooth waveform generator circuit and the comparator (see appendix 

A10). The test procedure and apparatus remained the same as in the previous 

experiments. The input dead-band and error signal gain relationships were 
investigated with the sawtooth amplitude set to 5 V and 2 V pk-pk. The
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results are as shown in Figure 7*1 T* From the figure it can be seen that 

reducing the sawtooth amplitude reduced the input dead-band significantly. 

Using the amplitude of the sawtooth waveform to reduce the input dead-band, 

limit cycle oscillation was possible for a large error signal gain. * 

Ideally, the error signal gain must be within that of the sawtooth 

waveform.

For a gain of 5 and sawtooth amplitude of 2 V pk-pk, the maximum input 

dead-band was 0.2 V. This represented 0.1 V input hysteresis. The maximum 

current available from the disc valve amplifier was 1450 mA. When there was 

zero error signal, the current level of each of the two electro-magnetic 

coils of the valve was one-half of the maximum current. Therefore the dead- 

band region in terms of current was 540 - 910 mA for a sawtooth amplitude 

of 2 V pk-pk. The corresponding dead-band region for a sawtooth amplitude 

of 5 V pk-pk with an error signal gain of 5 was 420 - 1050 mA. Clearly 

decreasing the sawtooth amplitude reduced the input dead-band. For correct 

operation of the valve, the sawtooth amplitude, should be less than 2 V pk- 

pk, error gain set below 5 and carrier frequency greater than 1 KHz should 

be employed.

7.2.2 Static characteristics of prototype valve - equal area ram combination

The apparatus consisted of the high pressure hydraulic rig, the equal area 

ram and the prototype valve. Figure 7.18 shows the layout of the apparatus 

in a closed-loop position control. After setting up the equipment, the high 

pressure hydraulic rig was switched on and the required supply pressure was 

selected. The input voltage was varied in small steps so that the piston 

could be moved from its fully retracted position to its fully extended 

position and then brought back to its fully retracted position. For the 

range of the demand input voltages, the output positions (as measured with
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an electronic displacement transducer) were measured. This procedure 

ensured that both linearity and hysteresis were checked. The results are 

shown in Figure 7.19* From the figure it can be seen that the overall 

valve-cylinder linearity was good. However the proportional action of the 

valve was not smooth. This can be attributed to the input dead-band 

associated with the valve as discussed earlier in this chapter which caused 
the valve to perform a stepping action.

7.2.3 Stiffness characteristics of prototype valve and equal area ram

The schematic layout of apparatus used to determined the static stiffness 
of the valve is shown in Figure 7.20. The pulley arrangement in Fig. 7.20 

was used to apply a constant axial load to the equal area ram. The effect 

of such load on the positioning action of the valve was determine from this 
experiment.

The valve was operated in a closed-loop configuration and the following 

procedure was carried out: (a) The piston of the equal area ram was fully 

retracted and an axial load was applied through the pulley arrangement, (b) 

The input voltage was varied in small steps so that the piston could be 

moved from its fully retracted position to its fully extended position and 

then brought back to its fully retracted position. For the range of the 

demand input voltages, the output position (as measured with an electronic 

displacement transducer) were measured. This procedure ensured that both 

linearity and hysteresis were checked. To determine the maximum load that 

the valve-cylinder could carry, the piston was positioned at a convenient 

position and a load (weight) applied through the pulley arrangement was 

increased until the output position of the actuator shifted. The load so 
obtained was recorded as the static stiffness of the valve-cylinder 
combination.
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The static characteristic of the control system subjected to a constant 

axial load of 55 N is shown in Figure 7.21. The result shows that the valve 

characteristic is quite linear with little hysteresis. The maximum axial 

load that the prototype valve could withstand was 90 N for a supply 

pressure of 28 bar. The valve was found to exhibit limit cycle oscillations 

when a load greater than 90 N was applied. The valve was operated in a 

closed-loop position control and the feedback signal corresponding to the 

output position of the actuator changed as the system was not stiff enough 

to withstand the load. The shift in the output position resulted in an 

error signal which in turn acted on the valve to cause a shift in the disc 

position and thereby created a limit cycle oscillation. Increasing the 

error signal gain also resulted in limit cycle oscillation.

7.3 Experimental investigation of pre-production valve

In this section, the experiments carried out with the pre-production valve 

are presented. The tests were carried out with a short-stroke equal area 

cylinder connected for closed-loop position control under conditions of 

constant load. The pre-production valve ports are of the CETOP standards 

and the valve is sub-base mounted. Fig. 7.22 shows the pre-production valve 

-equal area cylinder rig.

-7• 3 • 1' '■ Static characteristics of pre-production valve-equal area cylinder

Fig. 7.23 shows typical results of output position (as measured with an 
electronic displacement transducer) over a range of demand input voltages. 

Fig. 7*24 shows a typical relationship between the demand input voltage and 

the differential current across the electro-magnetic coils of the pre- 

production valve. The result shows a remarkable linearity. The results 

shown in Fig. 7*23 were obtained under the following conditions:
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Supply pressure, PS = 37*1 bar, Drain pressure, PD = 10.8 bar
Oil temperature, TEMP = 36.0°C, disc thickness, DST = 3*81 mm

Rod length, RODL = 24*68 mm, Rod clearance, CR = 0.25 mm

Rod diameter, RODD = 3*18 mm, Total disc travel, TDT = 0.50 mm

Static weights, LOAD - 564.0 N, Carrier frequency, CP = 2.20 KHz

Loop gain, GAIN =2, Actuator stroke, AST = 93*2 mm.

Prom Pig. 7.23 it can be seen that good linearity with low loop gains 
together with insignificant hysteresis were achieved. The pre-production 

valve has been operated with the equal area cylinder over a range of 

operating temperatures ( 25°C-40°C), system pressures (28 - 105 bar), loop 

gains (1 - 10), carrier frequencies (0.25 - 2.20 KHz) and load conditions. 

Different disc chamber geometries have been investigated by altering any of 

the following parameters: rod dimensions, disc thickness, rod clearance and 

total disc travel. Table 7*1 shows the summary of the different rod 

dimensions and discs used in the investigation.

Table 7*1 Summary of the different push rods and discs used with the 
pre-production valve.

Disc thickness 
(mm)

Rod diameter 
(mm)

Rod length 
(mm)

Total disc travel 
(mm)

Rod clearance 
(mm)

4.08 2.54
24*64 0.23 0.05

24*59 0.18 0.10

3*81

2.54 24*89 0.50 0.05

3*17
24*89 0.50 0.05

24*69 0.25 0.25

The positioning action of the valve-actuator combination is achieved by the 

complex interactions between the fluid forces, P^ and the electro-magnetic
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forces, Fm acting on the valve discs. Three different modes of valve 

control can be established which depend on the magnitudes of F^ and Fm. 

They are:

(a) Fm > F^: If the magnetic forces are much greater than the fluid forces 

in the valve neutral position, the two discs are pulled towards the supply 

nozzles and thereby cutting-off supply to load ports. The stiffness of the 

valve-cylinder system is reduced as the load ports are now coupled to the 

drain. To increase the stiffness, two check valves can be installed in the 

load lines. This is advantageous in low pressure applications when the 

valve is being used as a pilot device. Provision have been made in the disc 

valve amplifier to energise the two coils at the same time to pull the two 

discs to shut-off the supply flow. In this mode, there is zero quiescent 

power loss. Positioning accuracy depends on the electrical gain. The valve 

exhibits some hysteresis as a result of the non-linear electro-magnetic 

forces which can be controlled by increasing the amplifier gain.

(b) Fm < Ffi If the magnetic forces are less than the fluid forces in valve 
neutral position, very good proportional control can be obtained with 

little or no hysteresis. However, the range of available magnetic forces 

must balance the fluid forces otherwise a large differential coil current 

is required to operate the valve.

(c) Fm slightly less than Ff in the neutral disc position but greater than 
Ff at some position within the discs and rod assembly travel. Linearity 

might be acceptable but limit cycle oscillation can occur.

For a large rod clearance, the null load pressures are greater than half 
the supply pressure. Under this condition, the magnetic force, Fm is less 

than the fluid force, F^ so that the discs are not pulled to close-off the 

supply nozzles. This increases the hydraulic stiffness of the valve- 

cylinder actuator at the expense of system dynamic response. For a given
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oil supply pressure, F^ is fixed but Fm can be controlled by the amount of 
coil current input. The coil current is controlled by the electrical power 

supply to the disc valve amplifier. For a supply pressure less than 35 bar 

(for example, for pilot valve applications) the electrical power supply 

required is 0-18 V (^9 V). For a direct acting single stage valve with a 

supply pressure of 70 bar, a 0-24 V (+12V) power supply is required.

7«5»2 Valve-switching characteristics

Selection of the valve parameters for steady-state operations has been 

shown in Chapters 3 and 5 to be a compromise between fluid and electro­

magnetic force considerations. It must also take into account whether the 

valve is to be used in both switching and proportional modes. Factors such 

as discs masses, rod inertia, disc travel, fluid inertia in the valve, coil 

dynamics, and so on become important when valve switching characteristics 

are being considered.

To determine the switching speed of the valve, the switching amplifier 

described in Chapter 2 was used to energise the coils of the valve 

controlling an equal area cylinder in open-loop position control. The load 

pressures and coil currents time-histories were collected using a 

Bryans/Physical Data Recorder. The Data Recorder has four channels and a 

total of 4096 samples of input signal were recorded. The Data Recorder has 

a pre-trigger delay feature which allowed some desired number of samples to 

be allocated to the period immediately preceding the event to be recorded.

Using a mechanical switch and operational amplifier, the Data Recorder was 

externally triggered to record the pressures and currents time-histories of 
the valve and at the same time the valve coils were triggered. Fig.7.25 

shows typical switching characteristics for a 31mm dia. double-disc valve 

operating at a supply pressure of 1000 Psi (70 bar) with coil 1 on and coil
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2 off. Completion of disc switching is signalled by a detectable local 

minima in the transient current in the attracting coil, caused by the rapid 

change in flux through the disc when it stops, and this was used for 

estimating switching times with oil flowing in the valve. The coil 1 

current minima can be seen in curve 1̂  of Fig.7.25 as point b. The valve
t

coil 1 was switched on at point a on the figure. The decaying current of 

coil 2 is shown in the figure as !£• The pressures time-histories acting on 

the sides 1 and 2 of the cylinder are shown as curves P-j and P 2 

respectively. From the figure, it can be seen that there is a pure time 

delay before P2 starts to increase. This time delay is due to the time 

constant of the electromagnetic coil. The load pressure P2 increases to 
almost supply pressure before dropping to a constant value during which thei
piston of the cylinder was moving. On the other hand, the load pressure P-j 

dropped from supply pressure to a constant value below that of P2 when the 

piston was moving. The rod clearance was taken-up at position c of curve P-j 
and disc 1 completed its travel at point d. The switching time for this 

set-up of rod-clearance of 0.15 mm is 12 ms and the time delay is 5 ms. 

Fig.7.26 shows the effect of varying the rod-clearance on switching time 

for various supply pressures. The solid lines in the figure are merely 

straight lines drawn through the experimental data. Variation of rod- 

clearance and supply pressure between 400 and 1200 Psi caused variations 

in switching time between 5 and 20 ms.

7*3*3 Frequency response
*

The frequency response of the control system is the amplitude ratio and 

phase shift of the output relative to the input as a function of frequency. 

The procedure used to measure the frequency response is to apply a 

sinusoidal input and record the output of the system in r.esponse to the 

sinusoidal input. The input amplitude used is large enough to minimise the
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non-linearity distortions of threshold and hysteresis on the output and 

small enough to avoid saturation of the control system elements within the 

frequency of interest. The ratio of the output amplitude to the input 

amplitude and the output angle relative to the input is plotted as a 

function of the input frequency.

Pig. 7*27 is a frequency response plot for the control system in closed- 
loop with an input command of +10^ of the full scale input. The response 

shows a phase lag of 90 degrees at 25 rad/sec (4*0 Hz). The solid lines in 

the figure are the theoretical curve fittings of the experimental frequency 

response data. The theoretical transfer function of the contol system is 

treated in Section 6.5 of Chapter 6. The theoretical curves were obtained 

from a computer program developed by Usman [68] for the calculations of 

empirical formulae generated by Zaman and Griffin [69] for determining the 

frequency response from transfer function data of any order. Zaman and 

Griffin developed the empirical formulae using Levy [70] and Sanathanan et 

el [71 ] methods.

7.3.4 Transient response

Fig. 7*28 shows the transient response of the pre-production valve-equal 

area cylinder combination in closed-loop position control with system 

pressure of 35 bar and amplifier gain of 2. The results are summarised in 

Table 7.2.

Table 7*2 Results of transient response

Extending jack Retracting jack

Settling time (sec) 0.96 0.73
Rise time (sec) 0.40 0.40

Damping ratio 0.40 0.53
Natural frequency (rad/s) 10.40 10.30
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From Table 7.2 it can be seen that the damping ratio in extending 
conditions was smaller than that obtained from the retracting situations. 

The difference in the transient responses for both the retracting and 

extending jack conditions of the system could be due to the unequal volumes 

on both sides of the actuator used. This arose from the unequal load 

pipelines length. The two supply nozzle land diameters were not identical 

but of diameters 3*20 mm and 3*52 mm respectively. This difference in 

supply nozzle land diameter may also have contributed to the discrepancies 

in the transient response results. However, the characteristics of the 

actuator dominated the dynamic response of the overall system.

7*4 Possible areas of valve applications

Double-disc valves can be used directly as single-stage proportional 

devices in closed loop control systems. However, as their performance is 

not as good as electro-hydraulic servo-valves owing to lower valve 

stiffness and significant load flow losses, they will probably find most 

application in low-cost systems where these deficiencies are minimised. Two 

such applications are now briefly presented:

(a) Swashplate angle control

The force requirements for actuating the swashplate of a variable delivery 

pump are fairly modest so that the stiffness characteristics of a double­

disc valve make it suitable for this type of application.

Figure 7*29 shows a schematic of an electro-hydraulic double-disc valve 

operated swashplate linkage. From the.figure, the input signal to the disc 

amplifier is the desired or demand swashplate angle. When the demand angle 

is changed, the valve receives an electrical signal from the amplifier, 

which is proportional to the error between the input signal to the system
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and the voltage from the angular feedback transducer representing the 
swashplate position. This error signal shifts the valve discs and thereby 

porting fluid to the stroking pistons which rotates the pump swashplate. 

The swashplate provides an electrical feedback through an angular 

transducer that monitors the rotation of the connecting link B about point 

A which is linked to the swashplate via a drag link. This motion corrects 

the valve disc displacement, blocks the flow of control fluid to the 

control pistons and stops the swashplate at the position commanded by the 

input signal. The system remains in this position until the input signals 

is given a new command.

(b) Double-disc valve as a pilot device

When large fluid flow rates are required it is usually necessary to use two 

stages in the control valve arrangement. This is necessary to maintain a 

satisfactory response at high flow rates. Loss of response in single stage 

valves at large flow rates, is due to high disc or spool inertia and large 

flow forces, resulting in the need for a large electro-magnetic coil. 

Feedback loop are often provided at each stage, making them more flexible.

A proposed arrangement with an equal area ram is sketched in Figure 7»30. 

It has a pilot double-disc valve, having an electrical feedback path to a 

disc valve amplifier (PWM). The output from the amplifier actuates the 

electro-magnetic coils of the pilot valve. The electro-magnetic coils 

control the positions of the discs in the pilot valve chambers. The 

movement of the pilot valve discs varies the differential pressure acting 

on the ends of the spool valve. This is clearly more effective for dealing 

with large forces. The output flowrate from the spool valve drives the 

piston, which is also provided with a feedback loop.
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7.4.1 Double-disc valve as a 3-way valve

The double-disc valve may be used as a 3-way valve with only one load port 

active. That is, with supply S, drain D, and one load port, L1. It also has 

two electrical coils which can be designated C1 and C2. The valve can be 

drawn schematically as shown in the sketch. However, the two discs do not 

necessarily have the same diameter and flow characteristics.

CJ

S

II
L.3 i } J .) V )  i > ) I

LI

C l

Representing a coil switched on by 1 and switched off by 0 the various 

combinations of coil activation can be shown in a table

C1 C2 L1

0 0 S/D
1 0 D

0 1 S

1 1 -

P M PWM PROP

possible but does not provide any extra function.

where PWM represents pulse-width-modulation to provide proportional (PROP) 

action. This valve can be used as a simple on-off switch in a hydraulic 

line or can provide proportional flow control. However, in general, to 

control a cylinder two load ports are required so that two 3-way valves are 
required for this purpose.

For convenience the two valves can be drawn as follows
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Cl S C3

LI

IIV

l"J *> b b > TT71

La

C^

and the configuration table is now much larger causing more valve 

connection possibilities.

C1 C2 C3 C4 L1 L2

1 0 0 0 0 S/D S/D

2 1 0 1 0 S D

3 0 1 0 1 D S

4 1 0 0 1 S s

5 0 1 1 0 D D

6 1 0 0 0 S S/D

7 0 1 0 0 D S/D

8 0 0 0 1 S/D S

9 0 0 1 0 S/D D

10 PWM PWM FWM PWM PROP PROP

All'combinations involving 3 or 4 coils are probably impossible to operate.

Of the combinations listed 6-9 are not useful thus leaving the following

useful valves all which can be remotely electrically selected.
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CO Xr a

6 u

Combination

1, 2 and 3

E O U ICO
<•> u 2, 3 and 4

2, 3 and 5

By a suitable choice of coil activation a power cylinder may be controlled 

by two 3-way valves to give :-

(a) Rapid or proportional control in either direction

(b) open centre in mid-position

(c) pressurised load ports in mid-position

(d) vented load ports in mid-position.

Thi3 Chapter has described the results of experiments conducted with the 

double-disc valves in position control configuration with two different 

cylinders. Some possible areas of application have been outlined. The next 

Chapter will present the main conclusions reached in this study and 

recommendations for future work are also given.
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Fig. 7« 1 Experimental set-up of an open-loop position control system.
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Fig. 7*2 Typical output position tini e-history of an extending jack under 
4-way valve arrangement.
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Fig. 7*3 Typical pressure time-history of an extending jack under 4-way 
valve arrangement.
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7.4 Typical pressure time-history of a retracting jack under 4-way 
valve arrangement.
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Fig. 7.5 Typical output position time-history of a retracting jack under 
4-way valve arrangement.
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1830

10-98 ~

3-66 TIME ( sec )

Supply pressure * 1000 Psi 
Carrier frequency *200Hz 
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Fig. 7.6 Typical system response to sinusoidal input (4-way valve 
arrangement).
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Fig. 7.7 Effect- of carrier frequency on speed control (4-way valve 
arrangement).
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Fig. 7«8 Hydraulic pipe connections of a 3-way valve configuration.
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Fig. 7*9 Typical output position and pressure time-histories of an 
extending jack under 3-way valve arrangement.
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Fig. 7*10 Typical output position and pressure time-histories of 
retracting jack under 3-vay valve arrangement.

Fig. 7*11 Pressure-flow characteristics of a prototype double-disc valve.
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Fig. 7*12 Prototype double-disc valve-equal area cylinder rig.
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Fig. 7.13 Experimental set-up of a closed-loop position control system
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14 Hydraulic pipe connections of a 4-way prototype double-disc valve 
and equal area ram combination.
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Fig. 7*15 Effect of error signal gain on input dead-band.
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Fig. 7*18 Schematic layout of static characteristics measurement rig.
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Fig. 7.19 Static characteristics of prototype valve-cylinder closed-loop 
position control.
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Fig. 7.20 Schematic layout of static stiffness measurement rig.
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control.
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Fig. 1.22 Pre-production valve-equal area cylinder rig.
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Fig. 7*23 Pre-production valve-cylinder closed-loop position control 
linearity.
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differential current across the electro-magnetic coils of a pre- 
production valve.
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8 Conclusions and Recommendations

8.1 Conclusions

The increasing demand for cheap, simply constructed and reliable electro- 

hydraulic valves in the hydraulic industry has led to this work. Available 

in the ma.rket at present are servo-valves and both switching and 

proportional solenoid operated directional valves. Servo-valves are highly 

developed and sophisticated but they are very expensive because of the 

precision machining of components and are highly sensitive to contamination 

as a result of close tolerances. The directional valves do not meet the 

dynamic specifications of industry because of high inertia, hysteresis, 

stiction, and the relative high power required to operate these valves. 

The present work is aimed at eliminating many of these disadvantages and 

the concept of a floating disc valve with no sliding surfaces has evolved. 

The concept of floating disc devices were originally used in pneumatic 

valves in a different context and its use in hydraulic valves is a novel 

idea. A magnetic circuit with a better flux density than a conventional 

solenoid operated valve is seen as an advantage if correctly designed into 

a fluid valve.

One of the main objectives of the present research is to develop two 

versions of a novel disc type electro-hydraulic valve to the stage where 

they can be used to control hydraulic cylinders. Such valve-cylinder 

combinations can be used for low-cost manipulators in the robotics and 

programmable automation fields. The valve can also be geared towards mobile 

plant and remote control applications. As a result of its simplicity in 

construction, the disc type valve is aimed to fill the gap between the 

highly sophisticated serVo-valve and the normal digital on/off or 

directional valve.
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There are two versions of the valve that have been investigated in this 

thesis based on single- and double-disc configurations. The single-disc 

valve has no inherent facility for closing off supply flow in the switched 

state with a corresponding loss of power. To limit the quiescent power loss 

it has small supply port restrictors thereby giving potential problem with 

contamination. However, the two disc arrangement does not have these 

limitations and the present research has been concentrated on this 

arrangement. Cavitation was experienced with initial tests carried out with 

the test valve model but was found to be minimised by either increasing the 

back pressure of the system or decreasing the supply pressure. Decreasing 

the supply nozzle land diameter to supply nozzle diameter ratio to a value 

less than 1.2 also reduces the incipient of cavitation.

A flow-force rig has been constructed to determine the complex fluid forces 

acting on a single disc. The rig has the facility for allowing radial flow 
across the disc faces in both directions to simulate flow into and out of 

the load port into the drain connections. Theoretical predictions agree 

with fluid force data for a single disc thus allowing the theoretical model 

to be used with some confidence for determining suitable values for the 

main geometric variables of the double-disc valve. Empirical discharge 

coefficients were obtained from the tests carried out with a single disc in 

a floating disc chamber and were found to vary with the system pressure, 

Reynolds number and disc displacement. The empirical discharge coefficients 

were used in the theoretical steady-state fluid characteristics of the 

valve.

A computer-aided steady-state theoretical design package has been developed 

using several subroutines to display the data graphically and also make the 

package interactive with a graphic terminal. The package also allows any of 

the main parameters governing the valve performance to be varied
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independently.

The theoretical steady-state fluid model for the valve has shown that the 

ratio of the drain nozzle area to that of the supply nozzle influences the 

fluid forces acting on a single-disc in its chamber. For best stable 

characteristics of the valve near null position, the model suggests equal 

areas for the drain and supply nozzles. A disc-to-supply nozzle diameter 

ratio greater than 10 should be used for proportional valve operation, and 

a diameter ratio less than 10 for a switching action as the net fluid force 

gradient increases with diameter ratio. The best compromise between the 

null gradient and force level is achieved for total disc travel equal to 20 

per cent of supply nozzle diameter.

For both switching and proportional operations of 31 mm dia. valve, the

best compromise value of supply holding gap is 0.13 mm. With a suitable 
%

choice of supply holding gap the fluid forces can almost be reduced to 

zero. The model requires the drain holding gap to be greater than the sum 

of the total disc travel and the supply nozzle holding gap. The result 
suggests that for proportional valve operation, the drain nozzle holding 

gap must be at least equal to 0.51 mm and less than 0.25 mm for switching 

operation to achieve best results.

In a double-disc valve with zero rod-clearance, the net fluid and magnetic 

forces are negative for zero disc displacement and the disc will not lift 

from its supply nozzle seat. For proportional operation of the valve, the 

discs and rod assembly are not to be operated within the small region where 

the net fluid and magnetic forces is negative. For this reason, a rod 

length is used with a clearance which is equal to twice the distance 
between the supply nozzle tip and the position where the net fluid and 

magnetic forces cease to be negative. For the particular valve under
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discussion, the best rod clearance is about 25 per cent of the total disc 

travel.

When the valve is operated in proportional mode, the electro-magnetic coils 

receive a differential current from the PWM amplifier. The discs and rod 

assembly then adopt a position where the net fluid forces balance that of 

the magnetic forces acting on the discs. For a given differential current, 

the magnetic forces acting on the discs remain constant with oil 

temperature while the fluid forces vary. This must mean that the valve is 

always viscosity-temperature dependent which is a major disadvantage. The 

slope of differential coil current versus discs and rod assembly position 

reduces with increase in oil temperature. This implies that the valve must 

always be designed for the worst case (i.e maximum operating temperature).

For best stable characteristics of the valve near null position, the model 

suggests that the valve must not be scaled-up more than 3.0 and that linear 
scaling or geometrical scaling should be done with care as the valve 

general performance depends on many parameters which may be inter-related. 

The model has also shown that the valve flow rate may be increased by 

increasing any one of the following valve parameters: total disc travel,

supply nozzle diameter, supply pressure, and valve scaling.

Tests, using the same flow-force rig, has been made regarding the. electro­

magnetic force induced in the disc for various current levels in the coil 

and also for the force variation with distance of the disc from the coil 

face. Theoretical predictions agree well with the electro-magnetic force 

data. Two types of discs were used in the experiments. They were discs with 

and without stops on them. The experimental results show that disc with 

stops exhibit more non-linearity than the corresponding disc without stops. 

Discs without stops are cheaper and easier to fabricate and are preferred 

for the better electro-magnetic characteristics. The effect of varying the
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floating disc (armature) thickness on the electro-magnetic force-stroke 

characteristics was investigated experimentally, and an empirical formulae 

were developed which would be useful for rapid valve design calculations. 
These empirical formulae agree very well with the experimental data and 

show that reasonable magnetic force could be obtained with a disc thickness 

as low as 2.5 mm. The low inertia of thin discs improves the dynamic

performance of the valve.

A pre-production version of the double-disc valve incorporating ideas for

manufacturing cost reduction has been designed in cartridge form to ISO and

CETOP standards. From an economic point of view, ease of manufacture is an 

important factor in the design, because cost inevitably plays an important 

role in the acceptance of a new valve ,for general use. Most of the parts 

are made with wide tolerances which enhances the inter-changeability of the 

cartridge components. A major advantage is the potential high reliability 

of operation due to the small number of moving parts without sliding 

surfaces. The valve is suitable for manufacture by CNC machining as it 

involves only grinding and turning operations.

The pre-production valve may be scaled up to provide larger flows than the 

present flow capacity of 18 litre/min as a single stage valve. The 
disadvantage is the high quiescent hydraulic power losses when operated 

with pulse-width-modulation to provide proportional control. In switching 

applications of the valve, there is no quiescent flow losses. For pilot 

operation, the valve may be scaled down to limit the flow capacity and 

quiescent flow losses and this may be a more attractive possibility. In the 

valve design, standard 'O’ seals are necessary to prevent both internal and 

external oil leakages at moderate cost. In view of this, the limit of the 

valve size as a pilot device is dictated by the availability of the 'O' 

seals sizes. Another limiting factor is the size of the electro-magnetic
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coil. The coil consists of the magnetic iron core, "brass or plastic bobbin 

and the central hole to take up the supply nozzle tube. For a given working 

pressure, there is a corresponding cross-sectional area of the magnetic 

iron core and the ampere-turns of the electro-magnetic coil that will give 

a satisfactory valve performance. With the present state of coil 

technology, the coil size could be reduced from the present 27 mm outside 

diameter to 13-5 mm without too much difficulty.

A four-level switching amplifier consisting of operational amplifiers, 

timers and power transistor output has been constructed to control the 

valve in the switching mode of operation. The amplifier incorporates the 

established technique of overdriving the coil with a large amplitude pulse 

at the commencement of switching. The holding voltage provides enough 

electro-magnetic force to hold the disc on the supply nozzle seat after 

switching is completed. Using this amplifier without overdriving the 

electromagnetic coils, a switching time of 10 ms has been achieved for a 

pressure drop of 70 bar across the pre-production valve. Variation of the 

supply pressure between 40 and 100 bar with suitable adjusted to the rod- 

clearance causes variations in switching time between 5 and 20 ms. 

Switching times can be further reduced by using thinner discs and shorter 

disc travel.

Both analogue and digital pulse-width-modulation (PWM) amplifiers have been 

constructed for use with the valve in proportional control mode with no 

overdriving of the coil. Using the digital PWM, the valve can be controlled 

by a microprocessor for remote control applications. A computer program has 

been written in INTEL 8080 language on the University of Surrey Prime 

computer system to control the digital PWM amplifier and a CP/M based 

computer has been used to drive the digital PWM amplifier. Under PWM mode 

with a carrier frequency of 2.2 KHz, it has been shown that dimensions are
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not critical and wear problem can be reduced dramatically as the discs are 

not switched fully from nozzle to nozzle. This consequently improves the 

contamination insensitivity of the valve.

Intensive tests have been conducted with the prototype double-disc valve 

controlling a long stroke unequal area cylinder similar to types used in 

robot arms. Both switching and proportional modes of operation have been 

demonstrated in open and closed loop position control modes. An attempt has 

been made to use the prototype valve with an equal area cylinder but the 

positioning is not very good as the valve requires a large differential 

current to operate the valve discs. This could be due to the unsymmetrical 

nature of the disc chambers.

The pre-production valve has been tested with a short-stroke equal area 

cylinder in closed-loop position control under conditions of constant low 

load using pulse-width-modulation. Experimental results show that good 

linearity and low drift may be achieved over a range of operating 

temperatures, pressures and load conditions using moderate loop gains. From 
the intensive tests with the system, it has been established that the rod 

dimensions play an important role in the valve characteristics, for a given 

disc chamber geometry. Two different thickness of discs have been used in 

the tests and it has been found that the thinner one gave a better control 

resolution. This is because the thinner discs are operated farther away 
from their respective electro-magnetic coil surfaces in a region where both 

the magnetic and fluid forces are fairly linear. From this data, 

applications such as a remotely operated directional valve, a variable 

delivery pump control and a cheap robot position control can be designed. 

The valve also has potential applications in (1 ) mobile earth moving 

equipment, (2) machine tool industry, (3) aircraft industry, (4) power 

steering in automotive industry, (5) pressure control devices, (6) flow
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control devices, (7) Vibrators and (8) the programmable automation field.

It has been established that there are significantly fewer critical 

dimensions within the valve than for a comparable electro-hydraulic servo- 

valve so that manufacturing costs should be low. Also design criteria has 
been formulated to provide a valve with acceptable performance for either 

switching or proportional mode operation using the same overall body 

configuration. This can be achieved by a suitable selection of disc 

thickness and centre rod dimensions at minimal cost.

The double-disc valve is deficient in the following ways: (a) too much 

leakage when used in the proportional mode, (b) low hydraulic stiffness,

(c) for proportional control it requires careful matching of electro­

magnetic and fluid forces to get disc balancing at different displacements, 

and (d) fluid forces seem to be very dependent on oil temperature.

Some possible advantages of the double-disc valve over the conventional 

electro-hydraulic valve are: (a) fast switching action, (b) relatively 

contamination insensitive, (c) potential used with non-lubricating liquids,

(d) complex valve actions can be obtained with remote electrical operation,

(e) cheapness, and (f) may be easily configured to operate as a switching 
or proportional valve.

8.2 Recommendations for future work

1. Future work should explore the possibility of a low-cost integrated 

valve-cylinder-position feedback assembly for robotic systems given that 

there is a need for very inexpensive units.

2. The main disadvantage of the present valve is its high leakage flow 
under pulse-w idth-modulation proportional mode. This can be improved by 

redesigning the valve-centre-section. At present, the two drain orifices
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are active any time the valve is operated proportionally with the leakage 

flow being highest in the neutral position. This can be modified by

changing the push-rod design to a spool-type having a land at either end of

the spool which ensure that only one drain orifice is active at any time. 

At the neutral position there will be no leakage flow as the two drain 

orifices are shut by the spool lands. The flow characteristics of the 
proposed modified valve will compare more favourably with the servo-valve.

Also the valve speed of response will be increased and the rod clearance of

the present design will no longer be a critical dimension.

3* The present electro-magnetic coil design could be modified to be used in 

directly operating commercial spool type valves. The relative high force 

obtainable from this type of coil makes it more attractive than the present 

proportional solenoid in the market provided a larger diameter spool with 

shorter stroke is used to achieve the same flow capacity.

4* The double-disc valve may be used as a 3-way valve with only one load 

port active. That is, with supply S, drain D, and one load port L1. It also 

has two electrical coils which can be designated C1 and C2. However, the 

two discs do not necessarily have to have the same diameter and flow 

characteristics. This valve could be used on a simple on-off switch in a 

hydraulic line or could provide proportional flow control. However, in 

general, to control a cylinder two load ports are required so that two 3- 

way valves are required for this purpose. By a suitable choice of coil 

activation a power cylinder could be controlled by two 3-way disc valves to 

give:- (a) rapid or proportional control in either direction; (b) open 

centre in mid-position; (c) pressurised load ports in mid-position; (d) 
vented load ports in mid-position. The valve coils could be remotely 

electrically selected and thus open the way for microprocessor control 
applications.

A. Usman AUGUST 1984



BIBLIOGRAPHY



Bibliography 209

Bibliography

[1] Maskrey,R.H. and Thayer,W.J. : A brief history of electro-hydraulic 
servomechanism. Trans. ASME, Vol. 100, pp.110-116, June 1978.

[2] Bolting,L.R., Eynon,G.T., and Foster,K. : The response of a high- 
pressure pneumatic servomechanism to step and sine wave inputs, Proc. 
Inst. Mech. Engrs., London, 1 84(Pt.1 ),54, 1969-70.

[3] Nightingale,J.M. : Hydraulic servo. Fundamentals Machine Design, 1956.

[4 ] McCloy,D and Martin,H.R. : Control of Fluid power - Analysis and 
Design, 2nd Edition, Ellis Horwood ltd, 1980.

[5] Boulden,L.L. : Valves that take orders from computer. Machine design, 
pp.70-74, June 27, 1974.

[6] G unter,D.: Digital electrohydraulic control mechanisms. 
Feinmechanische Werke Mainz Gm bH Mainz, W-Germany. Proc. of the 
National Fluid Power supply system and control conference. 1973

[7 ] Gizeski,T.s Digital Actuators, Instrument & Control systems, Vol.32, 
Nov. 1 959, pp.1686-1687.

[8] Gizeski,T.: Digital positioning, Instrument <§: Control systems, Vol.34, 
March 1961, pp872.

[9] EI-Ibiary,Y.M.; Ukrainetz,P.R.; Nikiforuk,P.N.: Design and assessment 
of a new solenoid-operated ball valve for digital applications. Proc. 
34th Nat. Conf. on Fluid Power, Chicago, Vol.32, 1978, pp.31-34*

[10] Seidel,D.S.: Research and demonstration of a digital flight control 
system electro-hydraulic servo control valve actuator experimental 
model. Hydraulic research and manufacturing company. Technical 
documentry report RTD-TRD-63-4240, WPAFB, Ohio, 1964.

[11] Anderson,R.L.: Evaluation of a high response electrohydraulic digital 
control valve. Final Progress Report. Feb.1972-Feb.1973, (NASA-CR- 
124176) Bentea Corp. Invine, Califonia.

[12] Jenney,G.D.: An investigation of a digital electro-hydraulic 
servovalve. Dynamic controls Inc., Dayton, Ohio, Final Report 4/79- 
4/80.

[13] Mansfeld,G.: A gaurd short course on * Advance Flight Control 
Actuation Systems', DFVLR, Braunschweig, 22.9*1981.

[14] Tsai,S.C.; Ukrainetz,P.R.: Response characteristic of a Pulse-Width- 
Modulated electrohydraulic servo. Trans. ASME, Vol.92, pp.204-214, 
June 1 970.

[15] Delmege,A.: Acceleration switching Servovalves. Sixth Servo Conf., 27- 
31. Jan. 1964, Vickers Inc. Detroit Michigan.

[16] Delmege,A.: Acceleration switching transfer valve. Firmenschrift 
Vickers Inc. Detroit Michigan, 1964.

A. Usman AUGUST 1984



Bibliography- 2 1 0

[17] Tourtellotte,F.: The role of the Pulse Length Modulation in an
accelerated switching valve system. Firmenschrift Vickers Inc., 
Detroit Michigan, 1971, Q:N74-16138.

[■18] Murtaugh,S.A.: an introduction to the time-modulated accelerated 
switching electro-hydraulic servomechanism. ASME Journal of the Basic 
Eng. Vo 1.81, pp.263-273, June 1959-

[19] Levine, G.A.: Discussion of reference [1s]•

[20] Gordon.R.A.: The application of Pulse-Width-Modulation to a relatively 
high flow, electrohydraulic flow control valve. Ph.D. Thesis at the 
Univ. of Saskat chewan, Saskatoon, Oct. 1963*

[21] Bahr, J.-s ’The Foil element, a new fluid logic element' I.B.M. Zurich 
Research Lab., Report No. RZ-181, 1965*

[22] Post, K.H.: A new hydraulic ball valve element, 2nd Fluid Power 
symposia, 4-7 Jan. 1971, Guildford. GB. pp.E1 -1 /E1 -12.

[23] Parker, G.A.jYuksel, I.s A novel electro-hydraulic switching valve. 
6th Fluid Power Symposium 8.-10. April 1981, Paper G1, pp.305-320.

[24] Post, K.H.: Electro-hydraulic valves with fluidic ball elements, Proc. 
of the National fluid power supply system and control conference 
(1973).

[2 5] Mansfeld, G.: Fast switching ball valves as digital control elements 
for an electro-hydraulic servo actuator. 6th International Fluid Power 
Symposium Cambridge, England, 8-10 April 1981, paper G3, pp*335-348.

[26] Schrenk, E.: Disc valves, flow patterns, resistance and loading., 
Forschungsabeiten auf dem Ingen., 272, (1925) (In German) Also: BHRA 
T.547, 1 7pp incl. 27 figs. (Jan.,1957).

[27] Goldstein, S.R. and Richardson, H.H.: A differential pulse-length 
modulated pneumatic servo utilizer floating - flapper disc switching 
valves. Transactions of the ASME series D, 90/1968/Nr.2, pp-143—151•

[28] Takenaka, T.; Yamane, R.; Iwamizu, T.: Thrust of the disc valves. 
Bull. JSME, 7, 27, pp.558-66 (1964).

[29] Oki, I.: Experimental research on disc valves. Bull. JSME, 4,13, 
pp.87-9 (1961).

[3 0] Horsnell, R.: Flow through a plate valve. University of Nottingham, 
B.Sc. Thesis (1960).

[31] Streeter, V.L.: Fluid Mechanics, McGraw-Hill (1966).

[32] Takenaka,T; Urata,E: Static and dynamic characteristics of oil- 
hydraulic control valves. Proc. of the 1968 Fluid Power International 
Conf._ 1 0.—1 2. Sept. 1 9 6 8, pp.67—74*

[33] Lichtarowicz, A.; Duggins,R.K.;Markland,E.: Discharge Coefficients for
incompressible non-cavitating flow through long orifices, Journal 
Mech. Eng. Sci. London, 1965, Vol.7, No.2.

A. Usman AUGUST 1984



Bibliography 2 1 1

[34] Lichtarowicz, A: Flow and force characteristics of flapper valves. 
Proc. 3rd International Fluid Power Symposium, Paper B1 pp.B1-1/B1-24, 
9.-1 1. May, 1973.

[35] Yuksel, I.: An investigation of an electro-hydraulic free floating 
switching valves. Ph.D. thesis, University of Surrey, 1981.

[36] Mansfeld,G.; Tersteegen, J.: ’Electro-hydraulic positioning drive with 
fast-acting solenoid valves and pulse-modulated control'. 
(Elektrohydraulisher positionierantrieb mit schnellschaltenden 
Magnetventilen und pulsmodulierter Ansteurung). Zeitschrift 
olhydraulik und pneumatik 22, (1978), No.11, pp.647-652. (In German).

[37] Sawamura,T.; Hanafusa,H.; Inui,T.: Fundamental analysis of an 
electrohydraulic servomechanisms operated by PWM mode. JSME Bulletin
1960, pp.1-12.

[38] Sawamura,T.; Hanafusa.H.; Inui,T.: Frequency characteristics of PWM 
mode electrohydraulic servos. JSME Bulletin 1960, pp.123-135*

[39] Boddy,D.E.s Analysis and design of Pulse-Width-Modulation hydraulic 
control systems. Ph.D. Thesis, Purdue University, 1966.

[4 0] Decker,R.L.: Pulse width modulation of solenoid valwes for low cost 
analog control. Basic Fluid Power Research Centre, Stillwater, USA, 
Oklahoma state Univ. Annual Report Nr.10, Oct. 1976, pp.48.1-48.3*

[41 ] Ikebe,Y.; Nakada,T.: On a Piezoelectric Flapper type servo-valve 
operated by a Pulse-width-modulated signal. Trans, of the ASME, 
Journal of Dynamic Systems, Measurement & Control magazine, 1974, 
pp.88-94.

[42] Taft,C.K.; Harned,T.J.: Electro-fluid Pulse-width Modulated valve. 
ASME paper Nr.78-WA/DSC-8, Dec. 1978,12pp.

[43] Davidson,A.R.: Puse rate modulated linearizes hydraulic actuator 
controls. Control Eng., Dec. 1974, pp.48-51*

[4 4] Armstrong,P.J.; McCloy,D.: Sub-optimal solution for time optimal 
control of a hydraulic servomechanism. JACC, Paper 6B2, Atlanta 
(1970).

[4 5] Armstrong,P.J; McCloy,D.: Optimisation of hydraulic servo using On/Off 
controllers. 2nd Fluid Power Symposium, 4*-7. Jan. 1971, Guildford, 
GB. pp.B3-49/B3-67*

[4 6] Wang,P.K.C.: Analytical design of electro-hydraulic servo mechanisms 
with near time-optimal responses. IEEE Trans. Aut. Control, Vol.8, 
No.1, pp.1 5-26, 1963.

[4 7] Devies,R.M.: Analytical design of time optimal transient response of 
hydraulic servomechanisms. Journal Mech. Eng. Sci., Vol.7, No.1, 1965*

[4 8] Martin,H.A.; McCloy,D.: Some aspects of the response of bistable 
hydraulic servos. 2nd Fluid Power Syposium, 4*-7* Jan. 1971, 
Guildford, GB. pp.B3-49/B3-67.

A. Usman AUGUST 1984



Bibliography 2 1 2

[49] Baeck,H.A.: Hydraulic on-off servo: Simple,rugged positioner* Control 
Eng. Dec. 1967, pp.79-82.

[50] - Parallel screw threads of Whitworth form. British standards
Institution, BS84, 1956.

[5 1] - Static strength of screwed fasteners. Engineering Sciences Data
Item No. 67019, January 1967*

[52] - T ens on in steel Bolts resulting from tightening torque
(Tentative) Engineering Sciences Data Item No. 72022, 1972.

[53] Hagiwara,T.: Studies of the characteristics of radial-flow nozzles. 
Bull. JSME, Vol.5, 20, pp.656-683, 1962.

[54] Holler,P.S.: Radial flow without swirl between parallel discs. 
Aerospace Quarterly, Vol.14, pp«163-186, 1963*

[55] Blackburn,J.F.;Rleethof ,G. and Shearer,J.L.: Fluid Power Control.
M.I.T. Press, 1960.

[56] Barwell,F.T.: Bearing systems: Principles and Practice. Oxford
University Press, 1979*

[57] Livesey,J.L.: Inertia effects in viscous flows. International Journal 
of Mechanical Science, Vol.1, p.84, 1960.

[58] Savage,S.B.: Laminar radial flow between parallel plates. ASME Journal 
of Applied Mechanics, Vol.31, No.2, pp.594-596, 1964*

[59] Jackson,J.D.; Symmons,G.R.: The pressure distribution in a hydrostatic 
thrust bearing. International Journal of Mechanical Science, Vol.7, 
pp.239-242, April, 1965.

[60] McCandlish,D.: Design methods for hydrostatic thrust bearing. 2nd 
Fluid Power Symposium, 4th-7th Jan. 1971, Guildford, Paper G1.

[61] Roters, H.C. : Electro-magnetic devices, John Wiley, 1941 •

[62J Hazeltine,L.A. : Electrical Engineering, Macmillan Co. New York, 1924.

[63] E02 : Curve and surface fitting, Subroutine E02AEF NAGLIB: 1350/0: 
MK 5, May 1977.

[64] Rayner,A.R. : Load cell weighing. B.Sc., dissertation, Dept, of Mech. 
Eng., Univ. of Surrey, England, July 1970.

[65] Feng, T.Y. : Static and dynamic control characteristics of a flapper 
nozzle valves. Trans. ASME, 1959, Vol. 81, series D, pp. 275-84*

[66] Merritt, H.E. : Hydraulic control systems. John Wiley, 1967*

[67] Moore,E.L.: The RSP programme for an Interdata 7/16 Minicomputer, 
Dept, of Mech. Eng., University of Surrey, June 1976.

A. Usman AUGUST 1984



Bibliography 213

[68] Usman, A.: Transfer function of an electro-hydraulic servo system, 
B.Sc. Final year project, Dept, of Mech. Eng., University of Surrey, 
May 1980.

[69] Zaraan, M., and Griffin, A.W.J.: Transfer function from sampled impulse 
responses-, Measurement and control, Vol.3,June 1970, T101-T108.

[70] Levy, E.C.: Complex curve fitting, IRE Transaction on Automatic 
Control, May 1959, AC-4, 37,44.

[71] Sanathanan, C.K., and Koerner,J.: Complex function systhesis as a 
ratio of two complex polynomials, IEEE Transactions on Automatic 
Control, January 1963, AC-8, 56-58.

[72] Martson, R.M.: Waveform generator projects for the home constructor, 
Newnes Technical Books, 1978.

[73] Vassilios, J.G.: Microprocessor controlled digital PWM, Computer 
Design Journal, January 1981.

[74] The TTL DATA BOOK for Design Engineers, 2nd ed., Texas instrument Inc.

[75] Quarndon Electronics Catalogue for 74 series TTL digital integrated 
circuits.

A. Usman AUGUST 1984



APPENDICES



APPENDIX A1

Design procedure for a flat-faced armature type of electro-magnetic coil



Appendix A1 214

A1: Design equations for a flat-faced electro-magnetic coil

For illustrating the symbols used in this appendix and a practical 

mechanical form of construction, a typical flat-faced armature type 

electro-magnetic coil is shown in Fig. A1 • 1 • The following equations are 

required to determine the size of the coil:

(a) Force equation

The force equation is given by

BI AcFm = - --  (A1.1)
:

where B_ is the flux density in the working gap and A„ is the area of the &  ^
working gap.

(b) Magnetic force equation

The exciting magnetomotive force NI, which provide flux required for the 

given force-stroke, is determined by the magnetic circuit equation for the 

electro-magnetic coil. This equation is given by

NI = -- 5-^i- + L± (A1.2)

where the first term represents the magnetomotive force necessary to 

establish the flux at a density of Bg across a working gap of length Xg, 

and the second term-represents the magnetomotive force necessary to 

establish the flux in the iron parts of the circuit.

(c) Coil resistance

The coil resistance Rc is given by

Rc * 4 Pc(r1b + r2b)H/dc (A1.3)
where r-ĵ  + is the mean diameter of a turn on the coil winding, dc the 

bare wire diameter, and p Q the volume resistivity of the copper wire.
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(d) Voltage equation
The assigned coil voltage, E is given by

E = IRC (A1.4)

(e) Coil space factor
The coil space factor fs is given by

fs = ^ / ( 4 h , b(r2b-r1b)) (A1.5)

The space factor of bobbin-wound coils are governed by the following 

inequality:

0.4 < f3 < 0.6 v

(f) Heating equation
To keep the temperature rise within a given limit, the coil must have a 

sectional area and heat conducting surface. The energy dissipation as heat 

in the electro-magnetic coil is given by

9f =
P c NI

» i b
(A1.6)

2k f 3 ( r 2 b - r 1 b )
where 0^ is the final temperature rise of the coil, k the heat-dissipation 

coefficient, fs the space factor, r2^ - r1t the gross coil wall thickness, 

and ĥ jj- the gross coil depth.

For weight economy the following.inequality holds: 

hp
3 < ---------  < 4  (A1.7)

r2p " r1p
For a safe design, the cross-sectional areas of the yoke, the armature, the 

inner pole core and the outer pore core must be equal to effect uniform 

flux throughout the magnetic path. That is

r3p - = ■ <r2p + r1 p)*a = <r2p + ^ p ^ p  <A1’8)
For a given flux density of the magnetic material and the required magnetic 

force, the cross-sectional area of each of the working faces or gaps may be 

estimated from equation (A 1.1). Knowing the area, r-jp can be estimated as

r0p is equal to the outside radius of the supply nozzle used in the disc
\
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valve to allow oil flow through the valve. The following constants can be 

substituted in equation (A 1.6):

pc = 2.1971 X 10’® ohm-metre at 90°C for copper wire

k = 11.78 watt/m^ °C for a temperature rise of 70°C

fs =0.5, assumed

Dimensional constraints

The pre-production valve had a coil leakage problem as with the prototype 

valve. About drawing no. CDL3-1 /I in Chapter 2, it can be seen that the 

coil leakage can occur at five different positions. These positions are:

(1) Through the supply line and is checked with ’0’ seal no. 17001.

(2) Through the outside diameter of the supply nozzle tube.

(3) Through the interface between the coil spool and the magnetic inner 

pole core. '

(4 ) Through the interface between the coil spool and the magnetic outer 

pole core.

(5) Through the outside of the magnetic outer pole core and is checked by 

an ’O' seal no. 17030.

To prevent coil leakage, enough radial clearance must be provided between 

the coil spool and the magnetic core to have enough space to accommodate 

alradite for sealing -purposes. The pre-production valve and the prototype 

valve have coils with only about 0.03 mm radial clearance between coil 

spool and the magnetic inner pole core. Clearly this clearance is small and 

there is no alradite in the market now that have a low viscosity to effect 

sealing. The minimum clearance that any of the available commercial 

alradite can be used to seal is 0.5 mm.

The gross winding depth r2p “^ p  will include besides the thickness of the 

winding itself:
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(1) the thickness of the bobbin tube = r^-r0^ > 0.51 mm;

(2) the insulation between bobbin and the coil, consisting of two or more 

layers of alradite, according to the voltage, r0 -̂r-jp > 0.38 mm;

(3) the insulation outside of the coil, consisting of two or more layer of 

alradite and a protecting layer of tape r2p~r2^ > 0.76 mm;

(4) an allowance of about 0.25 mm between the insulated coil and the 

outside iron for irregularities in winding.

Total allowance = 1.91 mm = . The number of coil layers is given

by

nL = (r2b-r1b-2dc)/dc (A1.9)
Two layers are left in equation (A 1 *9) to enable the coil winding to be

bound with any thin sticky tape of thickness less than dc. It also provide

space for coil sealing against leakage. The number of layers should be a

whole number and so, if small, may slightly be changed to get whole

number of layers. The number of layers must be an even number so that the

beginning and ending of the winding will be at the same end of the coil, as
i

this facilitates the mechanical problem of bringing the leads to the coil 

through the surrounding magnetic iron case.

Besides the insulated wire, the axial length h-jp includes:

(1) the thickness of two flanges of the bobbin, each having about the same 

thickness as the-brass tube = h2^-h‘ĵ) > 1.52 mm;

(2) three or more thickness of alradite = hp-l^ > 0.38 mm;

(3) an allowance of about 0.25 mm total for imperfect fit of bobbin in the 

iron shell.

Total allowances = 2.15 mm = h-jp-h-ĵ . The number of turns per layer is 

given by

% L  = (h1b-dc)/dc (A1.10)

An allowance of 1 turn per layer is provided in equation (A1.10) for space
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lost at the ends. The total number of coil turns N is given by

CLO

Cress section 
of winding ~  
bare wire 
diameter

Brass Bobbin

218

Fig. A1.1 Cross-section through a flat-faced armature type electro-magnetic 
coil.
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A2: POPE-LEVEL SWITCHING AMPLIFIER

In electro-mechanical solenoid systems, two current levels are required to

operate the system efficiently. First, when the armature of the solenoid 

system is moved, it requires high power to obtain fast response. Secondary, 

in a stationary position, the armature can be held against static forces 

with low power.

A unidirectional solenoid (single coil) system can be operated by a two- 

level switching amplifier, whereas a bidirectional (dual coil) system 

requires a four-level switching amplifier. The four-level are maximum 

positive current level, minimum positive current level and two 

corresponding levels that are delayed by half the input signal period.

The switching amplifier to be described here has a monostable pulse 

generator, bistable and power amplifier circuits. The block diagram and 

voltage waveforms of the switching amplifier is shown in figure A2.1. A 

bipolar square wave input operate the amplifier. The amplifier is 

constructed so that half the circuit admit the positive going input signal 

when the other half admit the negative going signal.

A2-1 Monostable circuit

This circuit has two ‘555 timer' ICS. The '555 timer' is designed to give a

monostable timing action, and acts as a pulse generator. The timer can 

generate pulses with periods ranging from 5 microseconds to several hundred 

seconds, and can be triggered at frequencies up to 100KHz [72].

The pulse timing periods are independent of supply-rail voltage and thermal 

variations. The electronic circuit for the monostable pulse-generator is 

shown in Fig. A2.2. The IC1 in Fig. A2.2 is used as a Schmitt trigger, 

which converts any input waveform into a rectangular output waveform. This
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waveform is converted into a form suitable for triggering the IC2 

monostable via C2 and R2. The peak-to-peak amplitude of the initial input 

waveform must be greater than 1/2Vcc. The pulse periods of the circuit are 

fully variable via C1 and R1 and the output pulse amplitude is fully 

variable via R3*

A2-2 Bistable signal generator

A diode and an operational amplifier are used to generate a bistable signal 

which is compatible with the square wave input signal. Fig. A2.3 shows two 

types of bistable signal generators. In Fig. A2.3a, the diode prevents the 

output voltage from going negative and this signal is inverted through an 

operational amplifier to obtain the negative bistable signal. In a similar, 

manner, Fig. A2.3b generates a positive bistable signal. With this 

arrangement, half the period of the input square wave switches one 

monostable to produce a positive going output signal. The other half period 

of the square wave generates a similar negative going output signal.

A2-3 Power stage amplifier

The power stage incorporates two operational amplifier and two NPN 

transistors (Q1,Q2). they are arranged in push-pull mode (see Fig. A2.4). 

This arrangement allows the use of two separate coils in the circuit.

Because no even harmonics are present in the output of a push-pull

amplifier, this circuit will give more output per active for a given amount 

of distortion. For the same reason, a push-pull arrangement obtain. less 

distortion for a given power output per transistor.

With the arrangement of the preceding circuits, the positive going input 

signal drives one transistor when the negative going signal drives the 

other transistor. The Zener diodes, ZD1 and ZD2, are placed across the

coils to protect the transistors from the coils stored energy effects.
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Excessive current will flow through the Zener diodes whenever the coil 

induced voltage level exceeds the Zener breakdown voltage.

For analysis purpose, one side of the power amplifier shown in Fig. A2.5 

would he considered. From this figure the following equations can he 

derived:

Ib = Ia - If (A2-1)

Ic - I. (A2-2)

The reverse transmission factor B is defined hy:

B = If/Ie = If/Ic (A2-3)

Ib = Vb/Rb (A2-4)

The transfer gain A is defined by:

A = I0A b - hfe (A2-5)

The feedback gain is given by:

Af = Ic/Ia = A/(1+BA) (A2-6)

Equation (A2-4) shows that the operational amplifier, 741, output voltage 

Vb results in a proportional transistor base current Ib. With the common- 

emitter configuration of Fig. A2.4 or Fig. A2.5, its output function acts 

as a current amplifier. For a purely resistive collector load, a step 

change in base current Ib will result in a step change in collector current

V
The effects of the feedback are:

(a) To improve the stability of the amplifier, (b) If the feedback network

does not contain reactive elements, the complete gain is not a function of 

frequency. Under these circumstances a large reduction in frequency and

phase distortion is obtained, (c) Non-linear distortion is reduced, (d)

Noise is reduced. (e) System bandwidth increases. (f) To improve 

characteristics of current amplifier.

These electronic circuits are combined as a four-level switching amplifier 
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shown in Fig. A2.6.

Input
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Output
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Fig. A2.1 Block diagram and voltage waveform of a switching amplifier.
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Fig. A2.2 An electronic circuit diagram of a monoatable pulse generator.
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Fig. A2.4 Current power amplifier arranged in push-pull mode
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Fig. A2.5 Schematic diagram of a power amplifier.
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A3: AHALOGUE PULSE-WIDTH-MODULATOR

eL& D

A3-1 Design approach

The analogue Pulse-Width-Modulator (PWM) in Fig. A3»1 is made up of three 

sections, these being an inverting operational amplifier (IC1), a summing 

operational amplifier (IC2) and a differential voltage comparator switch

(IC3).

The inverting operational amplifier network, which is built round IC1, 

comprises R4-R5 and is driven from a variable potential divider R1-R2-R3> 

that is wired between the positive and negative voltage supply lines.

The summing operational amplifier, (IC2), sum the output of IC1 and the 

feedback from the system under investigation (i.e. position servo system 

whose output is converted to voltage via a potentiometer arrangement). The 

output of IC2 is an error signal. In other words, IC1 and IC2 form a 

summing junction of a control system whose output is an error signal.

The IC3 is wired as a simple voltage comparator, and has one input applied 

from the output of IC2 via resistor R11. The operational amplifier IC3 

switches into positive or negative saturation each time the triangle 

waveform amplitude goes more than a few millivolts below or above the 

reference voltage set via R2 and the feedback voltage.

By adjusting the reference voltage, therefore, the operational amplifier 

(IC3) can be made to change state at any point on the triangle waveform and 

a variable mark/space ratio rectangular wave is thus available at the 

output of the operational amplifier (IC3)* The amplitude of the output is 

adjusted via R13* The frequency of the output waveform is that of the 

triangular frequency.

This analogue PWM provides useful rectangular waveforms up to a maximum 
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frequency of about 10 KHz. Operation beyond this range is poor, because 

the slew rate limitations of the 741 operational amplifier.

A3-2 Parts list

Table A3*1 shows the components value.

Table A3«1

Component Circuit Value
Function Reference

R2 10K
Mark/space R1 10K
ratio R3 10K

R4 10K
R7 10K

Input R8 10K
resistors R11 10K

R12 10K
R14 10K

Feedback R5 10K
resistors ' R10 10K

Output R13 10K
resistor

Earthing R6 4K7
resistors R9 4k7

operational IC1 741
amplifiers IC2 741

IC3 741
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Feedback Triangular 
wave input

R K R12

IC3
IC2

R13
R9 Output

Fig. A3»1 An electronic circuit diagram of an analogue pulse-width 
modulator amplifier.
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A4: PRINCIPLE OF PULSE-WIDTH-MODULATION TECHNIQUE

Figure A4«1 shows a method by which a regular signal e(t) shown in Figure 

A4*2a is transformed to a pulse train. The pulse train M(t) having a given 

magnitude (amplitude) Vp is shown in Figure A4.2b. In Figure A4*1, a 

triangular wave (sawtooth waveform) rg(t) with amplitude Vg and period Tg 

is generated. The comparator compared the triangular wave with the input 

signal. Its output Is Vp or -Vp according to whether the input is positive 

or negative. The amplitude of the triangular wave Vs should at any time be 

at least as large as the magnitude |e(t)| of the input signal e(t). 

Otherwise the output of the comparator is not a pulse train. On the other 

hand, the periods Ts of the triangular wave should be short enough so that 

the signal M(t) is nearly a constant during each period and can be 

approximated by a staircase function. The width of each step of this 

function is the period Ts of the triangular wave. It appears from the block 

diagram of the signal modulator, shown in Figure A4-1, that a regular 

signal e(t) is modulated to obtain a pulse train M(t) with amplitude Vp.

The following relations could be obtained for (e(t)| £  Vs.

e(nT3 + tn1) = ra(nTs + tn1) = (-Vs + 2V8tni/T3) (A4-1)

*111 + *n2 = Ts (A4.2)

nTs < t < nTs + tn1; H(t) » -Vp (A4-5)

nTs + tn1 < t < (n+1 )Tgj M(t) = Vp (A4.4)

where n is non-negative integer.

The time average Am of the modulated signal M(t) for the period from 

t = nTg to t = (n+1 )Tg is
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(A4*6)

where A^ is the time average of e(t) for the period from t = nT.g to 

t = (n+1 )Tg.

From equations (A4«1 ), (A4«2) and (A4*6) we have 

Ts
■tn1 - tn2 = - Ai <A4-7)

V s

From equation (A4»7), it can be seen that when A^ = 0, we have 

tn1 = tn2
The following equation could be obtained by substituting equation (A4»7) 

into (A4«5)

V
Am = (A4.8)

Vs
Hence the time average Am of the modulated signal for a period Tg is 

proportional to the magnitude of the original signal in the corresponding 

period.

This method of signal modulation is called pulse-width-modulation (PWM). 

This approach is generally used in communication to improve the "signal to 

noise ratio". In this present work, the PWM technique is used to convert a 

switching double disc valve into a proportional device.

Appendix A4

A . ' 1T

(n+1 )Tg
V

M(t) dt = “P(tn2 " tn1 )
nT,

If 0 < t < Tg, we have

e(nTg + t) = e(nTg + tn1 ) =

(n+1 )Tg 

Af = - I e(t) dt 

nT„
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Although the period Ts of this wave is short enough, the choice of the 

amplitude of the triangular wave is defined to be improper when 

vs < |e(t)| = |A± |-
From Figure A4-2, when e(t) - A^ > V ;

When this technique is applied, it must be borne in mind that the method 

has a saturation limits at = + Vg.

distorted in its width in the time domain and (c) the magnitude of the 

pulse is constant and is not distorted in magnitude by passing through the 

time independent non-linearity of the system.

When applying PWM technique to a closed-loop system, attention should be 

paid not only to the time rate of change of the input but to the bandwidth 

of the linear element in choosing the period Ts and the magnitude Vs of the 

triangular wave. Thus the amplitude at any time be at least as large as the 

absolute value of the signal coming into the non-linear element. The period 

Tg of the triangular wave should be short enough so that the signal coming 

into the non-linear element is nearly a constant during each period of the 

triangular wave.

(A4-9)

(A4.10)

The major assumptions made in applying the PWM technique are: (a) the non- 

linearity is not a function of time, (b) the input pulse signal is not
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Fig. A4.2 (a) Sawtooth waveform and error signal,
(b) Modulated signal.
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\
A5: DISC VALVE AMPLIFIER

A5-1 Introduction

The electronic control of a double-disc valve requires a switching 

amplifier and a simple pulse-width-modulator (PWM) to effect both switching 

and proportional control. The PWM generates pulses that drive the switching 

amplifier. The ouput transistor power stage of the switching amplifier 

provides the necessary current to the electro-magnetic coils of the valve. 

Initially, the Four-level switching amplifier described in Appendix A2 was 

used with the analogue PWM described in Appendix A3* This arrangement had 

the following disadvantages:

(a) Two power supplies were required to drive the electronic amplifiers 

because of current limitation.
(b) As a result of (a) there was earth problem and cross-over distortions.

(c) The add-on pulses or the overdrive principle associated with the Four- 

level switching amplifier has an adverse effect on the proportionality 

of the valve.

(d) Ext ernal waveform generator was required to provide the necessary 

sawtooth waveform required for the pulse-width-raodulation action.

The aim of the disc valve amplifier is to eliminate the above 

disadvantages. The disc valve amplifier incorporates both the analogue PWM 

and .the switching amplifier. It uses only one power supply and has a built- 

in sawtooth waveform generator. The add-on pulses of the Four-level 

switching amplifier had been removed in this disc valve amplifier.

The disc valve amplifier has a manual controller, auto controller, feedback 

amplifier, waveform generator, comparator and a switching amplifier. Fig. 

A5-1 shows the major components of the disc valve amplifier.
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A5-2 Manual controller

The manual controller has a Joystick controller and potentiometer 

controller as shown in Fig. A5«2. The switch S1 in the figure selects 

either a Joystick controller or potentiometer controller.

The Joystick controller has a dual axis Joystick potentiometer supplied 
with two 10K linear carbon track potentiometers. The Joystick has integral 

centre return springs which may, if desired, be removed allowing the 

control stick to stay in any position. In this application only one of the 

potentiometers was used. The control voltage from the Joystick was small in 
amplitude owing to the small sweep angle. For this reason an operational 

amplifier was incorporated to permit gain adjustment.

The potentiometer controller has a 10K linear potentiometer and two 

resistors with values 5K2 and 10K (variable). These two resistors were used 

to balance the voltage swing of the linear potentiometer.

The manual control unit is housed in a moulded plastic box and linked to 

the disc valve amplifier via a 4 core screen flexible cable with 5 pins DIN 

type connectors. The DIN pin assignments are:

Pin 1 +15 V; Pin 2 Not connected; Pin 3 Earth; Pin 4 Control voltage; 

and Pin 5 -15 V.

A5-3 Auto controller

The auto controller can accept any signal from an external source.

A5-4 Summing amplifier

The summing amplifier circuit is shown in Fig. A5«3* It has an operational 

amplifier used to sum the output of the manual controller, auto controller 

and a feedback signal as required in a closed - loop control operation-of
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the disc valve amplifier to provide a variable amplitude error signal. The 

output of the summing amplifier is called an error signal and its amplitude 

can be varied via a 100 K variable resistor shown in Fig. A5.3* The error 

signal gain is important in the disc valve control. The higher the error 

signal gain, the better the control as the input dead-band of the valve 

decreases.

A5-5 Feedback amplifier

Often in a closed-loop position control, the electrical stroke of a 

feedback transducer might not be equal to the stroke of an actuator or the 

feedback signal amplitude might not match that of the command signal. 

Considering these facts, a feedback amplifier whose electronic circuit is 

shown in Fig. A5*4was incorporated in the disc valve amplifier.

The feedback amplifier has three operational amplifiers, two of which were 
wired as voltage followers and the third one was wired as a summing 

junction. The voltage follower A was incorporated to prevent current being 

drawn from the feedback potentiometer. The voltage follower C was used to 

monitor the corrected feedback signal without drawing any current. The 

operational amplifier B was used to sum the uncorrected feedback signal and 

an adjustable offset signal used to correct any discrepancy in the mid­

positions of the feedback potentiometer stroke and that of the actuator. 

Feedback signal amplitude adjustment is made possible via 100 K 

potentiometer on the front panel of the disc valve amplifier.

A5-6 Waveform generator

The waveform generator has a monolithic integrated circuit (type 8038CC) 

that gives simultaneous sine, square and triangular outputs and an output 

buffer amplifier (see Fig. A5«5). The triangular output waveform is
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selected without any adjustment of the duty cycle being made and terminals 

4 and 5 are shorted together as shown in Fig. A5*5» The frequency f of the 

signal generator is controlled by the timing resistor R and the capacitor C 

and is given by f = 0.15 / RC.

Pins 7 and 8 are shorted together, and the magnitude of the charging 

current I due to R is given by I * Vcc / 5R* For best performance, this 
charging current should be within 10 microamp and 1 mA according to the 
manufacturer specifications. For best stability capacitor C should be a low 

temperature coefficient type, e.g. silvered mica, polystyrene type, etc. 

Electrolytic capacitors are not good for timing action.

To prevent overload and to provide maximum amplitude the waveform output 

is passed through an output buffer amplifier. The output buffer amplifier 

has an operational amplifier 741 and resistors wired as shown in Fig. A5»5* 

The circuit allows amplitude adjustment which means that the generator 

output signal level which is fixed at one-third of the power supply can be 

altered at will.

A5-7 Comparator

Fig. A5*6 shows the circuit that generates the pulse-width-modulation (PWM) 

signal used to trigger the switching section of the disc valve amplifier. 

The circuit has two operational amplifiers A and B. The operational 
amplifier A compares the error signal with that of the sawtooth amplitude 

and its output level is controlled via operational amplifier B. The output 

of the comparator is a series of time width varying rectangular waveforms 

which can be switched on or off via switch S3 in the figure.

A5-8 Switching amplifier

The switching amplifier section of the disc valve amplifier is an improved 
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version of the Four-level switching amplifier. In the present design, the 

monostable circuit of the Four-level switching amplifier has been removed 

and the output transistor power stage has been made more efficient. The 

transistor stages and the operational amplifiers now share the same power 

supply. The number of integrated circuits have been reduced from 12 to 1. 

Four operational amplifiers (741 type) are now combined as one integrated 

circuit (348 type). Fig. A5«7 shows the electronic circuits of the 

switching amplifier.

The switching amplifier has diode wave clippers, operational amplifiers and 

the power stage amplifier circuits. The diode wave clipper performs the 

same function as the bistable circuit described in Appendix A2-2. The 

transistor power output stage is described below.

A5-8.1 Transistor power output stage

Each of the output transistor power stages of the disc valve amplifier has 

four resistors connected as a self-biasing circuit. The bias circuit is 

shown in Fig. A5»8(a) and it has four resistors which provide improved 

stability of the quiescent operating point. The input resistors and R2 

are used to give fixed bias, while the emitter resistor Rg provides a bias 

voltage that varies with Ic* This compensates somewhat for changes in hgg 
or temperature on the quiescent operating point. Its operation is based on 

the fact that the critical variable to be stablised is the collector 

current rather than the base current. The combination of R-j and R2 
constitutes a voltage divider to bring the base to the proper potential to 

forward bias the emitter junction. If Ic tends to increase, because of an 

increasing in hgg due to a rise in temperature,' the current Ic + 1$ in Rg 
increases, raising the potential of the emitter with respect to negative 

supply level. This, in turn, reduces Vgg, the forward bias on the base- 

emitter junction, reduces the base current and, therefore, limits the
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increase in Ic. In other words, any increase in collector current is fed 

back to the base circuit and modifies the bias in such a way as to oppose a 

further increase in Ic*

A5-8.2 Analysis of the self-biasing circuit

Quantitative analysis of the circuit is simplified if the voltage divider 

(Fig. A5*8(b)) is replaced by its Th&venin equivalent (Fig. A5»8(c)) where 

VB = R, V0C/(E1 + B2 ) and RB = R^/ftt, + R2) (A5.1 )

Writing a voltage equation around the input as redrawn in Fig. A5.8(d), 

gives

VB ” XB^B " VBE " ^c  + Xb)RE = 0 (A5«2)
IQ in equation (A5«2) can be replaced with Ighpg and solving for the base 

current to get

1
XB -

VB “ VBE
RB

(A5-3)
1 + (1 ..+ hpg) Rg/Rg 

For a fixed-bias circuit

Xc = ^FEXB (A5*4)
and for the four-resistor bias circuit, Ic is hFg times the Ig value in 

equation (A5»3), leading to

VB “ VBE
RB

XFE
1 + (1 + h-pg) Rg/Rg

Ic can be made less affected by temperature-induced changes of Vgg by 

making Vg larger. Vgg is about 0.7 V, although Vg may be made 4 V.

We may also neglect unity with respect to hpg and then have

'B hFE
(A5.5)
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With the fixed-bias circuit, IQ was given by equation (A5-4), and was 

directly affected by changes in hgg, with the bias current held constant. 

With equation (A5-5) for the four-resistor circuit, however, we have hgg 
appearing both in the numerator and the denominator. It may be seen that 

the sensitivity of Ic to changes in hgg can be reduced if we choose Rg/Rg 

correctly.

If we make Rg = 0, however, then equation (A5*5) reduces to

and Ic will vary directly as hgg, which is the undesirable situation in the 

fixed-bias circuit.

If we make Rg/Rg-1, then the hgg(Rg/Rg) term in the denominator would be 

the influencing factor. The hgg terms in the numerator and denominator 

would about cancel and Ic would be independent of hgg which is the result 

desired. Rg must be small in magnitude or we lose signal gain and dc power, 

however, and Rg must be larger with respect to hjg of the transistor with 

which it is in parallel or we lose gain again. Hence some compromise 

between ideal bias stability and gain performance must be made.

Experience has shown that a satisfactory four-resistor bias circuit can be 

designed by selecting Vg in the region of 3 to 4 V and Rg/Rg in the region 

of 0.05 to 0.1. The Rg/Rg is called the stabilising ratio. This ratio 

serves as an index of stability, which increases as Ic is made more stable 

by the circuit design.

A5-9 Complete circuit

All the electronic circuits described so far are combined as one amplifier 

called the disc valve amplifier and Fig. A5-9 shows the block diagram of 

the essential components of the amplifier. Corresponding waveforms of the

Io = (V*B) hFE (A5.6)
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various sections of the amplifier are shown in Fig* A5-10.

In Fig. A5-9> switch S1 selects between a Joystick controller and a 

potentiometer controller. The amplifier can be used for both open and 

closed - loop control and this is achieved through switch S2. The output of 

the comparator is a series of time width varying rectangular waveforms 

which can be switched on or off via switch S3* The wave clipper I admits 

only the positive going section of the rectangular waveforms. These pulses 

are inverted by an inverting amplifier as the power amplifier I requires a 

negative going signal. The wave clipper II admits the negative going signal 

which is compatible to power amplifier II. The current output of the power 

amplifiers are used to drive the coils of the disc valve.

The two coils can be switched on at the same time via a coil activator. The 

coil activator simply set-up a dc voltage to enable the transistors to be 

switched on or off. Vhen switch S4 is on, the disc valve amplifier is in a 

pulse-width-modulation mode. Otherwise the two coils are fully switched on. 

The switch arrangement is shown in Fig. A5-7 as S4a and S4b. This 

arrangement allows the two discs of the double-disc valve to be pulled does 

shutting off the valve oil supply. With +_ 15 V power supply, the amplifier 

can provide a maximum current of 1.55 A.
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Fig. A5 .8 (a) The four-resistor bias circuit; (b), (c), and
(d) reduced circuits.



Appendix A5 246

I eCL <

1 ©

II

■=0

©

6a. < .

©
t_ ■ A -------------------------------- — — fs

U
m

0-- ----------------------- — ----- •  cl>  Q.—
| o 1 5 - ©

©
© ©=tj 1 <J= s rH *?so £ ill

?*’6 5
i r
KA <

<S>t

==i>(^)o=
O g
Ql

€ 5is
?•=
I|:vi <

S. Io # —"o o > L.

S« Ja ° . 
> lL

O
CD
•r-i

ra
«Ho
CDpc0)casoo
3♦tH
sQ)COCO
(D

0x:
p
«Ho
a £

IOO 0 'H >
<  >

o>
LO<
dbtH



Appendix A5 247

07

Fig. A 5 .10 Corresponding waveforms of various sections of disc 
valve amplifier.
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A6: MICROPROCESSOR COHTROLLED DIGITAL PULSE-WCTTH-MODULATOR

A6-1 Introduction

The development of fast-acting, solenoid-actuated valves has made the 

direct control of hydraulic systems much more feasible, but it is still 

difficult to position loads accurately using these valves and conventional 

control techniques. The reason is that on-off controllers require 

sophisticated schemes to control load position to avoid overshoot, 

undershoot, and instability. If a microprocessor with appropriate control 

strategies is added to the valve control, these problems can be solved. It 

is for these reasons that a digital Pulse-Width-Modulator (PWM) is 

considered.

Pulses are short bursts of voltage, often of considerable amplitude, with 

intervals between pulses usually far greater than the duration of the pulse 
itself. Generally speaking, pulses are unidirectional in voltage and do not 

go alternatively positive and negative. The general shape is as shown in 

Fig. A6.1. An ideal pulse should be rectangular with rapid rise and fall 

and a flat top, indicating constant amplitude during the 'on* period. 

Pulses have a mark/space ratio, i.e. on/off ratio, which is often extremely 

small; in radar, for example, ratios of 1:1000 are common in the 

transmitter pulse. A Pulse-Width-Modulator changes the on-off ratio of a 

pulse train according to a control signal. In a digital Pulse-Width- 

Modulator, the control signal is a data word whose value determines the 

pulse width. The period of the modulated pulse train is constant and 

independent of pulse width.

Microprocessor control of a digital modulator is easily achieved. The 

microprocessor can supply a word to designate the pulse width at its output 

port, and the modulator can produce a train of pulses having the desired
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width.

A6-2 Design approach

A digital PWM can be implemented in many different ways [73]* The one 

described here has the advantage of requiring a minimum number of 

components. Figure A6.2 shows a 12-bit PWM. In Fig. A6.2 , three LS 161 

counter integrated circuits (ICS) form a free running divide-by-4096 

counter whose output is constantly compared with the microprocessor output 

port value using the three cascade LS 85 comparators. When the counter 

output is less than the control word at the output port, the A>B comparator 

output stays high. When both inputs to the comparator are equal, the A>B 

output goes low, to zero, and remains low until the counter overflows. 

Then, A>B returns high and the process is repeated.

The period of the output waveform of a 12-bit modulator is

Tout = 4096 Tclk (A6.1)
and the pulse width pw is
pw = cw Tcllc (A6.2)

where cw is the control word value and T g ^  is the clock period.

In general, the period of the output waveform of a n-bit modulator is

Tout = 2“ Tclk (A6.3)
and equation (A6.2) still hold for the pulse width.

With a zero control word, this circuit supplies a zero output level, and 

the device that it drives will remain fully off. However, with the maximum 

2n-1 (4095 for 12-bit) control word value, the output will not remain fully 
on, instead, it will drop low every 2n-1 (4095) clock pulses and remain low 

for one clock period.

For n-bit modulator, the relationship between the clock frequency (fcik) 

and the frequency (fou-fc) of the output of the PWM is
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fclk = 2n fout (A6.4)
Therefore, for 12-bit modulator the relationship is

*clk ~ 4096 fout (A6.5)
In other words, for n-bit modulator running at X Hz, the fundamental will 

lie around X/2n Hz. For example, with an 8-bit modulator running at 3*2768 

MHz, the fundamental will lie around 1 2.8 KHz. For 12-bit accuracy, the 

fundamental drops to only 800 Hz. This show that for high accuracy and high 

bandwidth in a digital PWM demand a high clock frequency. In other words, 

the bandwidth of a digital PWM is limited.

In this design, a built-in clock was considered. This involved the use of a 

crystal and a dual-voltage controlled oscillator (LS 124) to generate the 

clock pulses. This approach gave a fixed clock frequency. To overcome this 

disadvantage, the output of the oscillator is fed through two counters 

(LS93) in cascade. The LS93 are 4-bit binary counter which means that there 

are now eight clock frequencies at user's disposal. The clock generating 

circuit is as shown in Fig. A6.3* For the 3*2768 MHz crystal used, the 

counter output frequency and the corresponding frequency of the PWM is as 

shown in Table A6.1.

Table A6.1 Counter frequency and PWM output frequency.

Counter frequency 
KHz

PWM frequency 
Hz

1638.4 400.000
819*2 200.000
409*6 100.000
204*8 50.000
102.4 25*000
51*2 12.500
25*6 6.250
12.8 3*125

The output frequencies of the LS93 counters are fed to the PWM via a rotary 

switch. The rotary switch is a one-pole six-way subminiature switch and
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select the required clock frequency for the system. The 12.8 and 1638.4 KHz 

clock frequencies were not connected. Therefore, the PWM output frequencies 

available in this design in Hz are :- 6.25, 12.5, 25, 50, 100, and 200 in 

ascending order.

The description and functional block diagrams of LS85 (comparator), LS93 

(counter), LS161 (counter) and LS124 (dual-voltage controlled oscillator) 

are given in [74,75]-

A6-3 Spectral analysis

An understanding of the frequency domain characteristics of a Pulse-Width- 

Modulated signal is required for accurate use of a PWM. For a given pulse 

width, the signal spectrum can be found by performing a Fourier 

transformation on one period of the modulated output. Georgiou [73] pointed 

out that a graphical approach is faster and allow a feel for the spectral 

behaviour to develop. The spectrum is, of course, a line spectrum with non 

zero energy only at frequencies that are integer multiples of the 

fundamental frequency of f0 = 1/T, where T is the period of the output 

waveform (see Fig.A6.4).

The amplitude of the dc component in the spectrum [73], the average value 

of the time domain signal is given by:

vdc = (pw vp) / T (A6.6)
Substituting for pw/T from equation (A6.5) gives,

vdc = (cw / 2n) vp (A6.7)
For 12-bit modulator,

vdc = (cw / 4096) vp (A6.8)
This equation shows that for a zero control word, the output of the PWM

will remain zero. In other words, the amplitude of the amplitude of the dc

component in the PWM spectrum is zero for zero control word.
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For a given Vp (the amplitude of PWM), the dc component (i.e. the average 

value of the time domain signal) is proportional to control word (cw). On 

the other hand, if the PWM is used in a closed loop configuration, then the 

control word would be the error signal. Therefore,

vdc = k ER (A6.9)

where k is the proportionality and ER is the error signal.

A6-4 Applications

The microprocessor controlled PWM has many uses. It can serve as a low cost 

digital to analogue converter (DAC) because the average or dc value of its 

output is proportional to the pulse width and, therefore, proportional to 

the value of the control word as shown in section A6-3* To operate a PWM as 
a DAC, it is important to filter its output of a frequency below the pulse 

repetition frequency. Because of its modulation method the DAC will be 
monotonic and will have excellent linearity.

An important advantage of PWM control is that power drivers will operate in 

the on-off mode with transistors fully saturated or fully off, minimising 

power dissipation in the driver. Another advantage of this PWM is that its 

fundamental frequency can be varied at will by simply changing the clock 

frequency via a rotary switch. The available fundamental frequencies in Hz 

are :- (3*125), 6.25, 12.5, 25, 50, 100, 200, and (400). Those enclosed in 

brackets are not available to user because they were not connected.

A6-4-1 Adaptation

The designed digital PWM is not directly compatible with switching 

amplifier constructed to control an electro-hydraulic Double-Disc valve. A 

switching amplifier requires a square wave input waveform to trigger on and 

off its output transistors. Hence an operational amplifier, 741, was wired
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as a comparator to convert the output pulse train of a 12-bit digital PWM 

into a rectangular waveform. The mark/space ratio and the time domain of 

the rectangular waveform are the same as those of the pulse train. Figure 

A6.5 shows the converting circuit. The amplitude of the output can be 

varied via resistor R5* The block diagram of the modified digital PWM is 

shown in Fig. A6.6. A block diagram of a possible way of controlling the 

valve remotely using a microcomputer is shown in Fig. A6.7* The 

microprocessor receives the demand signal via a system console (VDU) and 

the feedback position signal from an analogue-to-digital converter (ADC). 

In a closed-loop application, the microprocessor performs the arithmetic 

subtraction through software to generate the control word (error signal) 

needed to trigger the digital PWM. Alternatively, for a digital feedback 

transducer, such as an encoder, the feedback signal is used directly 

without the ADC. With the aid of the microprocessor, sophisticated control 

strategies may be implemented, parameter changes may easily be monitored 
and proportional-integral-derivative (PID) controller or state-space 

control may also be incorporated. The microprocessor can monitor all the 

various stages of the control loop and as such it can also be used as a 

data acquisition system.

When a digital PWM is used in this manner, it is necessary to have a 

fundamental frequency which is significantly higher than the mechanical 

resonant frequency of the electro-hydraulic system so that the electro- 

hydraulic system acts as a mechanical low pass filter. On the other hand, 

if the fundamental frequency is too high, the electrical inductance of the 

electro-hydraulic system will filter out all the harmonics. Then, the time 

domain signal seen by the electro-hydraulic.system will have dc 

characteristics.
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Fig. A6.6 Block diagram of a 12-BIT digital PWM adapted for use with a
switching amplifier.
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MICROPROCESSOR DIGITAL PWM AND ELECTRO HYDRAULIC ACTUATOR
— D

SWITCHING
a m p l if ie r

DISC VALVE — [ AND LOAD

75 75

Demand
position

Output' position

12 BIT 
A /D  CONVERTER

FEEDBACK POTENTIOMETER

VDU

Fig* A6.7 A block diagram of a microprocessor manipulated electro-hydraulic 
position control system.
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Flow chart of steady-state fluid computer model
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Magnetisation curves (B-H) for REMKO magnetic iron
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H y*ter«»l* cm"ve a for * o ft-ro lled  Reim ko  B

The test* wert performed on ring sped* 
mem using the ballistic method.
The graph below shows the influence 
of heat treatment and*decarburization 
on the appearance of the hysteresis 
curvet in a closed magnetic drcuit.
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Fig. A8 *t Magnetisation curves (B-H) for RH4K0 magnetic iron.
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Flow chart of electro-magnetic circuit calculation
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A10; SELECTION OF PUSH ROD DIMENSIONS

264

A10-1 Introduction

The two critical dimensions of a push rod are its length and diameter. The 

push rod form an annular passage for oil leaving the valve chambers to the 

drain. For a given drain nozzle, the radial clearance between the rod and 

the drain nozzle wall is dictated by the rod diameter. Clearly the rod 

diameter affect the drain flowrate, pressure sensitivity and valve 

stiffness. On the other hand, the length of the rod influence buckling 

action of the rod. From buckling point of view, a short rod would be 

better.

The rod used in the floating disc valve can be described as a pin-ended rod 

loaded by an axial compressive force at each end. The compressive forces 

are caused by the fluid forces acting on the valve discs. It is assumed 

that the line of action of the forces passes through the centroid of the 

cross-section of the rod. It is hoped that the critical load acting on the 

push rod to start buckling would be derived.

A10-2 Critical load

The critical load is defined to be that axial force which is enough to hold 

the bar in a slightly deformed configuration. Under the action of the load 

P the rod has the deflected shape shown in Figure A 1.0.1

The bending moment at point A having coordinates (x,y) is given by

(A10.1) 

(A10.2)

d2y
EX

dx^

If we set 

P 

El
* K£

A. Usman AUGUST 1984
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equation (A10.1) becomes 

d2y
El   ■ + K2y = 0 (A10.3)

dx2

The solution of equation (A10.3) is given by

y = C sin Xx + D cos Kx (A10.4)

A10-3 Boundary conditions

At the left end of the rod, y = 0 when x = 0. Substituting these values in 

(A10.4) we obtain 

D = 0

At the right end of the rod, y = 0 when x = L. Substituting these values in 

(A10.4) with D = 0 we obtain

0 = C sin KL

This implies that either C = 0 or sin XL = 0. But if C = 0 then y is

everywhere zero and we have only trivial case of a straight rod which is

the configuration before the occurrence of buckling. Since we are not

interested in the solution, then we must take

sin XL = 0  (A10.5)

For this to be true, we must have

XL = n7f radians (n = 1,2,3,-«0 (A10.6)

Using equation (A10.2) in (A1 0.6) gives

P = n2 H 2EI / L2 (A10.7)

The smallest value of this load P occurs when n = 1. Then we have the so-

called first mode of buckling where the critical load is given by 

Pcr * TT2EI / L2 (A10.8)

For a circular rod, the second moment of area I is given by

1 = 1TD$ / 64 (A10.9) 

Substitute (A10.9) in (A10.8) to get

Pcr = TT5E / 64L2 (A10.10)

A. Usman AUGUST 1984
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where E is the Young modulus of rod material. The rod is made of steel and 

therefore E = 200 GNm“ .̂ With this value equation (A10.10) becomes 

pcr = 9.68946 x 1010 / \? (A10.11)

The critical buckling load as obtained from equation (A10.10) or (A10.1 1 ) 

gives an idea of the maximum supply pressure that a given disc valve size 

can withstand without any failure.

Fig. A10.1 Deflected shape of a push rod subjected to axial load P.

A. Usman AUGUST 1984
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Viscosity - temperature charts of Shell Tellus R oils
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At 2; TRANSFER FUNCTION OF A SERVOVALVE

268

The transfer function of a servovalve is well treated in Chapter 7 of a 

Hydraulic Control System text hook by Merritt [66]. For completeness the 

results are quoted in this appendix in order to define the symbols used. 

The transfer function of a servovalve alone is given by [66]

A * v  r Ko wo . ,=----------------------------------    (At 2.1)
Av

(1 + s/wr) [s2 + (2 w0) s + w2]

where
2 K t jz

K0 =   - ------- ---—  ■ ■ = static gain constant, rad/volts
( R C  +  r p ) K a t °  ■  V K a )

r = radius arm of torque motor, in

Kat = Ka + 0.43 W (Ps - Pxj0) = total spring constant, in-lb/rad

wQ = ^ K at/(Ja + r2Mv) = total motor natural frequency, rad/sec 

My = mass of spool, lb-sec^/in

wr = (R'c -+ Tp)/2LC = armature circuit break frequency for each coil.

5 0 = Km/2Ka = damping ratio

Ka = mechanical torsion spring constant of armature pivot, in-lb/rad.

JQ = inertia of armature and any attached load, in-ib-sec^.

Km = (4.42x10-8)8(a/g)2 R 02 = magnetic spring constant of torque motor,
in-lb/rad

K t = (4.42x10”8 )4(a/g) gf = torque constant of the torque motor
(i.e., for each coil), in-lb/amp.

a = radius of armature from pivot to centre of pole face, in.

Rg = g/ji0Ag = reluctance of each air gap at neutral, amp-turns/in.

g = length of each air gap at neutral, in. .

® 3*19 = permeability of free space (air) used with English units.

A = pole face area at the air gaps, in^.O
= M Q/2Rg = flux in each of the four air gaps when the armature is at 

neutral.

A. Usman AUGUST 1984
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Rc = resistance of each coil, ohms.

Nc = number of turns in each coil.

rp = internal resistance (plate resistance) of amplifier in each coil 
circuit, ohm.

MQ = total mmf of all permanent magnets, amp-turns.

Lc = (10“®) N^/Rg = self-inductance of each coil, henrys.

A. Usman AUGUST 1984
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A13: Description of a high pressure hydraulic rig

The general layout of a high pressure rig used to supply hydraulic oil at 

constant pressure to a test bench is shown in Figure A13*1 • In the Figure, 

the hydraulic oil (Shell Tellus R37) falls under gravity from a tank (1) to 

a boost pump (2). The boost pump is driven by a constant speed motor (Mi ) 

to supply oil to a main pump (5) at 7.7 bar. The oil from the boost pump 

flows through a 10-micron filter (3) and a pre-set pressure regulator (4) 

into a main pump (5) which is a swash plate. The main pump is driven by 

electric motor (M2). The filter (3) cleans the oil to prevent any damage to 

the relevant equipment. The relief valve (6) (adjustable spring type) 

controls the pressure to the main pump. At present this relief valve is set 

to 7«7 bar which gives about 1 26.0 bar main line pressure. If the boost 

pump pressure is increased, the line pressure will increase 

correspondingly. The boost pump pressure is registered by pressure gauge 

(7). The main pump is a variable swash plate axial piston type. The angle 

of the swash plate depends on the delivery. There would be no delivery when 

the swash plate is in vertical position (i.e. no demand).

The flow output from the main pump unit is controlled by a two-way manual 

lever-operated directional valve (10) and a pressure regulator/relief valve 

(11 ). The means of actuating the two pump units are situated on the main 

control panel. On the front of the test bench are the associated pressure 

gauges and relief valves to supply four channels. To increase the supply 

pressure, the pressure regulator knob is turned clockwise. The oil from the 

pressure regulator (11) then flows through another 10-micron filter into 

the test rig or test bench (1 4).

An accumulator (13) is fitted just upstream of the test rig. The 

pressurised accumulator (precharged to 2/3 of required working pressure 

with nitrogen), which has the same effect as a smoothing capacitor in a

A. Usman AUGUST 1984



Appendix A13 271

d.c. supply, improves the pressure fluctuations and transient flow demands. 

The supply pressure is indicated by pressure gauge (12). The line pressure 

is indicated by (9) and oil temperature by gauge (8). The return flow, 

from the test rig, passes through a filter and oil cooler (16) into the 

tank (1 ). The return pressure is indicated by pressure gauge (15)* The 10- 

micron oil filter in the main return line from the test rig prevent dirt 

from the test rig contaminating the main oil reservoir. Heating of the oil 

owing to pressure losses in the system can be severe problem, hence the oil 

cooler (16) maintain the oil temperature in the system at a given level.

A. Usman AUGUST 1984
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Ml

r~r
-  _ J

r  ■I__ M2

FIG. A13-1 HYDRAULIC CIRCUIT OF A HIGH PRESSURE HYDRAULIC RIG

KEY TO FIG. A1?.t

(1) Tank - 60 gallon capacity.

(2) Boost pump (gear type)(LUCAS LTD.) TypS GP.20111 motorised by a 5 hp 
at 1440 rpm foot & flange drip-proof type Nevman electric motor - 
arranged for 400/440V 5-phase 50 cpe.

(3) Filters (FAIREYS AVIATION LTD.) 10-mlcron cut-off type.

(4) Relief valve/Preesure regulator - preset to 110psl.

(5) Main pump (LUCAS LTD.) Type PM.500/(DB2)/MS/D4/H1 variable capacity 
pump unit with manual control- max. output 12 GPM at 3,000psl but
limited to 10 GPM. Motorised by a 25 hp at 1440 rpm foot & flange,
drip-proof electric motor - arranged for 400/440V 3 phase 50cpe.

(6) Relief valve

(7) Boost pressure gauge (BOURDEIJ LTD.)

(8) Oil temperature gauge (BOURDEIJ LTD.)

(9) Hain line pressure gauge (BOURDEIJ LTD.)

(10) Directional valve - lever control type (DEJINISON LTD.)

(11) Relief valve/ pressure regulator

(12) Supply pressure gauge (BOURDEIJ LTD.)

(13) Accumulator (FAWCETT ENGINEERING LTD.)

(14) Test rig

(1 5 ) Return pressure gauge (BOURDEN LTD.)

(16) Oil coolant (SHELL LTD.)


