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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. This paper deals with the scattering by a perfectly conductive ellipsoid

under magnetic dipolar excitation at low frequency. The source and the ellipsoid are

embedded in an infinite homogeneous conducting ground. The main idea is to obtain an

analytical solution of this scattering problem in order to have a fast numerical estimation

of the scattered field that can be useful for real data inversion. Maxwell equations and

boundary conditions, describing the problem, are firstly expanded using low-frequency

expansion of the fields up to order three. It will be shown that fields have to be found

incrementally. The static one (term of order zero) satisfies the Laplace equation. The

next non-zero term (term of order two) is more complicated and satisfies the Poisson

equation. The order-three term is independent of the previous ones and is described by

the Laplace equation. They constitute three different scattering problems that are solved

using the separated variables method in the ellipsoidal coordinate system. Solutions are

written as expansions on the few analytically known scalar ellipsoidal harmonics. Details

are given to explain how those solutions are achieved with an example of numerical

results.

1. Introduction. This paper describes how to obtain an approximate solution of the

field scattered by an impenetrable ellipsoid illuminated by a magnetic dipole at low fre-

quencies. This work is motivated by geophysical applications [1] [2] (mining prospection)

[3] (detection of cavity), or other underground detections [4] [5] (UXO - Unexploded
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Ordinances) [6], where one wants to localize and/or to estimate size, orientation and

conductivity of the embedded structure. Generally, an inverse scheme is used to find

either a smooth surface of the structure [7], or the parameters of an equivalent object

[8] [9] using iterative methods. Most of the proposed solutions use meshing methods for

the scattering problem that have to be evaluated at each iteration, resulting in a large

time-consuming numerical process. In practice, users want to measure and to identify

the structure in-situ at the same time. For this reason, inverse schemes have to be fast,

which can be achieved only if the direct problem is itself very fast. In order to reach

this objective, analytical solutions of the scattering problem can be of good help. C. Ao

and colleagues provide in [10] the static solution of the quasi-magnetostatic problem for

the scattering by a spheroid. The case of an ellipsoid with a low conductivity compared

to the ground is given in [11] where the solution is based on the localized non-linear

approximation [12]. In this paper we will discuss the impenetrable ellipsoidal case in

order to deal with the very high contrast of conductivity of the structure compared to

the underground.

The ellipsoidal geometry has been chosen because, for such applications, the source

works at low frequencies in order to deeply penetrate in the conductive ground. Actually,

at such frequencies, measurements are only sensitive to general information about the

structure like global shape, average conductivity, etc. Therefore, the equivalent object

must have a general shape in order to have information as orientation and size, but

should not be too complicated either. The ellipsoid has the advantage to be one of the

most general canonical shapes. Generally the source is a magnetic dipole located in a

borehole or a loop on the ground, that can be approximated by a magnetic dipole as

a first approximation. For all these reasons, the authors decided to provide an efficient

solution of the scattering by a perfectly conducting ellipsoid illuminated by a magnetic

dipole. In this paper, the source and the ellipsoid are supposed to be located in an infinite

homogeneous conductive ground. This simplified environment constitutes a reasonable

approximation if both the source and the dipole are far enough from the surface of

the ground. Therefore, if measurements are done in a borehole, this approximation is

reasonably valid.

In part 2, the scattering problem is first described and simplified as a low-frequency

problem using low-frequency expansions. The authors will explain why such approxi-

mations are needed to solve the problem in the ellipsoidal coordinate system using the

few scalar ellipsoidal harmonics known. The third part explains how the solution is ob-

tained for each term of the low-frequency expansion. Actually, some of them satisfy a

Laplace equation and others the Poisson one, with very different incident fields so that

calculations must be explained separately. Choices that have been made to correctly

describe the order-two fields and that are far from trivial, due to the lack of information

about ellipsoidal harmonics, are also explained. Numerical results are given in part 4 in

order to emphasize how such a contribution can be useful. Part 5 provides the authors’

conclusions.
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Fig. 1. Problem geometry

2. Low-frequency scattering problem. The problem considered here is the

one of a perfectly conducting ellipsoid illuminated by a magnetic dipole M with time-

harmonic dependence exp(−jωt), where ω is the angular frequency. The ellipsoid is

located at the center of a Cartesian coordinate system (x1,x2,x3), each axis being along

one of the semi-axes a1 > a2 > a3 of the ellipsoid, as shown in figure 1. The magnetic

dipole is located at r0 and is defined by its vector intensity M = M1x1 +M2x2 +M3x3

that can be of any orientation.

The wavenumber k around the ellipsoid is defined by k2 = εµ0ω
2 +jωµ0σ where ε and

σ are the dielectric permittivity and the static conductivity of the surrounding medium,

and µ0 is the permeability of vacuum.

The incident field radiated by the magnetic dipole is well-known

Ei(r) = −jωµ0
M

4π
×

[

−
R

R3
+ (jk)

R

R2

]

ejkR

Hi(r) =

[(

k2 +
jk

R
−

1

R2

)

M −

(

k2 +
3jk

R
−

3

R2

)

RR · M

R2

]

ejkR

4πR

with R = r− r0

(1)

while the scattering problem is described by Maxwell’s equations

∇× E∗(r) = jωµ0H
∗(r) ∇ · E∗(r) = 0

∇× H∗(r) = −j
k2

ωµ0
E∗(r) ∇ · H∗(r) = 0

(2)
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(with ∗ = i, or t), proper condition of radiation at infinity, and boundary conditions at

the surface S of the ellipsoid

n × Et(r)
∣

∣

S
= 0 n · Ht(r)

∣

∣

S
= 0 (3)

where (Et,Ht) is the total field, (Ei,Hi) the incident field, and n the outward-pointing

unit vector, normal to the surface S. Boundary equations come from the physical prop-

erties of the ellipsoid which is a perfectly conductor.

In a scattering problem, the total field (Et,Ht) can be viewed as the superposition of

the incident field (Ei,Hi) and the scattered field (Es,Hs). In this paper, the authors

focus their work on finding the scattered field knowing that the total field can be easily

obtained. Note that this scattered field (Es,Hs) also satisfies the Maxwell equations and

the radiation condition at infinity, while the boundary conditions are only satisfied by

the total field.

One usually solves these equations using separated solutions in the appropriate separa-

ble coordinate system. Boundary conditions are to be satisfied on the ellipsoidal surface,

so the matched coordinate system is the ellipsoidal one, which is also a separable one.

Then, the solution for the vector waves has to be written in term of vector harmonics.

Due to the fact that the vector ellipsoidal harmonics are unknown, no solution can be

obtained analytically in terms of vector waves. Having an analytical expression of the

fields is the main goal of this paper, in order to have a fast numerical evaluation. If the

problem cannot be solved analytically with vector ellipsoidal harmonics, scalar ones can

be used if they exist. Knowing that some of those scalar ellipsoidal harmonics have been

established in a simple analytical form [13][14][15], the authors decided to simplify the

scattering problem in order to find an approximate solution using these scalar harmonics.

In a previous paper [16], for the sphere case, the authors have shown that low-frequency

(LF) expansions can be used and applied to fields and quantities involved. All the scalar

or vectors are written as summation in terms of power of (jk), where k is the wave

number in the surrounding medium and j is the complex number satisfying j2 = −1. So

for any given vector field ψ the LF expansion is ψ(r) =
∑

∞

l=0ψl(r)(jk)
l. It is assumed

that for the low-frequency applications involved, only the first four terms contribute to

the behavior of the fields. For this reason all LF expansions are truncated at l = 3.

After working on the previous equations (1, 2) and dealing with this LF expansion,

plus the following one of the pulsation

jω =
−1

σµ0
(jk)2 +

ε

σ3µ2
0

(jk)4 (4)

Maxwell’s equations become a system of equations1

E∗

0(r) = 0 ∇ · E∗

0(r) = 0 ∇× H∗

0(r) = 0 ∇ · H∗

0(r) = 0

E∗

1(r) = 0 ∇ · E∗

1(r) = 0 H∗

1(r) = 0 ∇ · H∗

1(r) = 0

∇× E∗

2(r) =
−H∗

0(r)

σ
∇ · E∗

2(r) = 0 ∇× H∗

2(r) = σE∗

2(r) ∇ · H∗

2(r) = 0

E∗

3(r) = 0 ∇ · E∗

3(r) = 0 ∇× H∗

3(r) = 0 ∇ · H∗

3(r) = 0

(5)

1In fact, ε does not appear until the order-four field and so, does not play any role at low frequencies
as it is hoping for.
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that has to be satisfied by the total, incident and scattered fields (∗ = i, t, s), while the

expansion of the incident field is

Ei
0(r) = 0 Hi

0(r) =
M

4π
·

(

3RR

R2
− I

)

1

R3

Ei
1(r) = 0 Hi

1(r) = 0

Ei
2(r) = −

1

σ

M

4π
×

R

R3
Hi

2(r) = −
M

4π
·

(

RR

R2
+ I

)

1

2R

Ei
3(r) = 0 Hi

3(r) = −
2

3

M

4π

(6)

where I is the unit dyad.

Boundary conditions must be satisfied, which provides for the LF terms of the total

field (Et
l ,H

t
l) the following new boundary conditions

n× Et
l(r)

∣

∣

S
= 0 n ·Ht

l(r)
∣

∣

S
= 0 (for l = 0 to 3) (7)

Looking at equations in (5), one can notice that solutions can been found incremen-

tally. The static term (Hs
0) has already been found by the authors [11] and details are

reminded in appendix B for completeness. Then the second-order term (Hs
2,E

s
2) has to

be found using the static solution. The third-order term is not linked to the previous one

and has to satisfy simple equations under a uniform incident field (Hi
3 is independent of

r). At this point, the expansion of the solution, thinking that for low-frequency applica-

tions these three terms are indeed sufficient, ends as illustrated numerically thereafter.

3. Approximate solution.

3.1. The ellipsoidal geometry. To start with, some explanations are needed about the

ellipsoidal coordinate system.

An ellipsoid is defined by its semi-axis a1 > a2 > a3 and also its foci h1, h2, h3, where

h2
i = (−1)i−1(a2

i+1 − a2
i+2) (8)

In an ellipsoidal coordinate system, the appropriate coordinate are (ρ, µ, ν) such that

∞ > ρ2 ≥ h2
2 ≥ µ2 ≥ h2

3 ≥ ν2 ≥ 0 (9)

They satisfy the equations of the ellipsoidal coordinate surfaces (ellipsoids –ρ, hyper-

boloids of one sheet–µ, hyperboloids of two sheets–ν)

3
∑

i=1

x2
i

θ2 − a2
1 + a2

i

= 1 (for θ = ρ, µ, ν) (10)

where the (x1, x2, x3) are the Cartesian coordinates as defined before. The unit ellip-

soidal coordinate vectors (ρ,µ,ν) corresponding to ellipsoidal coordinates (ρ, µ, ν) are

orthogonal to the ρ, µ, ν surfaces. They are linked to the Cartesian unit vectors as

follows

θ =
θ

hθ

3
∑

i=1

xi

θ2 − a2
1 + a2

i

xi (11)
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where (θ, θ) is respectively (ρ, ρ), (µ, µ) and (ν, ν), while hρ, hµ, hν are metric parameters

such that

h2
ρ =

(ρ2 − µ2)(ρ2 − ν2)

(ρ2 − h2
3)(ρ

2 − h2
2)

h2
µ =

(ρ2 − µ2)(µ2 − ν2)

(µ2 − h2
3)(h

2
2 − µ2)

h2
ν =

(ρ2 − ν2)(µ2 − ν2)

(h2
3 − ν2)(h2

2 − ν2)
(12)

It is also useful to know the expression of the Cartesian coordinates in term of the

ellipsoidal ones

xi =
hi

h1h2h3

[

(−1)i−1(ρ2 − a2
1 + a2

i )(µ
2 − a2

1 + a2
i )(ν

2 − a2
1 + a2

i )
]1/2

(13)

In this particular coordinate system, the gradient operator is defined by

∇r =
ρ

hρ

∂

∂ρ
+
µ

hµ

∂

∂µ
+
ν

hν

∂

∂ν
(14)

For more details about the ellipsoidal coordinate system and operators, please refer to

[17].

The expansion of the inverse distance on scalar external IFm
n (r) and internal IEm

n (r)

ellipsoidal harmonics is known, and leads to

1

|r− r0|
=

∞
∑

n=0

2n+1
∑

m=1

1

(2n+ 1)γm
n

IFm
n (r0)IE

m
n (r) for ρ < ρ0 (15)

where the γm
n are constants listed in appendix A with the ellipsoidal harmonics.

3.2. Solution of the third-order term. How to get the third-order term is firstly de-

scribed due to its simplicity.

As said previously, fields of order three do not depend upon the fields of other orders.

This is summarized by the equations of order three extracted from equations (5) and (6)

Hi
3(r) = −

2

3

M

4π
∇× H∗

3(r) = σE∗

3(r) ∇ · H∗

3(r) = 0 (∗ = t, i, s)

Ei
3(r) = 0 Et

3(r) = 0 Es
3(r) = 0

(16)

The cancellation of the electric field implies that the magnetic field has zero curl

everywhere. Its divergence is also null, therefore it can be represented as the gradient of

a scalar potential φ3 that satisfies the following equations

Hs
3(r) = ∇φ3(r) ∇× Hs

3(r) = ∇×∇φ3(r) = ∆φ3(r) = 0 ∇ ·Hs
3(r) = 0 (17)

The source is a magnetic dipole M of any orientation so that it can be written as a

superposition of three dipoles orientated along each Cartesian vector M =
∑3

q=1Mqxq.

Using the property of superposition, the scattered field Hs
3(r) can be expressed as the

summation of gradients of three different potentials corresponding to each illumination

Hs
3(r) =

3
∑

q=1

Mq

4π
∇φ3q(r) (18)

For convenience the constant 4π is extracted from the potential.

The incident field can be rewritten as follows

Hi
3(r) = −

2

3

M

4π
= −

2

3

3
∑

q=1

Mq

4π
xqIE

1
0 (r) = −

2

3

3
∑

q=1

Mq

4π
xq (19)



LOW-FREQUENCY DIPOLAR EXCITATION OF A PERFECT ELLIPSOIDAL CONDUCTOR 7

knowing that the harmonic IE1
0 (r) is the unit constant.

Outside the ellipsoid, the scalar potential φ3q can be written in terms of the exterior

ellipsoidal harmonics IFm
n (r), or directly in terms of the internal ellipsoidal harmonics

IEm
n (r) and elliptical integrals Im

n (ρ) using equation (50)

φ3q(r) =

3
∑

n=0

2n+1
∑

m=1

gm,q
n IFm

n (r) =

3
∑

n=0

2n+1
∑

m=1

(2n+ 1)gm,q
n IEm

n (r)Im
n (ρ) (20)

where the gm,q
n are unknown scalar constants. As mentioned before, the expansion is

truncated at n = 3 in order to only use the ellipsoidal harmonics that are analytically

known. Using these equations, the scattered field can be represented as follows

Hs
3(r) =

3
∑

q=1

Mq

4π

3
∑

n=0

2n+1
∑

m=1

gm,q
n (2n+ 1)∇ [IEm

n (r)Im
n (ρ)] (21)

The scalar constants gm,q
n have to be found by fitting the scalar boundary conditions

given in equation (7) by the total field Ht
3 = Hi

3 + Hs
3 on the surface S of the ellipsoid.

This surface is defined in the ellipsoidal coordinate system by the ellipsoidal surface

ρ = a1 for all (µ, ν) of the ellipsoid of semi-axes (a1, a2, a3), while the normal n to this

surface is the unit vector ρ. This boundary equation n · Ht
3(r)|S = 0 is equivalent to

ρ ·

{

3
∑

n=1

2n+1
∑

m=1

gm,q
n (2n+ 1)∇ [Im

n (ρ)IEm
n (r)] −

2

3
xq

}

ρ=a1

= 0 ∀(µ, ν) (22)

Using the expression of ρ in the Cartesian coordinate system in (11) and equation (14)

of the gradient, boundary conditions become
{

3
∑

n=1

2n+1
∑

m=1

gm,q
n

(2n+ 1)

hρ

[

dIm
n (ρ)

dρ
Em

n (ρ) + Im
n (ρ)

dEm
n (ρ)

dρ

]

Em
n (µ)Em

n (ν)

−
2

3

ρ

hρ

hq

h1h2h3

Eq
1(ρ)

(ρ2 − a2
1 + a2

q)
Eq

1(µ)Eq
1(ν)

}

ρ=a1

= 0 ∀(µ, ν) (23)

Following the above, dealing with the orthogonal property of ellipsoidal harmonics,

one can find that all gm,q
n are zero except gq,q

1 ,

gq,q
1 =

2

9

a1a2a3

(a1a2a3I
q
1 (a1) − 1)

hq

h1h2h3
(24)

where q corresponds to the Mq component of the magnetic dipole source. Note that these

constants only depend on the semi-axes and foci of the ellipsoid and on the Carlson’s

elliptical integral of second kind Iq
1 which is the only quantity that has to be computed

using a standard mathematical library.

If needed, the expression of the scattered field of order three can be deduced

Hs
3(r) =

3
∑

q=1

Mq

4π
3gq,q

1 ∇ [IEq
1(r)Iq

1 (ρ)]

=
3
∑

q=1

Mq

4π
3gq,q

1

h1h2h3

hq

[

ρ

hρ

(

3
∑

i=1

xixi

ρ2 − a2
1 + a2

i

)

dIq
1 (ρ)

dρ
xq + Iq

1 (ρ)xq

]
(25)
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where the derivatives of the elliptic integral are analytically known

dIq
1 (ρ)

dρ
=

−1

(ρ2 − a2
1 + a2

q)
√

ρ2 − h2
2

√

ρ2 − h3
2

(26)

The solution obtained is very simple, due to the uniformity of the incident field and

the nullity of the electric field of order three.

3.3. Solution of the second-order term. The second-order term is more complicated

to deal with because magnetic and electric fields are both non-zero. They also depend

upon the static field H0 (E0 being zero) already found and known as an approximate

expansion in terms of scalar external ellipsoidal harmonics IFm
n (r) up to order two (or

the internal one IEm
n (r) using equation (50))

Hs
0(r) =

3
∑

q=1

Mq

4π

2
∑

n=0

2n+1
∑

m=1

(2n+ 1)fm,q
n ∇ (Im

n (ρ)IEm
n (r)) =

3
∑

q=1

Mq

4π
∇ψ0q(r) (27)

where fm,q
n are known scalar constants and ψ0q is a scalar potential (see appendix B).

The following equations summarize the scattered problem and come from equations (5)

and (6)

Hi
2(r) = −

M

4π
·

(

RR

R2
+ I

)

1

2R
∆H∗

2(r) = H∗

0(r) ∇ · H∗

2 = 0

Ei
2(r) = −

1

σ

M

4π
×

R

R3
E∗

2(r) =
1

σ
∇× H∗

2(r) ∇ · E∗

2 = 0

(∗ = t, i, s)

(28)

The order-two magnetic field satisfies a Poisson’s equation, and the order-two electric

field can be deducted from the previous field, but the problem must be solved by match-

ing boundary conditions (7) both for the electric and magnetic total fields as for any

electromagnetic problem.

The field Hs
2 must satisfy the Poisson’s equation, so it can be written as a superposition

of a particular solution H
s,p
2 and a harmonic solution H

s,h
2 . Using identities ∆(ur) =

(∆u)r+u(∆r)+2∇u ·∇r and ∆r = 0, and having in mind that ∆ψ0q = 0, the particular

solution is

H
s,p
2 (r) =

r

2

3
∑

q=1

Mq

4π
ψ0q(r) =

r

2

3
∑

q=1

Mq

4π

2
∑

n=0

2n+1
∑

m=1

(2n+ 1)fm,q
n Im

n (ρ)IEm
n (r) (29)

Note that this particular solution is truncated at n = 2, taking into account the solution

for Hs
0 in equation (72) of appendix B where constants fm,q

3 are all zero.

Generally the harmonic solution H
s,h
2 is written as an expansion of scalar harmonics

up to infinity (n = 0, · · · ,∞), but here for the same reason as previously stated only the

scalar ellipsoidal harmonics up to order 3 (IEm
3 (r),m = 1, · · · , 7) are used. Due to the

fact that the particular solution only involves harmonics up to order two (∇IEm
2 ,m =

1, · · · , 5), the harmonic solution H
s,h
2 must also be written as an expansion on ellipsoidal

harmonics up to order 2

H
s,h
2 (r) =

2
∑

n=0

2n+1
∑

m=1

em
n IF

m
n (r) =

2
∑

n=0

2n+1
∑

m=1

em
n (2n+ 1)Im

n (ρ)IEm
n (r) (30)
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where em
n are vector unknown constants.

As mentioned before, the order-two electric field is linked to the magnetic field by

the equation Es
2 = ∇× Hs

2/σ that provides the expression of Es
2 as a superposition of a

particular solution E
s,p
2 and a harmonic solution E

s,h
2

E
s,p
2 (r) =

2
∑

n=0

2n+1
∑

m=1

1

σ
(2n+ 1)

3
∑

q=1

Mq

4π

fm,q
n

2
∇× [rIm

n (ρ)IEm
n (r)]

E
s,h
2 (r) =

2
∑

n=0

2n+1
∑

m=1

1

σ
(2n+ 1)∇× [em

n I
m
n (ρ)IEm

n (r)]

(31)

Dealing with such kind of expressions for Hs
2 and Es

2 to satisfy the boundary conditions

yields a harmonic solution that cannot be obtained up to n = 2 and ends at n = 1, which

results in a unsatisfactory numerical solution.

In order to take into account higher-order harmonics, a more suitable harmonic solu-

tion with additive gradient terms can be sought as

H
s,h
2 (r) =

2
∑

n=0

2n+1
∑

m=1

(2n+ 1) (em
n + dm

n ∇) Im
n (ρ)IFm

n (r) (32)

where dm
n are new unknown scalar constants. The derivatives of ellipsoidal harmonics

add a new contribution to the harmonic solution that can now better combine derivatives

of ellipsoidal harmonics in the incident field. Using the newest expression of H
s,h
2 , the

harmonic E
s,h
2 solution of the scattered electric field becomes

E
s,h
2 (r) =

2
∑

n=0

2n+1
∑

m=1

1

σ
(2n+ 1)∇× [(em

n + dm
n ∇) Im

n (ρ)IEm
n (r)] (33)

The constants em
n , d

m
n have now to be found using boundary conditions (7) and equa-

tion (28) of the problem. First of all, boundary conditions for the total magnetic field at

the surface of the ellipsoid are

n ·
[

Hi
2(r) + H

s,p
2 (r) + H

s,h
2 (r)

]

S
= ρ ·

[

Hi
2(r) + H

s,p
2 (r) + H

s,h
2 (r)

]

ρ=a1

= 0 (34)

It is equivalent to

la1
(µ, ν)

2
∑

n=0

2n+1
∑

m=1

{[

3
∑

i=1

Am,i
n +Dm

n d
m
n

]

Em
n (µ)Em

n (ν)

+

3
∑

i=1

(

Bm,i
n + em,i

n Cm,i
n

)

[

xiIE
m
n (r)

]

ρ=a1

}

= 0 ∀(µ, ν)

(35)
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where

Am,i
n =

Mi

2

[

(2n+ 1)fm,i
n Im

n (a1)E
m
n (a1) −

IFm
n (r0)

(2n+ 1)γm
n

Em
n

′(a1)

a1
x0i

]

Dm
n = (2n+ 1)

[

a2a3I
m
n (a1)E

m
n

′(a1) −
1

Em
n (a1)

]

4π

a1a2a3

Bm,i
n =

Mi

2

IFm
n (r0)

(2n+ 1)γm
n

[

Em
n

′(a1)

a1Em
n (a1)

−
1

a2
i

]

Cm,i
n = 4π(2n+ 1)

Im
n (a1)

a2
i

lρ(µ, ν) =
[

(ρ2 − µ2)(ρ2 − ν2)
]−1/2

em,i
n = em

n · xi

(36)

The orthogonality between ellipsoidal harmonics provides a system of 9 equations with

36 unknowns (9 of the dm
n kind and 27 of the em,p

n one). Boundary conditions for the

electric field are needed to obtain the missing equations for the number of unknowns

involved. This condition is

n×
[

Ei
2(r) + E

s,p
2 (r) + E

s,h
2 (r)

]

S

=
1

σ
ρ×

[

∇×
(

Hi
2(r) + H

s,p
2 (r) + H

s,h
2 (r)

)]

ρ=a1

= 0 (37)

As a result, one can prove that, for all (µ, ν), it is equivalent to

2
∑

n=0

2n+1
∑

m=1

3
∑

i=1







(2n+ 1)

a1a2a3[Em
n (a1)]2

[(

8πem,i
n +

3
∑

p=1

Mpf
m,p
n xi

)

IEm
n (r)

[

I − ρρ
]

· xi

]

ρ=a1

+



2
IFm

n (r0)

(2n+ 1)γm
n

Mi − (2n+ 1)Im
n (a1)

(

8πem,i
n +

3
∑

p=1

Mpf
m,p
n xi

)

ρ=a1





[

Em
n

′(a1)

a1
Em

n (µ)Em
n (ν)xi −

1

a2
i

(xi∇IE
m
n (r))ρ=a1

]

}

= 0 (38)

The term [ I−ρρ] cannot be written in terms of ellipsoidal harmonics, so no orthogonality

rules between harmonics can be applied at this step, and the equation ∇ · Hs
2(r) = 0 is

necessary. This equation is also valid for ρ = a1, and it gives

2
∑

n=0

2n+1
∑

m=1

3
∑

i=1

(2n+ 1)

[Em
n (a1)]2

[(

8πem,i
n +

3
∑

p=1

Mpf
m,p
n xi

)

la1
(µ, ν)IEm

n (r)(xi · ρ)

]

ρ=a1

=

2
∑

n=0

2n+1
∑

m=1

3
∑

i=1

(2n+ 1)







3Mif
m,i
n Im

n (a1)E
m
n (a1)E

m
n (µ)Em

n (ν)

+Im
n (a1)

[(

8πem,i
n +

3
∑

p=1

Mpf
m,p
n xi

)

xi · ∇IE
m
n (r)

]

ρ=a1







(39)
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Putting this result into equation (38) and taking only the xi component provides the

following equation, for all (µ, ν)
[

2
∑

n=0

2n+1
∑

m=1

(

2Bm,i
n+E

m
n (a1) −Dm

n e
m,i
n

)

Em
n (µ)Em

n (ν)

+

2
∑

n=0

2n+1
∑

m=1

3
∑

p=1

(

2Bm,p
n− + Cm,p

n em,p
n

)

xpxi · ∇IE
m
n (r)

+

2
∑

n=0

2n+1
∑

m=1

(

3
∑

p=1

Mpf
m,p
n

)

1

2

(

−Dm
n xiIE

m
n (r)

4πEm
n (a1)

+ (2n+ 1)Im
n (a1)xi · ∇IE

m
n (r)

)

−12
3
∑

m=1

(

3
∑

p=1

Mpf
m,p
1

)

Im
1 (a1)

h1h2h3

2hma2
i

xmxi

−5

5
∑

m=1

(

3
∑

p=1

Mpf
m,p
2

)

Im
2 (a1)

2a2
i

[3xiIE
m
2 (r) + r · (xi∇IE

m
2 (r))]

−

5
∑

m=1

3
∑

p=1

Cm,i
2 em,p

2 xp · (xi∇IE
m
2 (r))

]

ρ=a1

= 0

(40)

whereas the new constants Bm,p
n+ and Bm,p

n− are defined as

Bm,p
n = Bm,p

n+ +Bm,p
n− with















Bm,p
n+ =

Mp

2

IFm
n (r0)

(2n+ 1)γm
n

Em
n

′(a1)

a1Em
n (a1)

Bm,p
n− = −

Mp

2

IFm
n (r0)

(2n+ 1)γm
n

1

a2
p

(41)

In equation (78), all terms including coordinate xi and harmonics or derivatives of har-

monics can now be expressed in terms of ellipsoidal harmonics. The property of orthog-

onality between ellipsoidal harmonics applied to equation (78) results in a complicated

system of equations as it is explained in appendix C.

As expected for, it is a system of 27 equations with 27 unknowns of em,p
n kind. Bound-

ary conditions on the electric field will provide the vector constants em
n while the ones

on the magnetic field will give the dm
n constants. The solutions obtained are

e1,i
0 =

h1h2h3

2hi

M · f i
1

4π
(for i = 1, 2, 3) (42)

ei,i
1 =

hia
2
i a1a2a3

15h1h2h3









3
∏

l=1

(Λ − a2
l )

Λ − a2
i

D1
2f

1
2 +

3
∏

l=1

(Λ′ − a2
l )

Λ′ − a2
i

D2
2f

2
2









·
M

(4π)2
(43)

ei,p
1 =

h1h2h3

3(hp + hi)

[

a1a2a3(a
2
p + a2

i )I
p+i
2 (a1) − 1

]M · fp+i
2

4π
(if i 6= p) (44)

for i = 1, 2, 3 and p = 1, 2, 3.

ei,p
2 = 0 (for i = 1, · · · , 5 and p = 1, 2, 3) (45)
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d1
0 = a1a2a3

3
∑

i=1

h1h2h3

hi
Ii
1(a1)e

i,i
1 (46)

di
1 =

−1

Di
1

{

3
∑

p=1

Ai,p
1 +

aihi

h2h2h3

[

C1,i
0 e1,i

0 +B1,i
0 +

3
∑

p=1

(1 − δip)(h1h2h3)
2a2

pB
i+p,p
2

5hihp

+

2Λ
3
∏

l=1

(Λ − a2
l )B

1,i
2

5(Λ − a2
i )

+

2Λ′

3
∏

l=1

(Λ′ − a2
l )B

2,i
2

5(Λ′ − a2
i )























(for i = 1, 2, 3) (47)

dl
2 =

−1

Dl
2

3
∑

p=1

[

Al,p
2 + (−1)l h1h2h3

(Λ − Λ′)

a2
pC

p,p
1

3hp(L − a2
p)
ep,p
1

]

(48)

for l = 1, 2 with L = Λ if l = 1 and L = Λ′ if l = 2.

di+p
2 = −

aiap

Dp+i
2 (h1h2h3)

[(

hiC
p,i
1 + hpC

i,p
1

)

ei,p
1 +

(

hiB
p,i
1 + hpB

i,p
1

)

+

3
∑

m=1

h1h2h3

aiap
Ap+i,m

2

]

(for i = 1, 2, 3 and p = 1, 2, 3 but i 6= p) (49)

where the fm
n =

∑3
i=1 f

m,i
n xi are the vector constants involved in the static field (see

appendix B).

The scattered fields (Hs
2,E

s
2) are known as approximate solutions for two reasons:

first the expressions of the fields are truncated at n = 2 and so the solution involves

ellipsoidal harmonics only up to order 3 (IEm
3 (r)); second the constants em

n and dm
n found

are approximate expressions due to the truncation applied on the boundary conditions.

4. Numerical results. The solution given here has been implemented and tested

only for the magnetic field which is the most useful quantity at low frequencies.

The ellipsoid is at the center of the Cartesian coordinate system (x1, x2, x3) in a

conducting surrounding medium of 10−5 S/m. Its semi-axes are a1 = 75 m, a2 = 50

m, a3 = 25 m. This ellipsoid is illuminated by a vertical magnetic dipole of vector

intensity M = Mx1 with M = 104 Am2 at 50 Hz, located at (x1, x2, x3) = (200 m, 0,

0). The magnetic field it scatters, is measured along a vertical line (parallel to x1) from

x1 = −200 m to x1 = 200 m at x2 = 200 m and x3 = 0.

The analytical results given in this paper are compared (see figure 2) to a numerical

evaluation of the magnetic field scattered by the same ellipsoid obtained using a finite-

element (FE) code (thanks to H. Tortel2). The three components, real and imaginary

parts, of the scattered field are displayed. The low-frequency results are compared to

the FE results which can be considered as exact. In order to prove that the ellipsoidal

behavior is really modeled by the LF results, the exact field scattered by a sphere of

same volume is also provided.

2Hervé Tortel, Associate professor, Institut Fresnel, Marseille, France
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Fig. 2. Real and imaginary parts of the exact magnetic field scat-
tered by a sphere (◦), of the approximated LF one H0 (•), H0 +
H2(jk)2 (· · · ), H0 + H2(jk)2 + H3(jk)3 (∆) and of the FE one (−)
scattered by an ellipsoid

First of all, the LF results fit better the ellipsoidal results than the spherical one and,

as expected, the LF solution includes information about the ellipsoidal shape. Looking

at the real part of the fields, it can be noticed that the static term is sufficient, but

for the imaginary part the order-two term H2(jk)
2 is needed because the static one is

zero. The order-three term does not change the results significantly. This is due to the

fact that at low frequency the value of (jk)2 is nearly in jIR, while (jk)3 has non-zero

real and imaginary parts. For these reasons, the static term H0 and the H2(jk)
2 term

will respectively provide the real or the imaginary part of the field, while H3(jk)
3 will
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contribute to both the real and the imaginary parts. This order-three term can be seen

as an additive contribution that increases with frequency. To understand all of this, one

should remember that for low-frequency expansion of a complex function ψ =
∑

ψn(jk)n,

functions ψn are real.

Now, if one compares the LF and FE results for the ellipsoid, one can see a shift

between results. Dealing with a low-frequency code for the sphere, it is possible to

conclude that the problem lies in the number of harmonics used (up to IE3). Here the

truncation of the field at n = 2 is not enough to take into account this shift. Harmonics

IE4 are needed but their analytical expressions in ellipsoidal geometry include constants

that satisfy polynomial equations of order three which will result in a time-consuming

solution. So, it is theoretically doable to find a new solution using harmonics IE4 but the

advantage in an inverse scheme will have to be estimated. Because the approximation

given here provides very well the main behavior of the fields, it is not trivial that the

analytical work with harmonics IE4 is really interesting.

5. Conclusion. One of the main goals of the present investigation is to obtain an

analytical approximation of the low-frequency behavior of the magnetic field scattered

by a perfectly conducting ellipsoid illuminated by a magnetic dipole. The approximation

obtained is a low-frequency expansion of the electric and magnetic scattered fields. The

static term provides a very good approximation of the real part of the magnetic field,

while the order-two term (the first non-zero term) contributes to the main behavior of the

imaginary part, the order-three term being a correction to both the real and imaginary

parts.

The solution given here appears to be a good approximation at low frequencies and

suitably describes the ellipsoidal shape behavior. The advantages of the formulation lie

in the analytical expressions that are algebraic ones, involving simple analytically-known

constants. Consequently, the numerical evaluations of the fields are very fast, which is

the main point of this work. This can be very useful for inverse schemes for localization

and identification of buried objects at low frequencies.

The need of the order-two term is also due to such applications. The identification

of an unknown scatterer can be better achieved if the field is better described. The

information contained in the imaginary part (given by the order-two term) that is smaller

than the real part might help the inverse scheme to separate between different solutions

of ellipsoidal parameters (orientation, size, · · · ).

The need of higher-order harmonics at low frequency is not clear. It will certainly

provide a better fit for the real part which is the more important one, but will it be

useful for inverse scheme knowing that it certainly will be more time consuming.

Appendix A. Ellipsoidal harmonics. Here some details about ellipsoidal harmon-

ics are given in term of either Cartesian coordinates, either ellipsoidal coordinates.

External IFm
n (r) and internal IEm

n (r) ellipsoidal harmonics are defined for n ∈ IN and

m = 1, · · · , 2n+ 1. They are linked together by the relation

IFm
n (r) = (2n+ 1)Im

n (ρ)IEm
n (r) (50)
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where ρ (defined for ρ2 ≥ h2
2) is one of the ellipsoidal coordinates of point r and Im

n

is a Carlson’s incomplete elliptic integrals of (n + 1)th kind. Ellipsoidal harmonics are

separated variable functions in the ellipsoidal coordinate, so they can be written as

IFm
n (r) = Fm

n (ρ)Em
n (µ)Em

n (µ) IEm
n (r) = Em

n (ρ)Em
n (µ)Em

n (µ) (51)

with Fm
n (ρ) = (2n + 1)Em

n (ρ) and r = (ρ, µ, ν) as defined in section 3.1. The elliptic

integral Im
n (ρ) is defined in terms of Em

n (u) by

Im
n (ρ) =

∫

∞

ρ

du

[Em
n (u)]2

√

u2 − h2
3

√

u2 − h2
2

(52)

The first four ellipsoidal harmonics are known in the ellipsoidal coordinate system for

which only the separated function Em
n (u) is needed. The u variable can be ρ, µ or ν, while

keeping in mind that ellipsoidal coordinates are defined for ρ2 ≥ h2
2 ≥ µ2 ≥ h2

3 ≥ ν2 ≥ 0.

E1
0(u) = 1

Em
1 (u) =

√

|u2 − a2
1 + a2

m| (m = 1, 2, 3)

El
2(u) = u2 − a2

1 + L (l, L) = (1,Λ) or (2,Λ′)

E6−m
2 (u) =

∏3
i=1

√

|u2 − a2
1 + a2

i |
√

|u2 − a2
1 + a2

m|
(m = 1, 2, 3)

E2m−1
3 (u) =

√

|u2 − a2
1 + a2

m|(u2 − a2
1 + Λm) (m = 1, 2, 3)

E2m
3 (u) =

√

|u2 − a2
1 + a2

m|(u2 − a2
1 + Λ′

m) (m = 1, 2, 3)

E7
3(u) =

3
∏

i=1

√

|u2 − a2
1 + a2

i |

(53)

where (Λ,Λ′) and (Λq,Λ
′

q) respectively are solutions of the second-order polynomial

equations above

3
∑

i=1

1

Λ − a2
i

=

3
∑

i=1

1

Λ′ − a2
i

= 0,

3
∑

i=1

1 + 2δiq
Λp − a2

i

=

3
∑

i=1

1 + 2δiq
Λ′

p − a2
i

= 0 (for p = 1, 2, 3) (54)

(δiq being the Kronecker delta function). Their analytical expressions are simple and

easy to find

Λ

Λ′

}

=
1

3

[

(

3a2
1 − h2

2 − h2
3

)

±
√

h4
1 + h2

2h
2
3

]

Λp

Λ′

p

}

=
1

5

[

(

6a2
1 − a2

p − 2h2
2 − 2h2

3

)

±

√

4h4
p − (−1)p

(h1h2h3)2

h2
p

]

(p = 1, 2, 3)

(55)
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The first four internal ellipsoidal harmonics are also known in a simple analytical form

in the Cartesian coordinate system for r = (x1, x2, x3)

IE1
0(r) = 1

IEm
1 (r) = h1h2h3

xm

hm
(m = 1, 2, 3)

IEl
2(r) = (L− a2

1)(L − a2
2)(L − a2

3)

[

3
∑

i=1

x2
i

L− a2
i

+ 1

]

(l, L) = (1,Λ) or (2,Λ′)

IE6−m
2 (r) = h1h2h3x1x2x3

hm

xm
(m = 1, 2, 3)

IE2m−1
3 (r) = h1h2h3

(

3
∏

i=1

(Λm − a2
i )

)

xm

hm

[

3
∑

p=1

x2
p

Λm − a2
p

+ 1

]

(m = 1, 2, 3)

IE2m
3 (r) = h1h2h3

(

3
∏

i=1

(Λ′

m − a2
i )

)

xm

hm

[

3
∑

p=1

x2
p

Λ′

m − a2
p

+ 1

]

(m = 1, 2, 3)

IE7
3(r) = (h1h2h3)

2x1x2x3

(56)

The expansion of the inverse distance on ellipsoidal harmonics is given in (15) but

rewritten here for better understanding

1

|r− r0|
=

∞
∑

n=0

2n+1
∑

m=1

1

(2n+ 1)γm
n

IFm
n (r0)IE

m
n (r) for ρ < ρ0 (57)

In this expression the γm
n constants are defined by

γm
n =

1

4π

∮

S(ρ=a1)

(Em
n (µ)Em

n (ν))2
√

a2
1 − µ2

√

a2
1 − ν2

dS(µ, ν) (58)

Focusing on the establishment of analytical formulations, their algebraic forms are used

and the known ones are listed below

γ1
0 = 1

γm
1 =

h2
1h

2
2h

2
3

3h2
m

(for m = 1, 2, 3)

γl
2 =

(−)l2

5
(Λ − Λ′)(L − a2

1)(L− a2
2)(L − a2

3) for (l, L) = (1,Λ) or (2,Λ′)

γ6−m
2 =

h2
m

15
h2

1h
2
2h

2
3 (for m = 1, 2, 3)

γ2m−1
3 =

−2

21

h2
1h

2
2h

2
3

h2
m

(Λm − Λ′

m)

(

3
∏

l=1

(Λm − a2
l )

)

(for m = 1, 2, 3)

γ2m
3 =

2

21

h2
1h

2
2h

2
3

h2
m

(Λm − Λ′

m)

(

3
∏

l=1

(Λ′

m − a2
l )

)

(for m = 1, 2, 3)

γ7
3 =

1

105
h4

1h
4
2h

4
3

(59)
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Appendix B. Static solution. In the following detailed calculations for the static

fields, also called order-zero fields in our low-frequency approximation, are described.

The static electric field E∗

0 is zero for our problem (see equation (6)), so that the static

magnetic field is both curl and div free

E∗

0(r) = 0 ∇× H∗

0(r) = 0 ∇ · H∗

0(r) = 0 (60)

where ∗ = i, t, s stands for the incident, total or scattered field, respectively. The total

magnetic field satisfies the boundary conditions on the surface S of the perfectly con-

ductive ellipsoid, which consists of the cancellation of the normal component of this field

n · Ht
0(r) = 0 at ρ = a1 for all (µ, ν). One can easily recognize a problem of potential

where the static magnetic field is the gradient of a scalar potential

∆ψ0(r) = 0 Hs
0(r) = ∇ψ0(r) (61)

The source is a vector magnetic dipole M with general orientation. In the Cartesian

coordinate system it can be written as the superposition of three magnetic dipoles orien-

tated along the Cartesian axes M =
∑3

q=1Mqxq. Using the property of superposition,

the static magnetic field can be viewed as a superposition of gradients of three scalar

potentials corresponding to each dipole

Hs
0(r) =

3
∑

q=1

Mq

4π
∇ψ0q(r) (62)

For convenience the constant 4π is extracted from the potentials.

The static incident magnetic field radiated by the magnetic dipole M is

Hi
0(r) =

M

4π
·

(

3RR

R2
− I

)

1

R3
(63)

where 1/R expansion in term of the first four known ellipsoidal harmonics is

1

|r− r0|
=

3
∑

n=0

2n+1
∑

m=1

1

(2n+ 1)γm
n

IFm
n (r0)IE

m
n (r) for ρ < ρ0 (64)

This expansion is only needed for ρ < ρ0 because the incident field is only used in the

boundary conditions.

Potentials involved in the scattered magnetic field have a similar expansion in terms

of exterior ellipsoidal harmonics

ψ0q(r) =

3
∑

n=0

2n+1
∑

m=1

fm,q
n IFm

n (r) =

3
∑

n=0

2n+1
∑

m=1

(2n+ 1)fm,q
n IEm

n (r)Im
n (ρ) (65)

fm,q
n are unknown constants that have to be found using appropriate boundary conditions

given above and rewritten below. For this, one uses expression of the incident and

scattered fields in (63) and (62), knowing that the normal vector n at the ellipsoidal
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surface (S(ρ = a1)) is the unit vector ρ.

n ·Ht
0(r)|S =

3
∑

q=1

Mq

4π
ρ ·

[

∇∇
1

R
· xq + ∇ψ0q(r)

]

ρ=a1

=

3
∑

q=1

Mq

4π

1

hρ

∂

∂ρ

[

∂

∂xq

1

R
+ ψ0q(r)

]

ρ=a1

= 0 ∀(µ, ν)

(66)

This equation, written in term of partial derivatives, is equivalent to the next equation

for the Mqxq illumination with q = 1, 2, 3,

3
∑

n=0

2n+1
∑

m=1

1

hρ

∂

∂ρ

[

IFm
n (r0)

(2n+ 1)γm
n

∂IEm
n (r)

∂xq

+ (2n+ 1)fm,q
n IEm

n (r)Im
n (ρ)

]

ρ=a1

= 0 ∀(µ, ν) (67)

It appears that the derivatives of the ellipsoidal harmonics involved have to be calculated

before applying the orthogonality properties between them. The derivatives are not given

here but they can be easily calculated using the expression of ellipsoidal harmonics and

the constants they contain. At the end, one obtains the constants, for i = 1, 2, 3,

f1,i
0 =

a1a2a3hi

h1h2h3(Λi − Λ′

i)

3
∑

p=1

(1 + 2δpi)

[

IF 2i
3 (r0)

(Λ′

i − a2
p)

−
IF 2i−1

3 (r0)

(Λi − a2
p)

]

= 0 (68)

fm,i
1 =

a1a2a3

1 − a1a2a3Im
1 (a1)

h2
mhi

(h1h2h3)3

[

IFm+i
2 (r0)(1 − δmi)

+
(Λ − a2

i )IF
2
2 (r0) − (Λ′ − a2

i )IF
1
2 (r0)

(Λ − Λ′)
δmi(−1)i+1

]

(for m = 1, 2, 3) (69)

f l,i
2 =

(−1)l+13La1a2a3

5[1 − 2La1a2a3I l
2(a1)]

hi

(h1h2h3)3
1

(Λ − Λ′)(Λi − Λ′

i)

3
∑

p=1

(−1)p(1 + 2δpi)h
2
p(L

∗ − a2
p)

[

IF 2i
3 (r0)

(Λ′

i − a2
p)

−
IF 2i−1

3 (r0)

(Λi − a2
p)

]

for (l, L, L∗) = (1,Λ,Λ′) or (2,Λ′,Λ) (70)

f6−m,i
2 =

3(2 − δim)(
∑3

p=1 a
2
p − a2

m)a1a2a3

5
[

1 − (
∑3

p=1 a
2
p − a2

m)a1a2a3I
6−m
2 (a1)

]

hi

h2
mh1h2h3

[

(1 − δmi)

2h2
i (Λ6−(m+i) − Λ′

6−(m+i))

(

IF
2(6−(m+i))
3 (r0)

(Λ′

6−(m+i) − a2
i )

−
IF

2(6−(m+i))−1
3 (r0)

(Λ6−(m+i) − a2
i )

)

+
5

(h1h2h3)2
IF 7

3 (r0)δmi

]

(for m = 1, 2, 3) (71)

fm,i
3 being zero for m = 1, · · · , 7 and i = 1, 2, 3.
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At this step, the scattered static field is known in an approximate form due to the

limited number of harmonics used. It can be written in terms of the ellipsoidal coordinate

ρ, and the Cartesian ones (x1, x2, x3) along the unit Cartesian vectors (x1,x2,x3)

Hs
0(r) =

3
∑

q=1

Mq

4π

3
∑

n=0

2n+1
∑

m=1

fm,q
n (2n+ 1)

[

Im
n (ρ)

3
∑

i=1

∂IEm
n (r)

∂xi
xi

−
IEm

n (r) [IEm
n (ρ)]−2

√

ρ− h2
2

√

ρ− h2
3

ρ

h2
ρ

3
∑

i=1

xixi

(ρ2 − a2
1 + a2

i )

]

(72)

The derivatives involved here, as mentioned before, can be calculated in an analytical

form in the Cartesian coordinate system. This result is finally quite simple and one can

compute the scattered field in any Cartesian coordinate system.

Appendix C. Solution for the order-two fields. In this appendix, only some

details are given in order to explain some long but easy points of the main work of

section 3.3. So the general framework is not examined again.

From the first boundary conditions

2
∑

n=0

2n+1
∑

m=1

{[

3
∑

i=1

Am,i
n +Dm

n d
m
n

]

Em
n (µ)Em

n (ν)

+
3
∑

i=1

(

Bm,i
n + em,i

n Cm,i
n

)

[

xiIE
m
n (r)

]

ρ=a1

}

= 0 ∀(µ, ν)

(73)

where Am,i
n , Bm,i

n , Cm,i
n and Dm

n are known constants, the unknown constants em,i
n and

dm
n have to be determined. Terms xiIE

m
n (r) must be rewritten in terms of other internal

ellipsoidal harmonics before applying the orthogonal property of harmonics. The term

with harmonics E1
0 (µ)E1

0 (ν) provides equation

D1
0d

1
0 +

3
∑

i=1

[

A1,i
0 +

h1h2h3

hi

a2
i

3

(

Bi,i
1 + Ci,i

1 ei,i
1

)

]

= 0 (74)

where A1,i
0 = Bi,i

1 = 0, while the one with Ei
1(µ)Ei

1(ν) (for i = 1, · · · , 3) results in

5
(

C1,i
0 e1,i

0 +B1,i
0

)

+
5h1h2h3

aihi

[

3
∑

p=1

Ai,p
1 +Di

1d
i
1

]

+

3
∑

p=1

(1 − δip)(h1h2h3)
2a2

p

(

Ci+p,p
2 ei+p,p

2 +Bi+p,p
2

)

hihp

+

2Λ
3
∏

l=1

(Λ − a2
l )
(

C1,i
2 e1,i

2 +B1,i
2

)

Λ − a2
i

+

2Λ′

3
∏

l=1

(Λ′ − a2
l )
(

C2,i
2 e2,i

2 +B2,i
2

)

Λ′ − a2
i

= 0 (75)
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The orthogonality for E1
2(µ)E1

2 (ν) and E2
2 (µ)E2

2 (ν) gives similar equations summarized

by
3
∑

i=1

[

Al,i
2 +

h1h2h3

hi

a2
i

3

(−1)l

(Λ − Λ′)(L − a2
i )

(

Bi,i
1 + Ci,i

1 ei,i
1

)

]

+Dl
2d

l
2 = 0 (76)

with (l, L) is (1,Λ) or (2,Λ′). The harmonics Ei+m
2 (µ)Ei+m

2 (ν) provide simple equations

hiC
m,i
1 em,i

1 + hmC
i,m
1 ei,m

1 +
(

hiB
m,i
1 + hmB

i,m
1

)

+
h1h2h3

aiam

(

Ai+m,i
2 +Ai+m,m

2 +Dm+i
2 dm+i

2

)

= 0

(i 6= m; i = 1, · · · , 3;m = 1, · · · , 3) (77)

The xi component of the second boundary equation linked to the divergence-free

property of the magnetic field, as explained in section 3.3, is
[

2
∑

n=0

2n+1
∑

m=1

(

2Bm,i
n+E

m
n (a1) −Dm

n e
m,i
n

)

Em
n (µ)Em

n (ν)

+

2
∑

n=0

2n+1
∑

m=1

3
∑

p=1

(

2Bm,p
n− + Cm,p

n em,p
n

)

xpxi · ∇IE
m
n (r)

+

2
∑

n=0

2n+1
∑

m=1

(

3
∑

p=1

Mpf
m,p
n

)

1

2

(

−Dm
n xiIE

m
n (r)

4πEm
n (a1)

+ (2n+ 1)Im
n (a1)xi · ∇IE

m
n (r)

)

−12

3
∑

m=1

(

3
∑

p=1

Mpf
m,p
1

)

Im
1 (a1)

h1h2h3

2hma2
i

xmxi

−5

5
∑

m=1

(

3
∑

p=1

Mpf
m,p
2

)

Im
2 (a1)

2a2
i

[3xiIE
m
2 (r) + r · (xi∇IE

m
2 (r))]

−

5
∑

m=1

3
∑

p=1

Cm,i
2 em,p

2 xp · (xi∇IE
m
2 (r))

]

ρ=a1

= 0

(78)

where the Bmp
n+ and Bmp

n− are known constants. In order to apply the orthogonal property

of the harmonics, some terms have to be only explained in terms of harmonics. They are

xpxi · ∇IE
m
n (r), xi · ∇IE

m
n (r), xmxi, xiIE

m
n (r)and xp · xi∇IE

m
n (r). As mentioned before,

details are not given here but can easily be found.

As a result, the following equation is obtained while applying orthogonality to har-

monics of first order E1
0 (µ)E1

0 (ν)

4π

a1a2a3
e1,i
0 −

h1h2h3ai

6hi
Di

1f
i
1 ·

M

4π

−

(

IF 2
2 (r0)

Λ′ − a2
i

−
IF 1

2 (r0)

Λ − a2
i

)

Mi

6(Λ − Λ′)
−

3
∑

q=1

(1 − δqi)hqhi

(h1h2h3)2
IF i+q

2 (r0)Mq = 0 (79)

where i = 1, 2, 3.
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For the second order harmonics Ep
1 (µ)Ep

1 (ν), with p = 1, 2, 3, two different cases

appear depending whether i = p or not. The three first equations provide the three

constants

ei,i
1 =

hia
2
i a1a2a3

15h1h2h3









3
∏

l=1

(Λ − a2
l )

Λ − a2
i

D1
2f

1
2 +

3
∏

l=1

(Λ′ − a2
l )

Λ′ − a2
i

D2
2f

2
2









·
M

(4π)2
(80)

and the six following equations describe the case i 6= p with six unknown constants ei,p
1

hpe
i,p
1 + hie

p,i
1 =

1

15
h1h2h3aiapa1a2a3D

i+p
2 f

i+p
2 ·

M

(4π)2
(81)

where i = 1, 2, 3 and p = 1, 2, 3. Orthogonality for El
2(µ)El

2(ν) harmonics, with l = 1, 2,

provides

(−1)lh1h2h3

2a1a2a3hi

[1 − 5a1a2a3I
i
1(a1)]

(Λ − Λ′)(L − a2
i )

M · f i
1 + L

(

2Bl,i
2+ +Dl

24πe
l,i
2

)

+
3
∑

q=1

(−1)l(1 − δiq)(h1h2h3)
2

3(Λ − Λ′)hihq

[

a2
q(2B

i+q,q
2− + Ci+q,q

2 ei+q,q
2 )

(L− a2
q)

−
a2

iC
i+q,i
2 ei+q,q

2

(L− a2
i )

]

+
(−1)la2

k

3(Λ − Λ′)(L − a2
i )

[

4B1,i
2−

(Λ − a2
i )

3
∏

p=1

(Λ − a2
p) +

4B2,i
2−

(Λ′ − a2
i )

3
∏

p=1

(Λ′ − a2
p)

]

= 0

where (l, L) = (1,Λ) or (2,Λ′) and for i = 1, · · · , 3 (82)

while orthogonality on E6−i
2 (µ)E6−i

2 (ν) gives

3
∑

q=1

(1 − δiq)hq

[

2B6−q,q
2− + C6−q,q

2 e6−q,q
2

]

+ hi

[

2B6−i,i
2+ −

ai

a1a2a3
D6−i

2 e6−i,i
2

]

= 0 (83)

and the one with Ei+q
2 (µ)Ei+q

2 (ν) results in

3hi[a
2
i a1a2a3(a

2
i + 4a2

q)I
q
1 (a1)]

2aiaqa1a2a3h1h2h3
M · fq

1 + aiaq

(

2Bi+q,i
2+ +Di+q

2 4πei+q,q
2

)

+
hihqaiaq

(h1h2h3)2

[

(h1h2h3)
2

hihq
2Bi+q,i

2− − (h1h2h3)hiC
6−i,i
2 e6−i,q

2

+

(

2B1,q
2− + C1,q

2 e1,q
2

(Λ − a2
i )

−
C1,i

2 e1,q
2

(Λ − a2
q)

)

2

3
∏

l=1

(Λ − a2
l )

+

(

2B2,q
2− + C2,q

2 e2,q
2

(Λ′ − a2
i )

−
C2,i

2 e2,q
2

(Λ′ − a2
q)

)

2

3
∏

l=1

(Λ′ − a2
l )

]

= 0 (84)

where i = 1, 2, 3 and q = 1, 2, 3, but q 6= i.

Equations coming from the first and the second boundary conditions have to be both

satisfied and the unknown constants em,i
n , dm

n have to be found. Equation (79), using the
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expression of the f i
1 constant in (69), directly yields the three constants e1,i

0

e1,i
0 =

h1h2h3

2hi

M · f i
1

4π
(for i = 1, 2, 3) (85)

The ei,i
1 solutions in (80) included in (74) and (76) provide the d1

0 and dl
2 (that are not

involved else where)

d1
0 = a1a2a3

3
∑

i=1

h1h2h3

hi
Ii
1(a1)e

i,i
1 (86)

dl
2 =

−1

Dl
2

3
∑

p=1

[

Al,p
2 + (−1)l h1h2h3

(Λ − Λ′)

a2
pC

p,p
1

3hp(L − a2
p)
ep,p
1

]

(87)

with (l, L) = (1,Λ) or (2,Λ′)

Assuming that ei,p
1 = ep,i

1 (in order to satisfy geometrical symmetry) equation (81)

and equation (77) respectively from the second and first boundary conditions provide

the ei,p
1 and di+p

2 constants

ei,p
1 =

h1h2h3

3(hp + hi)

[

a1a2a3(a
2
p + a2

i )I
p+i
2 (a1) − 1

]M · fp+i
2

4π
(88)

di+p
2 = −

aiap

Dp+i
2 (h1h2h3)

[

(

hiC
p,i
1 + hpC

i,p
1

)

ei,p
1 +

(

hiB
p,i
1 + hpB

i,p
1

)

+

3
∑

m=1

h1h2h3

aiap
Ap+i,m

2

]

(89)

where i = 1, 2, 3 and p = 1, 2, 3, but p 6= i.

At this step, four equations have not been used (75), (82), (83) and (84) and the

constants di
1 and the vector constants ei

2 are still unknown. The vectors constants ei
2

cannot be found in a simple analytical form using these equations. It is due to the

truncation of the expansion at n = 2. So one has decided to put the ei
2 vectors constants

to zero. It might be seen as a rather rude way to proceed but it can be justified by

looking to the H2 expression in equation (32). If the expansion is stopped at n = 2,

the di
2 term is in ∇IF i

2(r) and so have approximately a behavior similar to the harmonic

IEi
1(r) while the ei

2 term is in IF i
2(r) (one order higher than the previous term). What

is done here, is a truncation at n = 2 for the di
2 term but at n = 1 for the ei

2 term in

order to have the last term of the harmonic field that has a behavior similar to IEi
1(r)

harmonic.

Equation (75) provides the di
1 constants while ei,p

2 = 0 for all i = 1, · · · 5 and p = 1, 2, 3

di
1 =

−1

Di
1

{

3
∑

p=1

Ai,p
1 +

aihi

h1h2h3

[

C1,i
0 e1,i

0 +B1,i
0 +

3
∑

p=1

(1 − δip)(h1h2h3)
2a2

pB
i+p,p
2

5hihp

+

2Λ
3
∏

l=1

(Λ − a2
l )B

1,i
2

5(Λ − a2
i )

+

2Λ′

3
∏

l=1

(Λ′ − a2
l )B

2,i
2

5(Λ′ − a2
i )























(for i = 1, 2, 3) (90)
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