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ROBUSTNESS OF A CORRECTION METHOD APPLIED TO
A VERTICALLY DEFORMED HFSWR ON BUOYS

EL KHOURY Jacqué¥, BOURGES Anton§y’

(1) Ecole Supérieure d’Electricité (SUPELEC)
GIF Sur Yvette, FRANCE
Jacques.elkhoury@supelec.fr

Abstract—This paper presents two correction
methods for vertical deformations of the

receiving array belonging to HFSWR on buoys.

The method inspired from Schelkunoff's
representation is more robust to the
deformation’s uncertainty problem.

. INTRODUCTION

The concept of the Economic Exclusive Zone (EE&Jdi
roots from the United Nations Convention regulagiam the

sea [1]. The EEZ is spread on a maximum of 200icaut

miles (370km) from the coasts. In this area, theesthas

sovereign rights that extend from the waters alibeeseabed

and the seabed in the subsoil. The rights applyth®
exploration and the exploitation of the zone fooremmic and
military purposes, such as the production of eneimgyn
water, sea currents, winds, oceanographic parasneted
target detection.
(HFSWR) is one of the optimum solutions in ordermtonitor
the EEZ. It uses a particular mode of propagatibae,surface
wave mode that propagates at the interface bettieair and
the sea. It is therefore possible to produce systdan
permanent coverage with ranges of a few hundrexnigters.
However, the receiving array requires a large spadsave a
good azimuthally resolution. This large space may be
provided by most countries that are already lingitithe
number of antennas in the receiving array. Thuagipy the
antennas of the receiving array on independent duwoythe
sea surface is the proposed solution in this paserthe
available space is not limited. Unfortunately, thigernative
solution also generates new problems.

The receiving array consists of N antenna elemdtdsh of
them is supported by a floating buoy on the seéaser The
global radiation pattern of the receiving arrayuitsfrom a
combination of all the element radiations. The n@incern is
the effect of the sea motion: each independent Ifilhg, each
antenna) has its own movement, on the sea surfasea
result, the initial array arrangement will be mastif
continuously resulting in a continuous deformatioh the
global radiation pattern, Fig. 1. In this papere thertical
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deformation of the receiving array, its consequeonethe
mutual coupling and the associated perturbation the
radiation pattern are studied. We discuss and coamfize
corresponding correction methods and we provedhastness
of a correction method inspired from Schelkunoff's
representation.

Figure 1. Deformation of the studied array.

IIl.  VERTICAL DEFORMATION

A. Coupling definition

In a vertical displacement [2], there is no physica
deformation in the observation plane (xOy), so thain
disturbances come from the modification of the raltu
coupling in the array when dipoles move verticaljthough
these disturbances are usually small, they candmeated
easily. In an array of dipoles, mutual couplingesikplace
between element&)sing the conventions presented in Fig. 2,

this mutual coupling is defined by th&"Y matrix. For
instance:
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Figure 2. Representation of the studied array.
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Let I = [iq,ip,..,iy]" be the currents in the antenna ports

that produce the desired radiation pattern. Therésged
T ,
voltagesV; = [v41, Vg2, ..., Vgn| can be defined as:

Vy =@M + Z 1! )

where Z, is the source impedanc&MV is the impedance
matrix (representing coupling) aig is the identity matrix.

B. Consequence of the vertical deformation on the atutu
coupling

In this subsection we will study the consequencethaf
vertically displaced antennas supported by floatigys on
the mutual coupling over the array. We begin byirdief) the
current expression and the positions of the elesnémt Av;,
be the vertical displacement of antenna k with eespo
antenna 1, Fig. 3.

Figure 3. Parallel dipoles.

Instead of studying the evolution BfY, we prefer to
consider the evolution of the electric current'sgmigude at
the middle of the dipole. For clarity, we adopt @malized

representation of the currents. The reference VHltfk is the
current on the central dipole of a uniform arrayhwiiniform
excitation. The normalized currents are defined as:

= 3

i, =
n Iref

wherel,, is the actual current on dipole n.
The antennas positions are defined as follows:

Xn = Xn 4
I =Yn 5)
Zn = Zn + (21 — DAVyay (6)

whereAvy, 4, = 0.251 is the maximum vertical deformation
taken in our case, X,, ¥,.Z,) and (,, V,, Z,) are
respectively the coordinates of antermin the deformed and
uniform array. R 4 rq, ...,y | is a random vector with each
1,, defined as a uniform variable in [0, 1]. Then vensider
the mutual coupling between N dipoles having a tleregjual
to M2. The typical inter element spacing we us&/&sso the
mutual impedance cannot be neglected [3]. The tigaton
is based on an array of 10 elements. The deformafi@ct on
the radiation pattern is shown in Fig. 4.

Amplitude in dB

+ass Undeformed Array |
Deformed Array With . ing |

phase
Figure 4. Vertical deformation effect on the radiatpattern.

An increase in the side lobe levels can be notifmrdthe
deformed array radiation pattern when compared hHe t
uniform array radiation pattern. Two correction hoets are
then proposed to compensate for the deformatiadiréct one
is based on the good knowledge of the coupling imagnce
the exact positions of the elements. The lattebased on
Schelkunoff's representation which does not conglteexact
positions of the elements. Instead it considers dbepling
matrix which is directly related to the verticalsgiacement
between the elements.

[ll.  DIRECT CORRECTIONMETHOD

This method can be used correctly only when thétipos
of the elements are exactly known in the deformedya
When this condition is satisfied, we show that digious
modification of the voltage coefficients can be dis®
compensate for the displacements. The cases, adthvahout
correction, were studied on a 10-antenna arrayTd]correct
the deformed radiation pattern, we compute the taton
vector V, for a given current vector | (usually it corresperd
the uniform array current vector) using equation {&e result
is shown in Fig. 5.
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Figure 5. Radiation pattern of 10-antenna arraf wrtical deformation and
with uniform weights, with and without correctiontivaAv,,,, = 0.25A.

As can be seen, the correction procedure resultsain
significant decrease of the side-lobe levels (SLWhen
applying this correction method, the mutual coupl#’Y is
supposed to be perfectly known. This is not a séali



approach as the perfect knowledge ¥V implies a perfect
knowledge of the positions of the antennas.

In the next section, we propose a more robust ndethat is
less affected by the imperfect knowledgezdtV.

V. CORRECTIONMETHOD INSPIREDFROM SCHELKUNOFF S
REPRESENTATION

For instance, by not knowing the exact location thé
antennas, thus the mutual impedance matrix, wenelefi

AZMU3as a matrix of errors which can be addedt’:

ZMU — ZMU +AZMU
is the error matrix.

~ 9)
whereZMU

Each coefficient of the error matrix is a real ramdnumber.

Schelkunoff'srepresentation consists in plotting the rootswe assume a uniform distribution. The maximum error

of the associated polynomial on a unit circle. Wmind that
the associated polynomial is thetransformation of the
antenna array factor.

F(2) = Xn=1 inz" (7)
Herei,, is then*coefficient of the current vector I:
I=@Z" +Z;MY, (8)

This equation shows that when the coupling ma#4 is
altered because of erroneous values, the
i, coefficients are modified, modifying the associated
polynomial resulting in a displacement of the roetsch are
represented on the unit circle in the complex plem€&ig. 6
[5]. A zero on the unit circle corresponds to alrial the
antenna pattern. The placement of these zerosniags the
antenna’s response.

From this representation a new improved correati@thod is
proposed. This new correction method consists émtiflying
the roots which represent the nulls of the radmtmattern
whose positions have been significantly modifidee (bulls of
the deformed array) and move them back to their initial
positions as for thaniform array case as it is shown in Fig. 6
where roots 1, 4, 5 and 8 have to be moved badhemnit
circle.
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B

Figure 6. Example of roots displacement.

If we go deeper into technical details, Fig. 7 shdhe steps
taken to decide which roots have to be displaceth ftheir
erroneous positions to their initial positions.

Measuring the distance from

their erroneous positions to
their initial positions on the
unit circle (Uniform Array)
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Figure 7. Roots displacement.

comple

corresponds to 11% of the maximum coupling coedfitifor
the considered configuration when the elementsaparated
by A/2 andAv;, = 0.

This method is developed and represented in Figoy8
showing the roots of the polynomial for a uniformay and
when the correction method is applied to the samaya
vertically deformed, with an imperfect knowledge tife

mutual coupling matrix. The simulation is realized
for Avy,., = 0.254.
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Figure 8. Representing roots positions of the aatst polynomial.

The small circles placed on the unit circle repnédbe roots
of the uniform array. The small dots representrdws of the
deformed array and finally after applying this emtion

method, triangles represent the displaced roatiseofleformed
array. We can notice that the displaced roots a@ase to the
uniform array roots. Two exceptions can be seepoait A

and B where no root displacement is made. Thisuestd the
measured distance from the deformed to the irptigitions of
the roots (uniform array), which did not exceed theeshold
value. Further explanation can be interpreted jtiph the
corresponding radiation patterns in Fig. 9.



a 1) It permits to quantify the errors ig"Y to know if the
correction method can be applied.

2) It permits to know the roots generating the disturbes
whenzZMV is erroneous.
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£ V.  CONCLUSION

nh

s | Two correction methods for a vertical deformatioh o
! 11} HFSWR on buoys were introduced in this paper. The
=/ DT Ay i MV correction method inspired from Schelkunoff's regeretation
- HcHarricd Aoty Wtis splykcd Ruots was proved to be more robust than the direct metRatther

| . studies will take place in the future, and theasdti
w0, s A Lo b A Lol L interpretations will be made when significant defations are
Phase to be applied on the array.

Figure 9. Radiation patterns with the new correctitethod.
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