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ABSTRACT 

Vibration sensing by laser radar with a pulsed 
emission is a promising technique for long range 
target recognition and identification. However, 
compared to its continuous-wave counterpart, it is 
impaired by its greater sensitivity to speckle noise 
and its lack of robustness to multiple independent 
vibrations of the target surface. Using poly-pulse 
waveforms for greater velocity resolution, we 
developed a new estimator to take into account 
signal statistics, and time frequency 
representations that can achieve better 
performance than classical processing methods. 
Simulations show a 5dB improvement in Signal-to-
Noise Ratio (SNR) when speckle noise is 
dominant, and 4dB improvement when signal is 
weak in regard to detection noise. 
 
1. INTRODUCTION 

Because of their great velocity sensitivity, coherent 
laser radars (ladars) are able to sense micrometric 
vibrations of remote or inaccessible targets. This 
capability has been used for civilian applications, 
such as structural diagnosis of potentially damaged 
buildings [1], and for military applications by using 
vibrational features for target recognition and 
identification at ranges beyond the reach of 
conventional imaging systems [2,3].  

All-fiber vibrometers are today the most compact 
and easy to build, many fibered components being 
available for telecommunications wavelength 
1.55µm. The layout and principle of a fiber laser 
vibrometer is summarized on Fig. 1. The goal is to 
measure the Doppler frequency modulation 
induced by the target vibration velocity on the 
backscattered laser wave. Coherent heterodyne 
detection is performed by mixing the received 
optical wave with part of the emission (local 
oscillator). Their interference is the source of a 
heterodyne signal at the output of a detector. 
Signal processing first aims to recover the velocity 
time series of the target, by estimating the 
Instantaneous Frequency (IF) of the signal: 
finst(t) = fAOM + 2v(t)/λ, with λ the laser wavelength. 

Then, by taking the Fourier Tranform (FT) of the 
vibrational velocity, a vibration spectrum is 
obtained. Commonly exploited features include the 
modal and engine vibration frequencies of the 
target, which create identifiable peaks on the 
spectrum. Matching these features with a database 
allows the identification of the target [2]. 

 

Figure 1. Diagram of a typical all-fiber vibrometer laser 
radar, for target identification applications. AOM : 

acousto-optic modulator, adding frequency shift fAOM. 
 

The performance of the measurement is often 
characterized in terms of how much these peaks 
stand out from the measurement noise floor on this 
spectrum (this is indicated by the Signal-to-Noise 
Ratio, SNR). 

Ladar vibrometers with a pulsed emission usually 
use the acousto-optic modulator as an amplitude 
modulator to create pulsed waveforms (Fig. 1). At 
reception, each of them provides one velocity 
sample of the time series. A popular waveform 
inherited from meteorological radars is a basic 
pulse-pair [4], repeated as often as needed for the 
correct sampling of the vibration. The phase 
difference between pulses in a pair gives the 



 

velocity estimate. More generally, pulsed laser 
radars benefit from radar expertise in waveform 
design and signal processing. 

Several advantages of pulsed vibrometry have 
been highlighted [4]: the higher peak power 
allowed for the same mean laser power, the 
possibility of keeping a monostatic configuration 
even when aiming at fix targets, and the capability 
to perform simultaneous telemetry by measuring 
the time of flight of the pulses. A pulsed vibrometer 
could then have longer range and be a more 
compact and multi-functional instrument than a 
Continuous-Wave (CW) vibrometer. 

Yet, pulsed mode has important drawbacks. 
Because of the fewer number of velocity 
measurements, it usually does not perform better, 
in terms of SNR, than CW mode. Amplitude and 
phase fluctuations are induced by the targeted 
surface movements (so-called speckle noise), by 
the laser linewidth and atmospheric turbulence. 
Pulsed mode has been shown to be particularly 
sensitive to such perturbations, as well as to 
independent vibrations of parts of the target under 
the laser beam [5]. Along with the compensation of 
the bulk Doppler shift caused by target global 
velocity, and the own vibrations of the ladar carrier 
platform, these problems are considered the main 
impediments to the use of pulsed vibrometry for 
the identification of vehicles. 

In this paper, we propose advanced signal 
processing solutions to reduce the sensitivity of 
pulsed mode to measurement perturbations. We 
compare the performance of pulsed mode 
associated with these methods, to that of CW 
vibrometry, in harsh noise conditions. To remain 
independent of technological constraints, we 
consider an ideal emission in which a given mean 
laser power can be split into a number of pulses or 
emitted continuously. In addition to the classical 
pulse-pairs, we use poly-pulse waveforms [6], for 
their larger measurement dynamic. 

After detailing the signal model adopted for this 
work, we recall some properties of poly-pulse 
waveforms in section 2. Section 3 reviews 
Instantaneous Frequency (IF) estimators that are 
already applied in CW vibrometry for the 
demodulation of the signal, or can be adapted to 
pulsed vibrometry. Then, in section 4, we propose 
and characterize a new Maximum Likelihood (ML) 
based IF estimator that takes into account noise 
statistics for better performance, as well as pseudo 
Time-Frequency Representations (TFRs) for 
pulsed mode, which allow noise regularization. 
Processing methods and operating modes (CW, 
pulse-pairs, poly-pulses) are compared in 
simulation in section 5. Section 6 concludes. 

 
 

2. SIGNAL MODEL AND POLY-PULSE 
WAVEFORMS 

The analytic signal, i.e. downshifted around null 
frequency, as can be obtained after I/Q 
demodulation, can be expressed as such: 
 

)())(exp().(.).(

)()().()(

0 titjtmit

tititti

bvib

bhetS

+=
+=

ϕµ
µ   (1) 

 
where µ(t) is the amplitude modulation in pulsed 
mode (µ(t) = 1 in CW mode), ihet(t) is the 
heterodyne current, with a mean amplitude i0, m(t) 
is a complex multiplicative noise, circular and 
centered, with a variance normalized to 1, 
φvib(t) = 4π.xvib(t)/λ is the phase modulation caused 
by the targeted surface vibration displacement 
projected along the laser line of sight xvib(t) for the 
laser wavelength λ, and ib(t) is an additive complex 
noise (detector / photon noise), white, Gaussian 
valued, circular and centered, with variance σb

2. 
We will only deal with the relative strength of signal 
and noise by the means of the time averaged 
Carrier-to-Noise Ratio (CNR), defined as CNR = 
<|ihet|

2> / <|ib|
2> = i0

2 / 2σb
2. 

Complex multiplicative noise m(t) gathers 
amplitude and phase fluctuations terms, and is the 
result of several phenomena [7]: 

- Target speckle noise is due to the 
movement and evolution of the speckle 
figure backscattered by the target as it 
moves, which varies the received optical 
wave. It is well described by a complex 
Gaussian variable with a Gaussian auto-
correlation function Г(τ) = exp(-Bspeckle

2
τ

2), 
where Bspeckle is the inverse of the 
correlation time, called speckle bandwidth. 
It can be up to several kilohertz. 

- Laser phase noise is due to the spectral 
linewidth of the laser. As the optical path 
difference between measurement path and 
local oscillator path increases, so does the 
decorrelation between the two mixed 
waves, the result being a random phase 
term in m(t). 

- The evolution of atmospheric turbulence in 
which the beam propagates produces 
amplitude and phase fluctuations.  

Complex multiplicative noise impacts the 
measurement through signal fading as well as 
spectral broadening because of phase fluctuations, 
which directly affects the accuracy of the velocity 
estimation.  

The signal model of Eq. 1 is based on several 
simplifying hypothesis: 1) it is assumed that any 
bulk Doppler shift due to target global velocity has 
previously been removed; 2) the sounded surface 



 

vibrates as a whole, and there is no separate 
vibrators generating signals with various IFs; 3) we 
also suppose that we have previous knowledge of 
the target’s distance, and know precisely which 
samples contain the signal (telemetry performed by 
the radar that was used to detect the target is 
sufficient for this); 4) we adopt the hypothesis of an 
equal mean laser power emitted for all operating 
modes, which implies taking <µ(t)²> = 1; 5) lastly, 
we neglect the phase effects of atmospheric 
turbulence and laser phase noise and only 
consider speckle noise. Laser phase noise can 
indeed be greatly reduced by using a well chosen 
delay line in the local oscillator path, and 
turbulence noise is negligible before speckle noise 
(unless the line of sight is low above the ground). 

The speckle bandwidth is chosen of 5kHz, the 
same order of magnitude as the vibration induced 
signal bandwidth, considering cm/s peak-to-peak 
vibration velocities. CNR is given in the full 
sampling bandwidth of 1MHz. A common CNR 
value for all operating modes is obtained by using 
the mean signal power received instead of its peak 
value in pulsed mode. 

 

Figure 2. Characteristics of poly-pulse waveforms: 

PRF: waveform repetition frequency, Tm: poly-pulse total 
duration, TS: pulse time separation, tp: pulse duration 

 

Amplitude modulation µ(t) is formed of regular 
poly-pulses of square shape as described on Fig. 
2. There are several main constraints on their 
parameters [6]: 1) waveform repetition frequency 
PRF must be properly chosen to respect Nyquist’s 
criterion for the correct sampling of the vibration 
(PRF >2 fvib,max, maximum vibration frequency); 2) 
in order to avoid velocity ambiguities, as the 
measured phase shift between pulses 
∆φ = finst/(2πTS) is only know within ]- π; π] interval, 
pulse separation TS must be shorter than λ/4vmax; 
3) Tm must be short enough so that the IF remains 
roughly constant during the waveform (Tm<<1/ 
fvib,max), but as large as possible to allow a more 
accurate IF estimation (by Fourier’s limit, IF is 
known with precision evolving as 1/Tm). 

As the same energy for all operating modes is split 
between pulses and <µ(t)²> = 1, the max value of 
µ(t) is µmax = (Np tp PRF)-1/2. TS being fixed by the 
expected maximum vibrational velocity of the 
target, the optimal number of pulses Np may vary 
according to noise conditions [4]: in case the target 
is remote and the signal is weak, higher peak 
power should be preferred, and Np be chosen 

smaller. Pulse-pair is the limit of this trend, 
conceived to maximize peak power. On the 
contrary, if the signal is strong enough and 
complex multiplicative noise dominates, a larger 
number of measurements (and pulses) is 
preferable so as to average it out. An agile system 
would perform this adjustment; we will however 
consider the case of a fix number of pulses, 
chosen to allow a suitable measurement dynamic 
D, disregarding noise conditions:  

VVD amb δ/=     (2) 

where: 

( )Samb TV πλ 2/=     (3) 

is the velocity ambiguity interval, and: 
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is the velocity resolution. For instance, the dynamic 
of quadripulses is D4p ≈ 28 while the dynamic of 
pulse-pair is much smaller D2p ≈ 9. As is show in 
section 5, in conditions with strong complex 
multiplicative noise, poly-pulses perform much 
better than pulse-pairs, and remain as good in 
other cases unless the mean signal power is very 
weak and there is no phase noise. 

Other waveforms are of course usable in this frame 
of work. For example, with staggered (irregular) 
poly-pulses with varying separations TS, a good 
dynamic can be ensured by a smaller number of 
pulses, provided a large Tm and a small minimum 
separation between, for instance, the two first 
pulses. However, as the ambiguities that appear, 
with this type of waveform, are difficult to solve 
when dealing with bad noise conditions, we rather 
focused on regular poly-pulses. 

 
3. IF ESTIMATION FOR COHERENT LASER 

RADAR VIBROMETRY 

In this section, we recall the state of the art of 
signal processing for vibrometry by coherent laser 
radar. As introduced in section 1, the goal of the 
signal processing is to obtain the vibration velocity 
by IF estimation, and then determine the modal 
frequencies of vibration, whereas additive 
detection noise, and phase and amplitude noise 
disturb this estimation.   

Three trends in literature from the laser radar, 
radar and signal processing domains, which apply 
to both CW and pulsed signals, are interesting to 
compare. The most computationally efficient, 
although the least robust to disturbances, is phase 
derivation over samples (CW) or pulses (pulsed), 
just as in conventional frequency demodulation. 

 



 

A second trend relies on Time-Frequency 
processing, as introduced in vibrometry by 
Kachelmyer [8], with the spectrogram. This 
approach requires another step to obtain the 
vibration from the Time-Frequency Representation, 
by determining the frequency localization of the 
maximum of energy along time. The main 
advantages of this method, which remains much 
more costly in computation time, are a better 
overall performance than classical frequency 
demodulation, the possibility of following multiple 
traces generated by independent vibrations, and 
extracting them from noise using regularization 
techniques, as will be explained in section 4. 

The third trend, parametric estimation of the peak 
vibration frequencies, would use the complete 
model of the signal (phase modulated by a sum of 
sinusoids), and directly adjust it to the data. This is 
theoretically the optimal processing given our 
signal model, but because of the non-stationarity of 
the vibrations and the usual deviations from the 
model, which have to be compensated by a large 
number of unknown parameters, it is not realistic to 
consider it for real-time processing. Therefore, it 
will not be studied in the current paper. 

We now detail the estimators that will be 
implemented for each operating mode. In CW 
mode, three estimators are commonly used in 
literature. The first one is the centroid of the 
spectrogram columns [8], enhanced with a circular 
mean in order to avoid the bias due to the noisy 
background (SpectroGram Centroid, SGC): 
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where SG(t,f) is the spectrogram (square modulus 
of the short term Fourier transform) and B is the 
analysis bandwidth, usually matched to that 
occupied by the signal. Short term spectrum 
matching (Lee’s Spectral Matching, LSM) [9] is 
also applicable on the columns of the spectrogram 
of the signal (as a maximum of correlation): 

( )),()(maxarg)(ˆ ftSGfStf ref
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where Sref(f) is a reference spectrum inferred 
thanks to the knowledge of Bspeckle, which can be 
evaluated by studying the amplitude fluctuations of 
the signal. Lastly, the short term coherent average 
of the phase difference between consecutive 
samples (Autocorrelation First Lag, AFL) [5] is 
implemented by: 
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where ∆t is the sampling period, and Nm the 
number of samples on which the short term 
autocorrelation is computed. 

In pulsed mode, pulse-pairs are processed by the 
phase difference between pulses (Pulse-Pair, PP). 
Note that the precise time of arrival (i.e. target 
range) is supposedly known, which allows perfect 
temporal windowing: 
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where k, positive integer, is the number of the 
waveform et <iS>k,l is the average of the signal over 
pulse #l of waveform #k. 

With poly-pulses, we directly adapt the same 
principle by coherently averaging the phase 
difference over couples of consecutive pulses 
(Poly Pulse-Pair, PPP): 
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with the same notations as in Eq. (5). Yet, it is 
rather advised [9,10] to estimate the phase rate 
also over non consecutive samples; this comes 
down to the linear regression of the phase of the 
received pulses autocorrelation function, i.e. the 
search of the maximum of their Fourier Transform 
(FT). This leads us to the second class of 
estimators presented before, which involves 
spectral analysis, the first one being simply based 
on the FT of the autocorrelation function 
(AutoCorrelation Fourier Transform, ACFT): 
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where Γis,k(τ) is the autocorrelation function of 

waveform #k, and h(τ) is a window that is applied 
to select and balance the contribution of significant 
couples of pulses. We also implement the adapted 
filter frequency estimator of radars, which consists 
in finding the maximum of the spectrum of the 
received poly-pulse multiplied by the emitted one. 
(Poly Pulse Adapted Filter, PPAF): 
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in which the signal is restricted to poly-pulse #k. 
This estimator corresponds to the Maximum 
Likelihood (ML) estimator, in case of white additive 
noise. 

 
4. ADVANCED SIGNAL PROCESSING 

METHODS 

This last estimator is practical to process arbitrary 
waveforms, but it is not optimal in case anything 
else than a simple additive white noise affects the 
signal. That is why we propose to implement the 



 

true ML estimator in the conditions of coherent 
laser radar. 

Additional assumptions are made to reduce the 
free parameters in our model to the sole frequency 
of the signal: a stationary IF over duration Tm, and 
previous knowledge of noise parameters Bspeckle 
and CNR. For an easier implementation and faster 
computation, the likelihood expression uses a 
variable change introduced by Ghogho et al. [11]. 
The resulting Instantaneous Frequency Likelihood 
(IFL) estimator is: 
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where QX designates the covariance matrix of 
variable X. Qspeckle is thus the covariance matrix of 
the multiplicative noise, with element (p,q): 
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IFL is the pulsed mode equivalent to Levin’s ML 
estimator in CW laser radar. Like Levin’s 
expression in the spectral domain, the likelihood 
expression used here quantifies how much, when 
the phase modulation of the signal due to an 
assumed IF is suppressed, the result is close to 
having the expected covariance matrix, given by 
the sum of the covariance matrices of multiplicative 
and additive noises. This estimator can also be 
seen as a Fourier Transform restrained to actually 
correlated pulses. 

We have a few remarks about its use. As any ML 
estimator, IFL should obtain the best results in 
terms of SNR, but does not perform well in strong 
noise conditions or in case of deviations from the 
adopted signal model. Knowledge of parameters 
CNR and Bm, or an estimated Qs’, is required; they 
can be evaluated by studying the amplitude of the 
signal. Also, IFL is adaptable to other forms of 
multiplicative noise than the simple speckle noise 
studied here, as long as the signal is still a 
Gaussian random variable: only the covariance 
matrix has to be adjusted accordingly. 

Cramér-Rao Lower Bound calculations and 
velocity error simulations confirm the interest of IFL 
in case of strong speckle noise [12]. However, it 
remains that this ML based estimator is not 
expected to tolerate very important multiplicative or 
additive noise. 

This is why we introduce another enhancement for 
pulsed vibrometry processing, which is based on 
the possibility of building a pseudo Time-
Frequency Representation in this operating mode 
as well, for the three estimators we presented that 
rely on maximizing a function of frequency: PPS, 
CFT and IFL. Indeed, by stacking the functions to 
maximize horizontally, we obtain such pseudo 
TFRs, as seen for simulated signals on the left side 
of Fig. 4.  

 
Figure 4. Pseudo TFRs obtained for simulated signals 

(6-pulse waveforms) with PPAF, ACFT, and IFL 
estimators, at low CNR. On the right side, temporal 

smoothing brings out the vibration trace. 

On this pseudo TFR, extraction techniques can be 
applied that will take advantage of the continuity of 
the signal trace to better extract the vibration, and 
obtain higher SNR. We will merely indicate the 
potential of this noise regularization on the TFR by 
performing a simple temporal smoothing, the result 
of which is seen on the right side of Fig. 4. In 
section 5, the estimators that beneficiate of 
temporal smoothing are noted with suffix –s. 

Pseudo TFRs in pulsed mode will allow the same 
possibilities that are already available in CW mode 
for noise regularization, as shown here, but also for 
better robustness in the case of multiple 
independent vibrations of parts of the target. 
Advanced extraction techniques remain to be 
developed, although centroiding is already a 
suitable tool, which will be used here. 

 
5. COMPARATIVE SIMULATIONS 

We now study the performance of the advanced 
processing methods introduced in section 4, 
relative to the existing estimators of section 3. The 
comparison is conducted on simulated signals as 
defined in the model detailed in section 2. 
Performance is calculated in terms of SNR on the 



 

vibration spectrum, as the ratio of Power Spectral 
Density (PSD) at the modal frequency over the 
PSD of the noise floor.  

The simulated vibration consists of 5 modes 
between 8 and 120 Hz, with 5mm/s peak vibration 
velocity. The given SNR values are the average of 
the 5 individual SNRs, over 200 realisations of the 
signal. The parameters of the waveforms are 
tp = 2µs, TS = 50µs. The waveform repetition 
frequency is chosen a little above Nyquist’s 
criterion: PRF = 500Hz. CNR is measured as the 
mean CNR in a 1MHz bandwidth. Bspeckle is 5kHz. 
The analysis bandwidth B is fixed by 1/TS at 
20kHz. 
 

 

 
Figure 5a (top) and 5b (bottom). Average SNRs obtained 

at Bspeckle = 5 kHz and a) high CNR (30dB) or b) low 
CNR (-25dB). 2p = pulse-pairs. 6p = 6-pulse waveforms. 

Report to section 3 and 4 for estimator acronyms. 

Fig. 5a gives the results obtained at high CNR for 
the various operating modes, when the effects of 
speckle noise are dominant. SNR results confirm 
the advantage of IFL over all other processing 
methods in pulsed vibrometry when speckle noise 
is dominant. In particular, there is a 5dB gain over 
standard radar processing PPAF. Pulse-pair 
operation is affected the most, more than 10dB 
below the best results obtained with 6-pulse 

waveforms. We note that PPP processing obtains 
good results for a very short computation time. 

At very low CNR (-25dB), as seen on Fig. 5b, as 
expected, pulsed mode obtains higher SNR. High 
peak power waveforms like pulse-pair should then 
be better than 6-pulse waveforms, but because 
speckle noise is strong, the latter are preferable. In 
CW mode, SGC allows the best SNR, while LSM is 
badly affected by strong detection noise. With poly-
pulse waveforms, all estimators are roughly 
equivalent. Temporal smoothing benefits more to 
SGC processing in CW (5dB gain) than to IFL and 
PPAF processing with poly-pulses (3dB gain). This 
is because of the lesser number of averaged 
columns of the pseudo RTF in pulsed mode. We 
also note that IFL and PPAF are equivalent when 
the effects of speckle noise are not predominant.  

We conduct another performance simulation with a 
varying analysis bandwidth B, that was previously 
fixed at 20kHz to match the vibration bandwidth. 
This assumption was in fact very restrictive 
because, in practice, the bandwidth of the vibration 
is unknown, so TS and thus B = 1/TS have to be 
chosen large enough so that no velocity ambiguity 
is possible. So the bandwidth ratio α = B/Bvib may 
vary. On Fig. 6, we plot average SNR as function 
of α, at a low CNR (-20dB). 

 
Figure 6. Average SNRs plotted as a function of α ratio 
between analysis bandwidth B and vibration bandwidth 

Bvib. 2p = pulse-pairs. 6p = 6-pulse waveforms. Report to 
section 3 and 4 for estimator acronyms. 

It shows that SNR is very dependent of the 
analysis bandwidth. When α < 1, as expected, 
signals losses and Doppler ambiguities deteriorate 
the measurement, especially in pulsed mode. For 
α > 1, the various estimators react differently to the 
larger noise accepted in the analysis bandwidth. 
Temporal smoothing in both CW and pulsed mode 
is necessary to avoid a fall of SNR beyond α = 2. 
For instance, for a 100kHz analysis bandwidth, i.e. 
TS = 10µs and α = 5, only pulsed mode with poly-

5a. High CNR 

5b. Low CNR 



 

pulse waveforms processed by IFL or PPAF and 
pseudo TFR temporal smoothing is able to retain 
around 10dB SNR. In some conditions, even with 
strong speckle noise, pulsed mode as enhanced 
by the methods described in this article can be 
preferable, because of its robustness to additive 
noise. 

Other parameters, such as waveform repetition 
frequency PRF, have an important impact on the 
final SNR. Simulations show that optimal PRF in 
the given noise conditions is 1500Hz, because 
averaging numerous velocity measurements is 
more important in that case than having 
independently precise ones. A comprehensive 
study would also include the effects of noise and 
vibration parameters. 

 
6. CONCLUSION AND FUTURE WORKS 

In this paper, we have presented and compared 
common and advanced signal processing 
techniques applicable to pulsed laser vibrometry. 
The aim was to enhance the SNR on the 
measured vibration spectrum, in the case when the 
measurement is made difficult by strong speckle 
noise. It has indeed been shown before that 
speckle noise can reduce the interest of pulsed 
vibrometry, compared to CW vibrometry, which 
averages numerous velocity measurements. 

In the hypothesis the mean output power of the 
laser is the main limitation, poly-pulse waveforms 
do not present as much peak CNR gain at long 
range than pulse-pairs, but allow better 
measurement dynamic, and are more robust to the 
said noise conditions. For these waveforms, we 
introduced specific processing based on Maximum 
Likelihood estimation, which takes into account the 
noise statistics and allows optimal velocity 
precision, as shown by a comparison with the 
theoretical precision limits (Cramér-Rao Lower 
Bound). Also, we proposed to build pseudo Time-
Frequency Representations for estimators based 
on spectral analysis in pulsed mode. They open 
interesting possibilities for noise regularization.  

The global comparison of the simulated SNR 
performance of all presented methods, for 
vibrometry with CW, pulse-pair and 6-pulse 
waveforms, shows that poly-pulse waveforms with 
our Instantaneous Frequency Likelihood 
processing obtains the best results at high CNR. 
Also, at low CNR, a simple temporal smoothing of 
the pseudo TFR was proven very beneficial. With 
the said enhancements, pulsed vibrometry remains 
preferable at low CNR, with a realistically large 
analysis bandwidth, despite the large speckle 
noise considered in all this study. 

Present and future works include the confirmation 
of these results in a laboratory experiment, the 

development of techniques to better extract the 
vibration from a TFR, while remaining robust to 
independent vibrations of parts of the target, and 
an optimization study of waveforms and signal 
processing for pulsed vibrometry considering the 
actual limitations of fiber lasers. 
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