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This paper tackles the problem of image deconvolution wethtjestimation of
PSF parameters and hyperparameters. Within a Bayesiaerairk, the solution

is inferredvia a globala posteriorilaw for unknown parameters and object. The
estimate is chosen as the posterior mean, numerically laggécuby means of a
Monte-Carlo Markov chain algorithm. The estimates are ieffity computed in
the Fourier domain and the effectiveness of the method isvistan simulated
examples. Results show precise estimates for PSF paranaetthyperparameters
as well as precise image estimates including restoratidmgif-frequencies and
spatial details, within a global and coherent approa@.2012 Optical Society of
America

OCIS codes100.1830, 100.3020, 100.3190, 150.1488

1. Introduction

Image deconvolution has been an active research field feraedecades and recent contributions
can be found in papers such as [1-3]. Examples of applicatiermedical imaging, astronomy,
nondestructive testing and more generally imagery problémthese applications, degradations
induced by the observation instrument limit the data rasmtuvhile the need of precise interpre-
tation can be of major importance. For example, this is paldrly critical for long-wavelength
astronomy (see.g.,[4]). In addition, the development of a high quality instremtation system
must rationally be completed by an equivalent level of quat the development of data process-
ing methods. Moreover, even for poor performance systdmsgistoration method can be used to
bypass instrument limitations.



When the deconvolution problem is ill-posed a possibletsmiuelies on regularizatiom.g.,in-
troduction of information in addition to the data and thewsiion model [5,6]. As a consequence
of regularization, deconvolution methods are specific eodlass of image in accordance with the
introduced information. From this standpoint, the pregeaper is dedicated to relatively smooth
images encountered for numerous applications in image; $. The second order consequence
of ill-posedness and regularization is the need to baldreedmpromise between different sources
of information.

In the Bayesian approach [1, 9], information about unknoismistroduced by means of proba-
bilistic models. Once these models are designed, the regxtsto build thea posteriorilaw, given
the measured data. The solution is then defined as a repaggergoint of this law and the two
most classical are (1) the maximizer, and (2) the mean. Froomgputational standpoint, the first
leads to a numerical optimization problem and the lattesldea a numerical integration problem.
However, the resulting estimate depends on two sets ofblagan addition to the data.

1. Firstly, the estimate naturally depends on the respoige anstrument at work, namely the
point spread function (PSF). The literature is predomilyadgvoted to deconvolution in the
case of known PSF. On the contrary, the present paper isatbtotthe case of unknown
or poorly known PSF and there are two main strategies to g¢atklestimation from the
available data set (without extra measurements).

() In most practical cases, the instrument can be modelied physical operating descrip-
tion. It is thus possible to find the equation for the PSF, astién a first approximation.
This equation is usually driven by a relatively small numbeparameters. It is a com-
mon case in optical imaging where a Gaussian-shaped PStersusfed [10]. It is also
the case in other fields: interferometry [11], magnetic nes@e force microscopy [12],
fluorescence microscopy [13]... . Nevertheless, in reaéerpents, the parameter values
are unknown or imperfectly known and need to be estimatedjoisted in addition to
the image of interest: the question is nammlyopicdeconvolution.

(i) The second strategy forbears the use of the parame®icdeduced from the physical
analysis and the PSF then naturally appears in a hon-pararfeetm. Practically, the
non-parametric PSF is unknown or imperfectly known and adedbe estimated in
addition to the image of interest: the question is refercedsblind deconvolution for
example in interferometry [14-17].

From an inference point of view, the difficulty of both myogod blind problems lies in

the possible lack of information resulting in ambiguityween image and PSF, even in the

noiseless case. In order to resolve the ambiguity, infaonanust be added [3, 18] and it
is crucial to make inquiries based on any available sourdafofmation. To this end, the

knowledge of the parametric PSF represents a precious n@atrsicture the problem and
possibly resolve the degeneracies. Moreover, due to msinti design process, a hominal



value as well as an uncertainty are usually available foPtBE parameters.
In addition, from a practical and algorithmic standpoihg myopic case,e., the case of
parametric PSF, is often more difficult due to the non-lirggwendence of the observation
model with respect to the PSF parameters. On the contrarylihd casei.e., the case of
non-parametric PSF, yields a simpler practical and alganiit problem since the observation
model remains linear w.r.t. the unknown elements given tieat.
Despite the superior technical difficulty, the present papeevoted to the myopic format
since it is expected to be more efficient than the blind forimwath an information standpoint.
Moreover, the blind case has been extensively studied aargaamount of paper is available
[19-21], while the myopic case has been less investigdtedgh it is of major importance.
2. Secondly, the solution depends on the probability lavamaters named hyperparameters
(means, variances, parameters of correlation matrix,Thg@se parameters adjust the shape
of the laws and in the same time they tune the compromise leettire information provided
by thea priori and the information provided by the data. In real experimgheir values are
unknown and need to be estimated: the question is hanmslypervisedieconvolution.

For both families of parameters (PSF parameters and hyengers), two approaches are
available. In the first one, the parameter values are enaflyittined or estimated in a preliminary
step (with Maximum Likelihood [7] or calibration [22] for exnple), then the values are used in a
second step devoted to image restoration given the paresnitehe second one, the parameters
and the object are jointly estimated [2, 19].

For the myopic problem, Jalobeartial. [23] address the case of a symmetric Gaussian PSF.
The width parameter and the noise variance are estimatedgigliminary step by Maximum-
Likelihood. A recent paper [24] addresses the estimatioa Gaussian blur parameter, as in our
experiment, with an empirical method. They found the Gausblur parameter by minimizing the
absolute derivatives of the restored images Laplacian.

The present paper addresses the myopic and unsupervisaa/dettion problem. We propose
a new method that jointly estimates the PSF parameters,yjberparameters, and the image of
interest. It is built in a coherent and global framework lothse an extended posteriorilaw
for all the unknown variables. The posterior law is obtaivel the Bayes rule, founded am
priori laws: Gaussian for image and noise, uniform for PSF parasatel gamma or Jeffreys for
hyperparameters.

Regarding the image prior law, we have paid special atterttiothe parametrization of the
covariance matrix in order to facilitate law manipulatiaugh as integration, conditioning or hy-
perparameter estimation. The possible degeneracy d fiasteriorilaw in some limit cases is
also studied.

The estimate is chosen as the mean of the posterior law arahiputed using Monte-Carlo
simulations. To this end, Monte-Carlo Markov chain (MCMQgaithms [25] enable to draw



samples from the posterior distribution despite its coxipteand especially the non-linear depen-
dence w.r.t. the PSF parameters.

The paper is structured in the following manner. Sec. 2 pitssiie notations and states the
problem. The three following sections describe our methaglo firstly the Bayesian probabilistic
models are detailed in Sec. 3; then a proper posterior lavgtabished in Sec. 4, an MCMC
algorithm to compute the estimate is described in Sec. 5.éigad results are shown in Sec. 6.
Finally, Sec. 7 is devoted to conclusion and perspectives.

2. Notations and convolution model

ConsiderN pixels real square images represented in lexicographir drglvectorz € R”, with
generic elements,. The forward model writes

y=H,x+¢€ (1)

wherey € RY is the vector of dataH,, a convolution matrixz the image of interest andthe
modelization errors or the noise. Vector€ R stands for the PSF parameters, such as width or
orientation of a Gaussian PSF.

The matrix H,, is block-circulant with circulant-block (BCCB) for compitonal efficiency
of the convolution in the Fourier space. The diagonaliraf6] of H,, writesAy = FH,F'
where F' is the unitary Fourier matrix anglis the transpose conjugate symbol. The convolution,
in the Fourier space, is then

Y=Agx +e€ (2)
wherex = Fz,y = Fy ande = Fe are the 2D discrete Fourier transformr(-2D) of image,
data and noise, respectively.

Since Ay is diagonal, the convolution is computed with a term-wisedpict in the Fourier
space. There is a strict equivalence between a descriptgpeitial domain (Eg. (1)) and in Fourier
domain (Eq. (2)). Consequently, for coherent descriptimh @mputational efficiency, all the de-
velopments are equally done in the spatial space or in thedf@pace.

For notational convenience, let us introduce the compoaentll-frequencyz, € R and the
vector of component at non-null frequenciesce CV~! so that the whole set of components writes
T = [To, x.].

Let us notel the vector ofN components equal tb/ N, so thatl 'z is the empirical mean level
of the image. The Fourier components are theand we havel, = 1 and1, = 0 for n # 0.
Moreover,A; = F11'FTis a diagonal matrix with only one non-null coefficient atlftequency.

3. Bayesian probabilistic model

This section presents the prior law for each set of paraseRagarding the image of interest, in
order to account for smoothness, the law introduces higgakency penalization through a differ-
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ential operator on the pixel. A conjugate law is proposedtiier hyperparameters and a uniform
law is considered for the PSF parameters.

Moreover, we have paid a special attention to the image pawparametrization. In the next
section we present several parametrization in order tdititei law manipulations such as inte-
gration, conditioning or hyperparameter estimation. Mosg, the correlation matrix of the image
law may become singular in some limit cases resulting in @degated prior law (whep(x) = 0
for all z € RY). Based on this parametrization, Sec. 4 studies the deggnef the posterior in
relation with the parameters of the prior law.

3.A. Image prior law

The probability law for the image is a Gaussian field with aegiprecision matrid? parametrized
by a vectory. The pdf reads

p(@ly) = (2m) /2 det[P]V2 exp {—% #Pal 3)

For computational efficiency, the precision matrix is dasigj (or approximated) in a toroidal man-
ner, and it is diagonal in the Fourier domai = FPF'. Thus, the law fotc also writes

() = (27) V2 detlF] det[Ap] 2 det FT] exp [ St FIAp e @)
= (27) N2 det[Ap]"/? exp [—%%TAP%} (5)

and it is sometimes referred to [27] as a Whittle approxioraiisee also [28, p.133]) for the
Gaussian law. The filter obtained for fixed hyperparameteadsio the Wiener-Hunt filter [29], as
described in Sec. 5.A.

This paper focuses on smooth images, thus on positive atioelbetween pixels. It is intro-
duced by high-frequencies penalty using any circulanedifftial operatorp-th differences be-
tween pixels, Laplacian, Sobel... The differential oparas denoted byD and its diagonalized
formby Ap = FDF'. Then, the precision matrix writeR = ~, D' D and its Fourier counterpart
writes

Ap =1 ALAp = diag (0771|211|27 - 771|21N—1|2) (6)

where~, is a positive scale factodjag builds a diagonal matrix from elementary components and
Zln is then-th DFT-2D coefficient of D.

Under this parametrization dP, the first eigenvalue is equal to zero corresponding to the ab
sence of penalty for the null frequengy, i.e., no information accounted for about the empirical
mean level of the image. As a consequence, the determinaighesdet[P] = 0 resulting in a
degenerated prior. To manage this difficulty, several aggtes have been proposed.

Some authors [2,30] still use this prior despite its degaryeand this approach can be analyzed
in two ways.



1. Onthe one hand, it can be seen as a non-degenerated kay foe set of non-null frequency
components only. In this format, the prior does not affegtEobability to the null frequency
component and the Bayes rule does not apply to this componkeuas, this strategy yields
an incomplete posterior law, since the null frequency isemobedded in the methodology.

2. Onthe other hand, it can be seen as a degenerated pribefahible set of frequencies. The
application of the Bayes rule is then somewhat confusingtdukegeneracy. In this format,
the posterior law cannot be guaranteed to remain non-degfede

Anyway, none of the two standpoints yields a posterior laat ik both non-degenerated and

addressing the whole set of frequencies.

An alternative parametrization relies on the energy. ofn extra termy,Z, tuned byy, > 0, in

the precision matrix [31], introduces information for &ltfrequencies including,. The precision
matrix writes

Ap = vl + ’YIA;)AD

= diag <70,70+71|211|2,---,70+71|ZZN—1|2) (7)

with a determinant .
det[Ap] = [[ (% + 71|Zzn|2) . ®)

n=0

The obtained Gaussian prior is not degenerated and undbyidads to a proper posterior. Nev-
ertheless, the determinant Eq. (8) is not separablg, iand ~;. Consequently, the conditional
posterior for these parameters is not a classical law andeutevelopment will be more difficult.
Moreover, the non-null frequencias are controlled by two parameteys and,

p(Z]70,71) = p(Zo|70)P(Z 4|0, 71)- 9)

The proposed approach to manage the degeneracy relies addhi®n of a term for the null
frequency onlyA; = diag(1,0,...,0)

Ap = AL Ay + AL AD. (10)
= diag (70,71|le|2, e 771|21N—1|2) .

The determinant has a separable expression

N
det[Ap] = 7071 H (11)

i.e.,the precision parameters have been factorized. In addéexch parameter controls a different
set of frequencies:
p(&[v0,71) = p(Zolv0)p(Z4]71) 5

6



o drives the empirical mean level of the imaggeand~,; drives the smoothnegs, of the image.
With the Fourier precision structure of Eq. (10), we haverba-degenerated prior law for the
image that addresses separately all the frequencies wétharized partition function w.r.tzo, v1)

N—-1
_ ° 1/2 (N-1)/2 Y00
p(®|y0,71) = ) N2 I |dul 7oA exp |- 2|13

n=1

0

P SlApal?]. (12)

whereA p, is obtained fromA p without the first line and column. The next step is to write éhe
priori law for the noise in an explicit form and the other parametauding the law parameters
~ and the instrument parametars

3.B. Noise and data laws

From a methodological standpoint, any statistic can beuded for errors (measurement and
model errors). It is possible to account for correlationghie error process or to account for a
non-Gaussian lave.g.,Laplacian law, generalized Gaussian law, or other lawsdaserobust
norm,...In the present paper, the noise is modeled as zeamnvhite Gaussian vector with un-
known precision parametey

plebre) = @m) ™29 exp [~ L e]?]. (13)

Consequently, the likelihood for the parameters given tieeoved data writes

Pyl w) = (2m) VN 2 exp |~ Ely — Hoal?). (14)

It naturally depends on the image on the noise parametet and on the PSF parameteus
embedded irH,,. It clearly involves a least squares discrepancy that caeveetten in the Fourier
domain:|y — Hyx|* = [|§ — Apie|>.

3.C. Hyperparameters law

A classical choice for hyperparameter law relies on corigaor [32]: the conditional posterior
for the hyperparameters is in the same family as its priaestlts in practical and algorithmic
facilities: update of the laws amounts to update of a smatilmer of parameters.

The three parametersg, v; and~, are precision parameters of Gaussian laws Eq. (12) and (14)
and a conjugate law for these parameters is the Gamma lavAfgendix B). Given parameters
(e, Bi), fori =0, 1 ore, the pdf reads

O8) = g e (<) Vi € 0, oc] (15)

In addition to computational efficiency, the law allows faminformative priors. With specific
parameter values, one obtains two improper non-inforragiiior : the Jeffreys’ law(y) = 1/~
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and the uniform lawp(y) = Ujo +oo(7) With (s, 3;) set to(0, +o00) and (1, +o0), respectively.
Jeffreys’ law is a classical law for the precisions and isstd@red as non-informative [33]. This
law is also invariant to power transformations: the lawy6f[33, 34] is also a Jeffreys’ law. For
these reasons development is done using the Jeffreys’ law.

3.D. PSF parameters law

Regarding the PSF parametars we consider that the instrument design process or a physica
study provides a nominal valu®@ with uncertaintyd, that is to sayw € [w — é , w + 6. The
"Principle of Insufficient Reason” [33] leads to a uniformaaron this interval

p(w) = Uz 5(w) (16)

wherelfz 5 is a uniform pdf onw — é , w + d]. Nevertheless, within the proposed framework,
the choice is not limited and other laws, such as Gaussiarpassible. Anyway other choices do

not allow easier computation because of the non-linearrtgeey of the observation model w.r.t.

PSF parameters.

4. Proper posterior law

At this point, the prior law of each parameter is availatie: PSF parameters, the hyperparameters
and the image. Thus, the joint law for all the parameters ik by multiplying the likelihood
Eq. (14) and the priori laws Eg. (12), (15) and (16)

(X, Ve, Y0, Y1, w0, Y) = p(Y|x, e, w)p(X|70, 71)P(Ve)P(Y0)P(11)p(w) (17)

and explicitly

g ‘) (2m) N TN [ da|
m €9 9 7w7 == (6% 10%
PR30 00 Y0 5a (a,) BT (o) BT ()

75ae+N/2—1%?0—1/2%u+(N—1)/2—1 exp l_k _ o ﬂ] U s(w)

Be BO ﬁl
2 2 2
According to the Bayes rule, tleeposteriorilaw reads
o o p(&77€7707717w7’o0y)
P(E, Yes Y0, 71, W(Y) = - (19)
p(y)
wherep(y) is a normalization constant
p(i) = [ plis 2,7, w) dis dy du. (20)
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As described before, setting = 0 leads to degenerated prior and joint laws. However, when
the observation system preserves the null frequeg©an be considered as a nuisance parameter.
In addition, only prior information on the smoothness isikade.

In Bayesian framework, a solution to eliminate the nuisgram@ameters is to integrate them out
in the a posteriorilaw. According to our parametrization Sec. 3.A, the intdgraof ~, is the
integration of a Gamma law. Application of Appendix B.B gfin the a posteriorilaw Eq. (19)
provides

o o p('%O)p(,ila%*v’yE)q/lva%O)
p<$7f}/67’yl7w|y) = R 0 o R R R (21)
[ pCEo)plis, @i, wli) do s dew d di
with

plio) = [ pEol0)p(30) do

5 :%2 —Ol()—1/2
= (1 + %) . (22)

Now the parameter is integrated, the parametgrand 5, are set to remove the null frequency
penalization. Since we have > 0 andj, > 0 we get(1 + 50%3/2)‘“0‘1/2 < 1 and the joint law
is majored

02 —a0—1/2
/8 x o o o o o o
(1 + % p(y7$*7767717w|x0> §p<y7m*7f}/ﬁ7’yl7w|x0>' (23)
Consequently, by the dominated convergence theorem [B&]limit of the law withay — 1
and 5, — 0 can be placed under the integral sign at the denominaton Tiee null-frequency
penalizationp(z,) from the numerator and denominator are removed. It is etgrivavith the
integration of they, parameter under a Dirac (see appendix B). The equation @ified and the

integration with respect to, in the denominator Eq. (20)
[ @7 w)p(@.1)p(n, 2 w) dio o [ pliplio, s w) o (24)
v o o \?
oc/ exp l——e (joyo - ho%o) 1 dig (25)
R 2
converges if and only i?LO # 0: the null frequency is observed. If this condition is met, E21)
with 5, = 0 andag = 1 is a proper posterior law for the image, the precision patars and the

PSF parameters. In other words, if the average is observedlegeneracy of the priori law is
not transmitted to tha posteriorilaw.



Then, the obtained posteriorilaw writes

p(%v Ves V1, W, :.a)

p(&, v, 1, w|Y) = >
p(y)
e TR T @)
Ye 11 o o 112 Y1 ° 2:| Ve !
exp |~ [|¥ HET 5 [Ap..||| exp l 3. 51]

Finally, inference is done on this law Eq. (26). If the nulduency is not observed, or information
must be added, the previous Eq. (19) can be used.

5. Posterior mean estimator and law exploration

This section presents the algorithm to explore the posteEnoEq. (19) or (26) and to compute an
estimate of the parameters. For this purpose, Monte Cartedahain is used to provide samples.
Firstly, the obtained samples are used to compute differ@mhents of the law. Afterwards, they
are also used to approximate marginal laws as histograneseTtwo representations are helpful
to analyse tha posteriorilaw, the structure of the available information and the utaiety. They
are used in Sec. 6.C.2 to illustrate the mark of the ambignitige myopic problem.

Here, the samples of theeposteriorilaw are obtained by a Gibbs sampler [25, 36, 37]: it con-
sists in iteratively sampling the conditional posteriow leor a set of parameters given the other
parameters (obtained at previous iteration). Typicallg, $ampled laws are the law #f ~; and
w. After a burn-in time, the complete set of samples are urtdejdinta posteriorilaw. The three
next sections present each sampling step.

5.A. Sampling the image

The conditional posterior law of the image is a Gaussian law

o (k+1) o |0 k k
2~ p (219,95, 467 1", w®) (27)
~ N (“(k—‘rl)’ E(kz+1)> . (28)
The covariance matrix is diagonal and writes
k k k -1
Bt = (%(k)mg{”z + 757 | A2+ )|AD|2) (29)
and the mean
(k) o
pE+D — ,ye(k)z(k—kl)AIq 7. (30)

wheret is the transpose conjugate symbol. The vegidr ! is the regularized least square solu-
tion at the current iteration (or the Wiener-Hunt filter)e@tly, if the null-frequency is not observed
;LQ = 0 and ify5 = 0, the covariance matriX is not invertible and the estimate is not defined as
described Sec. 4.

10



Finally, since the matrix is diagonal, the samﬁl%”l) is obtained by a term-wise product of
Fe (Wheree is white Gaussian) with the standard deviation ma(ﬁ%’f“))l/z followed by the
addition of the meap**1 also computed with term-wise products Eq. (30). Consedyéhe
sampling of the image is effective even with high-dimensaiabject.

5.B. Sampling precision parameters

The conditional posterior laws of the precisions are Gamansesponding to their prior law with
parameters updated by the likelihood

W~ p (%-\@, &, ’w('“’> (31)
~ G (il B (32)

For~., v and~; the parameters law are, respectively,

1 —1
o) — o 4 NJ2 and 0D — <ﬁ§1 -3 ~ ABEE) > (33
2 _1
oV = ag 1 1/2 and gt — <50 —( Gy > , (34)
-1
a§kz+l) =a; + (N . 1)/2 and £k+1 _ <51 §||AD%(R+1)H2) ) (35)
In the case of Jeffreys’ prior, the parameters are
a£k+1) = N/2 and 5(k+1) A(k o (k+1)||27 (36)
altt =172 and BV =2/ ( ’”1’) , (37)
o= (v-1)/2 and BT =2/|Apa" (38)
Remark 1 — If the a posteriori law Eq. (26) without, is considered, there is no need to sample

this parameter (Eq. (34) and (37) are not useful) a;lélﬂ = 0in Eq. (29).

5.C. Sample PSF parameters
The conditional law for PSF parameters writes

o o k+1
w® )~ p (,w‘ ( )7V€(k+1)) (39)

(k:-i—l)

<xwp[ 1§ = Arra k“nﬂ (40)

where parameterg are embedded in the P&y . This law is not standard and intricate: no algo-
rithm exists for direct sampling and we use the Metropolastihgs (M.-H.) method to bypass this
difficulty. In M.-H. algorithm, a samplewv, is proposed and accepted with a certain probability.
This probability depends on the ratio between the likelthobthe proposed value and the likeli-
hood of the current value®). In practice, in the independent form described in appe@diwith
prior law as proposition law, it is divided in several steps.

11



1. PROPOSITION Sample a proposition
wy, ~ p(w) = Uq v (w). (41)

2. PROBABILITY OF ACCEPTATION: Calculate the criterion

(k+1)
Ve ° o (k+1) ° o (k+1)
J (w(k),wp) =3 ( Y— Ap o T 12— |1y — Ao w, T HQ) ) (42)
3. UPDATE: Samplet ~ U, 1) and takes
WD) — ] Wo if logt.< J (43)
w®)  otherwise

5.D. Empirical mean

The sampling oft, v andw are repeated iteratively until the law has been sufficieexiylored.
These samples:'™ , v*) w(k)} follow the globala posteriorilaw of Eq. (19). By the large num-

bers law, the estimate, defined as the posterior mean, isxpmated by

1 K-1

&=FEg~F|=Y &% (44)
K k=0

As described by Eq. (44), to obtain an estimate of the imagesispatial space, all the computation

are achieved recursively in the Fourier space with a sirgfle at the end. An implementation

example in pseudo code is described Fig. 9.

6. Deconvolution results

This section presents numerical results obtained by thegsed method. In order to completely
evaluate the method, true value of all parametersv, ~. but alsov,, v, is needed. In order to
achieve this, an entirely simulated case is studied: imagenaise are simulated under their re-
spective prior laws Eq. (12) and (13) with given values/gfy; and~.. Thanks to this protocol,
all experimental conditions are controlled and the esiimnanethod is entirely evaluated.

The method has also been applied in different conditionsgicsignal to noise ratio, broader
PSF, different and realistic (non-simulated) images, and showed similar behaviour. However,
in the case of realistic images, since the true value of tipetparameters, and~; is unknown,
the evaluation cannot be complete.

6.A. Practical experimental conditions

Concretely, al28 x 128 image is generated in the Fourier space as the product of pleam
white Gaussian noise and thegoriori standard deviation matriX. = (WOA]SAH + ylALAD)‘l/z,
given by Eqg. (10). The chosen matrixp results from therrT-2D of the Laplacian operator
010;1—41;010]/8 and the parameter values age= 1 and~y, = 2.

12



These parameters provide the image shown in Fig. 1(a) : i isn&@ge with smooth features
similar to a cloud. Pixels have numerical values betwe&n0 and 150, and the profile line 68
shows fluctuations around a value-e10.

Thea priori law for the hyperparameters are set to the non-informagtfeeys’ law by fixing
the (o, ;) to (0, +00), as explained in Sec. 3.C. In addition, the PSF is obtaingtarFourier
space by discretization of a normalized Gaussian shape

o

h(va,vs) = exp ( — 27? <y§(wa cos® ¢ + wg sin® )
+ v5(wq sin® ¢ + wg cos® )
+ 2v,vg sin ¢ cos ¢ (W, — wp) >> (45)

with frequenciesv,, vg) € [—0.5; 0.5]°. This low-pass filter, illustrated in Fig. 2, is controlleg b
three parameters:

e two width parameters,, andwg setto 20 and 7, respectively. Thaipriori laws are uniform:

p(wa) = Upg 21)(wa) andp(wg) = Ups 5)(w,) corresponding to an uncertainty of about 5%
and 15% around the nominal value (see Sec 3.D).

e a rotation parametep set tor/3. Thea priori law is also uniformp(y) = Uz 4 »/2(¢)

corresponding to 50% uncertainty.

Then, the convolution is computed in the Fourier space aadddta are obtained by adding
a white Gaussian noise with precision = 0.5. Data are shown Fig. 1(b): they are naturally
smoother than the true image and the small fluctuations ssevlsible and corrupted by the noise.
The empirical mean level of the image is correctly obsertee Gull frequency coefficient o,
is ;Lo = 1) so the parametey, is considered as a nuisance parameter. Consequentlyiéggated
out under a Dirac (see Sec. 4). This is equivalent to fix itaevéd O in the algorithm Fig. 9, line 4.

Finally, the method is evaluated on two different situagion

1. The unsupervised and non-myopic case: the parametarg known. Consequently, there
is no Metropolis-Hastings step (Sec. 5.C): lines 9 to 16@metlied in the algorithm of Fig. 9
andw is set to its true value. To obtain sufficient law exploratithe algorithm is run until
the difference between two successive empirical meansssthan10-3. In this case, 921
samples are necessary and they are computed in approxrhateéconds on a processor at
2.66 GHz with Matlab,

2. The unsupervised and myopic case: all the parameterssaneaged. To obtain sufficient
law exploration, the algorithm is run until the differencetlween two successive empirical
means is less thanx 107°. In this case, 18 715 samples are needed and they are computed
in approximately 7 minutes.

Remark 2 — The algorithm has also been run for up to 1 000 000 samplé&stincases, without
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perceptible qualitative changes.

6.B. Estimation results
6.B.1. Images

The two results for the image are given Figs. 1(c) and 1(dHernon-myopic and the myopic
cases, respectively.

The effect of deconvolution is notable on the image, as webmthe shown profile. The ob-
ject is correctly positioned, the orders of magnitude aspeeted and the mean level is correctly
reconstructed. The image is restored, more details afeleiand the profiles are closer matching
to the true image than data. More precisely, the pixels 26f2be 68-th line in Fig. 1 show the
restoration of the original dynamic whereas it is not vigiiol the data. Between pixels 70 and 110,
fluctuations not visible in data are also correctly restored

In order to visualize and study the spectral contents ofrtieges, circular average of empirical
power spectral density is considered and called “specthenéafter. The subjacent spectral vari-
able is a radial frequencfsuch asf? = v2 +u§. The spectrum of the true object, data and restored
object are shown Figs. 3(a) and 3(b) in non-myopic and mycgses, respectively. It is clear that
the spectrum of the true image is correctly retrieved, imbzdses, up to the radial frequency
f = 0.075. Above this frequency, noise is clearly dominant and infation about the image is
almost lost. In other words, the method produces correattsgdesqualization in the properly ob-
served frequency band. The result is expected from a Widnet-method but the achievement is
the joint estimation of hyperparameter and instrumentrpatars in addition to the correct spectral
equalization.

Concerning a comparison between non-myopic and myopisctsse is no visual differences.
The spectrum Figs. 3(a) and 3(b) in non-myopic and myopieseasspectively are visually indis-
tinguishable. This is also the case when comparing Fig$.a@d 1(d) and especially 68-th line.
From a more precise quantitative evaluation, a slight diéffee is observed and detailed below.

In order to quantify performances, a normalized euclidestadce

e= |l —a|/[l="] (46)

between an image and the true image* is considered. It is computed between true image and
estimate images as well as between true image and datatfkasuteported in Tab. 1 and confirm
that the deconvolution is effective with an error of approately 6 % in myopic case compared
to 11 % with data. Both non-myopic and myopic deconvolutieduce error by a factor 1.7 with
respect to the observed data.

Regarding a comparison between non-myopic and myopic tasesrors are almost the same,
with a slightly lower value for the non-myopic case, as expecThis difference is coherent with
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the intuition: more information are injected in the non-micase through the true PSF parame-
ters values.

6.B.2. Hyperparameters and instrument parameters

Concerning the other parameters, their estimates are twabe true values and are reported in
Tab. 2. They, estimate is very close to the true value with= 0.49 instead of 0.5 in the two
cases. The error for the PSF parameters are 0.35%, 2.7%3ddr.w,, wz andyp, respectively.
The value ofy; is underestimated in the two cases with approximately kféad of 2. All the true
values fall in thei & 34 interval.

In order to deepen the numerical study, the paper evaluatesdapability of the method to
accurately select the best values for hyperparametersrestdient parameters. To this end,
we compute the estimation error Eq. (46) for a set of “exhegSvalues of the parameters
[Ye, 71, Wa, wgs, ). The protocol is the following: 1) choose a new value for aapseter . for
example) and fix the other parameters to the value providedubyalgorithm, 2) compute the
Wiener-Hunt solution (Sec. 5.A) and 3) compute the erroexd

Results are reported in Fig. 4. In each case, smooth variafierror is observed when varying
hyperparameters and instrument parameters and an unigueuapis visible. By this way, one
can find the value of the parameters that provide the bestéfidant solution when the true image
x* is known. It is reported on Tab. 1 and shows almost imperbkpitmprovement: optimization
of the parameters (based on the true imatjeallow negligible improvement (smaller than 0.02 %
as reported in Tab. 1).

So, the main conclusion is that, the unsupervised and mymwpjgosed approach is a relevant
tool in order to tune parameters: it works (without the krexige of the true image), as well as an
optimal approach (based on the knowledge of the true image).

6.C. A posteriori law characteristics

This section describes tleeposteriorilaw using histograms, means and variances of the parame-
ters. The sample histograms, Figs. 5 and 6, provide an appation of the marginal posterior law

for each parameter. Tabs. 1 and 2 report the variance fontage and law parameters respectively
and thus allow to quantify the uncertainty.

6.C.1. Hyperparameter characteristics

The histograms fof,. andy,, Fig. 5, are concentrated around a mean value in both norpicgad
myopic cases. The variance faris lower than the one foy; and it can be explained as follows.
The observed data are directly impacted by noise (presém aiystem output) whereas they are
indirectly impacted by the object (present at the systemtind he convolution system damages
the object and not the noise: as a consequence, the paramétieat drives noise law) is more
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reliably estimated tham, (that drives object law).

A second observation is the smaller varianceyfoin the non-myopic case Fig. 5(c) than in the
myopic case Fig. 5(d). It is the consequence of the additi@mformation in the non-myopic case
w.r.t. the myopic one, through the value of the PSF paramselierthe myopic case, the estimates
are founded on the knowledge of an interval for the valuet®ftstrument parameters, whereas
in the non-myopic case, the estimates are founded on thedtues for the instrument parameters.

6.C.2. PSF parameter characteristics

Fig. 6 gives histograms for the three PSF parameters anddppearances are quite different
from the one for hyperparameters. The histogramsdfpandwg, Figs. 6(a) and 6(b) are not as
concentrated as the one of Fig. 5 for hyperparameters. Vagances are quite large with regards
to the interval of the prior law. On the contrary, the histogrfor the parametep, Fig. 6(c), has
the smallest variance. It is analyzed as a consequence gjex kensitivity of the data w.r.t. the
parameterp than w.r.t. the parameters, andwg. In an equivalent manner, the observed data are
more informative about the parametethan about the parameterg andwsg.

6.C.3. Mark of the myopic ambiguity

Finally, a correlation between parametérs, w,) and(v;, wg) is visible on their joint histograms
Fig. 7. It can be interpreted as a consequence of the amypiguhe primitive myopic deconvolu-
tion problem, in the following manner: the parameter&ndw both participate in the interpreta-
tion of the spectral content of data, as a scale factor ang as a shape factor. An increaseuof
or wg results in a decrease of the cutoff frequency of the observaystem. In order to explain
the spectral content of a given data set, the spectrum ofripmal image must contain more high
frequenciesi.e.,a smallery;. This is also observed on the histogram illustrated Fig). 7(a

6.D. MCMC algorithm characteristics

Globally, the chains of Figs. 5 and 6, have a Markov featunerétated) and explore the parameter
space. They have a burn-in period followed by a stationaatesiThis characteristic has always
been observed regardless the initialization. For fixed exymntal conditions, the stationary state
of multiple runs was always around the same value. Consigeliiferent initializations, the only
visible change is on the length of the burn-in period.

More precisely, the chain of, is concentrated in a small interval, the burn-in period ig/ve
short (less than 10 samples) and its evolution seems indepéwf the other parameters. The
chain of~; has a larger exploration, the burn-in period is longer (epipnately 200 samples) and
the histogram is larger. This is in accordance with the asislgf Section 6.C.1.

About the PSF parameters, the behaviour is differentdor, wsz) andy. The chain of the two
width parameters has a very good exploration with quasairianeous burn-in period. Conversely,
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the chain ofp is more concentrated and its burn-in period is approxingat€l00 samples. This is
also in accordance with previous analysis (Section 6.C.2).

Acceptation rates in the Metropolis-Hastings algorithra egported in Tab. 3: they are quite
small, especially for the rotation parameter. This is duth&ostructure of the implemented algo-
rithm: an independant Metropolis-Hastings algorithm withk prior law as a proposition law. The
main advantage of this choice is its simplicity but as a cerpdrt, a high rejection rate is observed
due to a larga priori interval for the angle parameter. A future work will be deagbto the design
of more accurate proposition law.

6.E. Robustness of prior image model

Fig. 8 illustrates the proposed method on a more realistagenwith heterogeneous spatial struc-
tures. The original is the Lena image and the data has beameHbtwith the same Gaussian PSF
and also corruption by white Gaussian noise. The Fig. 8(bshhat the restored image is closer
to the true one than the data. Smaller structures are viaildeedges are sharper, for example
around pixel200. The estimated parameters gfe= 1.98 while the true value is* = 2. Con-
cerning the PSF parameters, the results@aye= 19.3, wz = 7.5 andg = 1.15 while the true
values are respectively;, = 20, wj = 7 andy* = 1.05 as in the previous section. Here again, the
estimated PSF parameters are close to the true values givirsg assessment of the capability of
the method in a more realistic context.

7. Conclusion and per spectives

This paper presents a new global and coherent method forimgo@ unsupervised deconvolution
of relatively smooth images. It is built within a Bayesiamarfrework and a proper extendad
posteriorilaw for the PSF parameters, the hyperparameters and theinihg estimate, defined
as the posterior mean, is computed by means of an MCMC digoiit less than a few minutes.

Numerical assessment testifies that the parameters of theR&the parameters of the prior
laws are precisely estimated. In addition, results alsoatestnate that the myopic and unsupervised
deconvolved image is closer to the true image than the ddtatew true restored high-frequencies
as well as spatial details.

The paper focuses on linear invariant model often encoedter astronomy, medical imaging,
nondestructive testing and especially in optical probleN@n-invariant linear models can also
be considered in order to address other applications suspexsrometry [4] or fluorescence mi-
croscopy [13]. The loss of invariance property precluddasedy Fourier-based computations but
the methodology remains valid and practicable. In paricut is possible to draw samples of the
image by means of an optimization algorithm [38].

Gaussian law, related to,lpenalization, is known for possible excessive sharp edgealjza-
tion in the restored object. The use of convextL; penalization [39—41] or non convex L L
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penalization [42] can overcome this limitation. In thesgasaa difficulty occurs in the development
of myopic and unsupervised deconvolution: the partitiamction of the prior law for the image
is in intricate or even unknown dependency w.r.t. the pataradl, 7, 43]. However a recent pa-
per [41] overcome the difficulty resulting in an efficient upsrvised deconvolution and we plan
to extend this work for the myopic case.

Regarding noise, Gaussian likelihood limits robustnessitbers or aberrant data and it is pos-
sible to appeal to robust law such as Huber penalizationderaio bypass the limitation. Never-
theless, the partition function for the noise law is agaffialilt or impossible to manage and it is
possible to resort to the idea proposed in [41] to overcoradlifficulty.

Finally, estimation of parameters of correlation matrixt@f frequency, attenuation coeffi-
cients,...) is possible within the same methodologicahBaork. This could be achieved for the
correlation matrix of the object or the noise. As for the P@Fameters, the approach could rely
on an extended posteriorilaw, including the new parameters and a Metropolis-Hastsagmpler.
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A. Lawin Fourier space

For a Gaussian vectar ~ N (u, ), the law forz = Fa (theFrT of x) is also Gaussian whose
first two moments are the following:
e The meanis
jv=E[z] = FE[z] = Fpu. (47)
e The covariance matrix is
3 =E[(& — ju)( — p)f] = FSF". (48)
Moreover, if the covariance matriX is circulant it writes
Y= FXF' = As. (49)

i.e.,the covariance matriX is diagonal.

B. The Gamma probability density
B.A. Definition

The Gamma pdf fory > 0, with given parameter > 0 andj > 0, is written

1
G(vla, B) = e

)v“‘l exp (—/8). (50)
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Tab. 4 gives three limit cases far, 5). The following properties hold:
e The meanidig[y] = af
e The variance i¥/;[7] = a2
e The maximiserigi(a — 1) ifand only ifa > 1

B.B. Marginalisation
First consider av dimensional zero-mean Gaussian vector with a given patisiatrixyI" with
~ > 0. The pdf reads

p(zly) = (2m) NN/ det[T]'/2 exp [—y2'Tx /2] . (51)

So consider the conjugate pdf foras a Gamma law with parametgér, 3) (see previous An-
nex). The joint law for(x, ) is the product of the pdf given by Eq. (50) and Eq. (54)¢,~) =
p(x|y)p(y). The marginalization of the joint law is known [44]:

pl@) = [ pl@hp() dy
R

_ B Aet[TPPT (0 NJ2) (| f'Ta e

B (2m)N/2T () 2
which is a/N dimensionalt-Student law o2« degrees of freedom with &' precision matrix.
Finally, the conditional law reads:
(27)~N/2 det[T] /2

BT ()

Thanks to conjugacy, it is also a Gamma pdf with parameters given bya = o + N/2 and
pt =Bt +2/(x'Tx).

(52)

p(]@) = YN exp [~y (2T /2+1/8)] - (53)

C. TheMetropolis-Hastingsalgorithm

The Metropolis-Hastings algorithm provides samples ofrgetalaw f (w) that cannot be directly
sampled but can be evaluated, at least up to a multiplicatimetant. Using the so called “instru-
ment law” ¢ (wp|w(t>), samples of the target law are obtained by the followingatiens.

1. Sample a propositiow, ~ ¢ (pr\fw(t)).

2. Compute the probability

p= min{ f (ay) 4 (w0) 1}. (54)

f(w®) g (wy|w®)’
3. Take

L) { w, with p probability 5

w® with 1 — p probability.
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At convergence, the samples follow the target &) [25, 36]. Whery (wp|w(t)) = q(w,) the
algorithm is named independent Metropolis-Hastings. bhtazh, if the instrument law is uniform,
the acceptance probability gets simpler in

_ ] (wp)
p_mm{f(w(t))’l ) (56)
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Table 1. Error (Eq. (46)) and averaged standard deviatiasf the posterior image
law. The “Best” error has been obtained with the knowledgeeftrue image.

Data | Non-myopic| Myopic Best
Error ¢) | 11.092%| 6.241% | 6.253 %| 6.235 %
o of x law - 3.16 3.25 -
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Table 2. Quantitative evaluation: true and estimated watdidyperparameters and
PSF parameters.

Yeto ==t We + 0 wg £ pto
Truevalue 0.5 2 20 7 1.05 (7/3)
Non-myopic | Estimate | 0.4940.0056 | 1.78+0.14 - - -
Error 2.0% 11 % - - -
Myopic Estimate | 0.49+0.0056 | 1.65+0.15 | 20.07£0.53 | 7.19+0.38 | 1.03+0.04
Error 2.0% 18 % 0.35% 2.7 % 1.9%
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Table 3. Acceptation rate.

Parameter Wq wg ©

Acceptation rate 14.50 %| 9.44 % | 2.14 %
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Table 4. Specific laws obtained as limit of the Gamma pdf.

a fp
Jeffreys| 0 +oo
Uniform | 1  +o0
Dirac | - 0
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Fig. 1. The figure 1(a) representsia8 x 128 sample of thea priori law for the
object withyy = 1 and~; = 2. Fig. 1(b) is the data computed with the PSF shown
in Fig. 2. Figs. 1(c) and 1(d) are the estimates with non-nityapd the myopic
estimate, respectively. Profiles correspond to the 6&th li
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Fig. 2. PSF withw, = 20, ws = 7 andy = 7/3. The x-axis and y-axis are reduced

frequency.
10 10
10 —True 10 —True
. Convolued image| . Convolued image|
5 ---Data s ---Data
10 - Estimate 10 . Estimate
1 OO . " 7:] ’-’ -------------------- E 1 OO . " 7;,-’ ’-’ -------------------- E
10”° 10”°
-10| . -10| .
1 1
0 0 0.05 0.1 0.15 0.2 0 0 0.05 0.1 0.15 0.2
(a) Non-Myopic (b) Myopic

Fig. 3. Circular average of the empirical power spectralsttgrof the image, the
convolued image, the data (convolued image corrupted sehand the estimates,
in radial frequency with y-axis in logarithmic scale. Theaxis is the radial fre-

quency.
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Fig. 4. Computation of the best parameters in the sensq. (46). The symbol
%" is the minimum and the symbol .’ is the estimated value by approach. The
y-axis of~. and~; are in logarithmic scale.
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Fig. 5. Histograms and chains for the non-myopic case in.FE{)-5(c) and the
myopic case in Figs. 5(b)-5(d) for. and~,, respectively. The symbot localizes
the initial value and the dashed line corresponds to thevalige. The x-axis are
iteration’s index for the chains and parameter value fohisagrams.
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Fig. 6. Histogram and chain for the PSF parametersn Fig. 6(a),w; in Fig. 6(b)
and ¢ in Fig. 6(c). The symbolx localizes the initial value and the dashed line
corresponds to the true value. The x-axis for the histogramasthe y-axis of the
chain are limits ofa priori law.
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Fig. 7. Joint histograms for the couple,, w,) and (v, wg) in Figs. 7(a) and 7(b)
respectively. The x-axis and y-axis are the parameter value
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Fig. 8. Observed image Fig. 8(a) and restored image Fig. Bfofiles correspond
to the 68-th line. The solid line is the true profile. Dasheeé Icorrespond to data in
Fig. 8(a) and estimated profiles in Fig. 8(b).
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1: Initialisation of [5;(0), ~O w® k=0
2: repeat
% Sanpl e of =
5 7O Au? + 48" | A2 + 17| AD
pBET AL Y
&M i+ 372 % randn
% Sanpl e of ~
6: v#) ¢+ gamrnd(a., §.)

%k) < gamrnd(as, 1)

7"« gamrnd(ao, fo)

% Sanpl e of w
9 w, < rand * (a —b) + a
10 ey (15— Arl® = 1§ — Amw, 2]?) /2
11: if log(rand) < min{.J,0} then

12: wk) wy,
13: Ap AH,wp
14: else

15: w®) — k-1
16: end if

% Enpirical nmean
17: k+—k+1

o (k o (7
18: :E( ) <—Zi-’v()/l€

19: until |2® — z*-|/|z®)| < criterion

Fig. 9. Pseudo-code algorithigamrnd, rand andrandn draw samples of gamma
variable, uniform variable, and zero-mean unit-varian¢gtevcomplex Gaussian
vector respectively.
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