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Abstract

Robust stabilization of a class of imperfectly known systems with time-varying time-delays via
output feedback is investigated. The systems addressed are composed of a nonlinear nominal sys-
tem influenced by nonlinear perturbations which may be time-, state, delayed state, and/or input-
dependent. The output of the system is modelled by a nonlinear function, which may depend on
the delayed states, and inputs, together with a feed-through term. Using bounding information on
the perturbations, in terms of specified growth conditions, classes of unconstrained and constrained
output feedback controllers are designed in order to guarantee a prescribed stability property for the
closed-loop systems, provided appropriate stability criteria hold. Two stability criterion are given:
one in terms of a Linear Matrix Inequality (LMI), the other is algebraic in nature, obtained using
a Geršgorin theorem.

Keywords: input/control constraints; output feedback stabilization; time-delay systems of the retarded type;

uncertain nonlinear systems.

1 Introduction

Time-delay systems have received much attention over the last decades (see, for instance, the recent
survey papers by Gu et al. [10] and Richard [21]). This interest is motivated by the fact that many
physical systems can be modelled by dynamical structures that do not only depend on the states
at the present time but also on the past states, such as the internal combustion engine, chemical
engineering processes, and population dynamics. When time-delays are considered to be time-varying,
some researchers have investigated some stabilization issues (see Fridman et al. [6], He et al. [13], Kao
et al. [15], Lam et al. [16], ). Moreover, the dynamics of many complex systems do not only depend on
one single time-delay, but also on several time-delays. Thus, a number of authors have focused on the
stability of systems with multiple time-delays; for example, see Fridman et al. [6]. In addition, robust
control time-delay problems have been studied for perturbed known nominal models, but relatively
few studies have considered the case of a nonlinear nominal model (see Clarkson et al. [4], Goodall
[8, 9], Kao et al. [15], for example, and also Zhang et al. [28], in which the nonlinear systems have a
feedforward structure).

Due to the possible non-availability of the full states of a system, a number of authors have focused
on output stabilization problems for uncertain (non)linear systems with time-delays. Output feedback
controllers avoid the use of observation techniques, which will increase the order of the system and,
hence, the complexity of the problem. Dynamic output stabilizers have been developed, for instance,
in Chen et al. [2], de Oliveira et al. [5], Park [19] for linear systems, whilst in Mirkin et al. [18] a class
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of adaptive stabilizers is developed. Some researchers have worked on static output controllers for such
systems. In Zhang et al. [27] the problem is addressed for a class of nonlinear systems with a delayed
input. Based on input-output feedback linearisation, a class of static output controllers is designed
in Wu et al. [26], introducing the notion of constant relative degree. In both works, Zhang et al. [27]
and Wu et al. [26], the output function is delay-free, but that is not always true in practice where the
measurement may be delayed; see for instance Germani et al. [7]. In Clarkson et al. [3] the delayed
measurement problem is addressed via a class of static output stabilizers, without invoking the concept
of constant relative degree.

In this study, the output stabilization problem for a class of nonlinear uncertain time-delay sys-
tems is addressed, in which the time-delays, that affect the system dynamics and the output function,
are time-varying. Assuming some stability properties on the nominal system hold, classes of static
(un)constrained output controllers with memory are designed. The proposed stabilizers can be seen
as the adaptation of the state-feedback controllers developed in Clarkson et al. [4]. It is shown that
stabilization of the closed-loop system is ensured provided some stability criteria hold that are expressed
in terms of either a LMI or an algebraic relation. The stability criteria are delay-dependent since they
involve the bound on the time-derivatives of the delays. Here, the work in Clarkson et al. [3] is extended
to a larger class of systems affected by a finite number a time-varying delays, and the output function is
also time-delay dependent and input dependent; moreover, the sufficient conditions for stabilization are
relaxed. An illustrative example is presented that confirms theoretical results for the constrained output
stabilization. Note that, at this present time, the authors are not aware of any study on designing a
class of constrained static output stabilizers, with feed-through terms, for nonlinear uncertain time-delay
systems, which ensures a global asymptotic stability property under appropriate sufficient conditions.

The paper is organised as follows. After having defined the nomenclature and some mathematical
preliminaries in Section 2, the problem is clearly stated in Section 3. In Section 4, a class of unconstrained
output stabilizers is designed and the stability of the closed-loop system is analysed. The case of
constrained feedbacks is treated in Section 5 and the illustrative example is given in Section 6.

2 Mathematical preliminaries

The notation In is used to denote the set of integers {0, . . . , n} and Jn represents In\{0}. Let n,m ∈ N

(the set of natural numbers {1, 2, . . .}), with n ≥ m, R := (−∞,∞), R+ := (0,∞), R+
0 := [0,∞)

and suppose the Euclidean inner product (on Rn or Rm as appropriate) and the induced norm are
denoted by 〈 · , · 〉 and ‖·‖, respectively. Let C(Rn; Rm) denote the space of all continuous functions
mapping Rn → Rm and C1(Rn; Rm) the space of continuous functions with continuous first order
partial derivatives. Also, for p ∈ N and a, b ∈ R with b > a, let Lp(a, b) denote the space of all functions

t 7→ x(t) ∈ R which are defined almost everywhere and measurable in [a, b) and for which
∫ b

a
|x(t)|p dt

exists in the sense of Lebesgue.
If h : Y1 → Y2, where Y1 and Y2 are metric spaces, is continuous and if, for any bounded set B ⊂ Y1,

the closure of h(B) := {h(b) : b ∈ B} is compact, then h is said to be completely continuous. For a
vector field f ∈ Rn and a function g ∈ C1(Rn; R), Lfg denotes the Lie derivative of g in the direction
of f , that is 〈(∇g)(x), f(x)〉, where x ∈ Rn and (∇g)(x) denotes the gradient vector field (∂g/∂x)(x).
The notation xt = xt(θ) := x(t + θ), with θ ∈ [−τ, 0] and τ ∈ R+, is introduced, which denotes the
restriction of x(·) to the interval [t − τ, t]. Moreover, for i ∈ Jn, xit(−τ) denotes xi(t − τ). Note
that if xt ∈ C([−τ, 0]; Rn), then ‖xt‖τ := supθ∈[−τ,0] ‖x(t + θ)‖. Let Qn

A,τ := {q ∈ C([−τ, 0]; Rn) :
‖q‖ < A, 0 < A < ∞} denote a set of bounded functions in C. In addition, let Ω be the set of scalar
nondecreasing functionals, ω ∈ C(R; R), such that ω(r) > 0 for r > 0, and ω(0) = 0. For i ∈ In
(n ∈ N), (t, z(t), z

(1)
t , . . . , z

(i)
t ) ∈ R × Rn ×Qn

A,τ × . . .×Qn
A,τ , a ∈ C(R × Rn ×Qn

A,τ × . . . ×Qn
A,τ ; R

n)

and a C1 functional b : R × Rn × Qn
A,τ × . . . × Qn

A,τ → R, let (Dab)(t, zt) denote
∑

γ∈Ii

〈

∇
z
(i)
t

b̄, ā
〉

,

where z
(0)
t := z(t), ā := a(t, z

(0)
t , . . . , z

(i)
t ) and b̄ := b(t, z

(0)
t , . . . , z

(i)
t ). Also, for two sets E , F ⊂ Rn, the

notation E ( F is introduced to denote that the set E is strictly included within the set F , and the
notation ∅ is used to denote an empty set. The notion of distance of a point a ∈ Rn to a set S ⊂ Rn

is defined and denoted as δ(a,S) := infs∈S δ(a, s), where δ denotes some metric on R. The notation
diag(ai) (i ∈ In) denotes a square diagonal matrix in which the element in the ith row and ith column is
ai ∈ R. If P ∈ Rp×p, P > 0 denotes that P is positive definite and, for Q ∈ Rp×p, the statement P < Q
denotes that Q − P is positive definite. Let σmin(max)(·) denote the minimum (maximum) eigenvalue
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of a symmetric positive definite matrix and let ‖A‖ :=
√

σmax(ATA), where the superscript ‘T’ denotes
matrix transposition.

In the ensuing stability analysis, a Geršgorin Theorem will be invoked.

Theorem 1 (Geršgorin Theorem, Varga [24]) Let A be a real square matrix, A = [ai,j ], for all
i, j ∈ Jn, with n ∈ N, n > 1 and ai,j ∈ R. For all i ∈ Jn, the notation Di denotes the circle centered
in ai,i with the radius

∑

j∈Jn,j 6=i

|ai,j | and Di is called a Geršgorin circle of the matrix A. Then, every

eigenvalue of A lies at least in one Geršgorin circle.

3 Problem statement

The class of systems considered is composed of a nonlinear functional differential equation of the retarded
type with time-varying delays affected by nonlinear perturbations. The output of the systems is modelled
by a nonlinear function, dependent on the states and/or the delayed-states, and a feed-through term.
The system model is assumed to have the following structure:

ẋ(t) = f(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t))) + q(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
+G(x(t))

[

u(t) + p(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

,
(1a)

y(t) = h(x(t), xt(−τ1(t)), . . . , xt(−τi(t))) + σ(u(t)), t > t0 ≥ 0, (1b)

xt0(θ) = φ(θ), θ ∈ [−τ̄ , 0] with φ(0) = x0, (1c)

where x(t) ∈ Rn is the instantaneous state vector, u(t) ∈ Rm is the control or input vector, y(t) ∈ Rp is
the output vector, τγ(·), γ ∈ Ji, are delays bounded by τ̄ ∈ R+ and n, m, p, i ∈ N, with m ≤ n. With
(t0, x

0) ∈ R×Rn specified and τ̄ > 0, φ ∈ C([−τ̄ , 0]; Rn) satisfies the initial condition x(t0) = φ(0) = x0.
In addition, f : R × Rn × Qn

A,τ̄ × . . . × Qn
A,τ̄ → Rn, which is completely continuous and satisfies

f(t, 0, . . . , 0) ≡ 0 for all t ∈ [t0,∞), G(x) = [g1(x) . . . gm(x)] which is a matrix-valued function with gk ∈
C(Rn; Rn), k ∈ Jm, and h ∈ C(Rn×Qn

A,τ̄ × . . .×Qn
A,τ̄ ; R

p) which satisfies h(0, . . . , 0) ≡ 0, are assumed
to be known. The function σ ∈ C(Rm; Rp) represents the feed-through term. The ‘uncertainty’ functions
p = [p1, . . . , pm]T : R×Rn×Qn

A,τ̄ × . . .Qn
A,τ̄ ×Rm → Rm and q : R×Rn×Qn

A,τ̄× . . .×Qn
A,τ̄ ×Rm → Rn

are assumed to be completely continuous and belong to a known non-empty class, which comprise all
possible system uncertainty, as well as any known time-dependent and/or nonlinear elements. The form
of system (1a-1c) allows one to consider different delays in the dynamic equation (1a) and the output
function (1b) which is very useful in practice, since one can consider specific delays in the output during
measurements, for instance.

For presentational convenience, let τ0, τ̄0, τ̂0 := 0. The time-delays τγ(·), γ ∈ Ji, are modelled by
continuously differentiable functions satisfying the following conditions:

H1: For all (t, γ) ∈ [t0,∞) × Ji, there exist τ̄γ ≥ 0 and known τ̂γ ≥ 0 such that,

a) τγ(t) ≤ τ̄γ ;

b) τ̇γ(t) ≤ τ̂γ < 1.

Thus, in (1c), τ = maxγ∈Ii
τ̄γ .

Remark 1 The conditions H1 are often specified when investigating systems with time-varying delays
using the Lyapunov-Krasovskĭi functional technique (for example, see Haurani et al. [12]). Alternative
conditions, in which the bounding condition on τ̇γ(t) are relaxed, are given by Fridman et al. in [6].
Note that the time-varying delays do not need to be known explicitly, only bounding information on the
time-derivative of the delays, namely τ̂γ , is supposed to be known.

Consider the nominal time-delay drift system derived from (1a-c), namely the known system with no
input, no output and no uncertainty:

ẋ(t) = f(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t))), (2a)

xt0(θ) = φ(θ), θ ∈ [−τ̄ , 0] with φ(0) = x0. (2b)

Since f satisfies, ∀ t ∈ [t0,∞), f(t, 0, . . . , 0) ≡ 0, then x = 0 is a state equilibrium for system (2a-b).
Hypotheses concerning nominal system stability are given H2 in terms of a known functional.
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H2: Suppose there exist real constants ak, bk ≥ 0, k ∈ Ji, b(γ,γ′), (γ, γ′) ∈ Ji × Ji, and c > 0. Also,
suppose there exist real functions ωk ∈ Ω (with Ω defined in §2), k ∈ Ji+4, ∀(l, l′) ∈ Ii × Ii, d(l,l′) :

R → [0, d̄(l,l′)], 0 < d̄(l,l′) < ∞, with d(l,l′) = d(l′,l), s ∈ C(Rn; R+
0 ) and a functional v1 ∈ C1(R × Rn ×

Qn
A,τ̄ × . . . × Qn

A,τ̄ ; R
+
0 ), such that, for any 0 < A < ∞ and for all (t, ψ(0), ψ(−τ1(t)), . . . ψ(−τi(t))) ∈

[t0,∞) × Rn ×Qn
A,τ̄ × . . .×Qn

A,τ̄ ,

a) v1(t, 0, . . . , 0) = 0;

b) ω1(‖ψ(0)‖) ≤ v1(t, ψ(0), ψ(−τ1(t)), . . . ψ(−τi(t))) ≤ ω2 (‖ψ‖τ̄ ) with ω1(r) → ∞ as r → ∞;

c) along solutions to (2a) and for all t ∈ [t0,∞),

∂v1
∂t

(t, x(t), xt(−τ1(t), . . . , xt(−τi(t))) + (Dv1f)(t, xt) ≤ −s2(x(t))

+
∑

(γ,γ′)∈Ji×Jn

b(γ,γ′)ωγ+4(|xγ′t(−τγ(t))|)

+
∑

γ∈Ji

d(0,γ)(t)s(x(t))s(xt(−τγ(t))) + 1
2

∑

(l,l′)∈Ji×Ji

d(l,l′)(t){ω3(‖xt(−τl(t))‖)ω3(‖xt(−τl′(t))‖)}
1
2 ,

(3)

almost everywhere, where
∑

γ∈Ji
(1 − τ̂γ)

−
1
2 d̄(0,γ) < 1 and



1 −
∑

γ∈Ji

(1 − τ̂γ)
−

1
2 d̄(0,γ)



 s2(x(t)) ≥ cω3(‖x(t)‖)

+
∑

(γ,γ′)∈Ji×Jn

(1 − τ̂γ)
−1 b(γ,γ′)ωγ+4(|xγ′t(−τγ(t))|); (4)

d) for all r ∈ Rn, s2(r) ≤ ω4(‖r‖);

e) ‖∇ψv1(t, ψ(0), ψ(−τ1(t)), . . . ψ(−τi(t)))‖ ≤ ∑

γ∈Ii

aγ{ω3(‖ψ(−τγ(t))‖)} 1
2 .

Remark 2 According to Theorem 2.1, Chapter 5 in Hale [11], if the conditions of H2a)-d) hold, then,
invoking Theorem 1, a straightforward analysis shows that, with reference to (2a) and with initial con-

dition (2b), {0} is asymptotically stable when c > 1
2

∑

(l,l′)∈Ji×Ji

(1 − τ̂l)
− 1

2 d̄(l,l′). It will be shown later,

in Section 4 and 5, that the proposed stability criteria require global uniform asymptotic stability of the
origin of the nominal system.

Remark 3 The conditions on the system, stated in H2, allows one to consider a larger class of systems
than the hypotheses required in Clarkson et al. [3, 4].

The matched, pk, k ∈ Jm, and the residual, q, uncertainties occurring in system (1a) are assumed to
satisfy the growth conditions below.

H3: For all (k, t, z0, z1, . . . , zi, u) ∈ Jm × [t0,∞) × Rn × . . .× Rn × Rm, there exists known continuous
functions αk : [t0,∞) → [0, ᾱk], ᾱk ∈ R+, κk : [t0, ∞) → [0, κ̄k], with 0 ≤ κ̄k < 1, α : [t0,∞) → [0, α̂],
α̂ ∈ R+, and known real constants βγ,k, βγ , ρk ≥ 0, γ ∈ Ii, such that

a) |pk(t, z0, z1, . . . , zi, u)| ≤ αk(t) +
∑

γ∈Ii

βγ,k{ω3(‖zγ‖)}
1
2 + κk(t)|uk(t)|;

b) ‖q(t, z0, z1, . . . , zi, u)‖ ≤ α(t)+
∑

γ∈Ii

βγ{ω3(‖zγ‖)}
1
2 +

∑

k∈Jm

ρk
∑

γ∈Ii

∣

∣

〈

∇zγ
v1(t, z0, z1, . . . , zi), gk(z0)

〉∣

∣.

The aim of this work is to guarantee a global uniform asymptotic stability property for some prescribed
sets, that include the state origin, and global attractivity results for the closed-system (1a-b), subject to
the given initial conditions (1c), using a class of output controllers.

Firstly, definitions of global uniform asymptotic stability and global attractivity of a compact set are
presented (see Definitions 3.2.3, 3.2.5 and 3.2.12, §3.2, Chapter 3, in Michel et al. [17]). Let S ⊂ Rn be
a compact non-empty set, containing {0}.
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Definition 1 S is an invariant set with respect to system (1a-b) if φ(0) ∈ S implies that x(t, t0, φ) ∈ S
for all t ≥ t0.

Definition 2 If S is invariant with respect to (1a-b), then S is a uniformly asymptotically stable

invariant set for system (1a-b) if the following hold

(i) Existence and Continuation of Solutions: for each (t0, φ, x
0) ∈ R+

0 ×Qτ̄
A×Rn, there exists

a solution x(·, t0, φ) defined on [t0 − τ, t1) (t1 > t0 − τ) and every such solution can be extended
into a solution on [t0 − τ,∞).

(ii) Uniform Stability of S: for each ε > 0 and for every t0 ∈ R+
0 , there exists ∆ = ∆(ε) > 0,

(which is independent of t0), such that whenever δ(x0,S) < ∆, δ(x(t, t0, φ),S) < ε for all t ≥ t0
on every solution x(·, t0, φ) of (1a-b).

(iii) Uniform Attractivity of S: for each ε > 0, t0 ∈ R+
0 and x0, there exists ∆ > 0, (which is

independent of t0 and ε), and a real number Tε(x
0) ≥ 0, independent of t0, such that if δ(x0,S) < ∆

then δ(x(t, t0, φ),S) < ε for all t ≥ t0 + Tε(x
0) on every solution x(·, t0, φ) of (1a-b).

Moreover, if the above hold with ∆ arbitarily large then S is said to be a globally uniformly asymp-

totically stable invariant set for system (1a-b).

Attention is focused on two cases, namely utilising unconstrained and constrained controllers. Sufficient
conditions for the closed-loop system are then derived, that ensure desired stability properties hold. The
following theorem will be used for the stability analysis in the sequel. This theorem is a consequence
of Theorem 4.4.1, §4.4, Chapter 4, in Michel et al. [17] (see, also, Theorem 6.2.22, §6.2, Chapter 6, in
Michel et al. [17]).

Theorem 2 Let S be a non-empty, compact set satisfying {0} ⊂ S ⊂ Rn. Consider system (1a-c) and
suppose there exist πi ∈ Ω, with πi(r) → ∞ as r → ∞, for i = 1, 2, 3, and a C1 functional w(t, ψ) such
that, for all (t, ψ) ∈ [t0, ∞) ×Qn

A,τ̄ ,

(i) π1(δ(ψ(0),S)) ≤ w(t, ψ) ≤ π2

(

supr∈[−τ, 0] δ(ψ(r),S)
)

;

(ii) along solutions to (1a-b), ẇ(t, xt) + π3 (δ(x(t),S)) ≤ 0,

then the set S is globally uniformly asymptotically stable.

Moreover, Theorem 2 can be adapted (in view of Theorem 2.14, §2.5, and Corollary 2.18, §2.6, Chapter
2, in Qu [20]) to obtain sufficient conditions for solutions to be globally uniformly bounded and an
attractivity result.

Theorem 3 Consider system (1a-c) and suppose there exist

• πi ∈ Ω, with πi(r) → ∞ as r → ∞, for i = 1, 2, 3;

• ϕ : R+
0 → R+

0 , satisfying ϕ(·) ∈ L1(t0,∞) and |ϕ(·)| ≤ 1;

• a C1 functional w(t, ψ) such that, for all (t, ψ) ∈ [t0, ∞) ×Qn
A,τ̄ ,

(i) π1(‖ψ(0)‖) ≤ w(t, ψ) ≤ π2 (‖ψ‖τ̄ )
(ii) along solutions to (1a-b), ẇ(t, xt) + π3 (‖x(t)‖) ≤ ϕ(t)π3(η), where η is a positive constant,

then solutions to (1a-c) are globally uniformly bounded and x = 0 is globally attractive.

4 Stabilization via unconstrained output feedback controllers

4.1 Class of output feedbacks

A class of unconstrained output stabilizers is synthesized using bounding information on the uncertainties
provided by Hypothesis 3 and involving some design parameters. Then, sufficient conditions for the
stabilization of system (1a-c) are stated.
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The class of unconstrained output controllers, Fu, consists of nonlinear functions f̃ ∈ Fu,
f̃(t, y(t) − σ(u(t))) = [f̃1(t, y(t) − σ(u(t))), . . . , f̃m(t, y(t) − σ(u(t)))]T, having the following structure,
for k ∈ Jm:

(t, y − σ(u)) 7→ f̃k(t, y − σ(u)) := −(1 − κk(t))
−1

[

µk +
αk(t)

|rk(y − σ(u))| + εk(t)

]

rk(y − σ(u)), (5)

where, for k ∈ Jm, µk > 0 are design parameters, αk and κk are introduced in Hypothesis H3, rk :
Rp → R, εk : R+

0 → (0, ǫ], with ǫ > 0, are continuous functions satisfying rk(0) = 0 and εk(t) > 0
for t ∈ [t0,∞). Controller (5) does not only depend on the output y but also on σ(u), which means
that the controller forms a closed-loop with itself in order to compensate the feed-through term for the
stabilization. The term (1 − κk(t))

−1 compensates for any destabilizing effect of the input dependent
term in the matched uncertainties pk, k ∈ Jm. Moreover, the term αk(t)/[|rk(y − σ(u))|+εk(t)] strongly
reduces the impact of any offset due to pk, k ∈ Jm, on the dynamical behaviour of the system (1a-c).
The parameters µk, k ∈ Jm, are tuning gains that act, more generally, on the other components of
the uncertainty bounds, whilst their values are chosen according to the considered stability criteria, as
explained later. The function εk guarantees the continuity of the controller even when rk(y−σ(u)) = 0,
k ∈ Jm and the functions rk, k ∈ Jm, are assumed to satisfy Hypothesis H4.

H4: For all k ∈ Jm, there exists real constants ξ0,k, . . . , ξi,k ≥ 0, such that for all z0, . . . , zi ∈ Rn,

a)
∑

γ∈Ii

〈

∇zγ
v1(t, z0, . . . , zi), gk(z0)

〉

rk(h(z0, . . . , zi)) ≥ 0;

b) |rk(h(z0, . . . , zi))| ≥

∣

∣

∣

∣

∣

∣

∑

γ∈Ii

〈

∇zγ
v1(t, z0, . . . , zi), gk(z0)

〉

∣

∣

∣

∣

∣

∣

−
∑

γ∈Ii

ξγ,k{ω3(‖zγ‖)}
1
2 ;

Remark 4 If the delay τγ , γ ∈ Ji, has no contribution to the output, then, ∀k ∈ Jm , ξγ,k = 0.

Remark 5 It is noted that Hypothesis H4 b) is weaker than the corresponding hypothesis considered in
Clarkson et al. [4].

Loosely speaking, an interpretation of the conditions stated in H4 is that there exist sufficient ‘links’
between the output function and the input matrix, and sufficient information in the output function in
order that the controller is able to act significantly on the system dynamics. These conditions are quite
restrictive on the types of output that are permissible; that is logical when considering the generality
of the system equations being investigated. An example of system, with an output function satisfying
H4, is given in Section 6.

4.2 Stability analysis

When investigating the stabilization problem for system (1a-c), utilizing the output feedback controller
defined in (5), some preliminary lemmas are required, which are helpful in the sequel.

4.2.1 Preliminary lemmas

For notational simplicity, define w(t) :=
[

{ω3(‖x(t)‖)} 1
2 {ω3(‖xt(−τ1(t))‖)} 1

2 . . . {ω3(‖xt(τi(t))‖)} 1
2

]T

.

Lemma 1 Suppose H2 e) and H3b) hold, the following inequality is verified for all (t, xt) ∈ [t0,∞) ×
Qn
A,τ̄ ,

(Dqv1)(t, xt) ≤ 〈w(t),M1w(t)〉 +M2(t)w(t) +Aw(t)
∑

k∈Jm

ρk |(Dgk
v1)(t, xt)| ,

where

M1 :=



















a0β0
1
2 (a0β1 + a1β0) . . . . . . 1

2 (a0βi + aiβ0)

1
2 (a0β1 + a1β0) a1β1

...
...

. . .
...

...
. . . 1

2 (aiβi−1 + ai−1βi)
1
2 (a0βi + aiβ0) . . . . . . 1

2 (aiβi−1 + ai−1βi) aiβi



















(6)

M2(t) := α(t)A and A = [a0 a1 . . . ai]. (7)
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Proof: This result is a straightforward consequence of H2 e) and H3b).
2

Lemma 2 Assuming H3 a) and H4 hold and using the class of output controllers Fu, defined by (5),
then for all (t, x(t), xt, u(t)) ∈ [t0,∞) × Rn ×Qn

A,τ̄ ×Fu,

Aw(t)
∑

k∈Jm

ρk|(Dgk
v1)(t, xt)| +

∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt)

≤ 〈w(t), N1w(t)〉 +N2(t)w(t) + ε(t),

where, for γ, γ′ ∈ Ii,

N1 = [Ψγ,γ′(µ1, . . . , µm)], N2(t) :=











∑

k∈Jm

αk(t)ξ0,k

...
∑

k∈Jm

αk(t)ν̃
−1
k ξi,k











T

, ε(t) :=
∑

k∈Jm

αk(t)εk(t), (8)

and

Ψγ,γ′(µ1, . . . , µm) = Ψγ′,γ(µ1, . . . , µm)

:= 1
4

∑

k∈Jm

µ−1
k (aγρk + βγ,k + µkξγ,k) (aγ′ρk + βγ′,k + µkξγ′,k) . (9)

Proof: The proof of Lemma 2 is provided in Appendix A.
2

4.2.2 Main theorem

For notational convenience, consider the following matrices and constants, where λ1, . . . , λi > 0:

R1 =











r0,0 r0,1 · · · r0,i
r0,1 r1,1 · · · r1,i
...

...
. . .

...
r0,i r1,i · · · ri,i











(10)

with, for γ ≤ γ′ ∈ Ii,

r0,0 = c−
∑

γ∈Ji

(1 − τ̂γ)
−1λγ − a0β0 − Ψ0,0(µ1, . . . , µm),

rγ,γ = λγ − aγβγ − Ψγ,γ(µ1, . . . , µm), when γ ∈ Ji,

rγ,γ′ = − 1
2 (aγβγ′ + aγ′βγ) − Ψγ,γ′(µ1, . . . , µm) −

{

0, γ = 0,
1
2 d̄(γ,γ′), otherwise,

c := c− 1
2

∑

γ∈Ji

(1 − τ̂γ)
−1d̄(γ,γ),

Υ1(λ1, . . . , λi, µ1, . . . , µm) = 1
2

∥

∥R−1
1

∥

∥

(

‖R2‖ +

√

‖R2‖2
+ 4ǭ

∥

∥R−1
1

∥

∥

)

,

ǭ = ǫ
∑

k∈Jm
ᾱk, and R2 ∈ R1×i+1 is defined by

R2 = [R21 0 . . . 0] , with R21 :=
∑

γ∈Ii

(1 − τ̂γ)
−1

(

α̂aγ +
∑

k∈Jm

ᾱkξγ,k

)

.

Invoking Lemmas 1 and 2, the following theorem can be deduced, which ensures global uniform asymp-
totic stability of some prescribed compact sets for system (1a-c) using the control (5).
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Theorem 4 Suppose H1-H4 hold. If there exist λ1, . . . , λi, µ1, . . . , µm > 0 such that R1 > 0, then, with
output feedback control u(t) ∈ Fu, defined by (5), any compact set A, with the property
V1(λ1, . . . , λi, µ1, . . . , µm) ( A, where

V1(λ1, . . . , λi, µ1, . . . , µm) :=
{

x ∈ Rn : {ω3(‖x‖)}
1
2 ≤ Υ1(λ1, . . . , λi, µ1, . . . , µm)

}

,

is globally uniformly asymptotically stable under the dynamics of (1a-b) subject to the initial condition
(1c).

Proof: The proof of Theorem 4 is provided in Appendix B.
2

Remark 6 The λk parameters are not control parameters, they are used for the Lyapunov-Krasovskii
stability analysis and allow one to obtain an estimation of the sets where the states converge, when the
conditions of Theorem 4 hold.

Remark 7 It is important to notice that the stability criteria of Theorem 4 require that the origin of the
nominal system is globally uniformly asymptotically stable, in view of the proof in Appendix B. Indeed,
matrix R1 can be positive definite only if matrix L1, defined in (30), is also positive definite, which
implies the aforementioned stability property.

Remark 8 Although it can be seen that the stability criteria in Theorem 4 depend on the time delays,
only the bounds of the time-derivatives are required. This remark also applies to all other stability
criterion proposed in this study. It is clear that they become delay-independent if the time-delays are all
constant.

A key question, regarding Theorem 4, is: is it always possible to find parameters µk and λk such that
R1 > 0? In general, the answer is no, since the residual uncertainties might be too large with the
result that it is impossible to compensate using the considered controllers. However, in Section 4.2.3, a
sufficient analytic condition for the existence of µk and λk, such that R1 > 0, is given. When solvable,
numerical LMI solvers can be used in order to solve this problem. Thus, this problem can be seen as
an optimisation problem under nonlinear constraints: to find µk and λk that minimize Υ1 under the
constraint R1 > 0.

4.2.3 Application of Geršgorin’s theorem

It has been shown in Section 4.2.2 that, if R1 > 0, the desired stability property is ensured; here a
sufficient condition that guarantees R1 > 0 is given, which is derived using the Geršgorin Theorem 1.
The new condition is, obviously, more conservative than in Theorem 4, but its resolution is much simpler
and, as mentioned earlier, an analytic method for designing controller parameters µk is given.

In applying the Geršgorin Theorem 1 to the matrix R1, the conditions, ∀γ ∈ Ii,

rγ,γ >
∑

γ′∈Ii\{γ}

|rγ,γ′ |

ensure that R1 > 0, which gives rise to conditions on λγ :















∀γ ∈ Ji, λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Ψγ,γ′(µ1, . . . , µm),

c− ∑

γ∈Ji

(1 − τ̂γ)
−1 λγ >

1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Ψ0,γ′(µ1, . . . , µm).
(11)

Consequently, if c > Γ + Ψ(µ1, . . . , µm), where

Γ:= 1
2

∑

γ,γ′∈Ii×Ii

(1 − τ̂γ)
−1 (aγβγ′ + aγ′βγ) + 1

2

∑

γ,γ′∈Ji

γ 6=γ′

(1 − τ̂γ)
−1d̄(γ,γ′) (12)
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and
Ψ(µ1, . . . , µm) :=

∑

γ,γ′∈Ii×Ii

(1 − τ̂γ)
−1Ψγ,γ′(µ1, . . . , µm), (13)

then it is possible to select λγ such that R1 > 0.
Note that Ψ(µ1, . . . , µm), which arises in Lemma 2, is important in the subsequent analysis, due to

its dependence on µk, k ∈ Jm. To improve the stability criterion associated with the Geršgorin Theorem
1, it is required, if possible, to minimize Ψ, with respect to µk, k ∈ Jm. Indeed, c and Γ only depend on
system parameters, contrary to Ψ that depends on the design parameters µk. Thus, designing the control
parameters µk to minimize the value of Ψ, the required condition is more likely to be satisfied. The
term Ψ(µ1, . . . , µm) can be decomposed into Ψ̂(µ1, . . . , µm) + Ψ̃(µ1, . . . , µm), where Ψ̂(µ1, . . . , µm) does
not have any local minimum and Ψ̃(µ1, . . . , µm) has a local minimum with respect to µk provided there
exists γ ∈ Ii such that ξγ,k 6= 0. Consequently, introducing the set Km := {k ∈ Jm : ∃ γ ∈ Ii, ξγ,k 6= 0},
Ψ̃(µ1, . . . , µm) and Ψ̂(µ1, . . . , µm) involve respective sums of the form

∑

k′∈Km

(·) and
∑

k′∈Jm\Km

(·). The

value of µk, k ∈ Km, which corresponds to a local minimum, Ψ̃∗, of Ψ̃(µ1, . . . , µm) is denoted by µk = µ∗
k.

The expression for µ∗
k, k ∈ Km, is found to be

µ∗
k =

√

√

√

√

√





∑

γ,γ′∈Ii

(1 − τ̂γ)
−1

(aγρk + βγ,k) (aγ′ρk + βγ′,k)





/





∑

γ,γ′∈Ii

(1 − τ̂γ)
−1
ξγ,kξγ′,k



 (14)

and

Ψ̃∗ := Ψ̃(µ∗
1, . . . , µ

∗
m) =

1

4

∑

γ,γ′∈Ii

(1 − τ̂γ)
−1 [ξγ,k(aγ′ρk + βγ′,k) + ξγ′,k(aγρk + βγ,k)]

+
1

2

√

√

√

√

√





∑

γ,γ′∈Ii

(1 − τ̂γ)
−1

(aγρk + βγ,k) (aγ′ρk + βγ′,k)









∑

γ,γ′∈Ii

(1 − τ̂γ)
−1
ξγ,kξγ′,k



. (15)

When µk ∈ {µk : k ∈ Jm \ Km}, let µ∗
k denote the value of µk designed, sufficiently large, so that

Ψ̂(µ1, . . . , µm) < c− Γ − Ψ̃†, where Ψ̃† :=

{

0, if Km = ∅,
Ψ̃∗, otherwise.

(16)

Thus, it follows that if c > Γ + Ψ̂(µ∗
1, . . . , µ

∗
m) + Ψ̃†, then there exist λ1, . . . , λi, satisfying (11) with,

∀k ∈ Jm, µk = µ∗
k , and so R1 > 0.

Theorem 5 Suppose H1-H4 hold. If c > Γ + Ψ̃†, then there exist µk, k ∈ Km, sufficiently large so
that (16) holds and λ1, . . . , λi that satisfy (11), with output feedback control u(t), defined by (5), any
compact set A, with the property V2(λ1, . . . , λi) ( A, where

V2(λ1, . . . , λi) :=
{

x ∈ Rn : {ω3(‖x‖)}
1
2 ≤ Υ2(λ1, . . . , λi)

}

and
Υ2(λ1, . . . , λi) = Υ1(λ1, . . . , λi, µ

∗
1, . . . , µ

∗
m),

is globally uniformly asymptotically stable under the dynamics of (1a-b) subject to the initial condition
(1c).

Proof: The proof of Theorem 5 can be found in Appendix C.
2
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4.2.4 Corollaries

Under more restrictive conditions, it is possible to show that the set {0} is globally attractive.

Corollary 1 Suppose H1-H4 hold. In addition, it is supposed that α ∈ L2(t0,∞) and, ∀k ∈ Jm,
αk ∈ L2(t0,∞). If

(i) there exist λ1, . . . , λi, µ1, . . . , µm > 0 such that R1 > 0 holds, where R1 is defined in (10),

OR

(ii) c > Γ + Ψ̃†, with µk, k ∈ Km, sufficiently large such that (16) holds,

then, with output feedback control u(t) ∈ Fu, defined by (5) and with εk ∈ L2(t0,∞), solutions to (1a-c)
are globally uniformly bounded and x = 0 is globally attractive.

Proof: The proof of Corollary 1 is provided in Appendix D when condition (i) applies. The case of
condition (ii) follows by invoking Theorem 5.

2

Remark 9 In Corollary 1, the conditions on the functions εk, in the controller, ensure that εk are
bounded, and, since εk ∈ L2(t0,∞), they converge to zero as t→ ∞. Often the functions εk are selected
to have the form t 7→ εk(t) := νe−ζt, where ν, ζ > 0 are design parameters.

Remark 10 Corollary 1 does not guarantee a global uniform attractivity property.

Corollary 2 Suppose H1-H4 hold, α ≡ 0 and αk ≡ 0 for all k ∈ Jm. If

• there exist λ1, . . . , λi, µ1, . . . , µm > 0 such that R1 > 0 holds, where R1 is defined in (10),

OR

• c > Γ, with µk, k ∈ Km, sufficiently large such that (16) holds,

then, utilizing the output feedback control u(t), defined in (5), with εk ∈ L2(t0,∞), {0} is globally
uniformly asymptotically stable for the class of systems modelled by (1a-c).

Proof: This immediately follows from Theorem 4 and Corollary 1.
2

5 Stabilization via constrained output feedback controllers

5.1 Additional hypotheses and class of controllers

One of the drawbacks of the controllers designed using the upper bounds to the uncertainties, as studied
in Clarkson et al. [4], and Wu et al. [25], is that ‘high gains’ can be encountered, which may not
satisfy the constraints on the control input of the system. Some authors have addressed the problem of
constrained stabilization of functional differential equations in order to guarantee that the control input
will stay within an acceptable region; for example, see Tarbouriech et al. [23] and the articles therein.
In Hennet et al. [14], the problem has been addressed for known linear systems with time-delays, whilst
in Clarkson et al. [4] a class of constrained memoryless state-feedback controllers has been designed to
ensure global uniform asymptotic stability of some prescribed compact sets.

Nevertheless, very few researches have focused on the output stabilization of such systems. In
Su et al. [22], delay independent control design has been proposed in which some of the conditions
are relatively conservative. However in Haurani et al. [12], dynamic output controllers are designed to
guarantee a local asymptotic stability property for a class of uncertain linear time-delay systems utilising
some delay-dependent conditions. It is well known that delay-dependent conditions can give improved
results. However, to date, there appears to be no work utilising constrained static output controllers for
nonlinear uncertain time-delay systems, with a finite number of time-varying delays; this is addressed,
in this section, for a given class of systems.
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It is assumed that practical conditions dictate that, for all k ∈ Jm, uk satisfy

|uk(t)| < ūk, ∀t ≥ t0, (17)

where ūk ∈ R+ are known.
An extra condition on the offsets of the matched uncertainties is required here, which simply ensures

that the offsets of the matched uncertainties pk, k ∈ Jm, are not too big in comparison with the control
input bound in order to make output control possible.

H5: For all k ∈ Jm,
(1 − κ̄k)

−1ᾱk ≤ ūk.

The class of constrained controllers, Fc, is given by f̄ ∈ Fc,
f̄(t, y(t) − σ(u(t))) = [f̄1(t, y(t) − σ(u(t))), . . . , f̄m(t, y(t) − σ(u(t)))]T, with

(t, y − σ(u)) 7→ f̄k(t, y − σ(u)) := −(1 − κk(t))
−1 αk(t)

|rk(y − σ(u))| + εk(t)
rk(y − σ(u)), (18)

where rk : Rp → R, εk : R+
0 → (0, ǫ], with ǫ > 0, are continuous functions satisfying rk(0) = 0 and

εk(t) > 0 for t ∈ [t0,∞). The class of controllers (18) is very similar to (5) but with no design parameter
µk, k ∈ Jm, which may be the origin of high values in the input. Thus, assuming H5 holds, the controller
(18) ensures that the constraint conditions on the input, (17), are satisfied. Concerning the functions
rk, k ∈ Jm, the hypotheses in H4 are still assumed to hold, but the following hypothesis, which imposes
a restrictive condition on G(x), is also necessary in order to guarantee the effectiveness of the controller.

H6: For all z0, . . . , zi ∈ Rn, there exist positive real constants χγ,k, with (γ, k) ∈ Ii × Jm, such that

∣

∣

∣

∣

∣

∣

∑

γ∈Ii

〈

∇zγ
v1(t, z0, . . . , zi), gk(z0)

〉

∣

∣

∣

∣

∣

∣

≤
∑

γ∈Ii

χγ,k{ω3(‖zγ‖)}
1
2 .

5.2 Preliminary lemmas

In parallel with Lemma 2, the following lemma will be invoked.

Lemma 3 Assuming H3 a), H4 and H6 hold, the following inequality holds for all (t, x(t), xt, u(t)) ∈
[t0,∞) × Rn ×Qn

A,τ̄ ×Fc,

Aw(t)
∑

k∈Jm

ρk|(Dgk
v1)(t, xt)| +

∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt)

≤ 〈w(t), T1w(t)〉 + T2(t)w(t) + ε(t)

where, for γ, γ′ ∈ Ii,

T1 = [Λγ,γ′], T2(t) =











∑

k∈Jm

αk(t)ξ0,k

...
∑

k∈Jm

αk(t)ξi,k











T

, ε(t) =
∑

k∈Jm

αk(t)εk(t),

and
Λγ,γ′ = Λγ′,γ := 1

2

∑

k∈Jm

χγ′,k(aγρk + βγ,k) + 1
2

∑

k∈Jm

χγ,k(aγ′ρk + βγ′,k). (19)

Proof: The proof of Lemma 3 follows the same development as that for Lemma 2. Some specific details
are provided in Appendix E.

2
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5.3 Main theorems

For presentational convenience, the following matrices and constants are introduced, with λ1, . . . , λi > 0,

R1 =











r0,0 r0,1 · · · r0,i
r0,1 r1,1 · · · r1,i
...

...
. . .

...
r0,i r1,i · · · ri,i











, (20)

with, for γ ≤ γ′ ∈ Ii,

r0,0 = c−
∑

γ∈Ji

(1 − τ̂γ)
−1λγ − a0β0 − Λ0,0,

rγ,γ = λγ − aγβγ − Λγ,γ, if γ ∈ Ji,

rγ,γ′ = − 1
2 (aγβγ′ + aγ′βγ) − Λγ,γ′ −

{

0, γ = 0,
1
2 d̄(γ,γ′), otherwise,

and

Υ3(λ1, . . . , λi) :=
1
2

∥

∥

∥R
−1

1

∥

∥

∥

(

‖R2‖ +

√

‖R2‖2
+ 4ǭ

∥

∥

∥R
−1

1

∥

∥

∥

−1
)

,

where ǭ and R2 are introduced in §4.2.2.
In view of Lemma 3, the following theorem may be deduced.

Theorem 6 Suppose H1-H6 hold. If there exist λ1, . . . , λi > 0, such that R1 > 0 then, with output
feedback control u(t) ∈ Fc, defined by (18), any compact set A, with the property V3(λ1, . . . , λi) ( A,
where

V3(λ1, . . . , λi) :=
{

x ∈ Rn : {ω3(‖x‖)}
1
2 ≤ Υ3(λ1, . . . , λi)

}

,

is globally uniformly asymptotically stable under the dynamics of (1a-b) subject to the initial condition
(1c) and under the control constraints (17).

Proof: The proof of Theorem 6 is straightforward in view of Lemma 3 and the proof of Theorem 4.
2

Analogous to Section 4.2.2, the existence of λk such that R1 > 0 is not always guaranteed, thus suffi-
cient analytic conditions for R1 > 0 are developed in Lemma 4 (see Remark 7).

Remark 11 Similar to Theorem 4, the condition that R1 > 0 in Theorem 6, ensures global uniform
asymptotic stability of the origin of the nominal system.

Before stating the analogous theorem to Theorem 5, the following lemma is given, that gives an explicit
way to choose parameters λk under more restrictive conditions than those in Theorem 6. To simplify
the statements of the next lemma, and following theorem and corollaries, a new notation is introduced,
namely

Λ:=
∑

γ,γ′∈Ii

(1 − τ̂γ)
−1Λγ,γ′. (21)

Lemma 4 Suppose H1-H6 hold. If c > Γ+Λ, where Γ and Λ are defined in (12) and (21), respectively,
then it is possible to select, ∀γ ∈ Ji,

λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ∈Ii

Λγ,γ′ (22)

such that R1 > 0.

Proof: This is a straightforward consequence of Geršgorin Theorem 1. Some details are provided in
Appendix F.

2
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Consider system (1a-b) subject to control constraints (17), then the following theorem may be deduced
from Theorem 6, utilising the Geršgorin Theorem 1, under the conditions specified in H1-6.

Theorem 7 Suppose H1-H6 hold. If c > Γ+Λ, any compact set A, with the property V4(λ1, . . . , λi) (

A, where

V4(λ1, . . . , λi) :=
{

x ∈ Rn : {ω3(‖x‖)}
1
2 ≤ Υ4(λ1, . . . , λi)

}

,

and

Υ4(λ1, . . . , λi) :=
1
2

∥

∥

∥
R

−1

1

∥

∥

∥

(

‖R2‖ +

√

‖R2‖2 + 4ǭ
∥

∥

∥
R

−1

1

∥

∥

∥

−1
)

,

with λγ , γ ∈ Ji, satisfying (22), is globally uniformly asymptotically stable for the class of systems
modelled by (1a-c) with output feedback control u(t) ∈ Fc, defined by (18), when subject to the control
constraints (17).

Proof: The proof of Theorem 7 is similar to the proof of Theorem 5, using Lemma 4.
2

5.4 Some corollaries for the constrained case

In parallel with Corollaries 1 and 2, the following corollaries are stated.

Corollary 3 Suppose H1-H6 hold. In addition, it is supposed that α ∈ L2(t0,∞) and, ∀k ∈ Jm,
αk ∈ L2(t0,∞). If there exist λ1, . . . , λi > 0 such that R1 > 0, where R1 is defined in (20), or if
c > Γ + Λ, then with output feedback control u(t), subject to the control constraints (17) and defined
by (18), with εk ∈ L2(t0,∞), solutions to (1a-c) are globally uniformly bounded and x = 0 is globally
attractive.

Proof: The proof of Corollary 3 is similar to that of Corollary 1 and is based on the proofs of Theorem
6 and Theorem 7.

2

Corollary 4 Suppose H1-H6 hold, α ≡ 0 and αk ≡ 0 for all k ∈ Jm. If there exist λγ , γ ∈ Ii, such
that R1 > 0, where R1 is defined in (20), or if c > Γ + Λ, then utilizing the constrained output feedback
control u(t) ∈ Fc, defined in (18) with εk ∈ L2(t0,∞), {0} is globally uniformly asymptotically stable
under the dynamics of (1a) subject to the initial condition (1c) and the control constraints (17).

Proof: This immediately follows from Theorem 6
2

6 Illustrative example

The example studied shows how an output controller of the type (18) can be used to reduce the oscil-
lations caused by some uncertainties. Consider the system:

ẋ(t) = f(x(t), xt(−τ1(t)), xt(−τ2(t))) + q(t, x(t), xt(−τ1(t)), xt(−τ2(t)), u(t))
+G(x(t))

[

u(t) + p(t, x(t), xt(−τ1(t)), xt(−τ2(t)), u(t))
]

, (23)

y(t) = h(x(t), xt(−τ1(t)), xt(−τ2(t)), xt(−τ3(t))) + 2u(t), (24)

xt0(θ) = φ(θ), θ ∈ [−τ̄ , 0] with φ(0) = x0, (25)

where, with x = [x1 x2 x3]
T,

f(x(t), xt(−τ1(t)), xt(−τ2(t))) = Ax(t) +





0
0
f1



 , A =





0 1 0
0 0 1

− 1
2 − 3

2 −1



 ,

f1 = 1
50 (x2

1(t) + x2
2(t− τ2))

1
2 + 1

80x1(t− τ1) cos(x2(t− τ2)), G(x) =





0
0
1



 ,
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h(x(t), xt(−τ1(t)), xt(−τ2(t)), xt(−τ3(t))) = (x1(t) + x2(t) + 2x3(t))ψ1(xt(−τ1(t)))
+ Ξ(x1(t) + x2(t) + 2x3(t))[ψ2(xt(−τ2(t)))|x1(t− τ2(t))| + ψ3(xt(−τ3(t)))],

where ψ1 ∈ C(Q3
A,τ̄ ; [ψ̄1, ψ̃1)), with 0 < ψ̄1 < ψ̃1 < ∞, ψ2 ∈ C(Q3

A,τ̄ ; [ψ̄2, ψ̃2)), with 0 < ψ̄2 < ψ̃2 < ∞,

ψ3 ∈ C(Q3
A,τ̄ ; [0, ψ̃3]), with 0 < ψ̃3 < ∞, and Ξ : R → R, z 7→ Ξ(z) = Π







1, if z ≥ 1;
z, if |z| < 1;

−1, if z ≤ −1;
, with

0 < Π <∞. Also, it is supposed that K := ψ̄1 − Πψ̃3 > 0.
The time-delays τ1, τ2, τ3 are modelled as follows: for all t ∈ [t0,∞), τ1(t) = 1, τ2(t) = 1 − 1

4 sin2(t)
and τ3(t) = 1

2 . Thus, H1 holds with τ̄1 = 1, τ̄2 = 1, τ̄3 = 1
2 , τ̂1 = τ̂3 = 0, τ̂2 = 1

4 , and τ̄ = 1.
The initial conditions are selected to be φ(θ) = [10 4 − 4]T, θ ∈ [−1, 0] and x0 = [10 4 − 4]T with
t0 = 0. For this system it is supposed that the control constraint |u(t)| ≤ ū = 300, ∀ t, must be satisfied.

Considering the Lyapunov-Krasovskĭi functional v1(x) := x2
1 + 3

2x
2
2 + x2

3 + x1x2 + x1x3 + x2x3, for

x(t) ∈ R3, H2 a)-b) hold with: ω1(̟) = ̟2 and ω2(̟) = (3 +
√

2)̟2. A calculation shows that, along
solutions to (23),

v̇1(x(t)) ≤ −s2(x(t)) + s1s(x(t))s(x(t − τ1)) + s2s(x(t))s(x(t − τ2)),

where s(x) =
√
ŝ ‖x‖, for x ∈ R3, s1 =

√
6/(80ŝ), s2 =

√
6/(50ŝ), and ŝ = 3

4 − 1
4

√
5− 1

50

√
6. Identifying

this inequality with (3), b(γ,γ′) = 0, ∀(γ, γ′) ∈ J3 ×J3, d̄(0,1) = s1, d̄(0,2) = s2, d̄(0,3) = 0, d̄(γ,γ′) = 0 for
(γ, γ′) ∈ J3 × J3. Furthermore, it can be shown that



1 −
∑

γ∈J3

(1 − τ̂γ)
− 1

2 d̄(0,γ)



 s2(x) > 0.0548 ‖x‖2
.

Hence, all conditions of H2 c) have been verified with c = 0.0548 and ω3(̟) = ̟2. In addition, H2 d)-e)
hold with ω4(̟) = ŝω3(̟), for ̟ ∈ R+

0 , a0 = 3 +
√

2 and aγ = 0 for γ ∈ J3.
In view of Remark 2, immediately following H2, the trivial solution of the time-delay drift system

(23), without uncertainty, is globally asymptotically uniformly stable since

c > 1
2

∑

(l,l′)∈J3×J3

(1 − τ̂l)
− 1

2 d̄(l,l′) = 0.

The trajectories for system (23), without uncertainty, are illustrated in Figure 1.

0 10 20 30 40
−10

−5

0

5

10

15

x1:

x2: −−−

x3: · · · · · ·

Figure 1: Open-loop response without uncertainty.

For simulation purposes, uncertainties are modelled by, (t, z0, z1, z2, z3, u) ∈ [t0,∞) × R3 × R3 × R3 ×
R3 × R,

p(t, z0, z1, z2, z3, u) := sin
(

1
5 t
)

η(t) + 1
175 ‖z0‖ + 1

120 (1 − e−t) ‖z1‖ + 1
4 sin

(

1
4u
)

u,

q(t, z0, z1, z2, z3, u) :=
(

1
500 ‖z0‖ + 1

500 sin
(

1
5 t
)

‖z2‖
) [

0 1 0
]T
.

Moreover, two cases are considered, namely
A) η(t) = 200t2/(20 + t2) and ε1(t) = 0.01; B) η(t) = 48te−t/12 and ε1(t) = e−t/9,

14



which will illustrate the results of Theorem 7 and Corollary 3. Note that the conditions of H3 are
satisfied with: α1(t) =

∣

∣sin
(

1
5 t
)∣

∣ η(t), β0,1 = 1
175 , β1,1 = 1

120 , β2,1 = β3,1 = 0, κ1(t) = κ̄1 = 1
4 for all t,

α(t) ≡ 0, β0 = β2 = 1
500 , β1 = β3 = 0, and ρ1 = 0. The open-loop response, with uncertainty, for both

cases is presented in Figure 2.

0 20 40 60 80
−400

−300

−200

−100

0

100

200

300

400

0 20 40 60 80
−300

−200

−100

0

100

200

300

400

A) B)

x1:

x2:

x3: · · · ·

x1:

x2:

x3: · · · ·

Figure 2: Open-loop response, with uncertainty for A) η(t) = 200t2/(20 + t2); B) η(t) = 48te−t/12.

The matched and residual uncertainty, namely p and q, for the open-loop case are illustrated in Figure
3 , for case A); and Figure 4, for case B).

0 20 40 60 80
−200

−100

0

100

200

300

0 20 40 60 80
0

0.5

1

1.5

(i) (ii)

Figure 3: Case A): (i) Matched uncertainty; (ii) Residual uncertainty.

0 20 40 60 80
−200

−100

0

100

200

300

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(i) (ii)

Figure 4: Case B): (i) Matched uncertainty; (ii) Residual uncertainty.

For the constrained output controller, the function r is chosen to be r : a 7→ a/K, for a ∈ R. In this
case,

r1(h(z0, z1, z2, z3)) = K−1
(

Y ψ1 (z1) + Ξ(Y )
[

ψ2 (z2)
∣

∣

∣
z
(1)
2

∣

∣

∣
+ ψ3 (z3)

])

, (26)
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where Y = z
(1)
0 + z

(2)
0 + 2z

(3)
0 , z0 =

[

z
(1)
0 z

(2)
0 z

(3)
0

]T

, and z2 =
[

z
(1)
2 z

(2)
2 z

(3)
2

]T

. Therefore,

since g1(z0) =
[

0 0 1
]T

and, ∀ z ∈ R, zΞ(z) ≥ 0, for all (z0, z1, z2, z3) it follows that

〈∇z0v1(z0), g1(z0)〉 = K−1
(

Y 2ψ1 (z1) + Y Ξ(Y )
[

ψ2 (z2)
∣

∣

∣z
(1)
2

∣

∣

∣+ ψ3 (z3)
])

≥ 0.

Hence, the condition specified in H4a) holds. Now consider the inequality in H4b). Using (26) and
since, ∀ z ∈ R, |Ξ(z)| ≤ Π and |Ξ(z)| ≤ Π|z|,

ψ̄1|Y | ≤ K|r1(h(z0, z1, z2, z3)| + |Ξ(Y )|[ψ̃2 ‖z2‖ + ψ̃3]

and so
K|r1(h(z0, z1, z2, z3)| ≥ (ψ̄1 − Πψ̃3)|Y | − Πψ̃2 ‖z2‖ .

Therefore H4b) is satisfied with ξ0,1 = ξ1,1 = ξ3,1 = 0 and ξ2,1 = Πψ̃2/K. For simulation, with
z =

[

z(1) z(2) z(3)
]

, let ψ1(z) = 4 + 3 sin2(z(1)), ψ2(z) ≡ 1, ψ3(z) = [z(1)]2/(1 + [z(1)]2) and Π = 2

so that ψ̄1 = 4, ψ̃2 = 1, ψ̃3 = 1, and, therefore, K = 2 and ξ2,1 = 1.
Considering the upper bound of the control input fixed at ū = 300, for both cases A) and B),

ᾱ1 = 200 and so H5 is satisfied, since (1− κ̄1)
−1α1 = 800

3 < ū. Moreover, H6 holds with χ0,1 =
√

6, and
χ1,1 = χ2,1 = χ3,1 = 0.

Only Theorem 7 and Corollary 3 are applied here. Calculations show that Γ < 0.01913 and Λ <
0.03441, and so Γ + Λ < 0.05354 < c =c = 0.0548. Consequently, for case A) and utilising Theorem 7,
the controller:

−800t2| sin(t/5)|
3(20 + t2)

[

0.5(y(t) − 2u(t))

0.5|y(t)− 2u(t)| + ε1(t)

]

,

with ε1(t) = 0.01 for all t, ensures the global uniform asymptotic stability of a compact set, whilst, for
case B) and utilising Corollary 3, the controller:

−64te−t/12| sin(t/5)|
[

0.5(y(t) − 2u(t))

0.5|y(t) − 2u(t)| + ε1(t)

]

,

with ε1(t) = e−t/9 for all t, ensures that x = 0 is globally attractive.
The closed-loop response and control history for case A) are shown in Figure 5, whilst those for case

B) are illustrated in Figure 6. It is clearly seen from the simulations that the control inputs satisfy the
condition u < ū = 300, as shown in Figures 5 (ii) and 6 (ii).

0 20 40 60 80
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−5

0

5

10

15

0 20 40 60 80
−300

−200

−100

0

100

200

300

(i) (ii)

x1:

x2:

x3: · · · ·

Figure 5: Case A): (i) Closed-loop response; (ii) control history.

The output histories, for cases A) and B), are shown in Figure 7.

7 Conclusion

In this study, a class of robust static output controllers for the stabilization of a class of imperfectly
known nonlinear dynamical systems, affected by time-varying delays, has been synthesized, where the
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Figure 6: Case B): (i) Closed-loop response; (ii) control history.
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Figure 7: Output histories for cases A) and B).

output of the system is modelled by a nonlinear function, which may depend on the delayed states, and
inputs, together with a feed-through term. Moreover, bounding information on the perturbations is
assumed to be known in terms of specified growth conditions; it is not necessary that the values of the
perturbations lie in some compact set. Sufficient conditions for the stabilization have been stated, which
are an improvement of those presented in the work of Clarkson et al. [3]. Moreover, both unconstrained
and constrained output stabilization have been investigated.

Appendix A Proof of Lemma 2

Using H3 a), H4 a) and in view of (5), for all (t, x(t), xt, u(t)) ∈ [t0,∞) × Rn ×Qn
A,τ̄ × Rm,

[uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))](Dgk
v1)(t, xt)

≤
[

αk(t) +
∑

γ∈Ii

βγ,k{ω3(‖xt(−τγ(t))‖)}
1
2

−
(

µk +
αk(t)

|rk(y(t) − σ(u(t)))| + εk(t)

)

|rk(y(t) − σ(u(t)))|
]

|(Dgk
v1)(t, xt)|.
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In view of H4b),
[

αk(t) −
αk(t)|rk(y(t) − σ(u(t)))|

|rk(y(t) − σ(u(t)))| + εk(t)

]

|(Dgk
v1)(t, xt)|

=
εk(t)αk(t)|(Dgk

v1)(t, xt)|
|rk(y(t) − σ(u(t)))| + εk(t)

≤
αk(t)εk(t)

[

|rk(y(t) − σ(u(t)))| +∑γ∈Ii
ξγ,k{ω3(‖xt(−τγ(t))‖)}

1
2

]

|rk(y(t) − σ(u(t)))| + εk(t)

≤ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2

and so

[uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))](Dgk
v1)(t, xt)

≤ |(Dgk
v1)(t, xt)|



−µk|rk(y(t) − σ(u(t)))| +
∑

γ∈Ii

βγ,k{ω3(‖xt(−τγ(t))‖)}
1
2





+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 . (27)

Applying H4b),

−µk|rk(y(t) − σ(u(t)))| |(Dgk
v1)(t, xt)| ≤ −µk|(Dgk

v1)(t, xt)|2

+ µk|(Dgk
v1)(t, xt)|

∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2

and so it follows, from (27), that

[uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))](Dgk
v1)(t, xt)

≤ −µk|(Dgk
v1)(t, xt)|2 + |(Dgk

v1)(t, xt)|
∑

γ∈Ii

(βγ,k + µkξγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 .

Hence,

Aw(t)ρk|(Dgk
v1)(t, xt)| + [uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))] (Dgk

v1)(t, xt)

≤ −µk|(Dgk
v1)(t, xt)|2 + |(Dgk

v1)(t, xt)|
∑

γ∈Ii

(aγρk + βγ,k + µkξγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 . (28)

Using the inequality −au2 + uv ≤ v2/(4a), for a ∈ R \ {0} and (u, v) ∈ R2,

− µk|(Dgk
v1)(t, xt)|2 + |(Dgk

v1)(t, xt)|
∑

γ∈Ii

(aγρk + βγ,k + µkξγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2

≤ 1

4µk





∑

γ∈Ii

(aγρk + βγ,k + µkξγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2





2

.

and so, from (28),

Aw(t)ρk|(Dgk
v1)(t, xt)| + [uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))] (Dgk

v1)(t, xt)

≤ 1

4µk





∑

γ∈Ii

(aγρk + βγ,k + µkξγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2





2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 .

This immediately produces the required result.

18



2

Appendix B Proof of Theorem 4

The proof consists in checking conditions (i) and (ii) of Theorem 2.

Condition (i) of Theorem 2

Consider the Lyapunov-Krasovskĭi functional, for (t, ψ) ∈ [t0,∞) ×Qn
A,τ̄ ,

v(t, ψ) := v1(t, ψ(0), ψ(−τ1(t)), . . . ψ(−τi(t))) + v2(t, ψ) + v3(t, ψ) + v4(t, ψ) + v5(t, ψ), (29)

with v1 introduced in H2,

v2(t, ψ) =
∑

γ∈Ji

∫ 0

−τγ(t)

(1 − τ̂γ)
−1
̺γs

2(ψ(θ)) dθ,

v3(t, ψ) =
∑

(γ,γ′)∈Ji×Jn

∫ 0

−τγ(t)

(1 − τ̂γ)
−1
b(γ,γ′)ωγ+4(|ψγ′(θ)|) dθ,

v4(t, ψ) =
∑

γ∈Ji

∫ 0

−τγ(t)

(1 − τ̂γ)
−1 (

λγ + 1
2 d̄(γ,γ)

)

ω3(‖ψ(θ)‖) dθ,

v5(t, ψ) =
∑

γ∈Ji

∫ 0

−τγ(t)

(1 − τ̂γ)
−1
ςγ{ω3(‖ψ(θ)‖)} 1

2 dθ,

where ̺γ , λγ , ςγ ≥ 0, γ ∈ Ji, are parameters with ̺γ , λγ and ςγ specified later. Clearly, by definition of v
(see (29)) and in view of H2 b), the functional v satisfies v(t, ψ) ≥ v1(t, ψ(0), ψ(−τ1(t)), . . . ψ(−τi(t))) ≥
ω1(‖ψ(0)‖). Also, since, for all (γ, γ′) ∈ Ji×Jn, ∃ ω∗

γ+4 ∈ Ω such that, for all ψ = [ψ1 . . . ψn]
T ∈ Qn

A,τ̄ ,
ωγ+4(|ψγ′ |τ̄ ) ≤ ω∗

γ+4(‖ψ‖τ̄ ), and in view of H2b) and H2 d), standard arguments show that

v(t, ψ) ≤ ω2(‖ψ(θ)‖τ̄ +
∑

(γ,γ′)∈Ji×Jn

τ̄γ(1 − τ̂γ)
−1
[

̺γω4(‖ψ(θ)‖τ̄ ) + b(γ,γ′)ω
∗
γ+4(‖ψ(θ)‖τ̄ )

+
(

λγ + 1
2 d̄(γ,γ)

)

ω3(‖ψ(θ)‖τ̄ ) + ςγ {ω3(‖ψ(θ)‖τ̄ )}
1
2

]

.

Thus, there exist π1, π2 ∈ Ω such that π1(‖ψ(0)‖) ≤ v(t, ψ) ≤ π2 (‖ψ‖τ̄ ) and, hence, condition (i) of
Theorem 2 is valid.

Condition (ii) of Theorem 2

Firstly, it is shown that solutions to (1a-c) exist and can be continued indefinitely. By Theorem 2.7.11,
§2.7, Chapter 2 of Michel et al [17], there exist a local solution to system (1a-c). According to Theorem
2.7.15, §2.7, Chapter 2 of Michel et al [17], if it can be shown that all solutions to (1a-c) are bounded,
then every solution can be extended to the interval [t0,∞). Utilising H2 c), the time-derivatives of v2
and v3, and using the inequality −au2 + uv ≤ v2/(4a) for a ∈ R \ {0} and (u, v) ∈ R2, along every
solution of (1a-b), the following inequality can be shown to hold:

v̇1(t, xt) + v̇2(t, xt) + v̇3(t, xt) ≤ −s2(x(t)) +
∑

(γ,γ′)∈Ji×Jn

(1 − τ̂γ)
−1b(γ,γ′)ωγ+4(|xγ′(t)|)

+ 1
2

∑

(l,l′)∈Ji×Ji

d̄(l,l′){ω3(‖xt(−τl(t))‖)ω3(‖xt(−τl′(t))‖)}
1
2

+
∑

γ∈Ji

(1 − τ̂γ)
−1
̺γs

2(x(t)) + 1
4

∑

γ∈Ji

̺−1
γ d̄2

(0,γ)s
2(x(t))

+
∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt) + (Dqv1)(t, xt),
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almost everywhere. Moreover, because the function a 7→ c1a + c2a
−1, with (c1, c2) ∈ R+ × R+, has a

local minimum 2
√
c1c2, in the region a > 0 when a =

√

c2
c1

, then, for all γ ∈ Ji, (1− τ̂γ)−1̺γ + 1
4̺

−1
γ d̄ 2

0,γ

has a local minimum (1 − τ̂γ)
−

1
2 d̄(0,γ) when ̺γ = 1

2 (1 − τ̂γ)
1
2 d̄(0,γ). Thus, along solutions to (1a-b) and

with ̺γ = 1
2 (1 − τ̂γ)

1
2 d̄(0,γ) for all γ ∈ Ji,

v̇1(t, xt) + v̇2(t, xt) + v̇3(t, xt) ≤ −



1 −
∑

γ∈Ji

(1 − τ̂γ)
− 1

2 d̄(0,γ)



 s2(x(t))

+
∑

(γ,γ′)∈Ji×Jn

(1 − τ̂γ)
−1b(γ,γ′)ωγ+4(|xγ′(t)|)

+ 1
2

∑

(l,l′)∈Ji×Ji

d(l,l′)(t){ω3(‖xt(−τl(t))‖)ω3(‖xt(−τl′(t))‖)}
1
2

+
∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt) + (Dqv1)(t, xt).

Using the inequality (4),

v̇1(t, xt) + v̇2(t, xt) + v̇3(t, xt) ≤ −cω3(‖x(t)‖)
+ 1

2

∑

(l,l′)∈Ji×Ji

d(l,l′)(t){ω3(‖xt(−τl(t))‖)ω3(‖xt(−τl′(t))‖)}
1
2

+
∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt) + (Dqv1)(t, xt).

Hence, evaluating along solutions to (1a-b), it is easily shown that, for almost all t ∈ [t0,∞),

v̇1(t, xt) + v̇2(t, xt) + v̇3(t, xt) + v̇4(t, xt) ≤ −〈w(t), L(λ1, . . . , λi)w(t)〉
+
∑

k∈Jm

[

uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))
]

(Dgk
v1)(t, xt) + (Dqv1)(t, xt).

where, with c = c− 1
2

∑

γ∈Ji

(1 − τ̂γ)
−1d̄(γ,γ),

L(λ1, . . . , λi) :=

































c−
∑

γ∈Ji

(1 − τ̂γ)
−1λγ 0 . . . . . . . . . . . . 0

0 λ1 − 1
2 d̄(1,2) . . . . . . . . . − 1

2 d̄(1,i)

... − 1
2 d̄(1,2) λ2

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . − 1

2 d̄(i−1,i)

0 − 1
2 d̄(1,i) . . . . . . . . . − 1

2 d̄(i−1,i) λi

































,

(30)

and w(t) := [{ω3(‖x(t)‖)}
1
2 {ω3(‖xt(−τ1(t))‖)}

1
2 . . . {ω3(‖xt(τi(t))‖)}

1
2 ]T. As a consequence of (30)

and in view of Lemmas 1 and 2, the functional v, defined in (29), satisfies, along solutions to (1a-b), the
inequality:

v̇(t, xt) ≤ −〈w(t), R1w(t)〉 + (M2(t) +N2(t))w(t) + ε(t)

+
∑

γ∈Ji

(1 − τ̂γ)
−1 ςγ{ω3(‖x(t)‖)}

1
2 −

∑

γ∈Ji

ςγ{ω3(‖xt(τγ(t))‖)}
1
2 , (31)

where R1 := L(λ1, . . . , λi)−M1−N1, M1, M2(t) are specified in (6) and (7), respectively, and N1, N2(t)
and ε(t) are defined in (8). Selecting,

∀γ ∈ Ji, ςγ = α(t)aγ +
∑

k∈Jm

αk(t)ξγ,k ≥ 0,
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the delay terms in (M2(t) +N2(t))w(t), on the righthand side of (31), are eliminated and thence

v̇(t, xt) ≤ −〈w(t), R1w(t)〉 + S(t)w(t) + ε(t), (32)

where S(t) := [S1(t) 0 . . . 0] and S1(t) =
∑

γ∈Ii
(1 − τ̂γ)

−1 (
α(t)aγ +

∑

k∈Jm
αk(t)ξγ,k

)

.
Assuming that there exist λ1, . . . , λi, µ1, . . . , µm > 0 such that R1 > 0, then, since R1 is positive definite
and symmetric,

∥

∥R−1
1

∥

∥

−1 ‖w(t)‖2 ≤ 〈w(t), R1w(t)〉 ≤ ‖R1‖ ‖w(t)‖2 .

Consequently, along solutions to (1a-b),

v̇(t, xt) ≤ −
∥

∥R−1
1

∥

∥

−1
ω3(‖x(t)‖) + S1(t){ω3(‖x(t)‖)}

1
2 + ε(t). (33)

Since, ∀ t ∈ [t0,∞) and k ∈ Jm, 0 ≤ αk(t) ≤ ᾱk, 0 ≤ α(t) ≤ α̂ and 0 < εk(t) ≤ ǫ, then

v̇(t, xt) ≤ −
∥

∥R−1
1

∥

∥

−1
ω3(‖x(t)‖) + ‖R2‖ {ω3(‖x(t)‖)}

1
2 + ǭ, (34)

where R2 = [R21 0 . . . 0], R21 =
∑

γ∈Ii
(1 − τ̂γ)

−1 (
α̂aγ +

∑

k∈Jm
ᾱkξγ,k

)

and ǭ := ǫ
∑

k∈Jm
ᾱk. Thus,

all local solutions emanating outside any compact set containing

V1(λ1, . . . , λi, µ1, . . . , µm) =
{

x ∈ Rn : {ω3(‖x‖)}
1
2 ≤ Υ(λ1, . . . , λi, µ1, . . . , µm)

}

,

where

Υ1(λ1, . . . , λi, µ1, . . . , µm) = 1
2

∥

∥R−1
1

∥

∥

(

‖R2‖ +

√

‖R2‖2 + 4ǭ
∥

∥R−1
1

∥

∥

−1
)

,

are bounded and, hence, these solutions can be continued indefinitely. Finally, as a consequence of (34),
there exist π3 ∈ Ω such that

v̇(t, xt) + π3 (δ(x(t),V1)) ≤ 0,

under the dynamics of (1a-b) and V1 is invariant. Thus, all conditions of Theorem 2 hold.
2

Appendix C Proof of Theorem 5

Condition (i) has been previously verified (see Appendix B). Now consider condition (ii) of Theorem
2. In applying the Geršgorin Theorem 1 to the matrix R1 = [rγ,γ′ ], for all γ, γ′ ∈ Ii, the conditions,
∀γ ∈ Ii, rγγ >

∑

γ′∈Ii\{γ}
|rγγ′ | ensure that R1 is positive definite, which gives rise to















∀γ ∈ Ji, λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Ψγ,γ′(µ1, . . . , µm),

c− ∑

γ∈Ji

(1 − τ̂γ)
−1
λγ >

1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Ψ0,γ′(µ1, . . . , µm).

Suppose c > Γ + Ψ(µ1, . . . , µm), where Γ and Ψ are defined in (12) and (13), respectively, that is c
satisfies

c−
∑

γ∈Ji

(1 − τ̂γ)
−1









1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ∈Ii

Ψγ,γ′(µ1, . . . , µm)









> 1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Ψ0,γ′(µ1, . . . , µm),

where Ψγ,γ′ is defined in (9). Then it is possible to select, for all γ ∈ Ji,

λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Ψγ,γ′(µ1, . . . , µm)
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such that

c−
∑

γ∈Ji

(1 − τ̂γ)
−1









1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Ψγ,γ′(µ1, . . . , µm)









> c−
∑

γ∈Ji

(1 − τ̂γ)
−1
λγ

> 1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Ψ0,γ′(µ1, . . . , µm)

Therefore, it follows that there exists λ1, . . . , λi, µ1, . . . , µm > 0 such that R1 > 0.
Now Ψ(µ1, . . . , µm) can be decomposed into Ψ̂(µ1, . . . , µm) + Ψ̃(µ1, . . . , µm), where Ψ̂(µ1, . . . , µm) does
not have any local minimum and Ψ̃(µ1, . . . , µm) has a local minimum with respect to µk provided there
exists γ ∈ Ii such that ξγ,k 6= 0. Consequently, introducing the set Km = {k ∈ Jm : ∃ γ ∈ Ii, ξγ,k 6= 0},
Ψ̃(µ1, . . . , µm) and Ψ̂(µ1, . . . , µm) involve respective sums of the form

∑

k′∈Km

(·) and
∑

k′∈Jm\Km

(·). A

calculation shows that Ψ̃(µ1, . . . , µm) has a local minimum when µk = µ∗
k, k ∈ Km 6= ∅, where µ∗

k is

defined in (14) and the minimum value of Ψ̃(µ1, . . . , µm), given by Ψ̃∗ = Ψ̃(µ∗
1, . . . , µ

∗
m), is stated in

(15).
Now consider the case when µk ∈ {µk : k ∈ Jm \ Km} or when Km = ∅. Let µ∗

k denote µk when
µk ∈ {µk : k ∈ Jm \ Km} and it is designed, sufficiently large, so that

Ψ̂(µ1, . . . , µm) < c− Γ − Ψ̃†,

where Ψ̃† is defined in (16). Thus, it follows that if c > Γ + Ψ̂(µ1, . . . , µm) + Ψ̃†, then there exist
λ1, . . . , λi, satisfying (11) , such that R1(λ1, . . . , λi, µ1, . . . , µm) > 0.

Considering the conditions on the parameters λγ , µk, for (γ, k) ∈ Ji × Jm, stated in (11), the
following inequality is supposed to hold,

c > Γ + Ψ̃∗,

then µk ∈ {µk : k ∈ Jm \ Km} can be designed, sufficiently large, so that

Ψ̂ < c− Γ − Ψ̃∗,

i.e. c > Γ + Ψ̃∗ + Ψ̂, and, hence, choosing λγ , γ ∈ Ji, with respect to the inequalities (11), it follows
that R1 > 0.

The remaining part of the proof is analogous to that of Theorem 4.
2

Appendix D Proof of Corollary 1

It is only necessary to consider condition (ii) of Theorem 3, as condition (i) of Theorem 3 has already
been verified in Appendix B.

It is assumed that there exist λ1, . . . , λi, µ1, . . . , µm > 0 such that R∗ := R1 > 0. From the proof of
Theorem 4, in particular see (33), along solutions to (1a-b), the following holds:

v̇(t, xt) ≤ −‖R∗‖−1
ω3(‖x(t)‖) + S1(t){ω3(‖x(t)‖)}

1
2 + ε(t),

where S1 is introduced in (32) and ε is defined (8). Let 0 < Φ < 1, then (33) can be written as

v̇(t, xt) ≤ −(1 − Φ) ‖R∗‖−1 ω3(‖x(t)‖) − Φ ‖R∗‖−1 ω3(‖x(t)‖) + S1(t){ω3(‖x(t)‖)}
1
2 + ε(t). (35)

Using the inequality −au2 + uv ≤ v2/(4a), for a ∈ R \ {0} and (u, v) ∈ R2,

−Φ ‖R∗‖−1
ω3(‖x(t)‖) + S1(t){ω3(‖x(t)‖)}

1
2 ≤ S2

1(t)

4Φ ‖R∗‖−1 .
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Hence, (35) becomes

v̇(t, xt) ≤ −(1 − Φ) ‖R∗‖−1 ω3(‖x(t)‖) +
S2

1(t)

4Φ ‖R∗‖−1 + ε(t). (36)

Note that, since S1(t) =
∑

γ∈Ii
(1 − τ̂γ)

−1 (
α(t)aγ +

∑

k∈Jm
αk(t)ξγ,k

)

,

S2
1(t)

4Φ ‖R∗‖−1 + ε(t) ≤ χ :=
∑

γ∈Ii

(1 − τ̂γ)
−1

(

α̂aγ +
∑

k∈Jm

ᾱkξγ,k

)

/
(

4Φ ‖R∗‖−1
)

+ ǫ
∑

k∈Jm

ᾱk.

Since ω3 ∈ Ω, then η > 0 can be determined, sufficiently large, such that (1 − Φ) ‖R∗‖−1
ω3(η) > χ.

Define t 7→ ϕ(t) :=
(

S2
1(t)/

(

4Φ ‖R∗‖−1
)

+ ε(t)
)

/
[

(1 − Φ) ‖R∗‖−1
ω3(η)

]

, then

|ϕ(t)| ≤ χ

(1 − Φ) ‖R∗‖−1 ω3(η)
< 1

and (36) can be expressed in the form

v̇(t, xt) + (1 − Φ) ‖R∗‖−1
ω3(‖x(t)‖) ≤ (1 − Φ) ‖R∗‖−1

ω3(η)ϕ(t).

For all k ∈ Jm, since εk ∈ L2(t0,∞) and αk ∈ L2(t0,∞), then, in view of (8), ε ∈ L1(t0,∞) (see §6.9,
Chapter 6 in [1]). Similarly, since α ∈ L2(t0,∞) it follows that S1 ∈ L2(t0,∞) and so S2

1 ∈ L1(t0,∞).

Hence, ϕ ∈ L1(t0,∞) and, therefore, all the conditions of Theorem 3 hold, with π3 ≡ (1−Φ) ‖R∗‖−1
ω3.
2

Appendix E Proof of Lemma 3

Using H3 a), H4 a) and in view of (18) ( see (27) with µk = 0 ∀k), for all (t, x(t), xt, u(t)) ∈ [t0,∞) ×
Rn ×Qn

A,τ̄ × Rm,

[uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))](Dgk
v1)(t, xt)

≤ |(Dgk
v1)(t, xt)|

∑

γ∈Ii

βγ,k{ω3(‖xt(−τγ(t))‖)}
1
2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 .

Hence,

Aw(t)ρk|(Dgk
v1)(t, xt)| + [uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))] (Dgk

v1)(t, xt)

≤ |(Dgk
v1)(t, xt)|

∑

γ∈Ii

(aγρk + βγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 .

In view of H6, it follows that, for all k ∈ Jm,

Aw(t)ρk|(Dgk
v1)(t, xt)| + [uk(t) + pk(t, x(t), xt(−τ1(t)), . . . , xt(−τi(t)), u(t))] (Dgk

v1)(t, xt)

≤
∑

γ∈Ii

(aγρk + βγ,k) {ω3(‖xt(−τγ(t))‖)}
1
2

∑

γ′∈Ii

χγ′,k{ω3(‖xt(−τγ′(t))‖)} 1
2

+ αk(t)εk(t) + αk(t)
∑

γ∈Ii

ξγ,k{ω3(‖xt(−τγ(t))‖)}
1
2 .

The result then follows.
2
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Appendix F Proof of Lemma 4

Geršgorin’s Theorem 1 applied to the matrix R1 = [rγ,γ′], for all γ, γ′ ∈ Ii, shows that R1 > 0 if,
∀γ ∈ Ii, rγγ >

∑

γ′∈Ii\{γ}
|rγγ′|, namely















∀γ ∈ Ji, λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Λγ,γ′,

and c− ∑

γ∈Ji

(1 − τ̂γ)
−1
λγ >

1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Λ0,γ′ .
(37)

Suppose c > Γ + Λ, where Γ and Λ are defined in (12) and (21), respectively, that is c satisfies

c−
∑

γ∈Ji

(1 − τ̂γ)
−1









1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ∈Ii

Λγ,γ′









> 1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Λ0,γ′,

where Λγ,γ′ is defined in (19). Then it is possible to select, for all γ ∈ Ji,

λγ >
1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Λγ,γ′

such that

c−
∑

γ∈Ji

(1 − τ̂γ)
−1









1
2

∑

γ′∈Ji

γ 6=γ′

d̄(γ,γ′) + 1
2

∑

γ′∈Ii

(aγβγ′ + aγ′βγ) +
∑

γ′∈Ii

Λγ,γ′









> c−
∑

γ∈Ji

(1 − τ̂γ)
−1
λγ

> 1
2

∑

γ′∈Ii

(a0βγ′ + aγ′β0) +
∑

γ′∈Ii

Λ0,γ′

For this choice of λγ , conditions (37) hold and so R1 > 0.
2
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