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Abstract. This paper deals with the determination of the position and orientation of a mo-
bile robot from distance measurements provided by a belt of onboard ultrasonic sensors. The
environment is assumed to be two-dimensional, and a map of its landmarks is available to the
robot. In this context, classical localization methods have three main limitations. First, each
data point provided by a sensor must be associated with a given landmark. This data-association
step turns out to be extremely complex and time-consuming, and its results can usually not be
guaranteed. The second limitation is that these methods are based on linearization, which makes
them inherently local. The third limitation is their lack of robustness to outliers due, e.g., to
sensor malfunctions or outdated maps. By contrast, the method proposed here, based on interval
analysis, bypasses the data-association step, handles the problem as nonlinear and in a global way
and is (extraordinarily) robust to outliers.

Keywords: Interval Analysis - Identification - State Estimation - Outliers - Bounded Errors -
Robotics.

1. Introduction

Robots are articulated mechanical systems employed for tasks that may be dull,
repetitive and hazardous or may require skills or strength beyond those of human
beings. They first appeared as manipulating robots with their base rigidly fixed,
performing simple and well defined elementary tasks in a controlled workspace.
Since then, much of the research in robotics has been devoted to increasing their
autonomy, e.g., by adding sensors, mobility and decision capability. Mobile robots
may take various forms depending on the task and environment. To be autonomous,
they must be able to estimate their present state from available prior information
and measurements.

The problem to be considered here is the autonomous localization of a robot such
as that described by Figure 1 from distance measurements provided by a belt of
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2 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZEL

onboard exteroceptive sensors. Here, ultrasonic sensors are used, which are known
to be cheap but imprecise. Other types of sensors providing range data could be
considered, with the same methodology. The environment is assumed to be two-
dimensional (although a three-dimensional extension poses no problem in principle),
and a map of its landmarks is available to the robot. No special beacons need to
be introduced in the environment to facilitate localization.

Figure 1. Robuter mobile robot by Robosoft.

In this context, classical localization methods [4], [2], [17], [6], [18], [21] and [5]
have three main limitations. First, each data point provided by an exteroceptive
sensor must be associated with a given landmark. This data-association step turns
out to be extremely complex and time-consuming, and its results can usually not be
guaranteed. The second limitation is that these methods are based on linearization,
which makes them inherently local. The third limitation is their lack of robustness
to outliers due, e.g., to sensor malfunctions or outdated maps. By contrast, the
method proposed here, which is based on bounded-error set estimation (see, e.g.,
[27], [22], [23] and [20], and the references therein), bypasses the data-association
step, handles the problem as nonlinear and in a global way (see also [19]) and is
(extraordinarily) robust to outliers.

This paper is organized as follows. The problem is stated in mathematical terms
in Section 2. Section 3 describes the elementary tests that will be used to locate
the robot. Extension to intervals and combination of these tests are considered in
Section 4. Section 5 describes the algorithm employed to characterize the set of all
values of the localization parameters that satisfy the tests chosen. The resulting
methodology is illustrated on three tests cases in Section 6, before drawing some
conclusions in Section 7. The notation used is summarized in Section 8.
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2. Formulation of the problem

Computation will involve two frames, namely the world frame WV and a frame R, of
origin ¢ = (., y.) in W, tied to the robot. The angle between R and W, denoted
by 6, corresponds to the heading angle of the robot (see Figure 2). Points and their
coordinates will be denoted by lower-case letters in W and by tilded lower-case
letters in R. Thus, a point m with coordinates (Z,%) in R will be denoted by m

in W, with
Te cosf —sinf T
m= <yc> + ( sinf cos@ ) <gj> 1)

Three parameters are to be estimated, namely the coordinates z. and y. of the
origin of R in WV and the heading angle 8 of the robot. They form the configuration
vector p = (:L'C,yc,ﬂ)T (Figure 2). Given some (possibly very large) initial search
box [po] in configuration space, robot localization can be formulated as the task
of characterizing the set S = {p € [po] | t (p) holds true}, where ¢ (p) is a suitable
test or combination of tests expressing that the robot configuration is consistent
with the measurements and prior information.

A

(O R A« A I T »

4% >

Figure 2. Configuration of the robot.

2.1. Measurements

The robot of Figure 1 is equipped with a belt of ng onboard Polaroid ultrasonic
sensors (sonars). The position of the ith sensor in the robot frame R is §; =

(Zi,7:) - This sensor emits in a cone characterized by its vertex §;, orientation 6;
and half-aperture 4; (Figure 3). As 4; is frame independent, 4; = ~;. This cone



4 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZEL

will be denoted by C(8;,6;,7;). The sensor measures the time lag between emission
and reception of the wave reflected or refracted by some landmark. This time
lag is then converted into a distance d; to some obstacle. To take measurement
inaccuracy into account, each data point d; is associated with the interval [d;] =
[di (1 — ;) ,d; (14 «;)], where «; is the known relative measurement accuracy of
sensor i. Thus, [d;] is assumed to contain the actual distance to the closest reflecting
landmark intercepting at least part of the ith emission cone.

b

J+1

Figure 3. Emission cone.

2.2.  Prior information

Two types of prior information will be considered. The first one is a map M =
{laj,b;]]j =1,...,nw } of the environment, assumed to consist of n, oriented seg-
ments which describe the landmarks (walls, pillars, etc.). By convention, when
going from a; to b;, the reflecting face of the segment is on the left. The half-plane
Aa;p; situated on the reflecting side of the segment [a;, b;] is therefore character-
ized by

Aap, = {m € R? ‘det (a]—bja]—ni) > o} . 2)

The second type of information (optional) is the knowledge of a set described by
polygons to which p is known a priori to belong.
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3. Localization tests

This section enumerates various elementary tests that will be used to build the
global test ¢(p) employed to define S.

3.1. Data-association test

To estimate the robot configuration from range data provided by ultrasonic sen-
sors, it is of interest to build a test that checks whether a given configuration is
consistent with these data, given their imprecision. For this purpose, information
available in the robot frame R will be translated in the world frame W. Consider
any ultrasonic sensor of the robot, with emission cone C §,0~,’y (in this section,

the indices i and j will be omitted to simplify presentation). For any given configu-
ration p = (z¢, Ye, G)T, C can be equivalently described in W by its vertex s (p) and
by two unit vectors iif (p,é, 1) and @ (p,é, ’y) corresponding to its edges, given
by

o cos(0+t§—’y) o cos(0+t§+’y)

uj = . ~ ~ , W = . ~ ~ (3)
sm(9—|—0—'y) sm(9—|—0+'y)

So one may write C = C (s, @}, @) (omitting the dependency in p,f and 7). By

convention, @i{ and @5 have been indexed so that i} is obtained from i by a

counterclockwise rotation of 24. Since ¥ is always less than /2, the condition for
any m € R? to belong to the emission cone is

m € C (s, af, W) < (det (@], 5m) > 0) A (det (w3, 5m) < 0). (4)

The algorithm for testing a given configuration is based on the notion of remote-
ness of a segment from a sensor, which will now be defined. Consider first a single
isolated segment [a, b]. Its remoteness from the sensor s, associated with the cone
C (s, @t, ), is defined as

r (s, @, s,a,b) =oco0ifs¢ A, orif [a,b]NC =0,

= min ||sm|| otherwise. (5)
mé[a,b]NC

The remoteness function (5) is evaluated as follows. Equation (2) is used first to
check whether s € Agp. If this is so, minimization of ||smi|| over [a,b] N C is at-
tempted. This requires taking different situations into account. Let h be the orthog-
onal projection of s onto the line (a,b). If h € [a,b] N C, then r (s, f, @, a,b) =
Hs_ﬁH To check whether h € [a,b] NC, without actually computing it, one may use

the following relation:

hembine o ((a,5) <o) ((B.8) > 0)

(@) <o) (88) 20) 0
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If h ¢ [a,b] N C, the minimum distance is either infinite (if [a,b] N C = @) or
obtained for one of the extremities of the segment [a,b] N C. Let hy; and hy be
the intersections of the line (a,b) with the lines (s,@}) and (s,@). The set of
possible ends of [a,b] N C is thus K = {a,b,h;,hy}. Therefore, if h ¢ [a,b]NC,
then 7 (s, #f, @3, a, b) is either infinite or equal to ||5mi]|, for some m in K. For the

example of Figure 4, r (s, @f, @,a,b) = Bl

Figure 4. Remoteness of an isolated segment [a, b] from the sensor s.

A test of whether any element of K belongs to [a,b] N C is easily derived from (4).
For v € {a,b}

v € C <= (det (@, 59) > 0) A (det (B, 59) < 0). (7)

By construction, h; € C N (a,b); one thus has only to check whether h; belongs to
[a,b], which is equivalent to proving that h; € C (s, H?II , %ﬂ) . Thus, fori = 1,2,

h; € [a,b]NC < (det (88, @) > 0) A (det (s‘ﬁ, ﬁ;) < o) . (8)

Finally, if neither h nor any element of K belongs to [a,b] N C, then [a,b]NC = 0,
and the remoteness is infinite.

Appendix A presents a function, based on these tests, evaluating r (s, @}, i3, a, b)
for an isolated segment [a, b].

Remark. This version of remoteness does not take into account the fact that if
the incidence angle of the emitted wave is greater than a given angle (depending
on the nature of the landmark), no wave will return to the sensor. This could
easily be taken care of by modifying the definition of remoteness so as to take
the incidence angle into account. Another phenomenon not considered is multiple
reflection taking place, for instance, in concave corners. Accounting for multiple
reflections would require a more complex definition of remoteness, and is probably
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not worthwhile. As will be seen in Section 4.3, a much simpler route is to consider
such measurements as outliers. O

In the normal situation where ny segments are present, the fact that a given
segment may not be detected, because it lies in the shadow of another one closer
to the sensor, must be taken into account. Let r;;(p) be the remoteness of the
jth segment, taken as isolated, from the ith sensor if the configuration is p. This
remoteness is given by

rij (P) =71 (Si (p), T} (P,éi,%) , 3} (P,éi,%) ,aj,bj) : 9)
The remoteness of the map from the ith sensor if the configuration is p is then

ri(p) = min 7 (p). (10)

Jj=1,...,nw

The measurement provided by the ith sensor may be explained by a segment lying
at a proper distance if the following test is satisfied:

Test dat; (p): dat; (p) holds true if and only if r; (p) € [d;].

3.2.  In_room test

Assume that the map partitions the world into two sets, the interior, which the
robot should belong to,

Pint = 4 m € R? Zarg (ma} ,mbj) =27 3, (11)
j=1
and the exterior
Pext = { m € R? Zarg (ma},mbj) =0,, (12)
j=1

s — s — . .
where arg (maj, mbj) , the angle between maj and mby, is constrained to belong

to |—m,w]. The fact that — is excluded implies that the boundary between Piy
and Py belongs to the interior. Figure 5 illustrates a situation where part of the
room is forbidden by suitably oriented internal polygons. For each segment [a;, b;],
the arrow indicates the direction from a; to b;. Recall that the reflecting face is on
the left when going from a; to b;.

If m is any point of the robot with coordinates (Z, §) in R, then its coordinates m
in W evaluated according to (1) depend on the robot configuration p = (z., ¥, 0)T
and the following test will make it possible to eliminate some configurations for
which it would not be in Pj,.
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12

A

-12
-12 12

Figure 5. Partition of the world. The interior is in white.

Test in_room (m):

Nw 3
in-room (m) =1 if > arg (ma])-,m j) =2,
j=1
in-room (m) = 0 otherwise.

When m is the projection of p onto the z x y plane, in_room (m) will be rewritten
as in_room (p).

As shown in Section 6, this test will contribute to eliminating configurations more
efficiently than the data-association test alone, on purely geometrical grounds and
in the absence of any measurements. However, it is reliable only when the map
and the partition it induces are reliable. Even when this is not the case, this test
remains of interest, as it forms the basis for the leg_in test presented below and
still applicable.

Remark. Fictitious nonreflecting segments may be needed to define Piny and Pext.
They may be transparent (open doors and windows), or absorbing. The reflectivity
of each of these segments could be taken into account with a more elaborate defi-
nition of remoteness. With the definition adopted here, such segments may lead to
outliers, see Section 4.3. O

3.8.  Leg_in test

Consider a robot configuration p = (z, y, G)T, the ith robot sensor s;, with coor-
dinates (#;,7;) in R, and its associated interval measurement [d;]. Let c¢; be the
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point at a distance equal to the lower bound d; of [d;] from s; in the direction of
emission 6;. The coordinates of ¢; in W satisfy

o T; + cos éi d;
Ci:<x6>+<c050 sm0> ()_ _ (13)

sinf cos® 7; + sin (01) d;

Assuming, as for in_room, that the world is partitionned into Pjn and Peyg, One

can define
Test leg_in;(p): leg-in; (p) = in_room (s;(p)) V in_room (c;).

The following result explains why this test can be used in conjunction with dat; to
eliminate configurations.

PROPOSITION 1 leg_in; (p) =0 = dat;(p) =0. o

Proof: leg_in; (p) = 0 implies that s; is in Piy and ¢; in Pext (see Figure 6). Then
there exists j such that [s;,c;] N [a;,b;] # 0 and s; € Ag,p,. Let myj=[s;,¢;] N
[aj,b;]. The ith cone intersects [a;, b;] at least at m;;. So the remoteness of [a;, b;]
from s; is less than or equal to ||S;my}|l. As my; € [s;, ¢, ||y} < |5, <l =
di, and the remoteness of [a;,b;] from s; is therefore incompatible with [d;], so
dat;(p) = 0. [ |

The test leg_in;(p) thus provides a necessary condition for p to be consistent with
the ith measurement. As this condition is not sufficient, leg_in;(p) may hold true
even when dat;(p) holds false. It will only be useful to eliminate some unfeasible
configurations more quickly.

4. Interval tests

The tests presented in the preceding section for point configurations, should now be
extended to interval configurations. The notion of Boolean intervals will be used
to take the possible ambiguity of test results into account. It will then be possible
to give interval counterparts of the localization tests, which will be associated to
increase their efficiency.

4.1. Boolean intervals and inclusion tests

A Boolean interval is an element of IB = {0,[0,1],1}, where 0 stands for false, 1
for true and [0,1] for indeterminate. It is a convenient object for implementing
three-valued logic.

Table 1 specifies the AND (A) and OR (V) operations between two Boolean intervals.
As Boolean intervals are sets, standard set operators such as U and N also apply.
They should not be confused with the logical operators V and A. For instance,
[0,1]A1=1]0,1] but [0,1]N1=1.
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b
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>

Figure 6. The test leg_in; holds false.

Table 1. Operations between Boolean intervals

A 1 0 [0,1] V |1 0 [0,1]

1 T 0 [0,1] T |1 1 T

0 0o 0 0 o |1 o 0,1]
[0,1] | [0,1] 0 [0,1] 01 |1 [01] [0,1]

The following Boolean function will be useful in Section 4.3 to define tests to deal
with abnormal data resulting from sensor failures or erroneous maps. Let ¢ and m
be positive integers, with ¢ < m. By definition, the g¢-relazed and test

m

B ati,--tm) =P (t2) (14)
i=1
holds true if and only if at least m — ¢ of the Booleans ¢; (i = 1,...,m) are true.

When ¢ = 0, @q is equivalent to the operator A. When ¢ = m — 1, @Q becomes
equivalent to the operator V. Let s be the sum, in the usual real sense, of the values
of the t;’s. To evaluate @q, it suffices to check whether s > m —q.

Let TR™ be the set of all n-dimensional real boxes (or vectors of real intervals).
An inclusion test for the test t : R* — {0,1} is a function ¢ : ITR" — TB such that
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for any [x], t([x]) C t7([x]), i-e.,

tg(ix]) =1 = Vx € [x],#(
ty([x]) = 0 = Vx € [x],(

EXAMPLE: An inclusion test t}) for ¢(x) <> x € ), where ) is some predefined set,
is

o (15)

1 if [x] C Y,
n() =0 i KNy =0, (16)
tn ([x]) = [0,1] otherwise.

O

EXAMPLE: To obtain an interval counterpart for Qaq, it suffices to evaluate the

sum of the interval values of the ¢;;’s and to compare the result with m — q. For

instance, G)q[](l, [0,1],0,1) isequal to 0if ¢ = 0,t0 [0,1] if ¢ = 1 and to 1 if ¢ = 2.
O

Let #[j; and Z[j» be two inclusion tests associated with the same test £. Z; will be
said to be more powerful than tp if for any [x], #7j1([x]) C #(j2([x]). The intersection
of two inclusion tests associated with the same point test is more powerful than
any of them. The following theorem will be useful to define more powerful tests.

THEOREM 1 Let ty be an inclusion test for t and uy be an inclusion test for u, such
that if t(x) holds true then u(x) does. Then th = ([0,1] Aup) Nty is an inclusion
test for t, which is more powerful than t}. O

Proof: If uy ([x]) € {[0,1],1} then [0,1] A ug ([x]) = [0,1] and #; ([x]) = [0,1] N
ty ([x]) =ty ([x]) . If up ([x]) = 0, then (15) holds and Vx € [x], u(x) = 0. Therefore
Vx € [x], t(x) = 0 (if there existed x¢ € [x] such that #(xp) = 1, then u(xo)
would be equal to 1). As Vx € [x], t(x) = 0, #[j([x]) is either 0 or [0,1]. Thus
ty (x]) = ([0, 1] A 0) Nty ([x]) = 0Nty ([x]) = 0, so ¢ ([x]) C ¢ ([x]). Thus, ¢; ([x])
is an inclusion test for ¢, and is more powerful than t ([x]). |

Consider a test t obtained by performing logical operations on the results of
elementary tests. A possible way to obtain an inclusion test associated with ¢ is to
replace each operator by its interval counterpart and each elementary test by an
associated inclusion test. The result will be called a natural interval extension of t.

4.2. Interval extensions for the localization tests

A natural interval extension of each elementary data-association test dat; is built
as in Example

datyy ([p]) =1 if ryp ([P]) C [di],
dati[] ([p]) =0 if T[] ([p]) N [dl] =0, (17)
dat;p ([p]) = [0, 1] otherwise.
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This test is based on the evaluation of remoteness, which involves a number of
conditional branchings, and it remains to be decided which branches should be
executed. The function presented below and derived from Kearfott’s Chi function
[12] is a possible way of getting rid of the problem. If ¢ is the Boolean result of a
test and y and z are two real numbers, then

ift=1,
X(tayaz) = { Z ift+=0. (18)

The interval counterpart of x (¢,y, z) is given by

[y] if [t] =1,
xp(lf 1yl [2]) = ¢ [2] if [t] = 0, (19)
convex hull of [y] and [z] if [t] =10,1].

The result of the evaluation of a test based on X is therefore always an interval.
For more details on the interval extension of remoteness, see Appendix B.

A natural interval extension of in_room might be very pessimistic, because of the
accumulation of uncertainty over a sum of angles. Instead, the following interval
version of in_room will be used, where [m] is a box enclosing the set m([p]) for a
given interval configuration [p] and cjuy is the center of [m].

Interval test in_room ([m]):

if [aj,b;]N[m] =0, for j =1,...,ny,

and in_room (c[m]) =1,

if [aj,b;]N[m] =0, for j =1,..., nyw, (20)
and in_room (c[m]) =0,

[0,1] otherwise.

in_roomy ([m]) =1

in_room; ([m]) = 0 {

in_room ([m])

If [m] does not intersect any segment of the map, it is either in Pip; or in Pexs.
To decide which of them [m)] is included in, it suffices to check one point (here
C[m])- As in Section 3, when [m] is the projection of [p] onto the 2 x y space,
in_roomy ([m]) is written as in_roomy ([p]).

The natural interval extension of leg_in; is obtained by substituting in_room; for
in-room.

4.8.  Combining localization tests

The three elementary tests defined in Section 3 should now be combined into a
global test t(p). In the ideal case where the map is correct and no error bound is
violated, this global test can be written as tigeai(p) = in_room(p) A (A, dat;(p)).
A necessary condition for dat;(p) to hold true is that leg_in;(p) does. As this
condition is not sufficient, leg_in; can only be used in conjunction with dat; in
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order to facilitate elimination of inconsistent configurations in an interval context.
The resulting interval test

tiaear([P]) = in-roomy ([p])

A (/\ ((Zeg-ingy ([p]) A [0,1]) N datyy ([p]))> (21)
i=1
is more powerful than the natural interval extension of tjqea, according to Theo-
rem 1.

Remark. Elementary tests are performed from the left to the right, thus starting
by the simplest methods available to eliminate a given configuration box. For the
actual implementation, advantage is also taken of the fact that leg_in;;([p]) evalu-
ates faster than dat;;j([p]), so all leg_in;([p]) are evaluated before all dat;;j([p]).<

Assume now that the part of the map involved in the definition of Py is still cor-
rect but that outliers are present. Outliers are data points for which the hypotheses
made on the bounds of the measurement errors are violated. In the context of robot
localization, they are almost unavoidable. They may correspond, for instance, to
multiple reflections, to the presence of persons or pieces of furniture, to sensor fail-
ures, etc. In the presence of such outliers, the set S, as defined by tigea;, may turn
out to be empty. Using the g-relazed and operator @ , introduced in Section 4.1,
tideal] can be modified into

toutliers[] ([p]7 q) = in_room[] ([p] )

A (Gvé a1 ((Teg-ing ([p]) A[0,1]) N datin([p]))> : (22)

i=1

to tolerate up to ¢ outliers. A possible policy is to start with ¢ = 0, which cor-
responds to using tigea;, and to increase ¢ by one whenever the set of possible
configurations is found to be empty. More details on this technique and the stop-
ping criterion can be found in [10]. It corresponds to a guaranteed implementation
of the Outlier Minimal Number Estimator (OMNE) ([16], [26] and [24]).

When no reliable Ping and Peyy are available, the test in_roomy can be dropped
from #iqea] OF touttiers)], depending on the reliability of the remaining data. Another
option, not considered further in what follows, would be to give the same confidence
to in_room[y as to dat;) and write

trobust[]([p]a Q) = @ ql] (tl[]) ’ (23)
i=0
where
toy = in-room([p]), (24)

Ly = (leg_ini[]([p]) A [0, 1]) N dati[]([p]), 1=1,...,ny.
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The purpose of the next section is to show how the set of all possible configurations
can be characterized in a systematic way, once a suitable test ¢ (p) has been defined.

5. Recursive set inversion

The set S = {p € [po] | t(p) =1} can also be written as t[_pt] (1). Characterizing
S can therefore be viewed as a problem of set inversion, which can be solved in
an approximated but guaranteed way using the Sivia (Set Inversion Via Interval
Analysis) algorithm [7], [8], [9]. Here, a recursive version of Sivia will be used,
which will make it possible to reduce the amount of testing required to enclose S
in an outer subpaving S (i.e., a union of boxes in configuration space), with the
help of the notion of masked tests. R

If t ([po]) = 1, [Po] is in the solution set S and is stored in S. If ¢y ([po]) = 0, then
[Po] has a void intersection with S and is dropped altogether from further consid-
eration. If ¢ ([po]) = [0, 1] and if the width of [po] is larger than some prespecified
precision parameter €, then [pg] is bisected, leading to two child subboxes L [p] and
R [p], and the test #[j (.) is recursively applied to each of them. Any box with width

less than € is considered small enough and incorporated in S. ‘This algorithm is
finite. Its complexity has been studied in [9]. Upon completion, S is guaranteed to
enclose S.

5.1. Masked tests

If the value of an elementary inclusion test over a box [p] is either true or false, this
result remains valid for any subbox of [p]. It is thus no longer necessary to evaluate
it again over its children. Only elementary tests with uncertain values have to be
tested again. This is the principle of masked tests, which may be found for example
in [25], but had not so far been implemented in SIviA. Consider a test ¢ obtained by
Boolean combination of p elementary tests ¢;. In the context of interval evaluation,
interval extensions #;;) of these elementary tests are used. The associated mask for

a given value of [p] is the function p (.) : IR® — IB? defined by

uy (P)) = (tig ([p)) - oy (IP]) (25)

Except when [p] = [po] , whenever ¢ is to be evaluated over a box [p], the results
of the elementary tests ¢; have already been evaluated over at least one parent box.
Provided that these results have been stored in a mask [u] attached to this parent
box, it is no longer necessary to evaluate tests which have already received unam-
biguous answers. The resulting masked test, which is also in charge of updating
(1], will be denoted by tf ([p], [1])-

5.2. Masked Sivia

Masked tests are incorporated into SivVIA with the help of the recursive function
CLASSIFY (see Table 2). This function makes it possible to store boxes in the outer
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approximation S of the solution set, according to the results of the evaluation of
the masked interval test ¢f ([p], [1z]). In an effort to store boxes as large as possible

in S. , whenever the two children of the same parent box turn out to have to been
stored in S, either because ¢ holds true or because the value of ¢ is indeterminate
and they are small enough, these two children are merged into their parent box.
The process is iterated as long as possible before storing the result into S.

Table 2. Recursive function called by
MASKSIVIA.

CLASSIFY

Inputs: [p], [u],S,¢
Outputs: [t],S;

[t] =tp ([p], [k])s

it (11 # [0,1]) return([t], §);
if (w([p]) <e) return([0,1],S);
else bisect [p] into L [p] and R[p];
g[tL],g) — Crasstry (L [p], (4], S, e);

[tr],S) = Crasstey (R[p], [u],
if ([tr] A [tr] #0) return([tL]A/\ [t
if ([tr] #0) store L [p] into S;
if ([tr] # 0) store R[p] into S;

return (0,§) .

Z 8
o

CLASSIFY is first called by MASKSIVIA described by Table 3. If the value [to]
returned by CLASSTFY to MASKSTVIA differs from 0, then the whole initial search
box [po] must be included in S. Else, the outer approximation S has been built
recursively by CLASSIFY.

6. Test cases
Interval-based localization will now be illustrated on three test cases. Although

based on simulations, these test cases are realistic and the characteristics of the
robot (size, sensors location and performances) are those of the robot of Figure 1.

Table 3. Recursive MASKSIVIA.

MASKSIVIA

Inputs: [qu,e;

Outputs: S;

Initialisation: S = 0;[uo] = [0, 1]7;
(1to],8) = Crassiry ([pol, o] , S, €) ;

if ([to] # 0) § = {[pol};

return (S) .
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This robot is equipped with ng = 24 ultrasonic sensors on its periphery. Each of
them has been found to have an emission angle 4 of 0.2 rad and a distance relative
inaccuracy « of 2% within its operating range.

In each of the test cases treated, the initial search domain in configuration space is
[—12m, 12m] X [—12m, 12m] x [0, 27|, and the precision parameter € is taken equal to
0.04. All computations were performed on a P233MMX personal computer, using
a C++ implementation of MASKSIVIA.

6.1. First test case

This test case illustrates the potential contribution of the various accelerating tools
proposed in this paper under ideal conditions. The robot is located in the room
described by Figure 7, and the map available to the robot matches this environment
exactly. Figure 8 describes the emission diagram of the 24 sensors. It is such that
an obstacle should lie at least in part between the two arcs associated with any
given sensor.

12

—-12

-12 12

Figure 7. Map used by the robot for Test Cases 1 to 3. The projection of the initial search box
onto the z X y space is the external square.

This diagram was obtained by computing the remoteness of each sensor from the
map according to (10) for an actual configuration given by (z.,y.,8) = (—2, 3, g—g)
Obviously, this actual configuration is not transmitted to the localization algorithm.

Table 4 indicates computing time for various combinations of the tests proposed.
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/?"

Figure 8. Emission diagram (Test Case 1).

Table 4. Computing times for
Test Case 1.

Tests Mask Time (sec.)

tda.t[] no 97

tda.t[] yes 29

Lroom]] no 91

troom[] yes 27

Lieg[] no 48

Lieg[] yes 11

lideal[] no 49

tideal]] yes 11
The test £q4¢[) only involves the elementary tests dat;;, i = 1,...,ns. The test t.oom
combines in_room[ and tqaq). The test tiog uses legin;y, i = 1,...,ns to reinforce

taae)- Finally, #igea) combines all these tests as described by (21). In all cases, the
resulting solution boxes turn out to be very similar, and Figure 9 presents those
obtained with the complete algorithm. The union of these boxes is guaranteed to
contain all configurations consistent with the map and measurements. The actual
robot configuration is indicated in black.

On this example, the masked version of SIVIA using #jeg O figeal) is about ten
times quicker than a basic SIVIA using only #44. The mask appears responsible
for most of the improvement, followed by leg_in;; and in_room;. When the mask
and leg-in; are implemented, in-roomy leads to no improvement, but remember
that leg_in is based on in_roomy.

The next two examples will illustrate more difficult but quite realistic situations.
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1.05
1.0
0.95

0 09
0.85
0.8
0.75

24 26

Figure 9. Outer approximation of the set of all possible configurations and its 2D projections
(Test Case 1). The actual configuration is indicated in black.

6.2. Second test case

In this test case, the room and map remain identical to those of Test Case 1, but the
actual (unknown) configuration is now (z.,y.,0) = (1, —7.5,7), and the emission
diagram is given by Figure 10. In 19 seconds, MASKSIVIA using #jqear) finds the set

)45 '[" P\
YR _,: wrt

Figure 10. Emission diagram (Test Case 2).

of boxes described by Figure 11. This set consists of two disconnected subsets, one
of which contains the actual configuration of the robot. Figure 12 illustrates the
fact that, due to local symmetries, there are indeed two radically different types
of possible configurations, each of which corresponds to a different association of
segments of the map with distances measured by the sensors. Note that this data
association is a by-product of the algorithm, and does not need to be performed by
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Figure 11. Outer approximation of the set of all possible configurations (Test Case 2) and its 2D
projections.

a preprocessor as in the usual localization methods. Given that data association is
one of the bottlenecks of automated localization, this is no minor advantage.

6.3. Third test case

The additional difficulties created by outliers and an outdated map will now be
taken into account. The map provided to the robot is the same as in the previ-
ous test cases, but it is now partly incorrect. The actual environment is that of
Figure 13.

The previous pillar has been moved, and a second one added. Moreover, two
out of the 24 distances have been taken equal to twice their actual values. The
actual (unknown) configuration is the same as in the first test case. Any of the
modifications considered here (i.e., the incorrect map or the outliers) is enough
to make the set found by the original algorithm empty. Note that the map can
no longer be assumed to be correct, so in_room| will not be employed. The value
of ¢ is increased until the set of boxes found using #,ytiiers) Without in_roomy
becomes nonempty, which takes place when g = 6. The set of possible configurations
thus found is slightly larger than that on Figure 9, but similar and will not be
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!l

-12

-12 12

Figure 12. Two possible configurations (Test Case 2).

10 O

-10

-10 10

Figure 13. Room of Test Case 3.

repeated. It still contains the actual robot configuration. Figure 14 presents a typical
configuration of this set, where the data that could not be associated are indicated
by numbers. Emission cones labelled 1 and 6 are inconsistent with the map, because
of the presence of obstacles that are closer to the sensors considered. Emission
cones labelled 2 to 5 correspond to the two misspecified pillars. Table 5 indicates
computing time and various properties of S as functions of q. Note that the set of
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boxes obtained for a given value of ¢ is only guaranteed to contain the actual robot
configuration if there are no more than ¢ actual outliers. One may protect oneself
against a larger number of outliers by increasing q. The sets obtained here for ¢ > 6
are quite close to that obtained for ¢ = 6, the actual number of outliers. The result
of this robust localization procedure thus turns out to be rather insensitive to the
choice made for gq.

Table 5. Characteristics of S and cumulated computing time as
functions of ¢ for Test Case 3.

g  Set volume  Bounding box (outward rounded) Time
0 0 0 7 s.
1 0 0 21 s.
2 0 0 41 s.
3 0 0 71 s.
4 0 0 113 s.
5 0 0 166 s.
6 2.68x10~3 [-2.14,1.87][2.85,3.15][0.83,0.95] 249 s.
7 3.09x 1073  [-2.14,1.87][2.85,3.15][0.83,0.95] 366 s.
8  4.25x10~3 [-2.16,—1.82][2.83,3.17][0.83,0.95] 519 s.
9 5.88x103 [-2.18,—1.82][2.83,3.19][0.83,0.96] 776 s.
10 8.05x 1073 [—2.21,—1.80][2.81,3.19][0.82,0.97] 1126 s.

Computing time is seen to increase with ¢, because it becomes increasingly diffi-
cult to eliminate a box.

Contrary to what would be the case with traditional methods involving a phase
of data association, no combinatorics is involved in deciding which ¢ measurements
have to be considered as outliers, and this is again a tremendous simplification.

7. Conclusions and perspectives

Autonomous robot localization is particularly well amenable to solution via interval
analysis, because the number of parameters to be estimated is small. In this context,
the method advocated here has definite advantages over conventional numerical
methods. It is not necessary to enumerate all possible associations between sensor
data and landmarks, nor is it necessary to consider all possible choices of ¢ outliers
among ng data points. As a result, combinatorial explosion is avoided. The results
obtained are global, and no configuration compatible with prior information and
measurements can be missed. These results are extremely robust, and the estimator
used can even handle a majority of outliers. Provided that the number of actual
outliers is less than or equal to the value chosen for ¢, the results are still guaranteed.
The present computing times seem already acceptable for a static localization with
such remarkable properties.

The method is flexible, and additional information on the physics of the problem
could readily be incorporated. One could, for instance, take into account the fact
that the operational range of ultrasonic sensors is limited, or that the incidence
angle should be small enough for the reflected or refracted wave to be picked up
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12

-12

-12 12

Figure 1. Possible configuration for Test Case 3.

by the sensor. Other types of sensors such as rotating laser range finders (see, e.g.,
[1], [3]), as well as multi-sensor data fusion [11] should form the subject of future
studies in the context of interval methods such as those advocated in this paper.

In this paper, localization was static; a natural extension of the present work is to
consider the tracking of the set of possible configurations of a moving robot. This
can be done [15], [13], using a recently developed bounded-error state estimation
techniques for nonlinear models [14]. The fact that the initial search domain in
configuration space is much smaller at any given time instant reduces drastically
the computational effort and makes it compatible with real time.

The methodology described obviously applies to many other fields, where feasibil-
ity is also defined in terms of possibly nonlinear inequalities. The case where some
of these inequalities may not be meaningful could be handled directly by treating
them as outliers.

8. Notation

Vectors are in bold with an arrow on top: ™. Points are in bold: a,b,c. Co-
ordinates for two-dimensional vectors T and points a are denoted by z,,, and

Za)Ya-
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(o, V) : scalar product of @ and ¥
(a,b) : line supported by a and b,
[a,b] : line segment between a and b,
ab : vector with extreme points a and b,
(s, @) . line supported by s with direction vector &,
o : half aperture of the emission cone,
i : index for sensors,
J : index for segments,
d(s, (a, b)) : distance from s to (a, b),
d= (s, (ab)) : distance from s to (a,b) along ®,
Ng : number of sensors,
- : number of segments,
p =(zc,y.,0)T : robot configuration,
S : set of all feasible robot configurations,
IR : set of real intervals,
B : set of Boolean intervals,
A : logical AND,
\% : logical OR,
w([p]) : width of [p].
Appendix A

Real evaluation of remoteness

Table A.1 presents the implementation of the real evaluation of remoteness, based
on Section 3.1.
The distance d (s, (a, b)) from s to the line (a,b) (Figure A.1) is given by

det (aﬁ)), ﬁ)

— (A.1)
Bl

d(s, (a,b)) = HEH _

and the distance d (s, (a, b)) from s to the line (a,b) along the unit vector @ by
H?H)IH det (a_>b, Q) ‘det (:—ﬁ)), ﬁ)‘

T R ] IR oy e

d (s, (a, b)) = |Jami|| =

Appendix B

Interval evaluation of remoteness

The interval coun_te)rpart of Table A.1 is given by Table B.1.
In this table, [s]a stands for the set of all vectors with origin in the box [s] and

extremity at a. The box [s], guaranteed to contain the location of the sensor s for
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Table A.1. Evaluation of remoteness.

r (s, U, us,a,b)

if (det (a_)b, s&) > 0)
return (+00);

i (38,58) <) (8,58)20) o (a.01)<0) 1 (3. 0) 20

then r, = d(s,(a,b)), else rp, = +00;

if (det (11f, 5&) > 0) A (det (T3, 58) < 0)

then ra = [|sal|, else ra = +o0;

if (det (ﬁ?b) > o) A (det (@?b) < o)

then ry = H , else rp, = 4003

fori=1to 2
if (det (&,T) > 0) A (det (s_b*i*) < o)
then ry, = dg (s, (a,b)), else ry, = +o0;

return (min (rn,7a, Ths Thy > Thy ) ) -

Table B.1. Inclusion function for remoteness.

il ([S] [l [us ,a,b)

[t1] = det (:ﬁ;m) ;
it (1> 0)
return (4+00);

[rh} ([th] 7d[] ([S} ) (a’b)) ) +OO)

[ta] = (det ([u_lﬁ@) > 0) A (det (fuz], [sTa) < 0)
[ra] = x ([ta] . [[[s]a]| , +00)

te] = (det (Far], (5B > 0) A (det (sl WTB) < 0);
rb] = x ([tu], [[[s]B| , +00)

(det (fsTa [wi]) > ) (det ([]HbyM)SU):
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o)

Figure A.1. Distances from the point s to the line (a,b).

any configuration in [p] = ([z.], [ye],[6])", is evaluated by replacing all occurrences
of the real variables in (1) by their interval counterparts. Similarly, the characteris-

tics of the cone (3) are evaluated as [C] =C ([s] ) [‘Tj, [_u;i) Finally, the minimum
of two intervals is defined as follows

min ([a], [}]) = [min (a,b) ,min (,5)],

the extension to more intervals being straightforward.
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