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Robust Autonomous Robot Lo
alizationUsing Interval AnalysisMICHEL KIEFFER1, LUC JAULIN1;2, �ERIC WALTER1* AND DOMINIQUE MEIZEL31 Laboratoire des Signaux et Syst�emes, CNRS-Sup�ele
Plateau de Moulon, 91192 Gif-sur-Yvette, Fran
efkie�er, jaulin, walterg�lss.supele
.fr2 on leave from Laboratoire d'Ing�enierie des Syst�emes Automatis�es, Universit�e d'Angers,2 bd Lavoisier, 49045 Angers, Fran
ejaulin�babinet.univ-angers.fr3 HEUDIASYC, CNRS, Universit�e de Te
hnologie de Compi�egne,B.P. 20529, 60205 Compi�egne, Fran
emeizel�hds.univ-
ompiegne.frEditor:Abstra
t. This paper deals with the determination of the position and orientation of a mo-bile robot from distan
e measurements provided by a belt of onboard ultrasoni
 sensors. Theenvironment is assumed to be two-dimensional, and a map of its landmarks is available to therobot. In this 
ontext, 
lassi
al lo
alization methods have three main limitations. First, ea
hdata point provided by a sensor must be asso
iated with a given landmark. This data-asso
iationstep turns out to be extremely 
omplex and time-
onsuming, and its results 
an usually not beguaranteed. The se
ond limitation is that these methods are based on linearization, whi
h makesthem inherently lo
al. The third limitation is their la
k of robustness to outliers due, e.g., tosensor malfun
tions or outdated maps. By 
ontrast, the method proposed here, based on intervalanalysis, bypasses the data-asso
iation step, handles the problem as nonlinear and in a global wayand is (extraordinarily) robust to outliers.Keywords: Interval Analysis - Identi�
ation - State Estimation - Outliers - Bounded Errors -Roboti
s.1. Introdu
tionRobots are arti
ulated me
hani
al systems employed for tasks that may be dull,repetitive and hazardous or may require skills or strength beyond those of humanbeings. They �rst appeared as manipulating robots with their base rigidly �xed,performing simple and well de�ned elementary tasks in a 
ontrolled workspa
e.Sin
e then, mu
h of the resear
h in roboti
s has been devoted to in
reasing theirautonomy, e.g., by adding sensors, mobility and de
ision 
apability. Mobile robotsmay take various forms depending on the task and environment. To be autonomous,they must be able to estimate their present state from available prior informationand measurements.The problem to be 
onsidered here is the autonomous lo
alization of a robot su
has that des
ribed by Figure 1 from distan
e measurements provided by a belt of* Corresponding author



2 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELonboard extero
eptive sensors. Here, ultrasoni
 sensors are used, whi
h are knownto be 
heap but impre
ise. Other types of sensors providing range data 
ould be
onsidered, with the same methodology. The environment is assumed to be two-dimensional (although a three-dimensional extension poses no problem in prin
iple),and a map of its landmarks is available to the robot. No spe
ial bea
ons need tobe introdu
ed in the environment to fa
ilitate lo
alization.

Figure 1. Robuter mobile robot by Robosoft.In this 
ontext, 
lassi
al lo
alization methods [4℄, [2℄, [17℄, [6℄, [18℄, [21℄ and [5℄have three main limitations. First, ea
h data point provided by an extero
eptivesensor must be asso
iated with a given landmark. This data-asso
iation step turnsout to be extremely 
omplex and time-
onsuming, and its results 
an usually not beguaranteed. The se
ond limitation is that these methods are based on linearization,whi
h makes them inherently lo
al. The third limitation is their la
k of robustnessto outliers due, e.g., to sensor malfun
tions or outdated maps. By 
ontrast, themethod proposed here, whi
h is based on bounded-error set estimation (see, e.g.,[27℄, [22℄, [23℄ and [20℄, and the referen
es therein), bypasses the data-asso
iationstep, handles the problem as nonlinear and in a global way (see also [19℄) and is(extraordinarily) robust to outliers.This paper is organized as follows. The problem is stated in mathemati
al termsin Se
tion 2. Se
tion 3 des
ribes the elementary tests that will be used to lo
atethe robot. Extension to intervals and 
ombination of these tests are 
onsidered inSe
tion 4. Se
tion 5 des
ribes the algorithm employed to 
hara
terize the set of allvalues of the lo
alization parameters that satisfy the tests 
hosen. The resultingmethodology is illustrated on three tests 
ases in Se
tion 6, before drawing some
on
lusions in Se
tion 7. The notation used is summarized in Se
tion 8.



ROBUST AUTONOMOUS ROBOT LOCALIZATION 32. Formulation of the problemComputation will involve two frames, namely the world frameW and a frame R, oforigin 
 =(x
; y
) in W , tied to the robot. The angle between R and W , denotedby �, 
orresponds to the heading angle of the robot (see Figure 2). Points and their
oordinates will be denoted by lower-
ase letters in W and by tilded lower-
aseletters in R. Thus, a point ~m with 
oordinates (~x; ~y) in R will be denoted by min W , with m = �x
y
�+� 
os � � sin �sin � 
os � ��~x~y�: (1)Three parameters are to be estimated, namely the 
oordinates x
 and y
 of theorigin of R inW and the heading angle � of the robot. They form the 
on�gurationve
tor p = (x
; y
; �)T (Figure 2). Given some (possibly very large) initial sear
hbox [p0℄ in 
on�guration spa
e, robot lo
alization 
an be formulated as the taskof 
hara
terizing the set S = fp 2 [p0℄ j t (p) holds trueg, where t (p) is a suitabletest or 
ombination of tests expressing that the robot 
on�guration is 
onsistentwith the measurements and prior information.

W

R

xc

yc

µ

c

Figure 2. Con�guration of the robot.2.1. MeasurementsThe robot of Figure 1 is equipped with a belt of ns onboard Polaroid ultrasoni
sensors (sonars). The position of the ith sensor in the robot frame R is ~si =(~xi; ~yi) : This sensor emits in a 
one 
hara
terized by its vertex ~si, orientation ~�iand half-aperture ~
i (Figure 3). As ~
i is frame independent, ~
i = 
i. This 
one



4 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELwill be denoted by C(~si; ~�i; ~
i). The sensor measures the time lag between emissionand re
eption of the wave re
e
ted or refra
ted by some landmark. This timelag is then 
onverted into a distan
e di to some obsta
le. To take measurementina

ura
y into a

ount, ea
h data point di is asso
iated with the interval [di℄ =[di (1� �i) ; di (1 + �i)℄, where �i is the known relative measurement a

ura
y ofsensor i. Thus, [di℄ is assumed to 
ontain the a
tual distan
e to the 
losest re
e
tinglandmark inter
epting at least part of the ith emission 
one.

R

aj

bj-1

bj

aj+1bj+1

aj-1

µi
:

°i
:

:yi

:

di

®di i

si
:xi

Figure 3. Emission 
one.2.2. Prior informationTwo types of prior information will be 
onsidered. The �rst one is a map M =f[aj ;bj ℄ jj = 1; :::; nw g of the environment, assumed to 
onsist of nw oriented seg-ments whi
h des
ribe the landmarks (walls, pillars, et
.). By 
onvention, whengoing from aj to bj , the re
e
ting fa
e of the segment is on the left. The half-plane�ajbj situated on the re
e
ting side of the segment [aj ;bj ℄ is therefore 
hara
ter-ized by �ajbj = nm 2 R2 ���det���!ajbj ;��!ajm� � 0o : (2)The se
ond type of information (optional) is the knowledge of a set des
ribed bypolygons to whi
h p is known a priori to belong.



ROBUST AUTONOMOUS ROBOT LOCALIZATION 53. Lo
alization testsThis se
tion enumerates various elementary tests that will be used to build theglobal test t(p) employed to de�ne S.3.1. Data-asso
iation testTo estimate the robot 
on�guration from range data provided by ultrasoni
 sen-sors, it is of interest to build a test that 
he
ks whether a given 
on�guration is
onsistent with these data, given their impre
ision. For this purpose, informationavailable in the robot frame R will be translated in the world frame W . Considerany ultrasoni
 sensor of the robot, with emission 
one C �~s; ~�; ~
� (in this se
tion,the indi
es i and j will be omitted to simplify presentation). For any given 
on�gu-ration p =(x
; y
; �)T, C 
an be equivalently des
ribed in W by its vertex s (p) andby two unit ve
tors �!u1 �p; ~�; ~
� and �!u2 �p; ~�; ~
� 
orresponding to its edges, givenby �!u1 = 0� 
os�� + ~� � ~
�sin�� + ~� � ~
� 1A ; �!u2 = 0� 
os�� + ~� + ~
�sin�� + ~� + ~
� 1A : (3)So one may write C = C (s;�!u1;�!u2) (omitting the dependen
y in p; ~� and ~
). By
onvention, �!u1 and �!u2 have been indexed so that �!u2 is obtained from �!u1 by a
ounter
lo
kwise rotation of 2~
. Sin
e ~
 is always less than �=2; the 
ondition forany m 2 R2 to belong to the emission 
one ism 2 C (s;�!u1;�!u2), (det (�!u1;�!sm) � 0) ^ (det (�!u2;�!sm) � 0) : (4)The algorithm for testing a given 
on�guration is based on the notion of remote-ness of a segment from a sensor, whi
h will now be de�ned. Consider �rst a singleisolated segment [a;b℄. Its remoteness from the sensor s, asso
iated with the 
oneC (s;�!u1;�!u2), is de�ned asr (s;�!u1;�!u2; a;b) =1 if s =2 �ab or if [a;b℄ \ C = ;;= minm2[a;b℄\C k�!smk otherwise. (5)The remoteness fun
tion (5) is evaluated as follows. Equation (2) is used �rst to
he
k whether s 2 �ab: If this is so, minimization of k�!smk over [a;b℄ \ C is at-tempted. This requires taking di�erent situations into a

ount. Let h be the orthog-onal proje
tion of s onto the line (a;b). If h 2 [a;b℄ \ C, then r (s;�!u1;�!u2; a;b) =


�!sh


. To 
he
k whether h 2 [a;b℄\C, without a
tually 
omputing it, one may usethe following relation:h 2 [a;b℄ \ C , �D�!ab;�!saE � 0� ^ �D�!ab;�!sbE � 0�^�D�!ab;�!u1E � 0� ^ �D�!ab;�!u2E � 0� : (6)



6 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELIf h =2 [a;b℄ \ C, the minimum distan
e is either in�nite (if [a;b℄ \ C = ;) orobtained for one of the extremities of the segment [a;b℄ \ C. Let h1 and h2 bethe interse
tions of the line (a;b) with the lines (s;�!u1) and (s;�!u2) : The set ofpossible ends of [a;b℄ \ C is thus K = fa;b;h1;h2g : Therefore, if h =2 [a;b℄ \ C;then r (s;�!u1;�!u2; a;b) is either in�nite or equal to k�!smk, for some m in K. For theexample of Figure 4, r (s;�!u1;�!u2; a;b) = 


�!sb


 :
ab

s

h h
1h

2

u
2

u
1Figure 4. Remoteness of an isolated segment [a;b℄ from the sensor s.A test of whether any element of K belongs to [a;b℄ \ C is easily derived from (4).For v 2 fa;bg v 2 C () (det (�!u1;�!sv) � 0) ^ (det (�!u2;�!sv) � 0) : (7)By 
onstru
tion, hi 2 C \ (a;b); one thus has only to 
he
k whether hi belongs to[a;b℄ ; whi
h is equivalent to proving that hi 2 C�s; �!sak�!sak ; �!sbk�!sbk� : Thus, for i = 1; 2,hi 2 [a;b℄ \ C () (det (�!sa;�!ui ) � 0) ^ �det��!sb;�!ui� � 0� : (8)Finally, if neither h nor any element of K belongs to [a;b℄ \ C; then [a;b℄ \ C = ;;and the remoteness is in�nite.Appendix A presents a fun
tion, based on these tests, evaluating r (s;�!u1;�!u2; a;b)for an isolated segment [a;b℄.Remark. This version of remoteness does not take into a

ount the fa
t that ifthe in
iden
e angle of the emitted wave is greater than a given angle (dependingon the nature of the landmark), no wave will return to the sensor. This 
ouldeasily be taken 
are of by modifying the de�nition of remoteness so as to takethe in
iden
e angle into a

ount. Another phenomenon not 
onsidered is multiplere
e
tion taking pla
e, for instan
e, in 
on
ave 
orners. A

ounting for multiplere
e
tions would require a more 
omplex de�nition of remoteness, and is probably



ROBUST AUTONOMOUS ROBOT LOCALIZATION 7not worthwhile. As will be seen in Se
tion 4.3, a mu
h simpler route is to 
onsidersu
h measurements as outliers. }In the normal situation where nw segments are present, the fa
t that a givensegment may not be dete
ted, be
ause it lies in the shadow of another one 
loserto the sensor, must be taken into a

ount. Let rij(p) be the remoteness of thejth segment, taken as isolated, from the ith sensor if the 
on�guration is p. Thisremoteness is given byrij (p) = r �si (p) ;�!u1i �p; ~�i; ~
i� ;�!u2i �p; ~�i; ~
i� ; aj ;bj� : (9)The remoteness of the map from the ith sensor if the 
on�guration is p is thenri (p) = minj=1;:::;nw rij (p) : (10)The measurement provided by the ith sensor may be explained by a segment lyingat a proper distan
e if the following test is satis�ed:Test dati (p): dati (p) holds true if and only if ri (p) 2 [di℄.3.2. In room testAssume that the map partitions the world into two sets, the interior, whi
h therobot should belong to,Pint = 8<:m 2 R2 ������ nwXj=1 arg���!maj ;��!mbj� = 2�9=; ; (11)and the exterior Pext = 8<:m 2 R2 ������ nwXj=1 arg���!maj ;��!mbj� = 09=; ; (12)where arg���!maj ;��!mbj� ; the angle between ��!maj and ��!mbj , is 
onstrained to belongto ℄��; �℄. The fa
t that �� is ex
luded implies that the boundary between Pintand Pext belongs to the interior. Figure 5 illustrates a situation where part of theroom is forbidden by suitably oriented internal polygons. For ea
h segment [aj ;bj ℄,the arrow indi
ates the dire
tion from aj to bj : Re
all that the re
e
ting fa
e is onthe left when going from aj to bj :If ~m is any point of the robot with 
oordinates (~x; ~y) in R, then its 
oordinatesmin W evaluated a

ording to (1) depend on the robot 
on�guration p = (x
; y
; �)Tand the following test will make it possible to eliminate some 
on�gurations forwhi
h it would not be in Pint.
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-12 12

-12

12

aj

bj

Figure 5. Partition of the world. The interior is in white.Test in room (m):8<: in room (m) = 1 if nwPj=1 arg���!maj ;��!mbj� = 2�;in room (m) = 0 otherwise.When m is the proje
tion of p onto the x�y plane, in room (m) will be rewrittenas in room (p).As shown in Se
tion 6, this test will 
ontribute to eliminating 
on�gurations moreeÆ
iently than the data-asso
iation test alone, on purely geometri
al grounds andin the absen
e of any measurements. However, it is reliable only when the mapand the partition it indu
es are reliable. Even when this is not the 
ase, this testremains of interest, as it forms the basis for the leg in test presented below andstill appli
able.Remark. Fi
titious nonre
e
ting segments may be needed to de�ne Pint and Pext.They may be transparent (open doors and windows), or absorbing. The re
e
tivityof ea
h of these segments 
ould be taken into a

ount with a more elaborate de�-nition of remoteness. With the de�nition adopted here, su
h segments may lead tooutliers, see Se
tion 4.3. }3.3. Leg in testConsider a robot 
on�guration p = (x
; y
; �)T, the ith robot sensor si, with 
oor-dinates (~xi; ~yi) in R, and its asso
iated interval measurement [di℄. Let 
i be the



ROBUST AUTONOMOUS ROBOT LOCALIZATION 9point at a distan
e equal to the lower bound di of [di℄ from si in the dire
tion ofemission ~�i. The 
oordinates of 
i in W satisfy
i = � x
y
 �+� 
os � � sin �sin � 
os � �0� ~xi + 
os�~�i� di~yi + sin�~�i� di 1A : (13)Assuming, as for in room, that the world is partitionned into Pint and Pext, one
an de�neTest leg ini(p): leg ini (p) = in room (si(p)) _ in room (
i).The following result explains why this test 
an be used in 
onjun
tion with dati toeliminate 
on�gurations.Proposition 1 leg ini (p) = 0 ) dati(p) = 0. }Proof: leg ini (p) = 0 implies that si is in Pint and 
i in Pext (see Figure 6). Thenthere exists j su
h that [si; 
i℄ \ [aj ;bj ℄ 6= ; and si 2 �ajbj . Let mij= [si; 
i℄ \[aj ;bj ℄. The ith 
one interse
ts [aj ;bj ℄ at least atmij . So the remoteness of [aj ;bj ℄from si is less than or equal to k���!simijk. As mij 2 [si; 
i[ ; k���!simijk < k��!si; 
ik =di, and the remoteness of [aj ;bj ℄ from si is therefore in
ompatible with [di℄ ; sodati(p) = 0.The test leg ini(p) thus provides a ne
essary 
ondition for p to be 
onsistent withthe ith measurement. As this 
ondition is not suÆ
ient, leg ini(p) may hold trueeven when dati(p) holds false. It will only be useful to eliminate some unfeasible
on�gurations more qui
kly.4. Interval testsThe tests presented in the pre
eding se
tion for point 
on�gurations, should now beextended to interval 
on�gurations. The notion of Boolean intervals will be usedto take the possible ambiguity of test results into a

ount. It will then be possibleto give interval 
ounterparts of the lo
alization tests, whi
h will be asso
iated toin
rease their eÆ
ien
y.4.1. Boolean intervals and in
lusion testsA Boolean interval is an element of IB = f0; [0; 1℄; 1g, where 0 stands for false, 1for true and [0; 1℄ for indeterminate. It is a 
onvenient obje
t for implementingthree-valued logi
.Table 1 spe
i�es the AND (^) and OR (_) operations between two Boolean intervals.As Boolean intervals are sets, standard set operators su
h as [ and \ also apply.They should not be 
onfused with the logi
al operators _ and ^. For instan
e,[0; 1℄ ^ 1 = [0; 1℄ but [0; 1℄ \ 1 = 1.
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Figure 6. The test leg ini holds false.Table 1. Operations between Boolean intervalsV 1 0 [0;1℄ W 1 0 [0;1℄1 1 0 [0; 1℄ 1 1 1 10 0 0 0 0 1 0 [0; 1℄[0;1℄ [0; 1℄ 0 [0; 1℄ [0;1℄ 1 [0; 1℄ [0; 1℄The following Boolean fun
tion will be useful in Se
tion 4.3 to de�ne tests to dealwith abnormal data resulting from sensor failures or erroneous maps. Let q and mbe positive integers, with q < m. By de�nition, the q-relaxed and testM q(t1; : : : ; tm) = mMi=1 q(ti) (14)holds true if and only if at least m � q of the Booleans ti (i = 1; : : : ;m) are true.When q = 0; Lq is equivalent to the operator ^: When q = m � 1; Lq be
omesequivalent to the operator _: Let s be the sum, in the usual real sense, of the valuesof the ti's. To evaluateLq ; it suÆ
es to 
he
k whether s � m� q.Let IRn be the set of all n-dimensional real boxes (or ve
tors of real intervals).An in
lusion test for the test t : Rn ! f0; 1g is a fun
tion t[℄ : IRn ! IB su
h that



ROBUST AUTONOMOUS ROBOT LOCALIZATION 11for any [x℄; t([x℄) � t[℄([x℄), i.e.,t[℄([x℄) = 1 ) 8x 2 [x℄; t(x) = 1;t[℄([x℄) = 0 ) 8x 2 [x℄; t(x) = 0: (15)Example: An in
lusion test t[℄ for t(x), x 2 Y , where Y is some prede�ned set,is 8<: t[℄ ([x℄) = 1 if [x℄ � Y ;t[℄ ([x℄) = 0 if [x℄ \ Y = ;;t[℄ ([x℄) = [0; 1℄ otherwise. (16)Example: To obtain an interval 
ounterpart for Lq , it suÆ
es to evaluate thesum of the interval values of the ti[℄'s and to 
ompare the result with m � q. Forinstan
e,Lq[℄(1; [0; 1℄; 0; 1) is equal to 0 if q = 0; to [0; 1℄ if q = 1 and to 1 if q = 2.Let t[℄1 and t[℄2 be two in
lusion tests asso
iated with the same test t. t[℄1 will besaid to be more powerful than t[℄2 if for any [x℄; t[℄1([x℄) � t[℄2([x℄): The interse
tionof two in
lusion tests asso
iated with the same point test is more powerful thanany of them. The following theorem will be useful to de�ne more powerful tests.Theorem 1 Let t[℄ be an in
lusion test for t and u[℄ be an in
lusion test for u, su
hthat if t(x) holds true then u(x) does. Then t0[℄ = �[0; 1℄ ^ u[℄� \ t[℄ is an in
lusiontest for t; whi
h is more powerful than t[℄. }Proof: If u[℄ ([x℄) 2 f[0; 1℄ ; 1g then [0; 1℄ ^ u[℄ ([x℄) = [0; 1℄ and t0[℄ ([x℄) = [0; 1℄ \t[℄ ([x℄) = t[℄ ([x℄) : If u[℄ ([x℄) = 0, then (15) holds and 8x 2 [x℄; u(x) = 0. Therefore8x 2 [x℄; t(x) = 0 (if there existed x0 2 [x℄ su
h that t(x0) = 1, then u(x0)would be equal to 1). As 8x 2 [x℄; t(x) = 0, t[℄ ([x℄) is either 0 or [0; 1℄ : Thust0[℄ ([x℄) = ([0; 1℄ ^ 0)\ t[℄ ([x℄) = 0\ t[℄ ([x℄) = 0; so t0[℄ ([x℄) � t[℄ ([x℄). Thus, t0[℄ ([x℄)is an in
lusion test for t, and is more powerful than t[℄ ([x℄).Consider a test t obtained by performing logi
al operations on the results ofelementary tests. A possible way to obtain an in
lusion test asso
iated with t is torepla
e ea
h operator by its interval 
ounterpart and ea
h elementary test by anasso
iated in
lusion test. The result will be 
alled a natural interval extension of t.4.2. Interval extensions for the lo
alization testsA natural interval extension of ea
h elementary data-asso
iation test dati is builtas in Example 8<: dati[℄ ([p℄) = 1 if ri[℄ ([p℄) � [di℄ ;dati[℄ ([p℄) = 0 if ri[℄ ([p℄) \ [di℄ = ;;dati[℄ ([p℄) = [0; 1℄ otherwise. (17)



12 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThis test is based on the evaluation of remoteness, whi
h involves a number of
onditional bran
hings, and it remains to be de
ided whi
h bran
hes should beexe
uted. The fun
tion presented below and derived from Kearfott's Chi fun
tion[12℄ is a possible way of getting rid of the problem. If t is the Boolean result of atest and y and z are two real numbers, then�(t; y; z) = � y if t = 1;z if t = 0: (18)The interval 
ounterpart of � (t; y; z) is given by�[℄([t℄ ; [y℄ ; [z℄) = 8<: [y℄ if [t℄ = 1;[z℄ if [t℄ = 0;
onvex hull of [y℄ and [z℄ if [t℄ = [0; 1℄ : (19)The result of the evaluation of a test based on �[℄ is therefore always an interval.For more details on the interval extension of remoteness, see Appendix B.A natural interval extension of in room might be very pessimisti
, be
ause of thea

umulation of un
ertainty over a sum of angles. Instead, the following intervalversion of in room will be used, where [m℄ is a box en
losing the set m([p℄) for agiven interval 
on�guration [p℄ and 
[m℄ is the 
enter of [m℄.Interval test in room[℄ ([m℄):8>>>><>>>>: in room[℄ ([m℄) = 1 � if [aj ;bj ℄ \ [m℄ = ;, for j = 1; :::; nw;and in room �
[m℄� = 1;in room[℄ ([m℄) = 0 � if [aj ;bj ℄ \ [m℄ = ;, for j = 1; :::; nw;and in room �
[m℄� = 0;in room[℄ ([m℄) = [0; 1℄ otherwise. (20)If [m℄ does not interse
t any segment of the map, it is either in Pint or in Pext.To de
ide whi
h of them [m℄ is in
luded in, it suÆ
es to 
he
k one point (here
[m℄). As in Se
tion 3, when [m℄ is the proje
tion of [p℄ onto the x � y spa
e,in room[℄ ([m℄) is written as in room[℄ ([p℄).The natural interval extension of leg ini is obtained by substituting in room[℄ forin room.4.3. Combining lo
alization testsThe three elementary tests de�ned in Se
tion 3 should now be 
ombined into aglobal test t(p). In the ideal 
ase where the map is 
orre
t and no error bound isviolated, this global test 
an be written as tideal(p) = in room(p)^ (Vnwi=1 dati(p)).A ne
essary 
ondition for dati(p) to hold true is that leg ini(p) does. As this
ondition is not suÆ
ient, leg ini 
an only be used in 
onjun
tion with dati in
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ilitate elimination of in
onsistent 
on�gurations in an interval 
ontext.The resulting interval testtideal[℄([p℄) = in room[℄ ([p℄)^ nŵi=1 ��leg ini[℄ ([p℄) ^ [0; 1℄� \ dati[℄ ([p℄)�! (21)is more powerful than the natural interval extension of tideal, a

ording to Theo-rem 1.Remark. Elementary tests are performed from the left to the right, thus startingby the simplest methods available to eliminate a given 
on�guration box. For thea
tual implementation, advantage is also taken of the fa
t that leg ini[℄([p℄) evalu-ates faster than dati[℄([p℄); so all leg ini[℄([p℄) are evaluated before all dati[℄([p℄).}Assume now that the part of the map involved in the de�nition of Pint is still 
or-re
t but that outliers are present. Outliers are data points for whi
h the hypothesesmade on the bounds of the measurement errors are violated. In the 
ontext of robotlo
alization, they are almost unavoidable. They may 
orrespond, for instan
e, tomultiple re
e
tions, to the presen
e of persons or pie
es of furniture, to sensor fail-ures, et
. In the presen
e of su
h outliers, the set S, as de�ned by tideal, may turnout to be empty. Using the q-relaxed and operator Lq introdu
ed in Se
tion 4.1,tideal[℄ 
an be modi�ed intotoutliers[℄([p℄; q) = in room[℄([p℄ )^ nwMi=1 q[℄ ��leg ini[℄([p℄) ^ [0; 1℄� \ dati[℄([p℄)�! ; (22)to tolerate up to q outliers. A possible poli
y is to start with q = 0, whi
h 
or-responds to using tideal, and to in
rease q by one whenever the set of possible
on�gurations is found to be empty. More details on this te
hnique and the stop-ping 
riterion 
an be found in [10℄: It 
orresponds to a guaranteed implementationof the Outlier Minimal Number Estimator (Omne) ([16℄, [26℄ and [24℄).When no reliable Pint and Pext are available, the test in room[℄ 
an be droppedfrom tideal[℄ or toutliers[℄, depending on the reliability of the remaining data. Anotheroption, not 
onsidered further in what follows, would be to give the same 
on�den
eto in room[℄ as to dati[℄ and writetrobust[℄([p℄; q) = nwMi=0 q[℄ �ti[℄� ; (23)where t0[℄ = in room[℄([p℄ );ti[℄ = �leg ini[℄([p℄) ^ [0; 1℄� \ dati[℄([p℄); i = 1; : : : ; nw: (24)



14 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThe purpose of the next se
tion is to show how the set of all possible 
on�gurations
an be 
hara
terized in a systemati
 way, on
e a suitable test t (p) has been de�ned.5. Re
ursive set inversionThe set S = fp 2 [p0℄ j t (p) = 1g 
an also be written as t�1[p0℄ (1). Chara
terizingS 
an therefore be viewed as a problem of set inversion, whi
h 
an be solved inan approximated but guaranteed way using the Sivia (Set Inversion Via IntervalAnalysis) algorithm [7℄, [8℄, [9℄. Here, a re
ursive version of Sivia will be used,whi
h will make it possible to redu
e the amount of testing required to en
lose Sin an outer subpaving bS (i.e., a union of boxes in 
on�guration spa
e), with thehelp of the notion of masked tests.If t[℄ ([p0℄) = 1, [p0℄ is in the solution set S and is stored in bS. If t[℄ ([p0℄) = 0, then[p0℄ has a void interse
tion with S and is dropped altogether from further 
onsid-eration. If t[℄ ([p0℄) = [0; 1℄ and if the width of [p0℄ is larger than some prespe
i�edpre
ision parameter �, then [p0℄ is bise
ted, leading to two 
hild subboxes L [p℄ andR [p℄, and the test t[℄ (:) is re
ursively applied to ea
h of them. Any box with widthless than � is 
onsidered small enough and in
orporated in bS . This algorithm is�nite. Its 
omplexity has been studied in [9℄. Upon 
ompletion, bS is guaranteed toen
lose S.5.1. Masked testsIf the value of an elementary in
lusion test over a box [p℄ is either true or false, thisresult remains valid for any subbox of [p℄. It is thus no longer ne
essary to evaluateit again over its 
hildren. Only elementary tests with un
ertain values have to betested again. This is the prin
iple of masked tests, whi
h may be found for examplein [25℄, but had not so far been implemented in Sivia. Consider a test t obtained byBoolean 
ombination of p elementary tests ti: In the 
ontext of interval evaluation,interval extensions ti[℄ of these elementary tests are used. The asso
iated mask fora given value of [p℄ is the fun
tion �[℄ (:) : IR3 ! IB p de�ned by�[℄ ([p℄) = �t1[℄ ([p℄) ; : : : ; tp[℄ ([p℄)�T : (25)Ex
ept when [p℄ = [p0℄ ; whenever t is to be evaluated over a box [p℄ ; the resultsof the elementary tests ti[℄ have already been evaluated over at least one parent box.Provided that these results have been stored in a mask [�℄ atta
hed to this parentbox, it is no longer ne
essary to evaluate tests whi
h have already re
eived unam-biguous answers. The resulting masked test, whi
h is also in 
harge of updating[�℄, will be denoted by t[℄ ([p℄ ; [�℄).5.2. Masked SiviaMasked tests are in
orporated into Sivia with the help of the re
ursive fun
tionClassify (see Table 2). This fun
tion makes it possible to store boxes in the outer



ROBUST AUTONOMOUS ROBOT LOCALIZATION 15approximation bS of the solution set, a

ording to the results of the evaluation ofthe masked interval test t[℄ ([p℄ ; [�℄). In an e�ort to store boxes as large as possiblein bS, whenever the two 
hildren of the same parent box turn out to have to beenstored in bS; either be
ause t holds true or be
ause the value of t is indeterminateand they are small enough, these two 
hildren are merged into their parent box.The pro
ess is iterated as long as possible before storing the result into bS :Table 2. Re
ursive fun
tion 
alled byMaskSivia.ClassifyInputs: [p℄ ; [�℄ ; bS; �;Outputs: [t℄ ; bS;[t℄ = t[℄ ([p℄ ; [�℄) ;if ([t℄ 6= [0; 1℄) return([t℄ ; bS);if (w ([p℄) < �) return([0; 1℄; bS);else bise
t [p℄ into L [p℄ and R [p℄ ;�[tL℄ ; bS� = Classify�L [p℄ ; [�℄ ; bS; �� ;�[tR℄ ; bS� = Classify�R [p℄ ; [�℄ ; bS; �� ;if ([tL℄ ^ [tR℄ 6= 0) return([tL℄ ^ [tR℄ ; bS);if ([tL℄ 6= 0) store L [p℄ into bS;if ([tR℄ 6= 0) store R [p℄ into bS;return �0; bS� :Classify is �rst 
alled by MaskSivia des
ribed by Table 3. If the value [t0℄returned by Classify to MaskSivia di�ers from 0, then the whole initial sear
hbox [p0℄ must be in
luded in bS. Else, the outer approximation bS has been builtre
ursively by Classify.6. Test 
asesInterval-based lo
alization will now be illustrated on three test 
ases. Althoughbased on simulations, these test 
ases are realisti
 and the 
hara
teristi
s of therobot (size, sensors lo
ation and performan
es) are those of the robot of Figure 1.Table 3. Re
ursive MaskSivia.MaskSiviaInputs: [p0℄ ; �;Outputs: bS;Initialisation: bS = ;; [�0℄ = [0; 1℄p;�[t0℄ ; bS� = Classify�[p0℄ ; [�0℄ ; bS; �� ;if ([t0℄ 6= 0) bS = f[p0℄g ;return � bS� :



16 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELThis robot is equipped with ns = 24 ultrasoni
 sensors on its periphery. Ea
h ofthem has been found to have an emission angle ~
 of 0:2 rad and a distan
e relativeina

ura
y � of 2% within its operating range.In ea
h of the test 
ases treated, the initial sear
h domain in 
on�guration spa
e is[�12m; 12m℄�[�12m; 12m℄�[0; 2�℄, and the pre
ision parameter � is taken equal to0:04. All 
omputations were performed on a P233MMX personal 
omputer, usinga C++ implementation of MaskSivia.6.1. First test 
aseThis test 
ase illustrates the potential 
ontribution of the various a

elerating toolsproposed in this paper under ideal 
onditions. The robot is lo
ated in the roomdes
ribed by Figure 7, and the map available to the robot mat
hes this environmentexa
tly. Figure 8 des
ribes the emission diagram of the 24 sensors. It is su
h thatan obsta
le should lie at least in part between the two ar
s asso
iated with anygiven sensor.

-12 12

-12

12

Figure 7. Map used by the robot for Test Cases 1 to 3. The proje
tion of the initial sear
h boxonto the x� y spa
e is the external square.This diagram was obtained by 
omputing the remoteness of ea
h sensor from themap a

ording to (10) for an a
tual 
on�guration given by (x
; y
; �) = ��2; 3; 9�32 �.Obviously, this a
tual 
on�guration is not transmitted to the lo
alization algorithm.Table 4 indi
ates 
omputing time for various 
ombinations of the tests proposed.
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Figure 8. Emission diagram (Test Case 1).Table 4. Computing times forTest Case 1.Tests Mask Time (se
.)tdat[℄ no 97tdat[℄ yes 29troom[℄ no 91troom[℄ yes 27tleg[℄ no 48tleg[℄ yes 11tideal[℄ no 49tideal[℄ yes 11The test tdat[℄ only involves the elementary tests dati[℄, i = 1; : : : ; ns. The test troom[℄
ombines in room[℄ and tdat[℄. The test tleg[℄ uses leg ini[℄, i = 1; : : : ; ns to reinfor
etdat[℄. Finally, tideal[℄ 
ombines all these tests as des
ribed by (21). In all 
ases, theresulting solution boxes turn out to be very similar, and Figure 9 presents thoseobtained with the 
omplete algorithm. The union of these boxes is guaranteed to
ontain all 
on�gurations 
onsistent with the map and measurements. The a
tualrobot 
on�guration is indi
ated in bla
k.On this example, the masked version of Sivia using tleg[℄ or tideal[℄ is about tentimes qui
ker than a basi
 Sivia using only tdat[℄. The mask appears responsiblefor most of the improvement, followed by leg ini[℄ and in room[℄: When the maskand leg ini[℄ are implemented, in room[℄ leads to no improvement, but rememberthat leg ini[℄ is based on in room[℄.The next two examples will illustrate more diÆ
ult but quite realisti
 situations.
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c
cFigure 9. Outer approximation of the set of all possible 
on�gurations and its 2D proje
tions(Test Case 1). The a
tual 
on�guration is indi
ated in bla
k.6.2. Se
ond test 
aseIn this test 
ase, the room and map remain identi
al to those of Test Case 1, but thea
tual (unknown) 
on�guration is now (x
; y
; �) = (1;�7:5; �), and the emissiondiagram is given by Figure 10. In 19 se
onds,MaskSivia using tideal[℄ �nds the set

Figure 10. Emission diagram (Test Case 2).of boxes des
ribed by Figure 11. This set 
onsists of two dis
onne
ted subsets, oneof whi
h 
ontains the a
tual 
on�guration of the robot. Figure 12 illustrates thefa
t that, due to lo
al symmetries, there are indeed two radi
ally di�erent typesof possible 
on�gurations, ea
h of whi
h 
orresponds to a di�erent asso
iation ofsegments of the map with distan
es measured by the sensors. Note that this dataasso
iation is a by-produ
t of the algorithm, and does not need to be performed by
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Figure 11. Outer approximation of the set of all possible 
on�gurations (Test Case 2) and its 2Dproje
tions.a prepro
essor as in the usual lo
alization methods. Given that data asso
iation isone of the bottlene
ks of automated lo
alization, this is no minor advantage.6.3. Third test 
aseThe additional diÆ
ulties 
reated by outliers and an outdated map will now betaken into a

ount. The map provided to the robot is the same as in the previ-ous test 
ases, but it is now partly in
orre
t. The a
tual environment is that ofFigure 13.The previous pillar has been moved, and a se
ond one added. Moreover, twoout of the 24 distan
es have been taken equal to twi
e their a
tual values. Thea
tual (unknown) 
on�guration is the same as in the �rst test 
ase. Any of themodi�
ations 
onsidered here (i.e., the in
orre
t map or the outliers) is enoughto make the set found by the original algorithm empty. Note that the map 
anno longer be assumed to be 
orre
t, so in room[℄ will not be employed. The valueof q is in
reased until the set of boxes found using toutliers[℄ without in room[℄be
omes nonempty, whi
h takes pla
e when q = 6. The set of possible 
on�gurationsthus found is slightly larger than that on Figure 9, but similar and will not be
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-12 12

-12

12

Figure 12. Two possible 
on�gurations (Test Case 2).

-10

10-10

10

Figure 13. Room of Test Case 3.repeated. It still 
ontains the a
tual robot 
on�guration. Figure 14 presents a typi
al
on�guration of this set, where the data that 
ould not be asso
iated are indi
atedby numbers. Emission 
ones labelled 1 and 6 are in
onsistent with the map, be
auseof the presen
e of obsta
les that are 
loser to the sensors 
onsidered. Emission
ones labelled 2 to 5 
orrespond to the two misspe
i�ed pillars. Table 5 indi
ates
omputing time and various properties of bS as fun
tions of q. Note that the set of



ROBUST AUTONOMOUS ROBOT LOCALIZATION 21boxes obtained for a given value of q is only guaranteed to 
ontain the a
tual robot
on�guration if there are no more than q a
tual outliers. One may prote
t oneselfagainst a larger number of outliers by in
reasing q. The sets obtained here for q > 6are quite 
lose to that obtained for q = 6; the a
tual number of outliers. The resultof this robust lo
alization pro
edure thus turns out to be rather insensitive to the
hoi
e made for q.Table 5. Chara
teristi
s of bS and 
umulated 
omputing time asfun
tions of q for Test Case 3.q Set volume Bounding box (outward rounded) Time0 0 ; 7 s.1 0 ; 21 s.2 0 ; 41 s.3 0 ; 71 s.4 0 ; 113 s.5 0 ; 166 s.6 2:68 � 10�3 [�2:14;�1:87℄[2:85; 3:15℄[0:83; 0:95℄ 249 s.7 3:09 � 10�3 [�2:14;�1:87℄[2:85; 3:15℄[0:83; 0:95℄ 366 s.8 4:25 � 10�3 [�2:16;�1:82℄[2:83; 3:17℄[0:83; 0:95℄ 519 s.9 5:88 � 10�3 [�2:18;�1:82℄[2:83; 3:19℄[0:83; 0:96℄ 776 s.10 8:05 � 10�3 [�2:21;�1:80℄[2:81; 3:19℄[0:82; 0:97℄ 1126 s.Computing time is seen to in
rease with q, be
ause it be
omes in
reasingly diÆ-
ult to eliminate a box.Contrary to what would be the 
ase with traditional methods involving a phaseof data asso
iation, no 
ombinatori
s is involved in de
iding whi
h q measurementshave to be 
onsidered as outliers, and this is again a tremendous simpli�
ation.7. Con
lusions and perspe
tivesAutonomous robot lo
alization is parti
ularly well amenable to solution via intervalanalysis, be
ause the number of parameters to be estimated is small. In this 
ontext,the method advo
ated here has de�nite advantages over 
onventional numeri
almethods. It is not ne
essary to enumerate all possible asso
iations between sensordata and landmarks, nor is it ne
essary to 
onsider all possible 
hoi
es of q outliersamong ns data points. As a result, 
ombinatorial explosion is avoided. The resultsobtained are global, and no 
on�guration 
ompatible with prior information andmeasurements 
an be missed. These results are extremely robust, and the estimatorused 
an even handle a majority of outliers. Provided that the number of a
tualoutliers is less than or equal to the value 
hosen for q; the results are still guaranteed.The present 
omputing times seem already a

eptable for a stati
 lo
alization withsu
h remarkable properties.The method is 
exible, and additional information on the physi
s of the problem
ould readily be in
orporated. One 
ould, for instan
e, take into a

ount the fa
tthat the operational range of ultrasoni
 sensors is limited, or that the in
iden
eangle should be small enough for the re
e
ted or refra
ted wave to be pi
ked up
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Figure 14. Possible 
on�guration for Test Case 3.by the sensor. Other types of sensors su
h as rotating laser range �nders (see, e.g.,[1℄, [3℄), as well as multi-sensor data fusion [11℄ should form the subje
t of futurestudies in the 
ontext of interval methods su
h as those advo
ated in this paper.In this paper, lo
alization was stati
; a natural extension of the present work is to
onsider the tra
king of the set of possible 
on�gurations of a moving robot. This
an be done [15℄, [13℄, using a re
ently developed bounded-error state estimationte
hniques for nonlinear models [14℄. The fa
t that the initial sear
h domain in
on�guration spa
e is mu
h smaller at any given time instant redu
es drasti
allythe 
omputational e�ort and makes it 
ompatible with real time.The methodology des
ribed obviously applies to many other �elds, where feasibil-ity is also de�ned in terms of possibly nonlinear inequalities. The 
ase where someof these inequalities may not be meaningful 
ould be handled dire
tly by treatingthem as outliers.8. NotationVe
tors are in bold with an arrow on top: �!u . Points are in bold: a;b; 
. Co-ordinates for two-dimensional ve
tors �!u and points a are denoted by xu; yu andxa; ya.
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alar produ
t of �!u and �!v;(a;b) : line supported by a and b;[a;b℄ : line segment between a and b;�!ab : ve
tor with extreme points a and b;(s;�!u ) : line supported by s with dire
tion ve
tor �!u ;~
 : half aperture of the emission 
one,i : index for sensors,j : index for segments,d(s; (a;b)) : distan
e from s to (a;b);d�!u (s; (ab)) : distan
e from s to (a;b) along �!u ;ns : number of sensors,nw : number of segments,p =(x
; y
; �)T : robot 
on�guration,S : set of all feasible robot 
on�gurations,IR : set of real intervals,IB : set of Boolean intervals,^ : logi
al AND;_ : logi
al OR;w([p℄) : width of [p℄ .Appendix AReal evaluation of remotenessTable A.1 presents the implementation of the real evaluation of remoteness, basedon Se
tion 3.1.The distan
e d (s; (a;b)) from s to the line (a;b) (Figure A.1) is given byd (s; (a;b)) = 


�!ah


 = det��!ab; �!as�


�!ab


 ; (A.1)and the distan
e d�!u (s; (a;b)) from s to the line (a;b) along the unit ve
tor �!u byd�!u (s; (a;b)) = k�!amk = 


�!ah


jsin �j = det��!ab; �!as�


�!ab


 jsin �j = ���det��!ab; �!as�������det ��!ab;�!u ���� : (A.2)Appendix BInterval evaluation of remotenessThe interval 
ounterpart of Table A.1 is given by Table B.1.In this table, ��![s℄ a stands for the set of all ve
tors with origin in the box [s℄ andextremity at a. The box [s℄, guaranteed to 
ontain the lo
ation of the sensor s for



24 M. KIEFFER, L. JAULIN, E. WALTER AND D. MEIZELTable A.1. Evaluation of remoteness.r (s;�!u1;�!u2;a;b)if �det ��!ab;�!as� � 0�return (+1);if �D�!ab;�!saE�0� ^ �D�!ab;�!sbE�0� ^ �D�!ab;�!u1E�0� ^ �D�!ab;�!u2E�0�then rh = d (s; (a;b)), else rh = +1;if (det (�!u1;�!sa) � 0) ^ (det (�!u2;�!sa) � 0)then ra = ksak, else ra = +1;if �det ��!u1;�!sb� � 0� ^ �det ��!u2;�!sb� � 0�then rb = 


�!sb


, else rb = +1;for i = 1 to 2if (det (�!sa;�!ui) � 0) ^ �det ��!sb;�!ui� � 0�then rhi = d�!ui (s; (a;b)) , else rhi = +1;return �min �rh; ra; rb; rh1 ; rh2�� :Table B.1. In
lusion fun
tion for remoteness.r[℄ �[s℄ ;��![u1℄;��![u2℄;a;b�[t1℄ = det��!ab;��!a [s℄�;if �t1 � 0�return (+1);[th℄ = �D�!ab;��![s℄aE�0� ^ �D�!ab;��![s℄bE�0� ^ �D�!ab;��![u1℄E�0� ^ �D�!ab;��![u2℄E�0�;[rh℄ = � �[th℄ ; d[℄ ([s℄ ; (a;b)) ;+1�;[ta℄ = �det ���![u1℄;��![s℄a� � 0� ^ �det ���![u2℄;��![s℄a� � 0�;[ra℄ = � �[ta℄ ; 

��![s℄a

 ;+1�;[tb℄ = �det ���![u1℄;��![s℄b� � 0�^ �det ���![u2℄;��![s℄b� � 0� ;[rb℄ = � �[tb℄ ;

��![s℄b

 ;+1�;for i = 1 to 2�thi � = �det ���![s℄a;�![ui℄� � 0� ^ �det ���![s℄b;�![ui℄� � 0�;�rhi � = ���thi � ; d�![ui℄ ([s℄ ; (a;b)) ;+1�;return �min �[rh℄ ; [ra℄ ; [rb℄ ; �rh1� ; �rh2 ���;
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Figure A.1. Distan
es from the point s to the line (a;b).any 
on�guration in [p℄ = ([x
℄ ; [y
℄ ; [�℄)T, is evaluated by repla
ing all o

urren
esof the real variables in (1) by their interval 
ounterparts. Similarly, the 
hara
teris-ti
s of the 
one (3) are evaluated as [C℄ = C �[s℄ ;�![u1℄;�![u2℄�. Finally, the minimumof two intervals is de�ned as followsmin ([a℄ ; [b℄) = �min (a; b) ;min �a; b�� ;the extension to more intervals being straightforward.Referen
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