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ursive algorithms,set inversion, subpavings, treesAbstra
t This paper is about the approximate representation of 
ompa
t sets us-ing subpavings, i.e. unions of non-overlapping boxes, and about 
ompu-tation on these sets, with parti
ular attention to implementation issues.Some basi
 operations su
h as evaluating the interse
tion or union oftwo subpavings, or testing whether a box belongs to a subpaving are �rstpresented. The binary tree stru
ture used to des
ribe subpavings thenallows a simple implementation of these tasks by re
ursive algorithms.Algorithms are presented to evaluate the inverse and dire
t images ofa set des
ribed by a subpaving. In both 
ases, a subpaving is obtainedthat is guaranteed to 
ontain the a
tual inverse or dire
t image of theinitial subpaving. The e�e
tiveness of these algorithms in 
hara
terizingpossibly non
onvex on even non
onne
ted sets is �nally illustrated bysimple examples.1. INTRODUCTIONIn the interval 
ommunity, boxes (or interval ve
tors) are often usedto 
ontain the solutions of global optimization problems or of systemsof equations. These solution boxes usually have a small volume. Onthe other hand, problems su
h as 
hara
terizing the stability domain of
ontrollers or estimating parameters in the bounded-error 
ontext may1



2have large 
ompa
t sets as solutions, for whi
h en
losure in a single boxwould not be detailed enough.This paper presents results on the des
ription of 
ompa
t sets byunion of nonoverlapping boxes or subpavings. After a brief des
riptionof an example motivating the approa
h in Se
tion 2, subpavings areintrodu
ed in Se
tion 3. Parti
ular attention is paid to implementation.Prin
iples and properties of inverse and dire
t image evaluation of setsare presented in Se
tions 4 and 5. An example illustrating some featuresof these algorithms is des
ribed in Se
tion 6, before some �nal remarksand perspe
tives.2. WHY DEAL WITH SETS?The aim of this se
tion is to illustrate the interest of set 
hara
teri-zation by an example of problem of pra
ti
al interest in the 
ontext ofbounded-error estimation. Assume that the measured output y (t) ofa physi
al system is des
ribed by a parametri
 model M (p) ;p 2 Rp ;with output ym (t;p) ; where p is a ve
tor of unknown parameters. Themodel output should resemble the system output as mu
h as possible.The model may be tuned by adjusting p. To a
hieve this task, n mea-surements of the system output are 
olle
ted at time ti, i = 1; : : : ; n.Bounded-error parameter estimation 
onsists of �nding all values of psu
h that the error between the system and model outputs e (ti;p) =y (ti) � ym (ti;p) remains within some prespe
i�ed bounds [ei; ei℄ fori = 1; : : : ; n: A value of p satisfying e (ti;p) 2 [ei; ei℄ for i = 1; : : : ; n, orequivalently ym (ti;p) 2 [y (ti)� ei; y (ti)� ei℄ for i = 1; : : : ; n, is saidto be a

eptable: The interval [yi℄ = [y (ti)� ei; y (ti)� ei℄ thus 
ontainsall a

eptable model outputs at time ti. Bounded-error parameter esti-mation aims at 
hara
terizing the set of all a

eptable parameter ve
torsX = fp jym (p) 2 [y℄g ; where ym (p) is the ve
tor of all model outputs(ym (t1;p) ; : : : ; ym (tn;p))T and where [y℄ is the box ([y1℄ ; : : : ; [yn℄)T.This problem may be interpreted as a set-inversion problem, as X mayalso be written as X = y�1m ([y℄) :Bounded-error parameter estimation may thus be seen as the 
hara-terization of a possibly non
onvex or even non-
onne
ted set. Manyother problems in 
ontrol also require the 
hara
terization of sets, forinstan
e bounded-error state estimation or the determination of valuesets in robust 
ontrol.3. HOW TO DEAL WITH SETS?Even if an exa
t des
ription of X is sometimes possible, see, e.g., [16℄,this is far from being always the 
ase. When X is a 
onvex polytope,
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hniques are available to en
lose it in ellipsoids, boxes, simpler poly-topes, et
. See the referen
es in [12℄, [13℄, [14℄, [17℄ for more details.This paper fo
uses on the en
losure of 
ompa
t sets that are not ne
-essarily polytopes in unions of non-ovelapping boxes, with spe
ial atten-tion to nonlinear problems. Su
h a des
ription 
an, at least in prin
iple,approximate 
ompa
t sets as a

urately as desired in the sense, e.g., ofthe standard Hausdor� distan
e [1℄. Boxes presents the advantage ofbeing very easily manipulated by 
omputers, as they form the heart ofinterval analysis.3.1. REPRESENTING UNIONS OF BOXESIt is important to organize the storage of these boxes in memory inorder to fa
ilitate further pro
essing (su
h as taking the interse
tion orunion of solution sets, evaluating their image by a fun
tion, et
.). The�rst idea would be to store the boxes in a list. However, this stru
turewould not be very eÆ
ient for tasks su
h as 
he
king whether a box isin
luded in the set formed by the union of the boxes belonging to a givenlist.To allow a more eÆ
ient organization, we shall require that all theboxes to be 
onsidered result from su

essive bise
tions of a root box[x℄0 � Rn , a

ording to some 
anoni
al bise
tion rule. Su
h bise
-tion rule may, for instan
e, be that ea
h box [x℄ is 
ut a
ross its main
omponent j, de�ned as j = min fi jw ([xi℄) = w ([x℄)g ; where w (:) de-notes the width of an interval or a box. The boxes resulting from thebise
tion of [x℄ are L [x℄ = �[x1℄ ; : : : ; �xj; �xj + xj� =2� ; : : : [xn℄� andR [x℄ = �[x1℄ ; : : : ; ��xj + xj� =2; xj� ; : : : [xn℄�. A union of boxes obtainedin this manner will be 
alled a regular subpaving [3℄, [8℄, [9℄. The set ofregular subpavings whose root box is [x℄ will be denoted by RSP ([x℄).Many interval algorithms naturally provides solutions that are regularsubpavings.3.2. BINARY TREESAND REGULAR SUBPAVINGSRegular subpavings extend quadtrees and o
ttrees of 
omputer geom-etry (see, e.g., [15℄) to higher dimensions, and the same type of te
hniquebased on binary trees 
an be used. The binary tree will be used to de-s
ribe the boxes of the regular subpaving and how they were bise
ted andsele
ted from the root box. A binary tree T is a �nite 
olle
tion of nodes.T may be empty, or may 
onsist of a single node or of two subtrees: theleft and right subtrees, respe
tively denoted by LT and RT . Here, ea
hnode represents a box [x℄, whi
h may be the root box of the subpaving or
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Figure 1 A subpaving and its binary tree representation. The bran
h in boldrepresent the su

essive bise
tions and sele
tions of [x℄0 = [0; 4℄ � [0; 4℄ to getLLR [x℄0 = [2; 3℄� [0; 2℄a box obtained from the root box by bise
tions. The shape of the tree isdetermined by the bise
tions and sele
tions whi
h have lead to the boxesof the regular subpaving, see Figure 3.2. The root node A of the tree Trepresented on the right 
orresponds to the root box [x℄0 = [0; 4℄� [0; 4℄of the subpaving represented on the left. The fork stemming from Aindi
ates a bise
tion of [x℄0. A has two subtrees, the roots of whi
h arethe nodes B and C. These sibling nodes (they stem from the same node)respe
tively represent L [x℄0 = [0; 2℄ � [0; 4℄ and R [x℄0 = [2; 4℄ � [0; 4℄.The node C has only one subtree, as the box [2; 4℄� [2; 4℄ 
orrespondingto D does not belong to the subpaving. The node E has no 
hildren,it is a leaf, whi
h 
orresponds to LLR [x℄0 = [2; 3℄ � [0; 2℄. Ea
h leafrepresents a box belonging to the subpaving. A regular subpaving isminimal if it has no sibling nodes that are leaves.Regular subpavings and their binary tree representations will be 
on-sidered indi�erently, and the vo
abulary used for binary trees will alsobe used for subpavings. This type of representation allows 
omplex tasksto be performed by very simple re
ursive algorithms, as we shall see.3.3. BASIC OPERATIONSThe four basi
 operations on regular subpavings to be 
onsidered arereuniting sibling subpavings, taking the union or interse
tion of sub-pavings, and testing whether a box is in
luded in a subpaving.Reuniting sibling subpavings: this operation is intended to sim-plify the des
ription of subpavings by making them minimal. Con-sider a box [x℄ and two regular subpavings X 2 RSP (L[x℄) and Y 2RSP (R[x℄). These subpavings are siblings as they have the same par-



Guaranteed Set Computation with Subpavings 5ent box [x℄. The reunited subpaving Z , (XjY) 2 RSP([x℄) is de�nedand 
omputed as follows:Algorithm Reunite(in: X;Y; [x℄, out: Z, (XjY))if X = L[x℄ and Y = R[x℄, then Z := [x℄;else if X = ; and Y = ;, then Z := ;;else, LZ := X and RZ := Y.Ea
h of these instru
tions is trivial to implement with a binary treerepresentation. For instan
e, the instru
tions LZ := X and RZ := Yamount to grafting the trees X and Y to a node to form the tree Z.Interse
ting subpavings: If X 2 RSP ([x℄) and Y 2 RSP ([x℄) ;then Z = X \ Y is also a subpaving of RSP ([x℄). It only 
ontainsthe nodes shared by the binary trees representing X and Y, and 
an be
omputed by the following re
ursive algorithm:Algorithm Interse
t(in: X;Y; [x℄, out: Z= X \ Y)if X = ; or Y = ; then return ;;if X = [x℄ then return Y;if Y = [x℄ then return X;return (Interse
t(LX; LY; L[x℄)jInterse
t(RX; RY; R[x℄));Taking the union of subpavings: If X 2 RSP ([x℄) and Y 2RSP ([x℄), then Z = X [ Y also belongs to RSP ([x℄). Z is 
omputedby putting together all nodes of the two binary trees representing X andY. Again, this 
an be done re
ursively:Algorithm Union(in: X;Y; [x℄, out: Z= X [ Y)if X = ; or if Y = [x℄ then return Y;if Y = ; or if X = [x℄ then return X;return (Union(LX; LY; L[x℄)jUnion(RX; RY; R[x℄));Testing whether a box [z℄ is in
luded in a subpaving: X 2RSP ([x℄) : This test is straightforward in four 
ases. It holds true if [z℄is empty, or if X is redu
ed to a single box [x℄ and [z℄ � [x℄ : It holdsfalse if X is empty and [z℄ is not, or if [z℄ is not in the root box of X:These basi
 tests will �rst be applied to the root of the tree representingthe subpaving. If none of the four simple 
ases is satis�ed, these basi
tests are re
ursively applied on the left and right subtrees. The followingalgorithm summarizes the pro
ess:Algorithm Inside(in: [z℄ ;X, out: t)if [z℄ = ; or if X is a box [x℄ and [z℄ � [x℄ then return 1;if X = ; or if [z℄\ root(X) = ; then return 0;return (Inside([z℄ \ L [x℄ ; LX) ^ Inside([z℄ \R [x℄ ; RX)) ;



6 Note that ^ 
orresponds to an interval version of the logi
al operatorAND. When [z℄ � X 1 is returned, when [z℄ \ X = ; 0 is returned andwhen [z℄ overlaps the boundary of X [0; 1℄ is returned.Remark 1 Binary trees are a well-known data stru
ture and many li-braries provide this data type. However, in most 
ases, these librariesare intended to implement sorting algorithms, and thus not suited to theimplementation of operations on sets. This is why we 
hoose to imple-ment subpavings from s
rat
h using the Profil/Bias library [11℄. TheC++ sour
e 
ode is freely available on request. }4. INVERSE IMAGE EVALUATIONLet f be a possibly nonlinear fun
tion from Rn to Rm and let Y bea regular subpaving in
luded in Rm . Inverse image evaluation is the
hara
terization of X = fx 2 Rn j f(x) 2 Yg = f�1(Y): Set inversion ofSe
tion 2 is a spe
ial 
ase of this problem.For any subpaving Y � Rm and for any fun
tion f admitting anin
lusion fun
tion [f ℄ (:), a subpaving X 
ontaining the set X 
an beobtained with the algorithm Sivia (Set Inverter Via Interval Analysis,[6℄, [7℄) that will now be des
ribed in the 
ontext of regular subpavings.To 
ompute X, Sivia requires a (possibly very large) sear
h subpavingS to whi
h X is guaranteed to belong. To fa
ilitate presentation, Figure 4des
ribes the basi
 steps of Sivia, in the 
ase of a sear
h subpavingredu
ed to a box [x0℄. The general pro
edure is easily derived from thissimpli�ed example.To obtain X, the same pro
edure will be applied to ea
h node of S. Forany given node N of the binary tree des
ribing S, the image of the box[xN℄ 
orresponding to this node is evaluated by the in
lusion fun
tion[f ℄ (:). Four 
ases may be en
ountered.1. If [f ℄ ([xN℄) has a nonempty interse
tion with Y, but is not entirelyin Y, then [xN℄ may 
ontain a part of the solution set (Figure 4a); [xN℄and the asso
iated node N are said to be undetermined. The same testshould be re
ursively applied on the nodes stemming from N, if theyexist. If N is a leaf, and if the width of [xN℄ is greater than a prespe
i�edpre
ision parameter ", [xN℄ should be bise
ted (this implies to the growthof two o�springs from N) and the test should be re
ursively applied onthese newly generated nodes.2. If [f ℄ ([xN ℄) has an empty interse
tion with Y, [xN ℄ does not belongto the solution subpaving, and N 
an be 
ut o� from the solution tree(Figure 4b).3. If [f ℄ ([xN ℄) is entirely in Y, [xN ℄ belongs to the solution subpavingX, and N is in the solution tree (Figure 4
).
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Figure 2 Four situations en
ountered by the Sivia algorithm (a) the box [x0℄ to be
he
ked is undetermined and will be bise
ted; (b) the box [x1℄ does not interse
t Yand is reje
ted; (
) the box [x2℄ is entirely in Y and is stored in the solution subpaving;(d) the box [x3℄ is undetermined but deemed to small to be bise
ted, it is also storedin the solution subpaving to set an outer approximation X of X upon 
ompletion ofthe algorithm4. The last 
ase is depi
ted on Figure 4d. If the box 
onsidered is un-determined, but its width is lower than ", then it is deemed small enoughto be stored in the outer approximation X of the solution subpaving.



8 The following algorithm summarizes this pro
edure.Algorithm Sivia(in: [f ℄ ;Y;S; ", out: X)[x℄ :=root(S);[test℄ := Inside([f ℄ ([x℄) ;Y);if [test℄ = 0 then return ;; // Figure 4(b)if [test℄ = 1 then return S; // Figure 4(
)if w ([x℄) < " then return S; // Figure 4(d)return (Sivia([f ℄ ;Y; LS; ")jSivia([f ℄ ;Y; RS; ")); // Figure 4(a)The real positive number " is an a

ura
y parameter, whi
h determinesthe maximum width of the boxes that 
ompose X. Re
all that the re-uni�
ation operator ( j ) performs the union of two sibling subpavings.This allows Sivia to return X as a minimal subpaving.The 
onvergen
e of the initial version of this algorithm, allowing onlyinversion of boxes, has been studied in [6℄. The proofs given there easilyextend to the inversion of subpavings.5. DIRECT IMAGE EVALUATIONComputing the dire
t image of a subpaving by a fun
tion is slightlymore 
ompli
ated than 
omputing a re
ipro
al image, be
ause intervalanalysis does not provide any in
lusion test for the point test t(y) =(y 2 f (X)) dire
tly. Note that even this point test is very diÆ
ult toevaluate in general, 
ontrary to the point test t(x) = �x 2 f�1 (Y)�involved in set inversion. Indeed, to test whether x 2 f�1 (Y), it suÆ
esto 
ompute f (x) and to 
he
k whether it is in Y. On the other hand,to test whether y 2 f (X), one must study whether the set of equationsf (x) = y admits at least one solution under the 
onstraint x 2 X, whi
his usually far from simple.Assume that f is 
ontinuous and that an in
lusion fun
tion [f ℄ for f isavailable. The algorithm presented below generates a regular subpavingY that 
ontains the image Y of a regular subpaving X by f (see also[8℄, [9℄). Thus Y is an outer approximation of Y. The set Y is in
ludedinto the box [f ℄ ([X℄) and also into the image by the in
lusion fun
tion ofthe smallest box 
ontaining X. The algorithm pro
eeds in three steps,namely min
ing, evaluation, and regularization (see Figure 5). As withSivia, the pre
ision of the outer approximation will be governed by thereal " > 0 to be 
hosen by the user. During min
ing, a non-minimalregular subpaving X" is built, su
h that the width of ea
h of its boxes isless than ". During evaluation, a box [f ℄ ([x℄) is 
omputed for ea
h box[x℄ of X", and all the resulting boxes are stored into a list Y ("). Duringregularization, a regular subpaving Y (") is 
omputed that 
ontains theunion of all boxes of Y ("). This regularization 
an be viewed as a
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[f ](.)

(a) initial subpaving

(b) minced subpaving

(c) image boxes

(d) image subpaving

Figure 3 The three steps of ImageSp. (a) ! (b): min
ing; (b) ! (
): evaluation;(
)! (d): regularization
all of Sivia to invert Y (") by the identity fun
tion. Indeed, sin
ef (X) � Y ("), whi
h is equivalent to f (X) � Id�1 (Y (")), one has f (X) �Sivia([t℄ ; [f ℄ ([X℄); "), where [t℄ is an in
lusion fun
tion for t (y) = (y 2Y (")), denoted by [t℄ ([y℄) = ([y℄ [2℄Y (")). The resulting algorithm isas follows:Algorithm ImageSp(in: [f ℄ ;X; ", out: Y)X" :=min
e(X; ") ;Y (") = ;;For ea
h [x℄ 2 X"; Y (") := Y (") [ f[f ℄ ([x℄)g ;return Sivia([t℄ ; [f ℄ ([X℄); ");Sin
e Y (") is not a subpaving, implementation is not trivial, see [8℄ fordetails. The 
omplexity and 
onvergen
e properties of ImageSp havebeen des
ribed in [4℄ and [8℄.6. EXAMPLESThe �rst example is the 
hara
terization of the setX1 = �(x1; x2) 2 R2 ��x41 � x21 + 4x22 2 [�0:1; 0:1℄	This set-inversion-problem is solved by Sivia for S = [�3; 3℄ � [�3; 3℄and " = 0:1: The resulting subpaving X1 is represented on Figure 6(a).
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Figure 4 Illustration of the inverse and dire
t image evaluation algorithmsThe se
ond example is the evaluation of an outer approximation ofthe image X2 of X1 by the fun
tionf (x1; x2) = � (x1 � 1)2 � 1 + x2�x21 + (x2 � 1)2 � :With " = 0:1; ImageSp yields the subpaving X2 depi
ted on Fig-ure 6(b).



Guaranteed Set Computation with Subpavings 11The last example is the 
hara
terization of the image of X2 by theinverse of f (:), i.e., X3 = �f�1 �X2�	 : The fun
tion f (:) is not invertible(in the 
ommon sense) in R2 : Thus, an expli
it form of f�1 (:) is notavailable for the whole sear
h domain and the problem will be treatedas a set inversion problem. Again, Sivia is used with S= [�5; 5℄�[�5; 5℄and " = 0:1: The solution subpaving X3 is represented on Figure 6(
).We have X1 � f�1 �f �X1�� : The initial set X1 is 
learly present. Theresult is slightly fatter, due to error a

umulation during inverse anddire
t image evaluation. Additional parts have appeared be
ause f (:) isonly invertible in a set-theoreti
 sense.7. CONCLUSIONSRegular subpavings form an attra
tive 
lass of basi
 obje
ts for therepresentation of 
ompa
t sets and for 
omputation on su
h sets. Simpletasks su
h as evaluating the union or interse
tion of two subpavingsare very easily performed when these subpavings are represented bybinary trees. More sophisti
ated operations su
h as inverse or dire
timage evaluation are also fa
ilitated. Even if they are restri
ted to low-dimensional problems, ImageSp and Sivia have found appli
ation innonlinear state estimation problems [9℄, [10℄ or in measurement problemssu
h as grooves dimensioning using remote �eld eddy 
urrent inspe
tion[2℄. ImageSp is still a very preliminary algorithm that 
ould easily beimproved. Work is under way to take advantage of interval 
onstraintpropagation to improve state estimation algorithms, among others [5℄.Referen
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