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Abstract

1.

set inversion, subpavings, trees

This paper is about the approximate representation of compact sets us-
ing subpavings, i.e. unions of non-overlapping boxes, and about compu-
tation on these sets, with particular attention to implementation issues.
Some basic operations such as evaluating the intersection or union of
two subpavings, or testing whether a box belongs to a subpaving are first
presented. The binary tree structure used to describe subpavings then
allows a simple implementation of these tasks by recursive algorithms.
Algorithms are presented to evaluate the inverse and direct images of
a set described by a subpaving. In both cases, a subpaving is obtained
that is guaranteed to contain the actual inverse or direct image of the
initial subpaving. The effectiveness of these algorithms in characterizing
possibly nonconvex on even nonconnected sets is finally illustrated by
simple examples.

INTRODUCTION

In the interval community, boxes (or interval vectors) are often used
to contain the solutions of global optimization problems or of systems
of equations. These solution boxes usually have a small volume. On
the other hand, problems such as characterizing the stability domain of
controllers or estimating parameters in the bounded-error context may
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have large compact sets as solutions, for which enclosure in a single box
would not be detailed enough.

This paper presents results on the description of compact sets by
union of nonoverlapping boxes or subpavings. After a brief description
of an example motivating the approach in Section 2, subpavings are
introduced in Section 3. Particular attention is paid to implementation.
Principles and properties of inverse and direct image evaluation of sets
are presented in Sections 4 and 5. An example illustrating some features
of these algorithms is described in Section 6, before some final remarks
and perspectives.

2. WHY DEAL WITH SETS?

The aim of this section is to illustrate the interest of set characteri-
zation by an example of problem of practical interest in the context of
bounded-error estimation. Assume that the measured output y (¢) of
a physical system is described by a parametric model M (p),p € RP,
with output ym (¢, p), where p is a vector of unknown parameters. The
model output should resemble the system output as much as possible.
The model may be tuned by adjusting p. To achieve this task, n mea-
surements of the system output are collected at time ¢;, ¢ = 1,...,n.
Bounded-error parameter estimation consists of finding all values of p
such that the error between the system and model outputs e (¢;,p) =
y (i) — ym (t;, p) remains within some prespecified bounds [e;,€;] for
i=1,...,n. A value of p satisfying e (¢;, p) € [¢;, €] fori=1,...,n, or
equivalently ym (t;,p) € [y (i) — €,y (ti) —¢;] fori = 1,...,n, is said
to be acceptable. The interval [y;] = [y (¢;) — €,y (t;) — ¢;] thus contains
all acceptable model outputs at time #;. Bounded-error parameter esti-
mation aims at characterizing the set of all acceptable parameter vectors
X={plym(p) € [y]}, where yn (p) is the vector of all model outputs
(Ym (t1,P) 5+, Ym (tn,P)) " and where [y] is the box ([yi],..., [ya])"-
This problem may be interpreted as a set-inversion problem, as X may
also be written as X = y.! ([y])

Bounded-error parameter estimation may thus be seen as the chara-
terization of a possibly nonconvex or even non-connected set. Many
other problems in control also require the characterization of sets, for
instance bounded-error state estimation or the determination of value
sets in robust control.

3. HOW TO DEAL WITH SETS?

Even if an exact description of X is sometimes possible, see, e.g., [16],
this is far from being always the case. When X is a convex polytope,
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techniques are available to enclose it in ellipsoids, boxes, simpler poly-
topes, etc. See the references in [12], [13], [14], [17] for more details.

This paper focuses on the enclosure of compact sets that are not nec-
essarily polytopes in unions of non-ovelapping bozxes, with special atten-
tion to nonlinear problems. Such a description can, at least in principle,
approximate compact sets as accurately as desired in the sense, e.g., of
the standard Hausdorff distance [1]. Boxes presents the advantage of
being very easily manipulated by computers, as they form the heart of
interval analysis.

3.1. REPRESENTING UNIONS OF BOXES

It is important to organize the storage of these boxes in memory in
order to facilitate further processing (such as taking the intersection or
union of solution sets, evaluating their image by a function, etc.). The
first idea would be to store the boxes in a [list. However, this structure
would not be very efficient for tasks such as checking whether a box is
included in the set formed by the union of the boxes belonging to a given
list.

To allow a more efficient organization, we shall require that all the
boxes to be considered result from successive bisections of a root box
[x], C R", according to some canonical bisection rule. Such bisec-
tion rule may, for instance, be that each box [x] is cut across its main
component j, defined as j = min {i |w ([z;]) = w ([x]) } , where w (.) de-
notes the width of an interval or a box. The boxes resulting from the
bisection of [x] are L[x] = ([z1],...,[z;, (z; +T;) /2] ,...[zn]) and
R[x] = ([z],..., [(gj +7%;) /2,%;] ,...[zn]). A union of boxes obtained
in this manner will be called a regular subpaving [3], [8], [9]. The set of
regular subpavings whose root box is [x] will be denoted by RSP ([x]).

Many interval algorithms naturally provides solutions that are regular
subpavings.

3.2. BINARY TREES
AND REGULAR SUBPAVINGS

Regular subpavings extend quadtrees and octtrees of computer geom-
etry (see, e.g., [15]) to higher dimensions, and the same type of technique
based on binary trees can be used. The binary tree will be used to de-
scribe the boxes of the regular subpaving and how they were bisected and
selected from the root box. A binary tree 7T is a finite collection of nodes.
T may be empty, or may consist of a single node or of two subtrees: the
left and right subtrees, respectively denoted by LT and RT. Here, each
node represents a box [x], which may be the root box of the subpaving or
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Figure 1 A subpaving and its binary tree representation. The branch in bold
represent the successive bisections and selections of [x], = [0,4] x [0,4] to get
LLR [x], = [2,3] x [0, 2]

a box obtained from the root box by bisections. The shape of the tree is
determined by the bisections and selections which have lead to the boxes
of the regular subpaving, see Figure 3.2. The root node A of the tree T
represented on the right corresponds to the root box [x], = [0,4] X [0, 4]
of the subpaving represented on the left. The fork stemming from A
indicates a bisection of [x],. A has two subtrees, the roots of which are
the nodes B and C. These sibling nodes (they stem from the same node)
respectively represent L [x], = [0,2] x [0,4] and R[x], = [2,4] x [0,4].
The node C has only one subtree, as the box [2,4] x [2, 4] corresponding
to D does not belong to the subpaving. The node E has no children,
it is a leaf, which corresponds to LLR[x], = [2,3] x [0,2]. Each leaf
represents a box belonging to the subpaving. A regular subpaving is
minimal if it has no sibling nodes that are leaves.

Regular subpavings and their binary tree representations will be con-
sidered indifferently, and the vocabulary used for binary trees will also
be used for subpavings. This type of representation allows complex tasks
to be performed by very simple recursive algorithms, as we shall see.

3.3. BASIC OPERATIONS

The four basic operations on regular subpavings to be considered are
reuniting sibling subpavings, taking the union or intersection of sub-
pavings, and testing whether a box is included in a subpaving.

Reuniting sibling subpavings: this operation is intended to sim-
plify the description of subpavings by making them minimal. Con-
sider a box [x] and two regular subpavings X € RSP (L[x]) and Y €
RSP (R[x]). These subpavings are siblings as they have the same par-
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ent box [x]. The reunited subpaving Z = (X|Y) € RSP([x]) is defined
and computed as follows:
Algorithm REUNITE(in: X,Y,[x], out: Z £ (X|Y))
if X = L[x] and Y = R[x], then Z := [x];
else if X = () and Y = (), then Z := 0;
else, LZ := X and RZ :=Y.

Each of these instructions is trivial to implement with a binary tree
representation. For instance, the instructions LZ := X and RZ := Y
amount to grafting the trees X and Y to a node to form the tree Z.

Intersecting subpavings: If X € RSP ([x]) and Y € RSP ([x]),
then Z = X NY is also a subpaving of RSP ([x]). It only contains
the nodes shared by the binary trees representing X and Y, and can be
computed by the following recursive algorithm:

Algorithm INTERSECT(in: X, Y, [x], out: Z=XNY)
if X =0 or Y =0 then return (;
if X = [x] then return Y;
if Y = [x] then return X;
return (INTERSECT(LX, LY, L[x])|INTERSECT(RX, RY, R[x]));

Taking the union of subpavings: If X € RSP ([x]) and Y €
RSP ([x]), then Z = XU Y also belongs to RSP ([x]). Z is computed
by putting together all nodes of the two binary trees representing X and
Y. Again, this can be done recursively:

Algorithm UNION(in: XY, [x], out: Z =X UY)
if X =0 or if Y = [x] then return Y;
if Y = or if X = [x] then return X;
return (UNION(LX, LY, L[x])|UNION(RX, RY, R[x]));

Testing whether a box [z]| is included in a subpaving: X €
RSP ([x]). This test is straightforward in four cases. It holds true if [z]
is empty, or if X is reduced to a single box [x]| and [z] C [x]. It holds
false if X is empty and [z] is not, or if [z] is not in the root box of X.
These basic tests will first be applied to the root of the tree representing
the subpaving. If none of the four simple cases is satisfied, these basic
tests are recursively applied on the left and right subtrees. The following
algorithm summarizes the process:

Algorithm INSIDE(in: [z], X, out: ¢)
if [z] =0 or if X is a box [x] and [z] C [x] then return I;
if X = or if [z]N root(X) = () then return 0;
return (INSIDE([z] N L [x], LX) A INSIDE([z] N R [x], RX)) ;



Note that A corresponds to an interval version of the logical operator
AND. When [z] C X 1 is returned, when [z] N X = () 0 is returned and
when [z] overlaps the boundary of X [0, 1] is returned.

Remark 1 Binary trees are a well-known data structure and many [li-
braries provide this data type. Howewver, in most cases, these libraries
are intended to implement sorting algorithms, and thus not suited to the
implementation of operations on sets. This is why we choose to imple-
ment subpavings from scratch using the PROFIL/BIAS library [11]. The
C++ source code is freely available on request. &

4. INVERSE IMAGE EVALUATION

Let f be a possibly nonlinear function from R” to R™ and let Y be
a regular subpaving included in R™. Inverse image evaluation is the
characterization of X = {x € R* | f(x) € Y} = f~1(Y). Set inversion of
Section 2 is a special case of this problem.

For any subpaving Y C R™ and for any function f admitting an
inclusion function [f](.), a subpaving X containing the set X can be
obtained with the algorithm S1vIA (Set Inverter Via Interval Analysis,
[6], [7]) that will now be described in the context of regular subpavings.

To compute X, SIVIA requires a (possibly very large) search subpaving
S to which X is guaranteed to belong. To facilitate presentation, Figure 4
describes the basic steps of SIVIA, in the case of a search subpaving
reduced to a box [xp]. The general procedure is easily derived from this
simplified example.

To obtain X, the same procedure will be applied to each node of S. For
any given node N of the binary tree describing S, the image of the box
[xn] corresponding to this node is evaluated by the inclusion function
[f] (.). Four cases may be encountered.

1. If [f] ([xn]) has a nonempty intersection with Y, but is not entirely
in Y, then [xx] may contain a part of the solution set (Figure 4a); [xx]
and the associated node N are said to be undetermined. The same test
should be recursively applied on the nodes stemming from N, if they
exist. If N is a leaf, and if the width of [xx] is greater than a prespecified
precision parameter €, [xx] should be bisected (this implies to the growth
of two offsprings from N) and the test should be recursively applied on
these newly generated nodes.

2. If [f] ([xn]) has an empty intersection with Y, [xx] does not belong
to the solution subpaving, and N can be cut off from the solution tree
(Figure 4b).

3. If [f] ([xn]) is entirely in Y, [xy] belongs to the solution subpaving
X, and N is in the solution tree (Figure 4c).
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Figure 2 Four situations encountered by the Sivia algorithm (a) the box [x¢] to be
checked is undetermined and will be bisected; (b) the box [x1] does not intersect Y
and is rejected; (c) the box [x2] is entirely in Y and is stored in the solution subpaving;
(d) the box [x3] is undetermined but deemed to small to be bisected, it is also stored
in the solution subpaving to set an outer approximation X of X upon completion of
the algorithm

4. The last case is depicted on Figure 4d. If the box considered is un-
determined, but its width is lower than ¢, then it is deemed small enough
to be stored in the outer approximation X of the solution subpaving.



The following algorithm summarizes this procedure.
Algorithm SiviA(in: [f],VY,S, ¢, out: X)

[x] :=root(S);

[test] :== INSIDE([f] ([x]),Y);

if [test] = 0 then return (; // Figure 4(b)
if [test] = 1 then return S; // Figure 4(c)
if w ([x]) < € then return S; // Figure 4(d)
return (SIVIA([f],Y, LS, ¢)|SiviA([f], Y, RS,¢)); // Figure 4(a)

The real positive number ¢ is an accuracy parameter, which determines
the maximum width of the boxes that compose X. Recall that the re-
unification operator (| ) performs the union of two sibling subpavings.
This allows SIVIA to return X as a minimal subpaving.

The convergence of the initial version of this algorithm, allowing only
inversion of boxes, has been studied in [6]. The proofs given there easily
extend to the inversion of subpavings.

5. DIRECT IMAGE EVALUATION

Computing the direct image of a subpaving by a function is slightly
more complicated than computing a reciprocal image, because interval
analysis does not provide any inclusion test for the point test #(y) =
(y € £ (X)) directly. Note that even this point test is very difficult to
evaluate in general, contrary to the point test #(x) = (x € f~' (Y))
involved in set inversion. Indeed, to test whether x € £~! (Y), it suffices
to compute f (x) and to check whether it is in Y. On the other hand,
to test whether y € f (X), one must study whether the set of equations
f (x) = y admits at least one solution under the constraint x € X, which
is usually far from simple.

Assume that f is continuous and that an inclusion function [f] for f is
available. The algorithm presented below generates a regular subpaving
Y that contains the image Y of a regular subpaving X by f (see also
8], [9])- Thus Y is an outer approximation of Y. The set Y is included
into the box [f] ([X]) and also into the image by the inclusion function of
the smallest box containing X. The algorithm proceeds in three steps,
namely mincing, evaluation, and regularization (see Figure 5). As with
S1viA, the precision of the outer approximation will be governed by the
real € > 0 to be chosen by the user. During mincing, a non-minimal
regular subpaving X, is built, such that the width of each of its boxes is
less than e. During evaluation, a box [f] ([x]) is computed for each box
[x] of X, and all the resulting boxes are stored into a list } (¢). During
regularization, a regular subpaving Y (£) is computed that contains the
union of all boxes of Y (e). This regularization can be viewed as a
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(a) initial subpaving (c) image boxes
A A

\/

»
'

(b) minced subpaving image subpaving

A

\/
\/

Figure 3 The three steps of IMAGESP. (a) — (b): mincing; (b) — (c): evaluation;
(¢) = (d): regularization

call of SIVIA to invert ) (e) by the identity function. Indeed, since
f (X) C Y (), which is equivalent to f (X) C Id~! () (¢)), one has f (X) C
SIvIA([t], [f] ([X]),€), where [¢] is an inclusion function for ¢ (y) = (y €
Y (¢)), denoted by [t] ([y]) = ([y][€]Y (¢)). The resulting algorithm is
as follows:
Algorithm IMAGESP(in: [f],X, e, out: Y)

X, :=mince(X,¢);

Y (g) = 0

For cach [x] € X., ¥ (¢) = ¥ (¢) U {[f] (1))}

return SIVIA([t], [f] ([X]), €);

Since Y (¢) is not a subpaving, implementation is not trivial, see [8] for
details. The complexity and convergence properties of IMAGESP have
been described in [4] and [8].

6. EXAMPLES

The first example is the characterization of the set
X1 = {(z1,70) € B |z} — 2% + 423 € [-0.1,0.1] }

This set-inversion-problem is solved by Sivia for § = [-3,3] x [-3, 3]
and ¢ = 0.1. The resulting subpaving X is represented on Figure 6(a).
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Figure 4 Illustration of the inverse and direct image evaluation algorithms

The second example is the evaluation of an outer approximation of
the image Xy of X; by the function

— 12— x
f(z1,22) = ( (311:6% j_)(xQ £_|1_)22 > -

With ¢ = 0.1, IMAGESP yields the subpaving X, depicted on Fig-
ure 6(b).



Guaranteed Set Computation with Subpavings 11

The last example is the characterization of the image of Xy by the
inverse of f (.), i.e., X3 = {£7' (X3) } . The function f (.) is not invertible
(in the common sense) in R?. Thus, an explicit form of f~!(.) is not
available for the whole search domain and the problem will be treated
as a set inversion problem. Again, SIVIA is used with S = [—5, 5] x [—5, 5]
and ¢ = 0.1. The solution subpaving X3 is represented on Figure 6(c).
We have X; C f~! (f (Xl)) . The initial set X; is clearly present. The
result is slightly fatter, due to error accumulation during inverse and
direct image evaluation. Additional parts have appeared because f (.) is
only invertible in a set-theoretic sense.

7. CONCLUSIONS

Regular subpavings form an attractive class of basic objects for the
representation of compact sets and for computation on such sets. Simple
tasks such as evaluating the union or intersection of two subpavings
are very easily performed when these subpavings are represented by
binary trees. More sophisticated operations such as inverse or direct
image evaluation are also facilitated. Even if they are restricted to low-
dimensional problems, IMAGESP and SiviA have found application in
nonlinear state estimation problems [9], [10] or in measurement problems
such as grooves dimensioning using remote field eddy current inspection
[2]. IMAGESP is still a very preliminary algorithm that could easily be
improved. Work is under way to take advantage of interval constraint
propagation to improve state estimation algorithms, among others [5].
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