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Variational Bayesian Approximation with scale
mixture prior for inverse problems: a numerical

comparison between three algorithms

Leila Gharsalli, Ali Mohammad-Djafari,
Aurélia Fraysse and Thomas Rodet

Laboratoire des Signaux et Systèmes,
Unité mixte de recherche 8506 (CNRS-SUPELEC-UNIV PARIS SUD)

Supélec, Plateau de Moulon, 3 rue Juliot-Curie, 91192 Gif-sur-Yvette, France

Abstract. Our aim is to solve a linear inverse problem using various methods based on the Varia-
tional Bayesian Approximation (VBA). We choose to take sparsity into account via a scale mixture
prior, more precisely a student-t model. The joint posterior of the unknown and hidden variable of
the mixtures is approximated via the VBA. To do this approximation, classically the alternate algo-
rithm is used. But this method is not the most efficient. Recently other optimization algorithms have
been proposed; indeed classical iterative algorithms of optimization such as the steepest descent
method and the conjugate gradient have been studied in the space of the probability densities in-
volved in the Bayesian methodology to treat this problem. The main object of this work is to present
these three algorithms and a numerical comparison of their performances.

INTRODUCTION

In many inverse problems in signal processing we want to infer on an unknown signal

through an observed one related between them through any linear or non linear trans-

formation. In the case of linear relation and when discretized, we arrive to the following

model of observation:

g = H f + ε (1)

where f = [ f1, f2, ..., fN ] ∈ R N represents the unknowns to be estimated, g =
[g1,g2, ...,gM] ∈ R M the observed data, ε the errors of modelling and measurement and

H ∈ MN×M the matrix of the system response. In practice, the dimension of this matrix

is huge thus the computation of the direct solution f̂ = H−1g even if it exists, is too

high. Hence the character of ill-posed problem. A classical approach when dealing with

these ill-posed problems is to introduce additional information. This is the shape of the

Bayesian framework [9] which relates the probability of the hypothesis from both the

currently achieved information (data) and previous knowldege (prior distribution) in

order to compute the posterior distribution of parameters.

To obtain the posterior distribution, we need to relate the likelihood and the prior

distribution according to the Bayes formula

p( f |g) = p( f ,g)

p(g)
=

p(g| f ) p( f )

p(g)
(2)



where p( f |g) is the posterior distribution and p(g| f ) is the likelihood.

In practice, most of the Bayesian approaches use Markov Chain Monte Carlo

(MCMC) [15] algorithms to estimate the posterior mean. However, for large dimen-

sional problems involving a complicated covariance matrix, MCMC methods does not

give a good results, in addition to their high computational cost.

Therefore, an alternative methodology called Variational Bayesian (VB) was pro-

posed in 1995 by D. Mackay [12], having applications in computer sciences [10], signal

processing for different applications such as recursives methods [3], deconvolution [17]

and source separation [8] etc. The main idea is to approximate the joint posterior of the

unknown by a separable density. This method could be more effecient than MCMC in

large dimensional cases especially when the covariance matrix is no longer convertible.

Besides, as the computation are analytical, the rate of convergence is better than MCMC

methods. This VB methodology is the main point of this paper.

In the following, based on our model (1) and assuming that the noise is an iid Gaussian

vector N (0,σ2
εI), then thanks to (2) we obtain

p(g| f ) = (2πvε)
−N/2 exp

{
−‖g−H f‖2

2vε

}
(3)

We introduce prior information in the data and we take sparsity into account. In

fact, different prior model have been used to enforce sparsity [13], such as the student

model where the most general case is given by Gaussian Vector Scale Mixture (GVSM)

[1]. We consider then ∀ j ∈ {1, ...,N}, f j destributed following a separable heavy tailed

distribution. We suppose that f j ∼ u j/
√

z j where u j ∼ N (u j|0,σ2
f I) and z j a precision

parameter chosen as a Gamma random variable i.e z j ∼ G(z j|α,β). Then ∀ j ∈ {1, ...,N}
we have p( f j,z j) ∼ N ( f j|0,σ f /z j)G(z j|α,β). And ∀ j ∈ {1, ...,N} the density of f j is

given by

p( f j) =
∫

R

√
z j

(2πv f )1/2
exp

{
−

z j f 2
j

2v f

}
z

α j−1

j

β
α j

j exp
{
−β jz j

}

Γ(α j)
dz j (4)

Thereby we take the hidden variable z into account and thanks to (3) and (4) the

student-t distribution is conjugate with the Gaussian likelihood which leads to the fol-

lowing posterior distribution

p( f ,z|g) ∝v
M/2
ε exp

{−‖g−H f‖2

2vε

}
N

∏
j=1

(z j/v f )
1/2 exp

{
−

z j f 2
j

2v f

}

×
β

α j

j z
α j−1

j exp
{
−β jz j

}

Γ(α j)

(5)

However this posterior distribution is not tractable analytically due to two main

drawbacks: the first one is the link between f and z which can be resolved using the VB

approach presented later in the paper. The second drawback is related to the dimension



of the vector f . When the dimension increases the correlation matrix becomes too large

to be inverted effenciently. This problem can be solved by the two new algorithms

presented in next sections.

The outline of the rest of this paper is as follows: in section 2 we briefly review the

VBA and in section 3 and 4 we present the new algorithms. Finally we conclude by a

numerical comparison between the three methods and present some perspectives of this

work.

VARIATIONNAL BAYESIAN METHOD

The purpose of the classical VBA [6, 12] is to find the best approximating law within a

class of approximating laws to the exact posterior distribution by minimizing the Kull-

back Leibler divergence. However, minimizing the Kullback divergence is equivalent

to maximizing the free negative energy F (q) (a term derived from statistical physics)

which is given by

F (q) =
∫

R N
q( f ,z) ln

p(g, f ,z)

q( f ,z)
d f dz (6)

where q is an approximate posterior probability density (pdf) taken as a separable law

q( f ,z) = ∏q1( f )q2(z) = ∏ j q1 j( f j)∏ j q2 j(z j).
We can thus resume the objective of the VBA method by finding

qopt = argmax
q

F (q) (7)

And assuming the separability we can obtain an analytic form for q (see [6] for varia-

tional calculus):

q j
k+1( f j) =

1

K j
exp
{
〈ln p(g, f ,z)〉

∏ j 6=i qk
i ( fi)q(k+1)(z)

}
(8)

where K j is the normalizing factor.

Although the solution is obtained analytically, (8) does not have an explicit form. This

solution is hardly tractable in practice, and it is approximated using iterative methods

that impose the use of conjugate prior to obtain the posterior law belonging to a known

family. Thus optimizing the posterior turns out to be an optimization of its distribution

parameters.

Considering the model (1), we choose a conjugate prior for f and z and the optimal

approximating distribution of f is known to belong to a Gaussian family, and a Gamma

one for the prior probability density function of z. So we initialize the two densities as

{
q
(0)
1 ( f ) = ∏ j N ( f j|m(0)

j ,v
(0)
j ) = N ( f |m(0),Diag(v(0)))

q
(0)
2 (z) = ∏ j G(z j|α(0)

j ,β
(0)
j ) = G(z|α(0),β(0))

where m(0) = [m
(0)
1 ,m

(0)
2 , ...,m

(0)
N ]′ ∈ R N is the vector of means, v(0) ∈ R N is the vector

of initial variances and Diag(v(0)) is a diagonal matrix with (v(0)) on its diagonal.



Thanks to the conjugacy property, if we denote by k the number of iterations then

during the iterations, q
(k)
1 ( f ) and q

(k)
2 (z) will stay in the same families and we obtain

{
q
(k)
1 ( f ) = ∏ j N ( f j|m̃(k)

j , ṽ
(k)
j ) = N ( f |m̃(k), ṽ(k))

q
(k)
2 (z) = ∏ j G(z j|α̃(k)

j , β̃
(k)
j ) = G(z|α̃(k), β̃

(k)
)

(9)

Based on the equation (7) we deduce that the optimization problem can be tackled

following the alternating optimization scheme

{
q̂1 = argmaxq1

{F (q1 q̂2)}
q̂2 = argmaxq2

{F (q̂1 q2)} (10)

For the approximation of q2(z) it is easy to see from (5) that p(z| f ,g) is separable,

thus all the zi can be computed simultaneously knowing only q1( f ). And we obtain:





α̃
(k+1)
j = α j +1/2

β̃
(k+1)
j =

m
(k)
j

2
+v

(k)
j

2v f
+β j

(11)

However, for the approximation of q1( f ) we use the updating equations (8) and (5),

that eventually result in the following updating equations (see [7] for details):





ṽ
(k+1)
j =

(
1
v f

α̃ j/β̃
(k+1)
j + 1

vε
diag(HtH) j

)−1

m̃
(k+1)
j =

v
(k+1)
j

vε

([
Ht(g−Hm(k))

]
j
−diag(HtH) j m

(k)
j

)
.

(12)

In the following we present methods meant to solve the functional optimization

problem given by the VBA more efficiently than the approaches suggested by (8).

VARIATIONAL BAYESIAN DESCENT GRADIENT LIKE

ALGORITHM

The maximization problem (7) is considered as an infinite dimensional concave

problem subject to the positivity assumption and the normalization constraint;

∀i,
∫

qi( fi) d fi = 1. It would be convenient to determine the approximating den-

sity using the gradient descent method. Therefore, choosing a workspace adapted for

Variational Bayesian methodolgy where classical optimization algorithms still hold is

an important point. In [14], such a problem was treated, then inspired by that and by the

exponentiated gradient descent in [11] a new iterative algorithm was proposed in [7]. It

is essentially based on a measure theory result which is the Radon-Nykodym theorem,

see for instance [16]. The main idea is that a measurable function h(k) exists, precisely

h(k) ∈ L1(q(k)) such that

q(k+1)( d f ) = h(k)( f )q(k)( d f ) (13)



where f ∈ R N . Likewise the classical scheme given by the gradient descent method [11]

leads to the construction h(k) as the Frechet derivate of F at q(k) [4]. So we obtain

q(k+1) = K exp
{

λk dJ(q(k), f )
}

q(k) (14)

where λk is the algorithm step size at the iteration k which corresponds to the step of

descent whereas dJ(q(k), f ) is given by

∀ j ∈ {1, ...,N}, ∀ f ∈ R N , d jJ(q j, f ) = 〈ln p(g, f )〉
∏ j 6=i qi( f i)

− lnq j −1 (15)

Then, let k ≥ 0 be given and q(k) be constructed, we consider q(λ) given for λ ≥ 0 by

∀ f ∈ R n, q
(λ)
1 ( f ) ∝ q

(k)
1 ( f )

(

∏
j

exp
{

d jJ(q
(k)
j , f j)

})λk

∝ q
(k)
1 ( f )


∏

j

exp

{
〈ln p(g, f )〉

∏ j 6=i q
(k)
i ( fi)

}

q
(k)
1 j ( f j)




λk

∝ q
(k)
1 ( f )


∏

j

q
(r)
j ( f j)

q
(k)
1 j ( f j)




λk

(16)

Finally we obtain





ṽ
(λ)
j =

v
(r)
j v

(k)
j

v
(r)
j +λ(v

(k)
j − v

(r)
j )

m̃
(λ)
j =

m
(k)
j v

(r)
j +λ(m

(r)
j v

(k)
j −m

(k)
j v

(r)
j )

v
(r)
j +λ(v

(k)
j − v

(r)
j )

(17)

where





v
(r)
j =

(
1
v f

α̃ j/β̃
(k+1)
j + 1

vε
diag(HtH) j

)−1

m
(r)
j =

v
(r)
j

vε

([
Ht(g−Hm(k))

]
j
−diag(HtH) j m

(k)
j

) (18)

This new algorithm allows to minimize jointly all (q j) unlike the classical Variational

Bayesian algorithm. Besides, a suboptimal stepsize λsubopt can be chosen in order to

optimize the convergence rate. See [7] for more details on this method.



VARIATIONAL BAYESIAN CONJUGATE GRADIENT LIKE

ALGORITHM

As the gradient descent algorithm is known for its slow rate of convergence, a natural

idea to extend the previous method was to consider the case of the conjugate gradient

algorithm [2]. However, its use in the metric space of the probability density encountered

problems, because of the absence of the notion of inner product in that space which

allows in a normal situation to have the conjugate directions.

But we can still note, if we follow the previous construction steps and thanks to the

Radon-Nykodym theorem, that we can arrive to the following update equation

q
(λβ)
1 ( f ) = q

(k)
1 ( f )

(
q
(r)
1 ( f )

q
(k)
1 ( f )

)(λ)(
q
(k)
1 ( f )

q
(k−1)
1 ( f )

)(λβ)

(19)

where
q
(k)
1

q
(k−1)
1

is the descent direction at the previous estimate, q1(r) is determined by

(18) and β is the conjugate parameter which is difficult to determinate. That’s why in

our application later, we are going to consider only the case where β = 1 which is a

particular case known for the correction of Vignes [5]. We notice also that for β = 0 we

are simply in the domain of the algorithm presented in [7].

Applying this algorithm to estimate q2( f ) we obtain





ṽ
(λβ)
j =

(
v(r)v(k)v(k−1)

)
j

(v(r)v(k−1)) j +λ
(
v(k−1)δ(k)+βv(r)δ(k−1)

)
j

m̃
(λβ)
j =

(m(k)v(k−1)v(r)) j +λ
(

βv(r)∆(k)+ v(k−1)∆(k−1)
)

j

(v(k−1)v(r)) j +λ
(
v(k−1)δ(k)+βv(r)δ(k−1)

)
j

(20)

with δ(k) = v(k)−v(r), δ(k−1) = v(k−1)−v(k), ∆(k) = m(k)v(k−1)−m(k−1)v(k) and ∆(k−1) =
m(r)v(k)−m(k)v(r).

Analyzing (12), (18) and (20) we notice that the common part of those three algo-

rithms is the alternating optimzation scheme and





ĝ = Hm

δg = g− ĝ

δ f = Htδg
(21)

are the most time consuming operators that can cause some implementation issues. But

as in many inverse problems where we do not have access to the matrix H, we can

still compute forward operator: Hm → ĝ, which corresponds to the Radon operator in

Computed Tomography (CT) for example , and the adjoint operator: Htδg → δ f , like

Backprojection in CT. We may also need to compute the diagonal elements of [HtH] by

developing algorithms that provide this.



RESULTS

To illustrate our results, we choose to treat the linear inverse problem given by (1) with

a non invertible matrix H coming from a small tomographic problem. The test image

(64 × 64) and the collected data are displayed in Fig. 1. The simulation parameters

are presented in Tab. 1. There are 32 various angular positions uniformly spaced over

[0,180[. For each projection, 95 detector cells are performed. And we add to data a white

Gaussian noise (iid) with standard deviation equal to 0.3. The programming language

used to implement algorithms is MATLAB.

TABLE 1. Simulation parameters

Image test Peaks on the image Angles of projection Detector cells Noise

Sparse phantom 7 32 95 0.3

The three approaches are initialized with a zero mean and a variance equal to one,

the hyperparameters ve, v f and α are respectively fixed to 1, 0.05, and 0.1. The re-

construction results collected in Fig. 3. Furthermore, Tab. 2 show us that the two new

algorithms have almost the same reconstruction quality than the classical VB. Besides,

by comparing the exucution time we see that the two new algorithms are faster than the

classical VB. Fig. 2 shows also the performance of the free negative energy criterion for

the new methods and clearly demonstrates their interesting rate of convergence for 150

iterations of the algorithms. We can also check other results in the referenced paper [7]

of these methods and their reconstruction properties on a large dimensional dictionary

application problem.

TABLE 2. Execution Time
Methods FBP Classical VB VB Grad VB Conjugate Grad (β = 1)

Iterations 1 15 150 150

SNR (db) -2.04 5.69 2.19 7.11

Time cpu (s) 0.036 579.6 8.77 8.93

(a) (b)

FIGURE 1. (a) True image of 7 peaks (b) Sinogram



FIGURE 2. Performance of the free negative energy criterion for the two new algorithms

(a) (b)

(c) (d)

FIGURE 3. (a) Original image with 7 peaks (b) VB Classique (c) VB Grad (d) VB Conjugate Grad

(β = 1)



CONCLUSIONS AND PERSPECTIVES

The sparsity is requiered property in many signal and image processing applications. In

this paper first we reviewed the main idea of the Variational Bayesian Approximation for

ill-posed inverse problems. The student-t model was used to enforce sparsity. Then we

presented two new algorithms involved in the Bayesian methodology and able to provide

better results than the classical methods. In a next step we want to test the performences

of these methods in non linear (bi-linear or multi-linear) cases like diffraction wave

tomography (Microwave, optical..).
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