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Abstract

During the COVID‐19 pandemic countries invested

significant amounts of resources into its containment. In

early stages of the pandemic most of the (nonpharmaceu-

tical) interventions can be classified into two groups: (i)

testing and identification of infected individuals, (ii) social

distancing measures to reduce the transmission probabilit-

ies. Furthermore, both groups of measures may, in

principle, be targeted at certain subgroups of a networked

population. To study such a problem, we propose an

extension of the SIR model with additional compartments

for quarantine and different courses of the disease across

several network nodes. We develop the structure of the

optimal allocation and study a numerical example of three

symmetric regions that are subject to an asymmetric

progression of the disease (starting from an initial hotspot).

Key findings include that (i) for our calibrations policies

are chosen in a “flattening‐the‐curve,” avoiding hospital

congestion; (ii) policies shift from containing spillovers

from the hotspot initially to establishing a symmetric

pattern of the disease; and (iii) testing that can be

effectively targeted allows to reduce substantially the

duration of the disease, hospital congestion and the total

cost, both in terms of lives lost and economic costs.
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1 | INTRODUCTION

Since the beginning of 2020 the virus SARS‐CoV‐2 has been spreading around the world at an
incredible pace; and by May 2022 COVID‐19 (the disease induced by the virus) has cost more
than 6.28 million lives.1 Before an effective and safe vaccination became available in sufficient
quantities, which in case of COVID‐19 took about a year, mainly two instruments were
available to governments: social distancing and testing.2

Social distancing is aimed at reducing the spread of the virus, and for the purpose of our
paper, comprises—in a broad sense—measures such as locking down nonessential parts of the
economy, travel restrictions, wearing masks in public, requiring distance between people in
public spaces, and so on. Many of these measures have been used for decades to fight against
infectious diseases (e.g., the plague, leprosy, or the Spanish flu) and can be implemented
quickly but at potentially high costs to the economy and the individual (including disutility).

Testing and contract tracing, on the other hand, is essential to identify and isolate infected people
and break infection chains. It is not surprising that many countries invested significantly into the
development and deployment of such measures. While these relatively modern instruments are very
useful for identifying and quarantining infected individuals and, thereby, allowing to gain control
over the epidemic without locking down large parts of the population, tests and effective means of
contact tracing have been in short supply, especially during the early phase of the pandemic and
under circumstances of overwhelming infection rates.

The implementation of these measures varies substantially across countries. While social
distancing and lockdown measures are commonly used with different intensity and focus and
duration, testing tracing strategies are used very differently. South Korea, for example,
concentrates on testing with a very efficient tracing strategy to detect infected people before
they develop symptoms and are spreading around (testing with efficient tracing). Other
countries, like Austria, try to test large parts of the population regularly and are implementing
tests as a precondition for public entities like restaurants, events, cinemas, and so on (unfocused
testing). As a third strategy a couple of countries are testing only people that develop symptoms.
Regular testing of people without symptoms is not foreseen (no testing).

While there is a growing literature that evaluates social distance and lockdown measures
(see the literature review later in this section), the question how testing and tracing should be
implemented optimally and how it interacts with distance and lockdown measures has not
been addressed so far. Another aspect that has attracted only scarce attention is the question
whether these instruments should be applied uniformly across the population or should be
varied according to the specific circumstances (in terms of localized infection rates and specific
characteristics) of subgroups. This reflects the controversial public and political debate on
whether or not targeted travel restrictions are appropriate, and whether social distancing
should be focused in a way that shields only vulnerable groups but allows free interaction
among others. Consequently our analysis then also links into a parallel debate on whether
testing capacities should be focused on particular regional hotspots or certain subgroups of the

1https://covid19.who.int/, last access May 30, 2022.
2Note that while our analysis is motivated by the ongoing COVID‐19 pandemic (including the calibration of the
numerical analysis), our model and the epidemic, economic and demographic structures described as well as the policy
mechanisms generalize to many other forms of present‐day epidemics. Thus while some of the insights on optimal
testing and lockdown policies may come too late in the fight against COVID‐19, the insights are worth consideration for
future pandemic events.
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population (accompanied by sophisticated tracing strategies), at least as long as test‐kits are in
limited supply.

Ultimately these debates are about how to deal with heterogeneity across the population in
two dimensions: (i) The state of disease progression, which typically varies across regions—and
sometimes across population subgroups. (ii) The characteristics of subgroups of the population,
where some are more vulnerable in a medical sense, that is, more prone to get infected and/or
suffer from a severe course of the disease; and some may be more vulnerable economically, as
captured by them facing higher costs of social distancing. In the following we discuss the
general properties of these two dimensions of heterogeneity.

Different regions: As a pandemic, COVID‐19 has turned into a problem at global scale. This
notwithstanding, countries and even regions differ in the starting date of the epidemic as well as in
the pattern of epidemic progression. The advent of several waves of COVID‐19 for many countries
also speaks evidence to the fact of cyclical patterns, where countries that had acquired control over
the disease, lost it again due to spill‐overs from other countries. Another crucial issue concerning
regionality are differences in the availability of intensive care capacities, with large variation even for
countries that are close to each other.3 Similarly, intensive care units (ICU) may be regionally
centralized, especially in small countries. For all of these reasons, policy measures may need to be
regionally differentiated in their timing, as well as in their intensity.

Heterogeneous population: Scientists agree that COVID‐19 is a highly contagious disease that can
take widely different courses. While it is mostly harmless for young and healthy people (although a
number of long‐term effects are already recorded4), it can get very critical and even lead to death for
old people or people with pre‐existing illnesses. Moreover, the social behavior of people of different
age‐groups, different professions (people working in the health care sector, or as blue or white collar
workers) is heterogeneous (social and working contacts are very different for children, blue and
White collared workers, retired people). Hence, the population has to be subdivided in (disjoint)
heterogeneous groups with respect to their infection risk, their probability to infect others and their
susceptibility to experience a heavy course of the disease.

These arguments underline the importance of extending the existing epidemiological
models in two dimensions: (a) to allow for the interaction of heterogeneous subgroups and for
the targeting of policy‐instruments to certain groups; and (b) to allow for a more thorough
analysis of the role of testing within a setting of optimal policy‐making. While attempts have
been made in both directions, we will demonstrate in our literature review that these are to
some extent patchy and focusing on specific contexts (e.g., analysis of exogenous variations in
[nonoptimal] policies within decentralized economies). Thus, we believe to make headway
with a coherent analysis of optimal policy‐making from a social planner perspective.

Additional compartments for quarantine and different courses of the disease (light, heavy,
and detected). We consider the population to be distributed across a network (representing
different regions or social groups, respectively) and model the diffusion of the virus between its
nodes. We allow for heterogeneity across the network: Regions can be heterogeneous with
respect to size and population density (implying different patterns of population interaction);
social groups may differ with respect to parameters such as mortality and the number of
interactions with other groups. Policy measures (testing and social distance/contact reduction)
are allowed to be targeted in a way that minimizes the social cost of the pandemic. Tests are

3For example, Germany: 33.9, Italy: 8.6 intensive care beds per 100,000 people (year 2020). See de.statista.com for
details.
4For example, higher risk for a heart attack or a stroke, reduced lung capacity, taste disorder.
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provided subject to a capacity constraint, and we consider variation in the effectiveness of
testing (depending e.g., on whether or not tests can be targeted in the presence of contact
tracing), which allows us to study the interaction of test efficacy with the level of contact
reduction.

After providing and interpreting the first‐order conditions that govern optimal policy‐
making and deriving properties of the optimal solution, we turn to numerical analysis. Here,
we study the optimal control of a COVID‐19‐like disease5 spreading across three different
regions. The regions are assumed to be symmetric and to differ only in the starting conditions
(i.e., the disease spreads from an initial hotspot) such that the effects from the network
structure are not dominated by regional asymmetries. We compare the optimal allocation and
outcomes across four regimes: a regime of uncontrolled disease progression, a regime with
lockdowns without any testing, and for two regimes with lockdown and testing, allowing for
targeted testing in one case. While the social cost (in terms of economic loss, medical treatment
costs, and value of lives lost) is reduced significantly by a relatively rigorous lockdown, the
introduction of testing only yields significant cost reductions if tests can be targeted. Moreover,
targeted testing changes the testing and lockdown strategy substantially. Whereas tests are
allocated in a cyclical sequence across different regions/subgroups of the population, following
high infection rates; targeted tests follow this pattern only initially but are subsequently shared
equally across the subgroups. Policies are aimed at preventing spillover of the disease from the
hotspot, but are then geared to the harmonization of the disease course across groups. For our
parametrization, they are of a “flattening‐of‐the‐curve” type.

The remainder of the paper is organized as follows. Before introducing our model in greater detail
we provide a brief overview of the recent literature on epidemiological models concerning the
COVID‐19 pandemic in Section 2. Section 3 presents an extended SIR‐type model over a network.
Section 4 continues with optimality conditions and properties of the optimal solution. A numerical
scenario in which the disease spreads across three symmetric regions but starting from an
asymmetric distribution of initial infections, is developed and analyzed in Section 5. Section 6
concludes. In the Supporting Information material, we present a second numerical scenario,
involving a network composed of three population subgroups (blue‐collar workers facing high costs
of lockdown, White‐collar workers facing low costs of lockdown, vulnerable individuals, for example,
the elderly, with poorer health outlook upon infection).

2 | LITERATURE REVIEW

Within this literature review, we restrict ourselves to a selection of papers that consider optimal
policy making in a dynamic framework (i.e., in particular compartment models6 considered
with optimal control theory) involving some heterogeneity across the population.

5We chose the epidemiological parameters of the disease such as transmission, hospitalization, mortality, and recovery
rates to reflect those of COVID‐19 found in the literature (see Section 5.1 for information on the calibration). However,
we do not seek to replicate all aspects of what continues to be an emerging condition but give insight into optimal
epidemiological strategies for potential new infectious diseases in the future, which pose risks similar to COVID‐19.
6SIR models have been used to study infection dynamics for almost 100 years starting with the seminal paper by
Kermack and McKendrick (1927). The enormous impact of the COVID‐19 pandemic has lead to a large number of
recent papers using this type of models to analyze different aspects of the crisis. For a general and broad literature
review we refer to Bloom et al. (2022).
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When dealing with the outbreak of an infectious disease, it is important to understand the
impact of different policy measures. Optimal control theory provides tools to determine the
optimal application of control instruments over the course of an epidemic to keep the direct
and indirect harms of the disease as low as possible. While several papers consider only health
related objectives (see e.g., Hansen & Day, 2011 or Bliman et al., 2021), there is also a growing
literature that takes economic consequences of policy measures into account too. The optimal
timing of a lockdown is studied in Caulkins et al. (2020), who found that the optimal duration
of a lockdown decreases in its starting time. They analyze the trade off between economic
damage and lost lives and identify conditions under which no lockdown, an intermediate and a
permanent lockdown is optimal. Caulkins et al. (2021) extend this study by not only allowing
the length of the lockdown to be optimally determined but also its intensity. Furthermore, they
incorporate the impact of lockdown fatigue, that is, a declining adherence to policy measures
related to their duration, on the optimal strategy. They find that the optimal solution is history‐
dependent and that under certain conditions multiple lockdowns can be optimal. Caulkins
et al. (2022) adjust the models of Caulkins et al. (2020, 2021) for more contagious virus
mutations. Alvarez et al. (2021) analyze how the effectiveness of a lockdown, the fatality rate
and the value of a statistical life affect the optimal lockdown policy. Not surpisingly, a low
fatality rate or a low valued statistical life lead to a shorter, less intense lockdown, whereas a
more effective lockdown increases the duration of the lockdown instead of decreasing it. The
optimal lockdown policy is also studied in Federico and Ferrari (2021). They use an SIR
framework where they assume the transmission rate to evolve according to a stochastic
differential equation. They characterize three distinct phases in a pandemic: in the first phase,
there should be no lockdown, while in the second phase it should be vigorous. In the third
phase of the pandemic the lockdown should be moderate. The optimal containment measures
to reduce the spreading of the disease, taking economic damage into account, have also been
investigated by Aspri et al. (2020). Among other things, they emphasize the importance of
testing which they find to enable the almost entire elimination of mortality at low economic
costs in a one‐region/group model. El Ouardighi et al. (2021) take account of social fatigue and
popular discontent when determining the optimal application of nonpharmaceutical
interventions (mobility restrictions, isolation, and securing social interactions) over time.

Acemoglu et al. (2021) emphasize the importance of distinguishing between different risk
groups when designing policy measures. Their results suggests a strict and long lockdown for
the most vulnerable population group and a less strict lockdown for all other groups. Richard
et al. (2021) focus on nonpharmaceutical interventions in an age‐structured optimal control
framework. To minimize deaths and control costs, they recommend a strategy where control
measures vary throughout the pandemic and are more intense for the older population.
Bonnans and Gianatti (2020) consider an age‐structured population and analyze the optimal
confinement strategy. The optimal vaccination strategy for different population groups is
considered by Grundel et al. (2021). In their optimal control problem they minimize the
amount of social distancing subject to the constraints that the number of people requiring ICU
care remains beyond a certain threshold and that the availability of vaccines is limited. In
principle, they recommend vaccinating people with high contact rates first, however, they also
find situations in which vaccinating high‐risk groups is preferable. Angelov et al. (2021) use a
distributed optimal control epidemiological model to study the impact of prioritization of age
groups with respect to vaccination. They find that a random distribution of vaccines is efficient
in reducing the overall number of infections, however, a lower mortality is obtained through
prioritization of the elderly and of those groups with the highest contact rates. Fabbri et al.
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(2021) also take account of age‐structure within a SIR framework in a more theoretically
oriented paper that provides sufficient optimality conditions.

To analyze whether or not policies should vary between different regions in Italy, Carli et al.
(2020) extend their SIR‐based framework to a multiregion model. They focus on nonpharmaceutical
interventions such as lockdowns and mobility restrictions between different regions. They propose a
model predictive control approach to handle potential deviations of the predictive model from the
actual development of a pandemic. They compare the impact of interventions that are uniformly
applied to different Italian regions and interventions that are applied in a differentiated manner. The
considered objective is to minimize economic and health‐related costs. They find that the model
predictive control approach leads to substantially lower total costs than different benchmark control
strategies and propose it as a suitable tool to mitigate future COVID‐19 waves. To determine the
optimal vaccine distribution among different priority groups, Gamchi et al. (2021) embed a
multiregion SIR model with multiple priority groups into a vehicle routing problem. By means of the
weighted augmented epsilon constraint method, they study the trade‐off between the social costs and
the costs of vaccinations and the fixed costs of vehicles. The main focus of their analysis is on the
solution approach that combines the combinatorial VRP with an optimal control problem in a
multiobjective framework. Numerical illustrations, however, confirm the importance of paying
attention to high‐risk groups.

Different risk‐groups, testing, and the impact of social distancing measures are also
considered in Gollier (2020). In this paper, confinement strategies are compared where the
degree of confinement is either constant over time or can assume two different levels,
depending on the number of infected. Our paper extends this study by optimally determining
the degree of testing and contact‐reducing measures.

Gori et al. (2021) focus on the economic impact of the COVID‐19 pandemic and analyse the
impact of testing to avoid costly lockdowns in a framework that does not differentiate between
different regions or population groups, but they explicitly consider the dynamics of capital. The
duration of a lockdown is determined by a feedback rule, which depends, in particular, on the
prevalence. Lockdown and testing intensity are determined optimally, however, they are
assumed to be constant over time. In our paper, we allow the intensity of social distancing
measures and testing to vary over time.

3 | SIR ‐TYPE MODEL

For the epidemic dynamics, we extend the well‐known SIR model (see Kermack &
McKendrick, 1927) over a network Ω. The network consists of  Ω (denoting the cardinality
ofΩ) network nodes representing different population groups or distribution according to space
(i.e., geographical location).7 At every node ∈j Ω we consider the following seven
compartments: susceptible individuals S t( )j , infected individuals without or with light
symptoms L t( )j , infected individuals without or with light symptoms that have been detected
by a positive test D t( )j , infected individuals with heavy symptoms H t( )j , recovered individuals
having never been detected R t( )j

L , recovered individuals having been detected R t( )j
D , and

7To shorten the notation we will often use the expression (network) node ∈j Ω for referring to a specific group our
region.
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deceased individuals M t( )j .8 Table 1 summarizes the seven compartments of our network
model and illustrates the refinements in comparison to the classical SIR model.

Figure 1 illustrates the flows between the different compartments on each node ∈j Ω

of the network. The compartments in the gray boxes are grouped into the susceptible
population (as a source of new infections), the infected population (red—responsible for
new infections), the quarantined population (blue—infected population without contact
to the susceptible population), and the immune population (green—unable to infect
susceptibles and to acquire an infection, i.e., the sink). The flows generally follow the
different courses of progression of the infection. Susceptibles can get infected and initially
only suffer light symptoms (in every scenario), that is, become a light case. Subsequently,
there are three potential paths of progression: (i) a light case can recover at rate αL , (ii) a
light case can develop more severe symptoms and escalate to a heavy case in need of
hospital treatment, (iii) a light case can be detected and diagnosed by being tested. In case
(i) the individual becomes part of the undiagnosed recovered compartment, which are
subsequently assumed to be immunized.9 A heavy case in (ii) is automatically isolated in
the hospital and does not contribute to the spread of the infection any more. A heavy case
recovers at rate αH and dies at rate μH . Accordingly, the deceased are counted in the
compartment of total deaths, while upon recovery individuals are counted as diagnosed
recovered cases. The diagnosed light cases in (iii) also do not contribute to the infection

TABLE 1 Compartments (state variables) of the extended SIR model

Symbol Description Abbreviation Classical SIR model

S t( )j Susceptibles S t( ) susceptibles

L t( )j Infected without or with light symptoms Light cases

D t( )j Diagnosed light cases detected through testing Diagnosed cases I t( ) infected

H t( )j Infected with heavy symptoms (hospitalized) Heavy cases

R t( )j
L Recovered light cases not detected during

infection
Recovered light cases

R t( ) recovered

R t( )j
D Recovered heavy and diagnosed light cases Recovered diagnosed cases

M t( )j Deceased Outflow

Note: The first three columns show the mathematical symbol, the description and the abbreviation used in the paper. The last
column relates the compartments to those of the classical SIR model.

8As we are considering testing effort as a control variable, it is necessary to distinguish recovered individuals according
to whether or not their infection was detected. Recovered that were detected (through testing or through a heavy course
of disease) are assumed to be immune (at least for several months) implying that they are exempt from further testing.
In contrast, recovered individuals that remained undetected cannot be distinguished from susceptibles, implying that
they will be tested with the same effort.
9The ongoing development of the COVID‐19 pandemic has shown that loss of immunity (obtained through infection or
vaccination) over time significantly contributes to the infection dynamics. As this loss of immunity can have multiple
reasons like the diminishing efficacy of vaccinations or the emergence of new mutations of the virus, significant
modeling effort is required to adequately reflect this aspect of the COVID‐19 pandemic. While we are addressing some
of these issues in upcoming work, we rather focus the present analysis on the network effects within a more standard
SIR model without possibilities for reinfection.
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dynamics as they are isolated (e.g., in home isolation). Being isolated they can either
recover or escalate to a heavy case analogously to the undetected light cases. However,
their recovery and escalation rates may differ, as an early diagnosis allows for potential
treatment and the prevention of escalation for these specific cases.

The controls are denoted in the gray ellipses and consist of contact reduction measures and
testing efforts. While contact reduction impacts the flow from susceptibles to light cases, testing
efforts affect the flow from light cases to diagnosed light cases. Both of these channels are
indicated with dashed arrows in Figure 1.

The network structure of our framework allows us to model a population that is
heterogeneous with respect to its spatial distribution and its epidemiologically relevant
characteristics, such as profession, infection and mortality risk, system relevance (among
others). Furthermore, these subgroups interact according to their “interconnections”
along the arcs10 (i.e., individuals move between the compartments of the same node,11

where the size of the flow possibly depends on the interaction with other nodes), which
enables us to describe complex infection dynamics across different subpopulations.
For simplicity (and due to the relatively short time horizon of the pandemic) we
abstract from modeling population inflow (i.e., births or migration) and natural outflow
(i.e., non‐COVID‐19 mortality). Following from the network structure of Ω and the state
variables presented in Figure 1 at each node, our framework consists of  7 × Ω state
variables in total.

In the following sections, we will present the dynamics of each state variable, the policy
maker's objective and cost functions, and we conclude by presenting the complete problem
formulation.

FIGURE 1 Flow chart of the SIR‐type model. Gray boxes: compartments, gray ellipses: controls, black
arrows: flows between the compartments, dashed arrows: flows that can be changed by controls.

10Note that in general we can assumeΩ to be a continuous space. The formulation of the dynamics and the derivation
of the optimality conditions are quite similar. Then the resulting model is a distributed parameter optimal control
model.
11Note that we abstract from flows between different nodes, i.e., we do not allow migration between the different
regional or social groups within the network.
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3.1 | Dynamical system

For the presentation of the state dynamics we follow the flows between the states as in Figure 1.
Susceptibles at node ∈j Ω are assumed to be in contact with other susceptibles, light cases or

recovered individuals (diagnosed cases are isolated at home and heavy cases are isolated in a hospital)
of any node ∈k Ω (i.e., along an undirected arc connecting nodes j and k). Thus susceptibles can
only be infected by a contact with an undetected light case (from any node). The probability that a
random contact with an individual from node k is infectious corresponds to the share of light cases in
the nonisolated population, that is, L

S L R R+ + +

k

k k k
L

k
D
. Note that Dk and Hk appear neither in the

nominator nor in the denominator of this probability, since diagnosed and heavy cases are isolated.
The combination of the contact rate of susceptibles in node j with individuals of node k and the rate
at which susceptibles of node j get infected by light cases of node k (in case of contact) at time t is
denoted by u t( )k j, . From now on we will refer to it as transmission rate from k to j. Consequently,
the dynamics for the number of susceptibles at node j can be described by

⋅ ⋅
∈

 





S S u

L

S L R R
S S˙ = −

+ + +
, (0) = .j j

k

k j
k

k k k
L

k
D j j

Ω

, 0 (1)

Within our framework we propose that the (nonnegative) transmission rate u t( )k j, is a
control variable of the decision‐maker, which is bounded from above by the natural
transmission rate βk j, . Specifically u t( )k j, can be directly chosen as a “target transmission

rate” in the dynamics subject to nonlinear control costs in the objective function (as discussed
in Section 3.2).12 While this is equivalent to the modeling of the decision‐maker choosing an
effort (at diminishing returns) to control transmission, the direct choice of a transmission rate
is more directly aligned with policy‐makers setting targets in terms of reducing the effective
reproduction number (which depends on the transmission rate) below a certain threshold.13

The number of light cases in node ∈j Ω increases with the inflow of newly infected susceptibles
(outflow of (1)) and decreases at the (exogenous) rate θ j( )LH at which light cases turn into heavy
cases, at the (exogenous) rate α j( )L at which light cases recover without treatment, and at the rate at
which light cases are detected and quarantined. The detection rate

( )
v

L κ S R+ +

j

j j j
L

sets the number of

performed tests v t( )j (from now on referred to as testing effort at node ∈j Ω) in relation to the

number of individuals which are potentially infected and still undetected ( )L κ S R+ +j j j
L . Although

the social planer knows/estimates the number of light cases, he cannot identify who is infected
without testing. The parameter ∈κ [0, 1] , which is assumed to be an exogenous parameter,
corresponds to different testing capabilities/efficacies. For κ close to zero, the decision‐maker is able
to almost perfectly identify the light cases a priori, that is, already before testing. This scenario
corresponds to the assumption of all infected showing specific symptoms such that testing can be
restricted to these individuals. For κ close to one, the decision‐maker lacks such information and
most infections develop asymptomatically. Without any form of contact tracing, the planer can only

12We are not specifying whether a given target for the transmission rate is achieved through changes in the contact or
infection rate, however, we assume, that the more cost‐effective measures are applied first, what also motivates the
nonlinear costs.
13This is reflected in many policies being justified by curbing the reproductive number to a value below one, and/or
being conditioned on the rate of new infections.
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test randomly across the relevant population consisting of light cases Lj , of susceptibles Sj , and of
recovered individuals Rj

L , who were not diagnosed in the past.14 However, even in case of high rates
of asymptomatic infections, contact tracing facilitates the identification of potential infections and
enables better targeting of tests.15 In our framework this corresponds to interior values of ∈κ (0, 1) ,
reflecting scenarios of imperfect testing. The dynamics for the number of light cases then read

⋅ ⋅
∈

 







( )

L S u
L

S L R R
θ j L α j L

v

L κ S R
L L L

˙ =
+ + +

− ( ) − ( )

−
+ +

, (0) = .

j j
k

k j
k

k k k
L

k
D LH j L j

j

j j j
L

j j j

Ω
,

0

(2)

Diagnosed light cases at node ∈j Ω are placed in isolation and do not further contribute to
the spread of the disease. These individuals can either recover at (exogenous) rate α j( )D or turn
into heavy cases at an (exogenous) rate θ j( )DH . We allow these rates to (possibly) differ from
the corresponding transition rates for undetected light cases, reflecting the effects of possible
treatment and better monitoring of diagnosed cases. The number of diagnosed cases increases
at the rate at which tests are identifying light cases (as explained above). Putting things
together, the dynamics of the diagnosed cases at node ∈j Ω read

( )
D

v

L κ S R
L α j D θ j D D D˙ =

+ +
− ( ) − ( ) , (0) = .j

j

j j j
L

j D j DH j j j0 (3)

Heavy cases are assumed to be diagnosed and treated in a hospital. Therefore, they do not
contribute to the spread of the virus any more. Individuals suffering a heavy course enter
through the escalation of light infections (detected or undetected) and leave the hospital either
through death at rate μ H j( , )H j or recovering at rate α H j( , )H j . As we will explain further on
below, both rates may depend on hospital congestion, as measured by Hj (see Equation 5) at
node ∈j Ω. The dynamics for heavy cases are then given by

H θ j L θ j D α H j H μ H j H H H˙ = ( ) + ( ) − ( , ) − ( , ) , (0) = .j LH j DH j H j j H j j j j0 (4)

To account for potential congestion effects in the medical sector at node ∈j Ω the recovery
rate α H j( , )H j and the mortality rate μ H j( , )H j are assumed to depend on the aggregated
variable Hj , as defined by

∈

H H f j k= ( , ).j

k

k H
Ω

(5)

14Note that the other groups at each node D H R M, , ,j j j
D

j were isolated and diagnosed at some point during their
infection and are hence not part of the population relevant for testing.
15Note that v t( )j must be bounded, as otherwise the state L t( )j could turn negative. We assure that this is ruled out by
assuming a constraint on the total number of performed tests (see (9)), reflecting that test kits including protective gear
and, especially, laboratory capacity have been a scarce resource in particular at the beginning of the pandemic. This is
also in line with the fact that in all countries the number of performed tests per day are below a maximum number of
5% of the total population (see de.statista.com).
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Here, the function f j k( , )H relates heavy cases from node k to hospital (or, indeed, intensive
care) utilization at node j. If, for instance, the network describes social strata of a population all
of which are treated within the same hospital, we have f j k( , ) = 1H for ∈j k, Ω and thus

∈H H H= =j k kΩ for ∈j Ω. If, in contrast, the network describes different regions with
segregated hospitals, then f j k( , ) = 1H for k j= and zero otherwise, implying that H H=j j . Of
course, other forms of f j k( , )H can be assumed, reflecting situations in which (some) patients
from one region may be treated in another region.

Recovered light and diagnosed cases, as well as the deceased (R R,j
L

j
D , and Mj resp.) at node j

collect the outflows from the corresponding compartments. Thus, the dynamics read

R α j L R R˙ = ( ) , (0) = ,j
L

L j j
L

j
L
0 (6)

R α j D α H j H R R˙ = ( ) + ( ¯ , ) , (0) = ,j
D

D j H j j j
D

j
D
0 (7)

M μ H j H M M˙ = ( ¯ , ) , (0) = .j H j j j j0 (8)

3.2 | Costs and objective function

The decision‐maker has two control variables: the transmission rate u t( )k j, between light cases
at node ∈k Ω and susceptibles at node ∈j Ω (see Equation 1) and the testing effort v t( )j at
node ∈j Ω (see Equation 2). Both controls aim at containing the epidemic and lowering the
number of deaths. Testing and tracing is a scarce resource. In spring 2020, COVID‐19 testing
kits and laboratory capacities were scarcely available and had to be rationed. To account for
limited availability of testing, we include a constraint on the corresponding control, that is,

≤
∈

 v t V t( ) ( ),
j

j

Ω
(9)

where V t( ) is the maximum number of available tests for the entire network. The dependency
on time t reflects that supply may grow over time.16

Let C u t t k j( ( ), , , )U k j, denote the cost of curtailing the transmission rate u t( )k j, from node k
to j (at t) to a level below its unrestricted (natural) level βk j, . Thus, we assume

C u t t k j( ( ), , , )U k j, to be convex decreasing (i.e., a higher cost for a lower transmission rate)
for all ≤ ≤u t β0 ( )k j k j, , . Without any intervention, that is, for u t β( ) =k j k j, , the cost is zero. The

cost for testing effort at node ∈j Ω is denoted by C v t t j( ( ), , )V j and is convex increasing.
Again, we assume that v = 0j generates no cost. We can then summarize the properties of the
cost functions related to the control variables ( ∈j k, Ω) as follows:

∂ ⋅

∂

∂ ⋅

∂
≥

C

u

C

u
C β t k j

( )
< 0,

( )
0, ( , , , ) = 0,U

k j

U

k j
U k j

,

2

,
2 , (10a)

∂ ⋅

∂

∂ ⋅

∂
≥

C

v

C

v
C t j

( )
> 0,

( )
0, (0, , ) = 0.V

j

V

j
V

2

2 (10b)

16The control constraints can be altered to account for different properties of the network. If, for instance, the network
describes different regions, then each region may face an individual constraint, that is, ≤v t V t( ) ( )j j for ∈j Ω.
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The occurrence of heavy cases (subsumed in the Hj compartment, ∈j Ω) leads to two types
of (monetary) costs. First, (by definition) all heavy cases have to be treated in a hospital, some
of them even in an ICU, implying medical treatment costsC H t t j( ( ), , )M j associated with type j
patients at time t . Again we assume these costs to be convex increasing in H t( )j . Second, some
of the heavy cases do not survive. The lost lives from group j are weighted by the statistical
value of life Ψ, which we assume to be equal across all nodes.

The policy‐maker aims at minimizing total cost, composed of the costs for controlling the
transmission rates, the costs for testing, the treatment costs and the value of lost lives, over the
course of the pandemic from its onset at t = 0 to its end at t T= which for the purpose of fixing
ideas we identify with the point in time at which an effective and safe vaccine is universally
available.17 Thus the objective function can be formulated as

⋅
≥

≤ ≤
∈

∈

 

 














e C H t t j μ H t j H t C v t t j

C u t t k j dt e T T

min ( ( ( ), , ) + ( ¯ ( ), ) ( ) Ψ + ( ( ), , ))

+ ( ( ), , , ) + ( ( ), ),

v t

u t β

T

ρt

j
M j H j j V j

k j
U k j

ρT

( ) 0

0 ( )

0

−

Ω

( , ) Ω
,

−

j

k j k j, ,

2

(11)

where ≥ρ 0 is the discount rate and where the salvage value function   T T( ( ), ) contains all
follow‐up costs of the pandemic. Here  T( ) is used as an abbreviation and denotes a vector of
all seven compartments across the network. For the salvage value we assume the same costs as
for the planning horizon, but since the pandemic is over after T , there is no need for further
controls (implying zero control costs). Moreover, our assumption of unlimited availability of an
effective and safe vaccine implies that susceptibles cannot get infected any more.18,19 Hence,
the relevant compartments can be reduced to the light, the diagnosed and the heavy cases, as
only these individuals cause costs until there are no cases left. The salvage value function can
then be written as follows:

17Note that the terminal time is typically unknown to the policy‐maker. However, there is no loss in generality asT can
always be chosen large enough for the policy‐maker to be certain beyond a margin of reasonable doubt that the
pandemic would have ended through the availability of a vaccine or otherwise. In the case of COVID‐19 for instance,
which in most industrialized economies emerged from March 2020 onward, policy‐makers were expecting as early as
spring 2020 that vaccines would be available by spring 2021.
18We assume that all susceptibles in the network are vaccinated within a very short spell of time. The real situation (at
beginning of 2021), however, teaches us that vaccination is not an easy task and that its rollout may take considerable
time. This lies outside of the scope and focus of our model and is investigated in, for example, Buratto et al. (2021). See
also footnote 9.
19For the purpose of this analysis, we assume that the vaccination delivers sterile immunity for all individuals, that is,
the remaining undetected light cases cannot infect anybody after the vaccine becomes available. The COVID‐19
pandemic has shown that while vaccinations are not always able to eliminate the risk of infection completely, they are
still very effective in reducing the number of hospital cases and case mortality. As we will see later in the numerical
results, the treatment costs for infected individuals are miniscule compared to the costs for lockdowns and lives lost.
Our assumption of sterile immunity does not significantly affect the salvage function then, since significantly reduced
numbers of hospitalizations are unlikely to threaten ICU‐capacities and reduced mortality implies a very low total
value of lives lost after the vaccine becomes available.
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≔ ⋅
∞

∈

   











T T e C H t t j μ H t j H t dt( ( ), ) ( ( ), , ) + ( ( ), ) ( ) Ψ ,

T

ρ t T

j

M j H j j
− ( − )

Ω
(12)

where the states evolve (without further control) according to ( ∈j Ω)

L θ j α j L˙ = −( ( ) + ( )) ,j LH L j (13a)

D θ j α j D˙ = −( ( ) + ( )) ,j DH D j (13b)

H θ j L θ j D α H j μ H j H˙ = ( ) + ( ) − ( ( , ) + ( , )) ,j LH j DH j H j H j j (13c)

∈

H H f j k= ( , ).j

k

k H
Ω

(13d)

3.3 | Complete problem

Putting things together the policy‐maker faces the following finite time optimal control
problem:

⋅
≥

≤ ≤
∈

∈

 

 














e C H t j μ H j H t C v t j

C u t k j dt e T T

min ( ( , , ) + ( ¯ , ) ( ) Ψ + ( , , ))

+ ( , , , ) + ( ( ), )

v t

u t β

T

ρt

j
M j H j j V j

k j
U k j

ρT

( ) 0

0 ( )

0

−

Ω

( , ) Ω
,

−

j

k j k j, ,

2

(14a)

⋅ ⋅
∈

 





S S u

L

S L R R
˙ = −

+ + +
j j

k

k j
k

k k k
L

k
D

Ω

, (14b)

⋅ ⋅
∈

 





 ( )

L S u
L

S L R R
θ j L α j L

v

L κ S R
L˙ =

+ + +
− ( ) − ( ) −

+ +
j j

k

k j
k

k k k
L

k
D LH j L j

j

j j j
L

j

Ω

,

(14c)

( )
D

v

L κ S R
L α j D θ j D˙ =

+ +
− ( ) − ( )j

j

j j j
L

j D j DH j (14d)

H θ j L θ j D α H j H μ H j H˙ = ( ) + ( ) − ( , ) − ( , )j LH j DH j H j j H j j (14e)

R α j L˙ = ( )j
L

L j (14f)

R α j D α H j H˙ = ( ) + ( , )j
D

D j H j j (14g)

M μ H j H˙ = ( , )j H j j (14h)
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≤
∈ ∈

 v t V t H H f j k( ) ( ), = ( , ),
j

j j

k

k H
Ω Ω

(14i)

where   T T( ( ), ) is defined by (12) and (13), and where  (0) = 0 .

4 | PROPERTIES OF THE OPTIMAL SOLUTION

Within this section, we first formulate the first‐order conditions for the control variables (i.e.,
target transmission rates and number of performed tests) and provide an intuitive
understanding (Section 4.1). Second, we are deriving general properties that help to understand
the optimal solution (Section 4.2).

4.1 | Optimal allocation

From the Maximum Principle we can formulate the Hamiltonian and derive first‐order
optimality conditions and adjoint equations for the costate variables (see Grass et al., 2008). The
whole set of derivations is relegated to the Supporting Information: Online Appendix. Within
this section, we provide economic intuition by discussing the first‐order conditions and some
theoretical results that enhance the understanding of the optimal solution. A thorough
discussion of the shadow prices relating to the different state variables, which are frequently
part of the FOCs, can be found in the Supporting Information: Online Appendix.

The first‐order conditions for the control variables (in the interior of their respective feasible
region) can be formulated as follows ( ∈j k, Ω):

∂

∂
⋅( )

C u t k j

u
λ λ S

L

S L R R

( , , , )
= −

+ + +

U k j

k j
L S j

k

k k k
L

k
D

,

,
j j (15a)

∂

∂
⋅( )

( )
C v t j

v
λ λ

L

L κ S R

( , , )
= −

+ +
+ Λ,

V j

j
D L

j

j j j
L

j j (15b)

where λx denotes the shadow price of state variable x ; and where Λ denotes the Lagrangian
multiplier relating to the constraint on testing capacity (9). The first set of Equation (15a)
determines the optimal target transmission rates (for infections from node k to node j), the
second set (15b) refers to optimal testing efforts at node j.20

Equation (15a) equates the cost of a marginal reduction in the target transition rate with the
benefit of lowering the probability of an additional infection at node j.21 The latter consists of
the product of (i) the value of avoiding an infection at node j, as measured by the difference
between λLj and λSj ; (ii) the number of susceptibles at node j; and (iii) the probability that the

contact of a susceptible of node j at node k is infectious (i.e., L

S L R R+ + +

k

k k k
L

k
D
).

20The presented optimality conditions hold for interior solutions. We omit the explicit presentation of boundary
solutions, which is straightforward. The general formulation including boundary controls can be found in the
Supporting Information: Online Appendix.
21Recall that an increase in the target transition rate lowers costs, that is, that

∂

∂
< 0

C u t t k j

u t

( ( ), , , )

( )

U k j

k j

,

,
.
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Analogously, Equation (15b) equates the cost of a marginal increase in testing effort with
the marginal benefit of raising the probability of identifying and isolating a light case at node j.
The latter consists of the product of (i) the value of identifying a light case at node j, as given by
the difference between λDj and λLj ; and (ii) the probability that a light case is detected by the

test (i.e.,
( )
L

L κ S R+ +

j

j j j
L
). The Lagrangian multiplier Λ is zero as long as the testing capacity is not

exhausted (see complementary slackness condition as formulated in optimality conditions in
the Supporting Information: Online Appendix). In case the testing capacity is in full usage, the
multiplier turns negative, implying that the marginal benefit exceeds the marginal cost of
testing at all nodes. Under such a situation of rationing, tests are allocated such that the gap
between marginal benefits and costs is equilibrated across nodes. This implies, in particular,
that all else equal more tests tend to be allocated to those nodes that either exhibit a larger
number of light cases Lj , as this raises the probability of detecting a light case and, thus, the
efficacy of testing; or exhibit a higher value of detection, as is true, for example, for nodes at
which infections are very harmful.

Sufficiency conditions are difficult to deal with in our model. The Mangasarian and Arrow
sufficiency conditions (see Grass et al., 2008) are not promising for our model due to
nonconvexities in the constraints; a feature which is well‐known for models with SIR dynamics
(see Gersovitz & Hammer, 2004). Another possibility is presented in Goenka et al. (2021) (see
also the discussion in Boucekkine et al., 2021), who prove local optimility by adopting the
Leitmann–Stalford sufficiency conditions (see Leitmann & Stalford, 1971). However, the
additional compartments, as well as the network structure of our model, imply considerable
complications so the proposed method is not applicable.

For the numerical solution, we adopted a gradient‐based optimization method developed by
Veliov, 2003 for age‐structured optimal control problems. Following gradual improvements
along the direction of the (negative) gradient assures that the numerical solution does not
correspond to a maximum of the objective function, which can be the case for techniques using
the first‐order conditions directly. We are aware that this approach still poses the risk of
termination of the algorithm in a local optimum. However, we checked our numerical solution
for a variety of initial guesses of the control profiles to combat this problem.

4.2 | Properties

The first‐order conditions (15a) and (15b) define the values of the control variables, target
transmission rates, and testing effort, in the optimal solution in each node j. However, it is not
directly clear how they are related. The following Proposition investigates how the optimal
target transmission rates are connected to each other and highlights the network aspect of our
framework.

Proposition 1. Consider the full finite‐time optimal control model (14) and assume that
an optimal solution exists. If the transmission rate from any two nodes k1 and k2 to nodes j1
and j2 , respectively does not lie on the boundary, the ratio of the marginal costs of
controlling transmissions from region k1 as opposed to region k2 into any third region
j j j= ,1 2 depends only on the ratio of the shares of light cases among the nonisolated
population in k1 as opposed to k2 , that is,
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∀ ∈

∂

∂

∂

∂

∂

∂

∂

∂

k k j j= = , , , , Ω.

( )

( )

( )

( )

C u t k j

u

C u t k j

u

C u t k j

u

C u t k j

u

L

S L R R

L

S L R R

, , ,

, , ,

, , ,

, , ,

+ + +

+ + +

1 2 1 2

U k j

k j

U k j

k j

U k j

k j

U k j

k j

k

k k k
L

k
D

k

k k k
L

k
D

1, 1 1 1

1, 1

2, 1 2 1

2, 1

1, 2 1 2

1, 2

2, 2 2 2

2, 2

1

1 1 1 1

2

2 2 2 2

(16)

Proof. Since the transmission rates do not lie on the boundary the corresponding first‐
order conditions for u t u t u t( ), ( ), ( )k j k j k j, , ,1 1 2 1 1 2

, and u t( )k j,2 2
are defined by (15a). Dividing

one by the other (for fixed j j,1 2 , respectively) proves the above assertion. □

Therefore, the ratio of the marginal cost of the target transmission rates from any two
regions of origin into any third region is equalized across all receiving regions. In other words,
the marginal rate of transformation in respect to controlling the spread of infections from any
two regions of origin is equalized across the network. Furthermore, the marginal rate of
transformation does not depend on any of the shadow prices, but only on the share of light
cases among the nonisolated population within the two regions of origin. Interestingly, this
means that the optimal target transmission rate at every node (in relation to the other nodes) is
set only upon the current state of the pandemic course without considering the dynamics.
Consequently, it is enough to set only one target transmission rate optimally with respect to the
dynamic effects included in the adjoint variables (according to 15a). All other target
transmission rates that govern infections in the same node can be set without considering the
dynamic effects.

In particular, the ratio of marginal costs of the optimal transmission rates from two different
nodes k1 and k2 to a common neighboring node j does not depend on the epidemic situation at
node j. On the other hand, a small transformation of Equation (16) directly leads to the
following corollary.

Corollary 2. Under the assumptions of Proposition 1 it holds that

∀ ∈

∂

∂

∂

∂

∂

∂

∂

∂

k k j j= , , , Ω.

( )

( )

( )

( )

C u t k j

u

C u t k j

u

C u t k j

u

C u t k j

u

, , ,

, , ,

, , ,

, , , 1 2 1 2

U k j

k j

U k j

k j

U k j

k j

U k j

k j

1, 1 1 1

1, 1

1, 2 1 2

1, 2

2, 1 2 1

2, 1

2, 2 2 2

2, 2

Corollary 2 shows that the ratio of marginal costs of the optimal transmission rates from any
given node k to the same two neighboring nodes j1 and j2 is identical for all possible k. Thus
the marginal rate of transformation in terms of protecting groups j1 and j2 is equalized across
all nodes of infection origin k.

For an analytical relationship between the optimal testing strategy and the optimal target
transmission rates, we will assume an interior solution for testing, where additionally the
testing capacity constraint is not binding. We can derive the following equation for testing in
node j and the optimal target transmission rate within node j by dividing Equations (15a)
and (15b).

⋅

∂

∂

∂

∂

( ) ( )S λ λ

λ λ

L κ S R

L S R R
=

( − )

( − )

+ +

+ + +
.

C u t j j

u j

C v t j
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L S

D L

j j j
L

j j j
L

j
D

( , , , )

( , , )

U j j

j j

V j

j

j j

j j

,

,

(17)
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On the left‐hand side we obtain the ratio of the marginal costs of a change in the transmission
rate per susceptible, that is, the population which is directly affected by the transmission, and
the marginal costs of additional tests. On the right side we first have the ratio of the (shadow)
value of an infection relative to the (shadow) value of a detection via testing. This ratio is
multiplied with the share of the potential testing pool in the active (nonisolated) population.
Note that the number of infections Lj does not appear as an isolated term in Equation (17), but
only as part of the active population (denominator) and the testing pool (nominator).

The share of the testing pool in the active population plays a crucial rule for the relative
allocation of resources toward lockdown measures or testing, but it also varies over time. For
COVID‐19‐like diseases (see the numerical solution in Section 5) the variations of nominator
and denominator are relatively small. The active population at each point in time is equal to the
total population without the total number of fatalities Mj and isolated cases (D H+j j ).
The latter two terms are orders of magnitude smaller than the total population and as a result
the active population is not subject to large variations over time. A similar argument holds for
the testing pool, but we have to account for the number of recovered diagnosed cases. In case of
high numbers of detections of light cases (through effective or high‐volume testing) we would
expect the size of the testing pool to decrease over time. A more substantial impact on the ratio

( )L κ S R

L S R R

+ +

+ + +

j j j
L

j j j
L

j
D
results from the testing efficiency κ. For highly effective testing (i.e., ≈κ 0) this

ratio would be close to zero (again the number of light cases is at least one order of magnitude
smaller then the active population for COVID‐19‐like diseases) and consequently imply more
tests and less lockdown measures (in case of convex costs for both measures). For ineffective
testing ( ≈κ 1), the ratio is close to one and conversely suggests a greater focus on lockdown
measures as opposed to testing.

5 | NUMERICAL ANALYSIS

In this section, we apply the model to study the disease dynamics and the impact of optimal
policy‐making within a network composed of three nodes. Specifically, we consider three
regions (i.e., a geographic network) that interact with one another and share resources with
respect to tests and hospital capacities. The regions are homogeneous in their structure but
differ in initial infection numbers. In the Supporting Information: Online Appendix we present
an alternative application of our framework, where we assess the potential benefits of targeting
social distancing, lockdown, and testing measures at specific subgroups of a population
distinguished by their economic and demographic make‐up.

We assume that the pandemic is terminated by a vaccine that becomes available after 1 year
(i.e., T = 360 days) and that no transmission takes place afterward. We present the dynamic
development until Day 400, as this fully covers the dynamics underlying the salvage value
function in Equations (12) and (13). As we try to focus on the identification of network effects
in our model, we assume the three regions to be identical regarding their characteristics and
their interactions to be symmetric. Introducing specific heterogeneity in some aspects could
obscure effects resulting purely from the network structure. Using this approach we can
attribute all heterogeneous measures and developments to differences in the initial conditions
of the three regions. Specifically, we impose:
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(G1) The regions are identical in population size. With the total population being normalized
to 1, we then have ∕N t( ) = 1 3i for all t and ∈i Ω.

(G2) Epidemiological and cost parameters (i.e., regeneration, escalation, and mortality rates;
costs for treatment, testing, implementing the target transmission rate, and lost lives) are
identical across regions, see Table 2.

(G3) Hospital capacities are shared between the regions, which means that heavy cases can be
admitted to hospitals in other regions if the local capacities are exhausted, that
is, ≡f j k( , ) 1H .

(G4) Testing capacities are shared between the regions.

We do not allow for migration between the nodes of the network, and individuals remain
assigned to their initial region at all times. Transmissions across regions occur through
temporary travel (and consequent interactions) of some individuals between regions. However,
individuals continue to be assigned to their initial (home) region, as this assignation is crucial
for the definition and description of the target transmission rates (Table 2).

5.1 | Calibration

We assume, that within and across regions, there is an uncontrolled (baseline) transmission
rate of βi j, . Reducing the transmission rate through social distancing and lockdown measures is

assumed to imply quadratic costs. The planer has the possibility to choose target values for all
transmission channels ui j, separately. This means that not only can the transmission targets be
chosen differently for interactions within and across different regions, but we explicitly allow
for a distinction between the target rates uj k, and uk j, . This enables us to model heterogeneous
policy schemes, as were enacted by many countries during the pandemic. Notably, mandatory
quarantine policies for incoming travelers have been frequently and repeatedly enacted by
many countries over the course of the pandemic as a measure to curb the import of infections
from other regions. While such measures have often been implemented to varying degrees,
applying, for example, only to high‐infection regions, they have also been asymmetric in the

TABLE 2 Parameters for all numerical scenarios

Economic parameters Epidemiological parameters

n 3 0 2.5

ρ 0.0 αL 1/15

N  N (0) = 1.0i i αD 1/15

GDP ∕ ∕ ∕ ∕c d c d50000[$ ] 365[ ] = 137.0[$ ] θLH ∕1 − (1 − 0.0065 0.15) = 0.002948αL

Ψ ∕GDP GDP10 [$] = 7300[ ]6 θDH ∕1 − (1 − 0.0065 0.15) = 0.002948αD

ICU ‐ Cap ⋅N 0.0003 μH j, ∕0.15 12 = 0.0125

CM
i ∕ ⋅ ∕ ⋅ ∕GDP GDP(2 3 190$ + 1 3 1330$) = 4.161[ ] αH j, ∕0.85 12 = 0.07083

CV
i ∕GDP GDP5$ = 0.0365[ ]
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following sense: Implementing preventive quarantine in region j (to return to our framework)
for visitors from region k (and also people returning to j from k) reduces the transmission of
infections of region k on region j. However, region k does not necessarily need to implement
the mirror strategy, that is, to quarantine individuals traveling from j to k. Hence, the two
transmission rates uj k, and uk j, can actually be targeted distinctly.

Trying to reduce transmission rates to zero would lead to a complete halt of all economic
behavior, and the cost would then amount to the full GDP produced over this time period. The
quadratic loss function then describes the increasing difficulty of transferring economic activity
into contexts (e.g., home office) with lower risks of disease transmission and of closing down
traffic across regions.

⋅






C u t i j

u

β
C( , , , ) = 1 −U

i j
u
i j

,

2

, (18)

The parameter Cu
i j, measures the GDP corresponding to activities that generate transmission of

the virus from region i to region j. The GDP of all regions is normalized in units per day and
person. Again we normalize the total GDP per day and person, which is the sum over all three

regions, to 1, that is,  C = 1i j u
i j

,
, . Each region is assumed to produce one‐third of the total GDP

(corresponding to its population size, see assumption (G1)), where 50% of each regional share
results from interactions within the home region and 25% from interactions with each of the
two other regions, that is,

⋅

⋅ ≠





C
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,
(19)

The region‐specific uncontrolled transmission rate is defined as follows:

⋅ ⋅

⋅ ⋅ ≠








β
α i j

α i j
=

0.5 if =

0.25 if .i j
L

L
,

0

0
(20)

Assuming that each light case (that does not escalate to a heavy case) infects an average
number 0 of people, we can define the uncontrolled transmission rates by dividing through by
the average time in the infectious stage ∕α1 L . Furthermore, transmissions have to be assigned
to contacts with different groups. As we do for the economic costs, we assume that 50% of
contacts take place within each region and 25% across the boundary with each of the two
neighboring regions.22 A complete lockdown and elimination of all interaction is not plausible due to
necessary activity, for example, in the medical sector or in the provision of essential goods and

22We are aware that we are using a heuristic parameter 0 for the calibration of the uncontrolled transmission rates
instead of the basic reproduction number 0 . We chose this strategy for two reasons. First, the derivation of 0 in a
multigroup extended SIR‐framework is quite involved (see Van den Driessche & Watmough, 2002, for details). Second,
actual estimates of0 for COVID‐19 cover a relatively broad range, so the0 in our model resulting from the heuristic
definition of the transmission rates is likely to be within this range. At the same time, the calibration of βj k, is
significantly easier.
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services. Thus, we assume that all transmission rates have a lower bound ui j, which we set to 10% of

the uncontrolled rates in our illustrations, that is, ⋅u β= 0.1i j i j, , .
The average time spent with light or no symptoms while being infectious is assumed to be

15 days for both undetected and detected cases, such that ∕α α= = 1 15L D . We can infer the
probability of escalation of a light case, that is, the risk of hospitalization, from the general
infection fatality rate (IFR) and the mortality risk of patients in hospital treatment. Assuming
an IFR of 0.0065 and a mortality risk of 15% for hospitalized cases, we obtain an escalation
probability of ∕0.0065 0.15 = 0.043. Spreading this probability over the average dwell time in the
light case state, we obtain a per‐diem escalation rate of θ = 1 − (1 − 0.043) = 0.002948LH

αL

(and an analogous definition for θDH ).23

Finally, we need to specify the cost functions. World Bank data shows that income within
western and northern Europe mostly lies within 40,000–65,000$ per capita. Hence, we choose
the statistical value of life to be 20 times the GDP per capita (per year) as in Alvarez et al.
(2021). For hospital treatments and for tests we assume linear and identical costs for all regions,

⋅

⋅

C H t j C H
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j

Since we normalized the total population to 1, the cost parameters CM
j and CV

i correspond to the
treatment costs per day and person, as measured in units of per capita GDP per day. Heavy cases in
our framework are not only ICU patients, but also patients admitted to the hospital with less intense
treatment needs. Recent studies have found a wide range of costs per patient per day receiving ICU
and general treatment. For our analysis, we take the values from Edoka et al. (2021) who found costs
of 190$ (general ward) and 1330$ (ICU) per patient day. According to the US Center for Disease
Control (CDC), about one‐third of hospitalized cases require intensive care. Consequently, we take
the expected costs for a heavy case to be 443$ per patient day. The costs of testing vary strongly with
the type of test. However, generally, the price is relatively low compared to all other costs (we set it to
5$). It is thus capacity that acts as a potentially limiting factor.

ICU capacity is assumed to be fixed at 30 beds per 100,000 individuals.24 Testing capacity is
very low at the beginning of a pandemic, but increases over time. In our case, we assume that
testing capacity increases from 10 up to 1000 tests per 100,000 individuals per day.

⋅ ⋅


 


V t N

t

T
( ) = 0.0001 + 0.01 .

The mortality and regeneration rates of hospitalized individuals are assumed to
depend on the number of heavy cases. We assume that the sum of the two rates is constant
and describes an average hospitalization time of 12 days. For an ICU with spare capacity
the share of hospitalized people dying is assumed to be 45%. Translated to the total
number of hospitalized patients, the base mortality is 15%, and thus related to the average
time spent in the hospital according to ∕μ = 0.15 12H j, and ∕α = 0.85 12H j, . As soon as the
ICU capacity is exhausted (the expected number of ICU patients is ∕H 3), we assume that

23We adopted these parameter values from Caulkins et al. (2020, 2021).
24Countries that are equipped approximately with that amount of ICU capacity are Germany 33.9 (year 2017), Austria
28.9 (year 2018) and US 25.8 (year 2018). See de.statista.com, for details.
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any further patient with intensive care needs has a 100% mortality risk. Following the
calculations of Caulkins et al. (2020), this implies that the average mortality for all heavy
cases is increasing concave with the number of heavy cases approaching 1/12 in the limit.
For computational reasons, we propose the following functional forms, which smooth the
nondifferentiable point of μ H t j( , , )H , where ∕H 3 reaches the ICU cap. Smoothing ranges
from this point up to a 10% overload of the ICU capacities:
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The function ⋅f ( ) is a sigmoid function of form f x( ) =
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3 3 which is sufficient for a

smooth final function. Figure 2 shows the general form of μH and highlights the marginal
differences between the original function (following Caulkins et al., 2020) and our smoothed
version.

Finally, we assume that the three regions differ (only) in the number of initial infections,
reflecting the realistic setting in which the pandemic breaks out and spreads within a single
region of origin before spreading into other regions. We thus propose that the pandemic has
already progressed within the first region (group), where 10% of the population are already
infected at the starting time of the model. For the second group, we assume an initial
prevalence of infections at 1% of the population, while the third region enters with a zero
prevalence at the beginning of the time horizon. In Table 2 we summarize all parameters
discussed in this section.

5.2 | Results

In the following sections, we study four cases representing a sequence of increasing capabilities
of the social planer: (i) “Uncontrolled,” that is, the development of the epidemiological states if
no intervening measures are taken. (ii) “No Testing,” where the social planer is (only) able to
introduce lockdown measures and social distancing orders. (iii) “Ineffective testing,” where the
social planer also allocates tests (subject to the capacity constraint) for the identification of light
cases, but where in the absence of effective contact tracing, tests have to be allocated randomly
across the nondiagnosed population, that is, where κ = 1. (iv) “Effective testing,” as the optimal
solution for a scenario where effective contact tracing allows tests to be (almost) perfectly
targeted at light cases, that is, where κ = 0.1. Table 3 summarizes the set‐up for the different
scenarios. First, uncontrolled development is discussed in Section 5.2.1. The controlled cases
are investigated in Sections 5.2.2–5.2.4.
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5.2.1 | Uncontrolled development

Figure 3 presents the most important epidemiological states, as described by Equations (1)–(4) for an
uncontrolled pandemic: susceptibles, light cases, and heavy cases. The blue solid line denotes the
corresponding state for region 1, the red one that for region 2 and the yellow one that for region 3.
The dashed black line denotes the total number of light and heavy cases, respectively. In the absence
of any controls the different initial conditions across the regions make hardly any difference for the
course and outcome of the pandemic. The spike in light and heavy cases is only delayed by a few days
for the second and third region. Furthermore, an equilibrium is reached after 150 days where there
are practically no susceptibles nor light cases left which could trigger new infections (recall that
diagnosed and heavy cases are assumed to be isolated). Hence, the pandemic is short but severe, as
follows from the fact that ICU capacity, denoted by the dotted green line in the panel is exceeded by
the total number of heavy cases (dashed black line) over almost the full course of the pandemic. This
causes a high number of deaths, which, as we will see, could have been prevented by measures aimed
at controlling the disease.

Table 4 includes a summary of the terminal outcomes of the pandemic after 400 days for
each region as well as for all regions in total.25 The first four columns show the population
shares (within each region and in total), who have not been infected (S), recovered from the
disease (RL and RD ), and died (M), respectively. The final four columns show (from the left) the

FIGURE 2 Original and final smoothed version of the mortality function describing congestion in the
health sector.

TABLE 3 Qualitative comparison of the four different cases analysed

Case Transmissions Testing κ

Uncontrolled Uncontrolled None –

No testing Optimally controlled None –

Ineffective testing Optimally controlled Optimal 1

Perfect testing Optimally controlled Optimal 0.1

25An extended version of this table can be found in the Supporting Information: Online Appendix.
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cumulated costs of the pandemic up until Day 100, 200, 300, and 400, respectively.26 As we see
in Figure 3 the pandemic is raging mainly over the first 100 days, and has “burnt out” by Day
200. Thus, costs do not change afterward. The table also mirrors that there is little difference
across regions. Without any control measures the disease can quickly spill over from region 1 to
region 2 and 3 and take the same course afterward.

Interestingly, in region 1 slightly fewer people die as compared to regions 2 and 3, which is partly
due to a first‐mover advantage in the ICU. The fact that the early‐coming heavy cases from region 1
are hospitalized in a situation without congestion yet gives them the advantage that all (or many) of
them receive the required care. A short time later, the ICU is congested and the available capacity is
divided across the three regions, leaving many heavy cases unserved in all regions.27

Turning to infections, we see that in each region only slightly more than 10% of the
population remain susceptible and more than 85% are either recovered light or heavy cases.
Nearly 3% of the population have died during the pandemic, predominantly as a result of an
overwhelmed health sector (recall the right panel in Figure 3).

5.2.2 | Controlled development

In this section, we compare the development across a sequence of three scenarios in which the
social planner is assumed to have increasing capabilities of controlling the disease. Figure 4
allows for a comparison of the epidemiological development of the pandemic over time
between the no‐testing, ineffective‐testing, and effective‐testing cases.

The first column illustrates the development for each of the regions (colored lines) and in total
(black dashed line) when tests are not available. Three key distinctions characterize the controlled
scenarios from the uncontrolled scenario. First, the duration of the pandemic is much longer and
basically stretches until a vaccine becomes universally available at the end of the time horizon.
Second, the main initial focus of the measures lies on pushing down infections in region 1 to a level at
which the number of light cases is as low as in the other regions. After that (i.e., after ≈130 days)
infections in region 1 start to lie below those in the other regions, which is due to the smaller number

FIGURE 3 Pandemic development for the “Uncontrolled” case.

26A decomposition of the costs with respect to medical costs and lost lives can be found in the Supporting Information:
Online Appendix.
27We have verified the first‐mover advantage by an additional numerical run without ICU capacity, where it turns out
that the number of deaths is highest in region 1.
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of susceptibles, following the initial period. As one would expect, heavy cases follow the course of the
light cases with a delay. Third, the ICU capacity constraint is surpassed only slightly,28 but again for a
long time (between Days 20–270). These features correspond to “classical” curve‐flattening as an
optimal policy to contain the number of deaths by avoiding excessive ICU congestion while at the
same time containing the costs of shutting down the economy. Such a policy remains in place up
until either herd immunity is reached (which lies well beyond the time horizon for the COVID‐19‐
like disease underlying our calibration) or up until the vaccine is universally available. The second
part of Table 4 summarizes the outcomes for this scenario after 400 days. It can be seen that the
impact of the pandemic on fatalities is significantly reduced. The death rate drops from nearly 3% of
the population to values between 0.37% and 0.46%. Furthermore, we see that the direct lockdown

TABLE 4 Summary and comparison of the endstates of the pandemic and the costs of the pandemic across
the three different regions for the four scenarios analysed

Epidemiological states at t = 400 Costs until t (in GDP p.c.p.d.)

S (%) RL (%) RD (%) M (%) t= 100 t= 200 t= 300 t= 400

Uncontr. case

Region 1 10.29 85.91 0.87 2.93 70.23 71.91 71.92 71.92

Region 2 11.39 84.86 0.81 2.94 70.31 72.23 72.24 72.24

Region 3 11.51 84.74 0.8 2.95 70.32 72.27 72.28 72.28

Total 11.06 85.17 0.83 2.94 210.86 216.41 216.44 216.44

No testing

Region 1 27.58 69.29 2.6 0.46 19.92 27.22 30.26 31.52

Region 2 40.03 57.34 2.14 0.38 7.18 15.74 20.6 22.58

Region 3 41.5 55.93 2.09 0.37 5.34 13.69 18.76 20.83

Total 36.37 60.85 2.28 0.41 32.45 56.65 69.63 74.93

Ineffect. testing

Region 1 31.31 63.99 4.22 0.44 19.25 25.39 28.17 29.12

Region 2 44.14 48.92 6.53 0.36 7.06 14.92 18.93 20.3

Region 3 45.57 47.36 6.66 0.35 5.35 13.17 17.32 18.74

Total 40.34 53.42 5.80 0.38 31.66 53.49 64.42 68.16

Effective testing

Region 1 54.02 35.62 10.07 0.29 15.07 18.25 18.8 18.82

Region 2 68.06 21.8 9.94 0.2 6.18 10.12 10.81 10.84

Region 3 69.24 20.98 9.59 0.2 5.31 9.32 10.02 10.05

Total 63.77 26.13 9.86 0.23 26.56 37.69 39.63 39.7

Note: Endstates are given in percentage of the initial population size of each region, resp. the total population. Costs are given in
units of GDP per capita per day (GDP p.c.p.d.).

28The fact that ICU capacity is surpassed at all might come as a surprise. Recalling, however, the smoothed mortality
function in Figure 2, it becomes apparent that the first few cases that surpass the ICU capacity are subject to only a
marginal increase in their mortality risk.
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measures lead to a decrease in the number of infected individuals in the first region, while in the
second and third one the spreading of the disease is significantly slower. After the end of the
pandemic, around 36% of the total population across all regions have not been infected.

By slowing down transmissions and thereby reducing the number of light cases, the
lockdown measures bring down the number of heavy cases from around 3.8% of the population
to around 2.7%.29 As it turns out, this is tantamount to containing the number of heavy cases to
a level below or slightly above the capacity limit. This confirms that the optimal strategy for
lockdown measures is to keep the number of heavy cases at a level, that does not overburden
the ICU facilities, but at the same time contains the (economic) costs of lockdown.

We can now use the second column of Figure 4 to identify the impact of the availability of
tests, which are subject to a capacity constraint. For this scenario we assume there is no
infrastructure for contact tracing and the disease hardly shows specific symptoms for light
developments of the infection. Consequently, tests need to be allocated randomly across all
members of the population without a diagnosis. The main epidemiological development in the

FIGURE 4 Comparison of the pandemic development for the “No testing,” “Ineffective testing,” and
“Effective testing” case.

29To obtain these figures add the (total) shares of RD and M from Table 4, while noting that all heavy cases and only
heavy cases are either diagnosed survivors or deceased.
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case with ineffective testing looks qualitatively similar to the case without testing. However, the
number of light cases continues to decrease mildly between Days 20 and 250 instead of
remaining at a plateau. While this mostly corresponds to the number of diagnosed cases
turning positive, the number of never‐infected individuals (i.e., the susceptibles at t = 400) is
also slightly higher in all three regions. Furthermore, the ICU capacities are used to the full
extent about 20 days less as the total number of heavy cases drops slightly earlier.

Finally, we present the optimally controlled epidemiological development when testing is
effective in the sense of being better targeted at the group of light cases, a setting that is broadly
consistent with efficient contact tracing. In this scenario, we obtain significant differences to
the two previous cases of “no testing” and “ineffective testing,” with the availability of testing
now showing noticeable impacts.

In the third column in Figure 4 we observe that the pandemic ends after approximately 250
days and, thus, before the arrival of universal vaccination after 360 days. This is indicated by
the number of light cases being close to zero and the number of susceptibles showing no
significant change any more. During the first 60 days the development appears to not
significantly differ from the development with ineffective testing.30 Subsequently, however, we
observe a steeper decline in the number of light cases in region 1. And although the light cases
reach a similar peak in regions 2 and 3 regardless of the effectiveness of testing, in the case of
effective testing the numbers immediately drop from Day 60 onward, while they stay on a
plateau for roughly 150 days if testing is ineffective.

The decreasing number of light cases in case of effective testing also corresponds to the
strongly increasing number of detected cases. The peak is earlier and nearly threefold the peak
under ineffective testing. Note that the number of diagnosed individuals is higher throughout
under effective testing even though the number of light cases is significantly lower. Hence the
increased effectiveness clearly overcompensates the smaller pool of undetected light cases. The
ICU capacities are also in full usage in case of effective testing. However, as the infection
dynamics have been slowed down, the number of heavy cases drops below this threshold about
120 days earlier than in the other controlled cases.

Comparing the end results of the epidemiological development after 400 days as shown in the
second half of Table 4 we see that the impacts of testing strongly vary with respect to its effectiveness.
For ineffective testing, an additional 4% of the total population were protected from getting infected
during the pandemic (an increase from 36.37% to 40.34%), while the total number of deaths only
dropped from 0.41% to 0.38%. In the case of effective testing, however, only slightly more than a third
of the population got infected, and the number of deaths was reduced to 0.23%, just a little more than
half the number without testing. This is largely owing to ICUs operating at capacity limit over a much
shortened time span of only about 130 instead of 250 days.

5.2.3 | Optimal transmission rates and testing

In this section, we discuss the optimal strategies of the social planer for transmission rates and
testing in the various scenarios. In Figure 5 we present the optimal target transmission rates for
the different scenarios. The upper boundary (black dashed line) corresponds to the

30It appears that the low testing capacity is dominating the positive impact from higher testing effectiveness and the
epidemiological development is only marginally different.
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transmission rates in the case of an uncontrolled pandemic. The red solid lines describe the
optimal transmission rates if tests are unavailable, the blue dash‐dotted lines for the case of
ineffective testing and the green dotted lines for effective testing. We first focus on the target
transmission rates when testing is not an option for the social planer.

Let us begin with the within‐region measures, corresponding to the panels along the
diagonal from top‐left to bottom‐right. Within region 1, the relatively high initial level of
infections is curbed by the introduction of a short lockdown (a type of wave breaker). After
some relaxation, measures are tightened again to control infections that now tend to be
imported from regions 2 and 3. From Day 100 onward restrictions are gradually lifted until
vaccination is available after 360 days. For region 2, the pattern of internal lockdown is
qualitatively similar. Here, the initial tightening of the lockdown is in line with transmissions
from imported cases. Notably, while the lockdown is softer than the one in region 1 initially,
this reverses from Day 50 onward, where restrictions within region 2 are relaxed more
cautiously and tend to remain in place over a longer period. The pattern of the internal
lockdown within region 3 is similar to region 2 with the only difference being its more gradual
introduction at the beginning of the planning horizon, following from the absence of internal
infections at the starting point. Overall, the pattern suggests that the planner has an incentive
(i) to equalize the pattern of the pandemic and its control across the three regions (which
follows from the minimization of convex control costs), and (ii) to smooth out the lockdown

FIGURE 5 Optimal target transmission rates for the “No testing,” “Ineffective testing,” and “Effective
testing” case.
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over time. While this is relatively successful within the “follower” regions 2 and 3, the initial
presence of the disease makes this objective more difficult to achieve within region 1.

Turning to cross‐region measures, initial observation is that for all regions the restrictions
are considerably stronger than the internal measures. This suggests that the planner is much
more ready to impose travel bans, which is particular true in respect to region 1, where
transmissions into the other two regions are initially reduced to their lowest possible level,
implying the strongest feasible measures. Similar yet more modest restrictions are implemented
to avoid the spillover of transmissions from region 2 into region 3, which initially features no
infections.

Conversely, and assuming the possibility of asymmetric restrictions, measures taken at
constraining transmissions from regions 2 and 3 into region 1 and from region 3 into region 2,
respectively, are more modest and implemented only gradually in line with the scope for
“reimporting” infections. This asymmetric behavior corresponds with the implementation of a
mandatory quarantine (or similar measures to ensure noninfectiousness) for individuals of
region 1 trying to travel to regions 2 or 3, while travel in the reverse direction can be done
“without” precautionary measures. The same implementation of mandatory quarantine would
hold for individuals returning to regions 2 or 3 after having traveled to region 1.

Referring back to Proposition 1 this asymmetric behavior becomes less surprising.
Considering a special case of Proposition 1 with k j k= =1 1 and k j j= =2 2 , a small
rearrangement of the terms leads to the following equation:
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Equation (21) connects all potential interactions between two nodes and illustrates that the
product of marginal costs of transmission reduction within the two nodes has to equal the
product of marginal costs between the two nodes. In our numerical example, given the similar
strategies within each region and significantly stronger transmission reductions from region 1
to regions 2 and 3, Equation (21) directly implies reduced measures regarding transmissions in
the opposite direction.

To explore the extent to which asymmetric measures improve the efficiency of disease
control we additionally looked at a setting with symmetric target transmission rates, that is,
where the planer is constrained to set the same transmission targets uj j, within regions
j = 1, 2, 3 and u u=j k k j, , for all k and j across regions. The results, which are not presented
here, indicate that (i) again the measures are chosen in a flattening‐the‐curve fashion, leading
(ii) to a very similar level and distribution of mortality (and, thus, loss of lives). However, the
economic costs of controlling the disease (see Section 5.2.4 for greater detail) are about 14%
higher under symmetric measures and total cost are about 9% higher.

The introduction of ineffective testing enables the social planer to modestly reduce the
lockdown measures and allow slightly higher transmission rates at certain points in time (blue
dash‐dotted lines). While the optimal target transmission profile within region 1 and the
transmissions of regions 2 and 3 do not differ significantly, we can observe slightly reduced
lockdown measures within regions 2 and 3 after testing capacities have been built up.
Furthermore, the social planer allows for higher transmissions rates between regions 2 and 3
(in both directions) as well as from region 1 to regions 2 and 3.

To assess the potential impact of the testing capacity constraint we conducted a robustness
check allowing for the maximum capacity of 1000 tests per 100,000 individuals right from the
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beginning. The results show that the additional tests are used exclusively in the first group and
allow for a faster reduction of unidentified light cases. This “advance” against the disease is
mainly used to relax lockdown measures and thereby to reduce the economic costs over the
whole time‐horizon by about a quarter. The epidemiological development remains largely
unaffected, and there is hardly any change in the usage of ICU capacity or total lives lost.

The impact of testing becomes remarkably more pronounced if testing becomes more
effective (green dotted line). While the patterns are qualitative similar to the “ineffective
testing” case the measures are more lenient and confined to a shorter time period. After 100
days all transmission rates within the network are significantly higher and in particular, there
is no need for policy interventions any more after 250 days, as is evident from the lack of any
significant difference between the target and the uncontrolled transmission rates.

Interestingly, however, efforts of protecting individuals in region 1 (from transmissions
within group 1 and from the other two regions) are more intense between Days 40 and 80 under
effective testing when compared to the other two controlled scenarios. Turning back to Figure 4
these efforts coincide with the peak in the light case numbers in region 2 and 3 and with a
change in the test allocation, as we will discuss further down below in Figure 6. Finally, we
note that even under effective testing a flattening‐the‐curve policy tends to be the optimal
response to the pandemic peak.

Figure 6 illustrates the optimal allocation of the available tests across the three regions over
time. The left panel shows the strategy for ineffective testing, the right for effective testing.
Testing capacities are used to their full extent (i.e., 9 is binding for all t) at almost all times,
reflecting that testing is relatively cheap in comparison to all other measures and potential
costs. Figure 6 shows that a distinct allocation pattern across the three regions is present for
both levels of testing effectiveness. Testing starts exclusively in region 1, the initial hotspot, for
a little more than 20 days (about a week for effective testing, respectively). The focus
subsequently shifts to region 2, followed by a mixed allocation across regions 2 and 3, before
between Days 75 and 100 (respectively Days 60 and 80 for effective testing) testing effort is
again concentrated on region 1. This circular pattern is also visible in the pattern of diagnosed
cases (see Figure 4) and broken only from Day 100 (respectively Day 80 for effective testing)
onward, where the number of infected cases has about equalized across the three regions.
Despite the qualitative similarities, effective testing results in the shortening of the time span of
each part of the pattern.

From then on the patterns of ineffective and effective testing evolve differently. Ineffective
testing is gradually shifted away from region 1 and shared between regions 2 and 3 which
feature a higher number of light cases (due to the later epidemiological peak in these regions).
Between Days 180 and 340 tests are shared to roughly equal amounts between regions 2 and 3,
while there is a small spike in tests in region 1 shortly before a vaccine becomes available at the
end of the time horizon. For effective testing the brief period of focused region 1 testing is
followed at Day 80 by a switch toward an equal distribution of tests across the regions for the
remaining duration of the pandemic.

Recall from Figure 4 that under effective testing the number of undetected light cases is very
low from Day 250 onward. Although the disease is under control, the planner continues to use
tests up until Day 340 in a precautionary and low‐cost way to suppress any potential
resurgence. Notably, testing is abandoned altogether for the last 20 days before the anticipated
arrival of the vaccine at Day 360.
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5.2.4 | Cost composition

In a last step we assess impacts of the different scenarios on the aggregated social costs of the
pandemic. Unsurprisingly, the costs arising under the uncontrolled development of the pandemic are
significantly higher than in any of the controlled scenarios. The right part of Table 4 summarizes the
cumulative costs for the three regions and in total at different points in time (100, 200, 300, and 400
days, respectively). In the uncontrolled case the costs are nearly equally distributed across the three
regions and are incurred almost entirely during the first 100 days of the pandemic. This corresponds
to the number of heavy cases drastically overburdening the ICU capacities leading to a high number
of fatalities. As there are no lockdownmeasures or testing efforts, all costs relate to hospital treatment
expenditures and the value of lives lost. Treatment costs play only a marginal role at less than 1% of
total costs.31 To contextualize the total costs of 216 units of GDP per capita per day, recall that the
population size is normalized to one. Hence letting the pandemic spread through the population in
an uncontrolled way implies that the value of lives lost during the first 100 days amounts to roughly
two‐thirds of the total yearly GDP.

The remaining results in Table 4 show that controlling the disease yields drastic reductions
in the total (health and economic) cost of the pandemic. Allowing for reductions in the
transmission rates brings the costs down by some 65% to 74.93 units of GDP per capita per day.
Another 3% cost reduction compared to the uncontrolled case is possible through the
introduction of ineffective testing. Again more significant improvements can be achieved if
testing is effective. The total cost of 39.7 units of GDP per capita per day are close to half of the
costs in the absence of testing and represent a mere 18% of the costs associated with an
uncontrolled spread of the pandemic.

Controlling the disease also bears on the distribution of costs across time and regions. Region 1,
the original hotspot of the pandemic, is responsible for a significantly higher share of costs as

FIGURE 6 Optimal testing strategy in the “ineffective” and “effective” testing case.

31For a detailed table see the Supporting Information: Online Appendix.
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compared to regions 2 and 3, which end up with more similar levels of aggregated costs. For all
regions the costs are spread more smoothly over time, reflecting the curve‐flattening strategy.

A more distinct analysis of the composition of health and economic costs can be deduced
from Figure 7. This figure presents the costs profiles of the three controlled scenarios and
allows for a comparison between them. Furthermore the costs are composed into their different
sources and attributed to the regions, where they arise. Noting that the costs for testing (yellow)
and medical treatments (green) are insignificant in all scenarios, we will focus on the two main
driving factors: lockdown measures and value of lives lost. In all three controlled cases it is
optimal to incur high lockdown costs to reduce the number of fatalities (and associated losses
in value of life) especially within the first 40 days. The most significant part of lockdown costs
results from transmission reductions in relation to region 1. As the pandemic develops over
time, the costs associated with lockdown measures and fatalities become more balanced.
Toward the end of the pandemic, when transmission rates return close to their uncontrolled
values, the value of lives lost constitutes the majority of costs albeit at low levels. While costs
associated with lives lost shift from region 1 toward regions 2 and 3 over time, the aggregated
absolute value remains fairly constant (again reflecting the “flattening‐the‐curve”‐strategy).

The availability of imperfect testing lowers the cost of lives lost by some 6%, the economic cost of
lockdown by some 11%, and total costs by some 9% relative to the “No testing case,” but affects only
marginally the overall cost profile. Testing becoming highly effective not only leads to the cost of lost
lives being cut by some 51% and the economic cost by some 44%, but also implies a significant shift in
the cost profile. While the cost structure is fairly similar to the other two controlled cases up until a
comparable peak at Day 60, costs drop more substantially under effective testing afterward. Effective
testing also allows for a more even distribution of costs across and within the three regions. Notably,
while the economic costs associated with lockdown measures are eliminated after roughly 200
instead of 300 days, the costs associated with the loss of lives have also been reduced to a negligible
level by Day 300 in the “effective testing” case. This is in contrast to the “ineffective testing” case,
where deaths accrue up to and beyond Day 360.

5.2.5 | Summary comparisons

We conclude the analysis by comparing the four (main) scenarios on the basis of a number of
key outcomes, as summarized in Table 5.

FIGURE 7 Origins of costs for the “No testing” (left), “Ineffective testing” (middle) and “Effective testing”
case (right).
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The first part of the table allows for an immediate comparison across the pandemic
endstates in terms of the (remaining) susceptible population, the diagnosed and
undiagnosed recovered cases, as well as the deceased at time t = 400. The second part
summarizes the total costs after t = 400 and the value of lost lives and lockdown costs as
the two main contributing factors (aggregated over all regions). We leave these entries for
ease of comparison but without further comment.

The last three rows record a number of important dates in the progress of the
pandemic. “End of Spread” defines the point in time at which the total number of
susceptibles changes by less than 1 in 10,000, which is tantamount to a standstill of the
pandemic. Thereby, we recall that in the “Uncontrolled” case the pandemic is over very
quickly after 161 days but at enormous costs in terms of lost lives. In contrast, for both the
“No testing” and “Ineffective testing” cases, the end of the spread does not occur before a
vaccine is available. In contrast, “effective testing” combined with an optimal lockdown
policy allows to shorten the pandemic by 74 days.

The second row shows the first day at which the ICU is no longer at (or beyond) its
capacity limit. Again in the uncontrolled case this happens early on, as the disease rages
heavily within the first 3 months. This hides, of course, the number of heavy cases not
receiving treatment and dying due to overload. More notably, we see that testing,
regardless of its effectiveness, allows for an earlier relief of the strain on the ICU. In the
limit, “effective testing” more than halves the time span of congestion, whereas in case of
“ineffective testing” the reduction is more minor.

The last row shows the date at which all lockdown measures are lifted, as defined by the
time at which all target transmission rates are within 1% of the uncontrolled rates. Again
“effective testing” is a powerful instrument in bringing down to 249 the number of days over
which lockdown measures of some intensity are implemented. “Ineffective testing” leads to no
reduction in the duration of the lockdown (of some intensity) below the full 360 days up until
the availability of universal vaccination.

TABLE 5 Comparison of the four (main) scenarios

Uncontrolled
No
testing

Ineffective
testing

Effective
testing

Endstates (t= 400) S 11.06% 36.37% 40.34% 63.77%

RL 85.17% 60.85% 53.42% 26.13%

RD 0.83% 2.28% 5.80% 9.86%

M 2.94% 0.41% 0.38% 0.23%

Agg. costs in GDP p.c.p.d. (t= 400) Total 216.44 74.93 68.16 39.7

VOL lost 214.56 29.6 27.79 16.85

Lockdown 0.0 44.0 39.04 22.03

End of spread (days) 161.0 360.0 360.0 286.0

End of full ICU‐usage (days) 113.0 274.0 250.0 132.0

End of lockdown measures (days) 0.0 360.0 360.0 249.0
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6 | CONCLUSIONS

This paper considers an extended SIR model across a network. It combines several important
new features that are relevant for the COVID‐19 pandemic but generalize to other infectious
diseases that involve severe illness. The model distinguishes light and heavy courses of the
disease, where the latter are characterized by the need for hospital or ICU treatment. Whereas a
heavy case is per definition known and excluded from infectious contacts, light cases need to be
detected by testing efforts. We allow for parametric variations in the extent to which tests can
be targeted effectively, for example, due to high capacity of contact tracing. This influences the
success rate of detecting people with a light course by testing efforts. Detected people suffering
a light course are quarantined and do not contribute further to new infections. We consider that
ICU capacity is constrained. If the capacity constraint is exceeded people with a heavy course
cannot be treated in the ICU and die.

We study this model on a network, where the population at each node is subdivided into the
relevant compartments. The network structure of the model can represent different
geographical regions, a case we consider in the main body of the article; different subgroups
of the population, a case which is available in the Supporting Information material in the
Online Appendix; or, indeed, both. Disease transmission occurs both within and across
network nodes. By the optimal choice of a set of target transmission rates (within certain
bounds) the decision‐maker can reduce the spread of the disease. Depending on the model
interpretation it is possible that the ICU capacity corresponds to a single node or is shared
between (some of the) nodes.

In general we show that for an interior solution with respect to the target transmission rates
the optimal allocation equalizes the marginal rate of transformation across the network with
respect to both containing the spread of the disease and protecting from it. Regarding the
containment of spread we also find that the marginal rate of transformation depends only on
the current shares of light cases in the nonisolated population in the two respective regions.
Furthermore we find that the relative size of the testing pool is one decisive factor for the
relative allocations of testing and lockdown measures. By reducing the size of the testing pool,
more effective testing can thus be shown to lead to a shift in the allocation from containment
measures, such as lockdown or quarantining, to testing.

Studying the optimal allocation of target transmission rates (i.e., optimal containment) and
testing strategies for a numerical example in which the pandemic spreads from one region into
two otherwise identical regions, we can summarize the following key messages.

1. The analysis demonstrates that containment by way of lockdown and quarantining
measures is effective in terms of saving lives and reducing total costs. While this depends on
our assumptions about the value of a life saved, the cost reduction is so large as to make our
finding robust. This generalizes earlier findings to a network setting.

2. For our calibration, the optimal containment policy is geared toward “flattening‐the‐curve”
and thereby containing the number of heavy cases to a level that ICU capacities are (just)
able to cope without significant congestion.

3. Lockdown within regions is typically weaker than measures undertaken to contain the
transmission of the pandemic across regions. Initially, strong measures are taken to contain
the disease within the region of the initial outbreak but these are adjusted over time to
establish a course of the disease that is symmetric across the three regions. The common
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practice followed by many countries during the pandemic of imposing travel bans provoked
by spikes in infections in foreign countries finds some support in our model.

4. Testing, on which countries have relied to very different extent during the COVID‐19
pandemic, proves to be effective by relaxing the trade‐off between saving lives and
containing economic costs. However, the extent to which this is true hinges on (i) the
effectiveness of contact tracing as a necessary requirement for tests that are targeted at
(likely) light infections; and (ii) on limits to the testing capacity. If tests are in limited supply
(especially during the early stages of the pandemic) only well targeted testing has the
potential to speed up the termination of the disease and, thereby, to cut the time over which
lockdown measures are required. In policy terms, this requires the availability of effective
tracing capacities. The massive cost reductions over the pandemic afforded by the
introduction of effective (rather than ineffective) testing indicates that policy‐makers should
be willing to invest significantly into improvements in testing efficacy.

5. Both lockdown and testing are initially concentrated on the hotspot(s) with high numbers of
current infections with the twin aim of flattening‐the‐curve and containing spill‐over effects
into other regions. Policies are subsequently adjusted in a way that they become more
similar over time.

6. When the policy objective is the minimization of the total cost of the pandemic across all
regions, then both lockdown and testing policies are chosen in a way that aims at equalizing
the pandemic across regions. While this leads to the assimilation of policies across regions,
such an endeavor is the more successful the more targeted testing can be used.

Our model features a number of limitations, most notably that it is set out from a social
planer perspective. This provides a characterization of the first‐best allocation as a yardstick
and—in its regional interpretation—reflects the policy that should be implemented by a strong
centralized government. But it does not yet capture well the policy outcomes in a decentralized
setting where (i) local decision‐makers at each node of the network—in the regional context
best thought of as regional authorities— optimize a local (regional) objective but not social
welfare; and/or (ii) where individuals are taking voluntary decision in respect to self‐protection.
While the modeling in (ii) is difficult to integrate with the planer model, one natural extension
to the present model would be the consideration of a game between local decision‐makers.
Comparison against the first‐best allocation would allow to identify inefficiency related to
externalities across network nodes (regions) as well as possible coordinating measures on the
part of the central government aimed at improving the allocation. Finally, we believe our
framework to be flexible enough to be applied to a broad range of pandemic, population and
economic settings, including consideration of social rather than regional networks and a variety
of settings that involve asymmetric networks. We relegate these issues to future work.
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