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Abstract
The scientific evidence assembled in this Focus Collection on ‘Reactive nitrogen and the UN
sustainable development goals’ emphasizes the relevance of agriculture as a key sector for nitrogen
application as well as its release to the environment and the observed impacts. Published work
proves the multiple connections and their causality, and presents pathways to mitigate negative
effects while maintaining the benefits, foremost the production of food to sustain humanity.
Providing intersections from field to laboratory studies and to modelling approaches, across
multiple scales and for all continents, the Collection displays an overview of the state of nitrogen
science in the early 21st century. Extending science to allow for policy-relevant messages renders
the evidence provided a valuable basis for a global assessment of reactive nitrogen.

Environmental sciences should have a major bearing
on relevant policies, but scientific societies and pub-
lication pathways are seldom designed to deal with
science and policy together. In association with the
International Nitrogen Initiative (INI), we are glad to
present this unique collection of articles relevant to
both. The work presented highlights various aspects
of assessment and management of reactive nitrogen
(Nr), as well as their relevance to the various sustain-
able development goals, guided by the focus of the
8th INI Conference, held online between 30 May and
3 June 2021. Some of these articles are from confer-
ence participants while others have been contributed
by the wider community in response to an open call
from this journal.

INI’s main goal has been to optimize the bene-
fits of Nr in sustainable food production and minim-
ize its negative effects. Nr compounds such as nitrous
oxide, ammonia and nitrogen oxides in air and in
water, nitrates, nitrites as well as organic nitrogen
affect human health, the environment, biodiversity
and climate from food production, fuels, industry,

waste and other sources. The INI conferences have
accompanied the journey of the Nr community to
address their science and policy aspects for over two
decades. The efforts for intergovernmental recogni-
tion of Nr as a global concern were rewarded with the
adoption of the first ever UN resolution on sustain-
able nitrogen management (Sutton et al 2019, UNEP
2019, Raghuram et al 2021). Consequently, the 8th
INI Conference was hosted by a national government
for the first time: the German Environment Agency
with the support of the FederalMinistry for the Envir-
onment, Nature Conservation, Nuclear Safety and
Consumer Protection. TheBerlinDeclaration9 result-
ing from this conference, issued jointly by the Ger-
man government and the INI, heralded a new era
of science–policy cooperation, specifically calling for
integrated management of nitrogen (N) compounds
instead of specifically addressing individual problem
areas.

9 https://ini2021.com/berlin-declaration/.
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Figure 1. Topics and scales covered by papers in this Focus Collection. Papers are represented as follows: 1, Bakayoko et al, ERL; 2,
van der Graaf et al, ERC; 3, Costa et al, ERL; 4, Ossohou et al, ERL; 5, van Damme et al, ERL; 6, Nishina et al, ERC; 7, Skiba et al,
ERL; 8, Bansal et al, ERL; 9, Wen et al, ERL; 10, Webb et al, ERL; 11, Hood-Novotny et al, ERC; 12, Medinets et al, ERL; 13, Friedl
et al, ERL; 14, Kaltenegger et al, ERC; 15, Spijker et al, ERC; 16, Ntinyari et al, ERC; 17, Hansen et al, ERL; 18, Gweyi-Onyango
et al, ERL; 19, Byers et al, ERC; 20, Li et al, ERC; 21, Toda et al, ERC; 22, Yi et al, ERL; 23, Löw et al, ERC; 24, Amon et al, ERL; 25,
Yang et al, ERL; 26, Stuhr et al, ERC; 27, Löw et al, ERL. ERC, Environmental Research Communications; ERL, Environmental
Research Letters.

It is this organizational framework to which the
individual contributions to the Focus Collection have
been contributing. The science of N is diverse and
multidisciplinary, comprising varied topics studied at
different spatial scales and involving several N com-
pounds. The scientific papers presented here deal
with many of the main N topics, scales and com-
pounds in a diverse geographical context (figure 1).
With a focus on Europe (ten papers), Africa (four
papers), Asia (six papers), America and Australia
(three papers) are also represented, as well as global
approaches (four papers). Both spatial and system
scales affect methods, boundaries, conclusions and
recommendations. Contributions considering plot,
field and farm scales are fundamental for building
basic knowledge (13 papers), but thoseworking at lar-
ger scales from watershed to global (14 papers) are
essential to integrate the basic knowledge for provid-
ing sound and generalizable conclusions and recom-
mendations. Similarly, N studies can be found here
that focus on one of the various reactive N com-
pounds (mainly NH3, N2O and NO3

−) or that con-
sider integrated approaches such as N budgeting.
While it is impossible to cover all the possible combin-
ations of approaches, this Focus Collection includes
many and as such represents the multidimensional
nature of N science.

Nr compounds serve as nutrients for plant growth
in terrestrial and aquatic ecosystems. Atmospheric

input is a key factor characterizing the functioning
of such systems. Experimental results presented in
this Focus Collection show increasing trends of wet N
deposition since the year 2000 (Ossohou et al 2021)
for a western African savanna site; however, this is
compensated for by decreasing dry deposition. Bio-
mass burning and agriculture are singled out as the
most important sources of atmosphericN deposition.
For the Lake Victoria region in Kenya, Bakayoko et al
(2021) present a long-term monitoring time series of
wet N deposition and they conclude that due the elev-
ated loads of atmospheric N, the Lake Victoria system
is exposed to eutrophication in the long term. In con-
trast, European N deposition is projected to decline
in the next decades due to international and national
air quality regulations. Along with that, risks for ter-
restrial biodiversity through eutrophication are tent-
atively expected to decline in Europe (Jonson et al
2022). Still, atmospheric deposition in Europe is not
only affecting biodiversity but also strongly influen-
cing carbon sequestration in terrestrial ecosystems.
Clear responses of forest gross primary production
in Europe in comparison with annual N deposition
are shown by van der Graaf et al (2021). While these
authors could not identify N deposition affecting the
response of European forest productivity to droughts,
N addition experiments in Brazilian savannas (Costa
et al 2021) suggest that eutrophication may cause
changes at an anatomical level in the xylem vessels of
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woody species, thus making themmore vulnerable to
cavitation and potentially also to droughts.

N pollution poses threats in several environ-
mental domains, often summarized as WAGES:
water, air, greenhouse gases, ecosystems and soils
(Sutton et al 2011). We note new findings in all these
domains. On water pollution, Nishina et al (2021)
find that the total inorganic nitrogen (TIN) load-
ing arriving through the rivers at the East China Sea
has largely increased since 1970. Despite improve-
ments in nitrogen use efficiency (NUE) and a reduced
increase in TIN loading since the 2000s, the resid-
ual load is still too high for the sensitive ecosys-
tem of the shallow continental shelf of the East
China Sea. Regarding air pollution, van Damme et al
(2021) observe a massive increase in global ammo-
nia emissions based on hyperspectral infrared satellite
sounders. Between 2008 and 2018, ammonia emis-
sions rose by 12.8%,with hotspots in theNorthChina
Plain, Pakistan and the Ganges watershed, and West
and Central Africa. Ammonia, together with gaseous
nitric acid, are shown to also play a dominant role
in secondary inorganic particle formation (PM2.5) in
Beijing (Wen et al 2021). While NH3 results from
persistent non-agricultural activities (e.g. traffic) and
periodic agricultural emissions, NOx emissions are
mostly the result of combustion processes. Other
NOx sources become relevant only after successful
abatement. Skiba et al (2021), for Europe, demon-
strate the increased importance of agricultural and
forest soils as a source of NO, even though limited
available data indicate that their contribution might
be overestimated. Among greenhouse gases, N2O is
an intrinsic element of the N cycle. The conditions
promoting N2O formation in agricultural soils still
need to be better understood for accurate represent-
ation in models and to give advice for abating emis-
sions. Friedl et al (2021) use field measurements for
Australian sites to identify an exponential effect of
soil water content on N2O emissions, as well as the
important role of heterotrophic nitrification. Also,
Medinets et al (2021) point to the importance of
dry–wet pulses and highlight that natural NO and
N2O emissions should also be considered in national
inventories given their high background emissions,
especially as they may increase due to global warm-
ing (Gao et al 2022). Indirect emissions of agricultural
fertilization through leaching are still poorly rep-
resented in emission inventories. Webb et al (2021)
argue that leaching to artificial agricultural waters, for
example drains, ditches or irrigation canals, should
be accounted for separately because emission factors
are considerably lower than for rivers or lakes. Yet,
as Maavara et al (2019) point out, current Intergov-
ernmental Panel on Climate Change (IPCC) emis-
sion factors for rivers and lakes may also be too high.
Bansal et al (2022) remind us of N2O sources bey-
ond agriculture. These authors find a doubling of

N2O emissions from fuel combustion in South Asia
between 1990 and 2017, and these are expected to
increase even more strongly by 2040. Changes in N
inputs can also change ecosystems fundamentally.
Hood-Nowotny et al (2021) find that the high inor-
ganic nitrogen load caused by atmospheric deposition
on Austrian forests inhibits fungal activity. These
forests are not adapted to high N loads; microbial
activity does not further increase due to N saturation.
Soils are therefore altered strongly by N deposition.
Hood-Nowotny et al (2021) observe that soil organic
matter stocks increase because of N deposition, as
decomposition bymicrobes is limited by factors other
thanNwhile fungal decomposition is impeded by too
muchN. This finding is in line with the meta-analysis
by Janssens et al (2010), but has so far not been
quantified at a global scale (Schulte-Uebbing and
de Vries 2018).

As agriculture benefits from N nutrients, both
the environmental impacts associated with N release
and the options for reducing such impacts are key
research topics. The challenge of optimizing N inputs
in plant production is global. Hence, Kaltenegger et al
(2021) use global gridded data to develop maps of N
surplus on grazing and agricultural land—pointing
to insufficient knowledge about land use (as from
land use maps) as the single parameter most crit-
ical for improvement, but also providing an overview
of surplus (and release potential) on a 0.5◦ × 0.5◦

grid scale. Information on N surplus and use is cent-
ral for better N handling, and experimental evid-
ence guides the way forward. For Africa, a region
notoriously lacking agricultural nutrients, applica-
tion efficiency is the core of all considerations. Man-
agement conditions of irrigated rice, identifying the
right varieties and cropping season while maintain-
ing modest N addition, proved essential for avoiding
environmental damage at high production levels at
two sites in Kenya (Gweyi-Onyango et al 2021). The
trends and scenarios of NUE in smallholder farms
were determined for the Lake Victoria region, also
in East Africa (Ntinyari et al 2022). Results indic-
ate the need to improve yields and avoid soil mining
rather than increasing NUE. Management decisions
and measures dedicated to reducing environmental
release of N compounds to the environment are the
common element for studies performed for con-
ditions in Europe. Nitrous oxide emissions driven
by freeze–thaw cycles in Norway (Byers et al 2021)
depend on the type of plant substrate rather than
on the amount of N available, with pure clover cul-
tivation providing much higher off-season emissions
than mixed grass–clover or grass-only control plots,
even if fertilized.Morewinter-hardy ‘catch crops’may
help preventNmineralization and subsequentmicro-
bial conversion. Denitrification and the subsurface
redox structures have been the subject of study by
Hansen et al (2021). These authors assess potential
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nitrate leaching to groundwater in Denmark using
data for three watersheds and extrapolating for the
whole country based on geological and geochemical
conditions to define risk zones and thresholds. In
particular, marine deposit soils and moraine land-
scapes demonstrate complex redox conditions. Stat-
istical methods for quantifying nitrate leaching in
the Netherlands have been developed by Spijker
et al (2021), who use machine learning algorithms
(‘random forest’) to connect observed and predicted
quantities at 500 m resolution for the whole country.

NUE is also a decisive indicator in animal hus-
bandry. Toda et al (2020) estimated N balances and
compared the NUE of dairy farms in Japan using
either a total mixed ration (TMR) and biogas sys-
tem or conventional feeding. They found a consider-
able variability in N surplus and NUE and identified
the stocking rate and feed N as the main influencing
factors. TMR farms had a higher productivity and less
variation in NUE. The authors recommend improv-
ing pasturemanagement and the share of homegrown
feed to reduceN surplus. Löw et al (2020) increase our
knowledge on the effect of different grazing intens-
ities on NUE, focusing on northwest Germany. All
systems from full grazing to zero grazing manage-
ment systems revealed a N surplus, but the surplus
decreased when the share of grazing decreased. How-
ever, farm NUE varied greatly between farms, and
there is large scope for improvements without chan-
ging grazing management, or even switching to zero
grazing. Li et al (2021) investigated the potential of
sustainable intensification of grass and corn produc-
tion for dairy farms in Canada to improve nutrient
management. Increasing the share of corn produc-
tion and decreasing the share of grass will increase
farm productivity; however, good care must be taken
to avoid pollution swapping. These authors stress the
importance of good agricultural practices for achiev-
ing sustainable intensification. Finally, Yi et al (2021)
quantified the impacts of an intensive fattening pig
farm in central China, where about one tenth of
the NH3 emissions was deposited within 500 m of
the source.

While the global awareness of N as a topic has
increased, the complexity of interacting Nr spe-
cies is not well understood by decision-makers.
Due to the reactions and interactions of reactive
species and their exchange between environmental
compartments, coherent policies require integrative
approaches. Yang et al (2022) analyse the N-related
legislation of South Asian countries. Interestingly, less
than 10% of nearly a thousand political measures
consider multiple pollution sources, sectors, nitrogen
threats and impacts with integrative policy instru-
ments. These authors also find legislation that leads
to more consumption of Nr and they provide a clas-
sification of different policy options with respect to
their relevance to combat Nr release. In northern

and western Europe, tools have been introduced to
reduceNr emissions from sources such as traffic, agri-
culture and wastewater. Two studies from Germany
focus on the current regulations and their impact.
Löw et al (2021) examine the suitability of three dif-
ferent approaches for limiting excess N fertilizers, i.e.
net soil surface balance, gross farm-gate balance and
fertilization planning. Their analysis of 6000 farms
can help to design better-targeted regulations. Stuhr
et al (2021) studied the constraints for pig farmers
under German law to adopt N-reduced farming prac-
tices. Some farmers feel weary of the current require-
ments, others change their routine management only
partially and a third group adapts to the necessary
changes proactively. However, the overall result is not
satisfying. The authors identified type-specific con-
straining factors that should be considered in future
regulation. Policy also needs reliable data: Amon et al
(2021) investigate the effects of using different IPCC
reporting guidelines on the emission estimates from
the livestock sector, with Austria as a case study.
They find important shifts in the relation between
the main emission sources, when moving from the
1996 guidelines to the updated version of the 2006
guidelines or taking advantage of the 2019 refine-
ment. IncreasedCH4 emissions from enteric ferment-
ation and manure management and a decrease of
indirect N2O emissions and of N2O from manure
management and soils are the consequence of meth-
odological change, pointing out the need to harmon-
ize methods for benchmarking and comparison.

Previous efforts similar to those covered here led
to regional assessments of the environmental impacts
of Nr—the European Nitrogen Assessment (Sutton
et al 2011), the National Nitrogen Assessments of
India (Abrol et al 2017) and Pakistan (Aziz et al 2021),
making SouthAsia an important global hub of action.
For California, Tomich et al (2016) demonstrate an
assessment at sub-country scale. Now INI currently
oversees, in the framework of the ongoing Interna-
tional Nitrogen Management System (INMS) pro-
ject, a global extension of such activities, the first
ever International NitrogenAssessment scheduled for
2023. That activity will also draw on the results pub-
lished in this Focus Collection.
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