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 In a world where climate change, population growth, and global diseases threaten economic access to food, policies
and contingency plans can strongly benefit from reliable forecasts of agricultural vegetation health. To inform deci-
sions, it is also crucial to quantify the forecasting uncertainty and prove its relevance for food security. Yet, in previous
studies both these aspects have been largely overlooked. This paper develops a methodology to anticipate the agricul-
tural Vegetation Health Index (VHI) while making the underlying prediction uncertainty explicit. To achieve this aim,
a probabilistic machine learning framework modelling weather and climate determinants is introduced and imple-
mented through Quantile Random Forests. In a second step, a statistical link between VHI forecasts and monthly
food price variations is established. As a pilot implementation, the framework is applied to nine countries of South-
East Asia (SEA)with consideration of nationalmonthly rice prices. Model benchmarks show satisfactory accuracymet-
rics, suggesting that the probabilistic VHI predictions can provide decision-makers with reliable information about
future cropland health and its impact on food price variation weeks or even months ahead, albeit with increasing un-
certainty as the forecasting horizon grows. These results - ultimately allowing to anticipate the impact of weather
shocks on household food expenditure - contribute to advancing the multidisciplinary literature linking vegetation
health, probabilistic forecasting models, and food security policy.
Keywords:
Vegetation health
Food security
Remote sensing of the environment
Probabilistic machine learning
Vulnerability analysis
1. Introduction

Since the introduction of agriculture, 7000 to 10,000 years ago, the link
betweenweather and crop yield has been a constant reason for concern due
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dramatically mitigated the direct impact of weather on agriculture
(Rasmussen, 1962; Parayil, 1992; Sullivan, 1984), weather shocks remain
a major reason for concern for stakeholders in the agricultural value
chain (Jägermeyr et al., 2021; Wang et al., 2021). This is particularly true
in lower income regions of the world, where technology adoption and agri-
cultural knowledge accumulation have lagged behind substantially com-
pared to industrialised countries (Lybbert and Sumner, 2012). Besides
weather variability, several studies have highlighted how anthropogenic
climate change is and will increasingly be exerting a substantial, mostly
negative impact on crops growth and health (Anderson et al., 2020;
Mbow, 2020). Climate change is expected to negatively affect global crop
yields, and ultimately food supply and accessibility, especially in the most
vulnerable regions with fragile agricultural systems (Mora et al., 2015;
Porter, 2014). Under these changing conditions and negative outlook, it
has become of utmost importance to monitor and provide reliable predic-
tions of vegetation health to better allocate scarce resources, design early
warning systems, and ensure food security.

Remote sensing techniques enable collecting large amounts of granular
information over vast areas and at different spatio-temporal resolution
scales. By characterising natural features on the ground and monitoring
their changes over time, remote sensing applications can ultimately support
food-related policy-making at different levels (Sishodia et al., 2020; Vroege
et al., 2021). The scientific community has made extensive use of satellite
imagery for mapping and monitoring changes in land cover and estimating
geophysical and biophysical characteristics of the soil (Shanmugapriya
et al., 2019; Weiss et al., 2020), as well as to develop and validate vegeta-
tion health indicators (Kogan, 2002; Kogan et al., 2004; Kogan, 2019;
Kogan et al., 2005; Xue and Su, 2017). The Vegetation Health Index
(VHI) (Kogan, 1997; Kogan, 1987) is one such indicators and it has largely
been used to monitor crop vegetation over large areas and predict crop
yield (Kogan, 1990; Orlovsky et al., 2010; Rahman et al., 2009; Zuhro
et al., 2020). In parallel, learning-based statistical algorithms have opened
up new frontiers and enabled the development of tools for analysing satel-
lite imagery, providing better and more nuanced insights thanks to their
ability to find patterns underlying the complex nonlinear relations that
characterise environmental variables. With regards to forecasting, Probabi-
listic Machine Learning (ML) (Duan, 2020; Ghahramani, 2015; Gneiting
and Katzfuss, 2014; Palmer, 2012) has highlighted the importance of
accompanying any statement about the future with a quantification of its
uncertainty to give a complete picture of the possible scenarios and better
inform decision-making at all levels.

In this context, previous research has applied a variety of statistical
methods to anticipate vegetation health. Yet, virtually all studies neither
analyse the prediction uncertainty nor seek to investigate the relevance of
forecasts for food security. For instance, Nay et al. (2018) developed a
gradient-boosted machine learning approach to predict the Enhanced Veg-
etation Index (EVI) based on MODIS satellite data. A similar strategy is
followed by Perera et al. (2020), who expand the approach to a larger set
of vegetation indexes and ML models for the case of the MENA region.
Lees et al. (2022) test Long Short Term Memory Deep Learning architec-
tures for Vegetation Condition Index (VCI) forecasting in Kenya. The only
notable exception that explicitly models vegetation health forecasts uncer-
tainty is the recent work by Salakpi et al. (2021), who apply a Bayesian
Auto-regressive Distributed Lags (BARDL) model in the context of arid ter-
ritories in Kenya to forecast the VCI up to 10weeks aheadwhile providing a
probabilistic prediction.

Irrespective of this evidence, no previous multi-country, large-scale
study has sought to analyse the probability distribution of vegetation health
forecasts. Yet, to inform policy it is crucial to quantify uncertainty and dem-
onstrate the relevance of such vegetation health forecasts for food security.
To fill those gaps, this paper introduces a probabilistic framework seeking
to anticipate remotely sensed agricultural vegetation health based on previ-
ous weather conditions while making the underlying uncertainty explicit.
This represents an important element of novelty compared to studies
based on point estimate prediction of vegetation health. The approach is
implemented and validated in nine countries of South-East Asia (namely,
2

Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand,
Timor-Leste and Vietnam) over the 2000–2021 period to demonstrate the
suitability of probabilistic ML to predict crop vegetation health at increas-
ing forecasting horizons between the measurement of the weather predic-
tors and the VHI response. The choice of this particular region is
motivated by several factors, including but not limited to the vast potential
for agricultural production in the region, the high vulnerability to climate
change and climate extremes and, the related strong dependency on cli-
matic conditions of their food supply chains. In our study, VHI probabilistic
predictions are then statistically linked with historical rice price monthly
time series in each country to provide evidence of the relevance of VHI
for economic policies for food security and evaluate the food price and
expenditure impact of a vegetation health shock. This is of utmost relevance
for the development and policy-oriented application of data-driven early-
warning systems. The analysis thus contributes to advancing themultidisci-
plinary literature linking remotely sensed vegetation health monitoring,
probabilistic ML, and food security objectives.

The remainder of the paper is structured as follows: Section 2 provides a
theoretical background on vegetation healthmonitoring, the role of remote
sensing for food security, and on probabilistic machine learning. It also
describes SEA, the pilot region under analysis. Section 3 then describes
the methodology designed and implemented to generate probabilistic
VHI forecasts and link them to food prices time series. Section 4 presents
the results of the analysis, which are then commented in Section 5. Finally,
conclusions and future work are discussed in Section 6.

2. Background and theory

2.1. Vegetation health measurement

The literature on the monitoring of the agricultural sector has taken
great advantage of satellite technologies, and several indices have been
developed to characterise land cover with a specific focus on vegetation
health. As defined by Kogan (Kogan, 2019) [p.52]:

Vegetation health is themethod designed to derive vegetation condition
(favorable, unfavorable, normal, etc.) or health (healthy, unhealthy,
stressed,etc.) in response to changing weather (precipitation, tempera-
ture, and others) in each ecosystem and climate.

Remote sensing instruments detect light within the electromagnetic
spectrum of an objectwhen it is illuminated. Depending on the source of en-
ergy used to illuminate the object, there are two ways to collect remote
data. Actively, that is, a sensor device emits a signal on the object of inter-
est, and the sensor captures its reflection. Passively, when the natural sun-
light reflection of the object is used (Woodhouse, 2017). An import
implication for measuring vegetation health using remote sensing instru-
ments is that plants absorb most of the light as part of photosynthesis. Spe-
cifically, vegetation absorbs the second-highest amount of solar energy in
the visible range of the solar spectrum, which turns to increase the photo-
synthetic rate and green mass accumulation. Hence healthy plants reflect
more near-infrared (NIR) than visible red (RED). When a plant becomes un-
healthy, it reflectsmore RED and less of the NIR. Thisfinding brought to the
introduction of the Normalized Difference Vegetation Index (NDVI), mea-
sured as the ratio of the difference of the red RED and NIR radiance over
their sum as in Eq. (1) (Kriegler et al., 1969).

NDVI ¼ NIR � REDð Þ
NIRþ REDð Þ (1)

Based on theNDVI, (Kogan, 1987; Kogan, 1990) proposed three alterna-
tive indexes. The Vegetation Condition Index (VCI), the Temperature
Condition Index (TCI) and the Vegetation Health Index (VHI). The VCI is
expressed as the relation between the value of the NDVI during a chosen
composite period of analayis to the long-term minimum NDVI, normalized
by the range of NDVI values calculated from the long-term record of the
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period of interest (Eq. (2)). VCI evaluates the current vegetation health
compared to the historical trends and is designed to disentangle the
weather-related component of the NDVI from the other environmental
components. The TCI is similar to the VCI, but it is based on the brightness
temperature (BT) (Eq. (3)) extracted from the thermal band (Ch 4) of the
Advanced Very High-Resolution Radiometer (AVHRR)1 and it captures
the vegetation stress induced by abnormal temperature fluctuations and
excessive wetness. Finally, the VHI combine VCI and TCI to assess the
total moisture and thermal impacts on vegetation health (Eq. (4)). The
three indices range from 0 (very unhealthy) to 100 (very healthy), with
values from 40 to 0 indicating increased vegetation stress and 60 to 100
suggesting better vegetation health conditions.

VCI ¼ 100� NDVI � NDVIminð Þ= NDVImax � NDVIminð Þ (2)

TCI ¼ 100� BTmax � BTð Þ= BTmax � BTminð Þ (3)

VHI ¼ a� VCI þ 1 � að Þ � TCI (4)

The three Vegetation Health indexes developed by Kogan have been
used extensively in the literature for monitoring the vegetation activity in
response to weather-related drivers such as drought (Zuhro et al., 2020;
Baniya et al., 2019; Kamble et al., 2019; Liang et al., 2017; Marufah et al.,
2017; Masitoh and Rusydi, 2019; Pei et al., 2018) and to evaluate crop
production (Kogan, 1990; Orlovsky et al., 2010; Rahman et al., 2009).
The findings in the literature highlight that VHI correlates well with mete-
orological drought and agricultural drought in monsoonal rainfall areas
(Marufah et al., 2017) and, most importantly, is useful to predict the yield
of several grain crops such as corn in China (Kogan et al., 2005), wheat in
the USA (Salazar et al., 2007), and rice in Bangladesh (Rahman et al.,
2009) several months in advance of the harvest with considerable implica-
tions for food security. On the other hand, VHI was found to perform poorly
in high latitude regions due to the assumption of inverse correlation
between NDVI and BT that is not met in northern ecosystems where
increasing temperatures support plants growth (Karnieli et al., 2006).

2.2. Food security and remote sensing

In the comprehensive definition of the Food and Agriculture Organiza-
tion (FAO) of Food Security (FAO, 2003), some key features of what is to be
in a”state of food security”, are far from having being globally reached. A
constant, undeniable and powerful force that limits access to”sufficient,
safe, and nutritious food”, is represented by extreme climate variability. In
a recent work Hasegawa et al. (2021), suggest that regions heavily affected
by climate extremes such as South Asia, might require to triple the current
food production to compensate for the impact of climate change. An
increase in production is challenging considering that since 1961 the total
agricultural productivity has decrease by 21% globally and between 26
and 34% for regions closer to the tropics (Ortiz-Bobea et al., 2021). On
the top of this, the”physical, social, and economic access” to food has been
additionally hindered by the global COVID-19 pandemic, stressing the
fragility of the world food supply chain as a consequence of the protracted
crisis (Aday and Aday, 2020; FAO, 2020).

The complexity of these forces and the difficulties in providing reliable
measurements and predictions of food security, have proven to be a stimu-
lus for the development of a wide variety of systems for food security pre-
diction and early warning systems based on different proxies for food
insecurities. Using a variety of methodologies such as expert judgment
(Funk et al., 2019) and data-driven approaches (Westerveld et al., 2021),
the scientifically literature has contributed significantly to the way the sta-
tus of food security is monitored in any given region of the world. Remote
sensing have been widely used by practitioners and researcher as a cost-
effective quantitative and non-destructive source of data, to monitor and
1 https://www.eumetsat.int/avhrr
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detect the evolution and health of crops over large ares and correlate it
with crop yields as primary proxy for food security.

As highlighted by the in-depth review of Karthikeyan et al. (2020),
there is a clear and robust relationship between crop yield and remotely
sensed vegetation indices with correlations ranging from 60% to 80%.
Aside from the use of VHI, other important indices have been explored in
the literature such as the well-known (NDVI) (Rouse et al., 1974) and its
variations such as the enhanced Vegetation Index (EVI) (Liu and Huete,
1995), the Green-Red Vegetation Index (GRVI) (Tucker, 1979), the Soil
Adjusted Vegetation Index (SAVI) (Huete, 1988) and the Red Edge Position
(REP) (Filella and Penuelas, 1994). In a recent work Jeong et al. (2022),
used a combination of vegetation indices, weather and geographic vari-
ables to predict rice yields inNorth and SouthKoreawithin aDeep Learning
framework. The target variables was reported rice yields collected at differ-
ent scales by the local government and international organisations such as
FAO as a part of a crop process-based model designed to simulate crop
growth. The resulting model reached an R-squared of 0.86. In line with
the results in Korea, the study of Son et al. (2020), demonstrated the effec-
tiveness of ML algorithms for regional rice yield predictions based on Mod-
erate Resolution Imaging Spectroradiometer (MODIS) NDVI data in
Taiwan. Using a less computational intensive approach Nazir et al.
(2021), found results ranging from 0.62 to 0.83 based on a Partial Least
Square Regression in Pakistan on multiple indices including NDVI, EVI,
SAVI and REP). On the other hand, in the review of Wen et al. (2021),
the authors points out how some of these indices were found to be inaccu-
rate in characterising crop health under drought and salinity stress and
plant functional traits to be better in characterising the impact of these
stressors.

It has to be noted that while all these studies indicate the robustness of
the relation between crop yield and remote sensing and its direct relation
with food security monitoring and prediction, none of them have explored
the economic implication and relevance for further food security analysis.
This goes in line with the review of Kubitza et al. (2020), where the authors
stress the preponderance of studies limited to the biophysical sphere.

2.3. Probabilistic machine learning

Uncertainty and its quantification are fundamental aspects of any envi-
ronmental analysis, and they are now crucial aspects in the face of climate
change and its complicated consequences. Epistemic uncertainty (caused
by limited data and knowledge) and aleatory uncertainty (randomness or
variability in the underlying variables) are virtually present in all projec-
tions of a future phenomenon (Helton et al., 2010). In the last decade,
researchers in the field of Probabilistic Machine Learning have developed
more sophisticated algorithms that provide reliable predictions and
account for the inherent uncertainties of Machine Learning algorithms
(Duan, 2020; Ghahramani, 2015; Gneiting and Katzfuss, 2014; Kabir
et al., 2018; Meinshausen and Ridgeway, 2006). By shifting from a point-
wise estimation focused only at the conditionalmean of a response variable
to a distribution estimation aiming at providing information about the full
conditional distribution of the outcome variable of interest, the notion of
uncertainty is explicitly integrated in the prediction while providing more
comprehensive information to policy-making.

To clarify how decision making and our understanding of a phenome-
non of interest could benefit from moving beyond the conditional mean,
it is worth introducing some notations.2

Let Y and X denote a real-valued outcome variable and a set of covari-
ates, respectively. A typical ML algorithm, produce a point estimate as in
Eq. (5).

E Y ∣X ¼ xð Þ (5)
2 In the discussion below, the presentation of (Meinshausen and Ridgeway, 2006) is closely
followed

https://www.eumetsat.int/avhrr


Table 1
Summary statistic for temperature (in Celsius degrees) and rainfall (inmm), 20-year
long-term average, by country.

Country Mean
rain

Min.
rain

Max.
rain

SD
rain

Mean
temp.

Min.
temp

Max.
temp.

SD
temp.

Cambodia 3.660 0 20.879 3.847 29.014 23.448 38.604 2.427
Indonesia 4.240 0 14.000 3.757 27.618 24.336 33.156 1.066
Laos 3.429 0 28.427 4.645 25.597 17.633 31.004 2.110
Malaysia 5.300 0 21.565 3.556 27.379 23.359 30.761 0.989
Myanmar 2.322 0 25.231 3.677 26.388 18.103 35.870 3.323
Philippines 3.538 0 18.077 3.870 27.879 23.442 31.926 1.329
Thailand 2.549 0 17.398 3.136 29.175 23.274 37.603 2.383
Timor-Leste 3.851 0 32.356 5.600 28.634 23.434 38.201 2.786
Vietnam 2.335 0 18.937 3.060 27.425 17.147 32.236 2.350
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Eq. (5) can be interpreted as way of answering the question “What value
Y would take on average, given X?”. Answering this question can provide
important insights, but - at the same time - such insights will regard exclu-
sively the mean of the outcome of interest Y, while other information
inherited from the data will be disregarded. A relatively simple, yet highly
informative approach to overcome this limitation is to focus on the
quantiles distribution of Y give X instead of the simple mean. Formally
this is equivalent to Eq. (6).

Qα xð Þ ¼ inf y : F y∣X ¼ xð Þ≥αgf (6)

Where the conditional distribution function F(y ∣ X= x) is equivalent to
the α quantile (Qα) given X= x. This leads to prediction intervals as a way
to encapsulate information about uncertainty into themodel. Indeed, a pre-
diction interval for Y given X, with a desired width α, can now be obtained
directly from the data. For example, if the 90% prediction interval I(x) of Y
for X = x is sought, then:

I xð Þ ¼ Q0:05 xð Þ,Q0:95 xð Þ½ � (7)

In the classic parametric quantile regression, obtaining the quantities of
interest is achieved byminimizing the expected loss E(Lα) (the analogous of
minimizing the expected squared error loss for classic regression). If the loss
function Lα for 0<α<1 is defined by the weighted absolute deviations as in
Eq. (8), then the objective is to minimize the expected loss E(Lα) as per
Eq. (9).

Lα y, qð Þ ¼ α y � qj jy>q

1 � αð Þ y � qj jy ≤ q

�
(8)

Qα xð Þ ¼ arg min
q

E Lα Y, qð Þ∣X ¼ xgf (9)

In a non-parametric setting, Meinshausen and Ridgeway (2006) have
shown an alternative approach to retrieve the conditional quantile distribu-
tion using the Random Forests (RF) algorithm of Breiman (2001). Quantile
Random Forests (QRF) generalise RF by storing all observed responses at
the leaf level of each tree, instead of just the mean, allowing to measure
empirical quantile estimates. In other words, the classic conditional mean
estimated by RF as the weightedmean of the observed outcome of interest,
is replaced with its weighted distribution.

The predicted intervals give us an important additional information
regarding the possible variation around a new predicted value. The corre-
spondent width of the intervals can be interpreted as a simple yet highly in-
formative measure of accuracy of the model, with wider intervals
indicating a higher degree of uncertainty in the predicted value. A more
sophisticated measure of performance of a distribution prediction can be
found in the family of scoring rules (Gneiting and Katzfuss, 2014; Brier
et al., 1950; Gneiting and Raftery, 2007; Krueger et al., 2016). A scoring
rule function S(F, Y) is a measure of accuracy of a distribution prediction
F given the observed outcome Y. In this paper, the Interval Score is consid-
ered, a proper scoring rule designed to score quantile predictions based
on the work of Gneiting and Raftery (2007) which is computed as per
Eq. (10).

S ¼ u � lð Þ þ 2=α∗ l � Yð Þ∗1 Y < lð Þ þ 2=α∗ Y � uð Þ∗1 Y>uð Þ (10)

Where Y is the true value of the outcome of interest, l and u denotes
respectively the lower and the upper quantiles of the range defined by the
value of α.

The usefulness of the QRF algorithm has been investigated in a number
of contribution in the environmental literature. Sanderman et al. (2018)
used QRF to provide probabilistic predictions of carbon stock in Mangrove
finding that the highest level of uncertainty in the predicted carbon stocks
at 1 m depth was on average 40.4% of the organic carbon stocks. Taillardat
et al. (2016) compared QRF with a parametric probability density function
model to forecast surface temperature and wind speed, using hourly data
4

and lagged features from 3 up to 54 h. Their results highlight the suitability
and better performances of QRF with sharp and reliable probabilistic pre-
dictions. Vaysse and Lagacherie (2017) Compared Regression Kriging for
sparse digital soil mapping with QRF. The authors suggest that while the
two algorithms reached similar performances on the point-wise prediction
of soil properties, QRF is preferable over Regression Kriging since the for-
mer provides ore accurate and interpretable probabilistic prediction than
latter.

2.4. Study area

The SEA region is characterised by a tropical climatic with monsoons
and a substantial amount of rainfall alternated with period of dryness. Var-
iation in rainfall an temperature between countries (Table 1) can be
observed and have been related with El Niño/Southern Oscillation
(ENSO), causing differences in the timing of the rainfall phase between
the north-west of the region and the rest of the area.

According to Eckstein et al. (2021) the average temperatures in the SEA
have been increasing rapidly since 1960 bringing Myanmar, the
Philippines, and Thailand among the most affected countries in world by
climate change in the period 2000–2019. Panel A of Fig. 1 shows the
2010–2020 average temperature change with respect to the long-term his-
torical average in each country, highlighting that in most countries the one
°C warming threshold has already been surpassed, with a peak of 1.3 °C in
Myanmar.

Turning to food production, the main commodity are represented by
rice, maize, coffee, cocoa and palm oil. Rice is the single most important
crop in the region. SEA countries have already experienced extensive losses
due to extreme weather and climate change (Zhongming et al., 2021).
Panel B of Fig. 1 shows the Coefficient of variation of rice yield coefficient
of variation of rice yield (units of production per land cultivated) according
to the country-level statistics for the 2010–2020 period provided by the
FAOSTAT database (FAO, 2022). This reveals significant heterogeneity in
the stability of rice productivity, with the greatest fluctuations observed
in Cambodia, Laos, and Malaysia. Among the listed countries, Cambodia,
Myanmar and Laos have been labeled as the “poorest of the poor” (Food
&amp and of the United Nations, 1998). Overall, the percentage of popula-
tion living on less than $5.50 a day, ranges from 2.7% inMalaysia to as high
as 94% inTimor-Leste (Bank, 2021). The number of undernourished people
in 2020 increased by 6% in the region most probably due to the pandemic
(Zhongming et al., 2021). Finally, four of the country under analysis have a
Global Food Security Index (GFSI) score (The Economist, 2021) falling
below 60 with Laos, Cambodia and Myanmar below 50.

3. Materials and methods

3.1. Modelling framework

Fig. 2 introduces the framework of the analysis, which is detailed in the
sections below. A probabilistic prediction framework is designed and four
prediction horizon scenarios are considered, indicating the temporal



Fig. 1. Panel A: Average temperature change (2010−2020) with respect to the long-term historical average in the SEA countries considered in the analysis. Source:
FAOSTAT. Panel B: Coefficient of variation of rice yield (2010–2020) in the SEA countries considered in the analysis.

Fig. 2. Schematic representation of themodelling framework. The flowchart describes the application of a probabilisticML approach to predict the VHI in nine SEA countries
under different prediction horizons and the assessment of the capacity of the VHI predictions to determine food prices and thus household food expenditure.
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distance between the target VHI measurement and the predictor variables
measurement: two-week, one-month, two-month and three-month ahead.
The QRF models (a model for each of the nine pilot countries in SEA, for
each prediction horizon) is trained on 15 years of weekly data
(2000–2015) and tested on the following five years of sample
(2016–2021). Finally, a panel regression model is estimated to appraise
the statistical link between country-specifc variations in the VHI predictions
andmonthly rice prices. The estimated coefficients are used to derive impli-
cations for food expenditure and security.

3.2. Data sources and processing

3.2.1. VHI, climate, and satellite data
The analysis is based on a combination of remotely sensed and atmo-

spheric data detailed in Table 2 from the first week of April 2000 to the
last week of July 2021. The primary outcome of the analysis is the VHI
over cropland produced from the National Environmental Satellite, Data,
and Information (NESDIS) part of the National Oceanic and Atmospheric
Administration (NOAA). The data is available from 1981 with 4 km spatial
and 7-day composite temporal resolution. To capture the long-term contri-
bution of climate on vegetation health, yearly means of precipitation and
5

temperature are included as covariates. For the short-term weather contri-
bution, monthly rainfall, temperature, humidity, solar radiation means,
cloud coverage and the total amount of rain by month are used. Raw covar-
iates data are masked over cropland pixels on the Google Earth Engine plat-
form (Gorelick et al., 2017) using the GFSAD1000 gridded cropland
product (Teluguntla, 2015); then, the mean value of each variable is
extracted for each day of the study period over SEA.

The masked data are than imported into the R scientific programming
environment (Team, 2020), where additional processing steps are carried
out to generate a set of features that could enhance the accuracy of the
model for each prediction scenario, and capture trends and seasonality in
the time series. This includes lagged features of each variable, rolling sum
of rain and rolling mean of rain, temperature, humidity and solar radiation
over the previous month. Year, month, week of the year, and sine and
cosine function of time (for week, month, and year), are included as addi-
tional predictors (see Table 3).

3.2.2. Food security analysis data
To examine the relevance of the VHI indicator for food security forecast-

ing purposes,additional statistical analysis based on monthly time series of
the wholesale prices of rice in seven countries of East-Asia is carried out.



Table 2
Input data for VHI prediction.

Data product Variable Source

GFSAD1000: Cropland
Extent 1 km
Multi-Study Crop Mask

Landcover (Teluguntla, 2015)

STAR - Global Vegetation
Health Products

VHI (STAR, 2018)

CHIRPS Daily: Climate
Hazards Group
InfraRed Precipitation
with Station Data
(version 2.0 final)

Precipitation (Funk et al., 2015)

MOD11A1.006: Terra
Land Surface
Temperature and
Emissivity Daily Global
1 km

Temperature (Wan et al., 2015)

CFSV2: NCEP Climate
Forecast System
Version 2,

Maximum specific
humidity 2 m above
ground,

6-Hourly Products 6-hour interval;
Downward
Short-Wave Radiation
Flux surface 6 Hour
Average

(Saha, 2011)

NOAA CDR PATMOSX:
Cloud Properties,
Reflectance, and
Brightness
Temperatures, Version
5.3

Cloud Coverage (Heidinger et al., 2014)

World Bank official
boundaries

SEA shapefile and
Administrative
boundaries

(world-bank-official-boundaries)

Table 3
Covariates used to predict VHI.

Variable Lag Rolling
Sum

Rolling
Mean

Year
Mean

Month
Mean

Month
Sum

VHI x
Rain x x x x x x
Temperature x x x x
Humidity x x x
Cloud % x
Solar Radiation x x x
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The price data is drawn from the FAO GIEWS Food Price Monitoring and
Analysis (FPMA) tool3 historical records, retrieving the longest possible
span of time for each country corresponding to the VHI period under anal-
ysis. In this food security analysis, rice is considered as it is the first staple
crop produced and in the region (FAO, 2022), as well as one where histor-
ical monthly price data is consistently available across the countries consid-
ered. The rice price time series are visualised in Fig. SI-3.

Then, for each of the countries investigated, statistics on the yearly
average consumption of rice per capita are retrieved from the OECD-FAO
Agricultural Outlook (OECD, 2020) and on the yearly average food expen-
diture from the USDA Economic Research Service. Combining these statis-
tics with the results of the VHI-rice price statistical analysis, the potential
impact of a shock of the VHI (such as a standard deviation decrease from
its average long-run value) is simulate to evaluate its impact on household
food expenditure.
3 https://fpma.apps.fao.org/giews/food-prices/tool/public/#/

dataset/domestic

6

3.3. Statistical modelling

3.3.1. Probabilistic forecasting of VHI
To explore the suitability of the QRF algorithm (Meinshausen and

Ridgeway, 2006) to produce reliable probabilistic predictions of crop
health for use in early-warning systems, a modelling framework based on
increasing prediction horizons between the environmental predictors and
the VHI is defined, as depicted in Fig. 2.More specifically, instead of provid-
ing a single estimation over the full SEA region as whole and using a single
prediction horizon period, for each country four different prediction leads
are considered, corresponding to multiple forecast horizons, namely, two
weeks, one month,two months and three months ahead prediction. These
lead to a total of thirty-six models trained over about sixteen years and
tested over a period of five years. While our main interest is over the pre-
dicted quantiles intervals at a probability of 0.1 and 0.9, also provide
point-wise predictions of RF are provided.

In this study, the QRF algorithm is implemented using the R packages
ranger (Wright and Ziegler, 2015) and caret (Kuhn, 2008). To find the
optimal set of hyperparameters, the resample procedure for times series
proposed by (Hyndman and Athanasopoulos, 2013) is adopted. To score
the result of the probabilistic prediction, the quantiles scoring rule metric
as implemented in the package scoringutils (Bosse et al., 2020) is consid-
ered, while for the point-wise predictions classic metrics including R-
squared (R2), root mean square percentage error (RMSPE), and mean abso-
lute percentage error (MAPE) are adopted.4
3.3.2. Linking VHI forecasts with food prices and expenditure
To link time series of wholesale rice prices with the VHI probabilistic

predictions, a monthly unbalanced panel (due to price data availability
varying across countries, see Fig. SI-3) dataset is assembled. Based on
these data:

1. Fixed effects panel data regression is carried out to absorb unobserved
country-specific and time-specific heterogeneity from the effect estima-
tion. In particular, both country fixed effects, and month and year fixed
effects, as well as their interaction are included. Here:

• country fixed effects absorb national market specificities;
• month fixed effects capture the seasonality dynamics of prices;
• year fixed effect are representative of regional to global variations in
prices which affect all countries in the panel;

• finally, month by year interactions capture the interplay between the two
latter dynamics.

Fixed effects regression thus aims at isolating the true link between VHI
predictions and rice prices while controlling for additional underlying
trends affecting prices. The models are run on a dataset ensemble of two-
week up to three-month ahead VHI predictions.

2. As predicting variables, the middle quantile of the predicted VHI is
included, as well as an array of lagged values (1-3-6-12-24-48-72
months) to control for the short- to long-term impact of vegetation
health on prices.

3. Different dependent variable timings are tested for, starting from the
current value of prices, going back to lagged values of prices by 1, 2,
and 3 months with respect to the VHI prediction. The reason for testing
specifications with lagged dependent variables is that lags can capture
the anticipation effect of prices, such asmarket expectations over future
food prices

4. Finally, a control variable measuring the prediction interval width at
each t is also included.
4 Additional packages used in this work include data.table (Dowle and Srinivasan, 2021),
tidyverse (Wickham et al., 2019), ggplot2, (Wickham, 2016), lubridate (Grolemund and
Wickham, 2011), purrr (Henry and Wickham, 2020), stargazer (Hlavac, 2015), patchwork
(Pedersen, 2020), and ggsci (Xiao et al., 2018).

https://fpma.apps.fao.org/giews/food-prices/tool/public/#/dataset/domestic
https://fpma.apps.fao.org/giews/food-prices/tool/public/#/dataset/domestic
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In mathematical terms, the following is estimated:

Pcmy ¼ VHIcmy þ VHIcm � 1y þ VHIcm � 3y þ VHIcm � 6y þ VHIcm � 12y

þ VHIcm � 24y þ VHIcm � 48y þ VHIcm � 72y þ widthcmy þ γc þ ψm

þ μy þ ψm ⋅ μy þ εcmy

(11)

where:

• P are wholesale rice prices
• c, m and y represent country, month and year, respectively
• VHI is the middle quantile of the Vegetation Health Index prediction
• width is the VHI prediction interval width
• γ are country fixed-effects
• ψ are monthly fixed-effects
• μ are yearly fixed-effects
• ε is the error term

Finally, the estimated regression coefficients are used to evaluate the
impact of a shock in the (predicted) VHI on rice prices, and thus on rice ex-
penditure given a representative yearly level of per-capita consumption
based on historical statistics. To achieve this, a shock Sc is simulated:

Sc ¼ nc ⋅ SDc (12)

Here, for each country c, n describes the number of SD (standard devia-
tions) from the mean VHI values to the lowest percentile of each distribu-
tion, i.e. for the vegetation to become stressed (falling in the range 0 to
40). The VHI shock Sc is then multiplied by the regression coefficient
from Table 4 (considering the mean value of VHI regression coefficients
Table 4
Panel fixed-effects regression results for the impact of the VHI predictions on na-
tional monthly rice prices. Estimated regression coefficients of Eq. (11) with stan-
dard errors in parentheses. L1-L2-L3: one, two, and three-month lagged variables.

Dependent variable

Rice price L1 rice
price

L2 rice
price

L3 rice
price

(1) (2) (3) (4)

VHI −0.002⁎⁎⁎ −0.003⁎⁎ −0.005⁎⁎⁎ −0.008⁎⁎⁎
(0.0003) (0.002) (0.002) (0.002)

VHI (lag 1 month) 0.0002 0.005⁎⁎⁎ 0.004⁎⁎ 0.006⁎⁎⁎
(0.0002) (0.002) (0.002) (0.002)

VHI (lag 3 months) 0.001⁎⁎ 0.004⁎⁎⁎ 0.010⁎⁎⁎ 0.009⁎⁎⁎
(0.0002) (0.001) (0.002) (0.001)

VHI (lag 6 months) −0.0003 −0.008⁎⁎⁎ −0.015⁎⁎⁎ −0.008⁎⁎⁎
(0.0002) (0.001) (0.002) (0.001)

VHI (lag 12 months) −0.0004⁎ 0.0002 −0.001 −0.001
(0.0002) (0.001) (0.002) (0.001)

VHI (lag 24 months) 0.002⁎⁎⁎ −0.002 −0.002 0.005⁎⁎⁎
(0.0002) (0.002) (0.002) (0.001)

VHI (lag 48 months) 0.0003 0.002⁎ 0.002 −0.002
(0.0002) (0.001) (0.002) (0.001)

VHI (lag 72 months) 0.0004⁎ −0.001 −0.001 0.003⁎⁎
(0.0002) (0.001) (0.002) (0.001)

Prediction interval width −0.0001 0.0003 0.002 0.005⁎⁎⁎
(0.0002) (0.001) (0.001) (0.001)

Constant 0.302⁎⁎⁎ 0.588⁎⁎⁎ 0.934⁎⁎⁎ 0.514⁎⁎⁎
(0.032) (0.203) (0.228) (0.199)

Observations 1568 1568 1568 1568
Country fixed-effects YES YES YES YES
Month fixed-effects YES YES YES YES
Year fixed-effects YES YES YES YES
Year by month fixed-effects YES YES YES YES
R2 0.986 0.415 0.260 0.435
Adjusted R2 0.985 0.387 0.224 0.407
Residual Std. Error (df =
1494)

0.038 0.243 0.274 0.239

F Statistic (df = 73; 1494) 1391.725⁎⁎⁎ 14.528⁎⁎⁎ 7.184⁎⁎⁎ 15.742⁎⁎⁎

⁎ p < 0.1.
⁎⁎ p < 0.05.
⁎⁎⁎ p < 0.01.

7

from specifications 1–4) to derive the impact on rice prices, and divide it
by the most recent yearly mean price in each country to get the relative
(%) price impact. Finally, based on country-specific average household
yearly rice consumption and food expenditure statistics, the potential
impact of the shock Sc on total household food expenditure due to this
potential increase in rice prices is calculated. Table SI-3 reports, for each
country, the yearly average household food expenditure, the mean rice
price for the most recently available year, and the value of one standard
deviation in the VHI. In addition, it is useful to compare this quantity
with the month and country specific observed variations in the VHI index
between 2000 and 2021 plotted in Figure SI-1.
4. Results

4.1. Probabilistic forecasts of cropland vegetation health

Contrarily to point-wise estimates, a prediction interval offer a way to
assess the reliability of a prediction by its width. Tighter prediction inter-
vals indicate less fluctuations of the response variable and consequentially,
a more reliable prediction. Fig. 3, displays the range of potential outcome
values for VHI against the observed values (yellow line) for the four predic-
tion horizon for each of the nine countries analysed in the five-year valida-
tion period (see Methods). Wider fluctuations are observed especially for
Malaysia, Myanmar and Thailand even on the two weeks prediction hori-
zon (dark blue ribbon). Overall, the intervals for two weeks and one
month prediction horizons are tight around the observed values of VHI
while the intervals for two and 3 months are very large with a tendency
to under-predict the observed outcome especially for Malaysia and
Myanmar. On the other hand, over-prediction is more pronounced for
Laos in the period 2019–2020 and at the end of the time series for Timor-
Leste.

To quantify the prediction intervals goodness-of-fit, the Interval Score
(IS) metric is considered (Gneiting and Raftery, 2007). The IS has attractive
properties because it balances coverage and length of the prediction inter-
vals with lower value of the metric indicating better estimated prediction
intervals. Fig. 4A reports the mean value of the calculated IS metric, across
the 5-year testing period in the analysis, while Fig. SI-2 shows the complete
time series for each week in the testing period.

With a prediction horizon of two weeks, for most of the countries under
analysis theMIS is below the value of one, suggesting high reliability on av-
erage. For each increase in the prediction horizon, all the predictions depart
from 0, but Indonesia and the Philippines are the best performing. The pre-
dicted intervals for Myanmar, Cambodia, Laos and Thailand are the most
sensitive with the one for Cambodia triplicating from the initial prediction
horizon of two weeks to the three months horizon.

While the focus and the core novelty of our approach is its probabilistic
nature (allowing to produce prediction intervals) the conventional point-
wise prediction accuracy metrics are also considered for comparability
with the existing literature. Fig. 4B reports the training and testing accuracy
metrics -as measured by the R2- of the point-wise prediction of the QRF
models,5 by country and prediction horizon. While the results on the train-
ing are all very close to 100%, it is evident that increasing the prediction
horizon negatively impacts the accuracy of the prediction. Within a predic-
tion horizon of maximum one month the results on the test are still within
the range of 60% to 80% which is in line with the results found in the
existing literature. An exception is Indonesia, where the accuracy remain
constantly above 75% even with a prediction horizon of 3 months. On the
other hand, the worst performing prediction is for Malaysia with an accu-
racy as low as 35% and 18% for two and three months prediction horizons
respectively (additional metrics including RMSPE and MAPE are displayed
in Table SI-1).
5 These are equivalent to the mean predictions given by the standard version of RF.



Fig. 3. Predicted Vegetation Health Index (VHI) intervals for the four prediction horizons vs. observed value on the test dataset (2016–2021), by country.Note: the upper and
lower intervals for all prediction scenarios, correspond to a probabilities of 0.1 and 0.9, respectively.
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4.2. Linking cropland health predictions and food security

Table 4 presents the results of the fixed-effects regression models
linking VHI predictions with monthly national rice price time series (see
Methods). In particular, models with four different dependent variables
are tested: rice prices, and the one, two, and three-month lag of rice prices.
The lagged specifications are considered to test whether an anticipation
effect exists, i.e. if prices adjust in advance to future variations in the VHI
index, such as based on future yield expectations. In the regression table,
the variable VHI identifies the middle quantile of the probabilistic VHI esti-
mates, whilst a control variable measuring the prediction interval width at
each t is also added (see Methods).

The results show that the VHI has a strong and significant impact on rice
prices in all the considered specifications, and that this effect increases in
magnitude as the order of the lag of the dependent variable increases.
This means that rice prices are adjusting in advance based on future vegeta-
tion health (and, presumably, yield) expectations. Additional results
based on the actual VHI values, rather than the predictions, are found in
Table SI-2. An additional important finding is that the results based on
our VHI ahead predictions find good agreement with the results of the
models based on the observed VHI values in terms of their magnitude and
statistical significance. This result suggests that VHI predictions are suitable
for food price change prediction analysis, such as in early warning systems.

To complement the analysis and quantify the regression coefficients in
Table 4, Fig. 5 reports the results of the simulation of a potential shock Sc
in the VHI (seeMethods for details on the definition of the shockmagnitude
and Table SI-3 for numerical details) and its impact on rice prices, and thus
on total household food expenditure. The graphs show that the simulated
8

shock can have a large impact on national rice prices (an average increase
of 16.5% of the current mean price), although with great variability, with
a minimum of 7% in Laos and a maximum of up to 25% in Myanmar and
Vietnam. This price change could have a potential direct impact on total
household food expenditure: on average, a 2.5% growth, ranging between
a minimum of 1.4% in the Philippines and Thailand, and a maximum of
4.1% in Cambodia.

5. Discussion and policy implications

Most of the studies in the literature have focused on point-wise estima-
tions, setting aside considerations on the inevitable uncertainty that comes
with any prediction. Moreover, compared to most previous studies, the
results of this study are based on a large and heterogeneous region of the
world in both vegetation, climate and food insecurity terms.

Given the innovative methodological aspects and the wider geographi-
cal scope of this work, it is challenging to compare its results with previous
studies. To mention the most similar ones, the analysis of Nay et al. (2018)
achieved R2 values raging from 0.76 to 0.86with a two-week ahead predic-
tion horizon, but it was limited to agricultural land in California and Sri
Lanka. Similarly, Perera et al. (2020) achieved an accuracy of 0.93 for the
MENA region, but their analysis solely focuses on near-real-time prediction.
Lees et al. (2022) reached an average accuracy of 0.83 for one-month
ahead prediction and 0.95 for three-month ahead prediction using a Deep
Learning architecture but focusing on a circumscribed area in Kenya. The
most directly comparable study is the work of Salakpi et al. (2021),
which compares different prediction horizonswithin a Bayesian framework
that naturally provide uncertainty in the predicted values. More specifically



Fig. 4.ML accuracy metrics. (A) Mean Interval Score (MIS), by country and prediction horizon; (B) Training and testing accuracy (R2), by country and prediction horizon.
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their 1.5 to 3 months-ahead prediction R2 ranges between 0.94 and 0.62
but also in this case, the focus remain on a limited region.

In this context, the findings of this paper thus have important implica-
tions from a policy-making point of view as they provide a proof-of-
concept for the design and implementation of early-warning systems and
contingency plans for crop health and food prices based on satellite data
and probabilistic machine learning. In particular, the results are based on
openly available remotely sensed data and they are able to capture non-
linear and accumulation dynamics of weather variables. In addition, the
proposed framework can be adapted to virtually any geography and crop
type. These are attractive features for decision-makers looking for readily
updated, inexpensive food-related forecasts (Ehlers et al., 2021). Such sys-
tem can substantially reduce the need for continuous field data collection
to keep track of current and expected changes in cropland vegetation
health. In turn, the ability to anticipate national food price variation follow-
ing weather shocks can have important implications for governmental food
trade and stocking decisions, as well as for short-run risk hedging decisions
in the commodity stock market. Additional considerations are related with
the trade-offs between the short and the long run impact of food security
policies. The proposed framework and results are mostly relevant for the
short term policy response to support households against food prices shocks
(Ansah et al., 2021). On the other hand, this strategy might eventually con-
verge tomore structural measures and prove to have long-termmoderating
effects on climate shocks on household dietary and health conditions.

6. Conclusions

In this paper, a statistical framework to improve the understanding
of the nexus between weather variability, crop health, and food security
is designed and implemented. QRF - a ML algorithm designed to estimate
quantile values and thus produce probabilistic predictions - is used to
train a set of models with twenty years of weekly multi-source and high-
resolution environmental satellite data in nine countries of SEA.

The work stresses the importance of accounting for uncertainty in pre-
diction when using ML and how this is needed for more actionable insights
9

for policy-making under rapidly changing climate conditions. To concretely
show the added value of the probabilistic prediction of future crop health
conditions, the paper examines the impact of weather shocks on household
food expenditure and finds that the VHI predictions are useful to anticipate
food price and expenditure shocks.

Results shows that the algorithm can accurately learn and reproduce the
historical patterns of vegetation health based on weather variability, and
thus successfully anticipate crop health under different prediction horizons.
In a second step, a follow-up econometric analysis to evaluate the link
between the vegetation health predictions and food security, relating the
VHI dynamics with time series of national monthly rice prices is carried
out. Results show that VHI predictions are suitable to anticipate food
price and expenditure shocks.

Irrespective of this strong policy-support potential, a number of remarks
must be discussed in relation to the results. First, while findings are robust
and in line with the performance and results of the wider literature that
links satellite imagery with crop health, a limitation of the analysis and
its findings stems from the potential error in remotely sensed variables
used in the analysis and generally in the data granularity. It also has to be
noted that smooth effects between the set of variables under analysis are
not well captured by RF hence any further analysis could benefit from the
use of a local linear correction as proposed by Friedberg et al. (2020) but
at the cost of higher computation and time requirements. Second, in the
VHI shock analysis, the estimated household food expenditure increases
are solely based on rice prices variations. Hence, they are best interpreted
as lower-bound values of the overall impact of a VHI shock on food security.
Conversely, these rice price growth impacts on food expenditure do not
consider potential substitution dynamics, e.g. temporary switches to other
foods less affected by a potential VHI shocks. In other words, the price elas-
ticity of rice demand is assumed to be inelastic (ε = 0).

Overall, this analysis contributes to the growing literature focused on
using remotely sensed data and ML algorithms to improve food security
analysis. The proposed framework sets the ground for the development of
early warning food security systems inclusive of an uncertainty component
that could support programs and policies aiming at boosting the resilience



Fig. 5. Country-level impact of a VHI shock of magnitude Sc (see Methods) on (A) rice prices and (B) yearly household food expenditure.
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and adaptation to climate change in vulnerable countries. In this perspec-
tive, future research could extend the here proposed framework to other
geographies, consider additional crops, and represent food trade and crop
substitution dynamics.

Code and data availability

The code to replicate the analysis and the figures are publicly hosted at
https://github.com/athammad/VHI_SEA. The repository includes
references to retrieve the input data.
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