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Abstract

Reliance on highly polluting cooking technologies poses a significant risk for human health. This
study quantifies and compares the impact of different clean cooking access scenarios on future
health-age trajectories among population subgroups in South Africa. Using microdata from five
waves of the South African National Income Dynamics Study, we develop a dynamic
microsimulation model and a composite metric of individual health status that is used to explore
how health status changes under alternative access scenarios for the period 2010-2030. We find
that there are clear gains of using clean cooking technologies for population health, and that
electrification alone does not improve health status, if it is not accompanied by an increase in the
use of clean cooking technologies in homes. Our results imply that achieving universal access to
clean cooking in South Africa can by itself improve average population health by almost 4% by

2030 compared to a scenario without clean cooking technologies, with the health of individuals of
genders and races with the poorest health and well-being endowments improving the most. Thus,
clean cooking can contribute to narrowing existing inequalities by improving health for the most
vulnerable population groups that disproportionately depend on polluting cooking technologies.

1. Introduction

Exposure to pollution in homes caused by the incom-
plete combustion of solid fuels and kerosene in inef-
ficient cooking stoves and devices is a major cause
of premature death and acute illness due to respirat-
ory, cardiovascular, and circulatory diseases (Smith
and Pillarisetti 2017, Shupler et al 2018, Hystad et al
2019, Arku et al 2020). Globally, household air pol-
lution from cooking with solid fuels has been estim-
ated to cause between 1.6 and 3.8 million deaths
annually (GBD 2017 Risk Factor Collaborators 2018,
Landrigan et al 2018, WHO 2018). In South Africa
alone, an estimated 13 642 [8218-19 762] premature
deaths were estimated to be attributable to house-
hold air pollution in 2016 (WHO 2020). These
adverse health impacts are disproportionately borne
by women and children, as they are most often
exposed to most of the indoor air pollution due to

© 2022 The Author(s). Published by IOP Publishing Ltd

them spending longer periods at home, and par-
ticularly by women, as they are mainly responsible
for cooking (Edwards and Langpap 2012, Lin et al
2013, Dutta and Banerjee 2014, Daset al 2018, Bede-
Ojimadu and Orisakwe 2020).

Research on estimating health impacts of cooking
with polluting fuels and stoves principally use com-
parative risk assessment (CRA) methods employed by
the global burden of disease (GBD 2017 Risk Factor
Collaborators 2018). These methods rely on find-
ings from epidemiological research on relative risk
estimates for specific health outcomes as a function
of exposure level with impacts measured in terms of
deaths, years of life lost, years lived with disability, or
disability-adjusted life-years (for example see Abtahi
et al 2017, Owili et al 2017, Arku et al 2018, Yu et al
2018). Relatively few studies have investigated how
cooking choices affect broader health status using
individual level health indicators such as self-assessed
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health status (Liu ef al 2018) and activities of daily
living (i.e. ADL and IADL) (Liu et al 2020). Also,
though microsimulation modeling has been used to
quantify the impacts of environmental exposures on
health (Schofield et al 2018, Symonds et al 2019), the
application of this method to estimate how cooking
with polluting fuels and stoves affects health has not
been explored thus far.

In this study, we quantify the impact of differ-
ent clean cooking access scenarios on future health-
age trajectories across population subgroups in South
Africa to examine the extent that existing health
disparities among population subgroups in South
Africa can be attenuated through the adoption of
clean cooking technologies. Specifically, we develop
a dynamic microsimulation model, using data from
the South African National Income Dynamics Study
(NIDS), to project health trajectories of individuals in
South Africa over the period 2010-2030 under differ-
ent clean cooking access scenarios.

As the use of polluting fuels and stoves is a well-
established risk factor for multiple diseases and mor-
tality, we focus our analysis on the question of how
much the latent health level of South Africans could
improve if everyone used clean cooking technolo-
gies. To address this question, we follow a procedure
similar to Marois and Aktas (2021), which allows us
to create health-age trajectories over time for people
exhibiting different behaviors. Specifically, we use a
microsimulation model to analyze the impacts of dif-
ferent cooking technologies, as well as other relev-
ant factors, on the health trajectories of individu-
als over time. This microsimulation model requires
three preparatory stages. First, we estimate a com-
posite measure of individual health status, following
a Bayesian Multi-Level Item Response Theory meth-
odology developed and validated in Caballero et al
(2017) and de la Fuente et al (2018) using a large set of
health characteristics reported in the NIDS. Second,
to model how the survival probabilities of individuals
vary with their level of health, we estimate the hazard
rates for individuals in our sample as a function of the
estimated health metric. Third, we use the empirical
data to estimate the transition probabilities of the rel-
evant factors affecting both health and the adoption
of different cooking technologies, which we represent
as variables of our microsimulation model. Finally,
we use these inputs in our microsimulation model to
project future health-age trajectories for the period
2010-2030 under different scenarios of levels of access
to clean cooking. We consider four alternative scen-
arios: a baseline scenario, which assumes the continu-
ation of current trends and no new access policies; two
different policy scenarios, one that assumes universal
access to electricity and another that assumes univer-
sal access to clean cooking; and a final extreme coun-
terfactual scenario that assumes no access to clean
cooking.

A Aktas et al

Our results show that there are clear gains to using
clean cooking technologies in terms of population
health. In fact, our results show a more than 7%
increase in the number of females in good health in
2030 that can be attributed to the adoption of clean
cooking technologies, with almost half of these being
females of African descent in urban areas with some
level of schooling. However, we also find that elec-
trification alone does not improve health if it is not
accompanied by an increase in the uptake of clean
cooking technologies. Our findings imply that achiev-
ing universal access to clean cooking fuels and techno-
logies in South Africa can bring significant improve-
ments in population health and may also contribute
to narrowing existing inequalities in health observed
by gender and education by improving the health of
the most vulnerable population groups who dispro-
portionately rely on polluting cooking technologies.

We contribute to the literature in two signific-
ant aspects. First, the novel health metric we estim-
ate captures various aspects of individual health in a
single composite measure, in contrast to other object-
ive health measures often used in the literature, such
as the prevalence of a particular disease or adverse
health conditions. Another advantage of this health
metric, especially over indicators which are based on
people’s subjective assessment of their health status
(i.e. self-rated health), is that it is not time and cul-
ture dependent, therefore it allows for a comparison
of health status across countries and sub-populations,
and over time. Moreover, the health metric is con-
structed as a continuous variable, which allows us
to quantify the marginal and cumulative effect of
cooking with polluting stoves on individual health.
Second, we develop a novel dynamic microsimula-
tion model to explore how future health-age traject-
ories of the South African population change under
alternative scenarios of a transition to clean cooking
fuels and technologies. While microsimulation mod-
els have been developed to assess the health impacts
of environmental pollution in previous literature (e.g.
Pimpin et al 2018, Symonds et al 2019), we are
unaware of any studies that employ this method to
evaluate the health impacts of clean cooking policies
through scenario modeling.

2. Data and estimation of parameters of
the microsimulation model

For this study, we used longitudinal data from the
five available waves of the South African NIDS corres-
ponding to the years between 2008 to 2017. NIDS is
a nationally representative panel survey that contains
detailed information on households demographic
and socio-economic characteristics (Woolard et al
2010). The survey is particularly well suited for our
purposes as it also includes information on household
cooking energy sources and health-related variables
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e Individual-level health
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(see Table 1 for details)
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using the Cox-Gompertz
proportional hazards
method (Cox, 1972)
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Estimation of the transition
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the microsimulation model
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STEP 4

Projection of individual health trajectories for the period 2010-2030 in
South Africa under four different scenarios of shares of clean cooking
stoves or/and access to electricity, using @ dynamic microsimulation
model.
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electrification and to clean cooking

clean cooking access

to electricity  to clean cooking

Figure 1. Schematic representation of the methodology of the study.

needed to compute the health metric. We use this data
for three different purposes related to the preparation
of the variables and parameters of the microsimula-
tion model:

e Use data on health characteristics of individuals
from the NDIS sample to estimate a metric of indi-
vidual health status.

o Use mortality rates from the NDIS sample to estim-
ate the survival probabilities of individuals depend-
ing on their health.

e Use observed changes over the five waves of the
NDIS sample to estimate transition probabilities
of a set of factors relevant to the modeling of
the impact of cooking technologies on individual
health over time.

For these estimations, we only retain observa-
tions from the NDIS sample for individuals that have
non-missing information on all the variables needed,

3

namely, the variables presented in tables 1 and 2. All
the variables and parameters estimated are then used
in the construction of the microsimulation model,
that is further described in section 3. A schematic
overview of the methodological framework, along
with the data and indicators used in each step is depic-
ted in figure 1. We present the specific data and estim-
ation procedures for these three purposes independ-
ently in the subsections below.

2.1. Estimation of the measure of individual health
status

The health status of individuals in each sample is
estimated following a procedure akin to Caballero
et al (2017). The methodology for developing a
composite health metric and the estimation method
has already been presented and validated, first in
(Caballero et al 2017) and also in other studies
(de la Fuente et al 2018, Daskalopoulou et al 2019,
Marois and Aktas 2021) using different datasets. The
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suitability of the metric for causal inference has also
been tested (Kollia et al 2018).

Briefly, this approach assumes that there exists
a latent health variable that can be inferred from
a set of observed health-related characteristics. The
distribution of a health score is estimated in a way
that it reflects the distribution of the observed health
status in a particular sample. Formally, an individual
i belonging to a group j that has a health score 0;; has
a probability of having a health characteristic k such
that:

P(Hyji = 1]0;) = ¢(awi + by),

where Hyj; is a dummy reflecting whether or not indi-

vidual iin group j has health characteristic k, ¢() is the

c.d.f. of the standard normal distribution, and where
Agj ~ N ( 1, waz)

bkj ~ N(/”M‘W%)

are group-specific ‘discrimination’ and ‘difficulty’
parameters, respectively. The discrimination para-
meter is related to how the likelihood of having a par-
ticular health condition k decreases with the health
score 0y, while the difficulty parameter represents
how likely (or hard) it is to have a particular health
characteristic k.

Finally, the health score 8;; has a random group
and individual-group components:

Oij =uj + ejj
uj ~ N(0,07,),e; ~ N(0,07,).

The values of w2, fp, wi, 07, and of, are estim-
ated using a Bayesian multilevel item-response theory
(MLIRT) approach on a set of health characteristics
including self-reported health questions and meas-
ured tests obtained from the longitudinal household
surveys.

We adapt the Bayesian MLIRT approach
described in de la Fuente et al (2018) to our context,
to estimate health metric scores using a consistent
set of 14 health characteristics available in all five
waves of the NIDS (see table 1). In our application,
the group variable j represents the particular wave
where the observation is taken from, hence creating a
longitudinally consistent version of the health metric
(Verhagen and Fox 2013). Following de la Fuente et al
(2018), the Markov Chain Monte Carlo estimation
is conducted using 5000 iterations and 100 burn-in
iterations. The latent health score is then created by
normalizing the Expected A Posteriori estimates on a
scale from 0 to 1, with higher values indicating better
health.

In contrast to other objective or subjective health
measures commonly used in related literature, such
as the prevalence of a particular disease (e.g. chronic
illnesses, respiratory diseases, cardiovascular diseases,
cerebrovascular diseases), or self-rated health status,
our health metric is able to simultaneously capture

4
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different aspects of individual health in a single meas-
ure. Additionally, given that it is estimated as a con-
tinuous variable defined on 0-1 interval, it does not
suffer from epistemic problems due to the discretiza-
tion of health into different categories.

Figure 2 presents the kernel density estimates of
the health metric for different population subgroups:
urban/rural place of residence, gender and race*. Tt
is important here to reiterate that the calculation of
the health metric is at an individual level and does
not involve additional factors besides the health char-
acteristics presented in table 1. Hence, all the results
presented here cannot be traced to specific coeffi-
cients associated to any of the particular demographic
characteristics used for the population groupings. As
an additional validation mechanism, we compare this
distribution with the distribution of self-rated health,
another widely used metric of health. We find that
our estimated health metric is able to appropriately
capture the trends that are observed in self-rated
health, but in a continuous manner. In particular,
the distribution of health seems heavily skewed to the
right, indicating more people are in good health. As
it is normally observed, men have better health than
women, in general. However, interestingly, men of
African descent in our sample (figure 2(a)) seem to be
the specific population subgroup with better health.

2.2. Estimation of the individual survival
probabilities

In order to make our model as self-contained as pos-
sible, we use in-sample mortality data to estimate haz-
ard rates. To do so, we employ the Cox regression
method (Cox 1972), to estimate a Gompertz propor-
tional hazards models of mortality risk, using our
health index as the only additional explanatory cov-
ariate, namely:

ht: Q *exp<ty)*eXp(ﬁ*heﬂlth[)‘f'et (1)
v

where h;, is hazard rate at age ¢ (i.e. the probability of
dying at a given age t),  and v are shape and scale
parameters, and [ is the effect of health on the over-
all hazard rate. We deliberately decided not to include
additional explanatory variables that affect survival
probabilities (e.g. a dummy for clean cooking), as we
want to investigate all such additional effects indir-
ectly through health.

The estimated parameters of equation (1) can be
found in table S2. Visually, the estimated survival
curves for our sample are presented in figure 3. We
find that the gender differences observed in health

4 The original sample presents four different racial groups: indi-
viduals of African descent, Colored, Asian/Indian and White. Of
these, only individuals of African descent exhibit significant dif-
ferences in health characteristics compared to the other groups.
Therefore, we focus in our analysis on differences between African
descendents and others, accordingly.
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Figure 2. Kernel density distribution plots of individual health score and histograms of self-rated health.
Table 1. Descriptive statistics for the health characteristics in each survey sample.
Fever®  Persistent cough® Cough with blood® Chest pain® Body ache®  Headache®  Back ache®
2008 14.2% 11.4% 2.0% 10.7% 17.5% 32.6% 17.0%
2010  12.9% 10.7% 1.1% 7.1% 11.8% 21.3% 11.2%
2012 18.8% 17.4% 1.2% 9.9% 17.9% 30.9% 16.3%
2015 21.1% 12.5% 1.1% 9.2% 19.8% 35.3% 16.0%
2017 22.1% 11.4% 1.0% 7.3% 17.0% 31.3% 14.6%
Joint pain® Diarrhea® Painful urination® Swelling of ankles® Weight loss Good eyesight Good hearing
2008  13.5% 3.6% 2.9% 5.6% 2.7% 79.9% 91.3%
2010 9.1% 1.6% 1.4% 3.2% 2.6% 87.5% 90.1%
2012 11.3% 2.5% 1.8% 4.4% 2.8% 90.8% 95.6%
2015 12.3% 3.5% 1.8% 5.1% 3.3% 90.1% 96.1%
2017 10.8% 4.3% 1.2% 4.1% 3.2% 89.2% 95.2%

2 Has been experienced in the past 30 days.
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Figure 3. Survival curves estimated from the NIDS (solid-line) and from the global health observatory (dashed-line).

status are also reflected in the survival rates but in
opposite direction, i.e. mortality risk of men is signi-
ficantly higher than mortality risk of women, whereas
men are healthier than women. This finding is in
line with the literature (Verbrugge et al 1987, Case
and Paxson 2005, Alberts et al 2014). We validate
our estimates by comparing our survival curves with
the survival projections by gender from the WHO
Global Health Observatory, which can also be seen
in figure 3 represented by dashed lines. Our estimates
match these quite closely, and are only slightly higher
for females around 50 years old.

2.3. Estimation of the transition probabilities

In our microsimulation model, we focus on a lim-
ited set of variables that can be related to either the
adoption of clean fuels, or the damages to health
associated with the use of polluting stoves”. In this
regard, it is important to acknowledge that South
Africa is a very special case among Sub-Saharan
countries, due to ambitious policies in place aimed
at increasing electrification. A side effect of these
policies is that we do not find significant evidence
of fuel stacking, nor the major use of other sources
of clean energy for satisfying the cooking needs of
the population besides electricity (see table S1 in

5 As a simplifying assumption, we assign to individuals the level
of education indicated by them in the last wave of the survey. We
assume this to avoid the computational burden of adding an addi-
tional layer of simulation which, for most individuals, would not
make any difference given their age. We define four education cat-
egories: no schooling, less than high school, high school graduate,
college degree. Table 2 presents the average level of education of the
sample, assuming values of 0 for no schooling, 1 for less than high
school degree, 2 for high school degree, and 3 for college degree,
respectively. However, in the estimation, independent dummies are
used for each of the 4 education categories.

the supplementary information available online at
stacks.iop.org/ERL/17/055001/mmedia). Addition-
ally, Kolmogorov-Smirnov tests on the distribution
of health over the different cooking fuels does not
show statistical differences between the health of
those using electricity or gas, nor differences between
the distribution of health for those using kerosene,
coal or biomass (table S2). Hence, we constrain the
microsimulation model to only two cooking techno-
logy choices: clean (i.e. electricity or gas) or other,
non-clean fuels.

In table 2, which presents descriptive statistics for
selected variables, we can see the rapid improvements
in the living conditions of individuals in our sample
during the observation period. For example, electri-
fication increased 10% during the period, while the
adoption of clean cooking stoves improved almost
20%. This probably attenuated the gradual decline in
the health of individuals as the sample ages. A notice-
able impact of the 2008 financial crisis is also observ-
able, with some estimates for the 2010 wave present-
ing great deviations from the overall trends.

There are three types of variables in the sample:
dichotomous variables, that is, those taking two
discrete values (e.g. gender, urbanization); left-
bounded continuous variables, taking values from
zero upwards (e.g. total expenditure); and fully
bounded continuous variables, e.g. health, that take
values between zero and one. Given these particular-
ities of the data, we use different parameterizations
to empirically estimate transition pathways for each
variable.

In general, the estimation of the transition rates
through the simulation period for these variables,
with the exception of health and health expenditures,
follow the general form:


https://stacks.iop.org/ERL/17/055001/mmedia
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Table 2. Descriptive statistics of the microsimulation estimation sample.

Female African descent Level of education® Urban Total expenditure® Health expenditure™
2008 67.7% 83.7% — 45.9% 1628.0 29.6
2010 67.7% 83.7% — 46.7% 1456.9 18.5
2012 67.7% 83.7% — 49.6% 1863.1 37.7
2015 67.7% 83.7% — 51.5% 2150.4 32.9
2017 67.7% 83.7% 1.187 51.6% 2151.2 31.0
Has electricity ~ Single room Light material ~ Clean cooking? Works Average health score
2008 79.8% 07.8% 86.4% 66.4% 30.7% 0.713
2010 77.8% 05.9% 81.7% 75.5% 31.0% 0.742
2012 85.0% 08.5% 83.8% 77.6% 35.9% 0.702
2015 88.2% 10.9% 82.7% 80.2% 40.6% 0.685
2017 87.2% 10.1% 70.5% 83.1% 40.7% 0.688

2 Mean level, see footnote 5.

b Monthly mean values in 2008 South African Rands.
¢ Out-of-pocket.

4 Electricity or gas.

Y11 ~ age, + hh_size,, + log(hh_expenditure,,) + log(hh_health_expenditure,,)

+ urban,, + has_electricity,, + single_room,, + light_material,, 4 clean_cooking,,

+ health,, + female + african_descent + educ_level + working,, + €,,. (2)

This form is equivalent to a panel autoregressive
model with covariates, where Y is the variable of
interest and w is the wave. For the case of dichotom-
ous variables, we carry out a logit regression, whereas
for household expenditure, we estimate a log-linear
regression. Additionally, in some cases, and in order
to overcome some of the anomalies in the data, dum-
mies for specific years are added to the estimation
(e.g. 2 2008-t0-2010 dummy to control for the effect
of the financial crisis).

Two of the variables presented in table 2, health
and out-of-pocket health expenditures, are estim-
ated using a form different than (2). For the case
of health, we estimate different transition path-
ways for each member of the simulated popula-
tion depending on whether the individual lives
in a household that uses clean cooking or not.
In general, similar to Marois and Aktas (2021),
the form wused to estimate health transitions
is:

logit_health,, — logit_health,, ~ age,, + hh_size,, + log(hh_expenditure,,)

+ log(hh_health_expenditure,,)

+ urban,, + has_electricity,, + single_room,,

+ light_material,, + health,,

+ cooking_transition,, + female + african_descent

+ educ_level + working,, + €, (3)

where cooking_transition,, is a dummy representing a
transition from polluting to clean cooking technolo-
gies or vice versa.

Finally, given that out-of-pocket health expendit-
ures are not observed in every wave of the survey,
we first estimate a household’s probability of

incurring out-of-pocket health expenditures at
a particular point of time, and then posteri-
orly, for households that have out-of-pocket
health expenditures, we estimate the relationship
between the amount spent and other household
characteristics:
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Figure 4. Transition pathways of the variables of the microsimulation model over survey years: observed versus simulated data.

P(hh_health_expenditure,, > 0),, ~ age,, + hh_size,, + log(hh_expenditure,,) + urban,,

+ has_electricity,, + single_room,, + light_material,,

+ clean_cooking,, + health,, + female + african_descent
+ educ_level + working,, + €, (4)

log_hh_health_expenditure,, (| > 0) ~ age,, + hh_size,, + log(hh_expenditure,,) 4+ urban,,

+ has_electricity,, + single_room,, + light_material,,

+ clean_cooking,, + health,, + female + african_descent
+ educ_level + working,, + €. (5)

Using this simple parameterization, we are able to
capture several of the characteristics of the observed
data, although, in some cases, additional calibra-
tions are necessary (e.g. tweaking the strength of the
effect of the financial crisis). The estimated paramet-
ers are provided in table S4 in the supplementary
information.

To assess the validity of our estimates, figure 4
shows the observed transition pathways of the
modeled variables in comparison with the ones calcu-
lated using the microsimulation model. Although the
fit is not perfect in every case, the trends are very well
captured by the microsimulation model. Hence, we
purposefully do not work further to improve the fit to
avoid over-fitting, which can prevent generalizability
of the results.

3. Microsimulation and results

We use our dynamic, discrete-time microsimula-
tion model to project the impacts of alternative

8

cooking technologies on future health-age traject-
ories in South Africa for the period 2010-2030.
We develop four simulation scenarios. The first is
a baseline scenario, under which we assume cur-
rent trends, without enforcing any new policies to
encourage clean cooking and no alteration to the cur-
rent trends for extending electricity access. We also
develop two policy scenarios that assume interven-
tions that provide immediate full access to either elec-
tricity or clean cooking to the entire sample popula-
tion. We differentiate between a scenario of access to
electricity and a scenario of access to clean cooking
technologies, since, even though most access-related
policies, not only in South Africa, but other coun-
tries in the Global South, are aimed at increasing elec-
trification rates, many of those who have access to
electricity still do not cook with electricity as it may
be unaffordable to them (as it is also reflected in the
recent IEA report (IEA 2020)). With this, we intend
to quantify differences in health that may arise from
electrification alone, from those that accompany the
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Figure 5. Simulated health-age trajectories for different birth cohorts.

use of clean cooking technologies. However, given the
relatively low rates of non-clean cooking in all of these
scenarios, we develop an additional, extreme counter-
factual scenario where we assume that no individual
has access to clean cooking. This scenario presents an
extreme contrast to better assess the long-term health
impacts of clean cooking, that otherwise, would be
hard to appreciate.

Here, we present the details of our microsim-
ulation model. In our framework, the population
consists only of within-sample individuals. Specific-
ally, we use values from the estimation sample in
2008, corresponding to a total of 3638 individuals
with no missing data for all the variables involved
in both the estimation of the health metric and the
microsimulation, as our starting values and then
use the transition parameters estimated to simulate
trajectories up to the year 2030. All characteristics
of each individual (except gender, race and educa-
tion level®) are updated at each step of the simula-
tion period. Transition probabilities between differ-
ent states are determined stochastically, where uncer-
tainty arises from random draws of the distribution
of the error terms in equations (2)—(5), and also,
for probabilistic variables, from random draws of an
uniform distribution. We do not include additional
individuals at any point of the simulation (through
births). However, individuals can leave the sample
at any stage if they die according to the hazard rates
estimated in equation (1). (i.e. we assume a closed
population). We keep our simulation model simple
and constrained to the NDIS sample on purpose, so
that it can serve as an exploratory tool to compare
the impact of different cook-stove and electrification
policies on the health-age trajectories of a specific
population.

We perform a total of one hundred Monte Carlo
runs to assess the stability of our results®. The res-
ulting health-age trajectories by cohort are seen in
figure 5. We find a similar rate of decline in health for
men and women, although women, regardless of their
lower relative health, tend to live longer.

Besides this general result, our alternative ‘what if’
scenarios provide useful insights on the impact of dif-
ferent clean cooking access policy scenarios on future
population health-age trajectories. In figure 6, we
compare the evolution of population health over time
in these scenarios with our baseline scenario assum-
ing the continuation of current trends and no new
access policies. Notice that, even under our baseline
scenario, the rate of electrification and adoption of
clean cooking technologies already improve signific-
antly (as seen in the observed data, table 2 and in
the simulation, figure 4). Therefore, the differences
in health outcomes between the baseline and access
scenarios are not as large as one would expect, e.g.
as compared to a country where these developments
happen at a much slower pace or from a lower base
level. For example, we can see that for the popula-
tion of non-African descent, the health effects are
limited and for some years, statistically insignificant.
However for the population of African descent, we
find that access to clean cooking improves health over
time. The introduction of the no clean counterfactual
scenario is therefore relevant, as it markedly displays
the stark differences in the pathways that would occur
in the case that no one uses clean cooking technolo-
gies. We see that, not only is there an initial level drop

6 Average values of the microsimulated variables in some selected
years can be seen in table S5 in the supplementary information.
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Figure 6. Projected average health over time under different scenarios by population subgroups.

in average health, but that the difference greatly accu-
mulates and amplifies over time for all groups, partic-
ularly for the African descendent population. Finally,
and of great interest, we find that electrification by
itself does not lead to any health improvements when
compared with the baseline scenario.

Also, we find that in urban areas, the differences in
health are more significant and persistent. Here, there
may be another effect at play that, unfortunately due
to data limitations, could not be added to the model:
in rural areas it maybe more feasible to perform some
cooking outdoors, which reduces exposure to pollu-
tion indoors. Besides, urban areas have higher levels
of ambient air pollution, which can also increase the
cumulative health effects of air pollution in homes.

This is also related to another phenomena we
observe in the simulations, which is the positive rela-
tionship between health and affluence, particularly
noticeable in the scenario with no clean cooking tech-
nologies, where expenditures are much lower by the
end of the horizon (e.g. 16% lower on average com-
pared to the baseline scenario, see table S5). This
has two opposite effects on health: a direct, negative
impact, by lowering health expenditures, but also an
indirect positive impact associated, interestingly, with
a worsening of living conditions. In particular, the
number of individuals living in dwellings made out of
light materials is higher in scenarios where expendit-
ures are lower. This might be associated with lower
pollution exposure for members of such households,
as in such dwellings there is a higher probability that
cooking may be performed outdoors or, even if cook-
ing occurs inside the house, particulate matter can
leave the dwelling faster if materials of the walls or
ceiling are lighter and more porous (Dasgupta et al
2006, de la Sota et al 2018).
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Considering that in most households males are
not directly involved in cooking nor do they spend as
much time indoors due to their participation in the
labor force, we focus our analyses further on females
specifically, as they are most likely to be affected by
indoor air pollution from cooking. We also disreg-
ard the full electrification scenario in what follows,
as we find it does not show any significant differ-
ences with the baseline. Therefore, we focus the rest
of the analysis on the *what-if” counterfactual scen-
arios related to the adoption of clean cooking techno-
logies, in order to clearly evaluate its effects on health.
Figure 7 shows the health distribution of females in
the final year of our simulation, the year 2030. Notice
that these curves represent the average of the dis-
tributions of health over all the bootstrap estimates
(including their relatively small confidence bands),
and therefore, the differences that arise due to ran-
domization are minimized. Given this, differences
between the baseline and the universal access to clean
cooking scenario are subtle, and more evident for the
African descendent population. However, differences
with the no clean cooking counterfactual are signific-
ant, pointing to the importance of clean cooking tech-
nologies for overall health.

The population subgroups depicted in the figure
are not easily comparable, due to differences in
income level and other overall living conditions. In
this regard, it is known that the level of educa-
tion, particularly of females, is an overarching proxy
measure of these factors, as more educated people
tend to have higher levels of income, as well as bet-
ter housing conditions and health behaviors (Mont-
gomery et al 2000). Hence, by examining health dis-
tributions by level of education, we may gain deeper
insights into the simulated phenomena. Indeed, as
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shown in figure 8, when controlling for education
level, differences are clearly noticeable, specially with
respect to the no clean cooking counterfactual scen-
ario. For females with no college degree, clean cook-
ing access creates a difference relative to the baseline
scenario, albeit seemingly small, in particular for the
less than high school educated group. However, we
observe the largest differences in health outcomes
among the highest educated group, as in addition
to the gains from clean cooking, we expect that
other improvements related to living conditions cre-
ate important synergies for the health status of this

group.
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To quantify the effect beyond the shape of the dis-
tribution, we undertake one final exercise. We clas-
sify individuals as being in good health if their health
level is above 0.6, as in Marois and Aktas (2021).
This is also consistent with the median point of the
health density of the entire population as presented
in figure 2. Figure 9 shows, on the left panel, the per-
centage of population in good health by gender for
each scenario and for all population subgroups. We
can see that the scenario with universal clean cook-
ing access again clearly shows the best health for both
males and females, with a very sharp difference with
the counterfactual scenario of no clean cooking. Also,
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in terms of percentage differences by subgroups, as
presented on the right panel of figure 9, we see that
almost all subgroups are winners except for a couple
of subgroups with almost zero difference with respect
to the baseline. In total, in the universal access scen-
ario, we find a 2.1% points increase in the number
of females in good health compared to the baseline
scenario, while in the no clean cooking scenario there
is a 5.1% decrease. This in gross terms implies that
having universal access to clean cooking technologies
increases the number of females in good health by
around 7.2%. As for males, the estimates are slightly
lower, with a 1.3% increase in the ‘all clean’ scen-
ario, and a 5.5% decrease in the ‘zero clean’ scen-
ario, for a total of 6.8% difference. Finally, in terms of
population subgroups, less than high school and high
school educated females of African descent living in
urban areas are, in absolute terms, the most benefited
groups, accounting for 3% of the 7.2% total difference
for females between the ‘zero-clean’ and the ‘all clean’
cooking scenario.

4. Conclusions and discussion

Our study provides additional evidence that provid-
ing households with access to clean energy sources,
such as electricity, is not enough to create improve-
ments in health, if reliance on polluting sources for
cooking persist. These findings echo that of other
studies, that show that simply providing access to
clean energy and technologies may not be enough
for households to also consistently use these (Malla
and Timilsina 2014, Poblete-Cazenave and Pachauri
2018, Vigolo et al 2018, Kar et al 2019, 2020). We

also find that existing health disparities among pop-
ulation subgroups distinguished by gender, race and
educational status in South Africa can be attenu-
ated through the adoption of clean cooking tech-
nologies. In urban areas, we find that people are
more likely to experience health impacts but with
no major differences by race, though there are bene-
fits across educational levels. However, and most
importantly, current policies intended to increase
electrification and to support the use of clean cook-
ing technologies can bring population health to
levels close to those under universal clean cooking
access, even if current trends in access improvements
continue.

The case of South Africa, which we study here,
is distinct compared to many other nations in sub-
Saharan Africa, as much of its population has access
to clean cooking fuels and technologies already. If the
example of South Africa can be mimicked by other
countries in the region, where the use of traditional
biomass is still widespread, a significant improve-
ment in the health status of the population is feasible.
The quantification of the health effects of cooking
technologies, as carried out in this analysis, provides
important evidence to drive policy makers to expand
access to clean cooking more urgently.

Although there is ample evidence of the links
between clean cooking technologies and health,
quantifying these effects continues to be a challenge,
since there is little consensus on how to quantify the
health of individuals. Most existing approaches focus
on exposure to particulate matter for mortality or
morbidity (see e.g. Smith and Pillarisetti (2017) for
a recent review of the literature), which is quantified

12
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using CRA methodologies. Our contribution to the
literature in this work is to develop a new metric of
overall health, which we propose as an alternative way
to measure these impacts. We then use this metric
in microsimulations of alternative scenarios of clean
cooking access.

The biggest advantage of the microsimulation
methodology we employ is also its biggest con-
straint. It requires no additional external inputs for
the creation of future scenarios, besides the single,
large panel dataset. Unfortunately, panel studies
such as the NDIS are not readily available in most
regions, especially developing regions, which are the
most impacted by transitions towards clean cook-
ing. However, alternative approaches requiring addi-
tional external inputs can also be developed, as long as
representative datasets, including health, energy, and
socio-demographic variables such as the ones used in
this study, are available (Aktas et al 2022).

The dataset used in this analysis is, however,
not without limitations. For example, some import-
ant factors in determining the extent of exposure to
indoor air pollution due to cooking are not directly
available (e.g. the presence of appropriate ventilation,
where is the cooking performed, who is the person
mostly in charge of cooking duties, etc). Moreover,
information on the health characteristics of children
is also not included in the dataset, making our model
unsuitable for any analysis of the effects of indoor
air pollution on early life stages. Given the numer-
ous channels through which exposure to pollution
can affect children’s health (Adaji et al 2019, Lee et al
2020, Islam et al 2021), this is an area which requires
further research using datasets that capture the health
characteristics of children.

Our study highlights the importance of policies to
provide household access to clean cooking to improve
individual health status. Our findings regarding the
importance of clean cooking access for also reducing
existing health inequalities by gender, race and edu-
cation, clearly highlight that measures to encourage
regular use of clean cooking fuels and technolo-
gies are particularly needed for socially disadvant-
aged and marginalized groups. In the case of such
vulnerable populations, policies that also improve
housing infrastructure, ventilation in cooking areas,
and education levels can be important to improv-
ing the health of individuals. Our results support
the need for concerted policies through collabor-
ation across sectors to improve overall health and
reduce inequalities in health, particularly since the
determinants of ill-health often lie outside the health
sector.

Data availability statement

The data that support the findings of this study are
available upon request from the authors.
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