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ABSTRACT

The question if natural resource abundance translates into higher incomes in the regions
where and close to where the extraction takes place is an empirical one. This paper examines
the local economic effects of mining and land use change for Brazil, where the government is
currently on the verge of opening indigenous and protected land for industrial mining, in
particular in the Amazon region, arguing that economic stimulus from extractive industries
would outweigh environmental and social concerns. In order to challenge this claim, we
employ a panel-structure spatial growth model at the level of municipalities for the years
2005-2013. Identification of effects is attained exploiting granular geographical data on
land cover and the locations of mines, as well as socio-economic determinants of economic
growth for 5,249 Brazilian municipalities. Our empirical framework further considers spatial
autocorrelation and allows for the assessment of spillover effects between municipalities.
Results indicate that the local economic effects of mining activities are ambivalent, depending
also on external global factors such as demand for commodities and their prices. For the
period previous to 2010, we find positive effects on GDP growth, directly and via spatial
spillovers to neighbouring municipalities. After 2010, the direct effect fades and the spillover
effects become negative. We then investigate potential negative environmental downturns,
adapting our model for explaining forest loss. Our findings show that mining is associated
with accelerating deforestation, also via substantial spatial spillovers. We conclude that
extractive industries may stimulate local economies, but there is a trade-off between economic
and environmental spheres of natural resource extraction. This trade-off fades during less
favourable global market conditions, as regional economic growth from mining disappears,
while negative environmental impacts remain.
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1 Introduction

The conditions under which, and if at all, resource abundance effects the economic development
of countries has been of scholarly concern for a long time. Empirical evidence suggests that
resource wealth did often not translate into economic prosperity, and many countries well-
endowed with natural resources showed lower growth rates than resource-poor economies and
were prone to economic instability. Auty (1993) coined the debates about this phenomenon,
introducing the ’resource curse thesis’, which was followed up and extended by other scholars
such as Sachs and Warner (1995, 2001) and Humphreys et al. (2007). They argue that resource
wealth often hinders economic growth due to a number of of channels that contribute to a
’crowding-out logic’ (Sachs and Warner 2001), where the availability of natural resources expels
other sectors important for sustained growth such as manufacturing, education and health.
Further causes are rent-seeking and possible corruption of political elites and dependence on
international markets and commodity prices, which can be fatal to economies lacking sector
diversification.

While the early resource curse literature is mostly focused at the level of countries, a more
recent strand of literature is concerned with subnational socioeconomic dynamics of extractive
industries. This level of analysis offers a new perspective on the resource curse (Manzano
and Gutiérrez 2019), but also a number of arguments that mining can, via backward linkages
such as via market mechanisms and local spillovers, stimulate regional economic development
(Aragón and Rud 2013; Arias et al. 2013; Aragón et al. 2015).

Brazil is a characteristic example for the resource curse thesis. Due to its abundance of
land and mineral resources, the country experienced only slow maturation of its manufacturing
subsectors in the second half of the twentieth century (Auty 1995). Having its economy closely
tied to global commodity markets led to considerable economic growth during the 2000s
commodities boom, but intensified primary resource extraction also led to the fragmentation
and degradation of ecosystems and natural livelihoods, and ended in economic and political
difficulties as soon as commodity prices began to fall. And still, this historic record did not
prevent the idea of resource-dependent development from being fiercely debated in Brazil
today. While the current government strongly promotes a liberalisation of access to land
and resource deposits for agriculture and extractive industries, opponents constantly issue
warnings highlighting the threat of such practice for the environment and the country’s
indigenous communities (e.g. Siqueira-Gay et al. 2020; Rorato et al. 2020). The links
between mining and other land use change and regional economic growth, however, remained
empirically unchallenged.

Leaving the role of land use and extractive industries for a moment aside, the most common
way to conduct larger-sample empirical studies on the determinants of economic growth is to
employ growth regressions as advocated by Barro (1991). Building on neoclassical growth
theory (Solow 1956; Mankiw et al. 1992), Barro (1991) suggests an econometric framework
where observed economic growth rates are conditioned on initial capital formation as well as
further growth determinants derived from endogenous growth theory such as human capital
and research and development (Lucas 1988; Romer 1990). During the past three decades,
an extensive body of literature using growth regressions has emerged and, similar to the
resource curse literature, the focus of growth regression studies has more recently shifted to
conducting regional analyses. With regional studies becoming more common, scholars also
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recognised the need for improved methods in order to account for spatial autocorrelation in
the observations and to evaluate spillover effects (e.g. Ertur and Koch 2007; LeSage and
Fischer 2008). For Brazil, early subnational assessments of economic growth were performed
by Azzoni (2001) at the regional and state level. Municipality-level growth studies for Brazil
were performed by Resende (2011; 2013). They were refined with a spatial econometric
framework (Cravo and Resende 2013; Resende et al. 2016), and exploit information from an
increasing amount of explanatory variables as compared to early growth regressions. However,
to date, no economic growth study building on an econometric framework considers Brazil’s
wealth of land area and natural resources such as iron and gold ores as important factors for
local economies.

In this paper, we connect the two strands of literature – perspectives on the role of natural
resources for economic development and applied macroeconometric works –, both of which
have shifted their interest from nation-wide analyses and comparisons to local impacts and
regional links. We chose to specifically investigate the Brazilian case for three reasons: the
substantial size of its primary sector exports and the large scale of industrialisation of its
mining and agriculture sectors, the political relevance given that powerful political forces urge
for an intensification of resource-dependent development strategies, and the potential cost of
resource development, given the exceptional role of indigenous populations, the Amazon rain
forest, and the vast biodiversity in large parts of Brazil.

The objectives of this study are threefold. First, we aim to identify and quantify the
economic effects of mining and of other types of land use change, such as the transformation
from natural forests to cropland, at the regional level. We consider municipalities, representing
the most granular political entities in Brazil, as observational units. Second, we assess the
spatial transmission of impacts. The spatial dimension of economic activity was demonstrated
in previous studies, showing that spatial dependence is a robust feature of regional economic
growth (e.g. LeSage and Fischer 2008). But what does this mean for natural resource
extraction? Manzano and Gutiérrez (2019) propose that also non-producing areas may
be affected due to spillover effects and the decentralisation of revenues. The question is
tightly related to debates about the presence of either enclave economies, where extraction
sites are economically isolated from their surroundings, or clusters, where strong links to
proximate regions induce positive economic stimulus, for instance via local procurement
and employment creation (Arias et al. 2013). The third objective is to deliver information
about potential trade-offs between resource-led economic growth and negative environmental
consequences. This is especially relevant for policymakers, who have to decide about legal
frameworks considering economic, environmental and social outcomes. In order to do
so, we investigate the deforestation effects of extractive industries as a direct measure of
environmental consequences.

All three objectives are achieved utilising panel-structure spatial econometric models for
the time period 2005-2013, which we estimate using Bayesian techniques. We regress 5-year
average annual GDP growth rates on well-established determinants of economic growth,
augmented with land cover information and the location of mines and repeat this step in
a second model designed to assess forest loss effects. For both models, we make use of a
novel georeferenced data set using yearly data from various sources, which are obtained at or
aggregated to the municipality level. A unique feature of this study is our approach of how
to identify location and opening years of mines, where we combine recent data on the area
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occupied by mining with high-resolution vegetation time series from satellite imagery.
Our results suggest that the local economic effects of mining activities in Brazil are mixed.

Before 2010, when commodity prices were rapidly rising, mining activities directly induced
3.8% higher GDP growth as compared to the Brazilian average and another 4.6% due to
spillover effects. Since 2010, however, there was no sign for direct economic stimulus due
to mining. Furthermore, we find that mining operations negatively affected the growth
rates of neighbouring municipalities by 1.8% between 2010 and 2013. We also find that
economic growth was induced by the transformation of land for agricultural use. Negative
GDP growth spillovers were, however, observed from clearing natural forest for agriculture or
pasture. Finally, our results show that mining was associated with accelerating deforestation,
especially via substantial spatial spillovers. The findings hence suggest that there is a trade-off
between economic and environmental effects. The nature of trade-off, however, altered in
more recent years, where global commodity prices and hence overall economic conditions in
Brazil worsened and economic effects faded out, while environmental concerns remained.

The study and its results offer two main contributions to the literature. First, there is
little empirical indication for Brazil and elsewhere how mining activities and land use change
relate to local economic growth. Recent studies on local socioeconomic impacts of mining in
Brazil relate to single mining projects and rely on field work and household surveys, focusing
on local communities’ acceptance of mining companies and their operations (Cruz et al. 2020)
and their overall socioeconomic situations (Matlaba et al. 2019). Da Silva et al. (2021) go
beyond single case studies of mines and consider a sample of 33 mining municipalities in
order to assess the economic resilience of mining-dependent economies. We directly connect
to the debates on whether to expand resource extraction in Brazil and elsewhere. Especially
those in favour of resource-led development tend to rely on a simplistic development narrative
(Hope 2019). We hence present urgently needed insights about the links between natural
resource wealth and regional development. In this study, we cover economic perspectives, but
also introduce an analysis on the deforestation effects of extraction and land use for a more
holistic understanding of development. Besides the spatial structure, this involves a careful
consideration of global market conditions.

Second, municipality-level, large-n economic growth studies for Brazil have been limited
to the works of Guilherme Mendes Resende and colleagues (Resende 2011; Resende 2013;
Cravo and Resende 2013; Resende et al. 2016). Our study extends this literature by utilising
data that is yearly (instead of census data, which was only available for 1970, 1980, 1991 and
2000) and for a more recent time period. On top of that, this paper addresses the spatial
dependence between municipalities, which was rarely considered in past studies.

The remainder of this paper is organised as follows. In the next section, we provide a brief
historic overview about resource-dependent economic growth in Brazil and related challenges,
followed by the empirical framework and the data in Sections 3 and 4. Results are presented
and discussed in Section 5. Section 6 concludes.
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2 Natural resources, economic growth and crisis in

Brazil

The economic exploitation of abundant Brazilian land and mineral resources has a long
history, starting with the arrival of the Portuguese in 1500 and their obsession with finding
precious metals and gems. First economic cycles, however, were due to redwood explorations,
sugar production, as well as cattle and grazing (Machado and de M. Figueirôa 2001). Rich
and economically feasible gold deposits were only discovered at the end of the 17th century.
In today’s Minas Gerais, gold and later also diamond mining led to increasing prosperity and
incredible wealth for the Portuguese crown (ibid.). Substantial agricultural expansion and
thus appropriation and utilisation of vast areas of land started in the 19th century. First
large-scale plantations were established for coffee production in 1835, shortly after Brazil
had gained its formal independence from Portugal, followed by the emergence of rubber
production in the Amazon in the 19th century (ibid.).

Today, the formal Brazilian mining sector is highly industrialised, with a focus on the
extraction of iron ore, gold, copper and bauxite. While Minas Gerais is still the centre of
Brazilian mining, large-scale projects were also established in the North Region, such as the
Carajás iron ore mining complex or the Paragominas bauxite mine, both in Pará. Agriculture
and pasture dominate land use in the south. Leading in national grain production and a hot
spot of agricultural expansion is Mato Grosso in the Central-West, where mostly soybean,
corn, cotton and sugarcane are produced.

The practice of large-scale plantation management and the expansion of pasture for cattle
ranching had far-reaching environmental consequences (Soterroni et al. 2018). As a reaction,
environmental, biodiversity and especially forest conservation concerns were given rise in the
early 2000s, when Brazilian deforestation rates reached exceptionally high numbers. In order
to steer against environmental degradation, the political administrations under the presidents
Cardoso (1995-2002) and Lula (2003-2010) and other stakeholders adopted a number of
policies, oriented towards better monitoring systems, expansion of protected areas and stricter
law enforcement (ibid.). The measures included increased Legal Reserve requirements in the
Brazilian Forest Code, compelling landowners to retain larger shares of their properties as
natural land (van der Hoff and Rajão 2020), as well as the Amazon Soy Moratorium in 2006,
an agreement by grain traders ensuring that soy production in the Amazon region would not
occur on recently deforested land (Heilmayr et al. 2020).

Relative to other resource-rich South American countries, the Brazilian economy is
considered diversified, with intact domestic manufacturing and service sectors. However,
other than the Global North and some South East Asian economies, Brazil is still strongly
dependent on its primary sector and the export of unprocessed raw materials. Since the
mid-20th century, this dependence has caused slow industrialisation and high socioeconomic
inequalities (Auty 1995), but also economic impetus as long as global demand for raw materials
kept increasing. Comparing the country’s GDP per capita over the past two decades with
global commodity prices (Figure 1) reveals that Brazil has experienced economic expansion
between 2000 and 2013, with only a short interruption during the global financial crisis in
2008. During most of the same time, there was a rise in global commodity prices known
as the 2000s commodities boom. After having recovered from the global financial crisis,
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Figure 1: Brazilian GDP per capita and global commodity price indices. Sources:
World Bank 2021a, 2021b.

commodity prices fell steadily between 2011 and 2016. Low commodity prices and declining
demand for Brazilian commodities – especially from China – hit the country hard, peaking
in deep recession: the 2014 Brazilian economic crisis.

As a consequence of the economic, but also severe political and social crisis, Lula’s
successor president Dilma Rousseff was impeached and removed from office in 2016. After
two years of Michel Temer serving as head of state, Jair Bolsonaro was elected president
in 2018. The Temer and Bolsonaro governments mark a distinct change in the country’s
environmental and natural resource governance, implying also a turnaround regarding tropical
rain forest preservation strategies of the former governments (de Area Leão Pereira et al.
2019; Escobar 2020). The new agenda targets an intensification of commodity production
and exports and promotes resource-led development via acts of environmental deregulation.
The PL 191-2020 bill signed in 2020, for instance, is meant to facilitate access to land for
natural resource extraction, having severe implications for indigenous communities and their
livelihoods (Siqueira-Gay et al. 2020; Rorato et al. 2020).

Brazil therefore serves as a very relevant case for investigating the effects of extractive
activities and land use change on both the economy and the environment, which we consider
equally relevant for a broader understanding of development. On the one hand, Brazil
experienced both growth and decline tied to its wealth in natural resources, and on the other
hand there is strong evidence that the exploitation thereof harmfully interferes with ecosystems
and communities. This observation supports Manzano and Gutiérrez (2019) stating that
“[t]he policy debate on resource-rich countries needs to move beyond this simple dichotomy of
curses and blessings” (p.262). We argue that investigating the resource-environment-economy
nexus requires the consideration of spatial and temporal contexts. We therefore introduce
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our approach to modelling economic and environmental impacts of mining and other land
use change in the next section.

3 Empirical design

In order to explain the economic growth rates of municipalities with a focus on mining and
land use change effects, we follow the well-established concept of growth regressions. The
basic idea of this empirical research strategy is to regress growth rates of countries or regions
on their capital stock (usually GDP) at the initial period of a certain growth window as
well as a number of further determinants of growth (Barro 1991). Typically, these include
information on population growth, human capital stock and sectoral structure such as gross
value added or employment in various economic sectors (e.g. LeSage and Fischer 2008; Crespo
Cuaresma et al. 2014).

The study furthermore adapts a spatial econometric approach. Spatial econometrics
traces back to the work of Paelinck and Klaassen (1979) and has been subject to extensive
methodological advancements since then, leading to applied contributions in economics,
environmental, and other social sciences. Spatial models explicitly consider the non-randomness
of observations across space, addressing the bias and misleading inference that may result from
spatial dependence (Baltagi and Pirotte 2010). Several studies found strong evidence that
regions are not independent, i.e. regional economic growth exhibits spatial autocorrelation
(e.g. López-Bazo et al. 2004; LeSage and Fischer 2008; Crespo Cuaresma et al. 2014), which
is shown to be especially strong for smaller Brazilian regions (Resende et al. 2016). One
possible cause for the observed spatial dependence are unobserved determinants of economic
growth that are correlated across regions, such as cultural, institutional and political factors
(ibid.).

We employ a panel-structure spatial model. Spatial panel models account for spatial
correlations and at the same time offer extended possibilities to consider time- or region-
specific idiosyncratic effects (Elhorst 2010). Following Ertur and Koch (2007) and LeSage
and Fischer (2008), and in line with the econometric framework in Resende et al. (2016), we
employ a panel-structure spatial Durbin model (SDM) in the following form:

yt = ρWyt +X tβ +WX tθ + ξt + εt, εt ∼ N(0,Ω), Ω = σ2In, (1)

where yt denotes an n × 1 vector of regional economic growth rates. As advocated by
Caselli et al. (1996), we use five-year periods as growth windows in order to smooth over
short-term business cycle influences and calculate the respective average annual growth rates
yt = [ln(Y t+5)− ln(Y t)]/5 ∗ 100, with Y t denoting per capita GDP levels at time t. X t is
an n× k matrix of k exogenous country characteristics in the initial period. These include
prominent determinants of economic growth such as income, population density, education
and indicators for industrial structure, but also information on mining activities, land use
and land use change. In order to allow for a distinction between mining effects previous
to 2010 and since then, we interact the binary mining indicator with respective dummy
variables. We chose 2010 as the year of separation, following insights from Figure 1 that
the past two decades show a rise and fall in both Brazilian GDP and global commodity
prices, as well as an explorative approach running the model for all possible combinations of
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sample periods without interaction term (see Appendix B). W is an n × n, non-negative,
row-standardised spatial weights matrix. Its elements are used to impose a structure of
spatial dependence upon observational units, setting wii = 0 and wij > 0 if regions i and j are
defined as neighbours (i, j = 1, . . . , n). Characteristically for an SDM, the regression equation
includes the spatially-lagged dependent variable Wyt as well as the spatially-lagged regional
characteristics WX t as explanatory variables. The k × 1 vectors of unknown parameters β
and θ correspond to X t and WX t respectively and ρ (having stability condition |ρ| < 1,
which is satisfied by row-standardizing W (LeSage and Pace 2009)) is a scalar parameter
measuring the magnitude of spatial autocorrelation. If ρ = 0, we obtain a growth regression
model with spatial lags in X (SLX), where regional growth rates are independent, but WX
is still considered. The model collapeses into a classical linear model in the case where both
ρ = 0 and θ = 0. Finally, the model considers a time-period-specific constant ξt, capturing
temporal effects such as commodity price dynamics. We estimate the model in a Bayesian
fashion, following the standard Markov Chain Monte Carlo (MCMC) estimation framework
as proposed for spatial econometrics in LeSage and Pace (2009).

Our second model is designed to assess the effect of mining on forest loss instead of
economic growth rates, where we again use municipalities as observation units. Forest loss
is expected to be subject to significant spatial spillover (Busch and Ferretti-Gallon 2017;
Kuschnig et al. 2021), which is why we employ an SDM just as we do for the growth model
described in Equation 1. In the forest loss model, the dependent variable yt denotes a vector
of cleared land within each municipality. For the design matrix X t we consider almost the
same set of variables as for the growth model, because most determinants of economic growth
overlap with indicators used for explaining forest loss, such as population density, economic
activity and biophysical characteristics (Busch and Ferretti-Gallon 2017). Case studies for
the Amazon region suggest that mining was a driver of deforestation, also via substantial
indirect effects (Alvarez-Berŕıos and Aide 2015; Sonter et al. 2017), forming our expectation
that we would observe similar effects for the municipality level. All other features of the
model remain the same as in the growth specification.

Assuming independence of observations, the estimation coefficients of conventional (non-
spatial) linear models can be typically interpreted as marginal changes in the dependent
variable due to changes in one of the explanatory variables. In this regard, spatial models
require additional steps because we explicitly impose dependence among observations,
implying that the partial derivatives of the dependent variable in region i with respect
to an explanatory variable in region j are potentially non-zero and therefore cause feedback
effects. LeSage and Pace (2009) discuss how to calculate average direct, indirect (i.e. spillover)
and total impacts as a solution to this issue: First, transforming Equation 1 to

yt = (In − ρW )−1(X tβ +WX tθ + ξt + εt), (2)

we derive n2 partial derivatives of a particular explanatory variable k as

∂yi
∂xjk

= Sk(W )ij = (In − ρW )−1(Inβk +W θk)ij, (3)

where infinite feedback effects are captured through the spatial multiplier (In − ρW )−1.
We can then summarise the obtained impact matrix by calculating the average total effect
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Variable Description

Economic growth Five-year average annual growth rate of gross domestic product per capita. Source: IBGE (2021)
Forest loss Annual change in land area from classified as natural forest to any other land cover classification (ha).

Source: MapBiomas (2021)

Mining Presence of mining within municipality, binary indicator.
Source: own calculations based on Maus et al. (2020) and MODIS (2021)

Land use change (LUC1,2) Land use change from classification LUC1 to LUC2 for the classifications natural forest, forest
plantation, grassland, agriculture and pasture (5-year average change in ha, log). Source: MapBiomas (2021)

Initial natural forest Share classified as natural forest. Source: MapBiomas (2021)
Initial forest plantation Share classified as forest plantation. Source: MapBiomas (2021)
Initial grassland Share classified as grassland. Source: MapBiomas (2021)
Initial agriculture Share classified as agriculture. Source: MapBiomas (2021)
Initial pasture Share classified as pasture. Source: MapBiomas (2021)

Initial income Per capita gross domestic product (m BRL, current PPP, log). Source: IBGE (2021)
Human capital Education index from 0 (worst) to 1 (best): schooling coverage (pre-school attendance) and quality

in elementary school. Source: FIRJAN (2018)
Population growth Population growth rate (%). Source: IBGE (2021)
Population density Population density (thousand per km2). Source: IBGE (2021)
GVA agriculture Gross value added in agriculture (m BRL, current PPP, log). Source: IBGE (2021)
GVA industry Gross value added in industry (m BRL, current PPP, log). Source: IBGE (2021)
GVA services Gross value added in services (m BRL, current PPP, log). Source: IBGE (2021)

Precipitation Precipitation yearly average (standardised). Source: CRU (2021)
Elevation Average elevation (m). Source: USGS (2021)

Table 1: Variables used in the analysis (measured at the beginning of the respective
growth/forest loss window).

as the average over all entries in Sk(W )ij, the average direct effect as the average only
considering its main diagonal, and the average indirect effect as the difference between the
two. An interpretation of average direct effects is then given by the average response of the
dependent to independent variables over the sample of observations and hence similar to
regression coefficients from classical linear models. The average spillover can be interpreted
as the cumulative average response of a region’s dependent variable to a marginal change in
an explanatory characteristic in all other regions.

4 Data

We compiled a balanced panel data set for this study, covering 5,249 Brazilian municipalities
over the period 2005-2013 (N = 47,241).1 Data were collected from various sources and, if
necessary, aggregated to the municipality-level (see Table 1).

The dependent variable in the growth model is the five-year average annual growth rate of
GDP per capita, which is computed from yearly per capita GDP in BRL at current purchasing
power parities as reported by the Brazilian Institute for Geography and Statistics (IBGE). In
the last year of the panel, 2013, this measure therefore comprises economic growth between
2013 and 2018. We select five-year growth windows as a suitable measure for mid-term
economic effects. Short-term effects are of minor interest for growth studies as these do not
reflect structural regional patterns but rather business cycles or other shocks. Considering
long-term economic growth is constrained by the data set at hand.

In the forest loss model, we define the dependent variable as the land area that was

1We aim to provide free download of the data shortly on PANGAEA.
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transformed from natural forest to any other land cover classification (annual change in ha).
The data is calculated from municipality-level land cover statistics as provided by MapBiomas
(2021).

Figure 2: Mining and land use in Brazil. Opening of first mine within municipality
(Source: own calculations based on Maus et al. 2020 and MODIS 2021) and predominant land
cover in 2005, the starting year of the data panel used in this study (Source: MapBiomas
2021). Zoom box shows high mine density within the state of Minas Gerais.

The two essential municipality characteristics for this study are (1) the presence of mining
and (2) the type and extent of land use change. Figure 2 summarises the locations of
municipalities with mines and the main land cover classification per municipality in the
starting year of our sample.

Mining enters the models as a binary indicator for the presence of a mine within a
municipality in a certain year. In order to construct this indicator, we combine information
from two data sources. First, we exploit a recently published global-scale data set indicating
the land area that is directly used for mining purposes (Maus et al. 2020). For Brazil, this data
set contains 459 polygons in 122 municipalities that add up to 1,500 km2. The polygons were
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drawn based on a mosaic of cloudless satellite images “taken during the years 2017 and 2018”
(ibid: 3) and therefore only provide a snapshot as of these years. For a proper identification of
mining activities since 2005, our panel-structure model requires more temporal detail on the
sample period. We therefore utilise the 250 m resolution Normalised Difference Vegetation
Index (NDVI) from MODIS (2021) providing information on live green vegetation at 16-day
intervals. We compute average NDVI scores for each polygon and then search the time series
for the dates of structural breaks in terms of significant negative shocks in the indicator,
reasoning that these must be the years when mining activities have started and thus began to
effect vegetation. For more detail on the search algorithm and illustrations, see Appendix A.

Limitations of the Maus et al. (2020) data are that they only consider industrial mining
and, due to visual interpretation of satellite images, only inform on the locations of mines
visible from space (i.e. open pit types), hence inevitably imposing constraints on this
study. We therefore focus on the dynamics of industrial, mostly large-scale, mining projects.
Omitting informal and artisanal mining, however, should not convey the impression that
these would not have economic, environmental and social impacts and we stress the need
for better future coverage, starting with more extensive and transparent monitoring and
data provision to researchers. The second limitation that underground mining cannot be
considered is a negligible issue, because open pit mining is by far the most common in Brazil.2

The next key part of this study is that we consider land use change dynamics. Using
satellite data on the conversion of land, e.g. from natural forest to pasture or from grassland
to agriculture, is an efficient approach for observing economic activity and environmental
transformation at the same time. On the one hand, positive economic growth effects can be
expected from the additional biomass production that is enabled through land clearings and
agricultural expansion as well as – similar to mining – backward linkages to other sectors
due to increased purchasing power. On the other hand, land use change is a strong indicator
for environmental disruption and often associated with socio-ecological conflicts, which may
outweigh economic arguments. Our data is obtained from MapBiomas (2021), providing
yearly land transition information from 30 m resolution satellite images aggregated to the level
of Brazilian municipalities. We utilise land cover classifications at the first sub-categorical
level and consider natural forest and forest plantation for the case of forest, grassland as non
forest natural formation, and agriculture and pasture for farming. Other categories such as
wetlands, non-vegetated area and bodies of water are omitted since they have minor relevance
for analysing land use change at the scope of our analysis. In order to be consistent with
the five-year growth horizon of the dependent variable, we computed the average change
in hectares over five years. Land use change from any category to natural forest was not
considered as a covariate, because it marks a transformation that is only viable over a longer
time horizon.

Initial land cover was considered as a proxy for the land cover conditions at the beginning
of either a window of GDP growth or a one-year forest loss period. We use data from
MapBiomas (2021), again already aggregated to municipalities. In order to reflect the
variation in municipality area, this variable enters the models as shares of natural forest,
forest plantation, grassland, agriculture and pasture relative to the total municipality area.

2Only 11% of active Brazilian mines listed in the SNL Metals and Mining Database (SNL 2021) are
reported being predominantly underground.
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Figure 2 indicates major land cover classifications per municipality in 2005, the initial year
of our sample.

The remaining covariates are control variables and their inclusion is motivated either
by economic growth theory and the empirical growth literature, or following Busch and
Ferretti-Gallon (2017) for the case of the forest loss model. We consider initial income in
terms of per capita GDP in the initial year of a growth window as a proxy for physical capital,
which is a major determinant of economic growth in the neoclassical growth framework (Solow
1956) and considered by the majority of economic growth studies as an explanatory variable.
A negative relationship between initial stock of physical capital and economic growth, which
is explained by diminishing returns to capital accumulation, is a well-established stylised fact
in the empirical literature known as the convergence hypothesis (Barro 1991). In addition, a
number of studies show that the convergence hypothesis holds for direct impacts in spatial
econometric growth frameworks, while spillover effects from the flows of capital, goods,
knowledge and people between regions are shown to be positive, implying that poorer regions
benefit from having highly capitalised neighbours (e.g. López-Bazo et al. 2004).

Endogenous growth theory highlights the role of human capital as a key driver of innovation
processes such as technological change (Lucas 1988; Romer 1990). The direction of indirect
effects, however, is uncertain, because positive economic effects from knowledge spillover
(Keller 2002) and brain drain channels may counteract each other. We proxy human capital
using the FIRJAN (2018) education index, an index for Brazilian municipalities on a scale
from 0 (worst) to 1 (best) measuring both schooling coverage and quality. The education
index is only available from 2005, constituting the constraint limiting our sample to this
starting year.3

Population growth is another component from the neoclassical growth framework. According
to theory, a positive impact of population growth would hold for absolute income growth
at the national scale, but due to capital dilution not for the growth of per capita income.
Therefore, unless higher output exceeds population growth, we would expect a negative effect.
For subnational entities, this relationship is unclear, because one part of population dynamics
are migration patterns, which may vary across scale levels (Resende et al. 2016). We obtain
population counts per municipality from the IBGE4 and compute population growth again
at five-year average rates.

In line with numerous other studies (e.g. Resende et al. 2016), we use population density
as a proxy for agglomeration externalities. Population agglomeration effects have been
considered in the economic geography literature. Denser populated (i.e. urban) regions are
associated with positive effects on productivity growth, because they show higher rates of
technological progress (Fingleton 2001). However, this relationship may not hold for poor
districts in low and middle income countries, where strong urbanisation is caused by extensive
population growth without having any substantial effects on labour productivity.

We furthermore follow LeSage and Fischer (2008) and include the gross value added
(GVA) in the agriculture, industry and service sectors as control variables in order to proxy
the industrial structure of municipalities.

Initial income, population growth and density, and the sectoral mix variables also enter

3We may consider the possibility of back-casting the data to 2002 in order to extend our panel.
4Population counts for 2007 and 2010 were interpolated due to missing data.
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the forest loss regression. The empirical literature is inconclusive regarding the direction
of the effect that income may have on forest cover (Busch and Ferretti-Gallon 2017), but,
together with information on population growth and density and the industrial structure,
these socioeconomic and demographic variables are included as control variables to to account
for any other anthropogenic activity besides the mining and other land use change effects.

Final control variables for both models are the biophysical characteristics precipitation
and elevation. The only variables included in the growth model, which are not used in the
forest loss specification, are human capital and forest cover change accounts. While there is
no obvious theoretical reasoning how human capital could influence forest cover, the problem
with controlling for the latter is that changes from forest to any other land cover category
effectively define forest loss, which is the dependent variable in this model.

Municipalities, the lowest administrative divisions in Brazil, are occasionally split or
merged and hence the total number of municipalities varies. In order to keep a balanced
panel with constant number of spatial observations and to ensure comparability, we follow a
similar strategy as Resende et al. (2016) and only consider municipalities with unchanged
geographical extent over the sample period. Ensuring constant geographical distances between
observations strongly facilitates introducing spatial structure in the panel model, because
neighbour-links (we use a k-nearest neighbours specification) remain the same for each year
in the panel.

5 Results and discussion

We present MCMC estimation results for two models, one on regional economic growth rates
and the other on forest loss patterns. 20,000 posterior draws were collected for each model,
discarding the respective first 10,000 as burn-ins.5 Further empirical settings were a k-nearest
neighbours spatial weights specification with k = 56 and standard sampling procedures for
the parameters β, θ and ρ as discussed in the Bayesian spatial econometric literature (LeSage
and Pace 2009). Direct and indirect impact estimates for the growth model are shown in
Table 2 and the forest loss model results are summarised in Table 3. Note that we excluded
the time-specific intercepts for more concise summary tables.

5.1 The effects of mining on GDP

The top two lines of Table 2 reveal that local economic effects of mining activities are
ambivalent for Brazil, because extent and direction of direct and indirect impacts alter
significantly between two time segments.7 We find that previous to 2010, mining municipalities
on average exhibit 3.8% higher growth rates due to direct effects, with additional significant
economic stimulus caused by economic spillovers (4.6%). These impact estimates of mining
activities previous to 2010 are highly statistically significant and in strong contrast to the
negative relationship that is typically found in cross-country comparisons (Sachs and Warner
2001). After 2010, however, the significant and positive direct effect disappears, i.e. there

5The diagnostics by Geweke (1992) were used to confirm convergence of the sampler.
6Results are robust against alternative neighbourhood definitions, see Appendix C.2.
7See Appendix B for a more nuanced exploration how impact estimates vary across sample periods.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 3.344 3.797 4.235 3.585 4.660 5.746
Mining × since 2010 -0.795 -0.321 0.183 -2.946 -1.816 -0.730

LUCAgriculture,Forest P lantation -0.034 0.005 0.043 -0.131 -0.046 0.040
LUCAgriculture,Grassland -0.081 -0.038 0.003 -0.277 -0.163 -0.049
LUCAgriculture,Pasture -0.010 0.024 0.057 0.058 0.130 0.197
LUCNatural Forest,Agriculture 0.008 0.038 0.066 -0.173 -0.115 -0.055
LUCNatural Forest,Forest P lantation 0.013 0.051 0.087 0.142 0.216 0.288
LUCNatural Forest,Grassland -0.016 0.019 0.052 -0.126 -0.062 -0.002
LUCNatural Forest,Pasture 0.001 0.031 0.062 -0.207 -0.159 -0.108
LUCForest P lantation,Agriculture -0.016 0.021 0.061 0.026 0.116 0.215
LUCForest P lantation,Grassland -0.012 0.059 0.133 -0.234 -0.033 0.164
LUCForest P lantation,Pasture -0.054 -0.013 0.026 0.019 0.130 0.244
LUCGrassland,Agriculture 0.081 0.120 0.161 0.002 0.105 0.207
LUCGrassland,Forest P lantation -0.041 0.016 0.074 -0.500 -0.338 -0.187
LUCGrassland,Pasture -0.082 -0.034 0.018 0.077 0.190 0.303
LUCPasture,Agriculture 0.038 0.070 0.102 -0.129 -0.071 -0.015
LUCPasture,Forest P lantation -0.033 -0.001 0.033 -0.146 -0.074 -0.006
LUCPasture,Grassland -0.029 0.023 0.067 -0.043 0.068 0.182

Initial Agriculture 1.380 2.122 2.925 -0.840 0.193 1.307
Initial Natural Forest -1.624 -0.887 -0.209 1.482 2.584 3.569
Initial Forest Plantation -2.964 -1.177 0.656 -12.846 -9.217 -5.596
Initial Grassland -3.404 -2.308 -1.195 1.468 3.269 5.132
Initial Pasture -1.311 -0.604 0.097 -0.194 0.829 1.798

Initial income -3.717 -3.589 -3.466 2.013 2.284 2.547
Human capital 2.487 3.203 3.878 -3.083 -2.138 -1.102
Population growth -0.422 -0.396 -0.371 -0.109 -0.045 0.025
Population density -0.612 -0.480 -0.354 0.333 0.550 0.777
GVA agriculture -0.205 -0.138 -0.075 -0.066 0.052 0.169
GVA industry -0.465 -0.400 -0.337 -0.790 -0.641 -0.485
GVA services 0.688 0.762 0.838 0.291 0.483 0.654

Precipitation -0.033 0.206 0.435 -0.068 0.173 0.414
Elevation -0.001 -0.001 0.000 0.000 0.000 0.001

ρ 0.284 0.293 0.303
Observations 47,241

Table 2: Average direct and indirect impact estimates growth model. Panel-
structure (2005-2013) spatial Durbin model including time fixed effects. Dependent variable is
5-year average annual per capita growth rates. Estimates printed in bold type are statistically
different from zero based on the 95 percent posterior credible interval. PM denotes posterior
mean.

is no difference between mining and non-mining municipalities with respect to the direct
presence of a mine. On the contrary, indirect effects now show a negative direction. The
impact estimate of -1.8% can be read as such: The GDP of municipalities, which have mines
present in their neighbouring municipalities, on average grew at almost 2% lower rates than
those without mines in their surroundings.

One fundamental question is now why the positive direct and indirect economic stimulus
from mines disappears over time. We turn our attention to the observation made earlier in
Figure 1. There is a strong dependence between the Brazilian economy and global commodity
prices. We believe that the Brazilian economic stagnation and crisis had a distinct influence,
causing a turnaround in the relationship between mining and regional economies. Before
2010, a beneficial global environment (high prices and demand for materials) translated into
direct regional economic growth, i.e. the revenues from mining as well as generated multiplier
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effects (e.g. via employment creation and accelerating demand for local goods and services)
remained local to a notable extent. The presence of positive spillovers suggests the existence
of diffused backward linkages such as via commuting workers and the emergence of mining
clusters, i.e. the generation of endogenous development and diversification of the industrial
mix due to agglomeration effects (Arias et al. 2013).

However, a growing extractive sector also interferes with other, potentially more sustainable,
local economic structures such as small-scale agriculture or manufacturing and creates
dependence on the mining industry (Aragón et al. 2015). When the commodity price bubble
bursts and the subsequent economic crisis kicks in, this negative circle, again via backward
linkages, also effects the neighbours of mining municipalities. In fact, our results suggest
that it hits them even more severe than the mining municipalities themselves. This could be
explained by reduced, but not entirely shut mining activities and the halt of expansion and
investment in reaction to lowered profit expectations associated with decreasing commodity
prices, where the involvement of actors from the surroundings (indirect effects) was reduced
more substantially than for local actors (direct effects). This mechanism would explain the
negative indirect impacts as compared to “only” insignificant direct effects in the period later
than 2010.8

5.2 The effects of land use change on GDP

The second focus of the growth model lies on land use change effects, i.e. how transformations
from one land cover category to another relate to the economic growth rates of municipalities.
Table 2 summarises the related results, which are indicated by the LUC variables. A
first view on direct effects suggests that economic growth is predominately induced by the
transformation of land for agricultural use. These effects are strongest for changes from
grassland to agriculture, where the estimate of 0.12 implies that a 5-year average increase by
10% in land use change of that specific transformation within one municipality on average
leads to 1.2% higher GDP growth rates in this municipality. Further significant direct impacts
are found for transformations from pasture to agriculture (0.07), natural forest to agriculture
(0.04) and for natural forest to forest plantation (0.05) and to pasture (0.03). On the one
hand, these results underline the productive potential of land transformation. On the other
hand, they refer to potentially severe interference with natural systems. The most obvious
problematic with land use change in Brazil are deforestation dynamics in the Amazon and
along its borders (e.g. Soterroni et al. 2018). It is therefore an interesting finding that land
use change referring to direct deforestation (transformation from natural forest to any other
category) is associated with the smallest economic growth effects. Recent studies, however,
also demonstrate pathways of land-conversion, suggesting that deforested land is commonly
re-transformed, such as from natural forest first to pasture, and then to agriculture (Kuschnig
et al. 2021). Full economic exploitation of land is therefore likely to develop a few years after
clearing.

8This narrative requires further testing. Ideas are to ask specialists how/if mining was reduced after 2010,
look for commuting data, and show that the effect can not come from the construction of our mining data.
Another idea, motivated by the fact that fewer mines were opened after 2010, is to test if GDP-effects from
mine openings are only short-term and vanish over time. This may be achieved with some kind of initial
effects model taking first differences.
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More detail and complexity is added to the relationship between land use change and GDP
growth of Brazilian municipalities with spillover effects being additionally taken into account.
While we find significant positive spillovers for transformations from grassland (0.19) and
from agriculture to pasture (0.13), from grassland to agriculture (0.11), from natural forest to
forest plantation (0.22), and from forest plantation to pasture (0.13) and to agriculture (0.12),
the results suggest that there are also negative spillover effects on economic growth from
land use change. This is most notably the case for land use change from grassland to forest
plantation, where the effect is strongest among all land use change impact estimates (-0.34).
Further negative spillovers are found for land use change from natural forest to pasture
(-0.16), to agriculture (-0.12) and to grassland (-0.06), from agriculture to grassland (-0.16),
as well as from pasture to agriculture (-0.07) and to forest plantation (-0.07). One possible
explanation for negative impacts are environmental externalities, which may especially be
the case for the establishment of large-scale forest plantation on former grassland as well as
for land use change involving deforestation.

In addition to land use change effects, we can also interpret the effects of initial land
cover classifications, i.e. the characteristicts of municipalities at the beginning of a 5-year
growth window. The results suggest that one productive characteristic without any significant
spillover is agriculture. The GDP of municipalities with 1% higher shares of agricultural
land on average grows at approximately 2% higher rates. It is somewhat intuitive that
municipalities with higher shares of land that is less frequently exploited for economic reasons
(natural forest and grassland), on average show lower economic growth rates of approximately
1% and 2%, respectively. On top of that, findings reveal that the presence of grassland and
natural forest has positive economic spillover effects, which even exceed the negative direct
effects. Lastly, the results suggest that forest plantations, when established, do not have any
direct GDP-effects. They do, however, exhibit strong negative indirect effects. This finding
adds a new facet to the still limited and rather inconclusive literature on the socioeconomic
effects of forest plantations. In a recent study, Afonso and Miller (2021) point towards
numerous factors shaping the impacts of forest plantations, which are similar to what we
have mentioned in the context of enclave and agglomeration effects of extraction projects.
While the positive growth impact, which we found for land conversion to forest plantation, is
in line with their story, these negative spillover effects (which they do not account for in their
study) widen the narrative. Potential causes are environmental and social constraints placed
on surroundings or migration flows, yet we must leave a definite answer to this question up
to future research.

The impact estimates of the growth model are completed by a number of control variables,
which are briefly summarised as follows: We find significant signs for the presence of growth
convergence, which is indicated by the strong negative direct impact estimate for initial
income, which exceeds counterbalancing positive spillover effects from high-income neighbours.
This finding is in line with the theoretical and empirical growth literature (e.g. López-Bazo
et al. 2004; Resende et al. 2016). For human capital, direct and indirect effects are in
opposite direction, again conforming to earlier works (e.g. LeSage and Fischer 2008; Resende
et al. 2016). As both, initial income and human capital, behave exactly as we would have
expected from stylised facts about economic growth, we can be confident about our model.
For population growth and population density, we find negative direct impacts, as well as no
significant spillover for population growth and a positive indirect effect for population density.
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Regarding the sectoral structure, strongest positive (direct and indirect) links are found for
initial GVA in the service sector, while municipalities with large shares in the agriculture
and industry sectors tend to grow at lower rates. Lastly, we turn the attention to ρ, the
spatial parameter, which is clearly above zero, confirming the presence of significant spatial
dependence.

5.3 The relationship between mining and forest loss

While the results above focused on the economic notion of resource-led development, we now
turn the spotlight on another component of development and well-being in a broader sense:
the environmental dimension of economic activities. Table 3 summarises estimation results
for the forest loss model, which we set up in order to measure the environmental impacts of
mining activities and other types of land use change.

Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 375.295 594.358 808.390 1561.998 2397.302 3205.026
Mining × since 2010 23.263 248.423 464.819 -829.280 36.482 906.420

LUCAgriculture,Grassland -19.504 0.961 21.439 -97.076 -6.372 73.074
LUCAgriculture,Pasture -4.470 9.843 24.588 -61.609 -10.710 35.944
LUCGrassland,Agriculture 22.287 41.615 60.285 57.276 138.343 217.093
LUCGrassland,Pasture 21.088 43.714 66.046 -110.962 -30.161 48.924
LUCPasture,Agriculture 3.567 17.415 30.875 -53.577 -16.032 26.303
LUCPasture,Grassland 53.556 76.448 99.143 40.131 122.304 205.747

Initial Agriculture -614.002 -275.498 54.505 54.994 751.474 1437.908
Initial Natural Forest 355.430 640.544 940.362 645.686 1242.076 1848.759
Initial Forest Plantation -1098.837 -349.339 453.652 -3264.232 -1302.316 873.717
Initial Grassland -2132.823 -1658.746 -1193.426 -1677.020 -419.889 749.999
Initial Pasture -833.443 -544.768 -261.732 971.710 1582.022 2142.313

Initial income -120.647 -61.978 -6.566 -227.868 -61.735 92.026
Population growth 48.980 61.291 72.810 135.333 183.971 230.589
Population density 44.203 95.757 149.132 68.848 238.320 398.486
GVA agriculture 132.733 162.171 191.109 111.423 194.334 273.916
GVA industry -17.364 12.274 41.388 -26.890 93.320 221.408
GVA services -101.340 -67.393 -32.065 -325.510 -180.219 -34.660

Precipitation 3.259 110.306 218.326 -72.054 53.745 178.319
Elevation -0.566 -0.314 -0.036 -0.117 0.258 0.594

ρ 0.612 0.619 0.622
Observations 47,241

Table 3: Average direct and indirect impact estimates forest loss model. Panel-
structure (2005-2013) spatial Durbin model including time fixed effects. Dependent variable
is annual forest loss in ha. Estimates printed in bold type are statistically different from zero
based on the 95 percent posterior credible interval. PM denotes posterior mean.

Impact estimates reveal that extractive activities are clearly associated with higher forest
loss rates. The impact estimates for mining previous to 2010 suggest a direct impact of mines
on forest loss of approximately 594 hectares per year and an even substantially higher indirect
effect of almost 2,400 hectares. In contrast to the growth model, we do not see an entirely
different picture for the years 2010-2013. The effects are, however, weaker. Direct effects are
approximately half as strong as in the earlier period, and indirect effects turn insignificant
for the more recent years.
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Land use change variables indicate that land conversions from grassland and pasture have
direct forest loss effects, and additional indirect effects are found for land use change from
pasture to grassland and from grassland to agriculture. Changes from agricultural land back
to grassland or pasture do not affect forest cover.

The land cover variables in the model are mostly in line with our expectations. High shares
of initial natural forest cover have greater potential for forest loss, while municipalities that are
initially dominated by grassland and pasture exhibit significantly lower forest loss. Spillover
effects, however, are positive for all land cover classification except for forest plantation and
grassland. Cleared land for agriculture or pasture is likely to induce more deforestation
in neighbouring municipalities due to spatial links such as via infrastructure build up or
other clustering effects. Already easily accessible and cleared areas make it easier to expand
economic activities to their closest neighbours.

Drawing our attention to the remaining control variables, results further reveal that
population growth and density are directly and indirectly positively related to forest loss,
while negative direct effects can be found for initial income. The biophysical variables
precipitation and elevation play a greater role in the forest loss model than in the growth
model. High precipitation levels are positively related to forest loss, while municipalities at
higher altitudes show lower forest loss rates. Neither of them, however, has any spillover
effects. Lastly, note that forest loss exhibits strong spatial dependence (ρ = 0.62), supporting
the need for spatial regression approaches.

5.4 Synthesis: fading trade-off effects

A combined view on the results of both models allows a more nuanced evaluation of the
narrative of resource-led development at the cost of the environment (Hope 2019). In the
early 21st century, when the mining industry boomed due to favourable global economic
conditions, average incomes increased locally where and close to where the actual mining
was taking place in Brazil. In terms of an economic perspective, yet still leaving aside any
distributional aspects, this is in line with what the mining industry has argued for a long time,
stressing the effects of employment creation, local procurement and other spatial externalities.
For the same time period, however, we see a very clear link between mining activities and
environmental destruction. In the same, economically successful, 5-year period between
2005 and 2009, we find strong evidence that extractive activities caused high rates of forest
loss not even within, but also in the surroundings of mining municipalities. Together, the
results suggest a trade-off between positive economic effects and negative environmental
consequences, both via direct and indirect channels.

This trade-off is less clear for the years since 2010, when global economic conditions got
less favourable for resource-dependent development strategies. On the one hand, there is no
signal anymore for a positive link between mining and regional economic growth rates. The
results rather suggest lower growth rates around mining regions due to indirect channels. On
the other hand, our findings still suggest a negative relationship between mining and natural
forest cover. Interestingly, this link is more locally concentrated in the period after 2010.
Strong spatial diffusion of forest loss as found over the earlier period does not carry over to
the more recent years. To summarise, this means that the situation changes from a trade-off
characterised by high economic benefits and high environmental consequences to a scenario
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where economic benefits vanish and negative environmental consequences remain, but at less
substantial magnitude.

It is not within the scope of this paper to bring forward any normative reasoning if and
under which conditions such a trade-off between economic and environmental interests can
be tolerated. What we can reason from the mere results of the two models employed in this
study, however, is that such a trade-off can not be taken for granted. For the case of Brazil,
our findings suggest no expansion of extractive activities in the name of regional development,
as we do not find clear empirical evidence for a sustained existence of such as relationship,
while environmental (and also social) consequences of such practice may be irreversible.

6 Conclusion

In this study, we connected resource-dependent economic development strategies and the
environmental implications thereof with the empirical regional economic growth literature.
The main research objectives were to identify and quantify the direct and indirect regional
economic effects of mining and of other types of land use change, and to inform about potential
trade-offs between economic and environmental effects. This was achieved employing two
panel-structure spatial Durbin models, one each for modelling economic growth rates and
forest loss area at the level of Brazilian municipalities. We considered annual data for the
years 2005-2013 and allowed for a structural break of the effects of mining in 2010.

We found that the link between mining activities and the economic growth of municipalities
is ambiguous, depending on the time span observed. Between 2005 and 2009, metals and
minerals extraction was associated with higher GDP growth in mining municipalities and, due
to spillover effects, their surroundings. When considering 2010-2013, direct impact estimates
turned insignificant and spillover effects revealed a negative impact. Therefore, mining can
not straightforwardly be argued to foster regional economic development, as this apparently
depends on wider circumstances.

With regard to environmental impacts, our results suggest that mining is associated with
higher rates of forest loss. This applies for both segments before and after 2010, but the effects
are stronger in the earlier period, for which we moreover find substantial spillover effects
that are absent later on. We hence conclude that there was a trade-off between economic
and environmental effects, which faded in more recent years, when positive economic effects
completely vanished, but mining-induced forest loss remained.

References

Afonso, Roberta and Daniel C Miller (2021). “Forest plantations and local economic development:
Evidence from Minas Gerais, Brazil”. In: Forest Policy and Economics 133, p. 102618. doi:
10.1016/j.forpol.2021.102618.
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Appendix

A Identification of mine openings

Searching structural breaks algorithm:

1. Use 2000-2020 250 m resolution time series (16-day intervals) from MODIS (2021) and
compute average NDVI per mining polygon for all 459 polygons contained in the data
set by Maus et al. (2020).

2. Identify segments according to structural breaks in NDVI time series using the ’strucchange’
package in R (Zeileis et al. 2002).

3. Compute NDVI mean for each segment.

4. Set opening date as the month of first negative NDVI shock where means of segments
change by more than 0.1 (see Figure 3 for examples). As robustness checks, we also
applied this rule using 0.05 and 0.15 thresholds, because negative shocks may be present
at weaker steps than the set threshold (as demonstrated in Figure 4).

5. If no such structural break exists in the time-series, we assume the mine has opened
already previous to 2000 (Figure 5).

See Figures 6 and 7 for differences in mine openings across Brazil using alternative
0.05 and 0.15 thresholds. As expected, a smaller threshold identifies more mine openings
instead of setting the opening to 2000 due to a lack of a sufficiently large NDVI shock.
Model comparisons in Appendix C.1 show that results are robust against variations in this
identification procedure.

Note that the algorithm is not intended to detect any mine closures (which would be
a very complex undertaking). We argue that as soon as mining takes place in a certain
municipality, it is very unlikely that mining operations will completely disappear in the
respective area, because (a) large scale mining operations are extremely costly and hence have
a long exploitation horizon and (b) once economically profitable recovery of ore is exhausted,
an expansion to new deposits is typically conducted not far from the original mining site.

A current limitation is that the identification of mine openings is still missing validation of
the produced data. One next step is to create a validation data set using visual interpretation
of satellite imagery time series.
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Figure 3: NDVI time series and identification of mine openings. Selected NDVI
time series, segment means (green) and mine opening date detected by the algorithm (red)
for a threshold of a drop in segment mean > 0.1. Polygon IDs: 2,146, 2,149, 3,467 and 3,941.

Figure 4: NDVI time series and missed identification of mine openings. Selected
NDVI time series and segment means (green). No significant drop (> 0.1) in NDVI means
was detected and hence opening date was set to the start of the time series (red). Polygon
IDs: 2,180, 2,182, 2,266 and 3,377.

Figure 5: NDVI time series for polygons without vegetation decline. Selected
NDVI time series and segment means (green). No decline in NDVI means detected and hence
opening date was set to the start of the time series (red). Polygon IDs: 2,156, 3,491, 3,499
and 4,019.
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Figure 6: Identification of opening years for first mine in municipality. Threshold
for minimum drop between NDVI segments is 0.1.
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(a) Structural break threshold is 0.05

(b) Structural break threshold is 0.15

Figure 7: Alternative identification of opening years for first mine in municipality.
Thresholds for minimum drop between NDVI segments are 0.05 and 0.15.
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B Effect of mining on GDP across sample periods

Impact estimate of mining on GDP depends on the sample. Significantly positive effects
change to insignificant direct and negative indirect effects when considering more recent years
only:
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Figure 8: Mining impacts on GDP across sample periods. Average direct and
indirect impact estimates of mining on GDP (panel SDM, considering time fixed effects);
2005-2013; dependent variable is 5-year average annual per capita growth rates. Three (one)
stars indicate estimates statistically different from zero based on the 98 (90) percent posterior
credible interval.
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C Robustness

C.1 Alternative thresholds for mine opening identification

Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 3.422 3.831 4.297 3.772 4.643 5.659
Mining × since 2010 -0.748 -0.335 0.133 -2.631 -1.738 -0.706

LUCAgriculture,Forest P lantation -0.034 0.005 0.047 -0.124 -0.048 0.040
LUCAgriculture,Grassland -0.079 -0.036 0.009 -0.254 -0.160 -0.052
LUCAgriculture,Pasture -0.011 0.022 0.048 0.065 0.126 0.193
LUCNatural Forest,Agriculture 0.015 0.040 0.064 -0.164 -0.113 -0.050
LUCNatural Forest,Forest P lantation 0.011 0.049 0.080 0.143 0.201 0.274
LUCNatural Forest,Grassland -0.009 0.018 0.051 -0.119 -0.056 0.007
LUCNatural Forest,Pasture 0.001 0.032 0.061 -0.212 -0.156 -0.104
LUCForest P lantation,Agriculture -0.010 0.021 0.064 0.013 0.117 0.197
LUCForest P lantation,Grassland -0.025 0.053 0.136 -0.230 -0.032 0.192
LUCForest P lantation,Pasture -0.050 -0.016 0.032 0.039 0.130 0.211
LUCGrassland,Agriculture 0.075 0.116 0.162 -0.031 0.102 0.198
LUCGrassland,Forest P lantation -0.042 0.022 0.090 -0.464 -0.320 -0.186
LUCGrassland,Pasture -0.082 -0.032 0.007 0.051 0.171 0.278
LUCPasture,Agriculture 0.046 0.071 0.103 -0.125 -0.070 -0.022
LUCPasture,Forest P lantation -0.029 0.001 0.035 -0.136 -0.070 -0.008
LUCPasture,Grassland -0.027 0.022 0.070 -0.046 0.066 0.181

Initial Agriculture 1.273 2.006 2.734 -1.032 0.186 1.144
Initial Natural Forest -1.648 -1.015 -0.457 1.738 2.698 3.714
Initial Forest Plantation -3.055 -1.203 0.621 -12.325 -8.855 -5.743
Initial Grassland -3.621 -2.395 -1.504 1.732 3.420 5.210
Initial Pasture -1.343 -0.774 -0.160 0.102 1.001 1.898

Initial income -3.703 -3.586 -3.475 2.155 2.350 2.579
Human capital 2.550 3.211 3.958 -3.049 -2.236 -1.418
Population growth -0.418 -0.394 -0.368 -0.085 -0.024 0.033
Population density -0.595 -0.482 -0.334 0.327 0.547 0.796
GVA agriculture -0.196 -0.132 -0.055 -0.064 0.056 0.152
GVA industry -0.441 -0.390 -0.331 -0.753 -0.599 -0.457
GVA services 0.672 0.746 0.811 0.268 0.432 0.597

Precipitation -0.052 0.193 0.452 -0.089 0.173 0.397
Elevation -0.001 -0.001 0.000 0.000 0.000 0.001

ρ 0.284 0.295 0.303
Observations 47,241

Table 4: Impact estimates growth model with alternative 0.05 NDVI threshold.
Panel-structure (2005-2013) spatial Durbin model including time fixed effects. Dependent
variable is 5-year average annual per capita growth rates. Estimates printed in bold type
are statistically different from zero based on the 95 percent posterior credible interval. PM
denotes posterior mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 3.523 3.952 4.362 3.765 4.659 5.648
Mining × since 2010 -0.684 -0.237 0.186 -2.802 -1.716 -0.624

LUCAgriculture,Forest P lantation -0.034 0.007 0.039 -0.122 -0.040 0.047
LUCAgriculture,Grassland -0.080 -0.040 0.007 -0.276 -0.155 -0.049
LUCAgriculture,Pasture -0.003 0.027 0.061 0.053 0.119 0.187
LUCNatural Forest,Agriculture 0.008 0.041 0.068 -0.164 -0.113 -0.056
LUCNatural Forest,Forest P lantation 0.016 0.049 0.085 0.137 0.214 0.288
LUCNatural Forest,Grassland -0.019 0.014 0.042 -0.113 -0.057 0.005
LUCNatural Forest,Pasture -0.011 0.029 0.059 -0.203 -0.158 -0.104
LUCForest P lantation,Agriculture -0.015 0.017 0.050 0.038 0.117 0.194
LUCForest P lantation,Grassland -0.011 0.058 0.118 -0.293 -0.056 0.175
LUCForest P lantation,Pasture -0.048 -0.016 0.025 0.036 0.129 0.261
LUCGrassland,Agriculture 0.077 0.124 0.164 0.007 0.100 0.191
LUCGrassland,Forest P lantation -0.050 0.014 0.065 -0.481 -0.334 -0.204
LUCGrassland,Pasture -0.075 -0.032 0.012 0.092 0.179 0.271
LUCPasture,Agriculture 0.039 0.069 0.098 -0.128 -0.065 -0.012
LUCPasture,Forest P lantation -0.028 0.001 0.033 -0.130 -0.075 -0.007
LUCPasture,Grassland -0.015 0.023 0.072 -0.027 0.066 0.168

Initial Agriculture 1.250 2.072 2.891 -0.910 0.217 1.412
Initial Natural Forest -1.628 -0.922 -0.092 1.603 2.611 3.622
Initial Forest Plantation -2.958 -1.224 0.805 -12.762 -9.262 -5.676
Initial Grassland -3.443 -2.263 -1.073 1.229 3.061 4.913
Initial Pasture -1.257 -0.581 0.099 -0.233 0.809 1.664

Initial income -3.716 -3.604 -3.475 2.093 2.310 2.518
Human capital 2.568 3.277 3.882 -3.078 -2.155 -1.212
Population growth -0.421 -0.396 -0.371 -0.089 -0.038 0.019
Population density -0.633 -0.476 -0.360 0.303 0.555 0.817
GVA agriculture -0.192 -0.128 -0.051 -0.050 0.057 0.143
GVA industry -0.447 -0.396 -0.348 -0.775 -0.627 -0.500
GVA services 0.693 0.753 0.816 0.306 0.463 0.653

Precipitation -0.048 0.179 0.407 -0.103 0.187 0.434
Elevation -0.001 -0.001 0.000 -0.001 0.000 0.001

ρ 0.284 0.288 0.294
Observations 47,241

Table 5: Impact estimates growth model with alternative 0.15 NDVI threshold.
Panel-structure (2005-2013) spatial Durbin model including time fixed effects. Dependent
variable is 5-year average annual per capita growth rates. Estimates printed in bold type
are statistically different from zero based on the 95 percent posterior credible interval. PM
denotes posterior mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 88.973 330.662 575.564 1077.437 2016.259 2712.107
Mining × since 2010 2.057 221.712 410.514 -664.180 82.133 915.205

LUCAgriculture,Grassland -15.121 1.402 22.199 -69.087 0.357 91.264
LUCAgriculture,Pasture -8.179 9.243 25.692 -58.821 -11.889 28.413
LUCGrassland,Agriculture 19.956 40.552 56.637 50.158 140.657 205.592
LUCGrassland,Pasture 24.586 44.446 62.778 -95.139 -34.886 64.780
LUCPasture,Agriculture 5.808 18.339 30.413 -41.714 -12.408 22.163
LUCPasture,Grassland 55.470 77.690 99.723 24.459 126.384 204.466

Initial Agriculture -564.091 -249.616 62.253 144.965 767.619 1489.671
Initial Natural Forest 339.147 674.120 963.420 692.940 1213.410 1771.330
Initial Forest Plantation -1102.675 -374.286 338.494 -3292.152 -1216.763 930.981
Initial Grassland -2073.267 -1626.303 -1117.257 -1740.873 -427.798 684.739
Initial Pasture -881.932 -515.042 -227.789 1000.179 1584.790 2057.671

Initial income -106.458 -58.670 -13.053 -224.256 -67.176 57.561
Population growth 46.704 61.837 77.400 139.373 179.716 227.465
Population density 38.771 99.278 168.838 67.238 236.535 387.338
GVA agriculture 130.148 159.075 190.455 107.083 179.707 256.083
GVA industry -13.654 15.130 43.968 -19.408 109.510 223.437
GVA services -101.029 -69.366 -37.611 -348.425 -194.517 -28.278

Precipitation 7.878 111.891 190.357 -43.907 59.825 157.026
Elevation -0.510 -0.305 -0.091 -0.054 0.260 0.570

ρ 0.612 0.619 0.632
Observations 47,241

Table 6: Impact estimates forest loss model with alternative 0.05 NDVI
threshold. Panel-structure (2005-2013) spatial Durbin model including time fixed effects.
Dependent variable is annual forest loss in ha. Estimates printed in bold type are statistically
different from zero based on the 95 percent posterior credible interval. PM denotes posterior
mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 544.351 732.721 919.270 1175.861 1821.745 2567.433
Mining × since 2010 53.680 237.023 446.835 -837.177 -128.536 756.305

LUCAgriculture,Grassland -17.953 0.439 18.179 -84.847 -0.309 73.663
LUCAgriculture,Pasture -7.402 8.945 24.036 -69.237 -9.459 36.807
LUCGrassland,Agriculture 29.301 43.187 62.238 46.506 133.404 205.782
LUCGrassland,Pasture 26.087 45.946 66.440 -104.834 -33.062 45.809
LUCPasture,Agriculture 3.405 17.437 32.368 -50.429 -13.010 28.768
LUCPasture,Grassland 53.575 74.694 99.545 37.334 118.842 187.980

Initial Agriculture -535.783 -244.240 49.974 73.552 677.876 1389.734
Initial Natural Forest 401.011 669.399 887.898 626.013 1126.807 1682.642
Initial Forest Plantation -927.249 -323.815 357.222 -3327.779 -1388.792 503.200
Initial Grassland -2080.439 -1648.620 -1288.519 -1595.033 -491.048 625.380
Initial Pasture -770.364 -505.750 -202.707 937.875 1495.833 2074.184

Initial income -119.690 -62.560 -3.350 -210.828 -53.823 117.843
Population growth 49.478 61.104 72.200 127.558 176.559 223.625
Population density 51.359 93.873 142.603 65.746 220.467 388.388
GVA agriculture 138.410 160.068 184.258 104.450 179.659 254.526
GVA industry -20.825 10.729 45.212 -36.633 93.767 207.937
GVA services -99.010 -64.408 -27.775 -299.178 -176.118 -72.360

Precipitation 31.340 119.783 212.127 -60.708 36.751 151.514
Elevation -0.570 -0.319 -0.033 -0.104 0.269 0.564

ρ 0.612 0.619 0.622
Observations 47,241

Table 7: Impact estimates forest loss model with alternative 0.15 NDVI
threshold. Panel-structure (2005-2013) spatial Durbin model including time fixed effects.
Dependent variable is annual forest loss in ha. Estimates printed in bold type are statistically
different from zero based on the 95 percent posterior credible interval. PM denotes posterior
mean.
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C.2 Alternative weights matrices

Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 3.027 3.583 4.024 4.935 6.068 7.265
Mining × since 2010 -0.629 -0.191 0.300 -3.861 -2.695 -1.436

LUCAgriculture,Forest P lantation -0.024 0.006 0.039 -0.204 -0.070 0.050
LUCAgriculture,Grassland -0.066 -0.027 0.010 -0.253 -0.118 -0.002
LUCAgriculture,Pasture -0.022 0.014 0.047 0.103 0.169 0.247
LUCNatural Forest,Agriculture 0.015 0.041 0.066 -0.209 -0.129 -0.065
LUCNatural Forest,Forest P lantation 0.024 0.048 0.077 0.164 0.237 0.324
LUCNatural Forest,Grassland -0.016 0.014 0.048 -0.130 -0.062 0.009
LUCNatural Forest,Pasture 0.008 0.036 0.066 -0.232 -0.179 -0.135
LUCForest P lantation,Agriculture -0.034 0.015 0.052 0.016 0.136 0.223
LUCForest P lantation,Grassland -0.026 0.055 0.136 -0.231 -0.020 0.197
LUCForest P lantation,Pasture -0.050 -0.011 0.039 0.001 0.114 0.223
LUCGrassland,Agriculture 0.074 0.122 0.164 -0.064 0.047 0.178
LUCGrassland,Forest P lantation -0.036 0.021 0.083 -0.632 -0.428 -0.257
LUCGrassland,Pasture -0.100 -0.049 0.007 0.128 0.242 0.361
LUCPasture,Agriculture 0.047 0.084 0.113 -0.158 -0.099 -0.037
LUCPasture,Forest P lantation -0.035 -0.003 0.033 -0.123 -0.057 0.018
LUCPasture,Grassland -0.020 0.028 0.079 -0.065 0.056 0.175

Initial Agriculture 1.026 1.690 2.508 -0.235 0.755 1.934
Initial Natural Forest -1.474 -0.963 -0.293 2.055 2.866 3.821
Initial Forest Plantation -3.204 -1.565 0.179 -13.261 -9.882 -6.048
Initial Grassland -3.544 -2.318 -1.253 1.269 3.523 6.050
Initial Pasture -1.317 -0.738 -0.055 -0.033 1.021 2.089

Initial income -3.733 -3.640 -3.505 2.158 2.470 2.706
Human capital 2.659 3.267 4.044 -3.787 -2.705 -1.632
Population growth -0.408 -0.389 -0.366 -0.150 -0.067 -0.003
Population density -0.509 -0.405 -0.292 0.186 0.464 0.728
GVA agriculture -0.203 -0.129 -0.072 -0.061 0.037 0.155
GVA industry -0.436 -0.382 -0.318 -0.831 -0.659 -0.466
GVA services 0.670 0.749 0.825 0.243 0.473 0.701

Precipitation -0.048 0.222 0.495 -0.123 0.151 0.425
Elevation -0.001 -0.001 0.000 0.000 0.000 0.001

ρ 0.333 0.345 0.353
Observations 47,241

Table 8: Impact estimates growth model with alternative k = 7 nearest
neighbours W. Panel-structure (2005-2013) spatial Durbin model including time fixed
effects. Dependent variable is 5-year average annual per capita growth rates. Estimates
printed in bold type are statistically different from zero based on the 95 percent posterior
credible interval. PM denotes posterior mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 3.160 3.605 4.048 5.525 6.842 8.190
Mining × since 2010 -0.830 -0.358 0.146 -2.816 -1.877 -0.806

LUCAgriculture,Forest P lantation -0.036 0.002 0.042 -0.157 -0.046 0.057
LUCAgriculture,Grassland -0.072 -0.032 0.005 -0.241 -0.094 0.041
LUCAgriculture,Pasture -0.024 0.008 0.043 0.094 0.173 0.255
LUCNatural Forest,Agriculture 0.011 0.041 0.070 -0.203 -0.133 -0.051
LUCNatural Forest,Forest P lantation 0.020 0.050 0.089 0.141 0.214 0.315
LUCNatural Forest,Grassland -0.011 0.018 0.047 -0.167 -0.087 -0.005
LUCNatural Forest,Pasture 0.000 0.029 0.054 -0.232 -0.174 -0.126
LUCForest P lantation,Agriculture -0.029 0.016 0.051 0.041 0.162 0.278
LUCForest P lantation,Grassland -0.012 0.048 0.114 -0.392 -0.086 0.176
LUCForest P lantation,Pasture -0.056 -0.014 0.021 -0.034 0.110 0.257
LUCGrassland,Agriculture 0.086 0.124 0.161 -0.077 0.065 0.188
LUCGrassland,Forest P lantation -0.034 0.024 0.081 -0.599 -0.408 -0.222
LUCGrassland,Pasture -0.093 -0.043 0.005 0.078 0.227 0.362
LUCPasture,Agriculture 0.054 0.088 0.117 -0.168 -0.108 -0.051
LUCPasture,Forest P lantation -0.041 -0.005 0.022 -0.118 -0.035 0.054
LUCPasture,Grassland -0.022 0.022 0.072 -0.080 0.081 0.229

Initial Agriculture 0.383 1.291 2.065 -0.044 1.307 2.980
Initial Natural Forest -1.697 -0.895 -0.278 1.582 2.844 4.133
Initial Forest Plantation -3.579 -1.641 -0.031 -15.995 -11.275 -6.581
Initial Grassland -3.210 -2.363 -1.369 0.896 3.216 5.967
Initial Pasture -1.293 -0.713 0.008 -0.214 0.980 2.354

Initial income -3.765 -3.633 -3.466 2.232 2.477 2.759
Human capital 2.766 3.386 4.103 -3.953 -3.056 -1.845
Population growth -0.411 -0.390 -0.368 -0.115 -0.040 0.039
Population density -0.506 -0.371 -0.238 0.107 0.424 0.751
GVA agriculture -0.190 -0.117 -0.059 -0.132 0.024 0.167
GVA industry -0.464 -0.402 -0.323 -0.765 -0.549 -0.403
GVA services 0.703 0.767 0.830 0.166 0.340 0.571

Precipitation 0.002 0.261 0.478 -0.138 0.110 0.365
Elevation -0.002 -0.001 0.000 0.000 0.001 0.001

ρ 0.373 0.379 0.383
Observations 47,241

Table 9: Impact estimates growth model with alternative k = 9 nearest
neighbours W. Panel-structure (2005-2013) spatial Durbin model including time fixed
effects. Dependent variable is 5-year average annual per capita growth rates. Estimates
printed in bold type are statistically different from zero based on the 95 percent posterior
credible interval. PM denotes posterior mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 451.615 644.072 859.076 2460.608 3418.858 4435.588
Mining × since 2010 -28.591 206.777 409.281 -442.244 505.300 1527.827

LUCAgriculture,Grassland -21.757 0.377 21.278 -83.142 31.730 139.480
LUCAgriculture,Pasture -7.179 6.471 20.658 -39.965 21.760 85.467
LUCGrassland,Agriculture 18.484 38.241 57.544 34.689 147.647 233.573
LUCGrassland,Pasture 22.099 43.236 64.944 -134.342 -27.737 53.888
LUCPasture,Agriculture 10.162 20.680 32.429 -104.892 -56.824 -8.495
LUCPasture,Grassland 55.959 77.413 96.326 -2.843 105.304 212.686

Initial Agriculture -650.791 -308.971 -10.408 90.160 1031.055 1807.338
Initial Natural Forest 252.847 539.024 817.624 1039.015 1745.085 2459.352
Initial Forest Plantation -1106.581 -394.084 336.894 -3688.405 -1362.732 914.229
Initial Grassland -2101.430 -1564.503 -1208.213 -1988.657 -569.519 843.982
Initial Pasture -927.097 -622.068 -350.624 1426.904 2043.394 2716.025

Initial income -115.365 -65.941 -0.988 -267.052 -62.847 117.022
Population growth 48.610 59.319 68.308 167.759 226.856 284.602
Population density 53.565 89.950 130.462 114.901 324.701 516.353
GVA agriculture 136.334 161.243 184.087 149.485 254.087 369.106
GVA industry -11.700 11.481 36.745 15.830 172.616 329.409
GVA services -96.308 -68.659 -39.604 -486.021 -283.919 -104.970

Precipitation 12.675 102.395 195.927 -86.084 40.233 166.721
Elevation -0.596 -0.365 -0.092 0.064 0.416 0.770

ρ 0.691 0.695 0.701
Observations 47,241

Table 10: Impact estimates forest loss model with alternative k = 7 nearest
neighbours W. Panel-structure (2005-2013) spatial Durbin model including time fixed
effects. Dependent variable is annual forest loss in ha. Estimates printed in bold type are
statistically different from zero based on the 95 percent posterior credible interval. PM
denotes posterior mean.
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Avg. direct impact Avg. spillover
Variables 2.5% PM 97.5% 2.5% PM 97.5%

Mining × pre 2010 448.477 660.915 882.935 2911.746 4125.045 5140.814
Mining × since 2010 3.908 222.406 392.676 -314.804 866.545 2199.908

LUCAgriculture,Grassland -18.146 7.859 27.757 -135.565 20.332 157.289
LUCAgriculture,Pasture -8.301 7.814 19.861 -42.095 15.771 79.570
LUCGrassland,Agriculture 12.264 35.392 53.516 -63.515 82.031 229.092
LUCGrassland,Pasture 21.468 39.906 58.638 -168.003 -49.911 96.106
LUCPasture,Agriculture 9.423 22.645 36.797 -131.223 -74.853 -30.352
LUCPasture,Grassland 52.890 77.060 97.063 40.273 193.746 359.884

Initial Agriculture -782.614 -417.322 -155.042 613.473 1466.234 2394.824
Initial Natural Forest 151.698 453.706 724.195 1268.219 2019.307 2957.165
Initial Forest Plantation -1177.207 -446.761 360.010 -4840.617 -1813.822 1194.589
Initial Grassland -2163.688 -1687.999 -1350.134 -1518.259 544.506 2265.990
Initial Pasture -1018.934 -710.335 -457.777 1657.140 2317.530 3101.552

Initial income -97.596 -52.438 6.815 -327.600 -155.023 70.394
Population growth 45.230 56.667 68.681 130.348 219.097 284.310
Population density 36.335 84.370 134.449 45.210 292.897 493.015
GVA agriculture 135.302 163.730 194.617 168.978 261.448 359.909
GVA industry -18.562 10.183 42.659 94.446 274.468 454.336
GVA services -103.206 -68.712 -25.166 -550.652 -337.084 -104.899

Precipitation -12.523 84.114 195.508 -62.932 66.711 211.004
Elevation -0.570 -0.305 -0.061 -0.129 0.300 0.664

ρ 0.721 0.733 0.741
Observations 47,241

Table 11: Impact estimates forest loss model with alternative k = 9 nearest
neighbours W. Panel-structure (2005-2013) spatial Durbin model including time fixed
effects. Dependent variable is annual forest loss in ha. Estimates printed in bold type are
statistically different from zero based on the 95 percent posterior credible interval. PM
denotes posterior mean.
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